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Computer models are used in many fields to simulate real-world processes. One of the
goals is to optimise the value of the computer model. Due to the fact that the computer
model is usually expensive to evaluate, one can only make a limited number of evalu-
ations of this computer model. Using Gaussian processes in sequential design through
the use of acquisition functions is a common approach for sample-efficient optimisation
in such cases. Despite many recent successes, there are still a number of outstanding
problems in that field. In this work, we address some of these problems.

We first give a brief overview of Bayesian optimisation and the common techniques
used. After that, we focus on scenarios where one is interested in finding both the
minimum and the maximum of the computer model simultaneously. We use the entropy
of the location of the optima to define a sequential design algorithm. The design is
then created in a way that would minimise the entropy. Monte Carlo methods are used
to approximate a number of probability distributions. The resulting algorithm is then
compared against a baseline algorithm to demonstrate its superior performance.

In the second part of this paper, we are interested in optimising high-dimensional com-
puter models. This is a complicated task and comes with a number of additional chal-
lenges compared to the standard problems. Our focus is on computer models whose
accuracy we can control by changing the amount of computational resources allocated
to them. This is also often referred to as multi-fidelity optimisation. We then use a num-
ber of techniques from mathematical optimisation to define a multi-fidelity optimisation
algorithm that can be used in high-dimensional settings and scaled to large number
of evaluations. Its performance is then compared to that of another state-of-the-art
optimisation algorithm.

In the final part of this paper, we explore computer models that are non-stationary.
These are computer models whose properties change depending on which part of the
design space it is evaluated. For example, a computer model that changes rapidly in one
area and is completely flat in a different area is non-stationary. Such computer models
can accurately be modelled with a non-stationary Gaussian process. However, fitting
non-stationary Gaussian processes can be computationally very expensive and a large
number of computer model evaluations is often needed to model the process accurately.
This makes sequential design difficult. We create a novel acquisition function that allows
us to create accurate sequential designs by using regular stationary Gaussian processes
that are far easier to fit. Our acquisition function puts more emphasis on more interesting
regions and less emphasis on less interesting regions. We then create sequential designs
created by our novel acquisition function combined with stationary Gaussian processes
and compare it with designs found by non-stationary Gaussian processes.
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Chapter 1

Introduction to Design of
Computer Experiments

Experiments underpin the scientific method. Physical experiments are used to under-
stand the underlying processes behind many phenomena, often via the fitting of models
to the observed data. However, running a physical experiment is often infeasible. It
can be unethical (e.g. investigating the spread of disease through a population as in
Herrmann et al. (2024)), too expensive (e.g. exploring the dynamics of a rocket booster
as in Pamadi et al. (2004a)) or simply impossible (e.g. galaxy formation simulations as
in Vogelsberger et al. (2019)).

In such cases, a computer model can be built. A computer model is a mathematical
model that simulates real-world phenomena using the latest scientific knowledge. In
this paper, we treat the computer model as a black-box taking inputs as arguments and
returning an output. Computer models can be used to understand the underlying phe-
nomena, for example, by performing a sensitivity analysis to identify the most important
inputs. However, computer models are often computationally expensive to evaluate (see,
for example Santner et al., 2003), complicating their usage for the aforementioned task.

Usually, one would like to learn as much information about this function as possible.
Since this computer model is expensive to evaluate, we can only make a limited number
of evaluations of it. To learn about this computer model, we perform a computer exper-
iment. Similarly to a physical experiment, we create an experimental design where we
collect data. Instead of collecting data through the physical process directly, we collect
it by evaluating the computer model at each of the design points. The evaluated points
can be used to fit a surrogate model, which aims to approximate the computer model
for any set of inputs. Despite the popularity and success of this approach in many ap-
plications, several key challenges still remain to make Bayesian optimisation even more
broadly applicable and robust in more complex and realistic settings. This thesis will
focus on a number these challenges.
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We begin by giving an overview of Bayesian optimisation. Bayesian optimisation has
become a widely adopted approach for sample-efficient optimisation in expensive eval-
uation scenarios. This framework typically uses Gaussian Processes as a surrogate to
estimate the underlying computer model and quantify uncertainty. Sequential design
combined with various acquisition functions is used to intelligently balance exploration
and exploitation to find the global optimum. Several different algorithms and acquisition
functions are introduced and compared.

In the first part of this work we consider the case where both the minimum and the
maximum of the computer model are of interest. These situations occur frequently in
design and risk assessment tasks, where extreme values can inform worst-case and best-
case analyses. This is an area that has received little to no attention in the past compared
to single-objective optimisation. To address this problem, we draw inspiration from
information theory and propose a new algorithm based on entropy. More specifically,
we use the joint entropy of both optima locations to define a new acquisition function
for multi-task Bayesian Optimisation. This acquisition function chooses a new point in
a way that minimises the uncertainty about both locations. Since the exact calculation
of this acquisition function is generally intractable, we employ Monte Carlo techniques
to approximate the necessary probability distributions. Our algorithm is then evaluated
against a baseline algorithm to demonstrate its superior ability to efficiently identify
both optima more accurately and with fewer computer model evaluations.

The second part focuses on optimising high-dimensional computer models. Traditional
Bayesian Optimisation algorithms struggle in higher dimensions due to curse of di-
mensionality. Curse of dimensionality makes it very difficult to fit Gaussian Processes
accurately, which means standard algorithms that rely purely on the fit of the Gaus-
sian Process are unable to select informative sample points. We specifically focus on
multi-fidelity optimisation, where the accuracy of model evaluations can be controlled
by varying the amount of computational resources. A low-fidelity evaluation will be
much cheaper and quicker but also less accurate, while high-fidelity evaluation can be
very accurate but also very expensive to run. We develop a novel algorithm that both
chooses the location of the points to evaluate, as well as the fidelities at which to eval-
uate them. Our novel algorithm is run against an existing state-of-the-art algorithm to
demonstrate that our algorithm finds better results using a significantly lower number
of computer model evaluations.

Finally, we consider sequential design for non-stationary computer models whose be-
haviour varies significantly across different regions of the input space. For example, a
model might exhibit sharp changes in one region while remaining flat in another. Stan-
dard Gaussian process models assume stationarity, which can lead to overexploring more
boring regions and underexploring the more interesting regions, leading to poor perfor-
mance when the stationarity assumption is violated. While non-stationary Gaussian
processes can offer more flexibility and greater accuracy, they are computationally very
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expensive to train. They typically also require many model evaluations to accurately
capture the underlying process and its non-stationarity, undermining the benefits of se-
quential design. We therefore propose a novel acquisition function that can be used
with standard stationary GPs, while mimicing the behaviour of non-stationary models
by adapting the sampling strategy to focus more on complex, informative regions of the
input space. This is achieved by essentially reweighing the design space to focus on the
more interesting areas. This approach allows for efficient sequential design without the
overhead of fitting a full non-stationary GP. We validate our approach by comparing
sequential designs generated from our method to those obtained via fully non-stationary
GP models. Our experiments demonstrate competitive or superior performance with
only a fraction of the computational cost.

Overall, our work contributes several new algorithms and ideas to the field of design of
computer experiments. Each proposed method is motivated by real-world challenges and
is thoroughly evaluated by comparing against existing techniques. Each part addresses
a limitation of current capabilities, broadening the applicability of sequential design
methods.

1.1 Gaussian process

As stated previously, it is assumed that the computer model is computationally expensive
to evaluate. To understand the behaviour of the computer model it is common to perform
a computer experiment. This is where the computer model is evaluated at a carefully
chosen, small number, n, of inputs. Then an emulator is fitted to the resulting outputs.
The emulator, a form of statistical model, can then predict the value of the output for
any inputs, including a measure of uncertainty. Consequently, the emulator can be used
as an alternative to the computer model for tasks such as sensitivity analyses, and, of
interest in this paper, optimisation.

Let the computer model be denoted by f : X → R. It is a function of a d × 1 vector of
inputs x = (x1, . . . , xd) ∈ X, where X ⊂ Rd is the input space. Let X = {x1, . . . , xn}
denote the set of n inputs chosen for the computer experiment. Let y = (y1, . . . , yn)

denote the n × 1 vector of corresponding computer model outputs, i.e. yi = f(xi), for
i = 1, . . . , n. We allow the computer model to be stochastic, meaning, in general, yi ̸= yj

for xi = xj , for i, j = 1, . . . , n. In that case, we can also write our computer model as
f(x) = g(x) + ϵ(x), where g(x) is a deterministic function and ϵ(x) is some unknown
stochastic function. We would then like to emulate the true deterministic function g(x).

The most common type of emulator is the Gaussian process emulator (Fang et al., 2005;
Santner et al., 2003). A Gaussian process is a stochastic process whereby any finite
collection of variables has a multivariate normal distribution. We use a constant-mean
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Figure 1.1: Examples of a Gaussian Process prior

Gaussian process where
y ∼ N

[︂
µ1n, σ2K(X, X)

]︂
. (1.1)

An example of a Gaussian Process prior can be seen in Figure 1.1

In Equation (1.1), 1n denotes the n × 1 vector of ones and K(X, X) is an n × n matrix
with ijth element K(X, X)ij = ρI(i = j) + r(xi, xj ; θ), for i, j = 1, . . . , n, where

I(i = j) is an indicator function meaning I(i = j) =

⎧⎨⎩1 if i = j

0 if i ̸= j
. The term r(·, ·; θ)

is a correlation function depending on a vector of parameters θ with the properties that
r(x, x′; θ) ∈ (0, 1), for x ̸= x′, and r(x, x; θ) = 1. A common choice for r(·, ·; θ) is a
Gaussian correlation function

r(x, x′; θ) = exp
[︄
−

d∑︂
k=1

(xk − x′
k)

2

θk

]︄
, (1.2)

where θ = (θ1, . . . , θd). The Gaussian correlation function is used throughout this paper.
However, the methodologies proposed in the rest of this thesis can be combined with any
choice of correlation function. The parameter θ is called the lengthscale parameter and
it controls how strong the correlation between two points x and x′ is in r(x, x′; θ). This
in turn controls the overall smoothness of the Gaussian Process. Examples on how the
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Figure 1.2: Gaussian Process priors under different lengthscales θ

choice of θ affects the GP are seen in Figure 1.2. The larger θ means that the correlation
between different points is smaller and the GP is smoother and less wiggly. Smaller θ

means stronger correlation between points that are close, which makes the GP more
wiggly with rapid changes.

The quantity ρ ≥ 0 is sometimes called the nugget and represents the underlying output
noise of a stochastic computer model. The nugget can be set to zero for determinis-
tic computer models. However, Gramacy and Lee (2010) suggest retaining a non-zero
nugget, even for deterministic computer models, as it can improve the predictive perfor-
mance of the emulator, for example, with respect to the coverage of prediction intervals.
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Figure 1.3: Gaussian Process priors under different scales σ2

The parameter σ2 is the scale parameter, which controls the magnitude of the GP.
Examples of different GP priors with different σ2 are shown in Figure 1.3.

Suppose we wish to predict the values of the computer model for m inputs in the set
X̄ = {x̄1, . . . , x̄m}. Let ȳ = (ȳ1, . . . , ȳm) be the m × 1 vector with ȳj = f(x̄j), for
j = 1, . . . , m. It follows from the above specification of the Gaussian process that the
joint distribution of y and ȳ is(︄

y
ȳ

)︄
∼ N

[︄
µ1n+m, σ2

(︄
K(X, X) K(X, X̄)

K(X, X̄)T K(X̄, X̄)

)︄]︄
,

where K(X, X̄) is an n × m matrix with ijth element K(X, X̄) = r(xi, x̄j ; θ), for
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i = 1, . . . , n and j = 1, . . . , m, and K(X̄, X̄) is an m × m matrix with ijth element
K(X̄, X̄)ij = ρI(i = j) + r(x̄i, x̄j ; θ), for i, j = 1, . . . , m.

Using properties of the multivariate normal distribution the conditional distribution of
ȳ, given y, is

ȳ|y ∼ N [µ(X̄), Σ(X̄)] , (1.3)

where

µ(X̄; X, y) = µ1m + K(X, X̄)T K(X, X)−1 (y − µ1n) (1.4)

Σ(X̄; X, y) = σ2
[︂
K(X̄, X̄) − K(X, X̄)T K(X, X)−1K(X, X̄)

]︂
. (1.5)

The distribution in (1.3) can be used to predict the elements of ȳ = (ȳ1, . . . , ȳm). For
example, the expectation can be used as a point prediction and the variance a measure
of uncertainty. The distribution in (1.3) depends on the quantities µ, ρ, σ2 and θ.
We estimate these parameters using maximum likelihood, where the likelihood function
follows from the model specification given by (1.1).

A special case of (1.3) arises when m = 1, i.e. we are predicting the value of the computer
model, y = f(x), at a single input x, in which case y|y ∼ N [µ(x), Σ(x)] where

µ(x; X, y) = µ + k(X, x)T K(X, X)−1 (y − µ1n)

Σ(x; X, y) = σ2
[︂
1 + ρ − k(X, x)T K(X, X)−1k(X, x)

]︂
,

where k(X, x) is an n × 1 vector with ith element r(xi, x; θ) for i = 1, . . . , n.

Imagine we have a computer model of the form

fA(x) = 0.4 sin (20(x + 0.5)(x − 0.5)) + 5(x − 0.5)2 − 0.5; for x ∈ (0, 1) (1.6)

We can then choose a random design X of size n = 10 and evaluate y = f(X). Based
off of X and y, we estimate our parameters µ, ρ, σ2 and θ. This will allow us to make
predictions and calculate µ(X̄; X, y) and Σ(X̄; X, y). These are shown in Figure 1.4.
Note that in this example the maximum likelihood estimates are θ ≈ 0.066, ρ ≈ 0.093,
µ ≈ 0.047 and σ2 ≈ 0.68.

The fit of the GP depends on all the hyperparameters, especially θ and ρ as they change
both the mean and variance. As mentioned before, θ changes the wiggliness of the
Gaussian Process. This is illustrated in Figure 1.5.

In Figure 1.5, we fit 4 GPs to the same design, all with different values of θ. In all
4 scenarios, we have fixed ρ = 10−4. Under this value of ρ, the maximum likelihood
estimate of θ is θ ≈ 0.01. As expected, the GPs with a higher value of θ are more smooth
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Figure 1.4: GP fit to fA(x)

and do not interpolate the evaluated points, whereas the GPs with a lower value of θ

are more wiggly and interpolate the evaluated points.

The parameter ρ is also found in both the mean as well as the variance of the GP. It
models the level of noise in the computer model. Therefore low levels of ρ means that
the GP mean interpolates the evaluated points, while high levels of ρ means that the
GP mean does not interpolate the evaluated points and rather smooths over them. In
Figure 1.6, four different GP fits are shown. Each of them has a fixed θ = 0.01. As we
can see, the GPs with a low ρ interpolate our design and high ρ smooths.

1.2 Bayesian Optimisation

Very often our goal is to minimise (or maximise) the computer model and find

x∗ ∈ arg min
x∈X

f(x)

Since f(x) is expensive to evaluate, we can only make a limited number of evaluations
of it. What is more, the computer model can also be noisy, which makes it impos-
sible for us to numerically approximate its gradient. Because of those reasons, using
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Figure 1.5: Gaussian Process posteriors under different lengthscales θ
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traditional numerical optimisation algorithms (such as Newton-Raphson, Nelder-Mead,
BFGS, etc.) are not an option. Instead, various Bayesian optimisation algorithms have
been proposed to handle this problem (Jones et al. (1998); Picheny et al. (2013); Huang
et al. (2006b); Frazier et al. (2009); Forrester (2013); Quan et al. (2013)). Each of those
algorithms perform a computer experiment. Similarly to a physical experiment, we cre-
ate an experimental design with N values and collect data for that design, by evaluating
f(x) at each of these N values. We then use that data to build a surrogate model that
approximates the value of f(x) for any other input value. In our case, we approximate
f(x) by Y (x).

The choice of the inputs in the design X = {x1, . . . , xn} is crucial. In the early days
of analysing computer experiments, the goal of running the computer experiment was
to provide an accurate and precise prediction of the computer model for any x ∈ X.
Designs such as space-filling designs were commonly-used (McKay et al., 1979; Garud
et al., 2017a). However, recently model based sequential designs have been recommended
as they provide superior performance compared to the static designs (Garud et al., 2017b;
Crombecq et al., 2011; Provost et al., 1999). Initially, we consider optimisation, which
is the problem of finding

xmin ∈ arg min
x∈X

f(x).

Note that it is straightforward to extend this approach to maximisation tasks by min-
imising the negative of the computer model. Such a goal means we favour designs that
place inputs “close” to xmin. However, a-priori, we do not know xmin. This motivates
a sequential design approach where we sequentially update our knowledge about xmin.
A generic sequential design algorithm is shown in Algorithm 1. We begin with an ini-
tial, e.g. space-filling, design. After fitting a Gaussian process emulator to design and
outputs, we sequentially augment the design with new inputs. These inputs are chosen
to maximise an acquisition function, which is based on the current Gaussian process fit.
The key to the algorithm is the choice of acquisition function. We now discuss a series
of algorithms given by different choices of acquisition function.
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Algorithm 1: A generic sequential optimisation algorithm
Require: An acquisition function A(·), a computer model f(·), maximum number

of computer model evaluations available N and an initial design
X = (x1, ..., xn) of size n, where n < N

1 Let y = (y1, ..., yn), where yi = f(xi) for i = 1, ..., n;
2 Fit an initial Gaussian process model with X and y;
3 while n ≤ N do
4 Let xn+1 = arg maxx∈X A(x);
5 Evaluate yn+1 = f(xn+1);
6 Let X := (X, xn+1) and y = (y, yn+1);
7 Let n := n + 1;
8 Update the Gaussian process model with X and y

9 end
10 Return x̂min = arg minx∈X µ(x; X, y) where µ(·; X, y) is given in (1.6).

1.2.1 Expected improvement

One of the most well-known algorithms for sequential optimisation is efficient global
optimisation (EGO; Jones et al. 1998). The acquisition function A is expected improve-
ment (Schonlau, 1997); a measure of how much one can expect to improve the current
minimum, by evaluating the computer model at a new point. It is defined as

AEI(x) = E [max(ymin − f(x), 0)] ,

where ymin = mini∈{1,..,n} yi is the currently observed minimum.

If we model the computer model by a Gaussian process emulator, then

AEI(x) = (ymin −µ(x; X, y))Φ

⎛⎝ymin − µ(x; X, y)√︂
Σ(x; X, y)

⎞⎠+
√︂

Σ(x; X, y)ϕ

⎛⎝ymin − µ(x; X, y)√︂
Σ(x; X, y)

⎞⎠ ,

(1.7)
where Φ and ϕ are the cumulative distribution function (cdf) and probability density
function (pdf) of the standard normal distribution, respectively.

Expected improvement balances exploitation and exploration by its two terms. The first
term, given by (ymin − µ(x; X, y))Φ

[︂
(ymin − µ(x; X, y))/

√︂
Σ(x; X, y)

]︂
, increases as the

predictive mean decreases, causing the algorithm to exploit those areas with low predic-
tive mean. The second term, given by

√︂
Σ(x; X, y)ϕ

[︂
(ymin − µ(x; X, y))/

√︂
Σ(x; X, y)

]︂
,

increases with the predictive variance, causing the algorithm to explore those areas with
high predictive variance, i.e. where there is large uncertainty about the value of the com-
puter model. Indeed, some authors, for example, Sóbester et al. (2005), have weighted
the two terms in (1.7) to prioritise exploitation or exploration.
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Figure 1.7: (a) Example of a GP fitted to fB(x) (b) Expected Improvement function
evaluated

We can similarly define EI for maximisation problems as follows:

EImax(x) = E [max(f(x) − ymax, 0)] , (1.8)

where ymax = maxi∈(1,..,n) yi is the currently observed maximum.

