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Abstract

Tightened budgets, continuing decrease in response rates in traditional probability surveys and
increasing pressure by users for more timely data, has stimulated research for the use of
nonprobability sample data, such as administrative records, web scraping, mobile phone data and
voluntary internet surveys, for inference on finite population parameters like means and totals.
These data are often easier, faster and cheaper to collect than traditional probability samples.
However, a major concern with the use of this kind of data is their nonrepresentativeness due to
possible selection bias, which if not accounted for properly, could bias the inference. In this article,
we review and discuss methods considered in the literature to deal with this problem and propose
new methods, distinguishing between methods based on integration of the nonprobability sample
with an appropriate probability sample, and methods that base the inference solely on the

nonprobability sample. Empirical illustrations, based on simulated data are provided.
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1. INTRODUCTION

Tightened budgets, continuing decrease in response rates, due in part by increased
response burden in traditional probability surveys and privacy concerns, and increasing
pressure by users for more timely data, has prompted research into the use of
nonprobability sample data, such as administrative records, web scraping, mobile
telephone data, online panels and voluntary internet surveys for inference on finite
population characteristics. These data are often easier, faster and cheaper to collect than
are traditional probability samples. However, a major concern with the use of this kind of
data is their possible nonrepresentativeness, due to possible selection bias, which if not
accounted for properly, could bias the inference. For example, house sales advertised on
the internet do not represent properly all house sales. Web scraping for job vacancies
does not represent all job vacancies. Data from social media do not generally represent
the general public. All these examples can be considered as ‘big data’, but nonprobability
samples do not need to be big. Baker et al.. (2013), Keiding and Louis (2016) and Elliott
and Valliant (2017) discuss other potential problems with the use of nonprobability
samples for inference on finite population parameters.

The basic definition of a probability sample is that every unit in the population has a
positive probability of being included in the sample. Inference under the traditional
randomization (design-based) distribution over all possible sample selections from a fixed
target population requires that the first-order sample selection probabilities of the sampled
units are known. The use of standard variance estimation procedures requires that the
joint sample selection probabilities of the sampled units are also known, but these can he
calculated to a desired approximation by repeated sampling from the sampling frame. (INOt

usually available to analysts outside National Statistical Offices-NSOs.)

By definition, nonprobability samples are not selected by use of a probability sampling
scheme =, 50 no selection probabilities exist. The question arising therefore is how to draw
inference from such samples, regarding the population, which they are supposed to
represent. In this article, we restrict our attention to inference about target population
parameters such as totals or means (proportions), which are the most common target

parameters in official statistics, often published in tables.

We mention in this respect that many survey statisticians claim that traditional probability
samples should be replaced by external records. Citro (2014) states that “official statistical

offices need to move from the probability sample survey paradigm for the past 75 years
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to a mixed mode data source paradigm for the future.” Clearly, if the nonprobability sample
data are timely, accurate, with good coverage and contain all the required information,

there is no reason to select a corresponding probability sample.

However, this is seldom the case. Israel's population register covers all the population
residing in Israel, but about 15% of the home addresses are wrong. Tax records of
businesses are often obtained with a delay of up to 2 years. No administrative data are
available on opinions, sentiments, detailed expenditures, and many other variables of
interest. We mention also in this regard that government and private agencies are often
reluctant to transfer data to NSOs, claiming data protection issues. Furthermore, the
desired information is often contained in more than one file, requiring matching them,
which is problematic if personal identifiers are unknown. (requires probabilistic algorithms
based on information in all the records.) Coverage of records might be different and may
not apply to same time periods. Definitions and accuracy of information may differ
between records. Finally, matching of different administrative data could magnify

problems of data protection.

Methods considered in the literature to deal with possible non-representativeness of

nonprobability (NP) samples can be divided into two classes:

1- Integration of the NP sample with an appropriate probability sample (PS),

2- Consideration of the NP sample on its owr...{Jo data integration.)

REMARK 1. The methods considered in this article for inference from NP samples alone
assume known population means or totals of some of the survey values, which are used

for enhancing the inference. However, no detailed probability sample data are used.

