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Abstract

Cybersecurity risk assessment using standards like ISO 27005 is hard, espe-
cially for complex target systems. The main challenges are to identify threats,
estimate their likelihood, and determine their consequences. One source of
difficulty is the presence of (system-specific) dependencies, whereby a threat
to one system component can lead indirectly to consequences in other system
components via (system-specific) attack paths and secondary-effect cascades.
This paper postulates that part of the problem is that threat paths require
an analysis of causes and effects in the context of a specific system, but tools
and knowledge bases used for this are not based on causal models. Existing
cybersecurity knowledge bases may help identify threats but do not allow
the likelihood of adverse outcomes including indirect effects to be found in
a target system. This paper proposes to address some of these challenges
by using a simple causal model. Such a model provides at least three at-
tractive benefits for knowledge capture and reuse: parsimony (the number of
distinct concepts is small compared to existing knowledge bases), generality
(it is feasible to capture these concepts in a way that does not require as-
sumptions about target systems), and utility (it is easy to create simulations
of cybersecurity threats in target systems and determine the presence and
likelihood of attack paths and secondary effects). This has implications for
the development of current and future cybersecurity knowledge bases. For
example, the high cost of analysing new vulnerabilities in the NVD cata-
logue seems related to the fact that CVSS (in its current form) hides some
causal relationships. This suggests that aligning CVSS with a causal model
would reduce the cost of NVD and make it more useful in risk assessment.
Mapping CVSS and other cybersecurity knowledge bases to a simple causal
model would also make it easier to integrate them in a way that supports
application in practical risk assessments.
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1. Introduction

Standards like ISO 27005 [1] provide a recipe for analysing information
security risks in terms of the likelihood and impact of threats affecting a
target system. However, identifying cybersecurity risks and determining their
likelihood is not easy. ISO 27005 proposes two alternative approaches to help
overcome these difficulties: asset-based and event-based analysis. In event-
based analysis, the system is treated as an ecosystem and uses a top-down
approach to find risk sources (agents with motivation and ability to cause
harm) and harmful events they can cause. In the asset-based approach, the
system is described in terms of business (or primary) assets and supporting
(or secondary) assets. Then threats are identified that would affect those
assets in operational scenarios, their likelihood and impact are estimated, and
the associated risks are determined. ISO 27005 claims that using the asset-
based approach ‘if all valid combinations of assets, threats and vulnerabilities
can be enumerated within the scope of the ISMS, then, in theory, all the
risks would be identified’. This is a bold claim, but depends on being able
to identify all these elements. This creates a requirement to develop and
maintain cybersecurity knowledge bases to support risk analysts, examples
of which include the US National Vulnerability Database (NVD) [2] and the
ATT&CK and D3FEND frameworks from Mitre [3, 4].

Many threats do not directly compromise the system, but do so indirectly
in a manner best described by a sequence of threats known as a threat path.
There are two main types of threat path: attack paths and secondary effect
cascades. An attack path arises when the effects of one threat enable ex-
ploitation of a system weakness by another threat, so an attacker can harm
a target system through a series of steps. A secondary effect cascade occurs
when the effects of one threat cause further effects due to a system depen-
dency, with no attacker involvement. In both cases, effects can be caused
that are far from the first threat. This makes it difficult to recognise that
they are indirect effects of the first threat and may lead to underestimation
of their likelihood.

Some cybersecurity knowledge bases now attempt to address these diffi-
culties by including indirect effects when describing threats or related aspects,
such as vulnerabilities. However, threat paths arise because of dependencies
within systems, so they are naturally system-specific. Because those depen-
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dencies may or may not exist in a given target system, a risk analyst must
decide whether or not each risk described by such a knowledge base is relevant
to their system. If they cannot do this accurately, risks may be overestimated
leading to excessive precautions, or underestimated leaving systems exposed.
Developers of such a knowledge base must also decide what assumptions to
make concerning system dependencies, and may need to cover several com-
binations of assumptions. This makes development more complex and leads
to a completeness problem: which combinations of assumptions are needed
to fulfil the ISO 27005 promise that ‘all the risks would be identified’?

This work described here addresses these challenges by recognising that
threat paths and threats are inherently causal mechanisms. If threats or
related concepts are described in terms of causes and effects, then threat
paths in a given target system can be found and analysed more easily by
constructing a causal model of the system. A knowledge base describing
such threats becomes simpler and more self-contained, and it is easier to
recognise when these threats arise in the target system. It is still necessary
to model dependencies within the target system, but this is relatively easy if
the knowledge base and tools used are designed to support it.

This approach was used in the implementation of the prototype risk anal-
ysis software Spyderisk [5]. This uses a knowledge base that describes system
components, threats, and their causes and effects. Here, the focus is not on
the software prototype, but on the approach used to create the knowledge
base from a causal model, and the implications and opportunities for devel-
opment of new and existing cybersecurity knowledge bases.

2. Related work

2.1. Cybersecurity knowledge capture

Cybersecurity terminology has been developed over decades and is very
rich. This is a strength, but also a weakness, as there are many overlaps and
ambiguities. RFC 4949 [6] captures a large number of terms used in Inter-
net Security, but many terms have multiple subtly or not so subtly distinct
meanings. Standards in this area must carefully define their terms, and the
ISO 27000 series of standards for information security risk management be-
gins with the overview and vocabulary of ISO 27000 [7]. However, this, like
RFC 4949, is not a true taxonomy, but a dictionary that provides definitions
of terms that are often overlapping or ambiguous.
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Ontologies provide a way to resolve some of these difficulties. Herzog et al.
[8] and others produced examples of cybersecurity ontologies, and subsequent
developments include the well-known models published by Fenz and Ekelhart
of ISO 27001 and the German IT Grundschutz Manual [9]. Several reviews
of such ontologies have also been published, by Blanco et al. [10] and more
recently by Meriah and Rabai [11], which highlights the use of a recognised
ontological development methodology, derived from well-known and/or stan-
dardised sources and providing complete coverage of cybersecurity terms like
‘risk’, ‘threat’, ‘vulnerability’, ‘security attribute’, and so forth. This allows
cybersecurity information to be digitised and shared, but retains some of the
ambiguities and overlaps of cybersecurity language, making it less suitable
for machine inference and the analytical procedures of risk assessment.

Foundational ontologies provide a rigorous conceptual baseline on which
other ontologies can be based, which in principle helps to resolve ambiguity,
reduce duplication, and integrate ontologies through the common founda-
tion. Some have been proposed for use in cybersecurity. The Basic Formal
Ontology (BFO) [12] was used in the Common Core Cyber Ontology (C3O)
[13], which models cyber assets and events and can be used to describe cy-
ber attacks (which form a subclass of events) although it does not include
models of specific types of cyber attack. The C3O has been proposed as
a way to model cybersecurity in the Internet of Things [14]. The Universal
Foundational Ontology (UFO) [15] has been used by Oliveira et al. as a start-
ing point for a security (not cybersecurity) ontology from a risk treatment
perspective [16]. This ontology is discussed in more detail later in Section
5.1.