Imagine we have a computer model fB(x) defined in x ∈ (0, 1), which is given as

fB(x) = (6x − 2)2 · sin(12x − 4) + 5 cos(24x)

and that we would like to minimise. We then choose an initial design of size n = 10
and fit a GP, this can be seen in Figure 1.7 (a). We then use Equation 1.7 to calculate
expected improvement for all x ∈ (0, 1). This can be seen in Figure 1.7 (b).

In the case of a stochastic computer model, every element of (y1, ..., yn) is a random
variable, meaning ymin (or ymax) is also a random variable. To fully take into account all
uncertainty about ymin/ymax is a difficult task. For this reason, expected improvement
is not well defined for stochastic computer models.
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Figure 1.8: (a) Example of a noisy GP fitted to fC(x) (b) Minimum Quantile function
evaluated

1.2.1.1 Minimum quantile

The minimum quantile (MQ; Picheny et al. 2013) algorithm has acquisition function
AMQ(x) = q(x; X, y), where q(x; X, y) = µ(x; X, y) + Φ−1(β)

√︂
Σ(x; X, y), for tuning

parameter β ∈ (0, 0.5] and where Φ−1(·) is the quantile function of a standard normal
distribution. Typically β = 0.1, but it can also be varied throughout the iterations of
the sequential design algorithm. In Srinivas et al. (2010), β is an increasing function of
the number of iterations, meaning that in the early steps of the algorithm, the impact of√︂

Σ(x; X, y) is large and the algorithm focuses on exploration. However, as β approaches
1/2, q(x) approaches µ(x; X, y) and the algorithm focuses on exploitation.

Imagine we now have a stochastic computer model, which is given as

fC(x)= fB(x) + ϵ

= (6x − 2)2 · sin(12x − 4) + 5 cos(24x) + ϵ,
(1.9)

where ϵ ∼ N(0, 2.52). We then choose a random design of size n = 25 and fit a GP.
This can be seen in Figure 1.8 (a). We can then evaluate AMQ for all x ∈ (0, 1), which
can be seen in Figure 1.8.
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Figure 1.9: (a) Example of a noisy GP fitted to fC(x) (b) Augmented Expected
Improvement function evaluated

1.2.1.2 Augmented expected improvement

Sequential kriging optimisation (SKO; Huang et al. 2006b) uses augmented expected
improvement (AEI) as the acquisition function where

AAEI(x; X, y) = E [max(µ(x∗
min; X, y) − f(x), 0)]

⎛⎝1 − ρ√︂
Σ(x; X, y) + ρ

⎞⎠ ,

where x∗
min = arg minx∈X q(x; X, y), with β ∈ [0.5, 1). The first term is very sim-

ilar to expected improvement apart from how ymin is defined. The second term 1 −
ρ/
√︂

Σ(x; X, y) + ρ can be interpreted as a correction term encouraging exploration. If
the computer model is deterministic and ρ = 0, then AEI(x) = AAEI(x), meaning
efficient global optimisation and sequential kriging optimisation coincide.

Going back to our computer model in Equation 1.9, we can evaluate AAEI for all x ∈
(0, 1), with β = 0.9, which can be seen in Figure 1.9.
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Figure 1.10: (a) Example of a noisy GP fitted to fC(x) (b) Correlated Knowledge
Gradient function evaluated

1.2.1.3 Correlated knowledge gradient

The acquisition function for correlated knowledge gradient (CKG; Frazier et al. 2009) is
the expected improvement to the lowest observed Gaussian process predictive mean at
the next step, after adding a point x to the design. CKG takes into account the change
to the Gaussian process predictive mean for all observed points in the design X, rather
than for just x. Specifically, the CKG acquisition function is

ACKG(x) = E
[︃

min
x̄∈X∪x

µ(x; X, y¯ ) − min
x̄∈X∪x

µ(x̄; {X, x} , {y, y})
]︃

,

where expectation is with respect to y = f(x).

In Figure 1.10, we have evaluated ACKG for all x ∈ (0, 1) for the computer model in
Equation 1.9.

1.2.1.4 Expected quantile improvement (EQI):

Expected quantile improvement (EQI, Forrester 2013) defines improvement in terms of
q(·; X, y) rather than the predictive mean µ(·; X, y). To be more precise, it uses the
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Figure 1.11: (a) Example of a noisy GP fitted to fC(x) (b) Expected Quantile Im-
provement function evaluated

expected value of q̂n(x) at the next step to estimate the improvement to the current
best solution. The acquisition function is

AEQI(x) = E [max(qmin − q(x; {X, x} , {y, y}), 0)] ,

where qmin = minx∈X q(x; X, y) and q̂(x; X, y) = µ(x; X, y) + Φ−1(β)
√︂

Σ(x; X, y),
with β ∈ [0.5, 1), so that expectation is with respect to y = f(x).

By applying the computer model from Equation 1.9, AEQI is evaluated over the interval
x ∈ (0, 1) for β = 0.9, with results presented in Figure 1.11.

1.2.1.5 Two stage sequential optimisation

Two stage sequential optimisation (TSSO; Quan et al. 2013) explicitly balances explo-
ration and exploitation by addressing them individually with two stages per iteration.
In the first stage, a new input is chosen to maximise the modified expected improvement
(MEI) acquisition function

AMEI(x) = E [max(µ(x∗∗
min; X, y) − yD(x), 0)] ,
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Figure 1.12: (a) Example of a noisy GP fitted to fC(x) (b) Modified Expected
Improvement function evaluated

where x∗∗
min = arg minx∈X f(x) and yD(x) is a random variable with a normal distri-

bution with mean and variance given by (1.4) and (1.5), respectively, but with ρ = 0.
At the second stage, a predefined amount of computational budget is allocated to the
existing inputs in the design. To determine which inputs get the budget, an optimal
computing budget allocation (OCBA; Chen et al. 2000) algorithm is used.

Returning to the computer model in Equation 1.9, we evaluate AMEI across the range
of x ∈ (0, 1), as presented in Figure 1.12.
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Chapter 2

Entropy Search for Multi-Task
Bayesian Optimisation

2.1 Introduction

Bayesian Optimisation (BO) is a powerful framework for the global optimisation of ex-
pensive computer models. Traditionally, it is used to locate a single global optimum,
either a maximum or a minimum, by building a surrogate model, typically a Gaussian
Process (GP), and strategically selecting points to evaluate, using an acquisition func-
tion. However, in many scientific and engineering applications, we are interested in both
the minimum and the maximum at the same time. These involve cases where we are
interested in a system’s worst case performance as well as the best case performance.
This can be useful in scenario analysis, where we want to understand the full range of
possible outcomes, or in stress testing and robustness analysis, where it is important
to evaluate how the system behaves under extreme conditions. For example, imagine
finding optimal conditions for a chemical reaction model. In that case, we might be
interested in both maximising the reaction rate to increase production speed as well as
minimising it to prevent overheating and runaway reactions. Current approaches re-
quire us to treat those two objectives completely separately, potentially ignoring a lot of
information, making the optimisation more inefficient. We address this by introducing
a novel extension of Bayesian Optimisation tailored to this dual-objective setting.

The primary contribution of this chapter is a new algorithm that enables us to simulta-
neously and efficiently find both the minimum and maximum of a given computer model.
Our acquisition function uses entropy to minimise uncertainty about the location of both
these optima.

We first start this in section 2.3 by defining entropy, which will depend on a joint prob-
ability distribution of the minimum and maximum. Since this is not available in closed
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form, we demonstrate how we can approximate it by using Monte Carlo integration.
This requires us to discretise the sample space. In section 2.3.1 we show how we can
achieve this by sampling points from an Expected Improvement function. Points are
sampled by using a parallel tempering algorithm as well as particle filtering algorithm.
In section 2.3.2 we extend these calculations and show how they can be used to find a
point that minimises expected entropy at the next step. This is done by using properties
of Gaussian Processes as well as properties of multivariate normal distributions. Finally
in section 2.3.3, we compare our algorithm’s performance against a baseline algorithm,
which is based on Expected Improvement. Our algorithm is shown to achieve better
results both in terms of sample efficiency as well as convergence reliability.

2.2 Entropy search

In this chapter, we will be focusing on a subcategory of Bayesian optimisation called
entropy-search algorithms (see, for example Hennig and Schuler, 2012; Hernández-Lobato
et al., 2014; Wang and Jegelka, 2017). In entropy-search, the acquisition function is the
entropy of the posterior probability distribution for the location of the optimum inputs.
Thus the idea is to sequentially minimise uncertainty about this distribution.

We propose new entropy-search methodology for multitask Bayesian optimisation, which
expands on the existing entropy-search literature. The new methodology allows for
multiple objectives to be considered simultaneously. This is achieved by forming a
joint posterior probability distribution for minimising and maximising inputs and then
minimising the entropy of that distribution.

The principle challenge of implementing this approach is that the joint posterior proba-
bility distribution is not available in closed form. That means the acquisition function,
used to choose the next inputs, is not available in closed form. Novel methodology is
developed to approximate the joint posterior probability distribution, the acquisition
function and the inputs that optimise the acquisition function.

2.3 Entropy search for multi-task optimisation

In section 1.2, we introduced some Bayesian optimisation algorithms that can be used
for either minimising or maximising a computer model. However, in some situations, we
would like to learn about both extremum points (maximum and minimum) simultane-
ously. For example, when modelling stock prices in financial markets, we would like to
know when the minimum and maximum price occurs, so we know when to buy and when
to sell. So in other words, we would like to both minimise and maximise the computer
model at the same time and find both
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x∗
min = arg min

x∈X
f(x)

and
x∗

max = arg max
x∈X

f(x)

as accurately as possible.

In our approach, we use a Gaussian process Y (x) as a surrogate for f(x). Since Y (x)
is a random variable, x∗

min and x∗
max are also random variables. This means that we

can rewrite our objective as follows: we want to design our experiment so that the
uncertainty about x∗

min and x∗
max is minimised.

We can define the probability density function p∗(χmin, χmax) for x∗
min and x∗

max. The
probability that x∗

min is in a subspace Ξmin and x∗
max is in a subspace Ξmax is defined as

follows:

P [x∗
min ∈ Ξmin, x∗

max ∈ Ξmax] =
∫︂

Ξmax

∫︂
Ξmin

p∗(χmin, χmax)dχmindχmax,

where Ξmin, Ξmax ⊂ X.

We propose using differential entropy of the probability distribution of x∗
min and x∗

max as a
measure of uncertainty about x∗

min and x∗
max. For a continuous distribution p∗(χmin, χmax),

its entropy is

H(p∗(χmin, χmax)) = E[− log(p∗(χmin, χmax))]

= −
∫︂

X

∫︂
X

p∗(χmin, χmax) log(p∗(χmin, χmax))dχmindχmax

(Cover and Thomas (1991)).

Unfortunately, p∗(χmin, χmax) is not available in closed form and has to be approximated
using numerical methods. For simplicity, we first note that it is possible to represent a
continuous distribution by using a discrete set of points ζF = (χ1, ..., χF ) (Kohavi and
Sahami (1996)). This means that p∗(χmin, χmax) becomes a discrete probability mass
function and we can redefine it as

p∗(χmin, χmax) = P [x∗
min = χmin, x∗

max = χmax] (2.1)

and entropy is now

H(p∗(χmin, χmax)) = −
F∑︂

i=1

F∑︂
j=1

p∗(χi, χj) log(p∗(χi, χj)). (2.2)
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We propose using Monte Carlo (MC) integration to approximate the distribution in
Equation 2.1. Monte Carlo integration is robust, flexible, unbiased and is also asymp-
totically exact. Unfortunately, it can also be computationally expensive. We perform
MC integration by sampling G functions from the Gaussian process and choosing the
point with the lowest and the highest function value at each step (see Algorithm 2).

Algorithm 2: Estimating p∗(χmin, χmax) by using GP mean and variance
Require: A set of F points ζF = (χ1, ..., χF ), a GP mean vector m̂n(ζF ) and a

variance-covariance matrix Σ̂n(ζF ) as defined in Equations 1.4 and 1.5,
G as the number of iterations in the MC integration and a zero-matrix L

with size F × F .

1 for g = 1, ..., G do
2 Sample Υ = (Υ1, ..., ΥF ) ∼ N(m̂n(ζF ), Σ̂n(ζF ));
3 Let a = arg min1≤i≤F (Υi) be the index of the minimum sampled value in Υ;
4 Let b = arg max1≤i≤F (Υi) be the index of the maximum sampled value in Υ;
5 La,b = La,b + 1;
6 end

Output : A discrete probability mass function with p∗(χi, χj) = Li,j/G for
i, j = 1, ..., F

We can also calculate the marginal distribution of p∗(χmin) from the output of Algorithm
2 as follows:

p∗(χmin) =
F∑︂

j=1
p∗(χmin, χj) (2.3)

and similarly for p∗(χmax) we get

p∗(χmax) =
F∑︂

i=1
p∗(χi, χmax). (2.4)

As a simple example, assume that we have a deterministic computer model fD(x) =

(3.6x − 1.4) sin(22x). We can create an initial design of size n = 10 and fit a GP to this
data, which can be seen in Figure 2.1 (a).

We now choose a number of discrete points ζF from the design space. For this example,
we simply used F = 200 equally spaced points between 0 and 1. We calculate the mean
and variance-covariance matrices mn(ζF ) and Σn(ζF ) for these points. We then use
these to draw a number of random samples from the fitted Gaussian process, which can
be seen in Figure 2.1 (b).
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Figure 2.1: (a) Example of a Gaussian process. (b) Random samples drawn from a
Gaussian process. (c) Counting how many times a point has either the maximum or

the minimum sampled value
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Figure 2.2: An approximation of p∗(χmin, χmax)

Recording how many times a certain point from χ1, ..., χF has the minimum and the
maximum sampled value (seen in Figure 2.1 (c)), we can estimate p∗(χmin, χmax). This
can be seen in Figure 2.2. Note that in Figure Figure 2.1 (c), we see large weights
on both boundaries, potentially biasing the approximation. However, in real world
scenarios, boundaries could be extended or the computer model could be rescaled to
avoid scenarios where interesting regions are located at the boundaries.

In Figure 2.2, darker colour means higher values of p∗(χmin, χmax). On the x-axis, we see
p∗(χmin) and on the y-axis we see p∗(χmax). Most of the weight in p∗(χmax) is around
χ ≈ 0.9, while the weight in p∗(χmin) is divided between χ ≈ 0.1, and χ ≈ 0.8.

2.3.1 Discretising the sample space

From Figure 2.2, we notice that p∗(χmin, χmax) is a distribution with clearly defined
modes and p∗(χmin, χmax) = 0 for most of χmin, χmax ∈ ζF . In the case of p∗(χmin, χmax) =

0, it is often a convention to define p∗(χmin, χmax) log(p∗(χmin, χmax)) = 0 due to the
fact that limp→0+ p log p = 0 (Cover and Thomas (1991)). This means that ideally, we
would like to approximate p∗() only for χmin and χmax, where p∗(χmin, χmax) > 0, since
p∗(χmin, χmax) = 0 does not have any effect on entropy.

Therefore, we would like our discrete set of points ζF to be in areas with high values of
p∗. Based on this requirement and looking at Equations 2.3 and 2.4, we can also say that



2.3. Entropy search for multi-task optimisation 25

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

χ

p *
(χ

)

p*(χmin)
Expected Improvement

Figure 2.3: p∗(χmin) plotted against expected improvement

we would like our discrete set of points ζF to be in areas where either p∗(χmin) > 0 or
p∗(χmax) > 0. In single-task optimisation, researchers have used a proposal distribution
π, from which they sample F points. This distribution π should have high values in areas
where p∗(χmin) (or p∗(χmax), depending on the problem) is also high. It has been shown
that choosing π to be a distribution that is induced by Expected Improvement provides
good results (Hennig and Schuler (2012)). That is due to the fact that Expected Im-
provement often has a comparable shape to p∗(χmin) > 0 and p∗(χmax) > 0. In Figures
2.3 and 2.4 we have compared EImin and EImax to the distributions of p∗(χmin) > 0
and p∗(χmax) > 0 from the example in Figure 2.1 (c). We can see that they both have
comparable shapes in terms of both having values greater than zero in similar regions
of the input space. Therefore, we propose to sample F

2 points from πmin and F
2 points

from πmax, where πmin and πmax are induced by EImin and EImax respectively.

We propose to use the following distributions:

πmin(χ) ∝ EImin(χ)pmin(χ) (2.5)

πmax(χ) ∝ EImax(χ)pmax(χ), (2.6)
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Figure 2.4: p∗(χmax) plotted against expected improvement

where EImin(χ) and EImax(χ) are the Expected Improvement functions (Equations
1.7 and 1.8) and pmin(χ) and pmax(χ) are prior distributions. The prior distributions
represent our prior knowledge about the location of the minimum or the maximum
respectively. Often we have no prior knowledge, so we can choose the prior distributions
to be uniform over the entire design region. This is what we will be doing throughout
the rest of this chapter.

In Equation 1.7, ymin is defined as ymin = mini∈(1,...,n) yi. However, this is only appro-
priate in the noiseless setting, where f(xi) = yi. Using this approach in the stochastic
modelling setting can lead to a scenario where we observe just a single very noisy obser-
vation that is unusually low and leads to severely underestimating ymin, which also skews
the shape of the EI function. A logical choice would be to define ymin = minx∈Xn m̂n(x).
This is also known as expected improvement with “plug-in” (Picheny et al. (2013)).
When using EI as a decision criteria for the next evaluation in the computer model,
this approximation might not always be the best choice as it does not take into ac-
count the noise from observing any new points. However, our goal is to use EI to find
areas with high values of p∗ and for that purpose, we do not care about the noise of fu-
ture observations, which means that this approximation works well. Similarly we define
ymax = maxx∈Xn m̂n(x).
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Our aim is to therefore generate a sample from πmin(χ) and πmax(χ). We note that EI
function (and therefore also πmin(χ) and πmax(χ)) is often multi-modal, with different
modes being far from each other. This means that it might be difficult for traditional
MCMC algorithms to fully explore the entirety of the sample space, as it’s difficult to
“jump” from one mode to another, especially in higher dimensions (Neal (1993)).

To demonstrate this, we have implemented a simple Metropolis-Hastings algorithm
(Metropolis et al. (1953); Hastings (1970)), which we use to draw random samples from
a target distribution. This algorithm is defined in Algorithm 3.

Algorithm 3: Simple random walk Metropolis-Hastings algorithm
Require: Function f(x), which is proportional to the target distribution, starting

points x0, the variance of the random walk σ2, number of samples drawn
F

Output : A vector x = (x1, ..., xF ) of length F , which is a sample from f(x)

1 for i = 1, ..., F do
2 xi ∼ N(xi−1, σ2) ;
3 With probability min

{︂
f (xi)

f (xi−1)
, 1
}︂

accept proposal, otherwise xi = xi−1

4 end

As a simple example, consider the function

fE(x) = 0.4 exp(−(0.6x)2)(1 + sin(2(x − 1))).

This function is shown in Figure 2.5 as the red line. This distribution is bimodal and
direct sampling from it is impossible. We therefore run Algorithm 3 to draw 2000 random
samples from it. We choose σ2 = 4. The sample is shown in Figure 2.5. This sample
exhibits all the characteristics of a "good" sample from a Metropolis-Hastings algorithm.
The MCMC chain manages to explore both modes and the acceptance ratio is 25.9%,
which is very close to the ideal acceptance ratio of 23.4% demonstrated by Gelman et al.
(1997).

Unfortunately, sampling from EI induced distributions can be much more difficult as
we will now demonstrate. Let us assume our target distribution is proportional to the
expected improvement function shown in Figure 2.3. This also has multiple modes, just
like fE(x). However, the modes are much further apart and more narrow, making it
difficult to sample from it. We have demonstrated this in Figure 2.6.

