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Abstract 
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An NLP-Driven Framework for Business Email Compromise Detection and Authorship 
Verifcation 

by Amirah M Almutairi, MSc, SFHEA 

Business Email Compromise (BEC) presents a critical cybersecurity threat, leveraging linguistic 
impersonation and social engineering rather than traditional malicious payloads. These attacks 
routinely evade conventional flters by mimicking legitimate communication styles and exploiting 
trusted identities. 

This thesis explores content-based detection strategies for BEC using a sequence of natural 
language processing (NLP) models. First, it proposes a transformer-based classifer to detect 
semantic indicators of deception in email body text. Second, it develops a Siamese authorship 
verifcation (AV) model that captures stylistic consistency, even under adversarial mimicry. These 
components are unifed within a multi-task learning (MTL) framework that simultaneously 
optimizes for BEC detection and AV by sharing underlying representations while preserving 
task-specifc objectives. 

To support empirical evaluation, a structured taxonomy of BEC fraud is introduced, and a 
synthetic email dataset is generated through prompt-guided language model fne-tuning and 
human validation. Experiments on combined real and synthetic corpora demonstrate that the 
MTL model achieves up to 97% F1-score in BEC detection and 93% in AV, outperforming 
transfer learning baseline while reducing false positives and computational overhead. 

This work contributes a principled, modular, and extensible framework for enhancing email 
security through joint semantic and stylistic analysis, addressing gaps in current defenses against 
sophisticated impersonation attacks. 
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Chapter 1 

Introduction 

1.1 Motivation 

Business Email Compromise (BEC) is a targeted form of cyber fraud in which adversaries 
exploit human trust—often through linguistic impersonation and social engineering—to deceive 
organisations into transferring funds or divulging sensitive information Federal Bureau of 
Investigation (2024). Unlike conventional phishing, BEC emails typically avoid overt indicators 
such as malicious links or attachments, making them particularly difcult to detect using 
traditional spam flters. High-profle incidents, including those afecting companies like Google 
and Facebook, have demonstrated the fnancial and reputational consequences of such attacks, 
with losses exceeding tens of millions of dollars Internet Crime Complaint Center (IC3) (2023). 
Given that global email volumes surpass 392 billion messages daily across more than 4.8 billion 
users Statista (2024), even a modest failure rate poses signifcant operational and fnancial risk to 
enterprises. 

Most commercial email security solutions rely on metadata-level features to identify potentially 
malicious messages. These include sender IP addresses, which identify the originating mail server; 
authentication protocols like Sender Policy Framework (SPF) and DomainKeys Identifed Mail 
(DKIM), which verify that messages come from authorised sources; and domain reputation scores 
based on prior behaviour. Such features are generally efective for detecting spam or phishing 
attempts originating from unauthorised domains. However, in adversarial scenarios where a 
legitimate account has been compromised, these metadata-based indicators often remain unaltered. 
The attacker may send emails from trusted infrastructure, bearing valid headers and domain 
credentials. In such cases, metadata-based checks ofer little or no indication of compromise, 
particularly when the message body contains no overt phishing cues. Therefore, metadata alone is 
insufcient for detecting advanced threats such as BEC, especially when attackers operate within 
the bounds of legitimate email systems. 

In contrast, the email body is essential to the communication itself and cannot be obscured 
without losing meaning. It conveys both the semantic content of the request and the stylistic 
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patterns of the sender. This motivates the exploration of content-based detection methods that 
focus on linguistic features rather than metadata-level features. Natural Language Processing 
(NLP) provides a foundation for such approaches, ofering methods for modelling semantic and 
syntactic features in email body content. 

Yet semantic inspection alone may not sufce. When attackers convincingly mimic the tone, 
vocabulary, and formatting of trusted individuals, the email can appear contextually appropriate 
and bypass traditional flters. To address this limitation, it is necessary to consider not only 
what is said but how it is expressed. Stylometric research suggests that individual writing styles 
exhibit stable lexical and syntactic characteristics over time across varied topics and contexts 
Mendenhall (1887); Bagavandas and Manimannan (2008); Wang (2007). Detecting deviations 
from these habits can reveal subtle forms of impersonation. As such, AV ofers a complementary 
content-based signal that may enhance the detection of sophisticated BEC attacks Stamatatos 
(2009); Koppel et al. (2011). 

1.2 Research Problem 

Although recent NLP-based approaches have improved the semantic analysis of emails Gascon 
et al. (2018); Cidon et al. (2019), they primarily rely on observable phishing cues—such as 
malicious links or urgency-related keywords—and often overlook whether the message aligns 
with the known writing style of the sender. This limitation is particularly problematic in (BEC), 
where attackers often send well-crafted, natural-language messages from already compromised 
accounts. In such cases, conventional defenses based on metadata or superfcial content patterns 
may fail, as the messages appear legitimate in both structure and context. 

Detecting BEC under these conditions requires examining not only what is being said (semantic 
content) but also how it is said (stylistic expression). Semantic-based detection focuses on intent 
indicators like requests for funds or changes in behaviour. In contrast, stylistic-based detection 
examines writing style—lexical choices, sentence structure, and syntactic patterns—based on 
the assumption that legitimate users write in consistent ways. When attackers imitate this style, 
subtle deviations may still be detectable. This thesis addresses the gap by proposing a unifed 
framework that jointly models semantic anomalies and stylistic inconsistency for improved BEC 
detection in the early stage. 

1.3 Research Aim and Objectives 

Aim. This research aims to detect (BEC) and verify authorship using the semantic and stylistic 
content of email body content. It investigates two core tasks: identifying deceptive intent through 
semantic analysis, and validating sender identity through writing-style consistency. To address 
both tasks jointly, this thesis proposes a unifed content-based framework leveraging multi-task 
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learning (MTL), enabling efective detection even in scenarios where metadata-derived features 
are absent or uninformative. 

Objectives. 

1. Conduct a systematic literature review of BEC, including common attack strategies and 
defence mechanisms. 

2. Propose a semantic classifer based on transformer models and benchmark it against lexical 
and heuristic baselines. 

3. Propose a stylistic verifcation module to assess author consistency using deep learning. 

4. Integrate both components into an MTL architecture and evaluate performance under varied 
attack scenarios. 

1.4 Scope 

This thesis investigates the viability of detecting (BEC) attacks by analyzing the semantic and 
stylistic properties of English-language email body content. The approach intentionally omits 
metadata-based features—such as authentication headers (e.g., SPF, DKIM), sender IP addresses, 
and routing traces—to isolate the predictive capacity of linguistic signals and evaluate their 
contribution as a standalone detection layer. This design choice refects practical and adversarial 
considerations: in compromised-account scenarios, metadata features often remain valid and can 
therefore mask malicious intent, whereas the body text may carry subtle semantic or stylistic 
inconsistencies that reveal impersonation attempts. 

Moreover, since email content is preserved across archival systems and delivery platforms, it 
provides a universally accessible, platform-independent input for modeling. By focusing on 
this layer, the thesis introduces a detection strategy that can operate alongside existing security 
mechanisms and remain efective in environments where metadata is incomplete, misleading, or 
adversary-controlled. 

1.5 Research Questions 

This thesis is guided by one overarching research question: 

Main Research Question: How can NLP-based models be designed to detect 
Business Email Compromise (BEC) attacks and verify email authorship using only 
the email body content, while addressing challenges such as impersonation, stylistic 
mimicry, and lack of metadata? 
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To address this central question, the following sub-research questions (SRQs) were formulated: 

• SRQ1: What are the existing technical and non-technical countermeasures for BEC 
detection, and what gaps remain? 

• SRQ2: How can BEC attack strategies be systematically categorized to inform detection 
design? 

• SRQ3: How efective are transformer-based classifers for phishing text-based attacks, 
and to what extent do they generalise to impersonation-driven BEC when only email body 
content is available? 

• SRQ4: Can authorship verifcation methods based on semantic and stylistic cues reliably 
distinguish between genuine and impersonated business emails? 

• SRQ5: Can a unifed NLP-based model jointly perform BEC detection and authorship 
verifcation through multi-task learning, and how does it compare to sequential or single-task 
baselines? 

1.6 Contributions 

1. Presents a comprehensive survey of BEC, including a multi-axis taxonomy that links tactics, 
adversary goals, and countermeasures. 

2. Introduces a transformer-based content detector that outperforms lexical baselines on public 
benchmarks. 

3. Proposes BiBERT-AV, a Siamese architecture combining BERT and BiLSTM for stylistic 
authorship verifcation. 

4. Combine BEC detection and BiBERT-AV models in an MTL setup that jointly detects 
semantic fraud and stylistic inconsistencies. 

5. Provides a thorough empirical evaluation, including false-positive analysis and inference 
latency. 

1.7 Publications 

1. Almutairi, A., Kang, B., and Al Hashimy, N. (2025). Systematic Review on : Understanding, 
Detection, and Challenges. doi:10.1016/j.cose.2025.104630. Chapter3 

2. Almutairi, A. M., Kang, B., & Al Hashimy, N. (2024). Business Email Compromise: 
A Comprehensive Taxonomy for Detection and Prevention. In Proceedings of the 7th 
International Conference on Information Science and Systems (ICISS ’24), pp. 49–54. 
https://doi.org/10.1145/3700706.3700714 Chapter 5 

https://doi.org/10.1016/j.cose.2025.104630
https://doi.org/10.1145/3700706.3700714
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3. Almutairi, A., Kang, B., Fadhel, N. (2023). The Efectiveness of Transformer-Based Models 
for BEC Attack Detection. In: Li, S., Manulis, M., Miyaji, A. (eds) Network and System 
Security. NSS 2023. Lecture Notes in Computer Science, vol 13983. Springer, Cham. 
https://doi.org/10.1007/978-3-031-39828-5_5 Chapter 7 

4. Almutairi, A., Kang, B., Al Hashimy, N. (2023). BiBERT-AV: Enhancing Authorship 
Verifcation Through Siamese Networks with Pre-trained BERT and Bi-LSTM. In: Manulis, 
M., Miyaji, A., Zhang, Y. (eds) International Conference on Ubiquitous Security. Lecture 
Notes in Computer Science, vol 13984. Springer, Cham. https://doi.org/10.1007/ 
978-3-031-xxxxx-x Chapter 8 

5. Almutairi, A., Kang, B.,and Al Hashimy, N. (2024). Integrating Business Email Compro-
mise Detection and Authorship Verifcation Through Multi-Task Learning. Submitted and 
currently Under Review at the Journal of Information Security and Applications. Chapter 
9 

1.8 Thesis Structure 

The remainder of this thesis is structured as follows: 

• Chapter 2: Background Establishes the foundational concepts required to understand 
(BEC) and the rationale behind using advanced NLP techniques for its detection. It covers: 

– A comprehensive overview of Business Email Compromise, including its defnition, 
mechanisms, and signifcance in modern cyber threat landscapes. 

– Statistics and trends, including fnancial losses and attack frequency from IC3 and 
industry reports. 

– A breakdown of the anatomy, methods, and strategies used in BEC attacks, such as 
account takeover, invoice fraud, and executive impersonation. 

– An introduction to Authorship Verifcation (AV), covering stylometric features and 
contrasting traditional hand-engineered and modern deep learning-based AV tech-
niques. 

– A conceptual overview of NLP and Transformer-based models, focusing on their 
evolution, architecture, and role in modelling linguistic deception. 

– A review of Multi-Task Learning (MTL) principles, highlighting its advantages, 
relevance to NLP, and suitability for jointly tackling BEC detection and authorship 
verifcation within a unifed framework. 

• Chapter 3: Literature Review Critically surveys the academic and industry landscape 
surrounding (BEC) detection and prevention. It includes: 

https://doi.org/10.1007/978-3-031-39828-5_5
https://doi.org/10.1007/978-3-031-xxxxx-x
https://doi.org/10.1007/978-3-031-xxxxx-x
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– A structured comparison of technical (e.g., rule-based, ML, NLP, cryptographic) and 
non-technical (e.g., awareness training, policy) countermeasures adopted to mitigate 
BEC threats. 

– A comprehensive synthesis of datasets used in BEC research, including public corpora 
(Enron, TREC), proprietary datasets (e.g., BEC-Guard), and simulated multilingual 
datasets, highlighting limitations in coverage and realism. 

– An in-depth performance comparison across diverse BEC detection methods, with 
attention to metrics like accuracy, precision, and false positive rate. 

– Identifcation of three persistent gaps in the literature. 

– A cross-reference to thesis chapters that directly address each gap through taxonomy 
creation, content-based detection, authorship verifcation, and a unifed NLP-based 
MTL framework. 

• Chapter 4: Methodology Outlines the research design, methodological choices, and 
experimental processes that underpin this thesis. It includes: 

– A mixed-methods strategy that combines quantitative experimentation with qualitative 
thematic analysis to achieve methodological triangulation and ensure research validity. 

– A phase-wise progression—from the systematic literature review and taxonomy 
development to model construction, evaluation, and fnal integration. 

– Explicit alignment of research questions, methodological phases, and outcomes, 
assessed with clearly defned metrics. 

• Chapter 5: BEC Taxonomy Proposes a fve-axis taxonomy to address the lack of structured 
classifcation schemes in (BEC) research. The taxonomy systematically categorises BEC 
incidents along fve dimensions: attack anatomy, adversary methodology, target roles, 
countermeasures, and detection challenges. It provides: 

– A detailed framework for analysing and comparing BEC incidents, enabling more 
consistent threat modelling and defence design. 

– Illustrative real-world case studies—including Treasure Island and an insurance broker 
frm—to validate the taxonomy’s descriptive coverage and applicability. 

– A bridge between conceptual classifcation and technical design, setting the foundation 
for the content and authorship detection models introduced in later chapters. 

• Chapter 6: Synthetic Dataset Creation Addresses the lack of publicly available datasets 
for Business Email Compromise (BEC) and authorship verifcation by introducing a 
purpose-built synthetic corpus. This chapter includes: 

– A structured nine-stage generation pipeline involving real BEC seed cases, prompt 
engineering, LLaMA-based text generation, and quality control. 

– Subsets tailored for both semantic deception and stylistic mimicry, including synthetic 
BEC attacks, authorship mimicry, and impersonation-based emails. 
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– Integration of phishing corpora and validation using BLEU/ROUGE metrics and 
human annotation to ensure linguistic realism and adversarial plausibility. 

– Ethical and legal safeguards to ensure research compliance and responsible data use. 

• Chapter 7: Transformer-Based BEC Detection Model Presents the frst experimental 
contribution—a deep learning model for detecting BEC using email body content. This 
chapter includes: 

– A hybrid architecture combining contextual embeddings with BiLSTM for sequential 
modeling. 

– A structured experiment comparing this model to classical baselines (TF-IDF with 
logistic regression, Random Forest, and XGBoost). 

– Evaluation on two benchmark datasets (Fraud, TREC07), demonstrating state-of-the-
art performance across precision, recall, F1-score, and accuracy. 

– A targeted “mimic” test using AI-generated emails that imitate trusted senders’ styles, 
revealing that content-only models struggle when deception mimics genuine writing. 

– Motivation for stylistic authorship verifcation as a necessary complement to semantic 
detection. 

• Chapter 8: Siamese Network for AV Introduces the second technical contribution: a 
transformer-based Siamese model designed to verify authorship in business emails as a 
defence against stylistic impersonation. This chapter includes: 

– Justifcation for applying Siamese networks in the AV task, focusing on writing-style 
consistency. 

– The architecture of BiBERT-AV, which combines BERT embeddings with BiLSTM 
layers in a pairwise contrastive framework. 

– Empirical results across varying author pool sizes (2 to 50) and evaluation on a 
synthetic dataset of LLM-generated mimic emails. 

– Comparative analysis showing that BiBERT-AV signifcantly outperforms traditional 
and transformer-only AV models. 

– Discussion of AV’s operational role in BEC defence, especially for detecting high-
fdelity impersonation. 

• Chapter 9: Multi-Task Learning (MTL) Framework for BEC and AV Presents the 
fnal technical contribution—a unifed framework that jointly performs (BEC) detection 
and AV through Multi-Task Learning. This chapter includes: 

– Design motivation for integrating semantic (BEC) and stylistic AV analysis using a 
shared encoder with task-specifc heads. 

– Comparative evaluation against sequential transfer learning baselines, showing 
improvements in accuracy, F1-score, and false-positive reduction. 
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– Analysis of model robustness, generalization, and efciency through ablation studies, 
ROC curves, and inference time benchmarks. 

– Discussion of real vs. synthetic data generation, author overlap constraints, and 
embedding visualizations that validate cross-task feature learning. 

• Chapter 10: Conclusions and Future Work Synthesizes the thesis contributions, discusses 
key limitations, and proposes future research directions. This chapter includes: 

– A structured review of how each research question was addressed, supported by 
empirical evidence across chapters. 

– Critical refections on thematic limitations, including dataset realism, adversarial 
robustness, multilingual constraints, and deployment scalability. 

– Future research paths involving multilingual and domain-adaptive models, explainable 
AI for BEC detection, and psycholinguistic signals for authorship verifcation. 



9 

Chapter 2 

Background 

This chapter provides an overview of Business Email Compromise (BEC) fraud. It begins by 
defning BEC and discussing its signifcance in today’s cyber threat landscape. Key fnancial 
statistics and trends are then reviewed to highlight its growing impact. AV is introduced as a 
complementary approach for detecting stylistic inconsistencies in impersonation-based attacks. 

The chapter then presents core concepts in NLP, with a focus on Transformer-based models such 
as BERT, as well as BiLSTM and Siamese networks for text representation and similarity. Finally, 
it introduces the paradigm of Multi-Task Learning (MTL), which enables the joint modelling of 
related tasks, such as BEC detection and authorship verifcation. 

2.1 Business Email Compromise 

Business Email Compromise (BEC) is a targeted form of phishing and email fraud that specifcally 
exploits employees with access to sensitive or fnancial information. These attacks rely on 
impersonation and social engineering to deceive recipients into performing unauthorized actions, 
such as:(i) initiating fnancial transfers (e.g., fraudulent invoices), (ii) disclosing confdential data 
(e.g., employee records), and (iii) complying with requests from impersonated authority fgures 
(e.g., executives or legal counsel). 

The primary attack vector in BEC is linguistic and contextual rather than technical. Adversaries 
use reconnaissance to craft well-written, context-aware emails that emulate the tone, style, and 
behavioural patterns of known personnel. For example, executive impersonation attacks (also 
known as CEO fraud) use authority framing, urgency, and role-specifc phrasing to socially 
engineer fnance teams into fast-tracking payments. Similarly, vendor fraud attacks involve the 
hijacking or spoofng of supplier communications to redirect invoice payments Federal Bureau of 
Investigation (2024). These tactics avoid triggering conventional threat detection systems, which 
typically scan for known malware signatures or obvious anomalies in email headers. 
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Although BEC and phishing are both categorized as social engineering attacks, they difer 
signifcantly in their attack strategies and detection challenges. Conventional phishing typically 
involves bulk-distributed emails containing broadly targeted lures, such as fabricated account 
alerts or password reset requests, and often includes detectable technical indicators like spoofed 
URLs or malicious attachments. In contrast, BEC attacks are highly targeted, linguistically 
sophisticated, and context-specifc, crafted to impersonate internal stakeholders and align with 
legitimate business communication. Framing BEC merely as a subcategory of phishing overlooks 
its unique reliance on semantic manipulation and identity deception. 