However, few cybersecurity researchers have used foundational ontologies
to capture cybersecurity knowledge. Early work by Herzog, Fenz and others
predates the development of foundational ontologies, but they are still not
widely used today. The starting point is still cybersecurity terminology, and
increasingly previous knowledge bases, and the main challenge is still the
presence of ambiguity and overlaps. For example, the D3FEND ontology
was bootstrapped by manual analysis of existing knowledge bases using do-
main expertise to ensure a level of consistency that could not be obtained
from machine learning or by importing existing sources [17]. Even efforts to
unify disparate knowledge repositories do not rely on foundational ontolo-
gies. The Unified Cyber Ontology (UCO) proposed by Syed et al. became
a community effort to create a mid-level ontology, arguing that providing or
choosing a foundational ontology would limit opportunities to integrate and
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exploit knowledge bases with disparate or no such foundations [18]. UCO
can be overlayed on a foundational ontology, allowing users to choose to use
one, although presumably this would diminish the range of existing knowl-
edge bases that they could then integrate. The proposed Unified Ontology
for Cyber Security published by NIST [19] uses a relationship overlay called
WAVED to relate concepts from different knowledge bases, without recourse
to a foundational ontology. These integration approaches allow one to query
multiple knowledge bases to find information, but do not directly support an
ISO 27005 risk analysis procedure.

2.2. Cybersecurity knowledge and causality

The idea that threat paths are fundamental to cybersecurity risk assess-
ment is also not new. They were proposed by Phillips and Swiler as a way
to perform a cybersecurity risk assessment using methods then established
in safety analysis [20], and used in Bruce Schneier’s article showing how at-
tack trees must be considered when evaluating threats to a target system
[21]. These early developments focused on attack paths, but secondary effect
cascades are also important in risk assessment. In 2008, this was raised in
an EC Directive [22] concerning cyberphysical critical infrastructures, where
the dependencies between physical and IT elements complicate risk analysis
and can lead to risk amplification.

Causal models provide a way to calculate the effects of dependencies
in threat paths composed of simpler threat models, but most cybersecurity
applications have focused on probabilistic analysis, as proposed by Phillips
and Swiler, and not on the development of reusable knowledge bases. For
example, Guariniello and DeLaurentis showed how to determine risks using
links between systems described in terms of their strength and criticality
[23]. This is a very high-level approach, where the links are system-specific,
which does not lead to reusable (system-independent) elements that could
be included in a knowledge base. Poolsappasit et al. [24] used a set of
attack templates involving transitions between states, but each template may
include multiple transitions, and the states can refer to anything in the target
system.

Schneier formulates attack trees for a specific target system, but points
out that an attack tree against one system will also work against similar
systems. This idea was used in the ATT&CK knowledge base, which is for-
mulated in terms of tactics (adversarial goals), techniques, and procedures
(TTP). Schneier’s claim that attack trees are reusable is clearly valid at
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some level, as demonstrated by the creation of ATT&CK, but its elements
are complex and expressed using STIX 2.1 [25], which is designed for in-
formation sharing rather than reasoning. ATT&CK is primarily a source of
threat intelligence, describing potential adversaries and theirmodus operandi.
D3FEND is a complementary knowledge base describing defensive cyberse-
curity measures and their relationship to ATT&CK techniques. D3FEND
supports reasoning to determine whether a set of defensive technologies ad-
dresses potential attacks, but not the causal analysis required in risk assess-
ment.

The Common Vulnerability Scoring System CVSS represents threat paths
in a different way. Version 2, published in 2007 [26] was adopted as a schema
to classify software vulnerabilities by (NVD). Each vulnerability is modelled
using descriptive metrics, whose values can be used to calculate a severity
score, which became seen as a proxy for the risk posed by each vulnerability.
This was criticised by authors such as Schoenfield and Quiroga [27], on the
grounds that risk depends on all direct and indirect effects of exploiting a
vulnerability. This was addressed in CVSS v3 [28] by extending the impact
metrics to include indirect effects. However, this depends on assumptions
about the target system, making it more difficult to determine the correct
metric values for a vulnerability or to decide how relevant the results are to
a given target system (see Section 5.2).

Most cybersecurity knowledge bases have a concept of threat which has
(causes) consequences, but efforts to create knowledge bases for modelling
threat paths are limited. In most cases, threat effects are explicitly included,
but threat causes are not. Fenz et al included a causal relationship between
different threats and used this in a Bayesian network analysis, but other
threat causes are not included except to distinguish whether threats are ac-
cidental or deliberate of natural or human origin. Some authors of this paper
created a knowledge base designed to capture secondary effect cascades and
used it to create a Bayesian network to support root cause analysis in a given
target system [29]. However, a Bayesian network contains many parameters,
including conditional causation probabilities. These are difficult to obtain
and system-specific, so the generic threat models from the knowledge base
could not provide the information needed to address arbitrary target systems.

To address these limitations and better align with ISO 27005, the Bayesian
formulation used in [29] was replaced by a qualitative approach, leading to the
Spyderisk software described by Phillips et al. [30]. This simplifies risk calcu-
lation and eliminates many system-specific parameters, allowing a knowledge
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base of reusable threat models to be created. This is quite different from ei-
ther ATT&CK or CVSS. The focus here is to describe the insights gained
from this transformation, including potential implications for risk analysts
and developers of cybersecurity (or other risk-related) knowledge bases.

3. Causal Model Formulation

3.1. Asset behaviours and risks

Causal models have been extensively studied in the literature in fields
ranging from the design of clinical trials, to data driven knowledge discovery
using machine learning algorithms. There are three main approaches, usually
attributed to Campbell [31], Rubin [32] and Pearl [33]. Pearl’s approach is
based on causal relationship graphs, making it naturally suited to model
cybersecurity risks including threat graphs. This starts from a structural
causal model, defined by Pearl as an ordered triple < U, V,E >, where:

• U is a set of exogenous variables whose values are determined by factors
outside the model,

• V is a set of endogenous variables whose values are determined by
factors within the model, and

• E is a set of structural equations that express the value of each endoge-
nous variable in terms of the other variables.

The term asset is not defined explicitly in ISO 27000, but the overview
says information, and related processes, systems, networks and people are
important assets for achieving organisation objectives. A threat is a potential
cause of an unwanted incident, which can result in harm to a system or
organisation. ISO 27005 says that an asset is anything that has value to the
organisation and therefore requires protection. These definitions imply that
threats cause harm to the target system by compromising assets. They cause
a change in the status or behaviour of assets, here referred to for brevity as
a threat-induced behaviour.

Information system assets include information (data), processes (running
software), hosts (devices that can store data and run software), and networks
(over which connected hosts can communicate). Threat-induced behaviours
include loss of confidentiality, integrity, or availability (CIA). People are also
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important; although strictly speaking, when a human contributes to a sys-
tem, the asset is not the human, but their fulfilment of a system role. Be-
haviours associated with human roles include loss of availability (nobody can
fulfil the role), impersonation (an unauthorised person fulfils the role), and
subversion (a person in the role is persuaded to harm the system).

Other assets may be even less tangible. For example, if two processes
have a client-service relationship, a client impersonation threat would cause
a loss of client authenticity. This cannot be a behaviour of the client or the
service because it does not affect their relationships with other processes.
The threat affects only their mutual relationship, which should therefore be
modelled as an asset that requires protection.