In Section 2, we review several methods proposed in the literature for niegration of a
NP sample with an appropriate PS sample. We also present a new method. Section 3
reviews methods proposed for adjusting for selection bias of a NP sample without
integration with a PS ~= ple. In Section 4, we propose a new method for inference from a
NP sample without integration. Section 5 contains simulation results illustrating the
performance of our proposed method. We conclude with some summary remarks in

Section 6.
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2. INTEGRATION OF NONPROBABILITY AND PROBABILITY SAMPLES

One of the earliest articles on this topic is by Lee (2006). The author proposes to create

a pooled sample S, =S, US,, from the probability sample S, and the nonprobability
sample S, assuming implicitly that the two samples do not overlap, and models the
selection probability to the nonprobability sample. The S, sample is treated as a
“‘treatment sample” in observational studies, and the S, sample is treated as the “control
sample”. It is assumed that every unit in the population has a positive probability to be in
the Sy, sample, estimated by use of propensity scores,e(x;) =Pr(j € Sy, | X;; j=1,...,n),
where n is the size of S, and the x-variables are assumed to be measured in both

samples.

Next, the sample S, is divided into C classes based on the ascending values of the

estimated propensity scores. An adjustment factor f. is computed for every class c as,

f = Zkesgs dk,F’S /Zkesps dkvPS
C 1
Zjesﬁp dJHNP /ZjeSNP dj,NP

are some base weights. An adjusted weight df,\,p = fcdj,Np is

(2.1)
where d, ,sand d;

computed for every unit j €S, .

The estimator of the target population total Y = Zieu Y; is, VSNP = ZcheSC dip Y-

The use of this procedure for data integration requires the existence of x-variables such

that the assignment to S,, and the target y-variable are independent given X,
Pr(je Sy IX;,Y;:J€Sp)=Pr(jeSy |X;;j€Sp). This is a limiting assumption. An
extensive empirical study revealed that the use of this approach decreases (but not
eliminates) the bias of inference from the S,, sample, but increases the variance. See

also Beaumont (2020).

Kott and Ridenhour (2024) likewise consider the use of a pooled sample S, =S,; U S,
for inference from the nonprobability sample. The authors model the S, selection
probabilities by a logistic model with covariates z, measured in both samples and for

which the true population means T, are known or estimated from the S, sample, which



are used for calibration. The estimating equation is Zkes [L+exp(z,9)lz, =T, ('I:Z) . This

defines new weights w, =z, [1+exp(z,d)] used for inference from the S, sample,

where 7, =Pr(k € S.s). When the S, sample is subject to nonresponse, the weights
d, = 7' are adjusted to account for the nonresponse.

Rivers (2007) considers the case where X and y are measured in the S,, sample but
only X is measured in the S,; sample. The author proposes to deal with the non-

representativeness of the S, sample by matching to every unit i € S, an element k

from S, , with similar values of auxiliary (matching) variables x.

Denote by X;,i=1,...,n, the X-vectors in S,; and by X; the vectors in S, . The unit
ke S satisfying | X, —x; |[<| X; —X; | V] € S, is chosen as the matched element for unit
I € S, where || is an appropriate distance. Selecting a matching element for every unit
I € S, defines a matched sample S,, of size n with y-values from the S, sample.

The proposed estimator of the population total Y is \fSM =Zkes w, ¥, , where

w, =1/ ,); 7, =Pr(k € S,5) and {y,}are the y-values measured in S, not measured
in Sp5. The author establishes regularity conditions under which for a scalar continuous

matching variable, as n— o, N —> o and n/ng, —0, (N, is the size of S;),

n*(Ygq, —Y)/N converges to a normal distribution with mean zero, where N is the
population size.

REMARK 2. Rather than matching one record, one can match k nearest records and
select at random the matched record out of the k records, known as the kNN method. See,
e.g., Conti et al.. (2008). Alternatively, a weighted mean of the y- values of the nearest
records can be used for matching.

