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Abstract 
 

Tightened budgets, continuing decrease in response rates in traditional probability surveys and 

increasing pressure by users for more timely data, has stimulated research for the use of 

nonprobability sample data, such as administrative records, web scraping, mobile phone data and 

voluntary internet surveys, for inference on finite population parameters like means and totals. 

These data are often easier, faster and cheaper to collect than traditional probability samples. 

However, a major concern with the use of this kind of data is their nonrepresentativeness due to 

possible selection bias, which if not accounted for properly, could bias the inference. In this article, 

we review and discuss methods considered in the literature to deal with this problem and propose 

new methods, distinguishing between methods based on integration of the nonprobability sample 

with an appropriate probability sample, and methods that base the inference solely on the 

nonprobability sample. Empirical illustrations, based on simulated data are provided.  
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1. INTRODUCTION 
 
   Tightened budgets, continuing decrease in response rates, due in part by increased 

response burden in traditional probability surveys and privacy concerns, and increasing 

pressure by users for more timely data, has prompted research into the use of 

nonprobability sample data, such as administrative records, web scraping, mobile 

telephone data, online panels and voluntary internet surveys for inference on finite 

population characteristics. These data are often easier, faster and cheaper to collect than 

are traditional probability samples. However, a major concern with the use of this kind of 

data is their possible nonrepresentativeness, due to possible selection bias, which if not 

accounted for properly, could bias the inference. For example, house sales advertised on 

the internet do not represent properly all house sales. Web scraping for job vacancies 

does not represent all job vacancies. Data from social media do not generally represent 

the general public. All these examples can be considered as ‘big data’, but nonprobability 

samples do not need to be big. Baker et al.. (2013), Keiding and Louis (2016) and Elliott 

and Valliant (2017) discuss other potential problems with the use of nonprobability 

samples for inference on finite population parameters.  

   The basic definition of a probability sample is that every unit in the population has a 

positive probability of being included in the sample. Inference under the traditional 

randomization (design-based) distribution over all possible sample selections from a fixed 

target population requires that the first-order sample selection probabilities of the sampled 

units are known. The use of standard variance estimation procedures requires that the 

joint sample selection probabilities of the sampled units are also known, but these can be 

calculated to a desired approximation by repeated sampling from the sampling frame. (Not 

usually available to analysts outside National Statistical Offices-NSOs.) 

   By definition, nonprobability samples are not selected by use of a probability sampling 

schemes, so no selection probabilities exist. The question arising therefore is how to draw 

inference from such samples, regarding the population, which they are supposed to 

represent. In this article, we restrict our attention to inference about target population 

parameters such as totals or means (proportions), which are the most common target 

parameters in official statistics, often published in tables.  

   We mention in this respect that many survey statisticians claim that traditional probability 

samples should be replaced by external records. Citro (2014) states that “official statistical 

offices need to move from the probability sample survey paradigm for the past 75 years 
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to a mixed mode data source paradigm for the future.” Clearly, if the nonprobability sample 

data are timely, accurate, with good coverage and contain all the required information, 

there is no reason to select a corresponding probability sample.    

   However, this is seldom the case. Israel’s population register covers all the population 

residing in Israel, but about 15% of the home addresses are wrong. Tax records of 

businesses are often obtained with a delay of up to 2 years. No administrative data are 

available on opinions, sentiments, detailed expenditures, and many other variables of 

interest. We mention also in this regard that government and private agencies are often 

reluctant to transfer data to NSOs, claiming data protection issues. Furthermore, the 

desired information is often contained in more than one file, requiring matching them, 

which is problematic if personal identifiers are unknown. (Requires probabilistic algorithms 

based on information in all the records.) Coverage of records might be different and may 

not apply to same time periods. Definitions and accuracy of information may differ 

between records. Finally, matching of different administrative data could magnify 

problems of data protection.  

   Methods considered in the literature to deal with possible non-representativeness of 

nonprobability (NP) samples can be divided into two classes: 

1- Integration of the NP sample with an appropriate probability sample (PS), 

2- Consideration of the NP sample on its own. (No data integration.) 

 

REMARK 1. The methods considered in this article for inference from NP samples alone 

assume known population means or totals of some of the survey values, which are used 

for enhancing the inference. However, no detailed probability sample data are used.   

   In Section 2, we review several methods proposed in the literature for Integration of a 

NP sample with an appropriate PS sample. We also present a new method. Section 3 

reviews methods proposed for adjusting for selection bias of a NP sample without 

integration with a PS ample. In Section 4, we propose a new method for inference from a 

NP sample without integration. Section 5 contains simulation results illustrating the 

performance of our proposed method. We conclude with some summary remarks in 

Section 6. 
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2. INTEGRATION OF NONPROBABILITY AND PROBABILITY SAMPLES 

   One of the earliest articles on this topic is by Lee (2006). The author proposes to create 

a pooled sample P PS NPS S S=   from the probability sample PSS  and the nonprobability 

sample NPS , assuming implicitly that the two samples do not  overlap, and models the 

selection probability to the nonprobability sample. The NPS  sample is treated as a 

“treatment sample” in observational studies, and the PSS  sample is treated as the “control 

sample”. It is assumed that every unit in the population has a positive probability to be in 

the NPS sample, estimated by use of propensity scores, ( ) Pr( | ; 1,..., )j NP je j S j n=  =x x , 

where n is the size of pS  and the x-variables are assumed to be measured in both 

samples.  

   Next, the sample PS  is divided into C classes based on the ascending values of the 

estimated propensity scores. An adjustment factor Cf  is computed for every class c as, 

                                         
, ,

, ,

/

/

c
PS PS

c
NP NP

k PS k PSk S k S

c

j NP j NPj S j S

d d
f

d d

 

 

=
 

 
,                                           (2.1) 

where 
,k PSd and 

,j NPd  are some base weights. An adjusted weight , ,

A

j NP c j NPd f d=  is 

computed for every unit NPj S .  

The estimator of the target population total ii U
Y Y


=  is, 

,
ˆ .c

NP NP

A

S j NP jc j S
Y d y


=    

   The use of this procedure for data integration requires the existence of x-variables such 

that the assignment to NPS  and the target y-variable are independent given x,       

Pr( | , ; ) Pr( | ; )NP j j P NP j Pj S y j S j S j S  =  x x . This is a limiting assumption. An 

extensive empirical study revealed that the use of this approach decreases (but not 

eliminates) the bias of inference from the NPS  sample, but increases the variance. See 

also Beaumont (2020). 

   Kott and Ridenhour (2024) likewise consider the use of a pooled sample P PS NPS S S=   

for inference from the nonprobability sample. The authors model the NPS  selection 

probabilities by a logistic model with covariates z
k  measured in both samples and for 

which the true population means ZT  are known or estimated from the PSS  sample, which 
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are used for calibration. The estimating equation is ˆ[1 exp( )] ( )
NPk S

+ = z g z
k k Z Z

T T . This 

defines new weights 1 ˆ[1 exp( )]k kw  − = + z g
k

 used for inference from the NPS  sample, 

where Pr( )k PSk S =  . When the PSS  sample is subject to nonresponse, the weights 

1

k kd  −=  are adjusted to account for the nonresponse. 

   Rivers (2007) considers the case where x  and y are measured in the NPS  sample but 

only x  is measured in the PSS  sample. The author proposes to deal with the non-

representativeness of the NPS  sample by matching to every unit PSi S  an element k  

from NPS , with similar values of auxiliary (matching) variables x.  

   Denote by , 1,...,i n=x
i , the x -vectors in PSS  and by 

jx  the vectors in NPS . The unit 

NPk S  satisfying | | | |k i j i NPj S−  −  x x x x  is chosen as the matched element for unit 

PSi S , where |·| is an appropriate distance. Selecting a matching element for every unit 

PSi S  defines a matched sample MS  of size n  with y-values from the NPS sample.  

   The proposed estimator of the population total Y  is ˆ
M

SM k kk S
Y w y


= , where 

(1/ ); Pr( )k k k PSw k S = =   and { }ky are the y-values measured in NPS , not measured 

in PSS . The author establishes regularity conditions under which for a scalar continuous 

matching variable, as ,n →  NPn →  and / NPn n 0→ , ( NPn  is the size of NPS ), 

0.5 ˆ( ) /SMn Y Y N− −  converges to a normal distribution with mean zero, where N  is the  

population size. 

REMARK 2. Rather than matching one record, one can match k nearest records and 

select at random the matched record out of the k records, known as the kNN method. See, 

e.g., Conti et al.. (2008). Alternatively, a weighted mean of the y- values of the nearest 

records can be used for matching. 

