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ABSTRACT 
The propagation of waves in axisymmetric structures can be modelled using a wave/finite 
element (WFE) approach.  A small, rectangular segment of the structure is modelled using 
conventional finite element methods, typically using a commercial package. Periodicity 
conditions are then applied. An eigenvalue problem results, the solutions of which yield the 
dispersion relations. In this paper the WFE method is applied to cylindrical shells modelled 
using ANSYS. The circumferential order of the wave can be specified in order to define the 
phase change a wave experiences as it propagates across the element in the circumferential 
direction. The resulting eigenproblem then relates the axial wavenumber and frequency. The 
method is described and illustrated by application to cylinders of different constructions. First a 
thin, isotropic shell is considered - for this case analytical solutions are available from which the 
accuracy and efficiency of the method can be demonstrated. A steel cylinder filled with water 
comprises the second example. The third example concerns a sandwich cylinder with a foam 
core and orthotropic, laminated skins, for which analytical solutions are not available. The 
method is seen to be simple in application and provide accurate results with very little 
computational cost.  
 
 
INTRODUCTION 
The analysis of wave propagation in cylindrical shells is of importance in a number of 
applications. Examples include structure-borne sound, acoustic wave propagation in fluid-filled 
ducts, sound transmission in aerospace structures, structural integrity and SEA. Of primary 
importance is knowledge of the dispersion relation. Analytical expressions can be developed for 
simple cases – e.g. isotropic cylinders in-vacuo, fluid-filled pipes with rigid walls – but for more 
complex structures analytical approaches become very difficult or even impossible. On the other 
hand the computational cost of standard finite element (FE) models of the structure as a whole 
becomes prohibitive at higher frequencies, so that alternative techniques are sought. 
 
This paper concerns the application of a wave/finite element (WFE) method to the analysis of 
wave propagation in uniform axisymmetric structures, and in particular cylindrical shells with or 
without internal fluid. This is a special case of WFE analysis of 2-dimensional structures. In 
summary, a small segment of the structure is modelled using conventional FE methods, 
typically using a commercial FE package. The mass and stiffness matrices are subsequently 
post-processed using methods originally developed by Abdel-Rahman [1] for the FE analysis of 
periodic structures. An eigenvalue problem is formulated whose solutions give the dispersion 
relations. For 1-dimensional waveguides WFE methods have been developed for free [2] and 
forced vibration [3] analysis and applied to laminate plates [2], thin-walled structures [4], fluid-
filled pipes [5] and tyres [6]. Similar approaches have previously been applied to rail tracks [7,8]. 
In the application to fluid-filled pipes [5] axisymmetry was not exploited – the WFE models are 
significantly larger and it is difficult to characterise the motion in terms of circumferential orders 
a priori. In this paper the WFE analysis of structures for which waves can propagate in 2-
dimensions [9] is applied to wave propagation in axisymmetric structures. First the general 

mailto:elisabetta.manconi@unipr.it
mailto:brm@isvr.soton.ac.uk


 

approach is briefly outlined. Then the method is applied to several examples, these being an 
isotropic cylinder in-vacuo, a water-filled steel pipe and a sandwich cylindrical panel. 
 
One of the main advantages of WFE methods is the fact that standard FE routines and 
commercial FE packages can be used. They can therefore be applied to structures of arbitrary 
complexity and structural configuration. Furthermore, the computational cost is very small. 
 
WFE ANALYSIS OF AXISYMMETRIC STRUCTURES  

 

θ − kθ

In this section the WFE method is briefly described. Further details for 2-dimensional wave 
propagation can be found in [9]. Consider a uniform axisymmetric structure whose axis is the y-
axis. A time harmonic disturbance at frequency ω can propagate through the structure as 

, where k  are the components of the 
wavenumber k and W(r) is the (complex) wave amplitude.  In the absence of damping the 
wavenumber is real for propagating waves, imaginary for evanescent waves or complex for 
oscillating, decaying waves. For cylindrical shells of mean radius R it is perhaps more 
convenient to define an axis x around the circumference, for which x = Rθ. Such waves 
propagate as 

( ) ( ) ( )( ), , , exp yw r y t W r t k k yi θθ ω= − , y

( ) ( ) ( )( ), , , exp x yw r x y t W r t k k yi xω= − −  where xk .  Rkθ =
 

, k  and ω (or kThe aim of the WFE method is to estimate the dispersion relations between kx y θ, ky 
and ω) from FEA. A short segment of rectangular cross-section, of length Ly and subtending an 
angle Lθ as shown in Figure 1(a) is taken from the structure and modelled using FEA. For 
cylindrical shells one might alternatively take a single, rectangular, 4-noded element of length Lx 
(Figure 1(b)). In the subsequent analysis there are assumed to be only corner degrees of 
freedom (DOFs) although mid-side nodes can be included straightforwardly. Any internal DOFs 
are condensed.  
 