Let the set of system assets be A = {Aa}, where a is a unique label for
each asset, such as a URI. Let B = {Bb

a} be the set of potential threat-
induced behaviours in the system, where each asset Aa can have several
behaviours whose types are distinguished by a second URI b. Each type
of behaviour may occur for some or all of the system assets. The state of
behaviour Bb

a can be modelled by a binary variable V b
a ∈ V , where V b

a = ⊤
(true) means that Bb

a occurs.
In ISO 27005, each potential threat is assigned an impact representing

the amount of harm caused by its effects. The risk then depends on the
impact and the likelihood of occurrence. A causal model can be used to find
the likelihood of each behaviour L(V b

a = ⊤), henceforth written as L(Bb
a). In

Pearl’s formulation, likelihood is represented as a mathematical probability,
but this is not the only option. ISO 27005 allows for qualitative or quan-
titative determination of likelihood and impact, and notes that the cost of
quantifying likelihoods may be high and ‘it can be sufficient to use initial and
rough estimates of likelihood’. Qualitative approaches are therefore widely
used in system-level risk analysis.

This paper, like ISO 27005, does not specify the representation of likeli-
hood. How it is represented and determined may depend on how the model
is used and with what inputs. This is discussed further in Section 3.5.

3.2. Threat effects

The status of a behaviour is driven by the presence or absence of threats,
so each V b

a is an endogenous variable, whose value is given by a structural
function Eb

a ∈ E. Let T = {Ti} be the set of potential threats in the system,
whose status is modelled by a further binary variable Vi ∈ V , where Vi = ⊤
means that the threat occurs.
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Let T (b, a) ⊂ T be the set of threats that cause behaviour Bb
a. Each

threat is a sufficient cause of its effects, so the structural function that gives
V b
a should be a logical union of the threat status variables. If T (b, a) =

{Ti1 , Ti2 , ..., Tin}
V b
a = Vi1 ∨ Vi2 ... ∨ Vin

where ∨ represents the logical union of its arguments. This can be written
more succinctly

V b
a =

∨
i:Ti∈T (b,a)

Vi (1)

Equation (1) describes the effects of threats, but not their causes. These
should be described by structural functions Ei that give the values Vi in
terms of the presence or absence of causes. These functions model how a
threat arises and how it can be prevented.

3.3. Threat causes

3.3.1. Secondary threat causes

Secondary threats model the propagation of threat effects due to system
dependencies with no need for a malicious agent. They are caused by the
effects of other threats, which means that an asset behaviour must also be a
type of threat cause. In principle, several behaviours may be needed, each
being necessary to cause the threat. The status Vi of Ti therefore involves a
logical intersection over their status. If B(i) = {(b1, a1), ..., (bn, an)} ⊂ B are
the behaviours that cause a secondary threat Ti, then

Vi = Bb1
a1
∧ ... ∧Bbn

an

=
∧

b,a:Bb
a∈B(i)

V b
a

(2)

where the operator ∧ represents the logical intersection of its arguments.
Secondary effect cascades arise when the effects of one secondary threat

cause another secondary threat, whose effects cause another secondary threat,
etc. Equations (1) and (2) capture this and allow secondary effect cascades
to be determined from causal relationships. It is not necessary to identify
the indirect effects of each threat in advance. They are found by the model.

Where redundancy mitigates against the propagation of threat effects,
this is modelled by the intersection operator in equation (2). For example,
if a process cannot be executed without an input, then loss of availability
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at the input causes a loss of availability at the process (it cannot start). If
the process has several sources of input, then the status of each input is a
distinct secondary cause of the threat to the process, and from equation (2)
they must all be unavailable for the process to be affected.

However, not all secondary threats involve redundancy. If the input was
incorrect and the process had no way to detect this, the incorrect input would
cause errors in the process. With several sources of input, errors in any source
would cause errors in the process. Equation (2) does not cover this, but it
can be modelled by making each data source the cause of a separate threat
to the process. The fact that an error in any source is sufficient to affect the
process is modelled by the logical union operator in equation (1).

Together, equations (2) and (1) can model any secondary effect cascade.

3.3.2. Primary threat causes

The only other threat cause that could exist must be one that is not an
effect of any threat. Such a threat cause must be one of two types:

• causes that are equivalent to asset behaviours, even though not caused
by a system threat, which are the focus in this section, and

• causes that are not equivalent to asset behaviours, which are discussed
later in Section 3.3.3.

Threat causes equivalent to asset behaviours arise because in ISO 27005 a
risk assessment must have a defined scope. An asset is considered part of the
target system if it contributes to that system. Other assets are considered
external and are not included explicitly in the risk analysis. During the
lifetime of an asset, it may join a system, leave again, or never join. It may
interact with external assets before or after joining the system, and these
interactions are a source of external influences on the system. If the target
system were widened to include those external assets, those influences would
become threat effects, but being external, they are not caused by any threat
in the causal model. Note that moving the system boundary to include
external assets does not eliminate this type of threat cause because external
influences on the previously external assets must then be added.

Threats with causes of this type are called primary threats because they
can occur in the absence of other threats. Primary causes also provide a
way to model agency, where the threat cause embodies a choice. This choice
depends on the agent’s prior experiences, which are by nature external to the
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target system. The agent is usually outside the system and not represented
explicitly in the causal model, but they may be the asset that causes the
threat, in which case the threat is an insider threat.

Because the effect of an external influence is equivalent to an asset be-
haviour, primary threats can (like secondary threats) form threat paths,
known as attack paths. Consider a system that has a server connected to a
LAN provided by a router connected to the Internet. Its users are people
using client devices to access and use the server remotely from the Internet.
When the system is working as expected, they connect via the router to use
the server as intended. An incomplete list of threats in the system would be:

1. If the legitimate user of a client device is untrustworthy, it has an
untrustworthy user.

2. Untrustworthy users of a client device can access the Internet.

3. Untrustworthy users of the Internet may gain access to the router.

4. Untrustworthy users of the router can access the LAN.

5. Untrustworthy users of the LAN may gain access to the server.

6. Untrustworthy users of the server may be able to crash the server.

7. If the server is not available, it will be inaccessible to legitimate users.

Threat 7 is a secondary threat of the type discussed in Section 3.3.1. The
rest are primary threats expressed in terms of causes and effects.

Threat 1 represents an insider attack by a legitimate user, which is a
primary threat because it involves agency. The effect of threat 1 is a cause
of threat 2 whose effect is to give untrustworthy users access to the Internet,
a cause of threat 3. The attack path continues through threats 4, 5 and 6,
leading to loss of availability on the server. This causes secondary threat 7,
which disables access for legitimate users.

Threat 1 is not the only one with external causes. Threat 3 is caused by
untrustworthy users of the Internet. In any reasonable target system, this
is a shared asset with external users, many of whom are not trustworthy.
Threat 3 can therefore occur even if threats 1 and 2 do not, so there is a
shorter threat path that models an external attack to disable the system,
with root-cause threat 3. The router, LAN, server, or client devices may be
dedicated to the system, but since they may join other systems at any time,
the possibility of external users cannot be excluded. Threats 2, 4, 5 and 6
therefore also have primary causes.