REMARK 3. The method requires a PS sample with similar X valuesin S, and S. It

also assumes that the relationship between y and x in the two samples is similar or

formally, that fg (y,|x)="fs (y,]x), where f5 (y;|X;)=f(y;|X;,i€Sy) and

fo. (Vi [%) = £(Vi X1 €Sps).
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Kim & Wang (2019) propose the following procedure of integrating the data in the S,
and S,, samples. The authors assume that membership of the S, elements in S is
known. Let 6, =1(0) if ieS,, (ieS,). The S, data contains therefore the values
{(x;,0,); 1 =1,...,n}. The procedure consists of the following step:

1- Model p,(y) =Pr(s;, =1|x;;v) by use of the S,; data and estimate y by maximizing
the “pseudo likelihood” I(y) = Ziesps w{J, log p,(y) +(1—-,)log[1— p,(V)]I}-
2- Estimate the population total Y as,

Yo, D= pi@yorYs, @=NY _  pr@Y/IY P @2
when N is known.

The authors consider also a doubly robust estimator under the assumption of a
population regression model. Consistent variance estimators are developed.

REMARK 4. The use of this method assumes that the sampling mechanism to S, is
ignorable after controlling for the covariates, i.e.Pr(i € Sy, | X;, ¥;) =Pr(i € Sy, | X;) , known
as noninformative sampling. In addition, the assumption that membership of the S,

elements in S, is known, may not hold in practice.

Chen et al. (2020) likewise assume noninformative sampling after controlling for the

covariates and assume a prediction model y, =m(X;)+¢;;i=1,....,N for the population

units and a selection model 7™ =Pr(i € S, | X,;v) . For the case where m(x,) =X/B, the

resulting estimator of the population mean is, VREG = Z diSNPX}ﬁ , where d> =1/ 7>

ieSyp
and f is estimated from the Sye Sample. This estimator is unbiased for Y .

In practice, the sample selection model is unknown, and the authors assume a

parametric model 7Z'iSNP = 7(X;;y) , which is estimated by maximizing the pseudo likelihood

()=, tool " T S wloglh—(x, ) @3)

where w, =1/ 7; are the sampling weights in S, . The resulting estimator of Y is

~n

Yiew = ZieSNP[yi (X )]- (2.4)
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When estimating the mean Y = (Y / N), the estimator (2.4) can be divided by N when

it is known or by NSNP = Zies [1/ z(x;,7)] whenN is unknown. The authors prove that

for the case of a logistic selection model, both estimators have an error of order OP(nS’le).

Variance estimators are also developed, correct to order o(n;NlP).

REMARK 5. In a rejoinder to comments on an article by Beaumont et al. (2024a) (see
below), Beaumont et al. (2024b) state that the use of the likelihood (2.3) is not efficient

because the second term only uses the S, data and ignores relevant S, auxiliary data.
The authors propose an improved estimator of y and a sample likelihood approach that

properly accounts for an overlap between the two samples, when it can be identified.

Chen et al. (2020) also consider a doubly robust estimator, defined as
YADR = Ziesz [/ 7 (% IY; —m; (x; ’ﬁ] + Ziesps wm, (x;, ﬁ] ; (2.5)

where m,(X;,B)is an assumed population regression model. The estimator YDR is shown
to be consistent forY , even if the population model or the sample selection model is

misspecified. Variance estimators correct to order o(ngNlp ) are derived.

Chen et al. (2022) consider the use of the pseudo empirical likelihood for inference from

nonprobability samples, defined as 1., (p) = Zies d>* log(p,), where the p,s are the EL
probabilities, d** =[(1/ z(x,4)]/ Nge and Nsz ZZjes [(1/ z(x;;7)]. The parameters

y are estimated using the likelihood (2.3) and are considered fixed in the likelihood |, (p).

Maximization of the likelihood under the constraint Zies p, =1 yields p, =d>.

The authors also consider a doubly robust estimator obtained by adding the calibration

-1

constraint Ziesz pi[m; (x;;B)]=ms where Mg = Ng Ziesps w, m; (X;;B), Ng :Ziesps W,
and corresponding pseudo empirical likelihood confidence intervals, which are shown to

perform generally better than the customary normal theory intervals.