Consider the rectangular cross-section as shown in Figure 1(c). The element degrees of 
freedom (DOFs) q are given in terms of the nodal DOFs by 
 

1 2 3 4

TT T T T= ⎡ ⎤⎣ ⎦q q q q q                ( Eq. 1) 
 

where the superscript T denotes the transpose, with a similar expression for the nodal forces f. 
The mass and stiffness matrices of the element are found using conventional FE methods. 
Typically a commercial package might be used so that existing element libraries can be 
exploited. It is common in FEA to model curved structures as being piecewise flat. In order to 
model the desired curvature, as shown in Figure 1(b), the DOFs of node 2 and node 4 (defined 
in local coordinates) must be transformed to global coordinates by a rotation through an angle 
Lθ. A transformation matrix R can be defined so that the mass and stiffness matrices for the 
“curved” element become  and , where M  and K  are the 
element matrices in local coordinates. 

T
loc=M R M R T

loc=K R K R loc loc

Figure 1.- WFE of axisymmetric structures: (a) segment of axisymmetric structure; (b) plane 4-
noded element and coordinate rotation; (c) rectangular element and nodal DOFs. 
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The equation of motion for the element, assuming time-harmonic behaviour, is 
 

2; ω= = −Dq f D K M                ( Eq. 2) 
 

where D is the dynamic stiffness matrix. Under the propagation of a wave the nodal degrees of 
freedom in global coordinates are such that 
 

 

1y2 1 3 1 4; ;x y xλ λ λ= = =q q q q q λ q                ( Eq. 3) 
 

where 
 

; ; ;yx ii
x y x x x ye e k Lμμλ λ μ μ−−= = = = y yk L                ( Eq. 4) 

 

Here μ  and μx y are the propagation constants. The nodal forces are related by similar equations.  
Thus the nodal DOFs can be written in terms of the DOFs q1 of node 1. In the absence of 
external excitation, equilibrium at node 1 implies that the sum of the nodal forces of all the 
elements connected to node 1 is zero. Equation (2) can thus be transformed into 
 

( ) ( )2
1, ,x y x yλ λ ω λ λ′ ′− =⎡ ⎤⎣ ⎦K M q 0                ( Eq. 5) 

 

where  and  are the reduced stiffness and mass matrices, i.e. the element matrices 
projected onto the DOFs of node 1 under the assumption of time harmonic disturbance 
propagation. The eigenvalue problem of Eq. 5 can also be written as 

′K ′M

 

( ) 1; ,x yω λ λ′ =D q 0

′

               ( Eq. 6) 
 

where  is the reduced dynamic stiffness matrix (DSM). If the DSM of the 
segment of the structure is partitioned into appropriate submatrices then the reduced 
eigenvalue problem is given by 

2ω′ ′= −D K M

 

( ) ( ) ( )
( ) ( )

1
11 22 33 44 12 34 21 43

1 1 1 1 1
13 24 31 42 14 41 32 23 1

[

] 0
x x

y y x y x y x y x y

λ λ

λ λ λ λ λ λ λ λ λ λ

−

− − − − −

+ + + + + + + +

+ + + + + + + +

D D D D D D D D

D D D D D D D D q =
      ( Eq. 7) 

 

If there are n DOFs per node, the nodal displacement and force vectors are , the element 
mass and stiffness matrices are 

1n ×
4 4n n×  while the reduced matrices are . Eqs. 6 and 7 

define an eigenproblem relating 
n n×

ω,x yλ λ  and  for the discretised structure, whose solutions 
give FE estimates of the dispersion relations of the continuous structure. The form of the 
eigenproblem may be linear, quadratic, polynomial or transcendental according to the nature of 
the solution sought. Further details can be found in [9]. 
 
The eigenvalue problem for closed axisymmetric structures 
Generally, a plane wave in an axisymmetric structure propagates with a helical pattern so that 
k , kx θ can in principle take arbitrary values: real, imaginary or complex. However, in closed 
structures the phase change of a wave as it propagates around the circumference must be a 
multiple of 2π  so that the circumferential wavenumber can only take the discrete values 

 which define the order n of the wave mode. Under these circumstances / , 0,1, 2...xk n R n= =

(expx inL Rλ = − )x  is known for a given circumferential order and Eq. 7 becomes either a 

linear eigenproblem in 2ω 2ωyλ yλ for given  or a quadratic eigenproblem in  for given . 
 
NUMERICAL EXAMPLES 
In this section various numerical examples are presented to illustrate the application of the WFE 
method to cylinders. The non-dimensionalised frequency / rω ωΩ =  is introduced, where  

2/ (1 )r Eω ρ ν= − , (Eq. 9)                 
is the shell ring frequency. 
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Isotropic cylinder in-vacuo 
An in-vacuo steel cylinder with thickness-to-mean-radius ratio 0.05 is considered. The mass and 
stiffness matrices were found from a single plane element of type SOLID45 in ANSYS. 
Analytical express exist for this situation. 
Figure 2 shows the real-valued dispersion curves for the circumferential modes of orders 

. The three branches shown in Figure 2 broadly correspond to flat-plate flexural, 
torsional and extensional waves. This behaviour is particularly clear above the ring frequency, 
while near and below the ring frequency the effect of the curvature results in a more 
complicated behaviour.  