This example shows that a primary threat cause is really a pair of causes:
a behaviour Bb

a and an equivalent external influence W b
a . This can be mod-
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elled by a binary exogenous variable U b
a, where U b

a = ⊤ signifies that the
external influence made the associated asset Aa act as a threat cause as
though it was affected by behaviour Bb

a. Either Bb
a or W b

a is sufficient to
make Aa do this, so the presence of a primary cause is modelled by the union
V b
a ∨ U b

a. When a primary threat cause is due to W b
a , the threat is a root

cause of an attack path. However, when it is due to Bb
a, the primary threat

must have a predecessor threat in the attack path.
A primary threat may have several primary causes, all of which must be

present for the threat to occur. If threat Ti has primary causes equivalent to
the set of behaviours W (i) ⊂ B, the function for Vi is

Vi =
∧

b,a:Bb
a∈W (i)

(V b
a ∨ U b

a) (3)

It is helpful to think of W b
a as a trustworthiness attribute undermined by

the behaviour Bb
a on the same asset Aa. It represents the extent to which

Aa can be trusted not to act as a threat cause even when it is not affected
by the effects of other threats. In the example, threat 3 causes loss of user
trustworthiness on the router, which causes threat 4. However, threat 4 is
not caused by loss of trustworthiness, but by lack of trustworthiness. W b

a

models the possibility that Aa lacks trustworthiness even when not affected
by other threats.

3.3.3. Exploitation of weaknesses

The other possibility identified at the start of Section 3.3.2 is a threat
cause that is not caused by any threat and is not equivalent to any asset
behaviour. This type of cause arises from the presence of a weakness in the
system that can be exploited by the associated threat.

Weaknesses arise when a system contains one or more assets whose nature
and relationships provide ways for something to go wrong. In most cases,
exploitation can be prevented, so weakness can be ascribed to the absence
of security measures. For example, if two processes have a client-service
relationship, there is a weakness arising from the fact that the client could
be impersonated to the service, unless client authentication is implemented.
This weakness is exploited by a threat of unauthenticated access whose effect
is impersonation of the client to the service. There may be several different
security control strategies that address a system weakness. In this example,
one might block access except from a pass list of client IP addresses, or
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use X.509 client certification, or require each client to have a username and
password, etc. The absence of each control strategy then acts as a necessary
threat cause, as the weakness and hence the threat would be prevented if any
of these control strategies were implemented.

Expressing exploitable weaknesses in terms of the absence of control
strategies is a more robust approach for risk assessment purposes than mod-
elling weaknesses explicitly. If a risk analyst omits a control strategy from
their model, the risks will be overestimated, not underestimated. When the
threat poses an unexpected risk, the analyst will be prompted to investigate
and will likely correct the oversight. If the threat is considered to exist only
if there is a system weakness, overlooking the weakness will mean that the
threat is omitted, the risks will be underestimated, and the analyst will never
be prompted to check anything.

Let G = {Gg} be the set of control strategies that could be implemented
in the target system. The status of each control strategy can be modelled by
a variable V g, where V g = ⊤ means that Gg is absent (or faulty). Although
control strategies are not affected by threats, this is an endogenous variable
for reasons explained below. Let G(i) ⊂ G be the set of control strategies
that could address the weakness exploited by the threat Ti. The absence of
each Gg ∈ G(i) is a necessary cause of Ti, so

Vi = V
(0)
i ∧

∧
g:Gg∈G(i)

V g (4)

where V
(0)
i is the status of the threat if no control strategy could prevent

exploitation of the weakness, found by equation (2) or (3).

3.4. Security controls

Control strategies are properties of the system, not (as with behaviours
and trustworthiness attributes) properties of individual assets. However, each
threat involves specific assets and is prevented by specific control strategies,
so a relationship must exist between control strategies and assets. If a system
has two services, each with its own client, one can implement client authen-
tication between one client and service, but not the other. Relationships to
relevant assets must be included in the model of a control strategy.

This can be done using controls representing security control measures
that may be implemented in the system. Let C = {Cc

a} be the set of possible
controls in the system. Each asset may have several controls distinguished
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by the label c representing the type of control, each of which may be imple-
mented at a subset of system assets. Controls are not affected by threats, so
the status of Cc

a can be modelled by an exogenous variable U c
a, where U

c
a = ⊤

means that the control of type c is not implemented (or faulty) at Aa.
Each control strategy Gg can then be modelled in terms of its contribut-

ing controls C(g) ⊂ G, which is why the status of Gg was modelled by an
endogenous variable V g. Gg is implemented if and only if all its controls are
implemented, so the status of each control strategy is given by

V g =
∨

c,a:Cc
a∈C(g)

U c
a (5)

For example, one way to implement client authentication is to have the
client present a username and password to the service. Control properties
can be used on the client and the service to represent the ability of the client
to send and the service to verify a shared secret password, respectively. If a
control strategy consists of these two controls, and both are present (Cc

a = ⊥),
then equation (5) says the control strategy is present (V g = ⊥), so (4) gives
Vi = ⊥ (the threat is prevented) even if T 0

i = ⊤.
Depending on the type of control, the association with Aa means ei-

ther that the control is implemented by Aa or that it protects Aa. The
client-service weakness could be prevented by restricting connections to IP
addresses of legitimate clients. This could be as an IP pass-list enforced by
a router with no changes in the implementation of the service. This strategy
consists of a pass-list policy and an enforcement point. Both are features im-
plemented on the router, but only the enforcement point can be represented
as a property on the router. The pass-list protects a specific service, so it
must be modelled as a property of that service.

Where trustworthiness attributes allow the system model to have a bounded
scope, control attributes allow bounds on its level of detail. Most security
controls are of value to a system, so their implementation can be considered as
system assets. Representing controls by asset properties allows these imple-
mentation assets to be omitted, simplifying the system model. For example,
a service can implement password verification by redirecting log-in attempts
to a single-sign-on (SSO) service. One could add this to a system model as a
new service related to the client and the service. Its presence would negate
the inherent weakness in a simple client-service relationship and with it the
threat of unauthenticated access, so the original control strategy would not
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be needed. However, as with trustworthiness attributes, control strategies
and properties cannot be eliminated by including more assets in a system
model. The dependence on the SSO service creates a new weakness and new
threats. For example, if a client is impersonated in the client-SSO relation-
ship, it can be impersonated to the original service. Control strategies are
then needed for threats to the client-SSO relationship.

This example makes it seem that control properties should be modelled
as endogenous variables because they are affected by threats. However,

• the original threat is still prevented, here unauthenticated access to the
first service, and

• the original control may still apply to other threats, here threats in-
volving other clients that do not use the SSO service.

The new threats bypass the controls but do not change their status.
Finally, since control properties are modelled using exogenous variables,

they do not depend on each other. If a control protects many assets, the
same control property should be used in all relevant control strategies. This
is possible only if the implementing asset is included in the model, as in the
router example. If a single point of failure is not included, it should be added,
as in the SSO service example. Conversely, one can simplify the model by
removing assets if their only purpose is to implement security measures that
are not single points of failure.

3.4.1. Control weaknesses and side effects

Some system weaknesses arise from the presence rather than the absence
of security controls measures. In the client-service scenario, the use of a
password creates weaknesses that allow other threats:

• the password may leak, enabling a threat of access using stolen creden-
tials that bypasses or exploits the control, or

• the user may forget their password and become locked out of the service,
which is a side effect of the control.