REMARK 3. The method requires a PS sample with similar x  values in NPS  and PSS . It 

also assumes that the relationship between y and x in the two samples is similar or 

formally, that ( ) ( )
NP PSS i i S i if y | = f y |x x , where ( ) = ( | )

NPS i i i NPf y | f y ,i Sx xi  and  

( ) = ( | )
PSS i i i PSf y | f y ,i Sx xi

.  
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   Kim & Wang (2019) propose the following procedure of integrating the data in the PSS  

and NPS  samples. The authors assume that membership of the PSS  elements in NPS  is 

known. Let 1(0)iδ =  if ( )NP NPi S i S  . The PSS  data contains therefore the values 

{( , ); 1,..., }i i i n =x . The procedure consists of the following step: 

1- Model ( ) Pr( 1| ; )i i ip = =γ x γ  by use of the PSS  data and estimate γ  by maximizing 

the “pseudo likelihood” ( ) { log ( ) (1 )log[1 ( )]}
PS

i i i i ii S
l w p p 


= + − −γ γ γ . 

2- Estimate the population total Y  as,  

                   1ˆ ˆ(1) ( )
NP NP

S i ii S
Y p y−


= γ or 

1 1ˆ ˆ ˆ(2) ( ) / ( )
NP NP NP

S i i ii S i S
Y N p y p− −

 
=  γ γ          (2.2) 

when N  is known.  

   The authors consider also a doubly robust estimator under the assumption of a 

population regression model. Consistent variance estimators are developed. 

REMARK 4. The use of this method assumes that the sampling mechanism to NPS  is 

ignorable after controlling for the covariates, i.e. Pr( | , ) Pr( | )NP i i NP ii S y i S = x x , known 

as noninformative sampling. In addition, the assumption that membership of the PSS  

elements in NPS  is known, may not hold in practice. 

   Chen et al. (2020) likewise assume noninformative sampling after controlling for the 

covariates and assume a prediction model ( ) ; 1,...,i i iy m i N= + =x  for the population 

units and a selection model Pr( | ; )NPS

i NPi S =  x γ
i

. For the case where ( )im =x x β
i , the 

resulting estimator of the population mean is, ˆˆ NP

NP

S

REG ii S
Y d


= x β
i , where 1/NP NPS S

i id =

and β̂  is estimated from the NPS  sample. This estimator is unbiased for Y .  

   In practice, the sample selection model is unknown, and the authors assume a 

parametric model ( ; )NPS

i = x γ
i

, which is estimated by maximizing the pseudo likelihood 

                      
* ( , )
( log[ ] log[1 ( , )]

1 ( , )NP PS
ii S i S

l w



 

) = + −
−

 
x γ

γ x γ
x γ

i
i

i

,                      (2.3) 

where 1/i iw =  are the sampling weights in PSS . The resulting estimator of Y is 

                                                 ˆ ˆ[ / ( . )]
NP

IPW ii S
Y y 


= x γ

i .                                            (2.4) 
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   When estimating the mean ( / )Y Y N= , the estimator (2.4) can be divided by N  when 

it is known or by ˆ ˆ[1/ ( , )]
NP NP

S i S
N 


= i

x   when N  is unknown. The authors prove that 

for the case of a logistic selection model, both estimators have an error of order 
1/2( ).
NPP SO n−

Variance estimators are also developed, correct to order 
1( )
NPSo n−

. 

REMARK 5. In a rejoinder to comments on an article by Beaumont et al. (2024a) (see 

below), Beaumont et al. (2024b) state that the use of the likelihood (2.3) is not efficient 

because the second term only uses the PSS  data and ignores relevant NPS  auxiliary data. 

The authors propose an improved estimator of γ  and a sample likelihood approach that 

properly accounts for an overlap between the two samples, when it can be identified. 

   Chen et al. (2020) also consider a doubly robust estimator, defined as 

                                ˆ ˆˆ ˆ[1/ ( . )][ ( , ] ( , ]
NP PS

DR i i i ii S i S
Y y m w m

 
= − + x γ x β x β

i i i ,            (2.5) 

where ( , )im x β
i is an assumed population regression model. The estimator ˆDRY  is shown 

to be consistent forY , even if the population model or the sample selection model is 

misspecified. Variance estimators correct to order 
1( )
NPSo n−

are derived. 

   Chen et al. (2022) consider the use of the pseudo empirical likelihood for inference from 

nonprobability samples, defined as ( ) log( )NP

NP

S

PEL i ii S
l d p


=p , where the ip s are the EL 

probabilities, ˆˆ[(1/ ( . )] /NPS

i SNPd N= x γ
i

 and ˆ ˆ[(1/ ( ; )]
NP NP

S j S
N 


= x γ

i . The parameters 

γ are estimated using the likelihood (2.3) and are considered fixed in the likelihood ( ).PELl p

Maximization of the likelihood under the constraint 1
NP

ii S
p


=   yields ˆ .NPS

i ip d=   

   The authors also consider a doubly robust estimator obtained by adding the calibration 

constraint ˆ[ ( ; )]
PSNP

i i Si S
p m m


= x

i
 where 

1 ˆˆ ( ; )
PS PS PS

S S i ii S
m N w m−


=  x β

i , ˆ
PSSN =

PS
ii S

w
 , 

and corresponding pseudo empirical likelihood confidence intervals, which are shown to 

perform generally better than the customary normal theory intervals.  

   We refer the readers also to a related article by Wu (2022), which contains a critical 

review and some extended discussions on theoretical and practical issues with inference 

from non-probability samples.  
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   Beaumont et al. (2024a) likewise consider integration of NPS  and PSS  samples, again 

assuming that the probability of inclusion in NPS  only depends on the x  variables. The 

authors assume a logistic model ( ) Pr( 1| ; )i i ip = =γ x γ  for the inclusion of unit i U  in 

NPS  and estimate γ  by solving the likelihood estimating equations                             

ˆ ( ) ( ) 0
NP PS

i i i ii S i S
U w p

 
= − = γ x γ x . The equations ˆ ( )U γ are design unbiased over all 

possible PSS  selections of the likelihood equations that would be obtained if the x -values 

were known for all .i U  

   The authors develop a modified AIC criterion for stepwise selection of the x -variables 

in the NPS  sample selection model ( )ip γ . However, a problem with the use of this criterion 

is that it ignores the relationship between y and the x -variables. To deal with this problem, 

the authors extend their AIC criterion by partitioning the NPS  sample into homogeneous 

groups ,1 ,,...,NP NP NP GS S S=    based on the estimated probabilities ˆ( )ip γ  and a ranking 

method, and then assigning each unit in the PSS  sample to one of the groups.  Let 
,NP gS  

and 
,PS gS  define the

thg  sets of units of the non-probability and probability samples, 

respectively. Assuming that the selection probabilities in each group are the same, the 

resulting estimated selection probabilities in group g are then ˆˆ /NP

g g gp n N= , where 
NP

gn  is 

the size of 
,NP gS  and 

,

ˆ
PS g

g kk S
N w


= . The estimator of Y  is   

     
,

1

1

ˆ ˆ ˆˆ ˆ ˆ; /
NP NP gNP

GNP NP NP

S k k g S k k g gk S g
Y w y N y w p N n−

 =
= = = =  ; 

, ,NP g NP g

i
S NPi S

g

y
y

n
= .   (2.6) 

The variance of ˆ
NPSY  is estimated by an appropriate bootstrap algorithm. 

REMARK 6. Rao (2021) reviews several other estimators based on data integration, 

distinguishing between the case where the target variable y is observed in both samples, 

and the case where it is only observed in the NPS  sample. 

   The common feature of all the approaches considered so far is their reliance on the 

assumption that the selection to the NPS  sample depends on known x-variables, but not 

on the target y-variable. (See Remark 4 above). In practice, it is likely that the selection to 

NPS  depends also on y. For example, people participating in a voluntary web survey on 

political tendency, may choose not to participate in the survey, depending on their 
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tendency. Administrative data may be missing people who do not participate in 

government programs, including people who do not have social security numbers, people 

with housing instability, or people working in the informal economy.  
 