BEC fraud typically progresses through a series of well-defned stages: 

• Reconnaissance: Attackers begin by gathering detailed information about the target 
organization—such as organizational charts, email communication patterns, and key 
personnel details—to tailor their approach. This stage is well-described by Saud Al-Musib 
et al. (2021), who emphasize the role of intelligence gathering in shaping efective BEC 
strategies. 

• Initial Compromise: Using the acquired intelligence, attackers gain initial access by either 
compromising a legitimate email account or establishing a fraudulent relationship with a 
trusted individual. This step is commonly observed in FBI Public Service Announcements 
(PSAs) on BEC incidents (Service-Announcement, 2024). 

• Infltration: With access secured, the attacker monitors internal communications to 
determine the optimal time to launch a fnancial fraud attempt. As reported in the IC3 Elder 
Fraud Report (Federal Bureau of Investigation, Internet Crime Complaint Center (IC3), 
2024), such monitoring often continues for days or weeks to ensure credibility and timing. 

• Execution: An urgent, deceptive request—often impersonating a high-ranking execu-
tive—is then sent to initiate an unauthorized transaction. Security (2017) describe how 
attackers often cite unavailability due to travel or meetings to discourage verifcation. 

• Exfltration: Once the funds are transferred, the attacker quickly moves the money to 
intermediary accounts, making recovery extremely difcult. The IC3 report for 2023 
highlights how these tactics complicate fnancial tracking and law enforcement eforts (FBI 
Internet Crime Complaint Center, 2024). 

Understanding the operational stages and linguistic sophistication of BEC attacks provides a 
foundation for assessing their real-world impact. Over the past decade, BEC has evolved from 
isolated incidents into a global threat with substantial fnancial consequences. To contextualize 
its growing prominence within the broader cybercrime landscape, the following section presents 
statistical insights and trend analyses from major cybersecurity and law enforcement reports. 
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2.1.1 Statistics and Trends 

According to FBI Internet Crime Complaint Center (2024), the FBI’s Internet Crime Complaint 
Center (IC3) reported adjusted losses from BEC fraud reaching $2.94 billion in 2023, based on 
21,489 complaints—continuing an upward trajectory from $2.74 billion in 2022 and $2.39 billion 
in 2021. 

More recent data from the IC3’s 2024 report suggest that BEC remains one of the most 
fnancially damaging forms of cyber-enabled fraud. Although losses in 2024 slightly decreased 
to approximately $2.77 billion across 21,442 cases, BEC still ranked second only to investment 
fraud in terms of total fnancial impact (FBI Internet Crime Complaint Center (IC3), 2025). 

Viewed across the three-year period from 2022 to 2024, BEC accounted for some of the highest 
cumulative losses—aggregating to nearly $8.5 billion (NACHA, 2024). 

These fgures underscore BEC’s enduring severity. Despite year-to-year fuctuations, the multi-
year trend remains alarmingly high, reinforcing the need for specialized, content-based defenses 
capable of recognizing impersonation and deception tactics absent in traditional metadata-based 
systems. 

3 

2 

1 

0 

Year 

Figure 2.1: Financial losses due to BEC from 2021 to 2024, based on FBI IC3 data. 

Further reinforcing the economic impact of BEC is Figure 2.1, which shows the ranking of 
cybercrime categories by total complaint losses in 2023. BEC remains one of the most fnancially 
devastating types of cybercrime, as seen in its prominent position within the top fve categories. 
This emphasizes the pervasive threat that BEC poses, particularly in the context of broader 
cybersecurity challenges. 

Moreover, Table 2.1 provides an overview of the key research objectives in BEC detection, 
highlighting the critical issues being addressed in the literature. These include the deceptive 
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techniques employed by attackers, strategies for impersonation, and the use of linguistic manipu-
lation, which are central to understanding the dynamics of BEC attacks. The diversity of research 
objectives indicates the complexity of BEC and the need for multifaceted detection approaches 
that address both the technical and psychological components of these attacks. 

Table 2.1: Summary of BEC Fraud Objectives 

Source Description Objectives 
Zweighaft (2017) The attacker poses as a lawyer or repre-

sentative of the law frm supposedly in 
charge of the company’s legal matters 
and requests confdential information. 

Stealing confdential, private information such as fnancial records, 
legal documents, and intellectual property. 
Example: An attacker impersonates the company’s legal advisor 
and requests copies of recent merger and acquisition documents. 

King (2019) The attacker uses a hacked executive’s 
or employee’s email account to make re-
quests that appear legitimate to internal 
staf. 

Financial or confdential information requests that appear to come 
from within the company, aimed at unauthorized fund transfers or 
data breaches. 
Example: An attacker uses a compromised CFO’s email to instruct 
the fnance department to change the bank account details for the 
next payroll run. 

Cross and Gillett 
(2020) 

Corporate fraud involving the identity 
theft of a senior member of an organiza-
tion. The attacker sends emails asking 
for urgent fnancial transactions or ac-
cess to confdential documents. 

Urgent fnancial or confdential information requests aimed at 
diverting company funds or gaining access to sensitive information. 
Example: An email appearing to be from the CEO urgently 
requests the transfer of $100,000 to a new supplier’s account. 

Spangler (2021) Detailed the BEC method and strategies 
employed by attackers to deceive targets 
into disclosing critical information. 

Educating organizations on the various tactics used in BEC scams, 
helping them develop better preventive measures and response 
strategies. 
Example: Training sessions simulate BEC scenarios to help 
employees recognize and respond to suspicious emails efectively. 

Business Email Compromise (BEC) continues to rank among the most fnancially damaging and 
operationally sophisticated forms of cybercrime. Reports from Microsoft, IBM, and the UK’s 
National Cyber Security Centre (NCSC) consistently identify BEC as a top-tier threat due to its 
reliance on targeted deception rather than technical exploits. Despite its increasing prevalence 
and fnancial impact, BEC remains under-represented in academic research—particularly in 
the domains of machine learning and NLP. This gap highlights the urgent need for advanced, 
content-based detection approaches capable of capturing the subtle linguistic and behavioural 
cues that characterize BEC attacks Atlam and Oluwatimilehin (2022). 

2.2 Authorship Verifcation (AV) 

Authorship verifcation (AV) is considered one of the three primary domains of Automatic Au-
thorship Identifcation (AAI)—alongside authorship attribution and authorship identifcation—as 
described by Brocardo et al. (2013). The AV task involves determining whether a new digital text 
was authored by a specifc individual when a candidate author is presented with a set of known 
texts. Typically, this is framed as a binary classifcation problem, as depicted in Figure 2.2. 

The primary goal of AV is to identify writing style consistencies and variations to verify the 
authorship of a given text. This process has numerous applications, including detecting plagiarism, 
identifying anonymous authors, and forensic document analysis. Additionally, AV plays a critical 
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role in social media forensics by uncovering aliased accounts and in information security by 
enabling continuous user authentication. 

Figure 2.2: An authorship verifcation problem 

2.2.1 Stylometric Features in Writing 

Stylometric analysis forms the foundation of AV by examining linguistic features inherent in an 
individual’s writing style Stamatatos (2009). These features can be broadly categorized into: 

• Lexical Features: Word usage, frequency, average word length, and vocabulary richness. 

• Syntactic Features: Sentence structure, punctuation patterns, and grammar usage. 

• Structural Features: Document layout, paragraph organization, and formatting preferences. 

• Semantic Features: Word semantics and topic modeling to analyze the context and meaning. 

These stylometric features ofer clues into the author’s unique linguistic patterns, forming a 
distinct "signature" that can be used for verifcation. 

2.2.2 Traditional vs. Modern AV Techniques 

The development of AV methods can be broadly divided into two conceptual paradigms: traditional 
stylometric approaches and modern representation learning frameworks. 
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Traditional techniques rely on manually engineered features that refect an author’s writing style. 
These include lexical patterns, syntactic structures, and statistical distributions of character or word 
usage. Common methods involve modeling stylistic fngerprints using character �-gram profles or 
computing stylistic dissimilarity through distance-based metrics such as the out-of-place measure 
proposed by Kešelj et al. (2003). Other classical approaches include the unmasking technique 
using support vector machines (SVMs) introduced by Koppel and Schler (2004), the profle-based 
dissimilarity approach that achieved notable success in the PAN-AV’14 competition Potha and 
Stamatatos (2014), and compression-based similarity kernels Halvani et al. (2017). While these 
models are generally fast, interpretable, and efective for short texts, their reliance on surface-level 
features often limits their robustness under domain shifts, cross-topic variation, or intentional 
obfuscation by adversaries. 

Modern techniques, by contrast, treat authorship verifcation as a representation learning 
problem. These methods aim to capture deeper semantic and syntactic cues by learning task-
specifc embeddings that generalize across contexts. Siamese and triplet neural architectures 
are commonly used to project text pairs into a shared embedding space, where same-author 
texts are positioned closer together than texts by diferent authors. For example, convolutional 
neural networks (CNNs) applied to character-level �-grams have been used to construct pairwise 
similarity models Araujo-Pino et al. (2020). More recently, fne-tuned transformer-based language 
models have become the dominant paradigm. Models such as BertAA leverage the bidirectional 
contextual representations of BERT to learn stylistic patterns beyond handcrafted features Fabien 
et al. (2020). Variants like Longformer are designed to handle long documents efciently, enabling 
analysis of emails and other extended texts Ordoñez (2020). Siamese BERT architectures have 
also been applied to authorship verifcation in email domains Tyo et al. (2021), while chunked 
encoding strategies have proven efective for low-resource or short-form datasets Peng (2021). 
These transformer-based approaches beneft from self-attention mechanisms that capture both 
local and global dependencies, making them particularly resilient to style variation and adversarial 
manipulation. 

Overall, the transition from feature-based to embedding-based methods refects a shift toward more 
expressive, generalizable models capable of handling the complexity of real-world authorship 
verifcation tasks. 

2.3 Natural Language Processing (NLP) and Transformer Models 

NLP is a branch of artifcial intelligence (AI) focused on enabling machines to understand, 
interpret, and generate human language Chowdhury (2003). Over time, NLP has evolved from 
rule-based approaches to modern deep learning methods, with Transformer-based architectures 
revolutionizing the feld. This section provides an overview of key NLP advancements, particularly 
Transformer models, and their relevance to the research. 
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2.3.1 Evolution of NLP 

The development of NLP has progressed through three major methodological phases, each 
refecting advances in both computational capabilities and linguistic modeling: 

• Rule-Based Methods: Early NLP systems were built on manually crafted rules and 
deterministic grammars to encode syntactic and semantic knowledge. This approach was 
famously introduced by Chomsky (1957), whose work laid the foundation for formal 
language theory. While interpretable and efective for constrained tasks, these systems 
lacked robustness to linguistic variability and ambiguity. 

• Statistical and Traditional Machine Learning Approaches: The introduction of prob-
abilistic models—such as n-gram language models—marked a shift toward data-driven 
NLP. Brown et al. (1990) demonstrated how statistical techniques could model language 
regularities at scale. These were later extended using classical machine learning algorithms 
(e.g., SVMs, CRFs), which allowed the modeling of more complex structures but still 
required extensive feature engineering. 

• Neural and Deep Learning-Based Models: The emergence of deep learning transformed 
NLP by enabling end-to-end learning from raw text. Architectures such as recurrent neural 
networks (RNNs), long short-term memory (LSTM) networks, and transformer-based 
models captured richer contextual dependencies. In particular, Vaswani et al. (2017) 
introduced the Transformer architecture, which signifcantly advanced performance on 
tasks like machine translation, sentiment analysis, and text classifcation. 

2.3.2 Introduction to Transformer Models 

Transformer architectures, frst introduced by Vaswani et al. (2017), represent a fundamental 
shift in neural sequence modelling by eliminating the need for recurrence. Instead, Transformers 
rely entirely on self-attention mechanisms, enabling more efcient and scalable modelling of 
long-range dependencies in text. 

The core components of the Transformer architecture include: 

• Self-Attention Mechanism: Allows the model to dynamically compute pairwise interac-
tions between all tokens in a sequence, capturing context-sensitive representations that 
refect both local and global dependencies. 

• Encoder–Decoder Structure: In the original formulation, the encoder maps input tokens 
to contextual embeddings, while the decoder generates output tokens autoregressively, 
attending to both previous outputs and encoder states. 
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• Parallelization and Scalability: Unlike recurrent models (e.g., RNNs or LSTMs), 
Transformers enable parallel computation across input tokens, signifcantly improving 
training efciency and enabling scaling to very large datasets. 

As shown in Figure 2.3, this architecture forms the foundation of modern pretrained language 
models, many of which have become the de facto standard for downstream NLP tasks. 

Figure 2.3: The Transformer model architecture as introduced by Vaswani et al. (2017). 

2.3.3 Pre-trained Transformer Models in NLP 

Pre-trained Transformer-based language models have become the foundation for most state-
of-the-art NLP systems. These models are initially trained on large-scale text corpora using 
self-supervised learning objectives, and then fne-tuned on specifc downstream tasks such as 
classifcation, question answering, or authorship verifcation. 

• BERT (Bidirectional Encoder Representations from Transformers): Introduced by 
Devlin et al. (2018), BERT leverages masked language modelling (MLM) and next sentence 
prediction (NSP) to learn deep bidirectional contextual representations. It has demonstrated 
strong performance across diverse NLP benchmarks, including GLUE and SQuAD, and 
serves as a foundational model for many subsequent variants. 
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• DistilBERT: Proposed by Sanh et al. (2019), DistilBERT is a compressed version of 
BERT obtained through knowledge distillation. It retains most of BERT’s representational 
power while signifcantly reducing model size and inference time, making it suitable for 
resource-constrained or real-time applications. 

• Other BERT-based Variants: Several models extend or refne BERT’s architecture and 
training objectives to enhance efciency or performance: 

– RoBERTa removes the NSP objective and trains with more data and longer sequences; 

– ALBERT shares parameters across layers to reduce memory consumption; 

– XLNet introduces permutation-based pretraining to capture bidirectional context 
without masking. 

These pre-trained models are commonly fne-tuned on task-specifc datasets for applications such 
as sequence classifcation, question answering, and authorship verifcation. 

2.3.4 Long Short-Term Memory (LSTM) and Bidirectional LSTM (BiLSTM) 

Recurrent Neural Networks (RNNs) are designed for sequence modeling tasks but sufer from 
vanishing gradient issues when capturing long-range dependencies. Long Short-Term Memory 
(LSTM) networks, introduced by Hochreiter and Schmidhuber (1997), address this limitation by 
incorporating gated mechanisms that regulate information fow across time steps. An LSTM cell 
includes three gates—the input gate, forget gate, and output gate—which jointly control what 
information to retain, discard, or output at each step. 

Figure 2.4: Structure of an LSTM cell. Adapted from Yu et al. (2019). 

LSTMs are widely used in NLP tasks such as sentiment analysis, language modeling, and text 
classifcation due to their ability to maintain context over long sequences. 

Bidirectional LSTM (BiLSTM) extends the standard LSTM by processing the input sequence in 
both forward and backward directions. This dual pass enables the model to capture dependencies 
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from past and future contexts simultaneously. The outputs from both directions are typically 
concatenated to form a richer representation of each token. 

2.3.5 Siamese Networks for Text Similarity 

Siamese networks are a class of deep learning architectures designed to determine the similarity 
between two inputs by learning a shared representation space. Initially introduced for tasks like 
signature verifcation Bromley et al. (1993), they have become widely used in NLP for comparing 
text pairs. Figure 2.5 shows the structure of a Siamese network. 

Figure 2.5: Representation of the Siamese neural network model. Cosine distance measures the 
similarity between input pairs as the fnal output Chicco (2021). 

Key features of Siamese networks include: 

• Shared Weights: Two identical subnetworks process inputs, ensuring consistent representa-
tion learning. 

• Similarity Metrics: Outputs are compared using metrics like cosine similarity or Jaccard 
similarity to determine how closely related the inputs are. 

2.4 Multi-Task Learning (MTL) 

Multi-Task Learning (MTL) is a machine learning paradigm in which a single model is trained to 
solve multiple tasks concurrently, rather than optimizing each task independently. The approach 
was originally formalized by Caruana (1997), who demonstrated that task relatedness can be 
exploited by enabling shared representations. This allows the model to leverage common linguistic 
or structural patterns across tasks. Such shared inductive bias improves generalization, particularly 
in settings with limited labeled data, as emphasized by Ruder (2017). 

Unlike single-task learning (STL), which focuses on a single objective, MTL introduces regular-
ization through parameter sharing. When tasks are semantically aligned or exhibit similar input 
structures, this joint training facilitates the learning of more robust and transferable representations. 
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These advantages make MTL particularly efective in NLP, where many tasks share linguistic 
patterns or semantic structures. 

For instance, MTL has been successfully applied to sentiment analysis and topic classifcation 
(Sebbaq et al., 2023), sequence labeling tasks such as named entity recognition (NER) and 
part-of-speech tagging (POS) (Yang and Shang, 2019; Zuo and Zhang, 2020), as well as question 
answering and multilingual translation (Dou et al., 2024; Wang et al., 2017; Xiao et al., 2022). 
These studies highlight the value of MTL in enhancing both efciency and generalization across 
diverse language understanding tasks. 

2.4.1 Benefts of Multi-Task Learning 

MTL ofers several advantages that are particularly valuable in NLP and security-sensitive 
applications: 

• Parameter Efciency: A unifed architecture reduces model redundancy by sharing layers 
across tasks, minimizing training and deployment overhead. 

• Improved Generalization: Auxiliary tasks act as inductive regularizers, reducing over-
ftting and encouraging the model to learn features that generalize well across related 
objectives. This principle was frst demonstrated by Caruana (1997), who showed how 
joint training improves generalization by capturing task-invariant patterns. 

• Efective Use of Limited Data: MTL facilitates knowledge transfer from high-resource 
to low-resource tasks through shared representations, making it ideal for domains where 
annotated data is scarce. As highlighted by Ruder (2017), MTL is particularly advantageous 
when data sparsity would otherwise limit single-task performance. 

• Cross-Task Synergy: When tasks are complementary—such as classifcation and veri-
fcation—their joint optimization can lead to mutual performance gains through shared 
supervision. 

These advantages make MTL particularly efective in NLP, where many tasks share linguistic 
patterns or semantic structures. 

2.5 Chapter Summary 

This chapter provides an overview of the foundational concepts supporting this research. It 
examines Business Email Compromise (BEC) attacks, focusing on their impacts, stages, and 
strategies such as account seizure and impersonation. It also explores AV, discussing stylometric 
features, traditional versus modern techniques, and applications in enhancing email security. 
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NLP and Transformer-based models are introduced, highlighting their evolution, core mechanisms, 
and pre-trained models like BERT and DistilBERT. The relevance of Siamese networks for text 
similarity tasks, particularly in AV, is also covered. 

Finally, MTL is discussed, emphasizing its advantages, applications in NLP, and its role in 
integrating BEC detection and AV. Together, these topics establish the foundation for the proposed 
methodologies in later chapters. 
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Chapter 3 

Literature Review 

3.1 Introduction 

The increasing reliance on digital communication has signifcantly reshaped organizational work-
fows, particularly in fnance and enterprise environments. While the use of email has enhanced 
operational efciency and enabled rapid transactions, it has also created new opportunities for 
exploitation. Among the most fnancially damaging cyber threats is Business Email Compromise 
(BEC), a form of social engineering in which attackers impersonate trusted individuals—such as 
executives, vendors, or clients—to deceive victims into transferring funds or disclosing sensitive 
information. 