In Figure 2.6, we have run Algorithm 3 for four different values of σ2. In the first
instance, we have σ2 = 0.52. For this value, we do manage to jump between the two
modes, but the vast majority of proposed values are rejected. The acceptance ratio
in that example is only 3.8%, which is far lower than we would like to see. In the
second example, we have σ2 = 0.32. The acceptance ratio is now slightly better at 8.7%,
but the jumps between the two modes are now infrequent. In the third example with
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Figure 2.5: Ideal MCMC sample

σ2 = 0.12, our acceptance ratio is 22.2%, which is very close to the ideal value of 23.4%.
Unfortunately, the chain gets stuck in the left mode and is unable to reach the other
one due to the fact that our σ2 is now too low. In the final chain, we choose σ2 = 0.052.
Similarly to the previous chain, it starts off at around x ≈ 0.3. While the previous chain
managed to get out of that point fairly quickly, this final chain does not reach one of
the other two modes at all.

This demonstrates how Metropolis Hastings does not work well for our problem. To
address this, we use parallel tempering (Swendsen and Wang (1986); Geyer et al. (1991)).
In a parallel tempering algorithm, we simultaneously sample from multiple versions of
the distribution.

πTj (χ) ∝ EI(χ)
1

Tj p(χ) for 1 = T1 < T2 < .... < TD,

where Tj is a temperature associated with the distribution. The higher the temperature,
the flatter the distribution and the easier it is to jump from one mode to another. In
Figure 2.7, we have plotted the same function for 4 different temperatures. The function
is the EImin function from Figure 2.3 and the four temperatures are T1 = 1, T2 = 2,
T3 = 10 and T4 = 50. As we see, with the higher temperatures, the function becomes
more flat and it becomes much easier to sample from.
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Figure 2.6: Algorithm 3 applied to Expected Improvement in Figure 2.3
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For the parallel tempering algorithm to work, temperatures must be chosen carefully.
What a good set of temperatures looks like, depends on the shape of the Expected
Improvement function. This shape, however, is unknown before running the algorithm,
which makes choosing a correct set of temperatures a very difficult task. We can make
this task simpler, by allowing the algorithm to dynamically alter the temperatures at the
start of the MCMC chain. To do this, we’re using an algorithm introduced by Vousden
et al. (2016).

It has been suggested (Sugita and Okamoto (1999); Kofke (2002); Earl and Deem (2005)),
that temperatures should be chosen in such a manner that acceptance ratios Ai,j (i.e. the
proportion of swaps accepted between chains i and j) should be uniform for all pairs of
adjacent chains.

This can be achieved by first noting that as the difference between two temperatures
Ti and Tj decreases, the expected value of the acceptance ratio E[Ai,j ] increases and
as the difference between two temperatures Ti and Tj increases, the expected value of
the acceptance ratio E[Ai,j ] decreases. This suggests that when swaps between two
chains are not accepted often enough, one should decrease the difference between the
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two temperatures and vice versa. This leads us to the parallel tempering algorithm seen
in Algorithm 4.

Algorithm 4: Parallel tempering algorithm with dynamic temperature selection
Require: D temperatures 1 = T1 < T2 < ... < TD and distributions

πT1(χ), ..., πTD
(χ), starting points χEI = (χ1EI , ..., χDEI

), the variance
of the random walk for each of the chains σ2 = (σ2

1, ..., σ2
D), tuning

parameters for dynamic temperature selection v and t0
Define : Aj(i) is the proportion of swaps accepted between chain j and j + 1 in

the first i iterations
Output : An F ′ × d matrix Ψ, which is a sample from πT1(χ) = π(χ)

1 Let χold
EI = χEI ;

2 Let yold
EI = (yold

1EI
, ..., yold

1EI
) where yold

iEI
= πTi(χi) for i = 1, ..., D;

3 for i = 1, ..., F ′ do
4 for j = 1, ..., D do
5 χjEI ∼ N(χold

jEI
, σ2

j ) and yjEI = πTj (χjEI );

6 With probability min

{︃
yjEI

yold
jEI

, 1
}︃

accept proposal, otherwise χjEI = χold
jEI

7 end
8 Sample r uniformly from 1, 2, ..., D − 1;
9 With probability

min
{︄

πTr(χr+1EI )πTr+1(χrEI )

πTr(χrEI )πTr+1(χr+1EI )
, 1
}︄

,

swap χrEI and χr+1EI ;
10 Let Ψi = χ1EI , χold

EI = χEI and yold
EI = (πT1(χ1EI ), , ..., πTD

(χDEI
));

11 Let t = max(2, r);
12 Calculate k(i) = 1

v
t0

i+t0
;

13 Let Tt = exp (k(i)(At−1(i) − At(i)) + log(Tt − Tt−1)) + Tt−1;
14 end

For optimal performance of the parallel tempering algorithm, one must specify the num-
ber of chains running in parallel. It has been argued (Falcioni and Deem (1999)), that
for efficient sampling performance, the number of chains D, should scale with

√
d, which

is the dimensionality of the computer model. In practice, we observed good performance
by letting D = ⌊4

√
d⌋, where ⌊.⌋ is the floor function.

In parallel tempering, we also need to specify the initial temperatures {T1, ..., TD} and
the variance of the random walk for each chain σ2. To fully explore the entire sample
space, we wish for the largest temperature TD to be large enough, so that the acceptance
ratio for πTD

(χ) is approximately 100% (Vousden et al. (2016)). This means that πTD
(χ)

should resemble the prior distribution p(χ). It is difficult to find that value a priori,
but we have found in our experiments that setting TD = 100 yields good results in
most cases. After that, we simply set the temperatures in a geometric sequence between
T1 = 1 and TD = 100, so that Tj

Tj−1
is constant for all j ∈ {2, ..., D}.
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Figure 2.8: Algorithm 4 applied to Expected Improvement in Figure 2.3

To choose the values for σ, we note that for any j ∈ {2, ..., D}, πTj (χ) is easier to sample
from than πTj−1(χ), which means that we want πTj (χ) to explore and jump around more
than πTj−1(χ). This indicates that we would like σj−1 < σj . In our experiments, we
set σ1 = 0.025, σD = 0.25 and spaced all other values in a geometric sequence between
them, so that σj

σj−1
is constant for all j ∈ {2, ..., D}.

In line 13 of Algorithm 4, the new temperature will depend on k(i), which depends
on parameters v and t0. In order for the adaptive MCMC sampler to converge to the
target distribution, we must have limi→∞ k(i) = 0 (Roberts and Rosenthal (2007)).
And indeed, if i ≫ t0, k(i) ≈ 0. In practice, we must therefore choose t0 and v

appropriately, so that the algorithm is stable at the beginning, has enough time to
change the temperatures and also converges to the target distribution. The suggested
values are v = 100

D and t0 = 1000
D , where D is the number of chains running in parallel

(Vousden et al. (2016)).

Now that we have fully defined our parallel tempering algorithm, we can implement it
and test it for the same test problem as previously. We use the default parameters to
sample from the EI function in Figure 2.3. The results can be seen in Figure 2.8.

In Figure 2.8, we have only run the algorithm for 1000 iterations compared to 2000 in
Figure 2.6 to demonstrate its superior performance. As we see, the algorithm does a
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great job at sampling from both modes accurately and achieves accurate results even
with small number of samples.

At every step in our sequential design algorithm, we sample from a different π(χ) func-
tion. However, in practice, at any step, EI function (and therefore also π(χ)) often
looks somewhat similar to the EI function at the previous step. This means that we
do not need to run the entire parallel tempering algorithm again, but can instead use
the previously sampled points to sample new points. We use particle filtering algorithm
to do that (Del Moral (1996); Liu and Chen (1998)). This algorithm can be seen in
Algorithm 5.

Algorithm 5: Particle filtering algorithm
Require: An old sample Ψ of length F ′ and a new proposal distribution π

1 Calculate a weight vector w, where wi =
π(Ψi)∑︁F

i=1 π(Ψi)
;

2 Get a new sample Ψ′ of size F ′ by sampling with replacement from Ψ, with
probability w;

With these two algorithms we can then sample F ′

2 points from πmin(χ) and F ′

2 points
from πmax(χ), which means we can discretise our sample space into F ′ points. However,
we need F points for approximating p∗(χmin, χmax) and F ′ > F . We can do this, by
taking the unique values from our MCMC samples and uniformly sampling F values
without replacement from those values.

Now that we have our set of points ζF = (χ1, ..., χF ), we can reliably approximate
p∗(χi, χj) for i, j = 1, ..., F by using Algorithm 2. We can then calculate entropy for
this distribution by using Equation 2.2.

Since entropy is a measure of uncertainty and we wish to minimise uncertainty, we want
to minimise entropy. In other words, we wish to choose the next point in our sequential
design, to minimise the entropy at the next step. However, so far we’ve only covered
how to approximate H(p∗(χmin, χmax)) for the current step.

2.3.2 Estimating entropy loss for future observations

As we have seen, we can calculate entropy by using Algorithm 2, if we have the mean
vector as well as the variance-covariance matrix from the fitted Gaussian process. There-
fore, to calculate the expected entropy at the next step, after including a point χ∗, we
need to find the value of the mean and variance-covariance matrices at the next step.
Fortunately, Gaussian processes have convenient equations for updating the mean and
variance-covariance matrices after adding in an extra observation. After observing yn+1

at xn+1, the mean and variance of the Gaussian process become:
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m̂n+1(x) = m̂n(x) + Σ̂0(x, xn+1)Σ̂
−1
0 (xn+1, xn+1)(y

n+1 − m̂n(xn+1)) (2.7)

Σ̂n+1(x) = Σ̂n(x) + σ̂2(Σ̂0(x, xn+1)Σ̂
−1
0 (xn+1, xn+1)Σ̂0(xn+1, x)), (2.8)

where Σ̂0(X1, X2) = k̂n(X1, X2) − k̂n(X1, Xn)K̂
−1
n (Xn, Xn)k̂n(Xn, X2) and Xn is the

current design.

We notice that while Σ̂n+1(x) is deterministic, m̂n+1(x) is not and depends on the
unknown value yn+1. Therefore, to account for all of the uncertainty about m̂n+1(x),
we sample a different value of yn+1 from N(m̂n(xn+1), Σ̂n(xn+1)) at every iteration.
This leads us to Algorithm 6, which is a slightly modified version of Algorithm 2:

Algorithm 6: Estimating p∗(χmin, χmax) after including a new observation
Require: A set of F points ζF = (χ1, ..., χF ), a GP mean vector m̂n(ζF ), a

variance-covariance matrix Σ̂n(ζF ), G as the number of iterations in the
MC integration, a zero-matrix L with size F × F , a point χ∗ to be added
to the design, GP mean at χ∗ m̂n(χ∗) and GP variance at χ∗ Σ̂n(χ∗)

1 Calculate Σ̂n+1(ζF ), by using Equation 2.8;
2 for g = 1, ..., G do
3 Sample Υn+1 ∼ N(m̂n(χ∗), Σ̂n(χ∗));
4 Calculate m̂n+1(ζF ), by using Equation 2.7;
5 Sample Υ = (Υ1, ..., ΥF ) ∼ N(m̂n+1(ζF ), Σ̂n+1(ζF ));
6 Let a = arg min1≤i≤F (Υi) be the index of the minimum sampled value in Υ;
7 Let b = arg max1≤i≤F (Υi) be the index of the maximum sampled value in Υ;
8 La,b = La,b + 1;
9 end

Output : A probability mass function, where p∗(χi, χj) = Li,j/G for i, j = 1, ..., F

We now have everything we need to define our full entropy search algorithm. This is
shown in Algorithm 7.

We can also generalise this algorithm to work in the single-task case. For that, see
Appendix B.

2.3.3 Example

In this part we will be evaluating the performance of the multi-task entropy search algo-
rithm on a number of test functions. The dimensionality of these test functions ranges
from d = 2 to d = 10. We will compare the entropy search algorithm against a simple
benchmark algorithm based on EI. For the benchmark algorithm, at every iteration, we
choose a point that maximises EImin(x) and a point that maximises EImax(x) and add
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Algorithm 7: Multi-task entropy search algorithm
Require: Size of the final design matrix N , an initial design matrix

Xn = (x1, ..., xn) for n < N , a computer model f

1 Evaluate the computer model at Xn to get Yn = f(Xn);
2 Use Xn and Yn to fit a Gaussian process model;
3 Use Algorithm 4 to sample F ′

2 points from πmin(χ) (Equation 2.5) and F ′

2 points
from πmax(χ) (Equation 2.6) and call it ζF ′ ;

4 Sample F values without replacement from unique values of ζF ′ to get
ζF = (χ1, ..., χF );

5 while n ≤ N do
6 for i = 1, ..., F do
7 Use Algorithm 6 to approximate p∗(χmin, χmax) after adding χi to the

design;
8 Calculate the entropy Hi(p∗(χmin, χmax)) for point i, by using Equation 2.2;
9 end

10 Let n = n + 1 and choose point χm to the design, where

m = arg min
i=1,...,F

Hi(p∗(χmin, χmax))

;
11 Let yn = f(χm);
12 Let Xn = (Xn−1, χm) and Yn = (Yn−1, yn);
13 Use Xn and Yn to re-fit a Gaussian process model;
14 if Effective sample size of ζF ′ is less than F then
15 Use Algorithm 4 to sample F ′

2 points from πmin(χ) (Equation 2.5) and F ′

2
points from πmax(χ) (Equation 2.6) and call it ζF ′

16 else
17 Use Algorithm 5 to sample a new set of ζF ′

18 end
19 Sample F values without replacement from unique values of ζF ′ to get ζF

20 end
Output : x̂∗

min = arg minx∈X m̂n(x) and x̂∗
max = arg maxx∈X m̂n(x)

both of these points into the design matrix. All the code found in this Section can be
found on GitHub at https://github.com/Hendriico/ESMultiTask.

2.3.3.1 Test functions

We will be evaluating the performance of the algorithms on four test functions. The
first function f1 is a 2-dimensional function defined as

https://github.com/Hendriico/ESMultiTask
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Figure 2.9: 2-dimensional test function f1 evaluated in [−3, 3]

f1(x) = 5x1 sin(2x2) exp
(︂
−(x1)

6 − (x2 + 1.5)6
)︂

+2 cos
(︃

x2
5

)︃
exp

(︃
x1
5 − (x2 − 1)6

)︃
−0.2x1 + 0.2x2

2 − 0.4x2 − 1.5.

We evaluate this function on xi ∈ [−3, 3] for i = 1, 2, which can be seen in Figure
2.9. It has multiple local minima and maxima and is therefore suitable for multi-task
optimisation.

We set the computer model noise to be V ar(f1(x)) = 0.1 for all x ∈ X.

The second test function we have is the Langermann function (Al-Roomi, 2015b), which
is defined for a d-dimensional problem as

f2(x) =
m∑︂

i=1
ci exp

⎛⎝− 1
π

d∑︂
j=i

(xj − Aij)
2

⎞⎠ cos

⎛⎝ d∑︂
j=1

(xj − Aij)
2

⎞⎠ .

We choose to evaluate this function on xi ∈ [0, 10] for all i = 1, ..., d. We also let m = 5,
c = (1, 2, 5, 2, 3) and

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3 5 3 5
5 2 5 2
2 1 2 1
1 4 1 4
7 9 7 9

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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Figure 2.10: Langermann function evaluated in [0, 10]

In d = 2 case, this function can be seen in Figure 2.10.

It again has multiple local minima and maxima and steep drops and hills, making this a
suitable test function for multi-task optimisation. In our simulations, we evaluated this
function on d = 4. We also set the computer model noise to be V ar(f2(x)) = 0.2 for
all x ∈ X.

The third test function we have is the Michalewicz function (Al-Roomi (2015b)), which
is defined for a d-dimensional problem as

f3(x) = −
d∑︂

i=1
sin(xi) sin2

(︄
ix2

i

π

)︄
.

We choose to evaluate this function on xi ∈ [−π, π] for all i = 1, ..., d. A d = 2 case of
this function can be seen in Figure 2.11.

As previously it has multiple local minima and maxima and steep drops and hills, making
this a suitable test function for multi-task optimisation. In our simulations, we evaluated
this function on d = 6. We also set the computer model noise to be V ar(f3(x)) = 0.2
for all x ∈ X.

The last function we’re considering is a stock allocation problem f4(x). Assume we have
a number of stocks that we can invest in and we’d like to distribute our assets to those
stocks in a certain way. We can then run computer simulations, modelling the potential
gains and losses of these stocks. Based on those simulations, we will then define a risk
score of that portfolio. We can define the risk score in a way, so that a high risk score
means an allocation that has high risk, but also very high potential reward. Low score
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Figure 2.11: Michalewicz function evaluated in [−π, π]

will mean much lower risk but also much lower potential rewards. A score of around 0
will mean that a portfolio allocation is sub-optimal in either way and either has high risk
and low reward or low risk but no reward at all. We would then like to both minimise
and maximise this risk score so that we have multiple options in which we could invest
in. In our simulations we are considering 10 potential stocks, so our computer model
has d = 10. More details about the computer model can be found in Appendix A.

For each optimisation problem, we ran every algorithm 20 times. To find the final
location of the optima for a specific algorithm, run and budget, we use the final design
from the algorithm and use this to fit a GP. We then find the location of the minimum
and the maximum of the GP mean for all evaluated points. In other words, we find
x̂∗

min = arg minx∈Xn m̂n(x) and x̂∗
max = arg maxx∈Xn m̂n(x). To compare the results

between the two algorithms, we finally calculate f(x̂∗
min) and f(x̂∗

max) for each result.
We then plot the cumulative improvement of the found solutions.

For the Gaussian process implementation, we used the laGP package (Gramacy (2016))
package in R. This package offers reliable and fast GP approximations. We also com-
pared the performance of laGP to two other well-known packages, called DiceKriging

(Roustant et al. (2012)) and RobustGaSP (Gu et al. (2018)). As far as we know, there’s
only a very limited number of papers comparing different implementations of GP mod-
elling (e.g. see Erickson et al. (2018)) and none that would compare these from a
(stochastic) Bayesian Optimisation perspective. Because of that, we have included our
comparisons in Appendix C.

A 2-dimensional test problem: For our f1(x) function, we choose a random max-
imin Latin Hypercube sample (Stein (1987)) of size 20 to be our initial design matrix.
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Figure 2.12: Comparing the performance of algorithms on f1

We then evaluate the computer model a total of 100 times for both algorithms. We can
then keep track of how much each algorithm manages to improve both the maximum
and the minimum value compared to the initial design. The averages are plotted in
Figure 2.12.

As we can see, entropy search comfortably outperforms the baseline algorithm for both
objectives and for all N . This indicates that entropy search can easily handle simpler
problems.

Langermann test problem: For our f2(x) function, we choose a random maximin
Latin Hypercube sample (Stein, 1987) of size 20 to be our initial design matrix. We
then evaluate the computer model a total of 120 times for both algorithms. We can
then keep track of how much each algorithm manages to improve both the maximum
and the minimum value compared to the initial design. The averages are plotted in
Figure 2.13.

For the Langermann function, entropy search outperforms our baseline algorithm sig-
nificantly in both tasks. The baseline algorithm can often get stuck in local optima,
while entropy search does not. This seems to suggest that entropy search can balance
exploration and exploitation better.

Michalewicz test problem: For our f3(x) function, we choose a random maximin
Latin Hypercube sample (Stein (1987)) of size 30 to be our initial design matrix. We
then evaluate the computer model a total of 120 times for both algorithms. We can then
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Figure 2.13: Comparing the performance of algorithms on f2
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Figure 2.14: Comparing the performance of algorithms on f3

keep track of how much each algorithm manages to improve both the maximum and the
minimum value compared to the initial design. The averages are plotted in Figure 2.14.

For the Michalewicz function, entropy search outperforms our baseline algorithm signif-
icantly in both tasks. We also examined the performance of a single-task entropy search
algorithm for the Michalewicz function and found that it also outperformed all other al-
gorithms (see Appendix B), which means that the success of a multi-task entropy search
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Figure 2.15: Comparing the performance of algorithms on f4

algorithm on this test function is not a surprise.

Stock allocation test problem: For our f4(x) function, we choose a random max-
imin Latin Hypercube sample (Stein, 1987) of size 20 to be our initial design matrix. We
then evaluate the computer model a total of 300 times for both algorithms. We can then
keep track of how much each algorithm manages to improve both the maximum and the
minimum value compared to the initial design. The averages are plotted in Figure 2.15.