   In addition, the PSS  sample used for integration with the NPS  sample may be subject to 

not missing at random (NMAR) nonresponse, in the sense that that the probability to 

respond depends also on the target y- variable. For example, the response of people on 

income may depend on their level of income. Denote by iR  the response indicator. NMAR 

nonresponse occurs when, 

 

                                       Pr[ 1| , , ] Pr[ 1| , ]i i i i iR y i s R i s=   = x x .                                   (2.7) 

 

   Pfeffermann et al. (2025) consider data integration when the selection to the NPS  sample 

and the response probabilities in the PSS  sample depend on both y and x , applying the 

empirical likelihood (EL) approach. It is assumed that x  is observed in both samples, but 

y is only observed in the NPS  sample. Let PS

iI  be the sample indicator for PSS , taking the 

value 1 if unit i  is sampled and 0 otherwise. For PSi S , the sample model of x i  is  

                                 ,

Pr( 1| )
Pr( | 1)

Pr( 1)

PS
X PS Xi i
i PS i i iPS

i

I
p I p

I

=
= = =

=

x
x ,                                  (2.8)                                                                    

where Pr ( )X

i U ip = =x x  is  the probability in the population. As can be seen, under 

informative sampling with respect to x, the sample probability ,

X

i PSp  is different from 
X

ip .  

   Additionally, it is assumed that PSS  is subject to NMAR nonresponse. Let 
PS

iR  be the 

response indicator, taking the value 1 if sample unit PSi S  responds and 0 otherwise. 

Denote by PSR  the set of responding units in PSS . Then,  

                  , ,

Pr( 1| , 1)
Pr( | 1, 1)

Pr( 1| 1)PS

PS PS
X PS PS Xi i i
i R i i i i PSPS PS

i i

R I
p I R p

R I

= =
= = = =

= =

x
x .                         (2.9) 

   By (2.8) and (2.9), the respondents model is a function of the true population probability, 

the conditional expectations of the sampling weights, ,Pr( 1| ) 1/ ( | )PS

i i PS i PS iI E w= =x x  

(Pfeffermann and Sverchkov 1999); , ,1/i PS i PSw =  are the base sampling weights in ,PSS

and the response probabilities Pr( 1| , 1)PS PS

i i iR I= =x . Assuming that the response is 
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independent of the sample selection, , ,( | ) ( | )
PSPS i PS i R i PS iE w E w=x x , in which case the 

probabilities ( 1| )PS

i iP I = x  can be estimated by regressing ,i PSw  against x i . 

   The response probabilities ( 1| , 1)PS PS

i i iP R I= =x  in (2.9) are unknown and need to be 

estimated from the available data by postulating a parametric model, 

                        ( 1| , 1, ) ( ; )PS PS

i i i iP R I g= = =x ρ x ρ                                                      (2.10) 

for some known function g , (say, a logistic model), with ρ  defining the model parameters.       

   Assuming independence of the sampling and the response, the empirical respondents’ 

likelihood based on PSR  is thus, 

                     ,

Pr( 1| , 1)

Pr( 1| 1)PSPS

PS

PS PS
X X Xi i i

PS i i,R i PSPS PSi R
i R i i

R I
ERL (p )= p p

R I


= =
=

= =
 

x
.              (2.11)                                               

   Next, consider the NPS  sample. Let 
NP

iI  be the sample indicator, taking the value 1 if 

NPi S  and 0 otherwise. Denote Pr( , )XY

i ip y y= = =x x
i

. For NPi S , 

                                ,

Pr( 1| , )
Pr( , | 1)

Pr( 1)

NP
XY NP XYi i i
i NP i i i iNP

i

I y
p y I p

I

=
= = =

=

x
x ,                          (2.12)                                                     

where ( 1) ( 1| , )NP NP XY

i i i i i

i NP

P I P I y p


= = = x . Because no sampling weights for NPS  are 

available, the probabilities ( 1| , )NP

i i iP I y= x  need to be modelled parametrically, 

                                                     Pr( 1| , ; ) ( , ; )NP

i i i i iI y h y= =x γ x γ                              (2.13) 

for some known function h , with γ defining the model parameters. Assuming 

independence of the NPS  data, the empirical likelihood based on NPS  is       

                                        ,( )
NP

XY XY

NP i i NPi S
ESL p p


= .                                                 (2.14) 

Assuming no overlap between the two samples, the empirical likelihood based on the 

data in NPS  and PSS  is, 

                      ,( ) ( )
PS PSPS

X XY X XY

R NP PS i NP i i,R i NPi R
i NP

EL = ERL p ESL p = p p 


  .                   (2.15)      
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The unknown parameters in (2.15) are the population probabilities ,X XY

i ip p , the sampling 

parameters  γ  and the response parameters ρ . The likelihood is maximized subject to 

constraints on the unknown probabilities and calibration constraints.  

REMARK 7. The unknown probabilities { }X

ip  can also be estimated from the NPS  sample; 

, ,

{ ; }

ˆ ˆ

i

X XY

i NP i NP

i x x

p p
=

=  . This implies two sets of estimates of the probabilities { }X

ip , which need 

to be harmonized. See Marella and Pfeffermann (2023) for possible harmonization 

procedures. The final, integrated estimate of 
XY

ip  is , ,
ˆ ˆ ˆ ˆ( / )XY X XY X

i i i NP i NPp p p p= , where ˆ X

ip  is 

the harmonized estimator.  

   The population total Y  can be estimated in one of the following two ways: 

                           ˆ ˆ(1)
NP

Y

NP i i

i S

Y N y p


=   ; 

1

1

P̂r ( 1| , )
ˆ (2)

P̂r ( 1| , )

NP

i i i ii NP
NP NP

i i ii NP

I y y
Y N

I y

−



−



=
=

=




x

x
,               (2.17)    

where 
;

ˆ ˆ

i

y XY

i i

i y y

p p
=

=  . See Pfeffermann et al. (2025) for an empirical comparison of the 

performance of the two estimators. 

REMARK 8. One of the reviewers of this article raised a concern about the model used 

for the selection model to the NPS  sample, noting that it seems difficult to obtain 

robustness to deviations from the model. As discussed in Section 4.3 and illustrated in 

Section 5, the NPS  model can be tested.  

3. INFERENCE FROM A NONPROBABILITY SAMPLE WITHOUT INTEGRATION 

   In Section 2, we considered methods of inference from a nonprobability sample, based 

on integration of the NPS  sample with an appropriate probability sample PSS . In this 

section, we consider methods for adjusting the selection bias of the NPS  sample, without 

integration with a PSS  sample (see Remark 1).  

   We start with an approach based on calibration. The basic idea underlying this approach 

is to change some base weights, ,j NPd  (say, based on propensity scores)  to new weights 

,

cal

j NPd , so that when applied to a set of variables Z observed in NPS  and for which the true 

population totals are known, the NPS  survey estimates will equal the corresponding totals; 
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,
NP

cal

j NP j zj S
d


= z T , where z

T  are the known population totals. (In practice, the true totals 

can be replaced by reliable estimates from a probability sample.) See  AAPOR (2010) and 

Baker et al. (2013) for review of methods that follow this approach, and Kott and Ridenhour 

(2024) reviewed in Section 2. 

   The success of this approach depends on the availability of calibration variables, which 

are highly correlated with the target y-variable (good prediction power). Lee and Valliant 

(2009) illustrate that combining propensity scores and calibration adjustments is more 

effective in reducing the bias of NPS  estimates than using just one of the approaches. See 

also Elliott and Valliant (2017). 

   Kim and Wang (2019) propose the use of inverse sampling to obtain a representative 

sample from the finite population, and hence to correct for the selection bias of the NPS  

sample. The proposed inverse sampling can be viewed as a special case of two-phase 

sampling, where the first phase is the NPS  sample and the second phase is a subsample 

from the first-phase sample to correct for the selection bias.  