If the password were modelled as a system asset, such threats would be
caused by a lack of confidentiality or availability of the password. Other
threats with those effects could then form threat paths, enabling the new
threats. For example, if the client is a browser used on a device where the
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user also reads email, a phishing attack may cause a loss of confidentiality in
the password, thus allowing the stolen credential attack.

If controls were modelled as asset properties, these threat paths would
be overlooked. They should be modelled as a single threat whose causes
include the presence of the control strategy that triggers the threat. The
effects of the triggered threat are the effects of the missing threat path. This
version of the phishing threat would have the same causes as before, plus the
presence of the password authentication control strategy. It cannot affect the
password because it is no longer an asset, so the effect of the phishing threat
is the end-effect: loss of client authenticity in the client-service relationship.

If threat Ti is triggered, there must be a set X(i) ⊂ G of trigger control
strategies. If any Cg ∈ X(i) is present (V g = ⊥), then Ti is triggered, but if
none are present, Ti cannot occur, so

Vi = V
(1)
i ∧

∨
g:Gg∈X(i)

¬V g (6)

where V
(1)
i is the result of equation (4).

Combining equations (2), (3), (4), (5) and (6) gives the structural equa-
tion for the state Vi of any threat Ti

Vi =

 ∧
b,a:Bb

a∈B(i)

V b
a

 ∧

 ∧
b,a:Bb

a∈W (i)

(V b
a ∨ U b

a)


∧

 ∧
g:Gg∈G(i)

∨
c,a:Cc

a∈C(g)

U c
a

 ∧

 ∨
g:Gg∈X(i)

∧
c,a:Cc

a∈C(g)

¬U c
a

 (7)

If any of B(i),W (i), G(i) orX(i) is empty, then the union or intersection over
its members should be omitted from this equation, equivalent to replacing
that term by ⊤ (true). For example, a secondary threat that is not triggered
or blocked by any control strategy has W (i) = G(i) = X(i) = ∅, so equation
(7) reduces to equation (2).

3.5. Determining likelihood and risk

As mentioned in Section 3.1, for consistency with ISO 27005, equations
(1) and (7) do not specify the representation or determination of likelihood.
Any approach may be used, given a way to calculate L(¬x), L(x ∧ y), and
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L(x∨y) that is consistent with the properties of logical negation, intersection,
and union.

In a classic ISO 27005 risk assessment, one can specify likelihoods for the
exogenous variables:

• L(W b
a) represents trustworthiness assumptions about external influ-

ences on system assets,

• L(Cc
a) represents assumptions about controls implemented at or for

system assets.

and use e Equations (1) and (7) can be used with the rules for the likelihood
of logical negation, intersection, or union to find the likelihoods L(Ti) and
L(Bb

a) of each threat and threat effect.
If likelihood is represented in terms of probability, equations (7) and (1)

can be used to create a Bayesian network to find L(Ti) and L(Bb
a). This

may not be easy, since a Bayesian network uses many parameters to describe
conditional probabilities, and (as noted in ISO 27005) it can be difficult
to obtain accurate estimates for these or for the inputs L(W b

a). Another
quantitative approach suggested in ISO 27005 uses the frequency of events
or state changes to represent likelihood, in which case L(Ti) and L(Bb

a) could
be found using a stochastic event simulation algorithm.

In a qualitative approach, likelihood is described using an ordered set of
N terms such as {‘low’, ‘medium’, or ‘high’}, labelled in order by integers
in [0, N − 1]. The likelihood L(x) = k means that the likelihood of x is
described by the k-th term. L(Ti) and L(Bb

a) can be found by initialising
them to zero and repeatedly using equations (1) and (7), with logical op-
erators given by L(¬x) = N − 1 − L(x), L(x ∧ y) = min(L(x), L(y)), and
L(x ∨ y) = max(L(x), L(y)). This procedure is computationally inexpensive
and is guaranteed to converge.

The risk Rb
a of each threat effect Bb

a is then determined from its likelihood
and impact Iba, an input that represents the degree of harm caused if that
threat effect were to occur. This can be expressed as

Rb
a = Iba ◦ L(Bb

a) (8)

where the form of the function depends on how likelihood and impact are rep-
resented. In a quantitative approach, the impact can be expressed in terms
of financial or human cost, whose expectation value becomes the measure
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of risk. In a qualitative approach, impact and risk are usually represented
using sets of terms, and equation (8) is often implemented as a look-up table.
Note that equation (8) is a post-processing step, so Iba and Rb

a are not causal
model variables.

A causal model can, of course, be used in other ways. For example, in a
root cause analysis one starts with known values for a subset of threat effects
V b
a , and solves to find the likelihoods for potential root cause threats that

may indicate the presence of an external attacker or the absence of a control
measure. If likelihood is represented using probabilities, this can be done
using a Bayesian search algorithm. A qualitative approach is less useful for
such an analysis because there are few distinct values for each likelihood and
there may be many equally likely threat paths consistent with the known
input values.

3.6. Knowledge representation

The causal model described by equations (1) and (7) is defined in terms of
assets with behaviours, trustworthiness attributes, and controls, plus threats
and control strategies, as shown in Figure 1. The labels a, b, c, i and g in this
figure have the same meaning as in the causal model equations and the ar-
rowheads follow the conventions of UML indicating inheritance, aggregation,
composition or a simple association.

The entities in such a model are divided into two main types:

• Structural entities, which model the composition of the target system.
They are not part of the causal model, but provide a frame of reference
for its composition and interpretation.

• Causal entities, which model threats and their causes and effects. They
form the causal model, having causal model variables and likelihoods.
They are related to and can be inferred from the structural entities.

To capture knowledge of these entities in a reusable form, it must be
independent of any specific target system. This can be done by specifying:

• the types of structural entities (assets and relationships) from which
target systems can be composed,

• the types of properties (behaviours, trustworthiness attributes and con-
trols) possessed by each type of asset,
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• the types of threats that can arise, the roles played in them by assets,
and the roles and properties of assets that act as primary or secondary
causes or threat effects,

• the types of control strategies, the types of threats they block and/or
trigger, and the asset roles and control properties that represent their
implementation.

Each threat model is based on a set of related assets, whose presence
implies the potential presence of a system weakness exploited by the threat.
To make the threat model independent of any target system, one can specify
everything in terms of the roles played by these assets. Each role is defined
in terms of the types and relationships of assets that fulfil that role and
whether the role is unique (filled by one asset in each threat) or not (filled by
multiple assets), the latter case supporting redundancy models, as described
in Section 3.3.1. Roles or relationships may also be prohibited, where the
presence of assets or relationships negates system weaknesses so there is no
threat, as discussed in Section 3.3.3. The causes and effects of the threat can
be specified in terms of the properties of assets in specific roles, including
the control properties that make up control strategies that would negate or
trigger the threat.

3.7. Semi-automated risk assessment

Given a knowledge base formulated in this way and a model of a target
system structure in terms of its asset types and relationships, pattern match-
ing can be used to add threats with their causes and effects. The result is
a causal model of the target system that can be used to calculate the like-
lihood and risk of each threat effect. To carry out a classic ISO 27005 risk
assessment:

1. A structural model of the target system is created using related assets.

2. A causal model of the system is generated from this, adding asset prop-
erties, threats, and control strategies and their causal relationships.