The primary aim of this chapter is to establish a comprehensive understanding of the current 
state of Business Email Compromise (BEC) detection research in order to address SRQ1: What 
approaches currently exist for detecting BEC attacks, and what are their respective strengths and 
limitations? To address this question, the current state of research on BEC detection is critically 
reviewed. This includes both technical and non-technical countermeasures, such as rule-based 
flters, metadata analysis, content-aware models, and behavioural profling. 

The chapter also evaluates the datasets used in BEC research. Finally, concludes by identifying 
open challenges in current approaches. These limitations motivate the architectural decisions and 
methodological contributions presented in subsequent chapters of this thesis. 

0This chapter is based on the published article: Almutairi, A. M., Kang, B., & Al Hashimy, N. (2025). Business 
email compromise: A systematic review of understanding, detection, and challenges. Computers & Security. 
doi:10.1016/j.cose.2025.104630. 

https://doi.org/10.1016/j.cose.2025.104630
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3.2 BEC: Literature Review 

3.2.1 BEC: Systematic Literature Review Methodology 

This literature review adopts a systematic literature review (SLR) approach to provide a com-
prehensive and rigorous synthesis of Business Email Compromise (BEC) research. The review 
follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
framework and established guidelines for systematic reviews in cybersecurity research Kitchenham 
and Charters (2007). This ensures methodological transparency, replicability, and consistency in 
how the literature was identifed, selected, and analyzed. 

The methodology, illustrated in Figure 3.1, documents each stage of the process. 

Records identifed from databases 
before applying the time flter: (n = 
2260) 

Records considered after applying the 
time flter 2007–2024: (n = 960) 

Duplicate records removed (n = 886) 

Records considered for screening 
after reading title (n = 74) 

Records excluded after reading the 
abstract (n = 53) 

Records assessed for eligibility (n = 
21) 

Snowballing: by adding resources 
from the reference list checking (n = 
9) 

Studies included in review (n = 30) 

Identifcation 

Screening 

Eligibility 

Included 

Figure 3.1: PRISMA workfow for study selection in this SLR. 

3.2.1.1 Search Strategy 

A Boolean search query was applied across databases such as IEEE Xplore, ACM Digital Library, 
Scopus, Web of Science, SpringerLink, and ScienceDirect. Keywords combined core concepts of 
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Business Email Compromise with detection and prevention techniques: 

("Business Email Compromise" OR "BEC" OR "CEO fraud" OR "email fraud") 

AND ("detection" OR "prevention" OR "machine learning" OR "NLP" 
OR "cybersecurity") 

3.2.1.2 Screening and Eligibility 

The four PRISMA stages were: 

• Identifcation: 2,260 records initially retrieved. 

• Screening: 74 studies shortlisted after title and abstract review. 

• Eligibility: 21 studies met full-text assessment criteria. 

• Inclusion: Final corpus of 30 peer-reviewed studies, including 9 added through snowballing. 

3.2.1.3 Quality Assessment 

All included studies were evaluated using fve criteria: research clarity, dataset transparency, 
empirical validation, methodological rigor, and relevance to BEC. Inter-rater agreement on a 
random subset achieved Cohen’s � = 0.89, confrming high consistency. 

3.2.2 Countermeasures Against BEC Fraud 

This section examines how companies and researchers have attempted to combat BEC fraud by 
proposing and evaluating a range of countermeasures. Specifcally, presents a comprehensive clas-
sifcation of BEC detection and prevention techniques—both technical and non-technical—drawn 
from the studies surveyed. 

Guided by the well-known People–Process–Technology (PPT) triad in security research, we 
defne technical controls as technology-centric solutions (e.g., rule-based flters, ML/NLP models, 
cryptographic schemes) and non-technical controls as people- and process-centric measures (e.g., 
training, human verifcation, governance policies). This socio-technical framing moves beyond an 
intuitive split and ofers a structured lens for comparing robustness, scalability, and deployment 
realism across studies. 
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3.2.2.1 Technical Countermeasures 

Various technical mitigation proposals have been discussed in the literature. These countermea-
sures can be broadly divided into two main categories: Traditional Rule-based Methods and 
Machine Learning-based Solutions. 

Furthermore, Table 3.1 summarizes the main technical detection techniques, comparing their 
reported results and highlighting key fndings from recent BEC studies. 

Traditional Rule-based Methods Scholars and industry experts have collaborated extensively 
to develop software defences and risk mitigation techniques that enterprises can deploy to counter 
the rising threat of BEC fraud. As discussed by Meyers (2018), protective measures such as 
maintaining up-to-date software, enforcing end-point security, deploying anti-malware systems, 
and utilizing digital signatures for emails can reduce exposure to BEC threats. 

Another efective approach involves analysing historical email patterns to detect anomalies in 
communication behaviour. For instance, Cidon et al. (2019) developed BEC-Guard, a system 
that applies statistical profling of user behavior to fag suspicious emails and prevent fraud in 
enterprise environments. 

Typosquatting, a tactic in which attackers register domain names that closely resemble legitimate 
ones, poses an additional threat that can, in some cases, be mitigated through proactive domain 
monitoring and early warning systems Mansfeld-Devine (2016). Organizations can also employ 
blocklists and allowlists to prevent fraudulent email interactions. Blocklists restrict access from 
known malicious sources, such as compromised IP addresses and suspicious email domains 
Siadati et al. (2020): “If the recipient’s email address, IP address, or another characteristic has 
been blacklisted, the session will be canceled before the email is received”. Conversely, allowlists 
defne trusted email senders, reducing false positives. A well-balanced strategy incorporating 
both blocklists and allowlists is crucial to ensuring seamless, legitimate communication while 
fltering out fraudulent messages efectively. 

Statistical Methods Shahrivari et al. (2020) employed the Delphi technique, collecting feedback 
from thirty cybersecurity experts to validate BEC detection criteria. Their study highlighted that 
global fnancial losses from BEC fraud exceeded $26 billion and identifed four key factors crucial 
for efective detection: recognizing email authenticity, detecting malicious mobile applications, 
identifying indicators of mobile malware, and discerning phishing attempts. Their approach, 
which combined expert-driven insights with statistical validation, achieved an accuracy rate of 
92.5%. 

Acar et al. (2019) conducted a large-scale analysis of malware attacks collected from two 
organizations between 2017 and early 2018, focusing on threat vectors, time series analysis, 
vulnerabilities, and social engineering tactics. Unlike earlier malware research, their study 
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concentrated on modern industrial malware samples. A key fnding of their time-based analysis 
revealed that 93% of malware samples were distributed during weekdays, underscoring the 
targeted nature of these attacks and the infuence of corporate email trafc patterns. 

Checksum Approach Teerakanok et al. (2020) proposed a semi-automated method for verifying 
the authenticity and integrity of fnancial transactions using a checksum generated from critical 
transaction details. The process involves a secret delivery key issued by the invoice-issuing entity, 
which the supplier then uses to generate a checksum by combining essential transaction data and 
the secret key. If both parties produce an identical hash, the transaction is deemed legitimate. 
Their approach employs the SHA256 message-digest function and converts the hash to base 8 for 
added security. 

Papathanasiou et al. (2024) introduced the BEC Defender algorithm, which employs cryptographic 
techniques such as Message Authentication Codes (MACs) and QR codes to verify the authenticity 
of email communications. The system utilizes Fernet encryption for secure data storage and 
SHA2 hashing to enhance the security of the registration process. While extensive testing across 
multiple email providers and operating systems demonstrated the algorithm’s efectiveness, certain 
limitations remain. These include: 

• Challenges in secure key distribution. 

• A three-hour validation window, which, while adding security, may reduce usability. 

• Potential inaccuracies in MAC address verifcation. 

• A residual risk of replay attacks within the validation timeframe. 

Despite these challenges, BEC Defender represents a promising cryptographic approach to 
mitigating email-based fraud. 

Intrusion Detection System (IDS) Sahoo and Rajitha (2019) proposed an intrusion detection 
approach designed to distinguish between legitimate and fraudulent emails, thereby safeguarding 
users against phishing attacks and data breaches. Their method, applied to the Enron dataset, 
achieved a 98% accuracy rate. 

Siadati (2019) focused on BEC attacks that impersonate coworkers, a category of social engineering 
threats that often bypass traditional phishing detection mechanisms due to their lack of common 
indicators such as malicious links or suspicious IP addresses. The study introduced a novel 
countermeasure aimed at disrupting attackers by monitoring their private communications and 
intercepting key resources (e.g., stolen passwords and fraudulent bank account details). Their 
system demonstrated a recall rate exceeding 80% and a false positive rate of 0.3%, highlighting 
its efectiveness in identifying impersonation attempts. 
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Whitelisting and Firewall Methods Haddon (2020) analyzed BEC attack vectors and data 
exfltration risks, emphasizing network lockdowns, frewall restrictions, and up-to-date antivirus 
systems as key defense strategies. Their study provided real-world insights into evolving attack 
techniques and countermeasures. While these methods can enhance security, they require 
signifcant resources and may struggle to keep pace with rapidly evolving threats. Their evaluation 
was based on case studies and historical reports, without reporting a specifc accuracy metric. 

Opazo et al. (2017) proposed a client-side security mechanism that analyzes email headers for 
inconsistencies, logs alerts, and notifes enterprise administrators of potential threats. Their 
framework includes whitelisting trusted contacts, which reduces false positives while maintaining 
strict email security policies. 

Wickline (2021) examined the efectiveness of modern antivirus solutions in detecting and 
mitigating malware threats. The study identifed BEC, phishing, and spear phishing as primary 
attack vectors and highlighted how malware is leveraged to disrupt critical infrastructure and 
steal sensitive data. Additionally, the research noted that malware development surged during 
the COVID-19 pandemic, with 350,000 new malicious programs created daily, leading to a 40% 
increase in global malware volume. 

Other Approaches While technical defences and detection models form the foundation of 
BEC mitigation, a number of studies have taken broader or more specialized perspectives to 
address complementary dimensions of the threat. These include organizational case studies, 
risk modelling frameworks, and legal or regulatory analyses. Together, these contributions 
enrich the understanding of BEC by highlighting its psychological, procedural, and institutional 
implications—extending beyond algorithmic detection and infrastructure-level controls. 

Awah Buo (2020) examined the global rise of BEC fraud and presented a case study of Unatrac 
Holding Ltd. They conducted a detailed investigation into the psychological and sociotechnical 
impact of a successful BEC attack on both the organization and its employees. 

Benaroch (2018) proposed a model modifcation approach for BEC risk management, where zero 
or more precautionary measures can be deployed in varying sequences. These measures have 
impulse-type efects to reduce uncertainty, and their impacts can be substitutive, complementary, 
or synergistic. This modelling approach enables both passive and proactive IT risk management. 

Kolouch (2016) studied legal implications and potential criminal liabilities of phishing, scams, 
BEC, and other specialized cyberattacks. Their focus extended to international legal standards, 
including those defned in the Convention on Cybercrime, as well as the relevant laws within the 
Czech Republic. 

Machine Learning-based Solutions Machine Learning (ML) has been widely and successfully 
applied to various business and research applications, including BEC detection. 
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Maleki (2019) proposed and tested a behavior-based detection model for compromised email 
accounts or machines. The model prevents fraudulent emails by blocking messages from 
compromised senders who fail to form a valid user profle from the recipient’s perspective. 
Additionally, the system alerts legitimate account owners when a compromise is detected. 
Evaluated on the Enron Dataset, the framework achieved 92% accuracy and a 93% F1-score. 

Cidon et al. (2019) introduced BEC-Guard, a two-stage detection system for identifying and 
blocking impersonation emails. The frst stage analyzes email metadata (e.g., sender, receiver, 
CC, BCC felds) to detect anomalous patterns. If fagged, the email proceeds to content-based 
analysis, which employs NLP and link verifcation. The text classifer uses TF-IDF with unigrams 
and bigrams (10,000 features), while the link classifer fags small or newly created websites. The 
combined system reported 98.2% precision, 96.9% recall, and an extremely low false positive rate 
of 0.000019% (1 in 5,260,000 emails). Despite its success, continuous retraining is necessary to 
counter evolving attack strategies. 

Kurematsu et al. (2019) developed an ML-based author identifcation model for BEC detection, 
focusing on writing style analysis. Unlike traditional spam flters, this approach relies on author 
profling, analyzing the frst 100 words of an email body. Evaluated on the Enron dataset, the 
system achieved 84% accuracy, highlighting its potential for authorship verifcation in email 
security. 

Vorobeva et al. (2021) proposed a BEC detection method based on writing style analysis. Their 
feature set included word n-grams, three-gram phrases, day-of-week, time sent, message urgency, 
and email headers. Using Linear Support Vector Classifcation (LSVC) with feature scaling, their 
system achieved 95% accuracy for English emails and 75% accuracy for Russian emails. 

Xiao and Jiang (2020) introduced a phishing and spam detection system using K-Nearest Neighbors 
(KNN) and Bi-LSTM. Their approach signifcantly reduced false positives while maintaining 
high accuracy. Their experiments on the TREC06P dataset resulted in 95.27% accuracy (KNN), 
91.51% accuracy (Bi-LSTM), 91.75% precision, 91.49% recall, 91.58% F1-score, and a false 
positive rate of 1.22 

Brabec et al. (2023) developed CAPE, a modular and adaptive BEC detection system designed for 
Security Operations Centers (SOC). CAPE integrates multiple ML models and applies a Bayesian 
framework for continuous refnement. Over two years, CAPE’s precision remained consistently 
above 80%, demonstrating its reliability in real-world applications. However, its performance 
heavily depends on data availability, operational costs, and explainability. 

NLP Methods Complementing the broader ML landscape, NLP techniques emphasize textual 
content and linguistic cues, which are especially relevant for deception detection in email 
communications. Regina et al. (2020) introduced a task-agnostic augmentation system that 
combines BERT, reverse translation, and heuristic-based NLP enhancements. Their method 



29 3.2. BEC: Literature Review 

achieved 96% balanced accuracy on a BEC detection task, demonstrating the value of language-
specifc augmentation techniques. 

While machine learning and NLP-based approaches demonstrate signifcant efectiveness in 
detecting BEC through behavioural modelling, statistical profling, and linguistic analysis, these 
technical solutions represent only part of the broader defence landscape. The literature also 
highlights a range of non-technical countermeasures that focus on organizational practices, 
procedural safeguards, and policy-level interventions. The following section reviews such 
approaches, emphasizing their role in strengthening institutional resilience against BEC threats in 
practical, real-world contexts. 

3.2.2.2 Non-Technical Solutions 

Alongside technical countermeasures, non-technical approaches are critical in mitigating BEC 
fraud. These methods focus on human factors, policies, and awareness to complement automated 
systems. 

Awareness Training Employee education is a vital preventative tool against BEC fraud. 
Several studies such as: Mansfeld-Devine (2016); Binks (2019); Ross (2018) have demon-
strated that company-wide training—via workshops, phishing simulations, and role-playing 
exercises—enhances employees’ abilities to recognize fraudulent emails. As noted by Nehme and 
George (2018), organizations must continually update and engage their staf to reinforce critical 
security behaviours. 

Human Verifcation The FBI (2021) advises that users verify suspicious URLs, check 
for typographical errors in email addresses, and confrm the authenticity of requests through 
secondary channels. Human verifcation acts as a crucial backup when technical systems fail to 
fag sophisticated impersonation attacks. 

Policies and Guidelines Robust organizational policies, such as multi-factor authentication and 
dual-approval workfows, are essential. Studies by Meyers (2018) and Burns et al. (2019) illustrate 
that governance frameworks—where high-value transactions require cross-checks—reduce the risk 
of fraudulent transfers. Additional research Susanti et al. (2023); Ogwo-Ude (2023) emphasizes 
the importance of integrating cybersecurity policies, risk management systems, and regulatory 
compliance (e.g., ISO 27001:2013) to further mitigate BEC threats. 

Table 3.2 summarizes several non-technical solutions, including their strengths and limitations. 
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Table 3.2: Summary of Non-Technical Solutions for BEC Fraud Detection 

Source Method Description Strengths Limitation 
Mansfeld-
Devine (2016) 

Awareness Training Employee education on 
phishing and BEC fraud. 

Enhances recognition skills; reduces 
susceptibility. 

Requires continuous up-
dates and engagement. 

Binks (2019) Awareness Training Company-wide training 
to minimize phishing as-
saults. 

Comprehensive awareness; efective 
simulation exercises. 

Implementation may be 
resource-intensive. 

Ross (2018) Awareness Training Simulated attack training 
to understand BEC indica-
tors. 

Improves response and recognition. Needs regular updates to 
match evolving tactics. 

Zweighaft 
(2017) 

Awareness Training BEC testing and training 
across organization levels. 

Builds a proactive, skeptical culture. Requires ongoing resource 
allocation. 

Nehme and 
George (2018) 

Awareness Training Programs to educate em-
ployees on phishing, social 
engineering, and risks. 

Enhances critical analysis and email ver-
ifcation skills. 

Dependent on continuous 
engagement. 

Lazarus (2024) Awareness Training Qualitative analysis of cy-
bercriminal networks and 
tactics. 

Provides insights into criminal methods. Focuses on a single case 
study; limited generaliz-
ability. 

Papathanasiou 
et al. (2023) 

Awareness Training Examines social structures 
of BEC criminals via inter-
views. 

Ofers insider perspectives on social en-
gineering. 

Limited by focus on a spe-
cifc criminal group. 

FBI (2021) Human Verifcation Advises users to verify 
URLs and sender details. 

Simple, direct approach to authentica-
tion. 

Relies heavily on user dili-
gence. 

Meyers (2018) Policies and Guidelines Recommends multiple 
sign-ofs for signifcant 
transactions. 

Adds verifcation layers; reduces unilat-
eral risk. 

May slow down legitimate 
processes. 

Burns et al. 
(2019) 

Policies and Guidelines Suggests a business gover-
nance framework for high-
value transactions. 

Establishes formal procedures; deters 
fraudulent requests. 

Implementation can 
be complex and time-
consuming. 

Susanti et al. 
(2023) 

Policies and Guidelines Emphasizes robust cyber-
security policies and train-
ing. 

Enhances overall cybersecurity posture. Does not provide direct 
technical defense. 

Ogwo-Ude 
(2023) 

Policies and Guidelines Recommends advanced 
email authentication and 
incident response plans. 

Ofers comprehensive, coordinated pro-
tection. 

Requires interdepartmen-
tal coordination. 

3.2.3 Datasets Used in BEC Research 

High-quality datasets are crucial for developing and evaluating BEC detection systems. However, 
due to privacy concerns and the sensitive nature of business communications, publicly available 
BEC datasets are scarce. Researchers rely on a combination of public datasets, proprietary 
corpora, and simulated data. 

For example: 

• Enron Email: A public dataset containing approximately 500,000 emails from 150 
employees. It has been widely used in prior studies on organizational email behavior and 
security applications, including the works of Maleki (2019), and Kurematsu et al. (2019). 

• TREC: A public dataset with about 50,000 emails (35,000 spam and 15,000 non-spam 
messages) used for benchmarking spam and ham classifcation methods. It has been 
adopted in studies such as Regina et al. (2020). 

• BEC-Guard: A proprietary dataset from Barracuda Networks comprising roughly 7,000 
labeled BEC attack emails. This dataset was introduced by Cidon et al. (2019) as part of 
the BEC-Guard system for anomaly-based fraud detection. 
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• Russian & English Emails: A private multilingual corpus containing 2,308 genuine and 
simulated emails from 50 authors. It was used by Vorobeva et al. (2021) to assess BEC 
detection models across languages. 