   Denote, as before, by i  the indicator of whether unit i U  is included in the NPS  

sample. It is assumed that Pr( 1| , ) Pr( 1| ) 0i i i i iy = = = x x  for all i U . The NPS  

sample contains the values ( , ),i i NPy i Sx . Denote by ( )f x  the population distribution of 

the x-variables. If ( )f x  is known, an asymptotic unbiased estimator of ( )E Y =  is, 

                       
1 1

( ) ( )ˆ /
( | 1) ( | 1)NP NP NP NP

i i
S i i ii S i S i S

i i i i

f f
y w y

f f


   
= =

= =
  

x x

x x
.           (3.1)        

   For the more practical case where only the mean /U ii U
N


=X x  is known, the 

authors approximate ( )f x  by the function 0 ( )f x , which minimizes the Kullback–Leibler 

distance. The solution to the minimization distance is, 

        0

exp( )
( ) ( | 1)

[exp( | 1)]
f f

E



= =

=

x'λ
x x

x'λ
, with λ  satisfying 0( ) Uf d =x x x X .          (3.2)                                            

With this approximation, the estimator 
1

ˆ
NPS in (3.1) is replaced by, 

2

*ˆ
NP NP

S i ii S
w y


= ; 

*
ˆexp( )

ˆexp( )
NP

i

i S

w




=


i

i

x λ

x λ
, with λ̂  satisfying 

*

NP
i i Ui S

w


= x X .                 (3.3) 

JClGvpugt
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   Finally, the authors propose to select the second-phase sample from NPS  with 

probabilities 
*

2|1 ,i i NPnw i S =   with the weights { *

iw } defined by (3.3) and 

* 1[max { }]
NPi S in w −

 , yielding the approximately design-unbiased estimator of the 
1

ˆ
NPS

estimator defined in (3.1), 

                                                         
3

*

1
2|1

1 1ˆ
NP NP

n

S i i ii S i
i

w y y
n


 =

= =  .                                                 (3.4) 

A simple estimator of the design variance of 
3

ˆ
NPS  is proposed. 

   The two approaches considered so far assume that the selection to the NPS  sample is 

noninformative in the sense that Pr( 1| , ) Pr( 1| ) 0i i i i iy = = = x x  for all i U . 

However, as discussed before, this assumption may not hold in practice, and in what 

follows, we consider alternative approaches aimed to deal with the case of informative 

sample selection.  

   Sayag et al. (2022) consider the following problem, underlying the computation of 

monthly house price indices (HPI) in many countries. A large amount of the house sales 

are reported several months after they occur, implying that if not accounted for, the 

provisional HPIs based on the on-time reported transactions are subject to large revisions, 

as further transactions are reported. This happens because the late-reported transactions 

behave differently from the transactions reported on time. This is a nice example of a 

nonprobability sample (the on-time reported sales), which is subject to selection bias due 

to late data availability of some of the sales (~40% in Israel). 

   To deal with this problem, the authors propose nowcasting three types of variables and 

adding them as input data to a hedonic regression model used for the computation of the 

HPI: (1)- the average characteristics of the upcoming late-reported transactions, such as 

the average number of rooms, the average net area size, the average age of the sold 

houses, etc. (2)- the average price of the late-reported transactions and (3)- the number 

of late-reported transactions. The three types of variables are nowcasted based on simple 

models fitted to data from previous months. Application of the proposed methodology 

shows more than 50% reduction in the magnitude of the revisions. This is a unique 

example of a time series of non-representative nonprobability samples for which the true 

population data (all the sales corresponding to a given month) become known only several 

months later.  
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   Kim and Morikawa (2023) assume a non-ignorable (informative) sample selection model 

( , ; ) Pr( 1| , ; )i i i i iy y = =x x
i
  , where (1,0)i =  is the NPS  sample indicator, assuming 

that the variables x i  are known for all i U  and ( , ) 0i i iy x  for all i U . For the case 

where the population model ( | )if y x
i  is known, the authors propose estimating   by 

maximizing the likelihood,   

(1 )

( ) [ ( | ) ( , ; ] [1 ( ;
i

i

obs i ii U
L f y y

 
−


= ) − ) x x x  i i i

; ( ; ( , ; ]iy ) =  ) x x x
i i i
  .  (3.5)    

   However, this likelihood requires modelling the population model and the authors note 

that the MLE estimator obtained from (3.5) is not robust to misspecification of the model. 

Consequently, they develop a likelihood based on the model 

( | ) ( | , 1)SNP i i if y f y = =x x
i i , which can be identified and estimated consistently.  

   Alternatively, the authors develop a methodology for estimating   and the population 

mean of the y-values by applying the Empirical Likelihood (EL) approach. For the case 

where the selection probabilities ( , )i i iy x  are known, the authors propose estimating the 

ip ’s underlying the EL by maximizing the likelihood, ( ) log( )
NP

ii S
l p p


= , subject to the 

constraints (1)- 1
NP

ii S
p


= , (2)- ( ) /

NP
i i i ii S

p y , n N


= x , (3)
NP

i i Ui S
p


= x X , where 

n is the size of the NPS  sample, N is the population size and /
i U

N


=X x
U i . The 

constraint (2) is referred to as a bias calibration constraint, whereas the constraint (3) is 

added to improve the efficiency of EL estimator.                                                                   

   In practice, the sample selection probabilities are unknown. The authors assume a 

parametric model; ( , ) ( , ; )i i i iy g y =x x
i

  (say, logistic), and estimate ˆˆ ( , ; )i ig y = x
i
  by 

solving the estimating equations
1
[ 1]

( , ; )

N i

i
ig y


=

− = x 0
x

i

i 
. These equations do not 

require knowledge of the x -values for every unit in the population. By considering the 

estimated probabilities ˆˆ ( , ) ( , ; )i i i i iy g y =x x   as the true inclusion probabilities, the 

authors maximize the constrained EL likelihood defined above with the bias calibration 

constraint (2) replaced by
1

1

ˆ ˆ( , ; ) ( ; )
NP

N

i i i ii S i
p y N −

 =
= x x

i i
  , which does require 

knowledge of the population x -values, yielding the estimates ˆ{ }ip . The population mean 

of the y-values are estimated as, 
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,

1ˆ

ˆ ( , )NP

i
EL IPW i S

i i i

y
Y

N y
= 

x
  Or 

ˆ ˆ
NP

EL i ii S
Y p y


= .                                         (3.6)      

The authors derive asymptotic properties of their estimators and variance estimators.  

   This article proposes a novel approach for estimating finite population means from NPS

samples subject to nonignorable selection probabilities, but the assumption that the x -

variables are known for every unit in the population is restrictive. 

REMARK 9. In Section 2, we proposed a method of inference from a NPS  sample alone, 

which likewise combines a non-ignorable sample selection model with the empirical 

likelihood. See Equations (2.12)-(2.14). This method does not require knowledge of the x

-variables for every unit in the population. See also Section 4 below. 

4. A NEW (OLD) APPROACH FOR INFERENCE FROM A NONPROBABILITY SAMPLE 

4.1 Relationship between the population distribution and the NPS  distribution 

 

   Following, we propose an alternative approach for inference from a nonprobability 

sample alone. It relies in large on Pfeffermann and Sverchkov (1999). 

   Denote the model holding for the target variable y in U  by ( | )U i if y x . Denote the model 

holding for y in the NPS  sample by ( | )
NPS i if y x , and let  1(0)iδ =  if ( )NP NPi S i S  . The 

target model is ( | )U i if y x , but observations { , }i iy x  are only available for ( | )
NPS i if y x . We 

assume, Pr( ) 0NPi S  for all i U  (also assumed in the other approaches considered 

before). The two distributions are connected via the link function Pr ( 1| , )y = x .      

                   ( | ) ( | , 1)i i i i if y f y = =x x
NPS

Pr( 1| , ) ( | )

Pr( 1| )

i i i U i i

i i

y f y



=
=

=

x x

x

Bayes

.                         (4.1) 

   As discussed below, the relationship (4.1) enables estimating the target population 

distribution from the observations in NPS  alone. Notice that  ( | ) ( )
NPS i i U i if y f y |=x x  iff  

Pr( 1| , ) Pr( 1| )i i i i iy = = =x x iy , in which case the model fitted based on the NPS  

sample holds for the population data and if the x -values are known for all i U , (or in the 

case of a linear population model 
UX  is known), inference based on the NPS  sample is 

valid.  See Rao (2021) for discussion of this method under these conditions. 

JClGvpugt
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REMARK 10. In the first part of their article, Kim and Morikawa (2023) also assume 

parametric models for the population model and the sample selection probabilities, (see 

above), but we do not assume knowledge of the population x -values. Additionally, the 

authors estimate the parameters underlying the sample selection model outside the 

likelihood, whereas we estimate them jointly with the population model parameters (see 

below). We utilize similar calibration constraints to the ones used by Kim and Morikawa 

(2023), see Equation (4.3) below. We also test the goodness of fit of the resulting model 

( | )i if y x
NPS

, see section 4.3.   

   The probabilities Pr( 1| , )i i iy = x  need to be modelled. They are allowed to depend on 

the target y variable, thus accounting for informative sample selection. They may depend 

also on other variables Z, but we only need to model Pr( 1| , )i i iy = x . The use of a Logistic 

model for i  has some theoretical justification. See Lemma 1 in Pfeffermann et al. (2025) 

for details. When Z is observed in the NPS  sample, we may include it among the x-

variables. 