3. A set of assumptions is added, specifying the likelihoods L(W b
a) that

external influences will cause threats to the system and L(Cc
a) that

controls are implemented in the system.

4. Equations (1) and (7) are used to determine the likelihoods L(Ti) and
L(Bb

a) of threats and threat effects.

5. Equation (8) is used to calculate the risk for each threat effect.
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If risks are not acceptable, one can return to step 3 and change known like-
lihoods to model the effect of adding controls to the system, or one can
return to step 1 and alter the structural model to reflect changes intended
to eliminate weaknesses.

A key feature of this process is that the most difficult steps can be auto-
mated: step 2 using rules from the knowledge base described in Section 3.6,
and step 4 using the solution procedure as described in Section 3.5. Step 5
can also be automated, although that step is not difficult.

This approach was used in the Spyderisk project, which produced the
software described in [30], and recently published an ontology corresponding
to Figure 1 [34]. The software uses equations (1), (7) and (8) to determine
risks, although it uses classes to model populations of system assets, threats,
etc., so the equations are modified accordingly. The knowledge base used for
steps 1 and 2 [35] is an evolution of that used in [29] which was itself inspired
by the work of Herzhog, Fenz and Ekelhart. It is interesting to reflect on
how it was created, starting with the structure in Figure 1 and not with the
terminology used in cybersecurity.

4. Creating a knowledge base

4.1. Overall procedure

To create a knowledge base aligned with a causal model, one starts by
deciding the types of target system it should support, e.g., cyber-physical
systems. An iterative process can then be used:

1. Identify types of assets and relationships from which the target systems
in this domain of interest will be composed.

2. Identify types of behaviours applicable to each type of asset, or desir-
able trustworthiness attributes, which should have an equivalent ‘loss
of trustworthiness’ behaviour.

3. Identify different ways unwanted asset behaviours could be caused.
Each becomes a type of threat that involves the affected type of as-
set and other related assets that together embody a system weakness.

4. Identify causes of each threat in terms of the properties of assets with
roles in the threat. These include primary or secondary causes and
control strategies comprising combinations of control properties.

5. Identify new types of asset or relationship needed to model each threat.

6. Define rules to infer the presence of intangible assets.
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The asset and relationship types from step 1 provide the vocabulary for
defining the structural model of a target system. Step 2 provides the vo-
cabulary for b in Figure 1. Step 3 leads to threat models, defined in terms
of related asset roles, so they are independent of any specific target system.
Step 4 provides the vocabulary for c in Figure 1 by finding control properties
in control strategies that trigger or block these threats. Step 4 may also add
new trustworthiness attributes or behaviours needed to model primary or
secondary causes.

Steps 3 to 5 are sometimes impossible because previously identified asset
and relationship types cannot capture the associated system weakness and
model the causes of the threat. This may happen for several reasons:

• The threat does not affect all assets in a class, implying that further
refinement of the asset class hierarchy is needed to distinguish those
that are affected from those that are not.

• The threat should only affect assets of an existing type that have (or
lack) relationships not yet included in the knowledge base.

• The causes or effects of the threat do not relate to assets in a single
role, which implies the need for an intangible asset of a type that may
need to be added, whose role is related to multiple existing roles.

The last of these corresponds to the discussion in Section 3.1, where a threat
that exploits a weakness arising from a related client and service affects only
their relationship, implying that the relationship should also be an asset.
Risk analysts may overlook the presence of intangible assets, which should
ideally be added automatically, hence the need to create inference rules for
this in step 6.

Where new types of assets or relationships are added in Step 5, one must
then return to Step 2 and determine what types of behaviour and trustwor-
thiness attributes the new assets have. Work can then resume with Step 3,
finishing incomplete threat models that involve the new assets or relation-
ships, and adding threats that cause the new asset behaviours, bearing in
mind that these may be hitherto ignored effects of existing threats.

Extensions of an existing knowledge base to cover new areas usually start
at step 5. For example, one might have a cybersecurity knowledge base
in which device theft or destruction is ignored. Later, cyberattacks might
be added that require physical access. At that point, new asset classes are
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needed to describe physical spaces, and one must model a whole new subdo-
main: how physical spaces are related, how they can be reached by intruders,
and how this can be prevented. Ideally, such subdomains should be modular,
so they can be used or not in each risk assessment depending on the scope.

4.2. Baseline threats

The best way to bootstrap this process is to start with baseline threats.
These can be divided into three main groups, which model:

• normal system functions that change system behaviour or privileges

• secondary effect propagation due to internal system dependencies

• processes for starting up system elements unless they are disabled

In cybersecurity, the first group is important because it describes the
use of system privileges. For example, if one has admin rights on a host,
one can control who has user rights, start or stop processes, access stored
data, and so forth. Each such action should be modelled as a threat whose
causes include a trustworthiness attribute that represents the trustworthiness
of those holding that privilege. This must have an equivalent undermining
behaviour that can be caused by other threats to model ways of gaining
that privilege. Attack paths often start with such a threat, followed by
baseline threats that represent exploitation of privileges using normal system
functions. Baseline threats and trustworthiness attributes can also be used
to model the rights of unprivileged users, of specific processes running on
hosts, or having physical access to spaces, etc.

The second group models aspects such as loss of availability propagating
from a host to hosted processes, overload propagating from a process to its
host, or incorrect process input leading to processing errors and thence to
incorrect output. Although these threats do not model attacks, they may
still be related to control strategies. For example, overload at a service
would normally propagate to its host, but this can be prevented by reducing
the priority of the service (a control strategy). In that case, the host is
protected, but the control strategy triggers a different threat, whereby the
overload causes the service to become unavailable, even though its host is
neither overloaded nor unavailable.

Start-up processes cover actions such as switching on a host. If a host
is switched off, it can only be attacked physically. Switching it on enables
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other types of attack, so it makes sense to model switching on as a threat
whose effect enables those other attacks. This effect is the behaviour of
being in service, with a corresponding trustworthiness attribute of being out
of service. This can be added as a necessary cause in many other threats
to a host, so they occur only if it is in service. Modelling such processes
as threats allows dependencies between components to be included (e.g., a
process cannot be in service unless its host is in service), and disabling an
asset to protect it can be modelled by a control strategy, the same as other
security measures. The disablement strategy would protect the disabled asset
and dependent assets by preventing them from being in service. However, it
would also trigger a threat that causes a loss of availability in the disabled
asset, which would spread through secondary threats to dependent assets.

Baseline threats are important because they, along with their causes and
effects, allow a target system to be modelled in the absence of offensive
threats. Their causes and effects provide a starting vocabulary to use when
describing other threats.

4.3. Classification issues

It is not always easy to decide whether a concept should be modelled
as a trustworthiness attribute or a control. In practice, this depends on
which threat models are included in the knowledge base. For example, one
way to model a software vulnerability is as a weakness exploited by threats.
This means that the vulnerability is assumed to exist in an asset and be
exploitable unless countered by a control strategy. Such a control strategy
might represent measures such as penetration tests to find and remove vul-
nerabilities before the asset is deployed in a target system, or a software
patching procedure to remove vulnerabilities after deployment. Note that in
a risk assessment one might set L(Cc

a) > 0 for these controls to model the
chance that Cc

a = ⊤ because a test failed to detect the vulnerability, or a
patch was applied too late to prevent its exploitation.