To synthesize the wide range of countermeasures proposed in the literature, Table 3.3 provides a 
consolidated summary of Business Email Compromise (BEC) studies, categorizing each work 
according to the types of solutions addressed. The table distinguishes between non-technical 
approaches—such as awareness training, human verifcation, and governance policies—and 
technical solutions, including machine learning, natural language processing, checksums, cryp-
tographic techniques, intrusion detection systems, and frewalls. This classifcation enables a 
clearer comparison of the methodological diversity and focus areas within existing BEC research. 

3.3 Authorship Verifcation (AV) Literature 

AV asks whether two texts were produced by the same writer when the set of possible authors is 
open. The task underpins a wide range of high-stakes applications—from forensic linguistics and 
plagiarism detection to continuous user authentication in cyber-defence systems. In Business-
E-mail-Compromise (BEC) scenarios, AV is especially valuable: attackers obfuscate malicious 
intent by borrowing the lexical habits and tonal cues of executives or suppliers, defeating rule-based 
spam flters that look only for links, attachments, or header anomalies. 

Historically, progress in AV has mirrored the broader evolution of NLP. Tabel 3.4 (page 33) 
compiles representative studies across three eras—traditional, hybrid, and modern—and highlights 
the steady move from handcrafted stylometry towards deep, context-rich representations. 

3.3.1 Traditional Era: Hand-engineered Stylometry 

Early systems treated style as a stable set of surface cues. Common feature spaces included 
character or word �-grams, function-word frequencies, punctuation profles, and vocabulary-
richness indices Ruder et al. (2016); Abbasi and Chen (2005). Simple distance measures such 
as the out-of-place �-gram metric Kešelj et al. (2003) or Burrows’s Delta Burrows (2002) 
were paired with linear classifers—most notably SVMs and Naïve Bayes—to yield respectable 
accuracy on homogeneous corpora. However, these models degraded sharply when topic, genre, 
or document length varied, a weakness that limits their usefulness for short, domain-specifc 
e-mail. 

3.3.2 Hybrid Era: Statistical Learning with Shallow Embeddings 

To bridge the gap between rigid stylometry and fully learned representations, researchers began 
to combine lightweight feature extraction with statistical learning. Profle-based dissimilarity 
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✓
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measures Potha and Stamatatos (2014) and compression-distance kernels Halvani et al. (2017) 
removed manual feature weighting, boosting robustness across languages while remaining 
computationally light. Recurrent architectures such as multi-headed RNN auto-encoders Bagnall 
(2015) captured sequential context, but still required elaborate hyper-tuning and struggled with 
very short texts typical of BEC mail. 

3.3.3 Modern Era: Deep and Transformer-based Models 

State-of-the-art systems now view AV as a representation-learning problem. Siamese and 
contrastive networks learn to project text pairs into a latent space where “same-author” instances 
cluster tightly while “diferent-author” pairs repel Araujo-Pino et al. (2020); Tyo et al. (2021). 
Transformer encoders supply the linguistic backbone: BERTAA fne-tunes BERT to push cross-
topic AUC to 0.89 on Enron/IMDb data Fabien et al. (2020); Longformer adds global-window 
attention to handle 4 000-token novels with a 5-point accuracy boost over vanilla BERT Ordoñez 
(2020). Open-set variants with XLNet gating halve false-positive rates when previously unseen 
authors appear Peng (2021). The cost of these gains is increased model size, inference latency, 
and a risk of topic leakage. 

3.3.4 Comparison of AV Methods 

To better understand the progress in AV research, Table 3.4 summarizes the key methods, their 
advantages, and limitations. 

Table 3.4: Representative studies on authorship-verifcation (AV) techniques. 

Study Era Doc. type† Model / Technique Headline result Main strengths Key limitations 
Kešelj et al. 
(2003) 

Traditional E-mail, 
short 

Out-of-place character 
�-gram distance 

>90% accuracy on 
Enron 

Fast, no training Breaks with topic 
drift 

Koppel and 
Schler (2004) 

Traditional Essays, 
long 

Function-word SVM 
(“unmasking”) 

≈85% on essays Interpretable weights Poor cross-domain 
generalization 

Potha and 
Stamatatos 
(2014) 

Traditional Mixed, 
short 

Profle-based distance 
(PAN-AV’14 winner) 

Top ranked, good 
precision 

Lightweight Low recall on long 
docs 

Halvani et al. 
(2017) 

Hybrid Mixed Compression-distance 
kernel 

+8 F1 over Delta on 
PAN-AV’17 

No features; 
language-agnostic 

High memory use 

Bagnall (2015) Hybrid Blogs, long Multi-headed RNN 
autoencoder 

≈88% correct Sequential context 
learned 

Expensive training 

Araujo-Pino et al. 
(2020) 

Modern PAN email, 
short 

Siamese CNN on char 
�-grams 

≈80% in PAN-20 Learns similarity Sensitive to padding 

Fabien et al. 
(2020) 

Modern Enron / 
IMDb 

BERTAA (BERT + 
MLP) 

AUC ≈0.89 Deep context; 
minimal features 

Large, slow; may 
overft topics 

Ordoñez (2020) Modern Novels, 
long 

Longformer +5% over BERT on 4k 
tokens 

Handles long input Depends on 
partitioning 

Tyo et al. (2021) Modern Corp. 
Email, 
short 

Siamese RoBERTa 78% on corporate 
email 

Strong for formal 
text 

Needs careful tuning 

Peng (2021) Modern Blogs, 
mixed 

XLNet + open-set gating Halves false positives 
on new authors 

Handles unseen 
authors 

Very 
compute-intensive 

†Short ≈ 500 tokens or fewer; Long = multi-paragraph/multi-doc. 
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3.4 Multi-Task Learning (MTL) Literature 

Multi-Task Learning (MTL) has proven efective in various NLP applications where related tasks 
can reinforce one another. For example, Plaza-Del-Arco et al. (2021) demonstrated that sharing 
a BERT encoder across hate-speech detection, sentiment analysis, and emotion classifcation 
improved performance on low-resource hate-speech benchmarks by leveraging afective cues. 
Similarly, Qu et al. (2022) combined text–hashtag semantic matching with informativeness 
detection to identify hashtag hijacks in social media, reducing false positives by forcing the shared 
encoder to learn both topical alignment and pragmatic intent. 

In the domain of deception, Kumari et al. (2021) used MTL to fuse fake-news detection with 
novelty detection and emotion recognition, showing that auxiliary “novelty” and “emotion” tasks 
improved overall accuracy. Likewise, Choudhry et al. (2022) jointly predicted emotion and 
rumor legitimacy, achieving better cross-domain generalization. Jing et al. (2021) extended 
MTL to multimodal fake-news classifcation by integrating text, images, and comment-sentiment 
variance—though its reliance on social-media metadata limits direct applicability to email. 

3.5 Literature Critique and Research Gaps 

A critical review of the literature on BEC, AV, and MTL reveals consistent gaps that shape the 
scope and direction of this thesis. While important advances have been made, the state of the art 
remains fragmented and limited in several respects. 

From a BEC perspective, most technical approaches rely heavily on metadata analysis (e.g., 
headers, sender reputation, SPF/DKIM checks). These signals, while useful in detecting spoofed 
domains, are inefective in account-compromise scenarios where malicious emails are sent from 
legitimate infrastructure. Content-driven approaches are comparatively underexplored, and those 
that exist often emphasize shallow semantic features without deeper stylistic analysis. On the 
non-technical side, measures such as user training and policy frameworks are frequently proposed 
but lack rigorous empirical evaluation and are rarely integrated with technical detection systems. 

AV has been widely studied in domains such as social media and academic texts, with both 
stylometric and neural approaches demonstrating promising results. However, AV has seldom 
been applied in enterprise email contexts, despite its direct relevance to impersonation-based 
attacks. Existing work typically focuses on closed-set author identifcation or small-scale corpora, 
overlooking adversarial conditions such as mimicry, where attackers intentionally imitate writing 
styles. 

MTL has proven efective across many NLP tasks by enabling shared representations, improving 
generalisation, and reducing inference costs. Yet, its use in cybersecurity is still limited, and no 
prior research has explored combining BEC detection with AV in a single framework. This leaves 
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unexplored the potential synergies between semantic fraud detection and stylistic author profling, 
which could strengthen defences against impersonation-driven attacks. 

Based on the analysis, four core gaps in the existing literature are identifed: 

• Lack of task-specifc taxonomies: Unlike phishing or spam, BEC lacks a standardised 
classifcation scheme. This hinders consistent comparison across studies and obscures the 
true coverage of existing defence strategies. 

• Over-reliance on metadata artifacts: Most BEC detection methods depend on mutable 
features such as email headers or domain verifcation. These approaches fail under account-
compromise conditions where attackers send messages from authentic infrastructure. 

• Absence of enterprise-focused AV research: Existing AV studies rarely address enterprise 
email communication or adversarial settings. Few works consider mimicry attacks, where 
attackers emulate stylistic patterns of legitimate users, leaving a critical gap for BEC 
defence. 

• Limited exploration of joint-task learning: While MTL is established in NLP, it has not 
been applied to cybersecurity tasks such as BEC and AV. No prior work has examined how 
semantic and stylistic tasks can be modelled together in a unifed framework to improve 
accuracy and efciency. 

• Dataset scarcity for impersonation-based BEC: Public datasets such as Enron and TREC 
support general email classifcation but do not capture adversarial impersonation. There is 
a lack of realistic, labelled corpora that include both legitimate and mimicry-style BEC 
attacks. 

Bridging the Gaps 

This thesis directly addresses these gaps: 

• Chapter 5 introduces a fve-axis taxonomy covering anatomy, methodology, target, counter-
measure, and challenge, providing a structured lens for analysing BEC. 

• Chapter 6 details the creation of a synthetic dataset tailored to impersonation-based BEC, 
incorporating semantic deception and stylistic mimicry for realistic evaluation. 

• Chapter 7 presents a transformer–BiLSTM detector that focuses on lexical, syntactic, and 
semantic cues, reducing dependence on mutable metadata. 

• Chapter 8 develops BiBERT-AV, a Siamese network designed for enterprise emails, which 
learns stylistic signatures and detects inconsistencies under mimicry scenarios. 

• Chapter 9 proposes a novel MTL framework that jointly models BEC detection and AV, 
leveraging shared representations to enhance performance and reduce inference cost. 
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3.6 Chapter Summary 

This chapter surveyed the current state of Business E-mail Compromise (BEC) defence in order 
to answer SRQ1: What approaches currently exist for detecting BEC attacks, and what are their 
respective strengths and limitations? The literature divides naturally into technical and non-
technical counter-measures. Technical proposals range from rule-based checksums and header 
verifcations to recent transformer-based classifers that inspect message content; non-technical 
measures encompass employee-awareness training, human verifcation steps, and governance 
policies for high-value transactions. A comparative table showed that, while machine-learning 
methods now dominate academic work, many commercial products still depend almost exclusively 
on metadata signals (SPF, DKIM, IP reputation). 

In parallel, the review catalogued the publicly and privately available datasets (Enron, TREC, 
BEC-Guard, simulated corpora) and highlighted persistent data issues: scarcity of labelled BEC 
examples, class imbalance, and privacy constraints. 

The absence of a shared classifcation scheme is the most fundamental barrier, because it prevents 
cumulative progress and obscures the true coverage of existing defences. The next chapter 
therefore introduces a fve-axis BEC taxonomy that standardises terminology across anatomy, 
methodology, target, counter-measure, and detection challenge. This taxonomy provides the 
conceptual scafold on which the thesis builds its subsequent detection models and evaluation 
protocols. 
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Chapter 4 

Research Methodology 

This chapter presents the research methodology employed to address the thesis objectives and 
sub-research questions. The thesis adopts a mixed-methods approach, integrating quantitative 
experimentation with qualitative thematic analysis. As discussed by Creswell and Clark (2017), 
this form of methodological triangulation enhances the validity, reliability, and interpretive 
richness of the fndings. Figure 4.1 outlines the four research phases. 

Phase 4: Multi-Task Learning (MTL) Framework (Q5) Phase 3: Authorship Verifcation (Q4) Phase 2: Transformer-Based BEC Detection (Q3) 

Finalization 

Systematic Review of BEC Detection 

Developing a Taxonomy 
for BEC Attacks 

Identifying Research Gaps 

Phase 1: Understanding BEC Attacks (Q1-2) 

Developing Transformer-Based 
Model for BEC Detection 

Dataset Preparation 

Model Evaluation 
and Results 

Literature Review on 
Authorship Verifcation 

Developing Siamese Network 
for AV Detection 

Model Evaluation 
and Results 

Dataset Creation 
(Original, Mimicked, 

BEC-Infected) 

Developing MTL Model 
for BEC & AV 

Model Evaluation 
and Results 

Final Conclusion 
and Future Work 

Thesis Writing 

Figure 4.1: Research Phases 

4.1 Research Methods Overview 

Research methods were selected based on the nature of each sub-research question (SRQ) and the 
characteristics of the data involved. This thesis primarily relies on: 

• Quantitative methods: for model development, experimentation, and evaluation. 

• Qualitative methods: for literature review, taxonomy construction, and gap identifcation. 

• Mixed-methods integration: for triangulation and methodological complementarity. 



38 Chapter 4. Research Methodology 

4.1.1 Quantitative Methods 

Quantitative methods were central to Phases 2–4, involving experimental validation of transformer-
based models across multiple tasks. These experiments adhered to the following process: 

1. Defning research questions and experimental goals. 

2. Selecting datasets, baseline models, and performance metrics. 

3. Implementing models (BEC detection, AV, and MTL). 

4. Conducting comparative evaluation. 

5. Interpreting and documenting results. 

4.1.2 Qualitative Methods 

Qualitative analysis was employed during Phase 1 to synthesize existing literature and extract 
conceptual insights. Thematic analysis informed the development of a fve-axis taxonomy for 
BEC attacks and highlighted underexplored areas Taylor (2005). 

4.1.3 Mixed-Methods and Triangulation 

An embedded sequential mixed-methods design was followed Lister (2005). Qualitative insights 
from Phase 1 informed subsequent quantitative experimentation. Triangulation across methods 
and datasets enhanced the robustness and credibility of fndings Cohen (2007); Runeson and Höst 
(2009). 

4.2 Research Paradigm 

This thesis adopts a pragmatic research paradigm, allowing for methodological fexibility and 
prioritizing practical problem-solving in the cybersecurity context Creswell and Clark (2017). 
This aligns with the thesis goal of developing deployable and interpretable models for BEC 
detection and authorship verifcation. 

4.3 Detailed Research Phases 

The thesis is organized into four sequential phases, each mapped to a sub-research question. 
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4.3.1 Phase 1: Systematic Understanding of BEC 

SRQ1: What approaches currently exist for detecting BEC attacks, and what are their respective 
strengths and limitations? 

SRQ2: How can BEC attacks be systematically categorized to support efective detection and 
prevention strategies? 

A systematic literature review was conducted following PRISMA guidelines Kitchenham and 
Charters (2007). A novel taxonomy was developed and validated through real-world case studies, 
framing the research scope and identifying design constraints for the models proposed in later 
phases. 

4.3.2 Phase 2: Transformer-Based BEC Detection 

SRQ3: How efective are transformer-based classifers for phishing text-based attacks, and to 
what extent do they generalise to impersonation-driven phishing text-based attacks when only 
email body content is available? 

This phase involved designing a transformer–BiLSTM hybrid architecture, comparing it to tradi-
tional baselines on real and synthetic datasets. Emphasis was placed on detecting impersonation 
attacks without reliance on metadata. 

4.3.3 Phase 3: Siamese Network for Authorship Verifcation 

SRQ4: How do transformer-based Siamese networks perform in authorship verifcation of 
business emails compared to traditional stylometric methods? 

A BiBERT-AV architecture was proposed, using paired input structures to assess stylistic 
similarity. Evaluation was conducted on mimicry and non-mimicry scenarios to validate the 
model’s robustness. 

4.3.4 Phase 4: Multi-Task Learning (MTL) Framework 

SRQ5: How does integrating BEC detection and authorship verifcation in a single system afect 
overall accuracy and operational cost? 

This phase introduced a unifed MTL framework with a shared encoder and task-specifc heads. 
Joint training was expected to improve generalization and reduce computational redundancy. The 
model was benchmarked against sequential transfer learning and single-task baselines. 
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4.4 Research Question–Method–Outcome Mapping 

Table 4.1 summarizes the alignment between each research phase, its associated research question, 
methodological approach, and key outcome. 

Table 4.1: Mapping of research questions, methods, and outcomes 

Phase RQ Methods Outcomes 

1 SRQ1–2 Systematic review, thematic analysis BEC taxonomy, research gaps 

2 SRQ3 Transformer-based experimentation BEC detection model, comparative 
results 

3 SRQ4 Siamese transformer network AV model, mimicry robustness 

4 SRQ5 MTL training, ablation studies Joint framework, performance im-
provement 

Dataset Note. A custom synthetic dataset was developed to support Phases 2–4. Details are 
provided in Chapter 6. 

4.5 Unifed Experimental Setup 

To ensure comparability across experiments, a standardized setup was adopted as follow: 

4.5.1 Implementation 

All models were implemented in Python (v3.9–3.11) using PyTorch Paszke et al. (2019), Hugging 
Face Transformers Wolf et al. (2020), and scikit-learn Pedregosa et al. (2011). BERT variants 
were used with default tokenizers and maximum input length of 256. 

4.5.2 Hardware 

Most experiments were run on an NVIDIA A100; initial AV runs used an NVIDIA P100. 

4.5.3 Data Splitting and Preprocessing 

All datasets were split into 70% training, 10% validation, and 20% testing. This split ratio is 
widely used in supervised learning research to ensure a sufcient volume of training samples for 
deep models, while maintaining reliable validation and unbiased test sets Deng and Liu (2018). 

https://v3.9�3.11
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The 10% validation portion is used for early stopping and hyperparameter tuning, and the fnal 
evaluation is conducted on the held-out 20% test set. 

Email body preprocessing included: 

• Removal of headers, signatures, URLs, HTML, and non-alphabetic characters. 

• Lowercasing and tokenization using BERT’s tokenizer. 

• Dynamic padding and truncation. 

4.5.4 Training Settings 

All models were trained for up to 10 epochs using: 

• AdamW optimizer with learning rate 2 × 10−5 

• Batch size: 32 

• Dropout: 0.3 

• Early stopping on validation loss 

4.5.5 Evaluation Metrics 

Standard classifcation metrics were applied throughout: 

�� +�� �� 
Accuracy = , Precision = ,

�� +�� + �� + �� �� + �� 

�� Precision · Recall 
Recall = , F1-score = 2 ·

�� + �� Precision +Recall
, 

∫ 1 ( )�� 
False Positive Rate (FPR) = , AUC = TPR FPR−1 (�) ��. 

�� +�� 0 

For authorship verifcation, predictions were based on a decision threshold applied to similarity 
scores. Metrics were computed accordingly. 
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4.6 Chapter Summary 

This chapter described the research paradigm, methodological phases, and experimental design. 
A mixed-methods approach underpins the thesis, combining systematic review, transformer-based 
experiments, and integrated evaluation metrics. The next chapter presents the transformer-based 
BEC detection experiments. 
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Chapter 5 

The Proposed BEC Taxonomy 

Introduction 

BEC difers markedly from traditional phishing in both strategy and execution. Rather than 
relying on generic deception or malicious links, BEC campaigns employ tailored impersonation, 
social-engineering scripts, and linguistically crafted requests that appear credible to their targets. 
These characteristics vary widely across incidents, complicating eforts to compare studies, share 
threat intelligence, or develop robust, generalisable defences. 