4.2 Estimation of model parameters  

   Unlike the use of the empirical likelihood approach, application of this approach requires 

specifying the population model and the model for the sample selection probabilities, 

which depend on unknown parameters that need to be estimated from the observations 

in NPS . Adding parameters to (4.1), we have 

                    
Pr( 1| , ; ) ( | ; )

( | ; , )
Pr( 1| ; , )

i i i U i i
i i

i i

y f y
f y





=
=

=

x x β
x β

x βNPS





.                                   (4.2) 

Assuming independence of the observations in NPS , the corresponding log likelihood is 

( , ; ) log ( | ; , )
NP NP

NP

S S i i

i S

l y f y


= β x β  , which we maximize subject to the constraints, 

                         
1 1 1

Pr( 1| , ; )
NP

i j U

i S j Ui i iN y N 

= =
=

 x x X
x 

.                                        (4.3) 

The constraints (4.3) are used for enhancing the estimation of the parameters ( ,β  ). We 

assume throughout that x  contains a “1” in the first position. 
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REMARK 11. In the empirical study in Section 5 with continuous y, we approximated the 

probabilities Pr( 1| ; , )i i = x β  by Riemann’s sums over 350 sub-groups of the y-values. 

When y is binary, 

  
Pr( 1| ; , ) Pr( 1| 1, ; )Pr( 1| ; )

Pr( 1| 0, ; , )Pr( 0 | ; ).

i i i i i i i

i i i i i

y y

y y

 



= = = = =

+ = = =

x β x x β

x β x β

 


 

   We maximized the likelihood with the constraints by use of the SAS procedure NLIN, 

iterating between the maximization with respect to   for given  , and the maximization 

of   for given  , with the “given” values defined by the estimates in the previous iteration. 

See Section 5 for how we estimated the population mean of the y-values in our 

simulations. 

4.3 Model testing and Identifiability concerns  
 

    The application of the proposed approach assumes a model ( | ; )U i if y x β  for the 

population values and a model Pr( 1| , ; )i i iy = x   for the selection probabilities, which 

permits estimating the parameters )(  β by means of (4.2) and (4.3), using the data in

NPS . No direct testing of the population model or the model for the selection probabilities 

is possible, since no data are available from the population distribution and the y-values 

are unknown for units NPj S . However, contrary to a common perception that it is 

impossible to test a model fitted to the NPS  data, we contend this is not true. We have 

observations from the fitted model, so we are faced with the classical problem of testing 

the goodness of fit of a hypothesized model to the observed data. See Krieger and 

Pfeffermann (1997) and Pfeffermann and Sikov (2011) for plausible tests.  
 

REMARK 12. Rejection of the null hypothesis implies that at least one of the two models 

is misspecified. See Section 5 for examples and the concluding remarks in Section 6.  

   A common argument in favor of the claim that the sample model cannot be tested is that 

it may be the case that there is more than one combination of a population model and a 

selection model, yielding the same model for the observed data, such that the model fitted 

to the data in NPS  is not identifiable or weekly identifiable. Pfeffermann and Landsman 

(2011) and Wang et al. (2014) establish conditions under which the model ( | )
NPS i if y x  is 
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identifiable, with references to other related studies. See Section 5 for the identifiability 

conditions for the models considered. 

REMARK 13. In a highly cited article, Molenberghs et al. (2008) prove and illustrate that 

for every NMAR model fitted to a set of data, there is a MAR counterpart providing exactly 

the same fit to the data. The authors note that “such a construction does not lead to a 

member of a conventional parametric family”. A simple example for this argument is where 

the population model ( | )Uf y x  is assumed to be defined by the sample model ( | )i if y x
NPS

 

(Eq. 4.2), and the sample inclusion probability satisfies Pr( 1| , ; )i i iy = x  =

Pr( 1| ; )i i= = x  . Clearly, ( | )U i if y x = ( | )i if y x
NPS

 is a very odd population distribution. 

Molenberghs et al. (2008) also note that “we can make progress if attention is confined to 

a given parametric family, in which we put sufficiently strong prior belief”. This is what we 

do under our proposed approach. Notice that the selection model is used to obtain valid 

estimates of the population model, and as shown below and illustrated in Section 5, it can 

be tested.   

   Consider first the case where y is a continuous variable. In our empirical applications, 

we applied the following UNIF test statistic (Krieger and Pfeffermann, 1997). 

Preliminaries:  

1- For a continuous variable Z with cumulative distribution F , ( ) (0,1)F z U~ . 

2- Under general conditions, the set of all the moments of ( )F z  determine the        

distribution. 

Proposed test:  

( i ) Compute ( | ), 1,...,
NPi S i iT F y i n= =x  based on the estimated coefficients( ˆ ˆ,β  ). 

( ii ) Compute the sample moments 
1

/ , 1,...,
n m

m ii
u T n m M

=
= = . 

( iii ) Compute the Wald test statistic based on the estimated sample moments. 

For the moments of the (0,1)U distribution, ( ) 1/ ( 1)m mE u m = = + ;

( , ) / [( 1)( 1)( 1) ]m lCov u u ml m l m l n= + + + + . Assuming 1( ,..., )m' u u=u  is normal,  

                                         
0

1UNIF ( ) ( )
H

2

M- - χ−= u μ u μ ,                                      (4.4)    

where   is the Variance-Covariance matrix defined by the covariances above.    
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REMARK 14. In the proposed test, we replace the true moments by the estimated 

moments. The estimators ( ˆ ˆ,β  ) are obtained by MLE and under some regularity 

conditions, they converge almost surely (a.s.) to the true parameters ( ,β  ) (Zacks, 1971). 

Then, if the true distributional function F is smooth, e.g. twice differentiable with respect 

to β  and  , 
 

. .
ˆ ˆ( | , 1; , ) ( | , 1; , )

a s

i i i i i iF y F y = → =x β x β 
 
, justifying the use of the UNIF test 

defined by (4.4). See Figure 1 in Section 5 for a simulation illustration. 

REMARK 15. In our simulation study we used M=5 moments, which was found to perform 

well in Krieger and Pfeffermann (1997). Notice that 
2 2

1

1
( , ) (1 )

4
m mCorr u u m− = − , so higher 

order moments add only marginally to the power of the test. 

   For the case where y is binary, we apply in Section 5 the Hosmer and Lemeshow (1980, 

hereafter H-L) test defined as follows: 

( i )  Sort the observed data in NPS  based on the estimated probabilities

ˆˆ Pr( 1| , 1),i i i i NPy i S = = = x .  

( ii ) Divide the sorted data into G groups of approximately equal size ( / )gn n G  and 

compute for each group g ; go - the number of values 1y =  and g =
1

ˆ
ii g

gn


 . The test 

statistic is,   

                                         
0

2

( 2)1

( )

(1 )

H
G g g g 2

Gg
g g g

o n
H L χ

n



 
−=

−
− =

−
 .                                              (4.5) 

5. SIMULATION RESULTS 

   In this section, we present simulation results to illustrate the performance of our 

proposed approach, separately for the case where the target variable y is continuous, and 

for the case where it is binary. 

5.1 Simulation setup with a continuous target variable- correct model 

   We start by repeating the same simulation study as performed by Kim and Morikawa 

(2023), which consists of the following steps: 

1. Generate 5,000 population values as 0 1 1 2 2i i i iy x x   = + + + , where  

1 2, ~ (2,1); ~ (0,1)i i ix x N N
Indep

. (The values of the   coefficients are in Table 1 below.) 
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2. Generate selection probabilities to the NPS  sample as, 

0 1 1 2

0 1 1 2

exp( )
Pr( 1| , )

1 exp( )NP

i i
i,S i i i

i i

x y
π y

x y

  


  

+ +
= = =

+ + +
x . (The   coefficients are in Table 1.) 

 

3. Repeat Steps 1 and 2 1,000 times, yielding an average selection rate of 50%. 

 

4. For each simulation, estimate the model parameters and the population mean

5,000

1
/U ii

Y y N
=

= .  

 

 Estimators considered: 

, 0 1 1 2 2

1ˆ ˆ ˆ ˆ( )U X known i ii U
Y x x

N
  


= + + . The x-variables are known for every unit i U , β

is estimated by maximization of the likelihood ( , ; ) log ( | ; , )
NP NP

NP

S S i i

i S

l y f y


= β x β  , under 

the constraints in (4.3). Note: since the population model is linear, it suffices to know the 

population means of the x -variables.  