For the stock allocation problem, neither algorithm manages to improve the minimisation
task by a significant amount compared to the maximisation task. This is due to the fact
that it’s easier to find allocations with a low risk score, since many solutions where the
portfolio is well diversified (where there’s funds allocated to many different stocks) result
from a low risk score. This means that the initial design already has relatively good
solutions and there’s not much room for improvement in the minimisation task.

However, there is a lot of room for improvement in the maximisation task. When we
focus in on just the minimisation task, which can be seen in Figure 2.16, we do see that
the baseline reaches a better minimum solution. However, overall it is entropy search
that balances the two objectives much better and focuses more on maximisation, which
is the more difficult task.

The superior performance of entropy search algorithm came at a cost of higher compu-
tational complexity. Average computational for each test problem can be seen in table
2.1.
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Figure 2.16: Comparing the performance of algorithms on f4 for the minimisation
task only

Table 2.1: Average time per iteration for different algorithms

Function Task Time per Iteration for
Entropy Search

Time per Iteration for
Baseline Algorithm

Parallel tempering 0.16 s N/A
f1 Acquisition function evaluation 0.7 s 0.07 s

Total 0.86 s 0.07 s

Parallel tempering 0.24 s N/A
f2 Acquisition function evaluation 1.25 s 0.09 s

Total 1.49 s 0.09 s

Parallel tempering 0.3 s N/A
f3 Acquisition function evaluation 1.8 s 0.13 s

Total 2.1 s 0.13 s

Parallel tempering 0.5 s N/A
f4 Acquisition function evaluation 2.3 s 0.18 s

Total 2.8 s 0.18 s
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From Table 2.1, we see that the entropy search algorithm is on average around 15 times
slower than the baseline algorithm. For the entropy search algorithm, we have also shown
what tasks require the most computational time. These tasks are parallel tempering to
discretise the sample space and acquisition function evaluation through MC integration.
Typically, around 15%-20% of the time is spent on parallel tempering and the rest is
spent on acquisition function evaluation.

2.4 Discussion

In this chapter, we presented a novel approach to multi-task Bayesian optimisation.
Unlike traditional Bayesian optimisation methods that focus on a single extremum, our
method is tailored to scenarios where both global extremes are of interest. Our approach
is inspired by information theory as our acquisition function is using joint entropy of
the location of the minimum and the maximum. This entropy-based criterion explicitly
models the dependence between the two optima and naturally balances exploration and
exploitation in a multi-task context.

We compared the performance of our algorithm against an Expected Improvement based
baseline algorithm. The algorithms were compared on four different synthetic test func-
tions ranging from a minimum of two-dimensional functions to a maximum of ten-
dimensional functions.

In all four sets of simulations, our new algorithm outperformed the test algorithm, both
in terms of convergence speed as well as the quality of solutions found. This came at
a greater computational cost, taking up to 3 seconds per iteration, compared to only a
fraction of a second for the baseline algorithm. However, when considering the cost of
the computer model, the additional cost of the acquisition function is negligible.

There are also some limitations and open challenges. First, the entropy term involves in-
tractable integrals which are approximated via Monte Carlo integration. While effective
it offers good performance and accurate results, this can introduce significant computa-
tional overhead, particularly in high-dimensional settings. This means that additional
techniques are needed when extending this algorithm to high-dimensional settings. Some
possible techniques for high-dimensional Bayesian Optimisation are covered in Chapter
3.
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Chapter 3

Multi-Fidelity Bayesian
Optimisation in
High-Dimensional Settings

3.1 Introduction

Bayesian Optimisation (BO) is a powerful framework for finding the optimum of a
computer model. It offers sample-efficient global optimisation via surrogate models
and acquisition functions. However, its applicability is severely constrained in high-
dimensional settings, especially when we are able to tune the fidelity of the computer
model.

In many real-world scenarios, multi-fidelity evaluations are available, where cheaper ap-
proximations of the expensive objective are available, with lower levels of accuracy.
By leveraging these cheaper fidelities, multi-fidelity Bayesian optimisation methods
aim to reduce the cost of optimisation. Despite their success in many fields, exist-
ing multi-fidelity Bayesian optimisation algorithms often struggle with scalability in
high-dimensional spaces due to the curse of dimensionality and the added complexity of
selecting among fidelities.

One very common example of such problems is Bayesian Design of Experiments (DoE).
In Bayesian DoE, we are interested in maximising an expected utility function. This
function is often high-dimensional when trying to find optimal designs for larger prob-
lems. The expected utility function is also almost never available analytically and must
therefore be numerically approximated. Often times this is done by using Monte Carlo
methods. This means that we can control the accuracy of the approximation by con-
trolling the number of Monte Carlo iterations. These factors combined make it a very
difficult problem to solve.
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This chapter addresses these challenges by proposing a new algorithm for multi-fidelity
Bayesian optimisation in high-dimensional settings. The key innovation is the com-
bination of trust regions with subspace-based optimisation strategies. The algorithm
adaptively explores dynamically updated local subsets of the input space, enabling effi-
cient local search for global optimisation.

In section 3.2 we first start by giving an overview of high-dimensional Bayesian opti-
misation and introducing the main difficulties of doing so. This is then followed by a
summary of existing algorithms and acquisition functions, which are described in section
3.3. In section 3.4 we formally define multi-fidelity optimisation and give a brief overview
of existing literature on that topic and explain the limitations of these algorithms. We
propose a new algorithm in section 3.5, which uses a combination of multiple techniques.
In section 3.5.1, we introduce trust regions, which are used for local modelling. Section
3.5.2 covers Thompson sampling, which we use as our acquisition function. Finally sec-
tion 3.5.3 is used to define the Optimal Computing Budget Allocation algorithm, which
we use to decide the fidelities at which we evaluate our computer model. The combined
algorithm is then tested against an existing baseline algorithm in section 3.6. For our
simulation problem, we consider Bayesian DoE, where we are interested in finding a D-
optimal design of size 150 × 4 for a logistic regression model. The baseline algorithm is
ACE, which was specifically created to find optimal Bayesian designs. Our algorithm is
shown to find better designs by using a significantly smaller number of computer model
evaluations.

3.2 High-dimensional Bayesian Optimisation

High-dimensional computer models are often found in various applications, such as
hyper-parameter tuning in machine learning (Turner et al. (2021)), engineering (Ko-
hira et al. (2018)) and chemical design (Griffiths and Hernandez-Lobato (2020)). These
computer models are often costly to evaluate and are not available in closed form. Be-
cause of that, Bayesian optimisation (BO) is often used for sample-efficient optimisation
of these computer models. Despite many advances in the recent years, Bayesian opti-
misation in high-dimensional settings, especially for noisy computer models, remains a
challenging task for multiple reasons.

Firstly, Bayesian optimisation requires fitting a surrogate model to the collected data
and fitting accurate global surrogate models in high-dimensional settings is difficult due
to the curse of dimensionality and the sparsity of the search space. The most common
surrogate model used in Bayesian optimisation is Gaussian Process (GP). Gaussian
Process relies on the pairwise distances between points to make predictions. However,
when the dimensionality of the computer model increases, the pairwise distances also
increase and become more concentrated around a single value (Köppen (2000)). We
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Figure 3.1: Pairwise distances for different p−dimensional designs

demonstrate this phenomenon in Figure 3.1. This makes inference more difficult and
also causes GPs to often severely overestimate the uncertainty.

In Figure 3.1, we created four space filling designs in the hypercube [0, 1]p. The number
of rows was kept constant at n = 1000 for all designs and the number of dimensions
considered were p = 2, p = 10, p = 50 and p = 250. We then calculate all pairwise
distances between different points and plot a histogram of the distances. As we see, the
distances in lower dimensions are spread further apart and vary more. For example,
when p = 10, the lowest pairwise distances are around 0.5 and highest is around 2.0.
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This means the highest distance is around 4 times bigger than the lowest. However,
once we get to p = 250, the lowest distance is around 6 and highest is around 8, which
means the highest distance is only 1.33 times bigger than the smallest.

Standard Gaussian Process also assumes stationarity. In other words, the GP hyper-
parameters are assumed to be constant everywhere, which is often not true in practice
(Eriksson et al. (2019)). Even though non-stationary Gaussian Processes have been
introduced (Assael et al. (2015), Plagemann et al. (2008), Sauer et al. (2021)), these
methods are often only suitable for low-dimensional computer models and small design
matrices, since they are too computationally expensive to be used with large matrices.

Secondly, balancing exploration and exploitation is difficult in higher dimensions. Usu-
ally it is the acquisition function that balances both objectives, using the mean and the
variance of the Gaussian Process. However, in higher dimensions, the search space is
very sparse, which means that the predictive variance is very similar for different points,
making standard acquisition functions unsuitable for such problems (Tian et al. (2019)).
To solve this, various changes have been made to the standard Bayesian optimisation
framework.

3.3 Previous Work in High-dimensional Bayesian Optimi-
sation

Due to the fact that GPs are difficult to fit in higher dimensions, alternative models
have been proposed. These include random forests (Hutter et al. (2011)) and Bayesian
neural networks (Snoek et al. (2015)). However, these methods are often lacking in their
ability to quantify uncertainty or simply lack the level of model flexibility that GPs offer.
Because of that, we will focus on GPs as our surrogate models.

When using GPs for Bayesian optimisation in high dimensions, additional techniques
are needed. A common technique is dimensionality reduction. Some of the earlier works
in that field focused on variable selection. In these algorithms, it is assumed that only
a small number of variables are important, which reduces the dimensionality of the
problem. An early work in that field is (Chen et al. (2012)).

Since in reality it’s highly unlikely that some variables are redundant, researchers have
applied other methods of dimensionality reduction to BO. For example, Wang et al.
(2013) used linear combinations of existing variables to create new variables. They used
the fact that given x ∈ Rp and a random matrix XA ∈ Rp×p′ , there exists a point
w ∈ Rp′ , so that f(x) = f(XA · w), where p′ < p. This allowed them to run Bayesian
optimisation in a lower-dimensional setting than the original one.
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Another method for fitting GPs for high-dimensional functions, is assuming an additive
structure of the underlying function. This assumes that the true high-dimensional func-
tion is a sum of functions that each depend on only a subset of the parameters. Examples
of work in this area include Gardner et al. (2017) and Kandasamy et al. (2015).

A third method for high dimensional optimisation is local optimisation using trust re-
gions, which is a technique commonly used in mathematical optimisation (Yuan (1999)).
It has also been used in a number of high-dimensional Bayesian Optimisation algorithms,
first of which was the Trust Region Bayesian Optimisation (TuRBO) algorithm, intro-
duced by Eriksson et al. (2019). While local modelling does not decrease the dimen-
sionality of the problem, it does reduce the search space by only focusing on small areas
around promising regions. It selects promising regions to be centered around the best
set of already evaluated points.

While dimensionality reduction methods have been shown to be often useful, they make
strong assumptions about the underlying structure and have therefore been shown to
fail in cases where their assumptions about the underlying problem structure don’t
hold. They also often need to fit a large number of GPs to learn about the underlying
structure, which makes them scale poorly to large designs. We therefore focus mostly
on local modelling, using trust regions.

3.3.1 Acquisition functions

In high dimensions, evaluation budget is usually large and parallel computations are
often available, which means that batch acquisition functions are used. There have
been a lot of batch acquisition functions proposed (e.g. Chevalier and Ginsbourger
(2013), González et al. (2015), Palma et al. (2019), Wang et al. (2019)). Most of them
are either extensions of q-EI (Ginsbourger et al. (2008)) or require sampling different
hyperparameters for the Gaussian Process model. This means that they often do not
scale well to large batch sizes (Eriksson et al. (2019)). A common batch acquisition
function for large batch sizes is Thompson sampling (Thompson (1933)), which has
been used, for example, in Eriksson et al. (2019) and Hernández-Lobato et al. (2017).
We will come back to this in section 3.5.

3.4 Multi-fidelity optimisation

In many occasions, the computer model is noisy. This means that it is of the form
f(x) = f̃(x) + ϵ(x), where ϵ(x) is a random variable. For the rest of this paper, we will
assume that E[ϵ(x)] = 0 and V ar[ϵ(x)] = v2(x), which means that f(x) is an unbiased
estimator of the true function f̃(x).
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The source of noise for the computer model depends on the mathematical and computa-
tional methods used in its implementation. With noisy computer models, we are often
able to make the output more or less accurate by increasing or decreasing the compu-
tational time. This is also known as fidelity of the computer model, where high fidelity
means high accuracy and high computational time and vice versa. For example, when
using Monte Carlo methods in computer models, the output can be represented as

fM (x) = 1
M

M∑︂
m=1

fm(x) = 1
M

M∑︂
m=1

(f̃(x) + ϵm(x)).

This means that the uncertainty of the computer model fM (x) is V ar
[︂
fM (x)

]︂
= v2(x)

M

and depends on M . We can also apply this principle to other noisy computer models
that do not depend on Monte Carlo methods. We can simply evaluate the computer
model multiple times at the same location and use the mean of those evaluations as the
more accurate output. This type of optimisation problem, where we are able to tune the
precision of the computer model is sometimes referred to as multi-fidelity optimisation.

As an example, consider the following function

fF (x) = (3.6x − 1.4) sin(22x) + ϵ(x),

where ϵ(x) ∼ N(0, 1). We can choose a design Xn of size n = 20 and evaluate it at four
different fidelities. We choose M = 1, M = 4, M = 10 and M = 20. We then fit a GP
to each of those four designs and compare the results in Figure 3.2.

As seen in Figure 3.2, with the low fidelity evaluations, the output is much more uncer-
tain and more inaccurate, however it is also much faster. On the other hand when we
increase fidelity to M = 20, the GP is much more accurate, almost perfectly matching
the true function. Unfortunately, it is also 20 times as expensive as the cheap option.

The main question in multi-fidelity optimisation is how to choose which points we should
evaluate at only lower fidelities and which ones we should also evaluate at higher fidelities
to allow for optimisation as efficiently as possible.

There has been a considerable amount of work carried out in the field of multi-fidelity
optimisation. Some of the earlier works in the field were focused on creating new acqui-
sition functions, based on expected improvement (EI) (Schonlau (1997)), which could
choose a new point as well as the fidelity at which to evaluate it. For example Huang
et al. (2006a) created a new acquisition function called augmented expected improve-
ment (AEI) and Forrester (2013) created expected quantile improvement (EQI). TSSO
(Quan et al. (2013)) and eTSSO (Pedrielli et al. (2020)) algorithms have two stages at
each iteration of the algorithm. They have an initial exploration or search stage, where
they use modified EI to find new areas with high potential. After the initial stage, they
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also have an allocation stage, where they allocate more resources to the already eval-
uated promising points to reduce uncertainty. This is achieved by using the Optimal
Computing Budget Allocation algorithm (Chen et al. (2000)).

In more recent works, multiple GPs are usually fitted for different fidelities of the com-
puter model. They can either fit separate and independent GPs for each of the fideli-
ties, which is done in the MF-GP-UCB algorithm (Kandasamy et al. (2016)), or fit
more complex models, which also model the correlation between different fidelities. A
popular model for such tasks is Co-Kriging (Myers Donald (1982)). One of the first
algorithms to use Co-Kriging was Forrester et al. (2007). More recently, Co-Kriging
has been used in entropy-based search algorithms. Of these, one of the most popular
ones is the max-value entropy search (Takeno et al. (2020)). In addition to Co-Kriging,
other complex models have also been considered. For example, Li et al. (2020) uses deep
neural networks as the surrogate model and an entropy-based acquisition function.

Even though these algorithms have been shown to be useful for solving many problems,
they do not scale well for high-dimensional problems. They are either unsuitable for
batch acquisition functions or rely on complex surrogate models that are computationally
expensive to evaluate in high-dimensional settings. This leads us to wanting to develop
a new algorithm for multi-fidelity optimisation in high-dimensional settings.

3.5 Algorithm

We have assumed that our computer model is stochastic and its accuracy can be im-
proved by evaluating it multiple times at the same location x and calculating fM (x).
Assume now that we are interested in maximising our computer model f(x). Note that
it’s possible to generalise it for the minimisation tasks by maximising −f(x). In the
noiseless setting, it is easy to define the best solution. One can simply look at the best
observed value so far. However, this is unsuitable in the noisy setting, as we may choose
a point that by pure chance had a very high and very noisy observation. Choosing that
point as the best would lead to slowing down our algorithm as it would not choose a
good centre point. To take into account all of the uncertainty, we use the lower confi-
dence bound (LCB) measure to define the best solution in the noisy setting. The same
measure has also been used by Huang et al. (2006a), Forrester (2013) Picheny et al.
(2013), etc. We will define this as

fLCB
M (x) = fM (x) − Φ−1(α)

√︄
v̂2(x)

M
,
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where Φ−1() is the inverse CDF of a standard normal distribution and v̂(x) is an estimate
of v at the point x, calculated as

v̂(x) =

√︄∑︁M
m=1(fm(x) − fM (x))2

M − 1 .

Finally, α ∈ [0.5, 1) is a tuning parameter, which controls the risk tolerance. If we choose
α = 0.5, then fLCB

M (x) = fM (x) and we are ignoring the variance of fM (x) completely
and are therefore taking a risk. If we choose a larger value of α (e.g. α = 0.9), then
we favour points that we’ve evaluated more times and whose variance is smaller, which
means we are less willing to take a risk when it comes to choosing the best point. To
be able to calculate fLCB

M (x) robustly, we require the computer model to be evaluated
at least Mmin number of times at each x.

The algorithm will then be divided into two stages. Each stage will use a different
local modelling technique as well as a different acquisition function. In both stages,
we will first use an acquisition function to propose new points from the local model to
be evaluated cheaply. We then allocate more budget to more promising points, which
will allow us to use computational resources as efficiently as possible. These steps are
written out in Algorithm 8.

Algorithm 8: Outline of an individual stage in the global algorithm

1 while Computational budget > 0 do
2 Fit a local model;
3 Use an acquisition function A to propose new points to be evaluated cheaply;
4 Allocate more resources to the more promising points;
5 Update the local model;
6 end

3.5.1 Local modelling

In high-dimensional settings, fitting global GPs that fit well is an extremely difficult task.
We are therefore not aiming to fit global models that fit well everywhere, but rather local
models that fit well in a local region. The computational complexity of fitting a Gaussian
Process is usually O(N3), where N is the number of rows in the design matrix (Park and
Huang, 2016). When fitting local models, we need a smaller number of points n < N

to fit an accurate model, which means that the overall computational complexity of the
local model is much lower. For example when N = 2n, then the local model would be
around 8 times faster.

The first method that we will be using for local modelling is fitting surrogate models in
a local trust region (TR). Trust region is a small subset of the entire design space, where
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Figure 3.3: Local Trust Region

we limit our optimisation problem to take place. The TR can have various shapes. The
more common ones include hyperspheres (Bader, 2009), hyperrectangles (Vogklis and
Lagaris, 2019) and polyhedrals (Bodur et al., 2021). An example of a rectangular trust
region can be seen in Figure 3.3.

Similarly to Eriksson et al. (2019), we choose the trust regions to be a hyperrectangle,
centered around the point with the highest observed LCB value. The size of the hyper-
rectangle depends on its side length L. A larger value of L means that we are able to
explore solutions in a larger area and find new promising regions. A smaller value of L

means that we can focus on exploitation and find the local optimum as accurately as
possible. We therefore want to change the value of L depending on the success of the
algorithm. If the algorithm keeps making progress and finding good solutions, then it
means that there is much reward in exploring, as we still have not found a single best
area with the most promising set of solutions. We can therefore increase L to explore
an even larger area of the design space. If the opposite is true and the algorithm fails
to find any new good solutions, then we have done enough exploring and found a single
area that has a high probability of containing the best solution. We then want to start
focusing on that single area and therefore want to reduce L to do more exploitation. In
reality this means increasing L when we have φsucc number of consecutive improvements
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to the highest LCB value and decreasing L when we fail to improve the highest LCB
value more than φfail number of times.