As discussed in Chapter 3, previous literature has explored isolated aspects of BEC—such as 
impersonation tactics or fnancial fraud vectors—but lacks a unifed, structured taxonomy that 
systematically captures the full range of observed behaviours. The absence of a standardised 
classifcation framework limits both academic progress and practical application in the feld. 

The aim of this chapter is to fll that gap by proposing a comprehensive taxonomy specifcally 
designed for BEC. This taxonomy supports systematic categorisation, enhances conceptual clarity, 
and provides a foundation for designing better detection models and response strategies. 

Objectives of this chapter: 

• Introduce a fve-axis taxonomy that captures the full complexity of BEC incidents, including 
their forms, tactics, intended targets, mitigation strategies, and detection challenges. 

• Facilitate a deeper understanding of BEC behaviour to support the design of more efective 
prevention and detection mechanisms. 

• Ofer a structured reference for future research and operational defence systems in the 
domain of e-mail-based fraud. 

0This chapter is based on the publication: Almutairi, A. M., Kang, B., & Al Hashimy, N. (2024). Business Email 
Compromise: A Comprehensive Taxonomy for Detection and Prevention. In Proceedings of the 7th International 
Conference on Information Science and Systems (ICISS ’24), pp. 49–54. 
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This contribution directly addresses SRQ2: How can Business Email Compromise (BEC) attacks 
be systematically categorized to support efective detection and prevention strategies? 

To answer this question, the chapter introduces a fve-axis taxonomy derived from patterns in 
the systematic literature review (Chapter 3). The axes are deliberately orthogonal: who is being 
impersonated (persona) is distinct from what is being sought (objective), how it is attempted 
(operational technique), who is pressured to act (target), and how it is mitigated (countermeasures). 

1. Persona (Pretext): the claimed sender identity used to confer authority or familiarity (e.g., 
internal VIP, manager/colleague, vendor/partner, authority/regulator). 

2. Objectives (Outcomes): the business end-goal requested from the recipient (e.g., payment 
diversion, payroll/benefts diversion, data theft, commodity fraud, process abuse). 

3. Operational Techniques: the concrete tactics used to execute the scheme (e.g., identity 
deception without ATO, account takeover/EAC, conversation manipulation, payment-
instruction alteration, alternative-channel handof). 

4. Targets: the recipient/approver roles expected to act (e.g., AP/Finance/Treasury, executives 
and assistants, HR/Payroll, vendors/partners, IT/helpdesk). 

5. Countermeasures: technical and process controls aligned to the above axes (e.g., SPF/D-
KIM/DMARC with alignment, MFA and conditional access, OAuth restrictions, EAC 
detection, content analytics including authorship verifcation, URL/attachment protection, 
out-of-band verifcation, dual approval/segregation of duties, vendor-bank verifcation, 
role-tailored awareness and escalation). 

The following sections elaborate each axis in turn. 

5.1 Classifcation by Persona (Pretext) 

The claimed sender identity used to establish authority or familiarity: 

• Internal VIP (e.g., CEO/CFO), manager/colleague. 

• Vendor/customer/partner in the supply chain. 

• Authority/regulator (e.g., legal, auditor). 

5.2 Classifcation by Objectives (Outcomes) 

The business end-goal requested from the recipient: 
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5.2. Classifcation by Objectives (Outcomes) 
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• Payment diversion (e.g., fake invoice; vendor bank change). 

• Payroll/benefts diversion (salary redirection; benefts changes). 

• Data theft (HR/fnance records; deal documents). 

• Commodity fraud (gift cards; crypto purchases). 

• Process abuse (new-vendor creation; contract/approval changes). 

5.3 Classifcation by Operational Techniques 

Concrete tactics used to prosecute the scheme (avoiding generic labels that apply to most BEC): 

• Identity deception (no ATO): display-name spoofng; lookalike/homoglyph domains; 
free-mail aliases; Reply-To mismatch. 

• Account takeover (EAC): credential theft; OAuth consent abuse; MFA fatigue/prompt 
bombing. 

• Conversation manipulation: thread hijacking/reply-chain insertion; urgency/confdential-
ity framing; staged approvals. 

• Payment-instruction alteration: benefciary/account update; invoice/PO forgery; portal/-
mandate change. 

• Alternative-channel handof: phone/IM continuation to bypass email controls. 

5.4 Classifcation by Targets 

Recipient/approver roles expected to act: 

• AP/Finance/Treasury and Procurement/vendor master. 

• Executives and executive assistants. 

• HR/Payroll. 

• Vendors/partners (supply chain). 

• IT/Helpdesk (e.g., MFA resets; OAuth approvals). 

5.5 Classifcation by Countermeasures 

A layered posture combines technical and organisational controls aligned to the above axes. 
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Technical 

• Email authentication: SPF/DKIM/DMARC with alignment/enforcement (optionally 
MTA-STS/BIMI). 

• Identity controls: MFA; conditional access; OAuth application restrictions. 

• EAC detection: device/geo risk, heuristics, mailbox-rule/behavioural signals. 

• Content analytics: NLP-based intent/risk cues and authorship verifcation; URL/attach-
ment protection. 

Organisational 

• Out-of-band verifcation and dual approval/segregation of duties. 

• Vendor onboarding/changes: bank verifcation; Confrmation of Payee. 

• Role-tailored awareness and clear escalation/reporting paths. 

5.6 Validation of the Taxonomy 

Descriptive power is a widely used approach for validating taxonomies Nickerson et al. (2013) 
and has been applied to phishing Garera et al. (2007) and threat intelligence Tounsi and Rais 
(2018) in cybersecurity contexts. We therefore assess whether the proposed axes cleanly and 
completely describe real BEC incidents. 

5.6.1 Case Study 1: Treasure Island Homeless Charity 

Overview. In June 2021, Treasure Island, a San Francisco–based homelessness charity, sufered 
a BEC loss of $625,000. Attackers gained access to the bookkeeper’s mailbox and manipulated a 
legitimate vendor invoice, leading to funds being diverted to an attacker-controlled account Tessian 
(2021). 

Taxonomy mapping. 

• Persona (Pretext): Vendor/partner (invoice origin); internal colleague (bookkeeper) 
context enabled by EAC. 

• Objectives (Outcomes): Payment diversion (benefciary/bank-account change on a legiti-
mate invoice). 

• Operational Techniques: Account takeover (EAC); conversation manipulation via thread 
hijacking/reply-chain insertion; payment-instruction alteration (benefciary/account update). 
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• Targets: AP/Finance (bookkeeping/treasury staf executing payments). 

• Countermeasures: Identity controls (MFA, conditional access) and EAC detection; content 
analytics for payment-intent cues; out-of-band payee verifcation and dual approval/segre-
gation of duties; vendor-bank verifcation (e.g., Confrmation of Payee). 

5.6.2 Case Study 2: Insurance Broker Firm 

This case study applies the proposed taxonomy to a real incident involving an insurance broker, 
as documented by Kroll (2021). The broker’s environment was compromised and then used to 
solicit a fraudulent payment from a client. 

Overview. An attacker obtained broker credentials via phishing and, six weeks later, used the 
compromised mailbox to request that a client redirect nearly £300,000 to an alternative account. 
The attempt was detected before funds were transferred Kroll (2021). 

Taxonomy mapping. 

• Persona (Pretext): Vendor/partner (the broker, communicating with its client). 

• Objectives (Outcomes): Payment diversion (alternate benefciary/bank account). 

• Operational Techniques: Account takeover (EAC) enabled by credential harvesting; 
conversation manipulation (reply-chain use within an existing relationship); payment-
instruction alteration (benefciary/account update). 

• Targets: External partner—client AP/Finance team responsible for payment execution. 

• Countermeasures: Identity controls (MFA, conditional access, OAuth restrictions) and 
EAC detection; content analytics for payment-intent cues; process controls including out-of-
band payee verifcation, dual approval/segregation of duties, and bank-account verifcation 
(e.g., Confrmation of Payee); post-incident forensics for scoping and hardening. 

5.7 Chapter Summary 

This chapter introduced an orthogonal, fve-axis taxonomy for Business Email Compromise 
comprising Persona (Pretext), Objectives (Outcomes), Operational Techniques, Targets, and 
Countermeasures. This taxonomy provides the conceptual foundation for the detection models 
developed in subsequent chapters. 
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Chapter 6 

Synthetic Dataset Creation 

6.1 Introduction 

Business Email Compromise (BEC) research faces an immediate obstacle: there is no open 
collection of genuine BEC e-mails. Incident reports and raw messages are typically protected by 
non-disclosure agreements or privacy law, preventing their release and, by extension, hindering 
reproducible experimentation. Multiple attempts to obtain real-world samples—from researchers, 
security vendors, and enterprise contacts—were unsuccessful due to the legal sensitivity and 
confdentiality of such incidents. 

Because no authentic BEC datasets are openly available, researchers typically rely on general-
purpose email corpora such as Enron or anti-spam benchmarks (CEAS, TREC, LingSpam). 
Although these collections are sizeable, they weren’t built to capture the impersonation tactics, 
organisational role dynamics, and high-stakes payment pressure that defne BEC attacks. Table 6.1 
lists studies that have used this workaround. 

Table 6.1: Examples of studies that substituted public email sets for real BEC data. 

Study Corpora used Focus 

Maleki (2019) Enron folders Stylistic BEC detection 
Cidon et al. (2019) Live mail + Enron Production BEC flter 
Xiao and Jiang (2020) TREC’06p, fraud letters Spam/phish fltering 
Brabec et al. (2023) TREC’07 + custom phishing Modular BEC detection 
Alguliyev et al. (2024) LingSpam, Enron-Spam, TREC’07 BERT/BiGRU BEC study 

To address this gap, we built a synthetic email dataset that mirrors common BEC attack patterns. 
The generation process started with a small set of real BEC incidents and then fne-tuned a LLM 
model on the Enron corpus and real BEC samples so the output sounds like ordinary business 
mail. This gives us the main wording, structure, and impersonation hints seen in real attacks, 
even though the full operational context is not present. 
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Our aim is to support research in both BEC detection and authorship verifcation and includes 
three major components: 

• The three most prevalent BEC attack types, as identifed in our literature review and 
taxonomy chapter: Bogus Invoice, CEO Fraud, and Account Compromise. 

• Benign emails that mimic the writing style of real users, to simulate challenging authorship 
verifcation cases. 

• Impersonation-based BEC messages, which combine deceptive content with style mimicry—arguably 
the most difcult class of BEC threats to detect. 

The remainder of this chapter addresses the dataset construction process in response to the data 
availability challenges outlined above. Section 6.2 outlines the methodology used to build a 
task-aligned email corpus. Section 6.3 discusses the ethical and legal considerations guiding its 
development. Finally, Section 6.4 refects on the dataset’s limitations and proposes directions for 
future extension. 

6.2 Methodological Pipeline 

To address the scarcity of accessible BEC datasets, we developed a structured pipeline for 
generating a synthetic corpus that combines semantic deception and stylistic impersonation. 
This pipeline integrates real-world seeds, transformer-based text generation, and multiple layers 
of quality control. Figure 6.1 illustrates the structured pipeline that underpins this dataset in 
nine-stage process: 

6.2.1 Step 1: Data Sources 

We collected 21 real BEC emails from publicly available sources, including threat intelligence 
reports, academic papers, and security blogs. These samples served as seed examples for 
generating synthetic BEC messages. 

For benign communication and authorship modelling, we used the Enron Email Dataset, a widely 
adopted corporate email corpus. We selected fve authors who had each sent more than 1,000 
emails to ensure sufcient data and stylistic consistency. Emails were extracted from the respective 
sender folders. 

6.2.2 Step 2: Preprocessing 

All emails were preprocessed using standard text-cleaning steps. This included removing headers, 
signatures, URLs, and HTML tags. The text was then lowercased, and punctuation was normalized 
to prepare the content for model input and subsequent stylistic analysis. 
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1. Data Sources 
Real BEC Emails 

Enron Dataset 

2. Preprocessing 
Cleaning, Normalization, Filtering 

3. Pilot Study 
GPT-4 vs. LLaMA vs. BERT-Gen 

BLEU & ROUGE 

4. Prompt Design for Generation 
Scenario-Based Prompts 

5. Model Setup and Fine-Tuning 
LoRA + Mixed Sources 

6. Synthetic Generation 
Emails per Task Type 

7. Quality Control 
BLEU/ROUGE + Human Review 

8. Corpus Integration 
CEAS08, TREC07, LingSpam 

9. Final Dataset 
Balanced, Validated Corpus 

Figure 6.1: Overview of the dataset generation pipeline. 

6.2.3 Step 3: Pilot Study – Model Selection 

To identify the most suitable language model for generating realistic BEC-style emails, we 
conducted a pilot study comparing GPT-4, LLaMA, and BERT-generation models. The 
comparison was based on 21 seed emails. Our goal was to evaluate which model best replicates 
the lexical and structural patterns observed in real messages. 

We used BLEU and ROUGE-L scores to measure the similarity between the generated emails 
and their reference seed emails: 
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• BLEU (Bilingual Evaluation Understudy) — Measures n-gram precision, indicating how 
well the generated text preserves the original lexical content. 

• ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation) — Measures the 
longest common subsequence between texts, refecting structural similarity. 

For each seed email, we generated 50 variants using each model and calculated the average BLEU 
and ROUGE-L scores. This provided a consistent way to compare how closely each model could 
emulate the style and structure of the reference emails. 

Table 6.2 shows the results across increasing numbers of seed prompts. LLaMA consistently 
achieved the highest scores, demonstrating better lexical fdelity and structural similarity than the 
other models. 

Table 6.2: Average BLEU and ROUGE-L scores across seed ranges (higher is better). 

# Seeds Model BLEU ROUGE-L 

0–5 GPT-4 
LLaMA 

BERT-Gen 

0.0004 
0.046 
0.006 

0.030 
0.038 
0.020 

0–10 GPT-4 
LLaMA 

BERT-Gen 

0.0015 
0.046 
0.008 

0.034 
0.043 
0.024 

0–15 GPT-4 
LLaMA 

BERT-Gen 

0.0033 
0.026 
0.007 

0.037 
0.048 
0.028 

0–21 GPT-4 
LLaMA 

BERT-Gen 

0.0041 
0.011 
0.007 

0.039 
0.053 
0.032 

Figure 6.2: Distribution of BLEU and ROUGE-L scores for LLaMA. 
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The decision to use LLaMA was based on its consistent performance across all seeds using 
well-established metrics. These scores provided a practical and scalable way to estimate how well 
each model could replicate the lexical and structural characteristics of real BEC messages. 

6.2.4 Step 4: Model Setup and Fine-Tuning 

We fne-tuned LLaMA using Low-Rank Adaptation (LoRA) for parameter-efcient adaptation. 
Fine-tuning was carried out separately for two subtasks: (a) BEC scenario generation (from the 21 
seed frames), and (b) authorship mimicry (per-author, Enron-based) (from the 1000 seed frames). 

Parameter-efcient setup. Only adapter weights were trained; base model weights were 
frozen. LoRA targeted attention projections (q_proj, k_proj, v_proj, o_proj). 

Table 6.3: Fine-tuning confguration. 

Setting Value 

Max input length 256 tokens 
Batch size 16 
Optimizer & LR AdamW, 2 × 10−4 (adapters only) 
Weight decay / betas 0.0 / (0.9, 0.999)
Epochs / early stop 3 (BEC), 2 (per-author mimicry) / dev perplexity 
LoRA rank � / � / dropout 8 / 16 / 0.1 

6.2.5 Step 5: Prompt Design for Generation 

After fne-tuning LLaMA, we designed a set of hand-crafted prompts to refect common Business 
Email Compromise (BEC) scenarios. These prompts were manually written based on insights 
from real BEC incidents and crafted to simulate authentic business communication. 

All synthetic emails in the BEC and authorship mimicry subsets were generated using these 
manually curated prompts. Each prompt was written to simulate either a benign corporate email 
or a malicious message aligned with known BEC strategies. For example: 

“Compose a formal email requesting a wire transfer due to a last-minute 

invoice adjustment.” 

For style-controlled samples, prompt templates included explicit instructions related to both the 
communicative goal (e.g., request for payment) and the stylistic identity of the sender (e.g., “in 
the style of Author 3”). This allowed the generated emails to exhibit both semantic relevance and 
stylistic fdelity. 
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We adopted a traditional manual prompt engineering approach—commonly referred to as hand-
crafted prompting—which prioritizes interpretability and control over scalability. This contrasts 
with prompt optimization techniques that automatically refne prompt content based on objective 
functions or feedback signals. 

6.2.6 Step 6: Synthetic Email Generation 

Following fne-tuning, the LLaMA model was used to generate large-scale synthetic samples 
across multiple scenarios, including BEC attacks, authorship mimicry, and impersonation. For 
each scenario, prompts were designed to produce diverse outputs by varying tone, structure, and 
wording, while maintaining the core intent of the message. 

The resulting dataset consists of four main subsets: 

• BEC Dataset Generation, generated from real-case seeds and designed to refect common 
threat scenarios; 

• Integration of Phishing Corpora, integrated from established corpora to introduce 
additional variation; 

• Authorship Mimicry Dataset, where the model emulates the writing style of selected 
Enron authors; 

• Impersonation-Based BEC Generation, which combine deceptive intent with author-
specifc style to simulate complex attack cases. 

All subsets were generated using the fne-tuned LLaMA model, and describe as follow:. 

6.2.6.1 (i) BEC Dataset Generation 

We used 21 real BEC incidents—sourced from public research papers, blogs, and reports—as the 
foundation for generation. For each incident, the model was prompted to generate 50 realistic 
variants, resulting in a total of 1,050 synthetic BEC emails. 

Prompts were crafted to refect typical BEC themes, including: 

• urgent fnancial requests sent by executive impersonators; 

• follow-ups regarding vendor payment; 

• confrmations of fctitious transactions or account changes. 

Each prompt was written to preserve professional tone and embed common social engineering 
features (e.g., urgency, authority, and impersonation). Outputs with low BLEU or ROUGE scores 
were discarded and regenerated to maintain stylistic quality and coherence. 
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6.2.6.2 (iii) Authorship Mimicry Dataset 

To simulate style-based threats, we constructed an authorship mimicry dataset by fne-tuning 
LLaMA individually on fve Enron authors. Authors were selected based on having authored at 
least 1000 unique emails to ensure stylistic consistency. 

Fine-tuning for each author was performed independently using LoRA. Prompt templates then 
guided the model to generate realistic business communications in each author’s distinctive 
style, covering a range of corporate topics. This subset supports the authorship verifcation task 
by providing examples of stylistic imitation. A total of 5,000 emails (1,000 per author) were 
generated. 

6.2.6.3 (iv) Impersonation-Based BEC Generation 

This subset builds on the authorship mimicry task by generating emails that incorporate both an 
author’s writing style and the deceptive intent of a BEC attack. To create this subset, we reused 
the author-specifc LLaMA checkpoints trained in the mimicry stage. Prompts were designed to 
inject BEC-specifc semantics into stylistically accurate messages. For example: 

“Write an email in the style of Author 2 requesting an urgent wire 

transfer to a vendor.” 

Prompts were written to preserve stylistic coherence while embedding typical BEC themes such 
as urgency, authority, and fnancial requests. Importantly, all content was fully generated by 
the model—no real emails were copied or reused—to maintain originality and avoid privacy 
concerns. 

To promote diversity, prompt templates were rotated and varied in tone, phrasing, and scenario 
type (e.g., CEO fraud, bogus invoice, account compromise). Each of the fve authors contributed 
1,000 samples, resulting in 5,000 impersonation-based BEC emails in total. 