,

ˆ
U GREGY  = ˆ [ ]NP NP

NP NP

i i i i

i S i S

pk U

i i

i S i S

k y k

k k

 

 

+ −

 

 

x

B X , ,
ˆ(1/ )

NPi i Sk = , the GREG estimator with the 

standard base sampling weights (1 / )i iw =  replaced by ,
ˆ(1/ )

NPi i Sk = . ˆ pkB  is the 

probability weighted estimator of β , with weights ik . 

,

ˆ ˆ
NP

U KM i ii S
Y p y


= , the estimator of Kim and Morikawa (2023). ( ˆ

ELY  in Equation 3.6). 

,

ˆ
U MARY - the estimator obtained by assuming that the selection probabilities only depend 

on the x -variables; Pr( 1| , ) Pr( 1| )i i i i iy = = =x x , where 1 2( , )i i ix x =x . We assume a 

logistic model, using all the population x -values.   

   The first 2 estimators are obtained by application of our approach. The estimation of the 

β -coefficients in the first estimator is only based on the data in NPS .  

REMARK 16. An important question regarding the models used in this simulation study is 

whether the resulting sample model 
Pr( 1| , ; ) ( | ; )

( | ; , )
Pr( 1| ; , )

i i i U i i
i i

i i

y f y
f y





=
=

=

x x β
x β

x βNPS





 is  
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identifiable. By identifiability we mean that there are no different pairs [ Pr ( 1| , ; )j i i i jy = x 

, ( | ; )Uj i i jf y x β ], 1,2j =  inducing the same sample model for every y and x . Pfeffermann 

and Landsman (2011) consider sets of conditions guaranteeing the identifiability of the 

sample model. In particular, for the case of a normal population model and a logistic model 

for the sample selection probabilities, the sample model is identifiable if the x -variables 

in the two models differ by at least one variable. Notice that in the models underlying the 

present simulation, the population model is a function of 1 2( , )i ix x , but the selection logistic 

model is only a function of 1ix , so that the identifiability condition defined above is satisfied. 

5.2 Results for continuous case when fitting the correct model, 1,000 simulations. 
 

Table 1. Estimation of model coefficients under the proposed method. 
 

 Population model  

coefficients 

Selection model 

coefficients 

 
0  1  2  0  1  2  

True coefficients -4 1 1 -2 1 0.5 

Mean estimators* -3.92 0.98 0.99 -2.15 0.80 0.43 

Empirical S.E.  .004 .001 .001 0.023 0.008 0.002 

Mean PWR estimator -3.88 0.96 0.99 NA NA NA 

Empirical S.E. 0.006 .002 .001 NA NA NA 
 

* The mean estimators are of the MLE estimators. The PWR estimator is the probability 

weighted estimator with weights ,
ˆ(1/ )

NPi i Sk = .  

   As can be seen, the β  coefficients are estimated quite accurately on average. The 

estimators of the    coefficients are less accurate, but the estimators of the population 

mean in Table 2 still have a negligible bias with these estimators.  
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Table 2. Estimation of population mean. (Mean true value =-0.00), 1,000 simulations.  
 

Method Bias Emp. Var X 1000 MSE X 1000 

(Bootstrap estimates)* 

      
ˆ
U, X known

Y  
-0.01 2.263 2.363 (3.36) 

   
ˆ
U,GREG

Y  
-0.02 2.423 2.823 (3.89) 

ˆ
U,KM

Y  
0.01 2.030             2.080  (---) 

ˆ
U,MAR

Y  
0.25 2.106 64.606 (65.11) 

  

* The bootstrap MSE estimates are based on 100 simulations with 100 bootstrap samples  

   for each simulation.  
 

   Estimation of the population mean of the y-values is the primary target of inference in 

the simulation study and the first three estimators are seen to be literally unbiased. The 

estimator ,

ˆ
U KMY  uses all the population x-values and performs best. The estimator 

,

ˆ
U X knownY  likewise uses all the population x -values (or , NPi Sxi  and 

U
X ), but the 

estimation of the model coefficients is only based on the NPS  sample. The estimator 

ˆ
U,GREGY  uses the NPS  model for estimating the  -coefficients and likewise performs well 

on average although with somewhat larger variance and MSE. The bootstrap MSE 

estimators are conservative with large upward bias. We selected the bootstrap samples 

by following the procedure proposed in Sverchkov and Pfeffermann (2004), which consists 

of selecting with replacement a pseudo-population from the sample with probabilities 

proportional to ,
ˆ(1/ )

NPi i Sk = , and then selecting the bootstrap samples 
b

NPS  with the 

estimated probabilities ˆ
NPi,Sπ  obtained from the original sample. We only considered 100 

simulations and 100 bootstrap samples for each simulation, which may explain the upward 

biases. As expected, the estimator 
ˆ ,U,MARY which assumes that the selection probabilities 

only depend on the x -variables has a large positive bias and extremely large MSE. Kim 

and Morikawa (2023) obtained similar bias and MSE figures in this case. 

   Overall, the use of our proposed approach seems to perform well in this part of the 

simulation study. 
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Model testing: As discussed In Section 4.3, our proposed approach enables testing the 

models assumed for the population and the sample selection probabilities. Figure 1, 

compares the empirical cumulative distribution of the UNIF statistic (Equation 4.4) with the 

corresponding 
2

Mχ  distribution for the case M=5.  

Figure 1. Empirical cumulative distribution of UNIF (dashed curve) and under the 
2

M
χ  distribution (solid curve). M=5, 1,000 simulations. 

 
    

   We applied the UNIF test for this part of the simulation study and obtained the following 

results for the case of M=5  and 0.05 =  significance level. 

 
Mean Standard Deviation Minimum Maximum 

UNIF statistic 4.64 2.93 0.45 22.80 

P-value 0.53 0.28 ~0 0.99 

H0 not rejected 0.97 0.18 0 1 

 
We conclude that the UNIF test performs well when testing the correct model, with non-

rejection rate of 97%.  

5.3 Application of the proposed procedure when the models are misspecified 

   In Section 5.2 we assume that the population model and the model for the selection 

probabilities are specified correctly. In this section, we consider the case where they are 

misspecified, using the same simulation setup as in Section 5.1. 

Case 1. The population model is specified correctly, the sample selection model is  

              misspecified. 

   In this case, we selected the NPS  sample with probabilities, 
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2

0 1 1 2
, 2

0 1 1 2

exp( )

1 exp( )NP

i i
i S

i i

x y

x y

  


  

+ +
=

+ + +
, but assumed as our working model that the selection 

probabilities are as in Section 5.1 (with iy  in the exponent rather than 2

iy ). The population 

model of y is specified correctly. The average selection rate over the 1,000 simulations is 

in this case 0.53, similar to what we had before.   

Table 3. Estimation of model coefficients with misspecified selection probabilities,  

              1,000 simulations. 
 

 

 Population model 

coefficients 

Selection model  

coefficients 

 0  1  2  0  1  2  

True coefficients -4 1 1 -2 1 0.5 

Mean estimators -4.66 1.14 1.14 -0.52 0.33 0.02 

Empirical S.E. .002 .001 .001 0.007 0.003 0.002 

Mean PWR estimator -4.69 1.16 1.14 NA NA NA 

Empirical S.E. .006 .002 .002 NA NA NA 

 

   Estimation of the  -coefficients is of little interest in this case because the 

selection model is misspecified, but notice the relative large bias in the estimation 

of the β -coefficients even though the population model is specified correctly. Thus, 

misspecifying the selection model affects the estimation of the population model.   

Table 4. Estimation of population mean. (Mean true value =-0.00).  
 

Method Bias Emp. Var. X 1000 MSE x 1000 

    
ˆ
U, X known

Y  0.091 1.089 9.37 

ˆ
U,GREG

Y  
0.096 1.369 10.585 

    
ˆ
U,MAR

Y  0.231 0.676 54.037 

 

   As can be seen, the bias, empirical variance and MSEs are much larger in this case 

than under the correct model (Table 2). This is not surprising since we fitted a wrong 

model. Here again, we applied the UNIF test for each simulation and obtained the 

following results. 
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Mean Standard Deviation Minimum Maximum 

UNIF statistic 27.24 10.75 2.23 71.18 

P-value 0.01 0.04 ~0 0.82 

H0 not rejected 0.04 0.17 0 1 

 

For this case, the UNIF test performs well in rejecting the model fitted, with an average 

rejection rate of 96%.  