We refer the readers also to a related article by Wu (2022), which contains a critical
review and some extended discussions on theoretical and practical issues with inference

from non-probability samples.



Beaumont et al. (2024a) likewise consider integration of S,, and S,; samples, again
assuming that the probability of inclusion in S, only depends on the X variables. The
authors assume a logistic model p,(y) = Pr(o, =1|x;;y) for the inclusion of unit i U in

Sy and estimate y by solving the likelihood estimating equations
U(y) = Zies X; —Zies w. p. (Y)x; = 0. The equations U (y) are design unbiased over all

possible S, selections of the likelihood equations that would be obtained if the X-values

were known for all i eU.
The authors develop a modified AIC criterion for stepwise selection of the X-variables

inthe S, sample selection model p,(y). However, a problem with the use of this criterion

is that it ignores the relationship between y and the X-variables. To deal with this problem,

the authors extend their AIC criterion by partitioning the S,, sample into homogeneous
groups Sy =Syp,U,...,USp s based on the estimated probabilities p,(y) and a ranking

method, and then assigning each unit in the S, sample to one of the groups. Let S, .

and S define theg" sets of units of the non-probability and probability samples,

PS.,g

respectively. Assuming that the selection probabilities in each group are the same, the
. . . e A ¢ NP .
resulting estimated selection probabilities in group g are then p; = nng / Ng , Where Ny~ is

the size of S, , and N, = w, . The estimator of Y is

keSps g

~

7 ANP., G i v GNP a1 NP . 7 :Z Yi
YSNP _ZkeSNP Wk yk _ZglegySNP,g’Wk B pk B Ng /ng ! ysNP,g ieSyp g

NP~
ng

(2.6)

The variance of \fsNP is estimated by an appropriate bootstrap algorithm.

REMARK 6. Rao (2021) reviews several other estimators based on data integration,
distinguishing between the case where the target variable y is observed in both samples,

and the case where it is only observed in the S, sample.

The common feature of all the approaches considered so far is their reliance on the

assumption that the selection to the S, sample depends on known x-variables, but not

on the target y-variable. (See Remark 4 above). In practice, it is likely that the selection to

S,p depends also on y. For example, people participating in a voluntary web survey on

political tendency, may choose not to participate in the survey, depending on their



tendency. Administrative data may be missing people who do not participate in
government programs, including people who do not have social security numbers, people

with housing instability, or people working in the informal economy.
In addition, the S,y sample used for integration with the S,, sample may be subject to

not missing at random (NMAR) nonresponse, in the sense that that the probability to
respond depends also on the target y- variable. For example, the response of people on

income may depend on their level of income. Denote by R the response indicator. NMAR

nonresponse occurs when,
Pr[R. =1|y.,x,,ies]#Pr[R =1|x.,i €5s]. (2.7)

Pfeffermann et al. (2025) consider data integration when the selection to the S, sample
and the response probabilities in the S, sample depend on both y and X, applying the

empirical likelihood (EL) approach. It is assumed that X is observed in both samples, but

y is only observed in the S, sample. Let 1™ be the sample indicator for S, taking the

value 1 if unit i is sampled and O otherwise. For i € S, the sample model of X, is

Pr(IiPS =1X;) x
Pr(17° =1) P (28)

pi>,(PS = Pr(x; | IipS =1)=

where p* =Pr,(x=x;) is the probability in the population. As can be seen, under
informative sampling with respect to x, the sample probability pffps is different from piX .

Additionally, it is assumed that S, is subject to NMAR nonresponse. Let RipS be the
response indicator, taking the value 1 if sample unit i € S, responds and 0 otherwise.

Denote by R, the set of responding units in S,5. Then,

Pr(R™ =1|x,,1° =1) X

X =Pr(x |17 =1,R™ =1)= _
pl,RF,S ( i | i i ) Pr(Ripg :ll Iips :1) pl,PS

(2.9)

By (2.8) and (2.9), the respondents model is a function of the true population probability,
the conditional expectations of the sampling weights, Pr(1;”° =1|x,) =1/ Eqg(W, 5 | X;)
(Pfeffermann and Sverchkov 1999); W, ,s =1/ 7, o5 are the base sampling weights in S,

and the response probabiliies Pr(R™ =1|x,, 1™

=1). Assuming that the response is



independent of the sample selection, Eqg (W o5 | %) =E; (W, ps [X;), in which case the

PS
Ii

probabilities P(1;” =1|x;) can be estimated by regressing W, ,; against X; .