Any weaknesses in novelty were mitigated by BLEU/ROUGE fltering in the quality control 
phase. 

6.2.7 Step 7: Quality Control 

The quality of the generated emails was assessed through a combination of automatic scoring 
and human validation. BLEU and ROUGE-L were used as initial flters to evaluate lexical and 
structural similarity to seed messages. Samples that fell below a predefned threshold were fagged 
and regenerated. 
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To further assess realism and plausibility, we conducted a manual evaluation on a subset of 50 
randomly selected LLaMA-generated emails. This sample was drawn from the broader synthetic 
BEC set and was not stratifed by specifc attack types (e.g., CEO fraud or bogus invoice), ensuring 
a general assessment of generation quality. 

Annotator Setup 

Two PhD students with a cybersecurity background independently annotated a random sample of 
50 LLaMA-generated emails using the checklist below. Before annotation, they reviewed two 
example items to align on defnitions; no labels were shared during scoring. 

Disagreement Resolution 

Annotators scored independently. If their labels difered, a designated adjudicator (frst PhD 
Student) reviewed the email and both checklists and applied the same four–item rule (≥ 3 items 
= BEC; ≤ 1 = non-BEC; exactly 2 = borderline). The adjudicator’s decision was fnal, and the 
chosen label plus a one-line rationale were recorded for all 50 items. 

Checklist Criteria 

Each email body should be evaluated against the following four text-based indicators. An email 
meeting three or more of these criteria is likely a BEC attempt. 

1. Authority Language 
Does the text claim to come from a high-ranking or authoritative role (e.g., “As the CFO, I 
need you to. . . ” or “This is a directive from our CEO”)? 

2. Unusual Financial Request 
Does the message ask for an atypical or suspicious payment, wire transfer, invoice update, 
or change in payment instructions? 

3. Urgency or Secrecy Cue 
Does the wording emphasize immediate action or strict confdentiality (e.g., “Act now, this 
cannot be shared,” “This is urgent, do not forward”)? 

4. Familiarity/Context Reference 
Does the text invoke inside information, previous conversations, project names, or role-
specifc details that a real insider would know (e.g., “As discussed in last week’s budget 
meeting. . . ”)? 
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Usage: Each item was rated independently. An email was classifed as a "convincing BEC" if it 
satisfed at least three of the four checklist items. Annotator disagreements were resolved using 
Disagreement Resolution; no third reviewer or arbitration process was used. 

Agreement Metrics 

Inter-rater agreement is reported in Table 6.4. We computed Cohen’s � to measure agreement 
beyond chance. The resulting value of approximately 0.69 indicates substantial agreement 
according to the Landis–Koch scale. 

Table 6.4: Inter-rater agreement on “convincing BEC” classifcation (� = 50). 

Rater B 
Rater A Positive Negative Total 

Positive 29 (58%) 3 (6%) 32 

Negative 4 (8%) 14 (28%) 18 

Total 33 (66%) 17 (34%) 50 

Relation to Automatic Filtering 

All emails selected for human evaluation had already passed automatic fltering based on BLEU 
and ROUGE-L scores. The purpose of manual validation was to verify whether the automatically 
accepted samples exhibited realistic BEC features. No additional fltering or regeneration was 
performed based on human annotation; rather, this step served to confrm the plausibility and 
relevance of the retained outputs. 

6.2.8 Step 8: Phishing Corpus Integration 

To enhance the diversity of malicious email formats and support broader generalization, we 
integrated phishing messages from three well-known public corpora: CEAS, TREC, and 
LingSpam. These datasets were added to supplement the synthetic BEC messages with varied 
phishing styles and content. 

Non-textual cues such as hyperlinks, attachments, and metadata were removed during preprocessing 
to ensure the dataset emphasizes linguistic and stylistic deception rather than surface-level 
indicators. 

This step complements our broader objective: to cover a wide range of BEC attack scenarios—from 
basic impersonation with generic fnancial requests to advanced cases that involve mimicking the 
target author’s writing style. By including both low-efort and highly personalized threats, the 
dataset supports robust model training across diferent levels of attacker sophistication. 
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6.2.9 Step 9: Final Dataset Packaging 

The fnal dataset combines synthetic BEC samples, authorship mimicry emails, impersonation-
based attacks, and real-world phishing and ham messages. This composition enables the training 
and evaluation of models that are sensitive to both textual content and writing style. 

The dataset is designed to support two main tasks: Business Email Compromise (BEC) detection 
and AV. To capture realistic communication patterns, the dataset includes overlapping writing 
styles across benign and malicious emails. While such overlap improves realism, strict data 
partitioning was enforced to prevent label leakage and ensure reliable evaluation. 

6.2.9.1 Subsets and Sources 

Below is a summary of the sources, roles, and sample counts for each dataset subset: 

• Real BEC (21 samples) — Manually collected from public incident reports, research 
articles, and cybersecurity blogs. 

• Synthetic BEC (1,050 emails) — Generated from the real-case seeds using LLaMA, 
covering key BEC scenarios such as CEO Fraud, Bogus Invoice, and Account Compromise. 

• Phishing Corpora — Messages from CEAS08, TREC07, LingSpam, and SpamAssassin 
were added to increase linguistic diversity and simulate basic phishing attacks. 

• Enron Authors (5,000 emails) — Extracted from the sender folders of fve prolifc Enron 
authors and used both for fne-tuning and as benign examples in BEC detection. 

• Authorship Mimicry (5,000 emails) — LLaMA-generated emails replicating the writing 
style of the fve selected authors, without embedding malicious intent. 

• Impersonation-based BEC (5,000 emails) — Generated by blending BEC attack scenarios 
with author-specifc writing style, representing more sophisticated forms of deception. 

This design allows for the exploration of both low-efort phishing detection and more complex 
impersonation-based threats. By combining semantic content and stylistic signals, the dataset 
provides a foundation for evaluating models under realistic adversarial conditions. 

6.3 Ethical and Legal Considerations 

No real individuals were explicitly modeled or referenced during the creation of this dataset. 
All generated emails were produced using synthetic identities and abstracted business scenarios. 
Prompts involving sensitive or legally ambiguous content—such as specifc fnancial institutions, 
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employee names, or real transaction records—were deliberately excluded to avoid ethical or legal 
concerns. 

The real BEC examples used as generation seeds were obtained from publicly available sources, 
including academic publications, security reports, and blogs. Only de-identifed, paraphrased, 
or obfuscated content was used during prompt design to ensure that no personally identifable 
information (PII) or confdential content was retained. 

This synthetic dataset was created exclusively for academic research. It does not simulate, 
promote, or encourage malicious behavior, and its intended use is to support the development and 
evaluation of defensive technologies in cybersecurity. 

Licensing requirements for all reused corpora—such as the Enron dataset, CEAS08, and other 
phishing corpora—were carefully reviewed and respected. Additionally, all LLaMA-based 
generation was performed using model versions that are explicitly permitted for research-only use. 

6.4 Conclusion 

This chapter has introduced a synthetic dataset tailored to the dual tasks of Business Email 
Compromise (BEC) detection and AV using NLP techniques. The dataset was constructed through 
a structured pipeline that combines real-case seed messages, prompt-based generation, LoRA 
fne-tuning on business-style corpora, and multi-stage quality control. By incorporating both 
semantic deception and stylistic mimicry, the dataset supports the evaluation of content-aware 
and style-sensitive models under a range of realistic threat conditions. 

The main contributions of this dataset include: 

• Coverage of key BEC scenarios—including CEO Fraud, Bogus Invoice, and Account 
Compromise—designed to refect common attack patterns; 

• Style-consistent benign and impersonation messages, enabling fne-grained evaluation 
of authorship-based defenses; 

• Integration of phishing corpora, supporting generalization beyond narrowly defned BEC 
threats; 

Limitations. Despite these contributions, several limitations should be acknowledged: 

• Limited scenario coverage: The dataset focuses on three BEC archetypes; other forms 
such as payroll redirection, gift card scams, or supply chain fraud are not included and 
remain avenues for future extension. 
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• Seed sample constraint: The generation process was based on 21 real BEC messages. 
Although carefully curated, this small pool limits lexical and rhetorical diversity. 

• Synthetic fdelity: While BLEU and ROUGE scores help flter outputs with poor surface 
overlap, they do not capture deeper semantic similarity or discourse coherence. More 
advanced metrics such as BERTScore or MAUVE will be considered in future releases. 

• Language and domain generalization: The dataset is English-only and based on a specifc 
corporate communication style (Enron). Multilingual and cross-industry generalization 
remains an open challenge. 

• Prompt diversity: Although multiple prompts were used, they were handcrafted and 
not optimized via systematic methods (e.g., reinforcement learning or prompt tuning), 
potentially limiting variability in the generated content. 

This dataset was developed to address the specifc requirements of the research presented in 
this thesis. However, its modular structure and accompanying documentation ofer a reusable 
foundation for broader investigations in content-based email security, authorship verifcation 
under adversarial conditions, and synthetic data generation methodologies. Future work may 
extend its applicability by introducing additional BEC archetypes, incorporating multilingual and 
cross-domain corpora, and leveraging more advanced generative models in collaboration with 
industry stakeholders. The fnal version of the dataset is publicly available for academic research 
purposes.1 

1Synthetic BEC Dataset: https://github.com/AmirahCoding/synthetic-bec-dataset 

https://github.com/AmirahCoding/synthetic-bec-dataset
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Chapter 7 

Transformer-Based Models for BEC 
Attack Detection 

7.1 Introduction 

Business Email Compromise (BEC) is among the most fnancially damaging forms of cyber-
enabled fraud Internet Crime Complaint Center (IC3) (2023). Unlike classical phishing, BEC 
messages rarely include obvious indicators (malicious URLs, macros, or attachments) and often 
succeed through impersonation and organizational pretexting. 

Chapters 3 showed that many defences rely on mutable metadata (SPF/DKIM alignment, IP 
reputation), and that content-only approaches are seldom stress-tested against impersonation. 
Accordingly, this chapter investigates a SRQ3: How efective are transformer-based classifers 
for phishing text-based attacks, and to what extent do they generalise to impersonation-driven 
phishing text-based attacks when only email body content is available? 

We address this by proposing a transformer-based detector that analyses email body text rather than 
metadata. Our model combines transformer based model with a Bidirectional Long Short-Term 
Memory (BiLSTM) layer to capture important sequential text relationships. 

The following sections detail the related work, proposed model, experiment, and evaluation of the 
proposed model, demonstrating its efectiveness in detecting phishing text-based attacks while 
addressing key challenges in text-based deception detection. 

0This chapter is based on the publication: Almutairi, A. M., Kang, B., & Fadhel, N. (2023). The Efectiveness 
of Transformer-Based Models for BEC Attack Detection. In: Li, S., Manulis, M., Miyaji, A. (eds) Network 
and System Security. NSS 2023. Lecture Notes in Computer Science, vol 13983. Springer, Cham. https: 
//doi.org/10.1007/978-3-031-39828-5_5 

https://doi.org/10.1007/978-3-031-39828-5_5
https://doi.org/10.1007/978-3-031-39828-5_5
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7.2 Related Work 

A detailed survey appears in Chapter 3, shows that existing phishing text-based attacks detection 
systems generally fall into three categories, each with notable limitations. First, many approaches 
depend heavily on metadata signals—such as SPF/DKIM validation, sender IP, or domain 
reputation—which become inefective when an attacker compromises a legitimate mailbox. 
Second, several models rely on hand-engineered lexical or stylistic features that adversaries can 
easily obfuscate. Third, some deep learning methods apply aggressive pre-processing (e.g., 
lowercasing, stemming, punctuation removal), stripping out the subtle textual cues often exploited 
in BEC attacks. Unlike prior work, the proposed method retains punctuation and casing, allowing 
it to capture syntactic and stylistic signals critical for early-stage phishing text-based attacks 
detection for example BEC attack, especially in impersonation scenarios where metadata appears 
legitimate. 

7.3 Proposed Model 

Rationale. Transformers (e.g., BERT) capture rich contextual semantics, yet short, formulaic 
business emails may beneft from additional sequence modelling to retain stylistic rhythm. We 
therefore augment a compact encoder (DistilBERT) with a BiLSTM layer. 

Architecture. The pipeline (Fig. 7.1) comprises: (i) DistilBERT for contextual embeddings, (ii) 
a BiLSTM for bidirectional sequence dynamics, (iii) a feed-forward classifer with softmax. 

Table 7.1: Hyperparameters (as tuned on validation). 

Hyperparameter Value 
Max token length 256 
Batch size 16 
Learning rate 2 × 10−5 (grid: [1, 3] × 10−5) 
Epochs 3 
LSTM hidden size 50 

7.4 Experiments 

7.4.1 Datasets and Splits 

Two public corpora were used for comparability/reproducibility, and a stress-test corpus for BEC 
mimicry: 

• Fraud Email Detection: A benchmark dataset comprising 5,187 phishing and 6,742 
legitimate messages, introduced by Radev (2008). 
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Input 

Transformer-based 
Model (BERT) 

BiLSTM 

Activation Function 

Fully Connected Layer (MLPs) 

Output BEC? BEC 

NON-BEC 

Yes 

No 

Figure 7.1: DistilBERT+BiLSTM model workfow. 

• TREC 2007: A widely used collection consisting of 50,199 phishing and 25,220 legitimate 
emails, originally presented by Macdonald et al. (2007) for the TREC Spam Track. 

• Impersonation BEC (synthetic): A constructed dataset featuring paired legitimate and 
impersonation-style BEC messages per author, as detailed in chapter 6. It includes fve 
Enron authors and follows an author-disjoint train/test split to preserve authorship integrity. 

Split policy.This experiment follows the Common Experimental Setup. (Chapter 4): 70% train, 
10% validation, 20% test, stratifed by label. For impersonation, authors are disjoint across splits 
to avoid overftting to idiosyncratic style. 

Text-only constraint. To isolate linguistic signal, Headers/metadata, attachments, raw URL-
s/HTML tags, and boilerplate signatures are removed during preprocessing. 

7.4.2 Training Protocol and Metrics 

The unifed experimental settings from Chapter 4 are adopted: Python 3.x, PyTorch, and 
HuggingFace Transformers; cross-entropy loss; the AdamW optimizer; early stopping based on 
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validation F1-score; and evaluation metrics including Accuracy, Precision, Recall, F1-score, and 
macro-averaged ROC–AUC. 

7.4.3 Baselines 

Two classical text baselines use TF–IDF features: 

• Random Forest (bag-of-words TF–IDF). 

• XGBoost (bag-of-words TF–IDF). 

Preprocessing for baselines follows standard practice (lowercasing, tokenization; punctuation/num-
bers/stopwords removed) to match prior work. 

7.5 Results 

7.5.1 Results on Public Phishing Corpora 

Table 7.2 shows that DistilBERT+BiLSTM outperforms the baselines on both corpora. 

Table 7.2: Performance on Fraud and TREC07 (best in bold). 

Model Fraud TREC07 
Prec Rec F1 Acc Prec Rec F1 Acc 

DistilBERT+BiLSTM 99.26 99.41 99.33 99.25 99.19 99.21 99.20 99.21 
Random Forest 98.34 96.37 97.34 97.02 98.86 98.87 98.86 98.87 
XGBoost 95.64 99.18 97.38 96.98 98.74 98.69 98.71 98.73 

7.5.2 Comparison to recent Studies. 

We also compare with a recent BERT+CNN+BiGRU pipeline on TREC07 and with a BiLSTM-
Attention pipeline on Fraud (Tables 7.3–7.4). Our model is competitive or superior while 
remaining purely content-based. 

Table 7.3: Comparison on TREC07. 

Reference Method Acc (%) Prec (%) Rec (%) F1 (%) 
Alguliyev et al. (2024) BERT + ConvNet + BiGRU 98.67 98.79 98.39 98.59 
This work DistilBERT + BiLSTM 99.21 99.19 99.21 99.20 



65 7.5. Results 

Table 7.4: Comparison on Fraud. 

Reference Method Acc (%) Prec (%) Rec (%) F1 (%) 
Xiao and Jiang (2020) BiLSTM-Attention 91.51 91.75 91.49 91.58 
This work DistilBERT + BiLSTM 99.25 99.26 99.41 99.33 

7.5.3 Replication under identical preprocessing. 

The BERT+BiGRU+CNN model from Alguliyev et al. (2024) was replicated using the original 
preprocessing steps and hyperparameter settings. As shown in Table 7.5, DistilBERT+BiLSTM 
remains competitive in comparison. 

Table 7.5: Side-by-side replication on Fraud and TREC07. 

Model Fraud TREC07 
Prec Rec F1 Acc Prec Rec F1 Acc 

Replicated Alguliyev et al. (2024) 99.23 99.13 99.18 99.19 97.32 95.84 96.52 96.93 
(This work) 99.26 99.41 99.33 99.25 99.19 99.21 99.20 99.21 

7.5.4 Results on Impersonation-Based BEC 

Dataset. We construct a style-mimicry corpus (chapter 6) where BEC messages imitate the 
tone and phrasing of specifc Enron authors. Train/test splits are author-disjoint. 

Table 7.6: Classifcation on impersonation-based BEC (author-disjoint). 

Metric Average AUC 

Precision 
Recall 
F1-Score 

68.92 
65.26 
63.49 

58.09 

Accuracy 65.26 
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Figure 7.2: Confusion matrix on impersonation-based BEC emails. 

7.6 Discussion and Analysis 

Chapter Contribution 

This chapter contributes two fold: (1) It establishes an efcient, reproducible baseline for 
transformer-based BEC detection that operates solely on email body content, achieving strong 
performance across public datasets without relying on metadata or handcrafted features. (2) 
It presents a principled negative result under impersonation-style attacks, demonstrating the 
limitations of content-only approaches when semantic cues are deliberately camoufaged within 
legitimate writing styles. Unlike many prior phishing detection approaches, which either depend 
on metadata (e.g., SPF/DKIM) or handcrafted lexical features, this model operates exclusively on 
raw email text. Its hybrid architecture—combining contextual encoding via BERT with sequential 
modelling via BiLSTM—ofers an efcient alternative to more complex CNN+GRU architectures, 
while achieving competitive or superior results on benchmark datasets (Tables 7.3–7.5). 

7.6.1 Linguistic Feature Analysis 

To explore the lexical patterns learned by the model, an analysis was conducted on discriminative 
terms within two benchmark corpora: the Fraud dataset and TREC07. Word clouds were 
generated for each using a TF–IDF weighting scheme, with tokens fltered through ANOVA 
F-statistics against class labels to identify the top 300 most informative terms. 

Key Observations. Figure 7.3 presents word clouds of the most informative lexical cues in the 
Fraud and TREC07 datasets, based on their discriminative power in email classifcation tasks. 



67 7.6. Discussion and Analysis 

(a) Fraud dataset: top discriminative (b) TREC07 dataset: top discriminative 
terms. terms. 

Figure 7.3: Word clouds of the most informative terms in the Fraud and TREC07 corpora. 

• Fraud dataset: Lexical indicators are dominated by fnancial terminology (payment, 
money, transaction) and formal address cues (dear, please, Mr.), suggesting attempts to 
emulate legitimate professional tone while delivering fraudulent intent. 

• TREC07 dataset: Discriminative tokens are primarily link-related (www, https, org), 
refecting phishing’s heavy reliance on embedded URLs and external redirection mecha-
nisms. 