Case 2. The sample selection model is specified correctly, the population model is  

              misspecified.  

     Here, we consider the case where the sample selection model is specified correctly 

(same as in Section 5.1), but the population model is misspecified. Specifically, the 

population values have been generated as 
2

0 1 1 2 2i i i iy x x   = + + + , but the assumed 

working model is as in Section 5.1 (with 
2ix  instead of 

2

2ix ). All the other model 

specifications are the same as in Section 5.1. 

Table 5. Estimation of model coefficients with misspecified population model.   

              1,000 simulations. 
 
 

 Population model 

coefficients 

Selection model 

coefficients 

 0  1  2  0  1  2  

True coefficients -4 1 0.5 -2 1 0.5 

Mean estimators -5.77 0.94 2.20 -1.39 0.600 0.390 

Empirical S.E. 0.013 0.002 0.002 0.040 0.011 0.007 

Mean PWR estimator  -5.36 0.94 1.99 NA NA NA 

Empirical S.E.  0.01 0.005 0.007 NA NA NA 

 
    

As expected, the estimators of the β -coefficients are highly biased and so are the 

estimators of the  -coefficients. Thus, as already noted regarding Table 3, 

misspecification of one of the models affects the estimation of both models.  
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Table 6. Estimation of population mean. (Mean true value =-0.00).  

 

Method Bias Emp. Var. X 1000 MSE x 1000 

   
ˆ
U, X known

Y  -0.024 20.16 20.74 

ˆ
U,GREG

Y   
-0.010 42.03 42.11 

     ˆ
U,MAR

Y  -0.209 5.85 49.53 

    

   The estimators of the population mean are less biased than for the case where the 

sample selection model is misspecified (Table 4), but with relatively large variances, 

particularly for the GREG estimator. Notice that the GREG estimator depends directly on 

the estimated sample selection probabilities, which are highly biased (Table 5). 

Application of the UNIF test yields in this case, 

  
Mean Standard Deviation Minimum Maximum 

UNIF statistic 207.12 46.49 82.12 394.47 

P-value ~0.00 ~0 ~0 ~0 

H0 not rejected 0 0 0 0 

 

The UNIF test rejects the models fitted in each of the 1,000 simulations. 

5.4 Simulation setup with binary target variable- correct model 

   So far, we illustrated the performance of our proposed method for the case where the 

target y-variable is continuous. Following, we consider the case where y is binary. We use 

a similar simulation setup to the setup used for the continuous case, except that the 

population y-values are now generated as 
1

0 1 1 2 2Pr( 1) logit ( )i i iy x x  −= = + + , with the 

x-values generated as before. We again use the logistic model 

0 1 1 2

0 1 1 2

exp( )
Pr( 1| , )

1 exp( )NP

i i
i,S i i i

i i

x y
π y

x y

  


  

+ +
= = =

+ + +
x  for selecting the NPS  sample, 

maximizing the likelihood under the same constraints as before.  

   The question arising is whether the NPS  model (4.2) is identifiable in this case as well. 

Wang et al. (2014) establish the following condition for model identifiability. The auxiliary 

variables x  in the population model can be decomposed as ( , )= 1 2x x x , with the 

dimension of 1
2

x , such that Pr( 1| , )
NPi,S i iπ y= = xi

Pr( 1| , )i iy= =
1

x
i , implying that 

the sample selection model does not depend on 2
x , given y  and 1x . This condition is 
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satisfied in our simulation setup. Recall that for a normal population model and logistic 

selection probabilities, the sample model is identifiable if the x  variables in the two models 

differ in at least one variable, a somewhat weaker condition. See Remark 16.  

   The results in Tables 7 and 8 below are based on 1,000 simulations with an average 

selection rate of 70%. The estimated value is again the true population mean (proportion) 

of the target y-variable.  

Table 7. Estimation of model coefficients under correct models. 1,000 simulations. 

 
 Population model  

coefficients 

Selection model 

coefficients 

 
0  1  2  0  1  2  

True coefficients -4 1 1 -2 1 5 

Mean estimators* -4.40 1.18 1.01 -2.89 1.50 5.65 

Empirical S.E. 0.01 0.004 0.002 0.016 0.008 0.085 

PWR mean estimator -0.24 0.20 0.16 NA NA NA 

PWR Empirical S.E. 0.001 0.0005 0.0005 NA NA NA 

 

* The mean estimators of the model coefficients are of the MLE estimators. The PWR 

estimator is the probability weighted estimator with weights ,
ˆ(1/ )

NPi i Sk = .  

   The MLE and PWR estimators are biased, notably the PWR estimator and the MLE 

estimators of the  - coefficients, but as can be seen in Table 8, the bias seems to have 

little effect on the estimation of the population mean of the target y-variable. 

   We consider the following estimators of the population mean: 

ˆ /
NP NP

i i ii S i S
k y k

 
= U,H

Y ; ,
ˆ(1/ )

NPi i Sk = . 

1ˆ [ ( 1) ]
( 1)NP NP

NP

i i ii S i S
ii S

N n
y k y

N k 



−
= + −

−
 


U,EI

Y ; see Sverchkov and Pfeffermann 

(2004) for derivation of this estimator. 

11ˆ ˆ ˆ{ ( | ) [ ( | )]}
1NP NPNP NP NP

NP

i
i S j j i S i ii S j S i S

S

kN n
y E y y E y

N n k  

−−
= + + −

−
  x x

U, X known
Y ; 

1
NP NP

S ii S
k k

n 
=  , ˆ

NPSE  is the estimated expectation under the model (4.2). The estimator 
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when all the population x’s are known. See Sverchkov and Pfeffermann (2004) for the 

derivation of this estimator. 

 

ˆ ˆ [ ]NP NP

NP NP

i i i i

i S i S

pk U

i i

i S i S

k y k

k k

 

 

= + −

 

 

x

B X
U,GREG

Y ; Same as when y is continuous. 

ˆ
U,MAR

Y =  the estimator obtained from 
,

ˆ
U EIY  when replacing ik  by the MAR weight, 

 * 0 1 1 2 2

0 1 1 2 2

ˆ ˆ ˆ1 exp( )

ˆ ˆ ˆexp( )

i i
i

i i

x x
k

x x

  

  

+ + +
=

+ +
.  

 
Table 8. Estimation of population mean. (Mean true value=0.5). 1,000 simulations. 

 

Estimator Bias Emp. Var X1000 Emp. MSE x 1000* 

(Bootstrap estimate)* 

ˆ
U,H

Y  
-0.051 1.600 4.201 (5.60) 

       
ˆ
U,EI

Y  
0.001 0.009 0.010  (0.026) 

     
ˆ
U, X known

Y  
-0.006 0.169        0.205  (0.300) 

ˆ
U,GREG

Y  
-0.006 0.172        0.208  (0.309) 

    
ˆ
U,MAR

Y  
0.149 

 

0.049 22.25 (22.50) 

 

 * The bootstrap MSE estimates are based on 100 simulations with 100 bootstrap samples 

for each simulation. 

   As can be seen, all the estimators except ,

ˆ
U MARY  have a negligible bias, despite the bias 

of the estimated  -coefficients. Among the estimators, 
ˆ
U,EIY  is the clear winner, with 

surprisingly small MSE, much lower than the MSE of 
ˆ
U, X knownY . This might be due to the 

fact that this estimator uses the observed y’s, ( 70% in this case), and only predicts the 

sum of the unobserved y’s. The estimator 
ˆ
U, X knownY  also uses the observed y’s, but it uses 
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the estimated expectation under the NPS  model for predicting the sum of the unobserved 

y’s. The estimator 
ˆ
U,HY  has a relatively large MSE due to its relatively larger bias. 

Model testing: As for the continuous case, we tested the goodness of fit of our model, 

using in this case the Hosmer and Lemeshow (1980, H-L) test (Equation (4.5). Figure 2 

compares the empirical cumulative distribution of the H-L statistic with the corresponding 

2

2

Gχ −
 distribution with G=10 groups.  

Figure 2. Empirical cumulative distribution of H-L statistic (dashed curve) and 

under the 2G−

2
χ  distribution (solid curve). G=10, 1,000 simulations. 

 
 

Application of the test in the simulations with 0.05 =  significance level yields, 

 Mean Standard deviation Minimum Maximum 

H-L test 8.56 4.30 1.108 30.57 

p-value 0.46 0.29 ~0 ~1 

H0 not rejected 0.934 0.248 0 1 

 
The H-L test performs well when testing the correct model.  