An alternative is to assume that all software contains vulnerabilities, but
they only become exploitable when they are discovered by attackers. With
this approach, a threat is used to model the efforts of attackers to discover
exploitable vulnerabilities in a software asset. Its effect is a behaviour that
represents the discovery of a vulnerability in this asset. The equivalent trust-
worthiness attribute represents the absence of exploitable vulnerabilities,
which can be combined with the behaviour as a primary cause of threats
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that represent the exploitation of such a vulnerability. The absence of con-
trol strategies such as software patching or penetration testing is then a cause
of the discovery threat, not the exploitation threat.

The advantage of the second approach is that if a vulnerability is known
to be present in an asset, it can be modelled by setting U b

a = ⊤ (or L(W b
a)

to represent certainty) for the corresponding trustworthiness attribute. This
will then cause exploitation threats even if vulnerability discovery is still
prevented by control strategies. The first approach is simpler, which may
make it more appropriate in some applications, but the presence of a known
vulnerability can only be modelled by disabling all control strategies against
the exploitation threat. Either approach leads to a valid causal model if it is
consistent with the threats used in the knowledge base.

5. Existing cybersecurity knowledge bases

5.1. Terminological parsimony

The main benefits of a causal model grounding come from the fact that
there are very few mathematically distinct entities and only three types of
system asset properties: behaviours, trustworthiness attributes, and control
properties. This is not the result of a design decision (it is intrinsic to the
causal model), but this parsimony increases the potential benefits of machine
reasoning. Using fewer distinct first-order concepts to describe something
means that (all else being equal), fewer asserted facts are needed as input
to infer useful conclusions. Less parsimony leads to a more complex input
model from which it is more difficult to extract useful information, if it can
be done at all. A good example is the inclusion in many ontologies of both
system weaknesses and control measures as first-order concepts. This can
make it harder to infer the presence of threats, as discussed in Section 3.3.3.

The language of cybersecurity is perhaps too rich for its own good. The
lack of alignment with a simple model of causality makes it difficult to use
this language when analysing risks. Different terms are used for concepts
that are mathematically similar (in a causal sense), and the same terms are
sometimes used for concepts that are mathematically distinct. For example,
RFC 4949 lists five definitions for the term ‘access control’: two correspond
to control strategies, referring to controls such as access policies and enforce-
ment mechanisms related to assets or asset types, two are general control
objective statements related only to a broad class of threats, one one is a
formal modelling definition that does not refer to any threat. It is easy to
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get confused, which can lead to inconsistent or incorrect interpretations and
even to inappropriate schema developments. One such development is the
story of CVSS, mentioned in Section 2.2.

The terminological inexactitude found in cybersecurity and the failure to
reflect the causal nature of cybersecurity threats and associated risks seem
to be linked. In Section 2.1 the use of foundational ontologies like BFO and
UFO were briefly discussed, noting that they have not been widely exploited
to model cybersecurity. It is worth noting that these foundational ontologies
support a form of causal modelling. For example, BFO was developed to
model geospatial information and is well suited to represent temporal and
spatial entities and their relationships. BFO classifies entities as continuants
(which persist over time) or occurrents (which occur over time). C3O builds
on this, modelling threats as a type of occurrent and adding causal relation-
ships between occurrents. This allows threat paths to be represented, but
conceals the causation mechanism. SofIoTS [14] uses C3O as a foundation
for a model of IoT security, where the relationship to space is an important
aspect that is well supported by BFO. However, SofIoTS finds some difficul-
ties in mapping cybersecurity terminology to BFO concepts. For example,
value and risk are associated with possible futures, which should only be as-
sociated with types in BFO, and vulnerability is context dependent, which is
inconsistent with treating it as a disposition (a characteristic of an endurant
bearer that must be intrinsic to the bearer).

UFO classifies entities as endurants (which are wholly present when they
exist in time), events (which occur over time), or situations (collections of
endurants that may exist in time). An event is then a transition between
situations, elements of which can be regarded as causes or effects of the event.
These ideas were used to develop ontologies for risks [36] and security [16].
The last of these is interesting because, although not a cybersecurity ontology,
it aligns quite well with the causal model described in Section 3. Threats are a
type of event that arises in a situation containing certain objects (existentially
independent endurants) with certain dispositions (capabilities). However, to
remain consistent with UFO risks are described in terms of the intentions
of stakeholders, including attackers, and security in terms of intervention
events. This is formally correct, but difficult to use in a risk analysis. It
is also far removed from the terminology commonly used in cyber security.
This is elaborated by Oliveira et al. in an analysis of Mitre’s D3FEND
ontology [37], which concludes that D3FEND is self-inconsistent and should
be improved by reformulation using UFO as a foundation. Another way

26



to interpret this (and some of the concerns raised by SofIoTS) is that the
terminology of cybersecurity is not entirely fit for purpose.

Alignment with (or mapping to) a causal model seems a necessary step if
cybersecurity knowledge is to be used in a practical way for risk assessment,
but the underlying models from BFO or UFO come with ontological baggage
that makes mapping difficult and complicates the picture for cybersecurity
practitioners. The causal model from 1 seems like a better target for such a
mapping. Its simplicity comes primarily from the representation of system
model boundaries using exogenous variables, so fine details and external en-
tities can be omitted without creating inconsistencies. These come with a
natural mapping to a subset of terms used in cybersecurity, although these
terms must be understood in terms of the underlying simple mathematical
model. If existing cybersecurity knowledge bases can be mapped onto such
a model, it should become much easier to integrate and use them together.

5.2. Causal misalignment

Some existing cybersecurity knowledge bases or schemas cannot be easily
related to a causal model because they use incompatible methods to model
causal aspects. A good example is CVSS, which provides two sets of metrics
used to classify specific software vulnerabilities:

• exploitability metrics, which describe what is necessary to provoke ex-
ecution of the vulnerable code, etc.

• impact metrics, which describe the consequences if the bugs in vulner-
able code can be exploited.

This seems to align with a causal model. Exploitation of vulnerable code
is a threat, with causes described by exploitability metrics and effects de-
scribed by impact metrics. However, while the CVSS exploitability metrics
encode the privileges needed to access vulnerable code, the impact metrics
only encode effects on the confidentiality and integrity of the data or the
availability of system resources. These effects normally occur at the end of
an attack path, whereas the vulnerable code exploit usually occurs at the
start. CVSS is self-inconsistent, using a privilege model for causes, but not
for effects. There is a gap in the model that the vulnerability assessor must
bridge, during which causal dependencies are lost.

In CVSS v2, this is partially addressed by scoring tip #9. This is a
convention for using impact metrics to encode whether an exploit allows user
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or root access to the vulnerable component host. As discussed in Section 4.2,
these privileges are related to baseline threats that play an important role
in the formation of threat paths. Scoring tip #9 allows the main privileges
gained by an exploit to be deduced, so the exploit can be modelled as a
threat whose threat paths can be found from its causal dependencies.