These lexical patterns reinforce prior fndings: traditional phishing detection often hinges on 
shallow surface cues, whereas BEC impersonation attacks are designed to blend into legitimate 
correspondence through stylistic mimicry. This supports the transition toward author-style 
modeling, which is explored in Chapters 8 and 9. 

7.6.2 Limitations and Implications 

Although the proposed model demonstrated strong performance on benchmark phishing datasets, 
its accuracy dropped to 65% when evaluated on the synthetic impersonation corpus. This 
moderate performance highlights inherent challenges in detecting Business Email Compromise 
(BEC) when only the email body content is available, particularly under impersonation scenarios 
that lack overt anomalies. 

These results suggest that traditional content-based phishing detectors are ill-suited for impersonation-
style BEC attacks, where malicious intent is deliberately concealed within legitimate stylistic 
patterns. The observed 65% accuracy does not refect a faw in the model architecture, but rather 
the intrinsic difculty of the task—especially when deceptive content mimics the tone, structure, 
and vocabulary of the impersonated sender. This performance boundary reinforces the need for 
more identity-sensitive modelling approaches, which go beyond semantic detection to capture 
personalized stylistic signals. 

These fndings highlight a fundamental limitation: conventional phishing detectors, which rely 
primarily on lexical and semantic signals, are insufcient for handling impersonation-driven BEC 
attacks. This motivates the shift toward incorporating authorship-aware verifcation techniques, 
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as detailed in Chapter 8, and their integration within a unifed multi-task learning framework in 
Chapter 9. 

7.7 Chapter Summary 

This chapter introduced a transformer-based detector that combines DistilBERT embeddings 
with a BiLSTM layer for sequential modelling. The model was evaluated on two widely used 
public phishing corpora (Fraud and TREC07), where it consistently outperformed traditional 
baselines and recent neural approaches, achieving state-of-the-art performance. Word-cloud 
analysis confrmed that high accuracy on these corpora is largely driven by the presence of surface 
lexical cues such as URLs, fnancial terms, and politeness markers. 

However, when evaluated against a synthetic impersonation-based BEC dataset designed to mimic 
genuine writing styles, the model’s performance dropped markedly to 65% accuracy with an 
AUC of 0.58. This highlights a key limitation: phishing datasets, while useful for benchmarking, 
do not capture the linguistic realism of BEC attacks, where attackers impersonate trusted insiders 
using plausible tone and style. As a result, content-only models trained on generic phishing data 
cannot be relied upon to detect sophisticated impersonation attempts. 

The fndings therefore serve two purposes. First, they demonstrate that transformer-based models 
are efective at phishing detection when surface cues are present. Second, and more importantly, 
they expose the insufciency of such models for detecting BEC, thereby justifying the need for 
additional mechanisms that verify authorship consistency. This observation directly motivates 
the next chapter, which introduces BiBERT-AV, a Siamese-style authorship verifcation model 
designed to capture stable stylistic signatures of legitimate users and detect identity-spoofng 
BEC attacks. 
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Chapter 8 

BiBERT-AV: A Siamese Network for 
Authorship Verifcation 

8.1 Introduction 

Chapter 7 showed that content-only transformers can reach state-of-the-art performance on public 
phishing corpora, yet degrade markedly under impersonation, which is central to Business Email 
Compromise (BEC). This chapter addresses that gap with an authorship verifcation (AV) module 
designed to check whether an email’s writing style is consistent with the claimed sender. 

We present BiBERT-AV, a Siamese architecture that combines transformer embeddings with 
sequence modelling to capture both semantic context and stylistic rhythm. The chapter answers 
SRQ4: How do transformer-based Siamese networks perform in authorship verifcation of 
business emails compared to traditional stylometric and recent neural methods? 

8.2 Related Work 

This chapter builds on the broader body of AV research reviewed in Chapter 3, which traces 
the evolution of AV from handcrafted stylometry to deep, transformer-based representations. 
Chapter 3 (Section 3.3) provides a comprehensive overview of AV techniques, including traditional 
feature-based models, hybrid methods, and modern Siamese architectures tailored to short-text 
domains such as emails. 

The present model, BiBERT-AV, follows this trajectory by adopting a lightweight Siamese 
framework with a shared encoder and a learned similarity head. Unlike prior cosine-only or 

0This chapter is based on the publication: Almutairi, A. M., Kang, B., & Al Hashimy, N. (2023). BiBERT-AV: 
Enhancing Authorship Verifcation Through Siamese Networks with Pre-trained BERT and Bi-LSTM. In: Manulis, M., 
Miyaji, A., Zhang, Y. (eds) International Conference on Ubiquitous Security. Lecture Notes in Computer Science, vol 
13984. Springer, Cham. https://doi.org/10.1007/978-3-031-xxxxx-x 

https://doi.org/10.1007/978-3-031-xxxxx-x
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contrastive-loss approaches, BiBERT-AV is designed for real-time, mimic-resistant AV in Business 
Email Compromise (BEC) contexts, and is evaluated under author-disjoint, open-set conditions 
to simulate realistic enterprise deployment scenarios. For detailed comparisons to baseline AV 
methods, including task-specifc variants and Enron-focused studies, see Table 3.4 in Chapter 3. 

8.3 Model: BiBERT-AV 

8.3.1 Architecture 

Figure 8.1 illustrates BiBERT-AV, a Siamese neural network designed to verify whether two 
email messages were authored by the same individual. The model integrates transformer-based 
contextual encoders with sequential pattern extraction, enabling it to detect stylistic consistency 
between messages beyond superfcial word overlap. 

Each input email is processed through a shared BERT encoder, which produces contextual token 
embeddings. To enhance sensitivity to word order and punctuation patterns, these embeddings 
are further refned using a Bidirectional LSTM (BiLSTM) layer. The fnal representations capture 
both semantic content and syntactic style. 

During training, the model receives pairs of email bodies labelled as either same-author or 
diferent-author. The resulting embeddings are passed through dense layers and combined to 
produce a similarity score, which is then mapped to a binary classifcation. 

At test time, an incoming email is encoded and compared against a precomputed reference 
embedding for the claimed sender. These reference vectors are created in advance by averaging 
the encoder outputs from multiple known emails written by that sender. 

8.3.2 Training Objective 

Given label � ∈ {0, 1} (same/diferent author), we minimise binary cross-entropy: 

L = −
[
� log � + (1 − �) log(1 − �)

]
. 

We report Accuracy, Precision, Recall, F1, and macro ROC–AUC. At inference, a reference 
embedding per author is computed as the mean of that author’s known emails; an incoming email 
is compared against the claimed author’s reference. 
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Incoming Email Precomputed Reference 

Transformer-based 
Model (BERT) 

BiLSTM 

Dense Layer 

Dense Layer 

Sigmoid 

Same Author? Authentic Suspicious 
Yes No 

Figure 8.1: BiBERT-AV architecture: comparing the incoming email to a precomputed reference 
embedding of the claimed author. 

8.4 Datasets and Splits 

8.4.1 Enron Email for AV 

The Enron corpus was used as the primary dataset, and it is a well-known business email dataset. 
All metadata, headers, forwarded content, and attachments were stripped, retaining only the 
cleaned email body text. 

Emails were grouped by sender to generate labelled pairs: 

• Positive pairs: Two emails written by the same sender. 

• Negative pairs: Emails written by diferent senders. 

We evaluated the model on author subsets of increasing size—2, 5, 10, 20, and 50 authors—selected 
based on the volume of emails per sender. For each subset, the data was split using stratifed 
sampling as described in Section 4.5.3. 

At inference, the incoming email is encoded into a vector h�, which is then compared against 
a precomputed reference vector h� for the claimed sender. The reference vector is generated 
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by averaging the encoder outputs of that sender’s emails during training. This avoids repeated 
computation and simulates deployment conditions where historical embeddings are pre-stored. 

8.4.2 Mimic Dataset for Impersonation 

This evaluation uses the Authorship Mimicry Dataset described in Chapter 6, which contains 
synthetic mimic Enron emails generated to imitate the writing styles of fve Enron authors. We 
focus exclusively on this mimicry subset because the objective here is authorship verifcation 
under stylistic impersonation, independent of semantic content related to BEC. 

8.5 Hyperparameters and Rationale 

Table 8.1 lists all hyperparameters along with their empirical or theoretical rationale. Most 
values were selected based on a combination of validation set performance, ablation studies, and 
practical deployment considerations (e.g., latency and memory constraints). This ensures both 
accuracy and feasibility in real-world enterprise environments. 

Table 8.1: Hyperparameters used in BiBERT-AV training and their justifcations. 

Parameter Value Justifcation 
Maximum input length 
Learning rate 
Loss function 

256 tokens 
3 × 10−5 

Binary Cross-Entropy 

Covers majority of business emails without truncation 
Best performance in grid search [1�–5, 5�–5]
Suited for binary similarity classifcation 

Activation Sigmoid Outputs probability for binary decision 
Epochs 10 Converged without overftting on validation set 
Batch size 16 Balances memory constraints and convergence speed 

8.6 Results 

8.6.1 Results on Enron Email Dataset 

Table 8.2 shows the model’s performance across diferent author pool sizes. BiBERT-AV 
maintains high precision and recall as the number of candidate authors increases, demonstrating 
robustness to growing verifcation complexity. 

8.6.2 Comparison with Existing Methods 

We compared BiBERT-AV against the Siamese BERT model from Tyo et al. (2021), using 
identical data splits and metrics. Table 8.3 shows that BiBERT-AV consistently outperforms the 
baseline across all author subsets. 
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Table 8.2: Authorship verifcation performance across author pool sizes. 

Authors Precision Recall F1-score Accuracy 

Two 99.00 99.00 99.00 99.00 
Five 98.00 98.00 98.00 98.00 
Ten 98.00 98.00 98.00 98.00 
Twenty 95.00 95.00 95.00 95.00 
Fifty 90.00 93.00 90.00 90.00 
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Figure 8.2: Accuracy vs. author-pool size on Enron. 

Table 8.3: Comparison of BiBERT-AV and Siamese BERT on Enron dataset. 

Authors Siamese BERT Tyo et al. (2021) BiBERT-AV 

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy 

Two 68.00 87.00 77.00 77.00 99.00 99.00 99.00 99.00 
Five 77.00 71.00 74.00 79.00 98.00 98.00 98.00 98.00 
Ten 83.00 76.00 79.00 80.00 98.00 98.00 98.00 98.00 
Twenty 75.00 73.00 74.00 74.00 95.00 95.00 95.00 95.00 
Fifty 49.00 81.00 61.00 50.00 90.00 93.00 90.00 90.00 

8.6.3 Authorship Mimicry Dataset Evaluation 

Using the style-mimicry subset described in Chapter 6 (Section 6.2.6.2), BiBERT-AV demon-
strates strong performance in detecting impersonation-based emails. The model maintains high 
confdence even when adversarial samples closely emulate the writing style of legitimate authors, 
underscoring its efectiveness in challenging mimicry scenarios. 
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Table 8.4: BiBERT-AV on the Authorship Mimicry Dataset. 

Metric Macro Avg AUC 

Precision 96.10% 
Recall 95.51% 98.97% 
F1-score 95.80% 

Accuracy 95.82% 

ROC (AUC ≈ 0.99) 
0

0 0.2 0.4 0.6 0.8 1 

1 1 

PR (macro) 
0

0 0.2 0.4 0.6 0.8 1 

Tr
ue

 P
os

iti
ve

 R
at

e 0.8 0.8 

Pr
ec

is
io

n

0.6 0.6 

0.4 0.4 

0.2 0.2 

False Positive Rate Recall 

Figure 8.3: Mimicry subset: ROC and Precision–Recall curves. BiBERT-AV retains high 
discriminative power under style-consistent deception. 

8.7 Discussion 

Contribution. This chapter introduced BiBERT-AV, a mimic-resistant AV model tailored for 
enterprise email security. Operating under strict author-disjoint settings, BiBERT-AV models 
individual writing style through a supervised Siamese architecture with sequence pooling and a 
learned similarity function. Rather than asking whether an email looks malicious, it asks: “Does 
this message sound like it was written by the claimed sender?” This stylistic perspective provides 
an orthogonal defence to traditional phishing detectors, especially in scenarios involving internal 
impersonation and Business Email Compromise (BEC). Compared to prior AV approaches such 
as the Siamese BERT model proposed by Tyo et al. (2021), BiBERT-AV ofers a more robust 
treatment of stylistic similarity through sequence-level pooling and a learned similarity function, 
rather than relying on fxed-distance metrics. Furthermore, unlike unsupervised clustering or 
metadata-dependent AV systems discussed in Chapter 3, our model operates in a fully supervised, 
author-disjoint regime and is explicitly evaluated under mimicry conditions. This design enables 
BiBERT-AV to resist impersonation attacks and generalise across unseen authors—two critical 
gaps unaddressed by most prior AV work. 

Performance and Robustness. As shown in Table 8.4, BiBERT-AV consistently outperforms 
cosine-only baselines across both standard and impersonation-focused evaluations. Its performance 
remains robust even as the author pool expands—an essential feature for real-world deployment 
across large organisations. Figure 8.3 illustrates this reliability under mimicry conditions: the 
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model sustains high precision–recall and ROC performance despite semantic ambiguity and 
lexical overlap introduced by stylistic deception. 

Figure 8.4 provides further insight into the model’s behaviour. The left panel shows that 
BiBERT-AV exhibits well-calibrated predictions, aligning predicted probabilities with empirical 
accuracy—an important property for operational decision-making. The right panel visualises a 
2D t-SNE projection of email embeddings, where clusters show clean separation between authors 
even under mimicry conditions, refecting the model’s ability to learn stylistically meaningful 
representations. 
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Figure 8.4: Left: Reliability curve showing calibration quality. Right: Stylometric clusters in 
2D projection, suggesting author separation under mimicry. 

Implications. Authorship Verifcation, when treated as a supervised classifcation problem with 
learned embeddings, ofers a robust and scalable alternative. While AV is not a standalone 
defence, it plays a critical role in layered email security architectures by reintroducing identity 
verifcation through linguistic style—an attribute difcult to forge without long-term access or 
behavioural leakage. 

8.8 Chapter Summary 

BiBERT-AV, a Siamese transformer+BiLSTM with a learned similarity head, verifes author 
identity from email body text alone. It maintains high performance across growing author pools 
and detects style-mimicry emails drawn from the chapter 6 dataset with strong precision/recall 
and near-perfect AUC. The model supplies the authorship layer needed to complement content 
detectors in BEC defence. The next chapter unifes these signals with MTL for end-to-end BEC 
detection under impersonation. 
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Chapter 9 

A Multi-Task Learning Framework for 
Joint BEC Detection and Authorship 
Verifcation 

9.1 Introduction 

Previous chapters presented two independent models addressing distinct aspects of Business 
Email Compromise (BEC) detection. Chapter 7 introduced a transformer-based classifer to 
identify semantic anomalies and deceptive intent in email content, whereas Chapter 8 presented 
BiBERT-AV, a model that verifes authorship by analyzing writing style. 

However, real-world BEC attacks often blend semantically plausible lures with stylistic mimicry 
to evade single-axis detectors. As detailed in Chapter 5, attackers may craft messages that read as 
legitimate yet subtly deviate from an executive’s usual writing style, or they may spoof a trusted 
sender’s style while embedding malicious intent. Traditional tools relying on either content 
or metadata frequently fail under these hybrid tactics, especially when metadata is missing or 
compromised. 

To address this gap, we propose a Multi-Task Learning (MTL) architecture that jointly models 
semantic deception and authorial consistency directly from email text. This framework targets 
SRQ5: How does integrating BEC detection and authorship verifcation into a single system 
afect overall accuracy and operational cost? By sharing a common encoder and employing 
task-specifc heads, our approach enhances detection efectiveness and reduces inference overhead. 
This dual-task design is particularly critical for high-value targets—such as executives—whose 
communications require both semantic scrutiny and authorial validation to prevent sophisticated 
impersonation attacks. 

0This chapter is based on the manuscript: Almutairi, A., Kang, B., and Al Hashimy, N. (2024). Integrating 
Business Email Compromise Detection and Authorship Verifcation Through Multi-Task Learning. Submitted and 
currently under review at the Journal of Information Security and Applications. 
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Background and Literature Context 

This chapter builds upon the Multi-Task Learning (MTL) literature reviewed in Chapter 3, 
specifcally Section 3.4, which surveyed applications of MTL in NLP and deception detection. 
Prior work has shown that related tasks—such as sentiment, novelty, or emotion classifcation—can 
enhance robustness and generalization when jointly modeled. 

Informed by these fndings, this chapter introduces a unifed MTL framework tailored to the 
hybrid nature of Business Email Compromise (BEC), where semantic deception and stylistic 
impersonation often co-occur. By combining BEC detection with authorship verifcation in a 
shared encoder setting, the proposed model leverages cross-task signals to improve resilience 
against subtle, impersonation-driven attacks. 

9.2 Proposed Framework 

This section introduces a unifed Multi-Task Learning (MTL) framework that jointly addresses 
Business Email Compromise (BEC) detection and AV. The model is designed to enhance the 
detection of BEC fraud in the early stage by learning both semantic and stylistic patterns from the 
text email body. 

As established in Chapters 7 and 8, BEC detection and AV address distinct but complementary 
objectives. BEC detection identifes indicators of malicious intent, while AV determines whether 
a message is stylistically consistent with the claimed sender. Since real-world BEC attacks often 
exhibit plausible content but deviate from an author’s usual writing style, combining these two 
capabilities can enhance detection even when emails are crafted to appear legitimate. 

However, integrating BEC and AV into a single model presents several design challenges: 

• Diferent Task Requirements: BEC detection and AV focus on diferent types of 
signals—semantic content versus writing style. Using the same model layers for both 
without separation can weaken their individual performance. 

• Mismatch in Output Structure: BEC detection predicts a single label for each email 
(malicious or not), whereas AV compares two emails and predicts whether they come from 
the same author. 

• Training Conficts: The two tasks use diferent loss functions (classifcation vs. contrastive), 
so training them together requires careful balancing to avoid one task dominating the 
learning process. 

To address these challenges, the proposed MTL framework adopts the following design: 
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• Shared Encoder: A BERT–BiLSTM encoder that encodes both contextual and stylistic 
features from input text. 

• Task-Specifc Heads: 

– A classifcation head for BEC detection. 

– A Siamese-style contrastive head for AV. 

• Joint Optimization: The total loss combines both task objectives: 

Ltotal = �LBEC + �LAV, (9.1) 

where � = � = 1 in this thesis. 

This structure supports efcient learning by sharing a common encoder while preserving 
specialization through task-specifc heads and loss functions. The result is a content-driven 
detection system capable of identifying BEC attacks even when metadata is unavailable or 
manipulated. 

The following section outlines the architecture and training methodology used to implement and 
evaluate the framework. 

9.2.1 Methodology 

This section details the implementation of the proposed Multi-Task Learning (MTL) framework, 
which jointly performs Business Email Compromise (BEC) detection and AV using a shared 
neural architecture. 

9.2.1.1 Framework Architecture 

As illustrated in Figure 9.1, the framework consists of a shared encoder and two task-specifc 
heads. The shared encoder integrates: 

• BERT: A transformer pre trained on general-domain corpora, used to extract contextual 
embeddings from email body text. 

• BiLSTM: A bidirectional LSTM layer applied to the transformer output to encode sequential 
and stylistic patterns. 