5.5 Application of proposed method for binary case with misspecified models 

   In Section 5.4, we assumed that the population model and the model for the selection 

probabilities are specified correctly. In this section we consider the case where they are 

misspecified, using the same simulation setup as before. 
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Case 1. The population model is specified correctly, the sample selection model is  

              misspecified. 

   In this case, we selected the NPS  sample with probabilities, 

1

1

exp( 2 5 )
Pr( 1| , )

1 exp( 2 5 )

i i
i i i

i i

x y
y

x y


− +
= =

+ − +
x , but assumed as our working model the same 

model as in Section 5.4. The population model of y is specified correctly. The average 

selection rate over the 1,000 simulations is in this case 54%.  

Table 9. Estimation of model coefficients under misspecified model. 1,000  

              simulations. 

 Population model 

coefficients 

Selection model 

coefficients 

 
0  1  2  0  1  2  

True coefficients -4 1 1 NA NA NA 

Mean estimators -4.78 1.75 1.00 -3.1 0.96 3.1 

Empirical S.E 0.01 .003 .003 0.02 0.003 0.14 

PWR mean estimator -0.16 0.25 0.14 NA NA NA 

PWR empirical S.E 0.002 0.001 0.0004 NA NA NA 

 

As can be seen, except for 2 , the MLE estimates of the other β -coefficients are biased, 

with larger bias than when the sample selection model was specified correctly (Table 7.) 

 

Table 10. Estimation of population mean. (Mean true value=0.5). 

 

Estimator Bias Emp. Var 1000 Emp. MSE x 1000 

       
ˆ
U,H

Y  0.04 1.60 3.2 

      
ˆ
U,EI

Y  0.05 0.29 2.8 

    
ˆ
U, X known

Y  0.11 0.53 12.6 

ˆ
U,GREG

Y  
0.11 0.53 12.6 

ˆ
U,MAR

Y  0.29 

 

0.17 84.3 
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   The results in Table 10 indicate that the first 2 estimators have small bias despite of the 

model misspecification, with smaller MSE of 
ˆ
U,HY , but much larger MSEs of 

ˆ
U,EIY , 

ˆ
U, X knownY  

and 
ˆ
U,GREGY , compared to the MSEs obtained under the correct model  (Table 8). These 

large MSEs are clearly explained by the misspecification of the sample selection model. 

As before,  
ˆ
U,MARY  has a large bias and an extreme MSE. 

   We applied the H-L test with 0.05 =  significance level and obtained the following 

results.  

 

                                               Mean Standard deviation Minimum Maximum 

H-L test 16.12 179.4 0.778 5557.8 

p-value 0.43 0.30 ~0 ~1 

H0 not rejected 0.89 0.312 0 1 

 

   It follows that the H-L test fails to reject the misspecified model in this case. In an attempt 

to understand this outcome, Figure 3 compares the correct NPS  model with true coeffiients, 

used to select the sample with the corresponding estimated model under the misspecified 

model, for a simple random sample of 100 observations from the NPS  sample. 

Figure 3. Comparison of Correct model and estimated misspecified model*  
 

 
 

* Dashed curve represents the correct NPS  model, twisted curve represents the  

estimated NPS  model based on the misspecified model.  

   As can be seen, the estimated model under wrong specification yields almost perfect 

estimators of the correct model producing the NPS  data, which explains why the H-L test 
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does not reject the model. This is an example for what is known as “practical  

nonidentifiability” (Lee and Berger, 2001), meaning that even though the NPS  model is 

theoretically identifiable, another model may fit the data almost as well.  Notice in Table 

10 that the use of the misspecified working model yields two almost unbiased estimators 

of the true population mean. 

 

Case 2. The population model is misspecified, the sample selection model is 

              specified correctly. 

   In this case, we used the same sample selection model as in Section 5.4 (correct 

specification of our working model), but we generated the population values as, 

2

0 1 1 2 2logit( )i i iy x x  = + + . As our working model we assumed the model of Section 5.4 

( 2ix , instead of 2

2ix ). We used 1,000 simulations with an average selection rate of  0.73. 

All the other model specifications are as in Section 5.4. 

 

Table 11. Estimation of model coefficients under misspecified model 
 
 Population model 

coefficients 
Selection model 

coefficients 

 
0  1  2  0  1  2  

True coefficients -4 1 1 -2 1 5 

Mean estimators -6.07 1.34 1.62 -3.50 1.55 10.66 

Empirical S.E .015 .005 .002 .025 .01 .129 

PWR mean estimator -0.35 0.18 0.23 NA NA NA 

PWR empirical S.E .001 .001 .001 NA NA NA 

 
As can be seen, all the estimators are highly biased, due to misspecification of the 

population model. 
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Table 12. Estimation of population mean (True mean value=0.55) 

 
Estimator Bias Emp. Var 1000 Emp. MSE x 1000  

    
ˆ
U,H

Y
 

-0.15 3.64 26.14 

    
ˆ
U,EI

Y
 

-0.004 0.01 0.026 

ˆ
U, X known

Y
 

-0.06 0.53 4.13 

ˆ
U,GREG

Y
 

-0.05 0.58 3.08 

ˆ
U,MAR

Y
 

0.11 
 

0.05 12.15 
 

 

   All the estimators except for ,

ˆ
U HY  and ,

ˆ
U MARY  have a negligible bias in this case, with 

,

ˆ
U EIY  performing really well, as in the case of correct model specification (Section 5.4). 

On the other hand, ,

ˆ
U X knownY  , although having a negligible bias, has a large MSE, even 

larger than the MSE of ,

ˆ
U GREGY .    

   Application of the H-L test with 0.05 =  significance level yields in this case, 

                                            

    Mean Standard deviation Minimum Maximum 

H-L test 42.5 41.3 6.09 950.0 

p-value 0.002 0.02 ~0 0.637 

H0 not rejected 0.006 0.08 0 1 

 

The H-L test performs well in rejecting the misspecified model. 

 

6. CONCLUSION 

   In recent years, there is growing research on the use of NP samples for inference on 

population parameters, as an alternative or complement to the use of probability samples. 

A major problem with the use of these samples is their possible nonrepresentativeness of 

the corresponding target population, which if not accounted for properly, may lead to large 

bias in the inference process. In this article, we review and discuss several approaches 

proposed in the literature to deal with this problem, distinguishing between methods based 

on integration of the NP sample with an appropriate probability sample, and methods that 
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base the inference solely on the NP sample. Another distinction emphasized is between 

methods that assume that the selection to the NP sample depends on known auxiliary 

variables x, but not on the target study y variable, and methods that assume that the 

selection depends also on y. 

   We also propose two additional methods for inference from a nonprobability sample, 

one that employs the empirical likelihood approach and one that requires specifying the 

population model parametrically. We discuss the conditions guaranteeing that the 

resulting model holding for the NP sample is identifiable, and propose simple tests for 

testing that the models are specified correctly. Our simulation study illustrates good 

performance of the proposed method and generally good performance of the test 

statistics. 

   A major problem underlying all the methods considered in this article is that they 

assume, at least implicitly, that every unit in the population has a positive probability to be 

in the NP sample. Clearly, if this is not the case, inference on the target population could 

be highly biased. This problem also exists with traditional probability samples when the 

sampling frame is not complete, known as under-coverage. When the group of units with 

zero probability to be included in the NP sample is known, say certain geographical areas, 

industries or ethnic groups, the target population should be redefined accordingly. When 

this is not the case, integration of the NP sample with an appropriate PS sample and the 

use of known population means of the true target population for calibration is a possible 

way to at least reduce the bias of the NP sample. This is an important topic for more 

research.  

   There are two important questions regarding our proposed method that require further 

investigation. The first question is how to proceed when the test statistic rejects the models 

defining the NP model. We do not have a clear answer to this question at this stage other 

than a scholarly consideration of alternative models. We mention again that the use of a 

logistic model for the selection probabilities has some theoretical justification, and this 

model is in common use.   
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   The second related question is the choice of the x  variables in the models, when there 

are many of them. In practice, it may be the case that the analyst has a set of variables 

that he likes to include in the population model, which as explained in Section (4.1), 

defines also the variables included in the sample selection model. When this is not the 

case, one can use an appropriate stepwise algorithm. Beaumont et al. (2024) use a 

forward stepwise procedure, aimed at minimizing their proposed AIC criterion. 

   All the methods discussed in the present article should be considered as first attempts 

of inference from nonprobability samples, and more theoretical research and practical 

applications are required before they can be used routinely for the production of official 

statistics.  
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