In TuRBO, GPs are fitted to the entire design, which can be inefficient in terms of com-
putational resources. This can be derived from Equation 1.2. The correlation between
points depends on their distance. When we include points that are far away from the
TR, then the effect they have on predictions is very small. Therefore, only using points
closest to the TR to fit the model, makes the most amount of sense. A similar strategy
has been used in other types of Bayesian Optimisation algorithms, e.g. see Daulton
et al. (2022), as well as packages for implementing GPs, e.g. see laGP (Gramacy (2016))
in R (R Core Team (2023)).

3.5.2 Thompson Sampling

After we choose an initial design matrix Xninit of size ninit × p and evaluate the computer
model at all points Mmin times, we choose the point with the highest LCB value to be
the best point so far. In other words, we choose

xcentre = arg max
x∈Xninit

fLCB
Mmin(x)

We then use Thompson sampling to propose new points in the hyperrectangle, centred
around xcentre.

In Thompson sampling, we are drawing random samples from a GP posterior. Then for
each sample, we choose the point which had the highest or lowest sampled value. This
method is quick and scales linearly with the size of the batch. As an example, consider
the one-dimensional function

fG(x) = (3.6x − 1.4) sin(22x),

which we are interested in maximising. We choose an initial design of size n = 5 and
fit a GP. This is shown in Figure 3.4 alongside with the expected improvement function
for reference.

To now get a batch of new points to evaluate, we use Thompson sampling and draw
ten samples from the GP posterior. For each sample we choose the maximum sampled
value to add to the design. This process is shown in Figure 3.5.

In Figure 3.5, every light blue line is a single sample and the red dots are the values
selected by Thompson sampling. This is more formally defined in Algorithm 9.
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Figure 3.4: (a) Example of a GP fitted to fG(x) (b) Expected Improvement function
evaluated

Algorithm 9: Thompson sampling
Require: A centre point xcentre of dimension p, side length of the hyperrectangle

L, a fitted GP, number of candidate points ncand and the size of the
batch B

Output : A B × p matrix ΞB = (ξ1, ..., ξB)T of new points to be evaluated by the
computer model

1 Create an ncand × p matrix ζ = (χ1, ..., χncand
)T , where all points lie in the

hyperrectangle, which has a side length of L and is centered around xcentre;
2 Calculate m̂n(ζ) and Σ̂n(ζ) by using Equations 1.4 and 1.5 respectively;
3 for b = 1, ..., B do
4 Sample Υ = (Υ1, ..., Υncand

) ∼ N(m̂n(ζ), Σ̂n(ζ));
5 Let a = arg min1≤i≤ncand

(Υi) be the index of the maximum sampled value in Υ;
6 ξb = χa;
7 end

After we get B new points from the Thompson sampling algorithm, we evaluate each
of those points Mmin times to get fMmin(.). Since this is only a cheap approximation
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Figure 3.5: Thompson sampling acquisition function

of f̃(.), we are now interested in allocating more resources to the points in Ξ that are
more promising.

3.5.3 Optimal Computing Budget Allocation

In the first stage of the algorithm, we proposed B new points for the computer model
to evaluate cheaply. We are now interested in allocating more computational resources
to the promising solutions. To do that, we use the optimal computing budget allocation
(OCBA) algorithm (Chen et al., 2000).

Assume that we have B points with a sample mean
(︂
fM (x1), ..., fM (xB)

)︂
and variances(︁

v2(x1), ..., v2(xB)
)︁
, then we are interested in allocating T replications among these B

points, such that the approximate probability of correct selection (APCS) after these
extra replications is maximised. APCS is the probability that choosing the solution with
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the highest sample mean leads to choosing the solution with the highest actual function
value. So in other words

APCS = P

[︃
f̃(xb) = max

i=1,...,B
f̃(xi)

⃓⃓⃓⃓
fM+tb

(xb) = max
i=1,...,B

fM+ti
(xi)

]︃
,

where ∑︁B
i=1 ti = T .

According to Theorem 1 in Chen et al. (2000), this can be achieved by choosing

1) ti
tj
=
(︂

v̂(xi)/δb,i
v̂(xj)/δb,j

)︂2
for i, j ∈ {1, ..., B} and i ̸= j ̸= b

2) tb = v̂(xb)

√︃∑︁B
i=1,i ̸=b

t2
i

v̂2(xi)
,

where ti is the number of extra replications allocated to point xi, δb,i = fM (xb)− fM (xi)

and b = arg maxi∈{1,...,B} fM (xi).

We can then use these rules in an algorithm, which is defined in Algorithm 10.
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Algorithm 10: OCBA algorithm
Require: B sample means

(︂
fM (x1), ..., fM (xB)

)︂
and variances(︁

v̂2(x1), ..., v̂2(xB)
)︁
, number of replications to add T

1 Let b = arg maxi∈{1,...,B} fM (xi);
2 Initialise t1 = t2 = ... = tB = 1;
3 if b = 1 then
4 start = 2
5 else
6 start = 1
7 end
8 for i = start + 1, ..., B do
9 if i ̸= b then

10 ti = tstart

(︂
v̂(xi)/δb,i

v̂(xstart)/δb,start

)︂2
;

11 end
12 end

13 Let tb = v̂(xb)

√︃∑︁B
i=1,i ̸=b

t2
i

v̂2(xi)
;

14 Let S =
∑︁B

i=1 ti;
15 Let ti =

⌊︂
ti

T
S

⌉︂
for all i = 1, ..., B, where ⌊.⌉ means rounding to the nearest integer;

16 Let S =
∑︁B

i=1 ti;
17 if S < T then
18 Let ti = ti + 1 for T − S number of i ∈ {1, ..., B} with the largest values of ti;
19 end
20 if S > T then
21 Let ti = ti − 1 for S − T number of i ∈ {1, ..., B} with the smallest values of ti,

where ti > 0;
22 end

Output : Return a vector (t1, ..., tB)

After running the OCBA algorithm and allocating T replications among points in ΞB,
we can run the OCBA algorithm again for all points in ΞB and Xn. This is especially
important in the later stages of the algorithm, when we’re trying to focus more on
exploitation and are really trying to focus on reducing uncertainty about fM (.).

With all that put together, we can define a full algorithm for multi-fidelity high dimen-
sional optimisation algorithm. This can be seen in Algorithm 11.
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Algorithm 11: Multi-Fidelity Bayesian Optimisation Algorithm
Require: A computer model f , computational budget N , initial design matrix

Xn0 = (x1, ..., xn0)
T of size n0 × p, the minimum number of replications

for sampling a new point Mmin, batch size for new locations B, initial
side length of the local TR L0, maximum and minimum side length of
the local TR Lmax and Lmin respectively, maximum amount of
consecutive successes and fails φsucc and φfail respectively and number
of replications allocated to the OCBA algorithm T

1 Evaluate f Mmin times at each point in Xn and calculate
Yn = (fMmin(x1), ..., fMmin(xn)), vn = (v̂(x1), ..., v̂(xn)) as well as
YLCB

n = (fLCB
Mmin

(x1), ..., fLCB
Mmin

(xn));
2 Set n = n0 and calculate the initial cost G = n · Mmin;
3 Set L = L0;
4 while G < N and L > Lmin do
5 Let δC = arg maxx∈Xn fLCB

M (x);
6 Use only Xn that is within 2L of δC and the associated Yn to fit a Gaussian

Process;
7 With δC use Algorithm 9 to choose B new points ΞB;S = (ξ1;S , ..., ξB;S);
8 Let ΞB = (ξ1, ..., ξB) be a B × p matrix where columns S come from ΞB;S and

the other columns come from δC;−S ;
9 Calculate Ynew = (fMmin(ξ1), ..., fMmin(ξB)) as well as

vnew = (v̂(ξ1), ..., v̂(ξB));
10 Let G = G + B · Mmin;
11 Use Algorithm 10 to allocate T replications among points in ΞB;
12 Update Ynew and vnew and let G = G + T ;
13 if max YLCB

new > max YLCB
n then

14 success = success + 1 and fail = 0;
15 if success > φsucc then
16 L = min {2L, Lmax} and success = 0;
17 end
18 else
19 success = 0 and fail = fail + 1;
20 if fail > φfail then
21 L = max

{︂
L
2 , Lmin

}︂
and fail = 0;

22 end
23 end
24 Let Xn = (Xn, ΞB), Yn = (Yn, Ynew) and vn = (vn, vnew);
25 Use Algorithm 10 to allocate T replications among points in Xn;
26 Update Yn and vn, recalculate YLCB

n and let G = G + T ;
27 end

Output : Return the best found solution x∗ = arg maxx∈Xn fLCB
M (x)
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Figure 3.6: Michalewicz function in x1, x2 ∈ (0, 2)

3.5.4 Problems with Algorithm 11

While using trust regions can reduce the number of observations in the design, we still
have to often deal with a large number of dimensions at the same time, which can still
cause computational issues and inaccurate GP fits. The largest problem considered by
TuRBO is the Ackley test function (Al-Roomi, 2015a) in 200 dimensions. However, the
size of the problem in Bayesian DoE can be much larger than that, which TuRBO as
well as Algorithm 11 will struggle with in practice.

One way to address those concerns is to increase Mmin to make the computer model
output more accurate, which makes it easier to fit an accurate GP. Another method
to increase the accuracy of the surrogate model is to decrease the dimensionality. It
is easier to fit an accurate GP in lower dimensions. An extreme example of that is
the Approximate Coordinate Exchange (ACE) algorithm (Overstall and Woods, 2017),
which is used for finding optimal designs for Bayesian Design of Experiments. The ACE
algorithm fits a series of one-dimensional GPs. It does so by choosing the currently
best observed solution and then only varying one dimension at a time, while keeping all
others constant. That allows us to fit a GP in just a single dimension, which can be
very accurate and fast. Consider Michalewicz function, which we introduced in Section
2.3.3.1. We have chosen an initial design of size n = 10 for x1, x2 ∈ (0, 2), which is
plotted in Figure 3.6.

To consider optimisation over a single dimension, we first choose the best observed
point, which in this example is (x1, x2) = (1.37, 1.42). We then treat one dimension as a
constant and fix it, while optimising the function over the other dimension. For example,
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when we consider optimisation along x1, we fix x2 = 1.42 and do the optimisation along
the hyperplane, which is shown in Figure 3.7. If we plot this hyperplane in one dimension,
then it looks like the graph in Figure 3.8.

Figure 3.7: One dimensional optimi-
sation over x1 for the Michalewicz func-

tion
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Figure 3.8: One dimensional cut of
Michalewicz function over x1

Similarly when we consider optimisation along x2, we fix x1 = 1.37 and only vary x2.
This means we only consider the hyperplane, which is shown in Figure 3.9. Plotting this
hyperplane in one dimension can be seen in Figure 3.10.

Figure 3.9: One dimensional optimi-
sation over x2 for the Michalewicz func-

tion
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Figure 3.10: One dimensional cut of
Michalewicz function over x2
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While this approach provides accurate results and is even guaranteed to converge to
the global optimum under certain conditions (Luo and Tseng, 1992), it also has some
limitations. In general, there are no guarantees that this method will converge to a
global optimum instead of a local one, even after a large number of restarts. More
importantly, it is also quite inefficient in terms of computer model evaluations. If we
have a 200-dimensional problem, then we would have to create 200 different local models,
each of which require an initial design. This causes the total number of computer model
evaluations to be very large and make the entire algorithm inefficient. Instead we can
fit p0-dimensional GPs, where p0 is smaller than the original model p, but is still larger
than 1. This choice is very important, if p0 is too large then we have the same problems
as before. However, if p0 is too small, then we are potentially making the algorithm
more inefficient by optimising fewer numbers of dimensions at a time with the same
computational budget. In our experiments we have found that starting out with p0 = 100
is a good starting point.

The further we get, the more difficult it becomes to keep making progress. This would
suggest that we both keep increasing Mmin and decreasing p0 throughout the run of the
algorithm as we stop making progress by using the old values.

As we keep decreasing p0, there comes a point where p0 becomes smaller than some
cut-off point p∗

0 and our GP is no longer considered high-dimensional and we can start
using standard Bayesian optimisation techniques. This means we no longer have to use
trust regions and we can also use EI as an acquisition function, rather than Thompson
sampling. In our experiments, we’ve found that choosing p∗

0 = 30 provides good results.

In Equation 1.8, ymax was defined as the currently observed maximum from the computer
model. However, this is only appropriate in the noiseless setting, where f(x) = f̃(x).
Using this approach in our noisy setting could lead to a scenario where only a single very
noisy observation would cause us to severely overestimate ymax, which would also have
a major impact on the shape of the EI function. Instead, we let ymax = mn(δC), where
δC = arg maxx∈Xn fLCB

M (x) is the point with the highest observed LCB value. This is
also known as the plugin method (Forrester, 2013). By using this, we can avoid having
to estimate any further parameters that come with other noisy acquisition functions,
such as the noise of any future observations (Huang et al. (2006a); Forrester (2013);
Frazier et al. (2009)).

We now have enough to define our full two stage algorithm. We first run Algorithm
11 for a p0 number of variables. After this algorithm converges, we move on to new
variables that haven’t yet been considered for optimisation and run it again. If we are
unable to make any further progress, we reduce p0 and increase Mmin. We keep doing
this until p0 ≤ p∗

0. At that point we move on to stage two of the algorithm. In stage
two, we fit a GP to p0 variables, but this time without using trust regions. We then find
a point that maximises EI for that GP and evaluate it. We then again move on to new
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variables that haven’t yet been considered for optimisation and repeat the same steps.
If we are unable to make any further progress, we reduce p0 and increase Mmin. These
steps are described in Algorithm 12.

3.6 Simulations

For our test problem, we consider Bayesian Design of Experiments (DoE). In Bayesian
DoE, we are designing an experiment where we are interested in the effect of d different
variables on an outcome y. To model this effect, some sort of a statistical model is fitted
(e.g. a linear regression model, logistic regression model, etc.). We are then interested in
finding quantities β = (β1, ..., βk) from that model (such as model parameters, predicted

Algorithm 12: Partial Local Bayesian Optimisation Algorithm
Require: A computer model f , computational budget N , initial design matrix δ0

of size 1 × p, the number of dimensions to be considered for local
modelling at the start p0, the minimum number of dimensions to use for
trust regions p∗

0 and the minimum number of replications for sampling a
new point Mmin

Define : Let An be an n × p matrix, then if S = (s1, ..., sp0) is a vector of column
indexes, then An;S is a subset of An, where only the columns in S are
found and An;−S is a subset of An, where only the columns not in S are
found

1 Let G = 0;
2 Set L = L0;
3 Set W = (w1, ...., wp) = 1p = (1, ..., 1) be a vector of ones with length p;
4 while G < N and p0 > p∗

0 do
5 Sample S = (s1, ..., sp0) without replacement from (1, ...., p) with weights W ;
6 Let wsi = 0 for all i ∈ {1, ..., p0};
7 Let Xn be a design of size n × p where Xn;S is a new space-filling design of size

n × p0 and Xn;−S are the values from δ0;−S replicated n times for each row;
8 Evaluate f Mmin times at each point in Xn and calculate

Yn = (fMmin(x1), ..., fMmin(xn)), vn = (v̂(x1), ..., v̂(xn)) as well as
YLCB

n = (fLCB
Mmin

(x1), ..., fLCB
Mmin

(xn));
9 Let yold

max = max YLCB
n ;

10 Let G = G + n · Mmin;
11 Use columns S from Xn to run Algorithm 11 until convergence;
12 Let δ0 = arg maxx∈Xn fLCB

M (x) and ynew
max = maxx∈Xn fLCB

M (x);
13 if p0 >

∑︁p
i=1 wi then

14 Let W = 1p;
15 if ynew

max ≤ yold
max then

16 Let p0 =
⌈︁p0

2
⌉︁

and Mmin = ⌈1.5 · Mmin⌉;
17 end
18 end
19 end
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20 Let yold
max = max YLCB

n ;
21 while G < N do
22 Sample S = (s1, ..., sp0) without replacement from (1, ...., p) with weights W ;
23 Let wsi = 0 for all i ∈ {1, ..., p0};
24 Let Xn be a design of size n × p where Xn;S is a new space-filling design of size

n × p0 and Xn;−S are the values from δ0;−S replicated n times for each row;
25 Evaluate f Mmin times at each point in Xn and calculate

Yn = (fMmin(x1), ..., fMmin(xn)), vn = (v̂(x1), ..., v̂(xn)) as well as
YLCB

n = (fLCB
Mmin

(x1), ..., fLCB
Mmin

(xn));
26 Let ynew

max = max YLCB
n ;

27 Let G = G + n · Mmin;
28 Fit a GP by using Xn;S and Yn;
29 Find a point ξnew;S that maximises EI for the fitted GP, evaluate

ynew = fMmin(ξnew;S) and calculate yLCB
new = fLCB

Mmin
(ξnew;S);

30 if yLCB
new > ynew

max then
31 ynew

max = yLCB
new ;

32 end
33 if p0 >

∑︁p
i=1 wi then

34 Let W = 1p;
35 if ynew

max < yold
max then

36 Let p0 =
⌈︁p0

2
⌉︁

and Mmin = ⌈1.5 · Mmin⌉;
37 else
38 yold

max = ynew
max

39 end
40 end
41 end

Output : Return the best found solution x∗ = arg maxx∈Xn fLCB
M (x)

future responses, etc.) and we want those quantities to be as accurate as possible.
Given a design χ ∈ Rn×d with n observations and d variables, collected data y and the
quantities β, we can measure the success of our experiment by using a utility function
u(χ, y, β).

Since the observed values y and β are unknown before running the experiment, one is
interested in the expected utility instead, which is given as

U(χ) =Ey,β|χ[u(χ, y, β)]

=
∫︂

u(χ, y, β)π(y, β|χ)dydβ

=
∫︂

u(χ, y, β)π(β|y, χ)π(y|χ)dydβ

=
∫︂

u(χ, y, β)π(y|β, χ)π(β|χ)dydβ,

where π(.|.) are the prior distributions for different variables.
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The problem then becomes to maximise this expected utility function. Since these inte-
grals are not usually available in closed form, Monte Carlo methods and other numerical
methods are used to find an approximation Ũ(χ) of the expected utility function instead.
See Overstall and Woods (2017) and Overstall et al. (2020) for more information about
Bayesian DoE and difficulties of evaluating the expected utility functions.

The resulting expected utility function is stochastic, high-dimensional and its accuracy
can usually be controlled by increasing the computational cost of the function. Maximis-
ing this expected utility function is a very complex task with only a very limited number
of algorithms being able to tackle it. A state of the art algorithm for finding optimal
Bayesian designs for any generic utility functions, is the ACE algorithm (Overstall and
Woods, 2017).

In the rest of this section we will demonstrate the performance of Algorithm 12 and
compare it to ACE. We will use both algorithms to find a design that maximises Shannon
Information Gain for a logistic regression model.

3.6.1 Shannon information gain

Shannon information gain is defined as

uS(χ, y, β) = log π(β|y, χ) − log π(β|χ)

= log π(y|β, χ) − log π(y|χ)

An optimal design is then one that maximises US(χ, y, β) = Eβ,y[u
S(χ, y, β)]. As

mentioned earlier, this expectation is not available in closed form and has to be approx-
imated.

A straightforward method is to first sample βB = (β1, ..., βB)T , where each βi for
i = 1, ..., B is sampled from the prior π(β|χ). Then using βB, we can sample yB =

(y1, ..., yB), where yi is sampled from π(y|βi, χ) for all i = 1, ..., B. With those samples,
we can approximate π(y|β, χ) and π(y|χ) as follows:

π̃(y|β, χ) =
1
B

B∑︂
i=1

π(yi|βi, χ)

π̃(y|χ) = 1
B

B∑︂
i=1

1
B

B∑︂
j=1

π(yi|βj , χ)

which means
Ũ

S
(χ) = log π̃(y|β, χ) − log π̃(y|χ).
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This is the approximation used in Overstall and Woods (2017). Unfortunately, this
approximation is biased for Ũ

S
(χ) and this bias has been shown to be of order B−1

(Ryan, 2003). Since our algorithm assumes that the computer model is unbiased, we
are unable to use this approximation in our simulations. We therefore demonstrate how
we can use power posteriors to better approximate Ũ

S
(χ). This follows the approach

introduced by Friel and Pettitt (2008).