This encoder is trained under a hard parameter-sharing regime, meaning both tasks update the 
same parameters during backpropagation. This setup promotes inductive transfer while reducing 
model complexity. 
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Verifcation 

Reference Email 

Incoming Email 

Shared Encoder 
(BERT + BiLSTM) 

Encoded Email: h� 

BEC Detection Head 

Is BEC? Flagged as BEC 

Reference Email 

Shared Encoder 

Encoded Ref: h� 

Feature Construction: 
Absolute Difference: |h� − h� |
Concatenation: [h�; h�; |h� −
h� |]

AV Head (Binary Classifier) 

AV Output: Authentic or Suspicious 

Yes 

No 

Shared Encoder 

Siamese Feature Construction 

Figure 9.1: MTL inference pipeline for joint BEC detection and authorship verifcation. A 
shared encoder generates embeddings for both the incoming and reference emails. BEC is frst 
classifed directly; if not fagged, authorship verifcation compares stylistic features to detect 

impersonation. 

Task-Specifc Heads. 

• BEC Detection Head (see Chapter 7): A fully connected layer with sigmoid activation, 
responsible for classifying whether an email exhibits BEC-related characteristics. 

• AV Head (see Chapter 8): A contrastive Siamese classifer that compares the embedding 
of an incoming email with a reference embedding derived from the claimed author’s 
historical messages. 
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Training objectives. Each task-specifc head is optimized with a binary cross-entropy–with–logits 
loss. 

� 

= 
1 ∑ [

max
(
�BEC, 0

)
− �BEC �BEC + log

(
1 + �−|�� BEC | ) ] , (9.2)LBEC 

� � � � 

�=1 
� 1 ∑ [ ( ) (

1 + �−|�AV | ) ]= max �AV, 0 − �AV �AV + log � . (9.3)LAV 
� � � � 

�=1 

In (9.2)–(9.3), � ∈ R is the raw logit (pre-sigmoid) and � ∈ {0, 1} is the label. This is algebraically 
equivalent to binary cross-entropy on the sigmoid probability, 

� 1 ∑(
�� 

( ) ) 1 L� = − � log �(��� ) + (1 − ��� ) log 1 − �(��� ) , �(�) = , � ∈ {BEC, AV},
� 1 + �−� 

�=1 
(9.4) 

Total joint loss. 
Ltotal = �LBEC + �LAV, � = � = 1. (9.5) 

The AV head operates on a pair of inputs: the encoded representation of the incoming email (h�) 
and a reference embedding of the claimed author (h�). These embeddings are combined using 
element-wise absolute diference and concatenation, then passed to a fully connected layer for 
binary classifcation. 

This architecture supports content-only verifcation, allowing the model to detect BEC threats 
and validate authorship even in the absence of metadata or headers. The next section outlines the 
training confguration, dataset construction, and evaluation procedures. 

9.2.2 Training and Optimization Strategy 

This section outlines the training procedure for the proposed Multi-Task Learning (MTL) 
framework. The model is trained end-to-end using a joint loss function that combines objectives 
for both Business Email Compromise (BEC) detection and AV. The inference logic is described 
in Algorithm 1, and the overall training procedure is summarized in Table 9.1. 

9.2.3 Dataset Construction and Preprocessing 

A composite dataset was constructed to jointly support the BEC and AV tasks, combining real 
and synthetic samples. AV instances were generated using mimicry prompts targeting authorial 
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Algorithm 1 MTL Email Security Framework (Inference Logic) 
Require: New Email, Reference Embedding from Historical Emails 
Ensure: Classifcation result 

1: Encode the new email using the shared encoder to obtain h� 

2: Compute BEC prediction 
3: if Predicted as BEC then 
4: Flag email as malicious 
5: else 
6: Retrieve the reference embedding h� of the claimed sender 
7: Compute absolute diference: d = |h� − h� |
8: Concatenate feature vectors and compute AV prediction 
9: if AV score ≥ � then 

10: Output: Authentic 
11: else 
12: Output: Suspicious; escalate for review 
13: end if 
14: end if 

Table 9.1: Training hyperparameters. 

Parameter Value 

Batch size 16 
Optimizer AdamW 
Learning rate 2 × 10−5 

Epochs 10 (early stop) 
Cross-validation 5-fold 
Early stopping patience 2 
Hidden size (BiLSTM) 128 
Dropout rate (heads) 0.1 
Loss weights �=1.0, �=1.0 
Random seed 42 

Notes: Learning rate was grid-searched over [1, 3] × 10−5; 2 × 10−5 was selected at the development-set plateau. 
Equal loss weighting was chosen after a sweep over {(0.5, 0.5), (0.6, 0.4), (0.7, 0.3)} showed negligible macro-F1 

diferences and better stability across seeds. 

style, while BEC samples represent a range of phishing and impersonation attacks. The complete 
construction pipeline—including seed selection, prompt templates, quality-control flters, and 
ethical safeguards—is documented in chapter 6. 

9.2.3.1 Dataset Composition 

The multi-task training dataset was constructed to support both Business Email Compromise 
(BEC) detection and AV, combining real and synthetic samples to simulate realistic impersonation 
scenarios; full construction details are provided in Chapter 6. It consists of two task-specifc 
components: 
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1. Authorship Verifcation (AV) Dataset: 

• Real Emails: 5,000 messages authored by fve high-volume individuals from the 
Enron corpus, selected based on availability and volume. 

• Synthetic Emails: 5,000 LLaMA-generated emails fne-tuned to imitate the writing 
style of each target author. 

• Pair Construction: Email pairs were created to support contrastive training for 
binary authorship verifcation: 

– Same-author pairs: Two real emails written by the same Enron author. 
– Diferent-author pairs: Pairs consisting of either emails from two distinct authors, 

or a real email paired with a synthetic mimic. 

2. Business Email Compromise (BEC) Dataset: 

• Real BEC Emails: 21 samples sourced from public disclosures and academic 
archives. 

• Synthetic BEC: 1,050 LLaMA-generated BEC-style emails. 

• Additional Phishing Corpora: CEAS08, TREC07, LingSpam, and SpamAssassin. 

To ensure robust evaluation and prevent information leakage: 

• AV splits were based on email instances, allowing each author’s writing style to be learned 
from historical emails and tested on unseen samples by the same author. 

• BEC and non-BEC samples were stratifed to maintain class balance across training, 
validation, and test sets. 

This dataset design enables the model to jointly learn semantic deception cues (for BEC detection) 
and stylistic consistency patterns (for AV), while supporting scalable and realistic evaluation in 
both tasks. 

9.3 Baseline Model 

To assess the added value of joint training in the proposed Multi-Task Learning (MTL) framework, 
we compare it against a sequential Transfer Learning (TL) baseline. This baseline preserves 
the same core architecture and training schedule but treats the tasks independently rather than 
concurrently. 

The TL baseline involves the following two-stage process: 

• Stage 1 – BEC Task: A shared encoder comprising BERT followed by a BiLSTM layer is 
trained solely on the BEC classifcation task. 



84 
Chapter 9. A Multi-Task Learning Framework for Joint BEC Detection and Authorship 

Verifcation 

• Stage 2 – AV Task: The BEC classifcation head is replaced with a Siamese-style contrastive 
head for authorship verifcation. The model is then fne-tuned on the AV dataset using a 
reduced learning rate. 

To mitigate catastrophic forgetting during the second phase, fne-tuning was performed with early 
stopping based on validation performance. All other variables—model hyperparameters, data 
splits, and preprocessing—were held constant across both the TL and MTL settings. Each model 
was trained using fve diferent random seeds, and the fnal reported results represent the average 
across these runs. This controlled setup ensures that any observed diferences in performance are 
attributable solely to the training paradigm (i.e., joint versus sequential learning). 

9.4 Classifcation performance 

Table 9.2: Performance on the validation (eval) and held-out (test) sets. Best scores per column 
appear in bold. 

Eval Test 

Model Task Acc. Prec. Rec. �1 Acc. Prec. Rec. �1 

TL (sequential) 
BEC 
AV 

0.86 
0.92 

0.89 
0.91 

0.85 
0.90 

0.86 
0.91 

0.85 
0.91 

0.78 
0.90 

0.71 
0.91 

0.82 
0.91 

MTL (joint) 
BEC 
AV 

0.98 
0.94 

0.97 
0.93 

0.97 
0.95 

0.97 
0.94 

0.98 
0.93 

0.96 
0.92 

0.96 
0.93 

0.97 
0.93 

These fndings remained stable across fve independent training runs with diferent random 
seeds, showing a standard deviation of less than 1.5% across all metrics. Notably, the greatest 
performance gains were observed in recall—an essential metric in security systems, where failing 
to detect malicious activity (false negatives) can have severe consequences. 

9.4.1 Receiver–operating characteristics (ROC) 

The ROC plot in Figure 9.2 shows that the MTL curve (orange) consistently sits above the TL 
curve (blue), refecting a higher Area Under the Curve (0.931 vs. 0.905). This indicates that the 
MTL model more reliably distinguishes positive from negative cases across all thresholds. 
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Figure 9.2: ROC curves for the MTL and TL models. 

9.4.2 False-positive rate and analyst workload 

A lower false-positive rate (FPR) reduces the burden on human analysts. The MTL system records 
an FPR of 4.5 % (BEC) and 2.9 % (AV), compared with 5.5 % and 5.8 % for the TL baseline. All 
models fag borderline cases to a “red-fag” queue for manual review, preventing critical messages 
from being silently dropped. 

9.4.3 Computational Efciency 

In addition to classifcation performance, we evaluated the computational efciency of both the 
Transfer Learning (TL) and Multi-Task Learning (MTL) models during inference. Table 9.3 
reports the average evaluation times on the validation and test sets. 

Despite its additional architectural complexity, the MTL model demonstrates slightly faster 
evaluation times compared to the TL baseline. This improvement is primarily due to the shared 
encoder being used for both tasks in a single forward pass, whereas the TL setup requires two 
separate stages—one for BEC detection and a subsequent one for authorship verifcation. The 
reduced runtime highlights the practical advantage of deploying a joint model in time-sensitive 
environments such as real-time email fltering systems. 

Table 9.3: Computational Efciency Metrics: Total time in seconds to evaluate the entire 
validation and test sets. 

Model Validation Evaluation Time (sec) Test Evaluation Time (sec) 

Transfer Learning 211.85 421.42 
Multi-Task Learning 189.49 378.61 
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9.5 Analysis of Learned Representations 

In addition to standard performance metrics, we investigated the internal embeddings learned 
by our MTL model via two popular dimensionality-reduction techniques: t-SNE (t-distributed 
stochastic neighbour embedding) and PCA (principal component analysis). 

• t-SNE is a nonlinear method that preserves local neighbourhood relationships, often 
revealing tight clusters that correspond to subtle diferences in the data. 

• PCA is a linear technique that fnds orthogonal axes (principal components) capturing the 
maximum variance, giving insight into the global structure of the embeddings. 

Figures 9.3 and 9.4 show 2D projections of the shared encoder features for the BEC and AV 
tasks, respectively. In each case, colors encode the true class labels (purple/blue=negative, 
yellow=positive). 

9.5.1 BEC Task Analysis 

Figure 9.3a (t-SNE) shows two well-separated clusters of purple (non-BEC) and yellow (BEC) 
points. This indicates that the shared encoder has learned features—likely things such as 
vocabulary, phrasing, or tone—that reliably distinguish phishing/impersonation attempts from 
legitimate emails. In Figure 9.3b (PCA), nearly all purple points lie on one side (negative PC1) 
and all yellow points on the other (positive PC1), confrming that the frst principal component 
alone captures the majority of the variance correlated with the BEC label. The slight “arc” shape 
arises because PC2 accounts for a small amount of additional variation, but overall PC1 is highly 
discriminative. 

(a) t-SNE of BEC encoder outputs (b) PCA of BEC encoder outputs 

Figure 9.3: Dimensionality-reduced embeddings for the BEC task. Each point represents one 
email’s fnal encoder output. Labels: purple=non-BEC, yellow=BEC. 
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9.5.2 AV Task Analysis 

In the t-SNE plot (Figure 9.4a), points labeled “diferent author” (blue) and “same author” (yellow) 
form distinct, well-separated clusters, showing that the encoder captures text-intrinsic cues—such 
as writing style or vocabulary usage—sufcient to distinguish author pairs. In the PCA projection 
(Figure 9.4b), almost all blue points lie on the far left (negative PC1) and yellow points on the far 
right (positive PC1), indicating that PC1 alone already explains a large portion of the variance 
correlated with authorship similarity. 

(a) t-SNE of AV encoder outputs (b) PCA of AV encoder outputs 

Figure 9.4: Dimensionality-reduced embeddings for the AV task. Each point is the joint 
embedding of an email pair. Labels: blue=“diferent author,” yellow=“same author.” 

These visualizations were generated from the embeddings of the held-out test set used in Table 4. 
The fact that BEC vs. non-BEC messages and “same author” vs. “diferent author” pairs appear 
as clear clusters under both t-SNE and PCA reinforces our observation that the MTL model’s 
shared encoder learns robust, task-discriminative representations. In other words, the same 
representations that give rise to the higher accuracy, F1 scores, and lower false-positive rates 
(compared to the TL baseline) also organize themselves neatly by label when reduced to two 
dimensions. 

9.6 Chapter Summary 

This chapter introduced a unifed Multi-Task Learning (MTL) framework designed to jointly 
address Business Email Compromise (BEC) detection and AV. It began by motivating the 
integration of these two tasks and reviewing related work in multi-task architectures within 
NLP and cybersecurity. The proposed model combines a shared BERT–BiLSTM encoder with 
task-specifc heads and independent loss functions. We described the training procedure, baseline 
setup, evaluation metrics, and datasets, including the use of real and synthetic email samples. 
Experimental results, including classifcation performance, false-positive rates, and embedding 
visualizations, were presented to assess the efectiveness of the MTL approach. 
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Chapter 10 

Conclusions and Future Work 

10.1 Summary of the Thesis 

This thesis presented a unifed, NLP-driven framework for detecting Business Email Compromise 
(BEC) attacks and verifying authorship in enterprise emails. Unlike traditional security tools that 
rely on metadata or user behavior, the proposed solution focuses exclusively on the content of 
the email body—using semantic and stylistic cues to identify deception and impersonation. The 
framework combines three core contributions: 

• A transformer–BiLSTM classifer optimized for content-only BEC detection. 

• A Siamese authorship verifcation model (BiBERT-AV) robust against mimicry. 

• A joint multi-task learning (MTL) architecture that improves performance and efciency 
by learning shared representations across both tasks. 

Together, these models demonstrate that semantic deception detection and stylistic verifcation are 
complementary components of modern email security—especially when metadata is unavailable 
or compromised. 

10.2 Key Findings 

1. Semantic Models Alone Are Not Enough. Transformer-based classifers (e.g., DistilBERT– 
BiLSTM) perform well on benchmark phishing datasets. However, their accuracy drops 
signifcantly under impersonation attacks, where emails are crafted to mimic internal 
communication styles. This reveals a critical limitation: phishing corpora fail to capture 
the complexity of BEC threats. 
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2. Stylistic Verifcation Resists Impersonation. BiBERT-AV—a Siamese network trained 
to compare writing styles—achieves over 90% accuracy even when faced with dozens 
of potential authors and style-mimicked messages. It remains robust against adversarial 
paraphrasing generated using LLMs, making it a valuable defense layer when account 
takeover occurs. 

3. Multi-Task Learning Boosts Accuracy and Efciency. The MTL framework, which 
shares a common encoder between BEC detection and AV tasks, outperforms both single-
task and transfer learning baselines. It also reduces inference time, ofering a deployable 
solution for real-time email fltering that scales with enterprise needs. 

10.3 Broader Implications 

This research carries important implications for both practice and academic inquiry: 

10.3.1 Content-Based Email Security 

Defenders should not depend solely on headers, IP addresses, or behavioral signals. When 
accounts are compromised, the email content remains the only trustworthy signal. NLP-based 
models like those in this thesis ofer a resilient, deployable fallback. 

10.3.2 Dual-Gate Filtering 

Integrating AV as a secondary check can prevent false negatives by validating whether the writing 
style matches the claimed sender, especially useful for internal emails or high-risk roles (e.g., 
executives or fnance teams). 

10.3.3 Efcient Deployment with MTL 

A joint model not only improves accuracy but reduces alert fatigue and latency, supporting 
proactive rather than reactive defense. 

10.3.4 Rethinking Benchmarks 

The thesis reinforces that phishing benchmarks are insufcient for BEC evaluation. Realistic 
assessments must include mimicry, impersonation, and AV-style challenges. 
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10.4 Limitations 

While the fndings are promising, several constraints should be acknowledged: 

10.4.1 Dataset Limitations 

• Lack of Public BEC Corpora: Real BEC emails are scarce due to privacy and legal 
issues. 

• Synthetic Data Caveats: The thesis uses LLaMA-generated BEC and mimic emails 
(Chapter 6). While these are validated by human and BLEU/ROUGE scores, they cannot 
fully replicate adversarial creativity or nuance. 

10.4.2 Generalisability 

• Language: Experiments are limited to English. Results may not generalize to multilingual 
or code-switched communication. 

• Domain: Data is based on Enron-style business email. Governmental, legal, or medical 
contexts may require domain-specifc retraining. 

10.4.3 Deployment Assumptions 

AV assumes access to historical emails per author to compute reference embeddings. In scenarios 
with new users or limited history, performance may degrade. 

10.4.4 Baseline Scope 

Only hard-parameter sharing MTL was explored. Variants like soft sharing or hierarchical 
chaining could yield deeper insights into task synergy. 

10.5 Future Work 

The thesis opens several avenues for continuation: 

1. Multilingual and Domain-Specifc Models 

• Curate multilingual BEC datasets (e.g., Arabic). 

• Fine-tune models for specialized domains such as fnance, legal, or healthcare. 
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2. Explainability and Analyst Trust 

• Apply SHAP/LIME to highlight important tokens. 

• Use counterfactuals to demonstrate how small changes alter predictions—improving 
transparency and adoption. 

3. Alternative MTL Architectures 

• Explore soft parameter sharing with task-specifc encoders and shared constraints. 

• Investigate task chaining, where AV outputs inform BEC detection. 

4. Multi-Modal and Psycholinguistic Extensions 

• Integrate non-textual cues: device fngerprinting, metadata, behavioral graphs. 

• Model psycholinguistic traits to strengthen author profles and detect subtle mimicry. 

10.6 Summary of Contributions 

Table 10.1: Summary of Thesis Contributions 

Contribution Description 
Systematic Review Provided the frst structured analysis of BEC detection strategies, 

including non-technical defenses. 
BEC Taxonomy Introduced a fve-axis framework grounded in case studies. 
BEC Detector Built and evaluated a transformer–BiLSTM classifer outperform-

ing baselines on phishing and fraud datasets. 
AV Model Designed BiBERT-AV, a mimic-resistant Siamese network using 

content-only input, scaling to many authors. 
Synthetic Dataset Generated and validated a novel mimicry-aware BEC corpus using 

LLaMA fne-tuning and human scoring. 
Joint MTL Framework Proposed and validated a multi-task architecture combining se-

mantic and stylistic deception detection with improved speed and 
accuracy. 

10.7 Final Refections 

This thesis has addressed the critical challenge of enhancing email security against sophisticated 
BEC attacks through advanced NLP techniques. By developing a unifed framework that 
integrates BEC detection and Authorship Verifcation, it bridges gaps in existing methodologies 
and provides a foundation for robust, scalable solutions. The fndings contribute to both theoretical 
advancements and practical applications, paving the way for future innovations in combating 
email fraud. 
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The hope is that this research will inspire further exploration in the feld of email security and 
encourage the development of intelligent systems capable of adapting to the evolving landscape 
of cyber threats. 
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