The response probabilities P(R™ =1|x,, 1

=1) in (2.9) are unknown and need to be

estimated from the available data by postulating a parametric model,

P(R™ =1|x,1° =Lp) = g(x;;p) (2.10)

for some known function g, (say, a logistic model), with p defining the model parameters.

J

Assuming independence of the sampling and the response, the empirical respondents

likelihood based on R, is thus,

Pr(R™ =1|x, 17 =1)

Pr(R™ =1| 17 =1) Pis -

ERLes (0" )=TT,.. Pk =1 (2.11)

i €Rpg
Next, consider the S, sample. Let I be the sample indicator, taking the value 1 if
i € S, and 0 otherwise. Denote P =Pr(x =X,y =Y,). For i € S,

_ Pr(IiNP :1| Xiin)

Pr(1™ =1) P (2.12)

pi),(rzp = Pr(Xi’ Yi | IiNP :1)

where P(I'* =1) = > P(1;¥ =1|x;,y,)p"" . Because no sampling weights for S, are
ieNP

available, the probabilities P(I"" =1|x.,y,) need to be modelled parametrically,
Pr(1™ =11, ¥;;v) = h(y;, x;;) (2.13)

for some known function h, with v defining the model parameters. Assuming

independence of the S, data, the empirical likelihood based on S, is

ESLy» ( piXY) = Hiesz pfﬁﬁp : (2.14)

Assuming no overlap between the two samples, the empirical likelihood based on the

datain S, and S is,

ELRPSUNP = ERLys( pix JESLye ( piXY )= HiERPS pi),(RPS H pi),(lll(P : (2.15)

ieNP

10



The unknown parameters in (2.15) are the population probabilities pix, piXY , the sampling
parameters <y and the response parameters p. The likelihood is maximized subject to
constraints on the unknown probabilities and calibration constraints.

REMARK 7. The unknown probabilities {p,*} can also be estimated from the S,, sample;

f’:,(NP = z pfgp . This implies two sets of estimates of the probabilities {pix}, which need
{isx=x}

to be harmonized. See Marella and Pfeffermann (2023) for possible harmonization
procedures. The final, integrated estimate of p* is p" = p” (B% / Pi\w), where p* is

the harmonized estimator.

The population total Y can be estimated in one of the following two ways:

; ; > PN =1 %, vy,
Y (1) =N Y, ﬁIY Y (2) =N ieNP i irYilYi
" i;‘P " ZieNP I:)r_l(IiNP =11%;,¥:)

, (2.17)

where P’ = Z f)iXY . See Pfeffermann et al. (2025) for an empirical comparison of the
Ly=y;

performance of the two estimators.

REMARK 8. One of the reviewers of this article raised a concern about the model used

for the selection model to the S,, sample, noting that it seems difficult to obtain

robustness to deviations from the model. As discussed in Section 4.3 and illustrated in
Section 5, the S,, model can be tested.

3. INFERENCE FROM A NONPROBABILITY SAMPLE WITHOUT INTEGRATION

In Section 2, we considered methods of inference from a nonprobability sample, based

on integration of the S, sample with an appropriate probability sample S.q. In this
section, we consider methods for adjusting the selection bias of the S, sample, without

integration with a S, sample (see Remark 1).

We start with an approach based on calibration. The basic idea underlying this approach

is to change some base weights, dj,NP (say, based on propensity scores) to new weights

d}:f‘,{,P , S0 that when applied to a set of variables Z observed in S, and for which the true

population totals are known, the S, survey estimates will equal the corresponding totals;

11



Z,— . df""h'lpzj =T,, where T, are the known population totals. (In practice, the true totals
&N I

can be replaced by reliable estimates from a probability sam:'z.) See AAPOR (2010) and
Baker et al. (2013) for review of methods that follow this approach, and Kott and Ridenhour
(2024) reviewed in Section 2.