Power posterior is given as

πt(β|y, χ) = π(y|β, χ)tπ(β|χ),

where t ∈ [0, 1] is a temperature variable.

We now define
z(β|t) =

∫︂
β

π(y|β, χ)tπ(β|χ)dβ.

We are interested in log π(y|χ), which can be shown to be

log π(y|χ) = log
(︃

z(β|t = 1)
z(β|t = 0)

)︃
=
∫︂ 1

0
Eβ|y,t[log π(y|β, χ)]dt,

where
Eβ|y,t[log π(y|β, χ)] =

∫︂
β

π(y|β, χ)tp(β|χ)
z(y|t)

log π(y|β, χ)dβ

We can discretise this integral over t ∈ [0, 1] to approximate it. If we have 0 = t0 < t1 <

... < tA−1 < tA = 1, we get

log π(y|χ) ≈
A−1∑︂
i=0

(ti+1 − ti)
Eβ|y,ti+1 [log π(y|β)] + Eβ|y,ti

[log π(y|β)]
2

To approximate Eβ|y,ti
[log π(y|β)], we first sample B points (β1, ..., βB) from πti(β|y, χ)

by using MCMC sampling and then simply having

Eβ|y,ti
[log π(y|β)] ≈ 1

N

N∑︂
j=1

log π(y|βi, χ)

3.6.2 Shannon information gain for a logistic regression model

Consider a logistic regression model with d explanatory variables. This means that
yi ∼ Bernoulli(pi), where

log
(︃

pi

1 − pi

)︃
= β0 +

d∑︂
j=1

βjxij
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for i = 1, ..., n. This can then be rewritten for pi as

pi =
1

1 + exp(−β0 −
∑︁d

j=1 βjχij)

For logistic regression, the data likelihood p(y|β, χ) is given as

p(y|β, χ) =
n∏︂

i=1
pyi

i (1 − pi)
1−yi

To ensure computational stability, we often find it useful to also define the log-likelihood
function, which is given as

log p(y|β, χ) = log
(︄

n∏︂
i=1

pyi
i (1 − pi)

1−yi

)︄

=
n∑︂

i=1
yi log pi + (1 − yi) log(1 − pi)

=
n∑︂

i=1
log(1 − pi) +

n∑︂
i=1

yi log pi

1 − pi

=
n∑︂

i=1
log

(︄
1 − 1

1 + exp(−β0 −
∑︁d

j=1 βjχij)

)︄
+

n∑︂
i=1

⎛⎝yiβ0 +
d∑︂

j=1
yiβjxij

⎞⎠

Following Overstall and Woods (2017), we will restrict our design to xi ∈ [−1, 1] for
i = 1, ..., d and choose d = 4. We specify the following prior distributions for π(β|χ):

β0 ∼ U [−3, 3] = π(β0|χ), β1 ∼ U [4, 10] = π(β1|χ), β2 ∼ U [5, 11] = π(β2|χ),

β3 ∼ U [−6, 0] = π(β3|χ), β4 ∼ U [−2.5, 3.5] = π(β4|χ).
(3.1)

We’ll also define π(β|χ) =
∏︁4

i=0 π(βi|χ).

To now approximate Ũ
S
(χ), we can use Algorithm 13.
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Algorithm 13: Approximating Shannon information gain for a logistic regression
model
Require: A design matrix χ, a number of outer samples B1, number of inner

samples B2, a set of A temperatures 0 = t0 < t1 < ... < tA−1 < tA = 1,
step size for the Metropolis Hastings algorithm σ2

1 for b = 1, ..., B1 do
2 Draw a random sample β(b) =

(︂
β
(b)
0 , ..., β

(b)
4

)︂
, where β

(b)
i ∼ π(βi|χ) for all

i = 0, ..., 4
3 Calculate p(b) = (p

(b)
1 , ..., p

(b)
n ), where p

(b)
i = 1

1+exp(−β
(b)
0 −

∑︁4
j=1 β

(b)
j χij)

for all

i = 1, ..., n

4 Draw a sample y(b) = (y
(b)
1 , ..., y

(b)
n ), where y

(b)
i ∼ Bernoulli(p(b)i )

5 Calculate π(y(b)|β(b), χ)

6 Let β
(0)
0 = (E[π(β0|χ)], ..., E[π(β4|χ)]) = (0, 7, 8, −3, 0.5)

7 for a = 1, ..., A do
8 for i = 1, ..., B2 do
9 β

(0)
i ∼ N(β

(0)
i−1, σ2)

10 Calculate

Accept = ta · log p
(︂

y(b)|β(0)
i , χ

)︂
+ log π

(︂
β
(0)
i |χ

)︂
(3.2)

− ta · log p
(︂

y(b)|β(0)
i−1, χ

)︂
− log π

(︂
β
(0)
i−1|χ

)︂

11 Draw paccept ∼ U [0, 1]
12 if log paccept > Accept then
13 β

(0)
i = β

(0)
i−1

14 end
15 end
16 Let Êβ|y(b),ta

[log π(y|β)] = 1
B

∑︁B
i=1 log p(y(b)|β(0)

i , χ)

17 Let β
(0)
0 = β

(0)
B

18 end
19

logπ̂(y(b)|χ) =
A−1∑︂
a=0

(ta+1 − ta)
Êβ|y(b),ta+1

[log π(y|β)] + Êβ|y(b),ta
[log π(y|β)]

2

20 end
21 Calculate

Û
S
(χ) =

1
B

B∑︂
i=1

log π(y(b)|β(b), χ) − 1
B

B∑︂
i=1

logπ̂(y(b)|χ).

Output : Û
S
(χ)
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The computer model we get from Algorithm 13 is unbiased, but subject to Monte Carlo
error, which means it is noisy. However, we can control the noise level and make the
output more accurate by increasing B1, which is equivalent to evaluating the computer
model at the same input location multiple times. The implementation of Algorithms 12
and 13 are both found on Github at https://github.com/Hendriico/PLBO.

For our experiments, we aim to find an optimal Bayesian design χ of size 150 × 4, such
that its Shannon Information gain is maximised. To find an optimal Bayesian design
means to choose every element of the matrix

χ =

⎛⎜⎜⎜⎜⎜⎝
χ1,1 χ1,2 χ1,3 χ1,4

χ2,1 χ2,2 χ2,3 χ2,4

. . . . . . . . . . . .

χ150,1 χ150,2 χ150,3 χ150,4

⎞⎟⎟⎟⎟⎟⎠ .

This means that we need to choose 150 · 4 = 600 different values and hence the underlying
optimisation problem will be 600-dimensional. We will maximise this computer model
by using our proposed Partial Local Bayesian Optimisation (PLBO) algorithm as well
as the ACE algorithm. We compare the two algorithms by controlling the number of
MCMC iterations available to each algorithm. We run each algorithm 10 times with
different starting locations. The results can be seen in Figure 3.11.

As seen in Figure 3.11, our proposed PLBO algorithm manages to outperform the ACE
algorithm in terms of both speed as well as the quality of the final result. This can be
further emphasised by zooming in on the top part of the graph, which can be seen in
Figure 3.12.

From Figure 3.12 it is clear to see that PLBO converges to an optimum 50%-100% faster
than the ACE algorithm, while also finding better optimal designs for every single run.
This shows that the extra efficiency we gained from fitting GPs to more than a single
dimension at a time allowed us to find better results faster.

3.7 Discussion

In this chapter we presented a new algorithm for multi-fidelity Bayesian optimisation
in high-dimensional settings. This addresses a significant gap in the existing literature
where the simultaneous challenges of high dimensionality and computer model evalua-
tion costs are often treated separately or inadequately. The proposed PLBO algorithm
integrates trust regions and OCBA with a local subspace-based optimisation strategy,
enabling scalable and efficient search in scenarios where full-fidelity evaluations are ex-
pensive and the input space is of high dimension.

https://github.com/Hendriico/PLBO
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Figure 3.11: Comparison of ACE and PLBO algorithms for Shannon Information
Gain

Our algorithm’s performance was demonstrated by successfully finding optimal Bayesian
designs. We were interested in finding a D-optimal design of size 150 × 4 for a logistic
regression model. This means that the test problem was 600-dimensional. We compared
our algorithm against an existing state-of-the-art algorithm called ACE. We kept the
total number of computer model evaluations equal for both algorithms to more accu-
rately compare their performance. We found that PLBO found better results while only
requiring about a third of the number of evaluations compared to the ACE algorithm.
This demonstrated our algorithm’s superior performance.

Despite its success, the proposed method has certain limitations that suggest directions
for future work. The fitting of Gaussian Processes at the start of the algorithm is
still slightly limiting due to lack of GP implementations that can be fitted quickly and
accurately for moderate to large number of dimensions. The algorithm itself is also fairly
complicated and further simplification of it could be possible, but this is outside of scope
for this current work.
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Figure 3.12: Comparison of ACE and PLBO algorithms for Shannon Information
Gain (zoomed in to better visualise the differences between the results of the two

algorithms)
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Chapter 4

Sequential Design for
Non-Stationary Computer Models

4.1 Introduction

Modern scientific and engineering investigations frequently rely on computationally in-
tensive simulators to model complex physical systems. In many such cases, surrogate
modelling is used to cheaply approximate these simulators. Gaussian Processes are are
one of the most popular surrogate models due to their flexibility and their ability to both
provide predictions as well as quantify uncertainty. When combined with sequential de-
sign strategies, GPs enable efficient exploration of expensive simulators by iteratively
selecting new input locations that improve the surrogate model in targeted ways.

A standard Gaussian Process, which we have been using throughout this paper, assumes
stationarity, meaning that its properties do not change throughout the design space.
However, often times, this assumption does not hold true in real-world settings. In
these scenarios, stationary GPs can perform very poorly, underfitting regions of high-
variance, while over-exploring areas of low-variance.

To remedy the situation, non-stationary GPs along with appropriate acquisition func-
tions have been proposed. While offering greater flexibility and more accurate predic-
tions, they are computationally very expensive to fit. They usually also require a large
number of evaluated points to learn about the underlying structure and fit accurately.
These reasons mean that sequential design strategies are extremely inefficient when com-
bined with non-stationary GPs, potentially defeating the purpose of sequential design
altogether. As a result, we are interested in a method that can adapt to non-stationary
behaviour using simpler stationary GP models.
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In this chapter, we present a novel acquisition function designed specifically for finding
sequential designs for non-stationary computer models that avoids having to fit non-
stationary GPs at every iteration. The acquisition function intelligently finds areas of
greater interest and allocates more computational resources into exploring those regions.

In section 4.1 we give a brief overview of existing non-stationary GPs and their relation
to sequential design process. Section 4.3 a few acquisition functions that are used in
sequential design. It shows how they are calculated and demonstrates some of the
weaknesses that arise from using them with non-stationary computer models. In section
4.4 we define our new acquisition function for a 1-dimensional GP. We use pairwise slopes
between all the points to measure how quickly the function changes at any given location.
Regions with a greater rate of change are given more emphasis and areas where function
changes less rapidly are given less emphasis. In section 4.4.2 we extend this acquisition
function to multi-dimensional problems. Finally we perform our simulation studies in
section 4.5. We compare our new approach against a few other existing methods, the
most advanced method being a fully non-stationary sequential design using deep GPs.
We demonstrate how our new method either achieves similar results to the deep GPs or
even outperforms them. All while using only a fraction of the computational resources
compared to the non-stationary GP.

4.2 Non-Stationary Computer Models

Despite being a useful tool, GPs assume the computer model is stationary, which limits
its ability to model many real-life processes accurately. The stationarity assumption
is mostly there for computational convenience, making the likelihood calculations and
uncertainty quantification be available in closed form.

Stationary GPs assume that the correlation function only depends on θ and pairwise
distances between points. It does not take into account the fact that the computer model
could be changing much more rapidly in certain areas compared to others. Common
approaches to modelling non-stationarity are given in the next section.

4.2.1 Non-Stationary Gaussian Processes

Many surrogates have been introduced in the past for non-stationary computer models,
such as Schmidt and O’Hagan (2003), Paciorek and Schervish (2003) and Rasmussen
and Ghahramani (2001). These mostly focused on geospatial modelling, which meant
that the input dimensions were very low and the amount of training data was also small.

More recently, Bornn et al. (2011) proposed an algorithm based on dimension expan-
sion. A small number of dimensions is expanded into a higher number of dimensions
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and transformed so that the resulting process is again stationary. Katzfuss (2013) also
focused on modelling spatial datasets, but focused on scenarios with a large number of
available datapoints.

Treed Gaussian processes were proposed by Gramacy and Lee (2009) to fit to models
where the stationarity changes alongside each coordinate direction. It combines treed
partitioning with Gaussian processes. The design space is split into different regions and
within each region, a separate GP is fitted.

Most recently, a lot of attention has been given to deep GPs. Deep GPs are multi-layered
models, where every layer has a multivariate normal distribution. These hidden layers
can warp the design in ways so that some points are pushed closed together and some
are spread further away, which allows us to use stationary correlation functions. Deep
GPs were first proposed by Damianou and Lawrence (2013) and later expanded on by
many authors, such as Bui et al. (2016), Salimbeni and Deisenroth (2017), Havasi et al.
(2018). Most of the work carried out has been in the context of inference and fitting
deep GPs. Only a few works have focused on using deep GPs for sequential design.
For example, Rajaram et al. (2021) used a simple criterion with deep GPs, that chose
a point with the highest posterior variance to be added to the design. A more complex
acquisition function was given by Sauer et al. (2021), who introduced an acquisition
function for deep GPs that measures how much variance can be reduced over the entire
design, by adding a new point. This acquisition function will be introduced in the next
section.

Sequential design using non-stationary computer models requires us to refit the surrogate
model at every iteration, which can be computationally very expensive. Non-stationary
computer models also often need a moderately large amount of training data to learn
about accurately about the structure of the problem (Sauer et al., 2023). Because of
those reasons, we might be interested in how we can create sequential designs for non-
stationary computer models without being affected by the drawbacks of non-stationary
GPs. We propose a novel acquisition function that can be used with regular stationary
GPs and will find designs for non-stationary GPs by putting more points in the more
interesting regions.

4.3 Acquisition Functions

Often times our goal is to find a design that maximises the accuracy of the fitted model
or in other words, minimises the mean squared error (MSE) of the model. In the context
of GPs, this is equivalent to reducing the uncertainty/variance of the GP. The simplest
method to do that sequentially, is to simply choose the point with the highest posterior
variance (MacKay, 1992). This is also known as ALM (Active Learning MacKay), named
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after Mackay, who first proposed using posterior variance as an acquisition function in
sequential design. More formally, we choose a new point xn+1, so that

xn+1 = arg max
x∈X

Σ̂n(x).

However, this ignores the fact that gaining information at a specific location also reduces
uncertainty in other locations and we are interested in minimising uncertainty over the
entire design space. After adding a new point xn+1 to the design, variance of the
Gaussian process at point x becomes

Σ̂n+1(x) = Σ̂n(x) + σ̂2(Σ̂0(x, xn+1)Σ̂
−1
0 (xn+1, xn+1)Σ̂0(xn+1, x)),

where Σ̂0(X1, X2) = k̂n(X1, X2) − k̂n(X1, Xn)K̂
−1
n (Xn, Xn)k̂n(Xn, X2) and Xn is the

current design. We are interested in how much we can reduce the variance, which means
we are interested in the measure Σ̂n(x) − Σ̂n+1(x). To measure how much the variance
reduces over the entire design space, we simply integrate over all possible values of x ∈ X.
So we get

∆Σn(xn+1) =
∫︂

x∈X
Σ̂n(x) − Σ̂n+1(x)dx (4.1)

=
∫︂

x∈X
Σ̂n(x) −

(︂
Σ̂n(x) + σ̂2(Σ̂0(x, xn+1)Σ̂

−1
0 (xn+1, xn+1)Σ̂0(xn+1, x))

)︂
dx

=
∫︂

x∈X
σ̂2(Σ̂0(x, xn+1)Σ̂

−1
0 (xn+1, xn+1)Σ̂0(xn+1, x))dx

The goal is to minimise variance, which means we want to maximise ∆Σn(xn+1). More
formally, at step n, we want to add point xn+1 to the design, so that

xn+1 = arg max
x∈X

∆Σn(x).

While the integral in Equation 4.1 is not available in closed form in general, it can be
calculated analytically when X is a hyper-rectangle. Despite this, numeric optimisation
of this function can still be a challenge (Sauer et al., 2021).

Because of this, more commonly variance reduction over a reference set Xref is measured.
This is also known as ALC (Active Learning Cohn), named after Cohn, who proposed
it (Cohn, 1996) and it is given as:



4.3. Acquisition Functions 77

ALC(xn+1|Xref) ∝
∑︂

x∈Xref

Σ̂n(x) − Σ̂n+1(x)

=
∑︂

x∈Xref

σ̂2(Σ̂0(x, xn+1)Σ̂
−1
0 (xn+1, xn+1)Σ̂0(xn+1, x))

The optimisation is then also carried out by calculating ALC for a discrete set of candi-
date points Xcand (this can be the same as Xref) and choosing the point with the highest
ALC value. In other words, we choose

xn+1 = arg max
x∈Xcand

ALC(x|Xref).

Discretising the integral and the optimisation problems allows for simpler and more
stable implementation as well as allowing us to easily parallelise the computer code.

To quickly demonstrate how ALC works in practice, consider the following computer
model over x ∈ [0, 1]:

fH(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1.35cos(24πx), if x ≤ 0.33

1.35, if 0.33 < x ≤ 0.66

1.35cos(12πx), if x > 0.66

(4.2)

We choose a simple design of size n = 15 and evaluate the computer model there. We
then fit a Gaussian Process to that data. This can be seen in Figure 4.1 (a).

We then choose our Xref to be a set of 100 uniformly distributed points and also set
Xcand = Xref. ALC values can then be seen in Figure 4.1 (b).

As we can see, ALC is higher in areas where adding a new point will lead to greater
reduction in GP posterior variance. However, in this example, our computer model
is highly non-stationary. Even though the computer model is completely flat between
x ∈ [0.33, 0.66], there are still many points in that region, where the ALC value is high.
In reality, evaluating a point there will not give as much more information. Likewise,
ALC is also high around x ≈ 0.85, but evaluating the function there will not give as
much information as some other points, since the computer model does not change very
quickly and the predictive mean is already quite accurate. Instead we would want to
focus more on x ∈ [0, 0.33], where the computer model changes more rapidly and we can
gain more information about the behavior of the computer model. One way to fix that,
is to fit a non-stationary surrogate model to the data. However, fitting a new model at
every stage in our sequential design algorithm can be very expensive and make the design
process inefficient. Non-stationary computer models also often require moderately large
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Figure 4.1: (a) An example of a fitted GP to a computer model fH(x) (b) ALC values
from the GP

designs to be able to learn about the structure of the computer model accurately. This
is shown in Figure 4.2 (a), where we fit a deep GP to the same design as we did in Figure
4.1.

In Figure 4.2 we can see that the deep GP is unable to accurately fit the data with
the amount of training data available to it. This will also limit the performance of any
sequential design strategies judging from the shape of the ALC function in Figure 4.2
(b).

In the next section, we demonstrate how we can create sequential designs for non-
stationary computer models, by only fitting stationary GPs.

4.4 Stationarity Score

If our computer model is non-stationary, then fitting stationary GPs means that we are
unable to learn about the structure of the computer model accurately. This means that
ALC will put equal weights to the “interesting” regions as well as the regions that are



4.4. Stationarity Score 79

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

(a)

x

f(
x)

Actual f(x)
Fitted values

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

01
5

(b)

x

A
LC

Figure 4.2: (a) An example of a fitted deep GP to a computer model fH(x) (b) ALC
values from the deep GP

completely flat. Ideally we would like to put more weight to the more interesting regions
where the function changes more rapidly.