0,1, 2,3n =

 
The dispersion relation for the propagation of helical waves is shown in Figure 3 for 

. The group velocity 0,0.5,1Ω = gc d dk= Ω  is in the direction of the normal to the dispersion 

curves in the ( ),x yμ μ  plane.  In Figure 3(a) it can be seen that at low frequencies there exist 

regions in which a particular value of yμ  corresponds to two distinct values of xμ , e.g. points A 
and B. These points represent distinct waves with group velocities in different directions: point B 
represents a wave having a negative group velocity in the circumferential direction while point A 
represents a wave having a positive group velocity in the circumferential direction. 
 
Isotropic water-filled cylinder  
In this section the WFE method is applied to a water-filled steel pipe with thickness-to-mean 
radius ratio equal to 0.1. Damping is neglected and the speed of flow of the fluid is assumed to 
be negligible compared to the speed of sound in both the fluid and the structure. The finite 
element model of a segment of the structure is shown in Figure 4 and was realised in ANSYS. It 

Figure 2.- Dispersion curves for cylindrical steel shell: (a) …… 0n = , ______ 1n = ;  
(b) …… 2n = , ______ 3n = . 
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Figure 3.- Dispersion curves for steel shell: (a) ______ 0.5= , …. 1Ω = ; (b) 1.5Ω = . Ω



 

comprises 2 solid structural “brick” elements (SOLID45) and 20 fluid elements (FLUID30), 
resulting in a total number of DOFs equal to 120. The model includes the fluid structure 
interaction at the interface between the fluid and the structure. Figure 5 shows the non-
dimensional wavenumber k 0,1, 2,3, 4n =R corresponding to orders y . The various waves can 
be associated with motion that is predominantly structure- (bending, torsion or axial) or fluid-
borne. 

 

 

Sandwich cylindrical shell 
As a final example, consider a cylindrical sandwich shell comprising two laminated skins and a 
foam core. The example panel is very similar to one considered by Heron in [8]. The thickness-
to-mean radius ratio of the sandwich construction is 0.018. The two skins each comprise 4 
orthotropic sheets of glass/epoxy with a lay-up of [+45/-45/-45/+45] while the core material is a 
polymethacrylamide ROHACELL foam with 110WF density. A rectangular, 4-node ANSYS finite 
element SHELL181, is used to obtain the mass and stiffness matrices. The real-valued 
dispersion curves are shown in Figure 6 for the circumferential modes n = 0,1,2,3. The ring 
frequency is at approximately 617 Hz. Below the ring frequency the wave behaviour is very 
complex and cannot be described simply in terms of torsional, extensional and flexural waves 

Figure 4.- FE model of segment 
of water-filled steel cylinder 
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Figure 6.- Dispersion curves for sandwich shell: (a) …. 0n = , ____ 1n = ; (b) ….. 2n = ,  ___ 3n = . 
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alone. It can be seen in Figure 6(a) that, for the n = 1 branches 1 and 2, there is more than one 
possible value of μ  for a given frequency. For example, there are three different values of μy y for 
the n = 1 branch 1 when 384Hz < f < 399Hz. The lower and the higher values correspond to 
waves with positive group velocities in the y direction while the middle value corresponds to a 
wave which has a negative group velocity in the y direction, but a positive phase velocity. For 
the n = 1 branch 2, in the frequency range 428Hz < f < 550Hz, the two values of μy correspond 
to two waves travelling in opposite directions along the shell. In particular, the wave associated 
with the lower value of μy has a negative group velocity in the y direction and a positive phase 
velocity. Similar results can be seen for higher circumferential mode numbers.  Figure 7 shows 
the dispersion curves in the (μ , μx y ) plane for different values of frequency. The frequencies in 
Figure 7(a) are below the ring frequency, while that in Figure 7(b) is above the ring frequency. It 
can be seen that there exist regions in which different values of μx correspond to the same value 
of μ  and different values of μ  correspond to the same value of μy y x. Considerations about the 
energy flow can be made for every one of these points. These dispersion curves are very 
similar to the results obtained by Heron [8]. 
 
CONCLUSIONS 
A numerical wave/finite element (WFE) method for the analysis of wave propagation in 
axisymmetric structures was described. Examples of various in-vacuo and fluid-filled cylinders 
were presented. A rectangular segment with 4 nodes is modelled using conventional FEA, 
typically using a commercial package. The resulting system matrices are post-processed using 
periodicity conditions to yield the dispersion relations. The computational cost is extremely small 
and existing FE packages and their extensive element libraries can be exploited. The method 
typically provides accurate predictions when the size of the FE is less than about 1/6 of the 
wavelength. 
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Figure 7.- Dispersion contours for steel shell: (a) ___200 Hz, ….. 500 Hz; (b) 800 Hz. 
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