The success of this approach depends on the availability of calibration variables, which
are highly correlated with the target y-variable (good prediction power). Lee and Valliant
(2009) illustrate that combining propensity scores and calibration adjustments is more

effective in reducing the bias of S, estimates than using just one of the approaches. See
also Elliott and Valliant (2017).

Kim and Wang (2019) propose the use of inverse sampling to obtain a representative
sample from the finite population, and hence to correct for the selection bias of the S,

sample. The proposed inverse sampling can be viewed as a special case of two-phase

sampling, where the first phase is the S, sample and the second phase is a subsample

from the first-phase sample to correct for the selection bias.

Denote, as before, by &, the indicator of whether unit iU is included in the S,
sample. It is assumed that Pr(s, =1|y,,x;)=Pr(s, =1|x,)>0 for all ieU. The S,
sample contains the values (Y,,X;), i €S, . Denote by f(x) the population distribution of

the x-variables. If f(X) is known, an asymptotic unbiased estimator of 8 =E(Y) is,

A f(x;) f(x;)

g =) « ———VY /) =) WY,. 3.1

Snp1 ZIGSNP f(Xi |5| :1) yl ZIESNP f(Xi |5| :1) ZIESNP |1y| ( )
For the more practical case where only the mean X, = E ., XiI'N is known, the

authors approximate f(x) by the function f,(X), which minimizes the Kullback—Leibler

distance. The solution to the minimization distance is,

exp(x'A)

000 =TX10=D g xn o =01

with A satisfying jx f,(x)dx = X, . (3.2)

With this approximation, the estimator éSNpl in (3.1) is replaced by,

észz =Zies WY W o= expx;) —, with & satisfying Z

WX =X, . 3.3
5, exol) WY

ieSyp

12
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Finally, the authors propose to select the second-phase sample from S, with
probabilities 7ri2|1=nwl*,ieSNF> with the weights {w’} defined by (3.3) and
n S[maxiesz{Wi*}]_l’ yielding the approximately design-unbiased estimator of the éSNPl

estimator defined in (3.1),

A 1 . 1 <n
9sz3 = Z — WY = Hziﬂ Y- (3.4)

ieSyp 72._2|1
1

A simple estimator of the design variance of éSNP3 is proposed.

The two approaches considered so far assume that the selection to the S,, sample is
noninformative in the sense that Pr(s, =1|y.,x;)=Pr(s, =1|x.)>0 for all ieU.

However, as discussed before, this assumption may not hold in practice, and in what
follows, we consider alternative approaches aimed to deal with the case of informative

sample selection.

Sayag et al. (2022) consider the following problem, underlying the computation of
monthly house price indices (HPI) in many countries. A large amount of the house sales
are reported several months after they occur, implying that if not accounted for, the
provisional HPIs based on the on-time reported transactions are subject to large revisions,
as further transactions are reported. This happens because the late-reported transactions
behave differently from the transactions reported on time. This is a nice example of a
nonprobability sample (the on-time reported sales), which is subject to selection bias due

to late data availability of some of the sales (~40% in Israel).

To deal with this problem, the authors propose nowcasting three types of variables and
adding them as input data to a hedonic regression model used for the computation of the
HPI: (1)- the average characteristics of the upcoming late-reported transactions, such as
the average number of rooms, the average net area size, the average age of the sold
houses, etc. (2)- the average price of the late-reported transactions and (3)- the number
of late-reported transactions. The three types of variables are nowcasted based on simple
models fitted to data from previous months. Application of the proposed methodology
shows more than 50% reduction in the magnitude of the revisions. This is a unique
example of a time series of non-representative nonprobability samples for which the true
population data (all the sales corresponding to a given month) become known only several

months later.