The value of scoring tip #9 appears to have been underappreciated, pos-
sibly because most users do not create causal risk models. Since CVSS v3,
scoring tip #9 was removed and the impact metrics were revised to include
indirect impacts, with a scope metric indicating whether the impact is in
the vulnerable component or a dependent component. This addressed criti-
cisms about the need to model indirect effects (see Section 2), but without
using a causal model. As a result, some causal relationships become hidden,
making impact metrics less usable and less useful. Vulnerability assessors
must decide which dependent components are present in some assumed tar-
get system, and in effect do their own threat path analysis to determine the
impact metrics. This must make it harder to analyse new vulnerabilities and
probably contributed to the backlog in classifying vulnerabilities in the NVD
[38]. It also makes it even more difficult to know whether the CVSS scores
for a given vulnerability are relevant to a given target system.

It is proposed that CVSS could easily be updated by realigning with a
causal model. The exploitation of a given vulnerability can be modelled using
a depth 2 threat graph. Each path in this graph will contain:

1. a vulnerable code access threat, whose causes correspond to the privi-
leges needed to access vulnerable code, and whose effect is a behaviour
denoting that vulnerable code is accessible,

2. a vulnerable code impact threat, caused by the effect of the access
threat and having effects that represent the gaining of privileges, or
the compromise of confidentiality, integrity or availability.

Generic forms of these threats can be included in a knowledge base to provide
a specification and support the interpretation of metrics. The causes of access
threats will represent the presence of a vulnerability that is accessible given
certain privileges and the possession by attackers of those privileges. Impact
threats will have effects that represent loss of confidentiality, integrity, or
availability, or gain of privileges needed for further attacks. Expressing the
exploit as two threats means that fewer threat models are needed to cover
all possible combinations of exploitability and impact metric values.
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The exploitability metrics in CVSS align quite well with this approach,
but (as discussed) the impact metrics do not. Metrics should be added
corresponding to causes of baseline threats such as root or user access to
a host, access to networks, etc. Specialised privileges causing new threats
can be added as necessary, such as the ability to inject or alter requests or
responses sent by the vulnerable component, as happens in query injection
or cross-site scripting vulnerabilities.

With this approach, the metrics relate to the two-step threat path, which
does not depend on which other components are present in the target system.
It would be easier to describe a vulnerability using these metrics based only
on an analysis of the vulnerable code. The relevance of a vulnerability to
a given target system could be determined automatically by embedding the
two-step threat path into a causal model of that system.

A prototype set of access and impact threats with privilege-related causes
and effects is included in the current Spyderisk knowledge base. A mapping
was also created to the relevant trustworthiness attributes from CVSS v2 by
using scoring tip #9 but this is not reliable for CVSS v3 and v4, where the
metrics relate to longer threat paths with hidden causal relationships.

5.3. Causal integration

The Unified Ontology for Cyber Security mentioned in Section 2.1 in-
cludes both D3FEND and NVD. Integration is achieved through a relation-
ship overlay called WAVED, used to link concepts in different integrated
knowledge bases. The most significant links relate offensive techniques (the
ATT&CK part of D3FEND) with CVE entries from the NVD. WAVED can
be used to find (say) offensive or defensive techniques related to a specific
vulnerability, which is clearly useful, but does not directly support risk as-
sessment.

It is proposed that a more pragmatic integration approach would be to
combine cybersecurity knowledge from different sources using causal models
as a common reference point. Aligning D3FEND with a causal model should
be easier than CVSS. D3FEND is a control applicability model, in which
some (not all) aspects result from underlying causal relationships. Although
these are not encoded explicitly in D3FEND, they are not hidden in a way
that contradicts Figure 1. D3FEND describes:

• offensive techniques derived from ATT&CK, analogous to threats,

• defensive techniques, and
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• digital artefacts used by offensive or defensive cybersecurity actors.

This is somewhat similar to the causal model ontology in Figure 1: offen-
sive techniques correspond to threats, and defensive techniques to control
strategies or control properties. Like the assets in Figure 1, the digital arte-
facts provide the reference frame to describe these techniques, although in
D3FEND they represent a subset of the assets in a target system.

It should be relatively easy to create a relationship overlay, similar to
WAVED but linking offensive techniques with causal threat models and de-
fensive techniques to control strategies. If threat models were also related to
NVD using an updated or alternative form of CVSS, as described in Section
5.2, then the relationships of D3FEND with NVD would be revealed, in a
form that would be more directly usable in an ISO 27005 risk assessment.
This would also allow the risk assessment to be related to other aspects
covered by D3FEND such as response and recovery analysis.

The authors of this article have not tried to do this because both D3FEND
and NVD contain a large number of entries and causal relationships are
hidden in NVD by the existing CVSS v3 and v4 annotations so considerable
reanalysis would be necessary. It may be possible to automate this using AI
techniques, with training and test data created using NVD entries that have
CVSS v2 annotations. This would make possible the proposed integration.

6. Conclusions and future work

This paper describes a causal model capable of supporting cybersecurity
threat path analysis and risk assessment and shows that such a model can
provide a useful basis for capturing, integrating and using knowledge about
cybersecurity threats, risks, and related concepts. The main virtues of this
approach for modelling knowledge are:

• Grounding: there is a well-defined mathematical basis for classifying
concepts that does not depend on a precise use of common language.

• Parsimony: the number of distinct concepts, and the number of facts
that must be asserted or mapped is small.

• Generality: concepts like threats and vulnerabilities can be modelled
without making assumptions about the nature of the target systems.
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• Utility: such models can be used to automate difficult steps in a risk
assessment using ISO 27005.

• Flexibility: the approach does not restrict how related concepts such
as likelihood and risk are represented and determined.

The Spyderisk project has published a minimal supporting ontology, along
with a qualitative risk estimation tool and a cybersecurity knowledge base de-
signed around the same causal modelling concepts. The development of this
knowledge base provides insight into how the causal structure can be used
to capture cybersecurity concepts and iteratively extend the knowledge base.
It also sheds light on what is good about several existing cybersecurity tax-
onomies and knowledge bases, what works less well, and how improvements
can be made while avoiding the complexity of an abstract foundational on-
tology. One such insight is that the development of the CVSS schema since
2017 may have caused problems for curators and users of the NVD, which
can be alleviated by realigning CVSS with a causal model.

There are several possible directions for further work, some of which are
now being investigated by the authors and their collaborators:

• Standardisation: the current Spyderisk code uses its own bespoke rea-
soner and knowledge base syntax. Mapping the knowledge base to a
common foundational ontology using a standard syntax would enable
integration with other tools and knowledge bases.

• Automation: the parsimonious nature of the causal model makes it
more feasible to capture knowledge in a more automated manner using
AI methods. One target could be the NVD catalogue, to provide a
vulnerability classification schema that allows better integration with
resources such as D3FEND.

• Integration: the causal model can be used to integrate other cyberse-
curity knowledge bases, making them more usable in risk assessment.
The existing D3FEND and NVD catalogues could be integrated using
this approach, given a causal schema to classify vulnerabilities.

The ultimate goal is to exploit cybersecurity knowledge of all kinds in the
analysis of potential risks, using automation (including AI where appropri-
ate), to make risk assessment easier and more affordable.
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