This could be modelled with non-stationary GPs. However, fitting non-stationary GPs
accurately can be quite a time consuming task and as seen in Figure 4.2, a fairly large
design is usually needed to fit the model accurately. In this section we demonstrate how
we can use stationary GPs and extend ALC to put more weight on the more interesting
regions.

4.4.1 Measuring lengthscale

In a non-stationary Gaussian Process, the lengthscale variable is able to change within
the design space. This lengthscale variable θ is used in correlation function r(x1, x2) =

exp
(︂
− (x1−x2)2

θ

)︂
and it controls the wiggliness of a GP.

Lengthscale is related to the number of level-u upcrossings Nu. Nu is the number of
times a GP crosses level u from left to right on the y-axis. It can be shown that for a
Gaussian kernel E[Nu] ∝ θ− 1

2 (Adler and Taylor, 2007).
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Figure 4.3: Random draws from two different GP priors

To demonstrate this, let us first sample a number of random draws from a GP prior
with θ = 2 and θ = 0.5. The paths drawn from a GP prior with θ = 0.5 should be twice
as wiggly and have twice as many upcrossings as the ones from a GP prior with θ = 2.

The number of upcrossings is directly related to how often a function changes directions,
which is related to how much the slope of the function changes. Therefore to understand
how wiggly the function is at any point x we want to know how often the slope changes
in the vicinity of x.

For example, consider again the function given in Equation 4.2. It can be seen in Figure
4.4. It is clearly non-stationary. It is very wiggly between x ∈ [0, 0.33], half as wiggly
between x ∈ (0.66, 1] and completely flat between x ∈ (0.33, 0.66]. We can choose a
random space filling design of size 40 to evaluate the function at. This is used to fit a
GP and find the maximum likelihood estimate of θ. This design is also shown in Figure
4.4.

Intuitively, where the function is very wiggly, then the local derivatives change very
quickly and when the function is smooth, then the derivative doesn’t change much at
all.
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Figure 4.4: Example of a non-stationary computer model
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Figure 4.5: All pairwise slopes between different points

To get an idea of the smoothness, we calculate the pairwise slopes between all points.
Given two points xi and xj and their respective function values yi = f(xi) and yj =

f(xj), the slope between them is given by s(xi, xj) =
yi−yj

xi−xj
.

All pairwise slopes for the example in Figure 4.4 can be seen in Figure 4.5.

To measure how much the slopes change, we can use variance. Since we want the
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Figure 4.6: All pairwise slopes between points weighted by pairwise distances

points closer to xi to have more of an effect on the variance, we will use weighted
variance. Given a set of n observations y1, y2, ..., yn and associated weights w1, w2, ...wn,
so that ∑︁n

i=1 wi = 1, weighted variance is given by Vw =
n
∑︁n

i=1 wi(yi−ȳw)2

n−1 , where ȳw =∑︁n

i=1 wiyi∑︁n

i=1 wi
.

We want the weights to correspond to the distances, i.e. the smaller the distance between
points, the larger the weight should be. A logical choice for calculating weight like that,
would be to use the Gaussian kernel function. This means that a slope s(xi, xj) should
have a corresponding weight w(xi, xj) ∝ r(xi, xj) = exp

(︂
(xi−xj)2

θ

)︂
.

Replotting all the pairwise slopes between points with weights calculated can be seen in
Figure 4.6.

We can now calculate the weighted variances for all 40 points based on the equations
shown so far. The weighted variance for point xi is given as

Vw(xi) =
(n − 1)∑︁n

j=1;j ̸=i w(xi, xj)(s(xi, xj) − s̄i
w)

2

n − 2 , (4.3)

where s̄i
w =

∑︁n

j=1;j ̸=i
w(xi,xj)s(xi,xj)∑︁n

j=1;j ̸=i
w(xi,xj)

. These can be seen in Figure 4.7.

To now measure the smoothness, we calculate the stationarity score. We will define
the stationarity score as a weighted average over all Vw(xi), where i = 1, 2, ..., n. This
means that for a point x∗, the stationarity score is given by S(x∗) =

∑︁n

i=1 w(x∗,xi)Vw(xi)∑︁n

i=1 w(x∗,xi)
,
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Figure 4.7: Weighted variances for all 40 points

where w(x∗, xi) =∝ r(x∗, xi) = exp
(︂
(x∗−xi)2

θ

)︂
. To interpret the stationarity score, we

can normalise it. Consider the mean of all weighted variances V̄ w =
∑︁n

i=1 Vw(xi)

n . This
will correspond to the overall average wiggliness and therefore also to θ− 1

2 as well as the
overall number of level-u upcrossings Nu. If we now define the stationarity score to be
S(x∗) = 1

V̄ w
·
∑︁n

i=1 w(x∗,xi)Vw(xi)∑︁n

i=1 w(x∗,xi)
, then we can interpret this score. Stationarity score will

then show how much more wiggly the function is at a location compared to the overall
average level of wiggliness The stationarity score for the example in Figure 4.4 can be
seen in Figure 4.8.

This function looks how we would expect based off of the true function. Stationarity
score is around 0 between x ∈ [0.33, 0.66], which would mean it’s completely flat. It
increases to around 1 between x ∈ [0.66, 1], which indicates this region has the wiggliness
corresponding to the wiggliness associated with θ. Finally, the score is around 2 between
x ∈ [0, 0.33] indicating that the function is twice as wiggly as it is between x ∈ [0.66, 1],
which is also true.

With the stationarity score, we are able to define our extended non-stationary ALC
function. This will be given by multiplying the stationarity score with the ALC. So in
other words, this is

NSALC(x|Xref) = S(x) · ALC(x|Xref).

Coming back to the example in Figure 4.1, we now calculate NSALC(x) as well as
ALC(x), which we will compare in Figure 4.9 (b).
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As we see from Figure 4.9, NSALC succeeds in achieving our goal. It puts more weight
on the most interesting area, which is x ∈ [0, 0.33]. NSALC and ALC values are roughly
equal in x ∈ [0.66, 1] and NSALC is almost zero in x ∈ (0.33, 0.66), where we are least
interested in evaluating new points.

4.4.2 Multidimensional extension

So far we have only considered a 1-dimensional example. Finding slopes in one dimension
is simple as it is well-defined and we have s(xi, xj) =

yi−yj

xi−xj
. An important thing to note,

is that s(xi, xj) =
yi−yj

xi−xj
=

−(yj−yi)
−(xj−xi)

=
yj−yi

xj−xi
= s(xj , xi). This means that the slope

is always directional. However, it is slightly trickier in higher dimensions as xi − xj

is not a single value anymore. We could simply use any measure for distance that’s
defined for multidimensional data, such as Euclidean or Manhattan distance, but this
would mean that s(xi, xj) ̸= s(xj , xi) and the slopes would no longer be directional.
To demonstrate why this is an issue, consider the following two-dimensional computer
model over x1, x2 ∈ [−1, 1]:

fI(x1, x2) = x2
1 + x2

2,

where we choose the following design:

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0
−0.5 −0.5
−0.5 0.5
0.5 −0.5
0.5 0.5

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Evaluating this gives us y = fI(X) = (y1, y2, y3, y4, y5) = (0, 0.5, 0.5, 0.5, 0.5).

This is visualised in Figure 4.10.

Firstly we can show that s(xi, xj) ̸= s(xj , xi) in this example, by calculating s(x1, x2)

and s(x2, x1) using the Manhattan distance. We get s(x1, x2) =
y1−y2∑︁2

i=1 |xi
1−xi

2|
= 0−0.5

|0−(−0.5)|+|0−(−0.5)| =

−0.5 and similarly s(x2, x1) =
y2−y1∑︁2

i=1 |xi
2−xi

1|
= 0.5−0

|−0.5−0|+|−0.5−0| = 0.5. Clearly s(x1, x2) =

−0.5 ̸= 0.5 = s(x2, x1). Similar results follow when using any other distance measure.

Let us also calculate slopes between x1 and the other points, using the Manhattan dis-
tance, we already have s(x1, x2) = −0.5 and similarly we can get s(x1, x3) = s(x1, x4) =

s(x1, x5) = −0.5. These numbers would indicate that the function doesn’t change at
all in the vicinity of x1 = (0, 0). We would expect to see that when the function is flat,
but in this case our function has a bowl shape, so this method does not work.
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Figure 4.10: A contour plot of function fI (X), where the black dots mark the location
of the chosen design

To address this issue, we define the slope direction for every dimension separately. Con-
sider two p-dimensional points xi = (x1

i , ..., xp
i ) and xj = (x1

j , ..., xp
j ) and their function

values yi and yj respectively. Then the slope for the kth dimension will be defined as

sk(xi, xj) =
yi − yj

(
∑︁p

l=1 |xl
i − xl

j |) · sign(xk
i − xk

j )
,

where

sign(a) =

⎧⎨⎩−1, if a < 0

1, if a ≥ 0

Doing this will guarantee that all slopes are directional and describe the function accu-
rately.

We now calculate the weighted variance V k
w (xi) for every point i = 1, ..., n and for every

dimension k = 1, ..., p. To calculate V k
w (xi), we use Equation 4.3, but we replace s(xi, xj)

with sk(xi, xj). We then simply define Vw(xi) = 1
p

∑︁p
k=1 V k

w (xi). After calculating
Vw(xi), everything else will follow as defined in Section 4.4.1.
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4.5 Examples

In this part we will be evaluating the performance of our NSALC acquisition function.
We fit a standard stationary GP and then use NSALC to select a new point to be
added to our design. The implementation of our code can be found on Github at https:

//github.com/Hendriico/NSALC. For our baseline, we have three different methods.
Firstly, we fit a deep GP at every step and use ALC to choose a new point. For the deep
GP and the ALC implementation, we use the deepgp package in R (Sauer, 2022). For
the second method, we fit a standard stationary GP and use ALC to select a new point.
Finally, we simply choose a single maximum projection design (Joseph et al., 2015).
This method is not based off of any sequential design criteria. For this implementation,
we use the MaxPro package in R (Ba and Joseph, 2018).

4.5.1 Langley Glide-Back Booster

Our first example comes from NASA. Pamadi et al. (2004b) describe a rocket booster
that could be reused after being used to transport a payload into orbit. To achieve
this task, a computer model was created that simulates how the booster behaves under
various conditions. The computer model has three input variables and six different
output variables. The computer model is deterministic and exhibits clear signs of non-
stationarity. The real computer model is not available and therefore we use a dense
grid of pre-evaluated points instead. This data can be downloaded at https://bobby.

gramacy.com/surrogates/lgbb.tar.gz.

We start with an initial maximum projection design (Joseph et al., 2015) of size n = 50.
We then run each algorithm for extra 250 steps to get a final design of size n = 300. We
also compare the performance of these sequential designs to a non-sequential maximum
projection designs.

To measure the performance of our designs, we use each design to fit a non-stationary
deep GP. The fitted model is used to evaluate the root mean squared error (RMSE),
which will be our measure for the goodness of fit. RMSE will be calculated will be
calculated over 1000 out-of-sample points and is given as

RMSE =

√︄∑︁1000
i=1 (m̂n(xi) − f(xi))2

1000 ,

where m̂n(xi) is the mean from the fitted non-sationary deep GP at point xi and f(xi)

is the computer model value at xi. RMSE will be evaluated after every 50 iterations.
Each algorithm is run 10 times. The results are seen in Figure 4.11.

From Figure 4.11, we can see that the designs found by NSALC are very similar to the
ones found by the deep GP. However, every iteration for NSALC only takes a fraction

https://github.com/Hendriico/NSALC
https://github.com/Hendriico/NSALC
https://bobby.gramacy.com/surrogates/lgbb.tar.gz
https://bobby.gramacy.com/surrogates/lgbb.tar.gz
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Figure 4.11: Simulation results for the Langley Glide-Back Booster computer model.

of time compared to fitting a deep GP at every iteration, making it more practical. An
iteration of NSALC only takes a few seconds, while fitting a whole deep GP accurately
can take over an hour in practice. There are a few ways to make it faster, such as
choosing appropriate starting positions for the different parameters. While this can
make the process faster, it is still hundreds or even thousands of times slower than an
iteration of NSALC. As expected, using a regular ALC with a stationary GP will not
give us good results as it treats all areas equally and does not put more points in the
more interesting regions. However, it is still slightly better than a non-sequential design
strategy presented by MaxPro.

4.5.2 Satellite Drag

Our second example is a 7-dimensional computer model (Sun et al., 2019). It was
developed by researchers at Los Alamos National Laboratory. It uses 7 input variables
to predict drag coefficients for various satellites in orbit. The computer model uses
Monte Carlo methods and is therefore noisy. The simulator also requires details about
a specific satellite. Similarly to Sauer et al. (2021), we use the GRACE satellite. The
computer model is available publicly at https://bitbucket.org/gramacylab/tpm/.

https://bitbucket.org/gramacylab/tpm/


4.5. Examples 89

0.5

1.0

100 200 300
n

R
M

S
E

Algorithm

Deep GP

Maximum projection design

Non−stationary ALC

Stationary ALC

Figure 4.12: Simulation results for the satellite drag computer model

We start with an initial maximum projection design (Joseph et al., 2015) of size n = 50.
We then run each algorithm for extra 250 steps to get a final design of size n = 300.
Similarly to the last example, we measure the performance of our designs by fitting a
deep GP and evaluating RMSE for every fitted model. This is again done after every
50 iterations. Each algorithm is run 10 times. The results are seen in Figure 4.12.

From Figure 4.12, we can see that the designs found by NSALC are better than the
ones found by the deep GP and what is more, every iteration for NSALC only takes
a fraction of time compared to fitting a deep GP at every iteration, making it more
practical. As expected, using a regular ALC with a stationary GP will not give us good
results as it treats all areas equally and does not put more points in the more interesting
regions. In this scenario, it is also slightly worse than a non-sequential design strategy
presented by MaxPro. Interestingly, designs found by Deep GP are worse than the ones
found by MaxPro until n = 200. This could indicate that it takes a while for the Deep
GP to learn the structure of the problem correctly and a lot of effort is put into less
interesting areas until that point.
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4.6 Discussion

The main contribution of this chapter is the proposal of a novel acquisition function
which can be used with stationary GPs to build sequential designs for non-stationary
computer models. This addressed an important gap in the field of sequential design,
which is how to efficiently design experiments for computer models that exhibit non-
stationary behaviour without having to fit computationally expensive non-stationary
Gaussian Processes. While much of the existing literature assumes stationarity in the
underlying process or relies on complex non-stationary GPs, our proposed acquisition
function provides a practical and scalable alternative. By using only standard, station-
ary GPs, the method remains computationally cheap, while still adapting effectively to
spatial heterogeneity in the response surface.

The proposed acquisition function intelligently finds areas of higher variance which are
considered more interesting and puts more emphasis on those regions. Areas with a
slower rate of change are considered less interesting and sampled less.

The efficiency of our method was demonstrated through simulation studies in section 4.5.
We compared our approach against three other methods, the most complex being a fully
non-stationary sequential design using deep GPs. Our algorithm reached comparable or
better results for two different example models. All while only requiring a fraction of
the time compared to deep GPs.

Although successful in our studies, this novel methodology still requires further testing
across different computer models to validate its effectiveness. Other non-stationary
surrogate models should also be considered in further studies. Occasional numerical
stability issues were also noted with our method during simulations, indicating potential
issues with the method which should be explored.
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Chapter 5

Conclusions

This thesis explored key challenges in the design of computer experiments, a rapidly
evolving field with applications in various scientific and engineering domains. Exper-
imenters have various objectives, such as optimisation, inverse calibration, sensitivity
analysis, etc. Our goal was to develop novel algorithms that enhance Bayesian optimi-
sation techniques to tackle these challenges more effectively.

We developed three novel algorithms for sequential design in computer experiments,
each addressing distinct challenges in Bayesian optimisation. The first algorithm is
a Bayesian optimisation algorithm that can be used to efficiently optimise multiple
objectives of the same computer model simultaneously. The second algorithm is again
used for Bayesian optimisation, however, the emphasis is on high-dimensional computer
models whose accuracy can be controlled by choosing the amount of computational
resources allocated. The final algorithm is used to find sequential designs that maximise
prediction accuracy over the entire design space. This was designed to be used with
non-stationary computer models, without having to rely on expensive non-stationary
surrogate models.

In Chapter 2, we introduced a new entropy-based algorithm for multi-task Bayesian
optimisation. The algorithm was defined in terms of the location of the optimum solution
and the goal was to reduce the uncertainty about its location by using entropy. The
algorithm was able to either maximise or minimise a computer model as well as do
both simultaneously. In the multi-task case, the algorithm chooses a new point so that
the expected entropy of the joint probability density of the maximum and minimum
is minimised at the next step. In the single-objective case, it does so by choosing a
new point sequentially, so that the expected entropy of the probability density of the
optimum is minimised at the next step.

We approximated the probability densities by using Monte Carlo integration. This
method was robust, flexible, unbiased and asymptotically exact, but it was also compu-
tationally expensive.
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The defined entropy search algorithm was then compared against a simple alternative
multi-task algorithm, which was based on expected improvement. They were compared
by using three different benchmark functions that ranged from two to ten dimensions.
The entropy search algorithm excelled at balancing both objectives in all test cases,
dynamically allocating more resources to the more challenging objective. This came at
a higher computational cost. On average, the entropy search algorithm took between
0.9-2.8 seconds per iteration for the different test functions. This was around 15 times
slower than the simple baseline algorithm. However, a few seconds per iteration is, in
most cases, much less than the time it takes to evaluate the computer model. When
a computer model takes hours to evaluate then the extra few seconds per iteration are
irrelevant. Thus, the entropy search algorithm is a highly competitive approach for
multi-task Bayesian optimisation.

In Chapter 3, we introduced a novel Bayesian optimisation algorithm. The algorithm was
designed to be used for high-dimensional and noisy computer models whose accuracy we
can change. Due to the high dimensionality, we only considered a subset of dimensions
at a time, changing the size of that subset over time. At the beginning of the algorithm
when the subset was still large, we first used trust regions to fit a local Gaussian Process
in a hypercube centered around the best currently observed solution. We then use
Thompson Sampling to propose a batch of new points to evaluate cheaply. Based on the
cheap evaluations, we use the OCBA (Optimal Computing Budget Allocation) algorithm
to allocate more resources to more promising solutions. Once the subset had been
reduced to a manageable size, allowing for effective Gaussian Process modelling, we
used expected improvement to propose new points.

The proposed algorithm was used to find optimal Bayesian designs for any generic utility
function. Since the utility functions usually have to be approximated by using numerical
methods and/or MCMC algorithms, means that they are noisy and their accuracy or
fidelity can be controlled by allocating more or fewer computational resources to it. The
Bayesian designs are also often very high-dimensional, making our algorithm particularly
well-suited for this problem.

We demonstrated the efficiency of our algorithm by finding an optimal Bayesian design
for a logistic regression model.The results were compared with the ACE algorithm, a
state-of-the-art method for finding optimal Bayesian designs. Our algorithm managed
to consistently find better solutions than ACE, requiring 50%-100% fewer number of
computer model evaluations.

In Chapter 4, our aim was to create sequential designs for non-stationary computer
models. Standard methods and acquisition functions do not take non-stationarity into
account and put equal weights to all areas of the design space, regardless of whether
they exhibit significant variation or remain relatively flat.
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One approach to handling non-stationarity is through non-stationary Gaussian Pro-
cesses, which allow the use of standard acquisition functions. This provides a robust
solution by focusing more on interesting regions. However, fitting non-stationary GPs
is computationally expensive and as the model must be refitted at every iteration in the
sequential design process, the entire design process becomes extremely inefficient. To
address this, we proposed an alternative method.

A novel acquisition function was proposed that could be used with standard stationary
GPs. It prioritises regions where the function changes more rapidly while allocating
fewer resources to flatter areas. This was achieved by calculating pairwise slopes between
points and measuring how quickly the slopes change at any given location.