13



Kim and Morikawa (2023) assume a non-ignorable (informative) sample selection model
(Y, X @) =Pr(o, =1]y,,X;¢), where 6, =(1,0) is the S,, sample indicator, assuming
that the variables X, are known for all i eU and 7, (y;,x;) >0 for all i €U . For the case
where the population model f(y,|X;) is known, the authors propose estimating ¢ by

maximizing the likelihood,

Lo @) = [ T, [T O 1X)7(y X 9P L= Z(x; )] 5 72(x:8) = ELz(¥;, X5 8) | X, 1. (3.5)

However, this likelihood requires modelling the population model and the authors note
that the MLE estimator obtained from (3.5) is not robust to misspecification of the model.
Consequently, they develop a likelihood based on the model

for (Y 1 X)) = T (Y | X;,6, =1), which can be identified and estimated consistently.

Alternatively, the authors develop a methodology for estimating ¢ and the population
mean of the y-values by applying the Empirical Likelihood (EL) approach. For the case

where the selection probabilities 7, (y;,X.) are known, the authors propose estimating the

p,’s underlying the EL by maximizing the likelihood, 1(p) = Zies log(p;). subject to the

constraints (1)- > . . p,=1,(2- > . pm(y.x)=n/N,@3) > . pX =X,, where

ieSyp
n is the size of the S,, sample, N is the population size and X, =Zieu X; I N. The

constraint (2) is referred to as a bias calibration constraint, whereas the constraint (3) is

added to improve the efficiency of EL estimator.
In practice, the sample selection probabilities are unknown. The authors assume a
parametric model; 7;(Y,,X;) = 9(Y;,X;;#) (say, logistic), and estimate 7, = g(yi,xi;ﬁ) by
é‘i
g(yi,%;9)

require knowledge of the Xx-values for every unit in the population. By considering the

solving the estimating equationsz:il[ —1]x, =0. These equations do not

estimated probabilities /zi(yi,xi):g(yi,xi;ﬁ) as the true inclusion probabilities, the
authors maximize the constrained EL likelihood defined above with the bias calibration

N

constraint (2) replaced by P (Yo, X, P) = N‘lzizlﬁi(xi;é), which does require

knowledge of the population X-values, yielding the estimates{p.}. The population mean
of the y-values are estimated as,
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2 1 g 2 A
YeLipw = WZieSNPm Or Y = ZieSNP BiYi - (3.6)

The authors derive asymptotic properties of their estimators and variance estimators.
This article proposes a novel approach for estimating finite population means from S,

samples subject to nonignorable selection probabilities, but the assumption that the X-

variables are known for every unit in the population is restrictive.

REMARK 9. In Section 2, we proposed a method of inference from a S,, sample alone,
which likewise combines a non-ignorable sample selection model with the empirical
likelihood. See Equations (2.12)-(2.14). This method does not require knowledge of the X
-variables for every unit in the population. See also Section 4 below.

4. A NEW (OLD) APPROACH FOR INFERENCE FROM A NONPROBABILITY SAMPLE

4.1 Relationship between the population distribution and the S, distribution

Fouowing, we propose an alternative approach for inference from a nonprobability

sample alone. It relies in large on Pfeffermann and Sverchkov (1999).

Denote the model holding for the target variable yin U by f;, (Y; | X;). Denote the model
holding for y in the S, sample by fg_(y,|x), and let ¢, =1(0) if i €Sy, (i€ Sy). The
target model is f, (y; | X;), but observations {y;,x;} are only available for f, (y;|x).We
assume, Pr(ieS,;) >0 for all i eU (also assumed in the other approaches considered

before). The two distributions are connected via the link function Pr(6 =1] y,X).

Bayes Pro, =1|x;,Y,) f, (v, | X
fs, (YiIX) =Ty [%.,6=1) = = Pr|(5-I=yl)|):J-)(y| )

(4.1)

As discussed below, the relationship (4.1) enables estimating the target population

distribution from the observations in S, alone. Notice that f; (y; [X;) = f, (V;|x;) iff

Pr(s, =1|x;,y;) =Pr(5, =1| x;) Vy,, in which case the model fitted based on the S,
sample holds for the population data and if the X-values are known for all i U , (or in the
case of a linear population model )_(U is known), inference based on the S, sample is

valid. See Rao (2021) for discussion of this method under these conditions.
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REMARK 10. In the first part of their article, Kim and Morikawa (2023) also assume
parametric models for the population model and the sample selection probabilities, (see
above), but we do not assume knowledge of the population X-values. Additionally, the
authors estimate the parameters underlying the sample selection model outside the
likelihood, whereas we estimate them jointly with the population model parameters (see
below). We utilize similar calibration constraints to the ones used by Kim and Morikawa
(2023), see Equation (4.3) below. We also test the goodness of fit of the resulting model

fs. (¥i %), see section 4.3.