Our acquisition function was compared against designs found using deep GPs, a type
of non-stationary GP model. Our method produced comparable designs while requiring
only a fraction of the computational effort. That is due to the fact that fitting deep
GPs takes much longer than fitting stationary GPs. These two methods were also com-
pared against using standard acquisition functions with stationary GPs. As expected,
this achieved worse results compared to the two methods designed for non-stationary
computer models.

Each of the newly developed algorithms enables us to tackle problems more efficiently
than before. However, they also come with certain limitations that we need to be aware
of.

So far, we have only tested our Entropy Search algorithm with test functions that had
relatively low dimensions. The most complex function we tested, was the stock allo-
cation problem, which was evaluated in 10 dimensions. Scaling to higher dimensions
would require more points to discretise the sample space accurately, leading to increased
computational complexity. The computational complexity of the current algorithm in-
creases cubically with M , making it prohibitively expensive in high dimensions. In the
future we could also compare against different baseline algorithms For example, con-
sider an algorithm identical to the existing baseline one, with the execption that it uses
entropy as an acquisition function instead of EI. This could provide a more fair com-
parison. Furthermore, even though our proposed algorithm only takes a few seconds
per iteration, it is still much more expensive than simple alternatives. This means that
when the computer model itself is fairly cheap, the extra cost might be more difficult to
justify. This means that our algorithm probably can not be used for high-dimensional
or cheap computer models. Finally, the number of parameters that need to be chosen in
our algorithm can be a challenge. While we provide recommendations and heuristics for
parameter selection, they do not guarantee optimal performance. This makes simpler
algorithms more stable and potentially preferable in some worst-case scenarios.

Our high-dimensional optimisation algorithm also has some limitations. The main prob-
lem is its implementation. Firstly, in the early stages of our algorithm, we are having
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to fit Gaussian Processes for fairly large design matrices, both in terms of number of
dimensions as well as the number of evaluations. This requires a lot of computational
power as well as cleverness to be able to fit accurately. We believe there is still a lot of
room for improvement for developing new Gaussian Process implementations for such
scenarios as only a very small number of them provided adequate performance for our use
case. Second challenge is the complexity of our own algorithm. There are a lot of steps
in our algorithm and also a very large number of parameters that need to be specified.
As with the first algorithm, even though we provided heuristics for parameter tuning,
further research is needed to validate their robustness across diverse applications.

Our third algorithm also has some drawbacks and limitations. Firstly, as it is purely
an approximation of the non-stationarity exhibited, there is no guarantee that this will
be accurate in all scenarios. The approach also heavily relies on the fitted Gaussian
Process, particularly the choice of lengthscale parameter. Since we know that a standard
Gaussian Process is not an accurate representation of the true computer model, there is
a possibility that the fitted surrogate fails to deliver good results. We did not encounter
any such scenario in our research, however, this is not a guarantee of further success in
every single process. Additionally, we observed occasional numerical instabilities when
the number of design points was very small, suggesting potential avenues for improving
the formulation.

In further research, our multi-task entropy search algorithm could be extended to high-
dimensional problems. As mentioned previously, the current version is not scalable to
higher dimensions, which means that alternative approximations and techniques would
be needed to apply the entropy search algorithm to high-dimensional problems. Some
methods from Chapter 3 could be leveraged, though further research is needed. Addi-
tionally, making the algorithm more computationally efficient would be another way to
improve the algorithm. Instead of using Monte Carlo methods, perhaps some kind of
an approximation could be developed. Unfortunately this was outside the scope for this
thesis.

Our high-dimensional optimisation algorithm has demonstrated significant advantages
over existing methods. However, fitting Gaussian Processes in high dimensions remains
an ongoing challenge. Firstly, as mentioned before, the number of Gaussian Process
implementations that can handle hundreds of dimensions at a time is still very low,
which puts limits on any Bayesian optimisation related work. One obvious way is to
simply use more powerful computers, supercomputers or even cloud computing to fit
Gaussian Processes. This is again outside of the current scope for this thesis. While our
current algorithm works well for the test scenarios we have explored, we believe further
work is required to test its feasibility in other areas besides Bayesian DoE. Additionally,
simplifying the algorithm without sacrificing performance is an open question for future
work.
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Our approach of using stationary Gaussian Processes with adaptive acquisition functions
offers a promising alternative for non-stationary computer models. However, as a novel
method, it requires further validation across diverse test cases to confirm its robustness
and reliability. We could also compare our method against a larger number of existing
non-stationary surrogate models. Unfortunately due to the large computational com-
plexity of fitting such models, this is outside of the scope for our current work. We have
also found our method to occasionally become numerically unstable, especially with very
small design matrices where there’s very few points to calculate the weighted variance.
Even though efficient implementation was used, occasional errors still occurred. There-
fore, addressing numerical instabilities and improving reliability in scenarios with small
datasets would be valuable directions for further research.

In summary, this thesis advances the field of Bayesian optimisation by introducing novel
methods for multi-objective, high-dimensional, and non-stationary computer models.
While challenges remain, our contributions provide a foundation for future research in
scalable and efficient optimisation techniques. We anticipate that these methods will be
valuable in a wide range of applications, from engineering design to machine learning
and beyond.
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Appendix A

Details on the stock allocation
problem

In the stock allocation problem, we were trying to create a portfolio, so that we could
balance the risk and reward of that portfolio in a certain way. We wanted to distribute
our assets between 9 different stocks as well as an ISA with a guaranteed interest rate
of 5%. The 9 stocks we considered were:

1. Berskhire Hathaway (BRK-B)
2. Amazon (AMZN)
3. Microsoft (MSFT)
4. Tesla (TSLA)
5. Apple (AAPL)
6. BitCoin (BTC-USD)
7. Nvidia (NVDA)
8. Google (GOOG)
9. Shopify (SHOP)

For each of those stocks, we used their stock price data between 1st January 2017 and
1st June 2023 to fit an autoregressive integrated moving average (ARIMA) model in R
(Hyndman and Khandakar, 2008). From the fitted model we can sample a number of
scenarios where we think our portfolio value will be at 60 days after 1st June 2023. We
then divide the sampled total value of the portfolio by its initial value. From those sam-
pled values, we take the 5% and the 95% intervals and call them q5 and q95 respectively.
Now let RI = 1 − q5 be the risk of the portfolio and RE = q95 − 1 be the reward of the
portfolio. We then wish to define a risk score based on those two values. For a high risk
score, we are allowing RI to be high, but then also demand that the RE be also high.
For a low risk score, we are fine with a lower RE, but we also want RI to be low. We
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define RI > 0.2 to be high risk and RI < 0.2 to be low risk. With that, we define the
following risk score.

f(RE, RI) =

⎧⎨⎩100RE · (RI − 0.2), if RI < 0.2(︁
200(RE − 0.2)2 − 200(RI − 0.2)2)︁ · min(1 + RE − RI, 1)40, if RI ≥ 0.2

For example, when we take an equal allocation of stocks, i.e. x = (0.1, ..., 0.1), we get
q5 = 0.884 and q95 = 1.159, which means that RI = 1 − 0.884 = 0.116 and RE =

1.159 − 1 = 0.159, this gives us f3(x) = −1.336. If we choose a more risky investment
with x =

(︂
1
9 , ..., 1

9 , 0
)︂
, then we get q5 = 0.865 and q95 = 1.171, so RI = 1 −0.866 = 0.134

and RE = 1.171 − 1 = 0.171, leading to f3(x) = −1.129.

For a high-risk portfolio, consider the case where we invest half of our money in Bitcoin
and put the other half in the ISA with a guaranteed 5% interest rate. In that case,
q5 = 0.741 and q95 = 1.32. This means that RI = 1 − 0.741 = 0.259 and RE =

1.32 − 1 = 0.32. This gives us a computer model value of f3(x) = 2.16.
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Appendix B

Single-task entropy search
algorithm

Even though we have developed the entropy search algorithm for multi-task optimisation,
we can also extend it for standard single-task Bayesian optimisation. In the multi-task
setting, our goal is to minimise the uncertainty about the distribution p∗(χmin, χmax).
If we are only interested in minimisation, for example, we can redefine our goal to be
minimising the uncertainty about the distribution of p∗(χmin) instead. This distribution
is defined as

p∗(χmin) = P [x∗
min = χmin] .

This means that over our reference set ζF = (χ1, ..., χM ), the entropy is given as
H(p∗(χmin)) = −

∑︁M
i=1 p∗(χi) log(p∗(χi)).

We can now modify Algorithm 7 slightly to allow for single-task optimisation. Firstly,
in lines 3 and 15, we only sample F ′ points from πmin(χ). Secondly, in lines 7, 8 and
10 we replace p∗(χmin, χmax) with p∗(χmin). These are the only changes required and
everything else is identical to the multi-task optimisation algorithm.

We have also compared this single-task version of the entropy search algorithm to the
algorithms introduced in Section 1.2. These algorithms were MQ, SKO, CKG, EQI
and TSSO. We have considered 3 different test functions: Michalewicz, Hartmann3 and
Hartmann6 (Al-Roomi, 2015b). We have found the single-task version to also be highly
competitive to the other algorithms.

Michalewicz function: Michalewicz function (Al-Roomi, 2015b) is a 2-dimensional
function, which we will define as

f4(x) = −
2∑︂

i=1
sin(πxi) sin20(πix2

i )
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Figure B.1: Michalewicz function

It has 2 local minima and is evaluated for x1, x2 ∈ [0, 1]. The function can be seen in
Figure B.1.

Hartmann3 function: Hartmann3 (Al-Roomi, 2015b) is a 3-dimensional function,
which is defined as

f5(x) = −
4∑︂

i=1
αi exp

⎛⎝−
3∑︂

j=1
Aij(xj − Pij)

2

⎞⎠ ,

where

α =(1, 1.2, 3, 3.2)T

A =

⎛⎜⎜⎜⎜⎜⎝
3 10 30

0.1 10 35
3 10 30

0.1 10 35

⎞⎟⎟⎟⎟⎟⎠

P = 10−4

⎛⎜⎜⎜⎜⎜⎝
3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

⎞⎟⎟⎟⎟⎟⎠



101

It has 4 local minima as well as one unique global minimum and is evaluated for
x1, x2, x3 ∈ [0, 1].

Hartmann6 function: Hartmann6 (Al-Roomi, 2015b) is a 6-dimensional function,
which is defined as

f6(x) = −
4∑︂

i=1
αi exp

⎛⎝−
6∑︂

j=1
Aij(xj − Pij)

2

⎞⎠ ,

where

α =(1, 1.2, 3, 3.2)T

A =

⎛⎜⎜⎜⎜⎜⎝
10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

⎞⎟⎟⎟⎟⎟⎠

P = 10−4

⎛⎜⎜⎜⎜⎜⎝
1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

⎞⎟⎟⎟⎟⎟⎠
It has 6 local minima as well as one unique global minimum and is evaluated for xi ∈
[0, 1], for all i = 1, ..., 6.

For each optimisation problem, we ran every algorithm 20 times. The computational
budget ranged from 25 to 55 computer model evaluations, which was enough for the
algorithms to reach the true minimum in most cases. We also set the computer model
noise at τ2 = 0.2 for every function.

To find the final location of the optimum for a specific algorithm, run and budget, we use
the final design from the algorithm and use this to fit a GP. We then find the location
of the minimum of the GP mean. In other words, we find x̂∗ = arg minx∈Xn m̂n(x). To
compare the results between algorithms, we finally calculate the true function value for
each result and plot the mean of those values for every algorithm and budget.

The simulation results can be seen in Figure B.2. As we can see, Entropy Search (marked
ES in Figure B.2) performs significantly better for Michalewicz and Hartmann3 functions
than other algorithms. For Hartmann6 function, Entropy Search is comparable to SKO
and MQ algorithms and better than the other algorithms.
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Figure B.2: Comparing algorithms on different test functions
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Appendix C

Gaussian Process Implementation

A very important part of a Bayesian optimisation algorithm is its implementation. Even
a well-designed algorithm will perform poorly when it’s badly implemented. A bad
implementation can lead to slow running time, numerical instabilities and errors in
acquisition function evaluations, poor inner optimisation performance (i.e. not being
able to find the maximum of the acquisition function and getting stuck in local optima)
as well as any other unexpected errors.

The implementation of a Bayesian optimisation algorithm is reliant on being able to fit
a Gaussian process reliably. There are many existing packages that are able to fit a GP.
In our work, we have been using the laGP (Gramacy, 2016) package in R (R Core Team
(2023)), except where otherwise mentioned. However, there are other implementation of
GPs available in R as well. Some other well-known packages are DiceKriging (Roustant
et al., 2012) and RobustGaSP (Gu et al., 2018). As far as we know, there’s only a very
limited number of papers comparing different implementations of GP modelling (e.g. see
(Erickson et al., 2018)) and none that would compare these from a (stochastic) Bayesian
Optimisation perspective.

We are not going to do a full review of the different packages here. However, we have im-
plemented all of the three mentioned R packages (laGP, DiceKriging and RobustGaSP)
in our entropy search algorithm. We will now explore how the choice of a GP package
affects the performance of the algorithm.

One of the major differences between laGP and the other two packages is the fact that
we are able to specify the correlation function r used in the GP. With laGP, we are
only able to use the Gaussian correlation function. However, with both DiceKriging and
RobustGaSP, we are able to specify Gaussian, Exponential, Matern3_2, Matern5_2
and the power-exponential correlation functions. In our simulations, we will be using
both a Gaussian, as well as the Matern5_2 correlation function, when possible. The
Matern5_2 correlation function is given as follows:
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r(x, x′|θ) =
d∏︂

i=1

(︄(︄
1 +

√
5 (xi − x′

i)

θi
+

5
3

(︃
(xi − x′

i)

θi

)︃2)︄
exp

(︃
−

√
5 (xi − x′

i)

θi

)︃)︄

The Matern5_2 correlation function is only twice differentiable, while the Gaussian
correlation function is infinitely differentiable. This means that a Gaussian Process
with a Matern5_2 correlation function is less smooth and often preferable to a Gaussian
correlation function in practice (Rasmussen and Williams, 2006).

We will be comparing the three packages on 4 different test functions: Michalewicz,
Hartmann3, Shekel and Hartmann6.

Michalewicz function: We choose the following parameters for our computer simu-
lations:

• Initial design: maximin Latin Hypercube sample of size 10.
• Computational budget N ∈ [15, 20, 25, 30, 35, 40]
• Computer model noise: τ2 = 0.1

We then run each algorithm 20 times and get the results that are seen in Figures C.1
and C.2 as well as Table C.1.

Table C.1: Simulation results for the Michalewicz function

Algorithm N
Mean Optimal
Value

Median Optimal
Value Time

DK Matern5_2 40 -1.71 -1.75 100.65 s
laGP 40 -1.61 -1.78 41.61 s
DK Gaussian 40 -1.58 -1.71 99.69 s
robustGaSP Gaussian 40 -1.54 -1.78 50.61 s
robustGaSP
Matern5_2

40 -1.49 -1.77 52.99 s

For this function, there are no large differences between the packages. DiceKriging
with the Matern5_2 correlation function has the smallest mean optimal value, while
laGP has the smallest median optimal value. DiceKriging, however, is computationally
much slower than laGP. It is around 2.5 times slower than laGP. The main difference
comes from the parallel tempering part of the algorithm, where the package has to
repeatedly calculate the GP mean and variance. On the other hand, RobustGaSP with
the Matern5_2 correlation function performs the worst, especially at the start of the
algorithm.
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Figure C.1: Results for the Michalewicz function
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Figure C.2: Results for the Michalewicz function

Hartmann3 function: We choose the following parameters for our computer simu-
lations:

• Initial design: maximin Latin Hypercube sample of size 7.
• Computational budget N ∈ [10, 15, 20, 25, 30]
• Computer model noise: τ2 = 0.1

We then run each algorithm 20 times and get the results that are seen in Figures C.3
and C.4 as well as Table C.2.

Table C.2: Simulation results for the Hartmann3 function

Algorithm N
Mean Optimal
Value

Median Optimal
Value Time

robustGaSP
Matern5_2

30 -3.85 -3.85 46.41 s

laGP 30 -3.84 -3.85 34.02 s
robustGaSP Gaussian 30 -3.84 -3.85 43.14 s
DK Matern5_2 30 -3.83 -3.83 85.82 s
DK Gaussian 30 -3.78 -3.80 84.57 s
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Figure C.3: Results for the Hartmann3 function
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Figure C.4: Results for the Hartmann3 function

For this function, all of the packages are very close to each other at the end of the
algorithm. The only differences are at the start of the algorithm during the first few
iterations, where RobustGaSP performs much worse, and in the speed of the packages.

Shekel function: Shekel function (Al-Roomi, 2015b) is a 4-dimensional function,
which is defined as

f7(x) = −
10∑︂

i=1

⎛⎝ 4∑︂
j=1

(xj − Cji)
2 + βi

⎞⎠ ,

where
β =

1
10 (1, 2, 2, 4, 4, 6, 3, 7, 5, 5)T

C =

⎛⎜⎜⎜⎜⎜⎝
4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

⎞⎟⎟⎟⎟⎟⎠
We choose the following parameters for our computer simulations:

• Initial design: maximin Latin Hypercube sample of size 20.
• Computational budget N ∈ [30, 40, 50, 60]
• Computer model noise: τ2 = 0.1
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We then run each algorithm 20 times and get the results that are seen in Figures C.5
and C.6 as well as Table C.3.

Table C.3: Simulation results for the Shekel function

Algorithm N
Mean Optimal
Value

Median Optimal
Value Time

DK Matern5_2 60 -2.70 -2.58 191.49 s
DK Gaussian 60 -2.63 -2.53 181.56 s
laGP 60 -2.53 -2.65 88.20 s
robustGaSP Gaussian 60 -0.65 -0.42 119.43 s
robustGaSP
Matern5_2

60 -0.22 -0.18 159.45 s

For this function, DiceKriging starts reaching the optimum quicker than the other pack-
ages. By N = 60, there are still a few instances where laGP fails to get close to the
optimum, which leads to a higher mean optimum value. However, if you discard these
few runs, laGP does get closer to the optimum, which leads to a lower median optimum
value. RobustGaSP does not perform as well and does not reach the optimum a single
time by N = 60, with Matern5_2 correlation function performing particularly poorly.

Hartmann6 function: We choose the following parameters for our computer simu-
lations:

• Initial design: maximin Latin Hypercube sample of size 20.
• Computational budget N ∈ [30, 35, 40, 45, 50, 55, 60]
• Computer model noise: τ2 = 0.1

We then run each algorithm 20 times and get the results that are seen in Figures C.7
and C.8 as well as Table C.4.

Table C.4: Simulation results for the Hartmann6 function

Algorithm N
Mean Optimal
Value

Median Optimal
Value Time

laGP 60 -2.94 -2.96 92.37 s
DK Matern5_2 60 -2.91 -2.95 182.02 s
DK Gaussian 60 -2.89 -2.93 169.85 s
robustGaSP
Matern5_2

60 -1.62 -1.44 222.29 s

robustGaSP Gaussian 60 -1.49 -1.42 133.58 s
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Figure C.5: Results for the Shekel function
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Figure C.6: Results for the Shekel function

For this function, laGP and DiceKriging are very close to each other and there are no
significant differences. DiceKriging with the Matern5_2 does start reaching the optimum
slightly quicker, but the other 2 catch up by N = 50. RobustGaSP again, fails to reach
the optimum a single time by N = 60, which could be an indication that RobustGaSP
does not perform as well in higher dimensions, where our design matrices are sparse.

Overall, DiceKriging and laGP are both comparable in performance, with DiceKriging
having a slight edge over laGP in most cases. DiceKriging has the added benefit of being
able to specify the correlation function, while laGP has the added benefit of being much
quicker. Based on our simulations, we would not recommend using RobustGaSP, when
having to model a function in higher than 3 dimensions.
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Figure C.7: Results for the Hartmann6 function
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