The probabilities Pr(s, =1|X,,y;) need to be modelled. They are allowed to depend on

the target y variable, thus accounting for informative sample selection. They may depend

also on other variables Z, but we only need to model Pr(o, =1| ., y;) . The use of a Logistic
model for 6, has some theoretical justification. See Lemma 1 in Pfeffermann et al. (2025)
for details. When Z is observed in the S, sample, we may include it among the x-

variables.

4.2 Estimation of model parameters

Unlike the use of the empirical likelihood approach, application of this approach requires
specifying the population model and the model for the sample selection probabilities,
which depend on unknown parameters that need to be estimated from the observations
inS,, . Adding parameters to (4.1), we have
Pr(d =11y, X;: @) £, (; [%::B)

Pr(6, =1|x;;¢.B)

Assuming independence of the observations in S, , the corresponding log likelihood is

fs. (Vi [%i:B. @) = (4.2)

s (#.B;y)= Z log fs (Y, |x;;B,4) , which we maximize subject to the constraints,

ieSyp

_ZPr(é 1|y.,x.,¢) PR 7

ieSyp jeu

The constraints (4.3) are used for enhancing the estimation of the parameters (f,¢). We

assume throughout that X contains a “1” in the first position.
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REMARK 11. In the empirical study in Section 5 with continuous y, we approximated the

probabilities Pr(o, =1|x,;¢4,B) by Riemann’s sums over 350 sub-groups of the y-values.
When vy is binary,

Pr(6; =1[x;;4,B) = Pr(5 =1y, =1 x;;9) Pr(y; =1[x;; )

+Pr(5, =11 y; =0,x;;:6.B) Pr(y, = 0] x;; ).

We maximized the likelihood with the constraints by use of the SAS procedure NLIN,
iterating between the maximization with respect to ¢ for given B, and the maximization

of B for given ¢, with the “given” values defined by the estimates in the previous iteration.

See Section 5 for how we estimated the population mean of the y-values in our

simulations.
4.3 Model testing and Identifiability concerns

The application of the proposed approach assumes a model f,(y;|X;;p) for the
population values and a model Pr(s, =1|y.,X;;¢#) for the selection probabilities, which
permits estimating the parameters (¢, #) by means of (4.2) and (4.3), using the data in
S\p - No direct testing of the population model or the model for the selection probabilities

is possible, since no data are available from the population distribution and the y-values

are unknown for units j & S,,. However, contrary to a common perception that it is
impossible to test a model fitted to the S, data, we contend this is not true. We have

observations from the fitted model, so we are faced with the classical problem of testing
the goodness of fit of a hypothesized model to the observed data. See Krieger and
Pfeffermann (1997) and Pfeffermann and Sikov (2011) for plausible tests.

REMARK 12. Rejection of the null hypothesis implies that at least one of the two models

is misspecified. See Section 5 for examples and the concluding remarks in Section 6.

A common argument in favor of the claim that the sample model cannot be tested is that
it may be the case that there is more than one combination of a population model and a
selection model, yielding the same model for the observed data, such that the model fitted

to the data in S, is not identifiable or weekly identifiable. Pfeffermann and Landsman

(2011) and Wang et al. (2014) establish conditions under which the model f; (y;|X;) is
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identifiable, with references to other related studies. See Section 5 for the identifiability

conditions for the models considered.

REMARK 13. In a highly cited article, Molenberghs et al. (2008) prove and illustrate that
for every NMAR model fitted to a set of data, there is a MAR counterpart providing exactly
the same fit to the data. The authors note that “such a construction does not lead to a
member of a conventional parametric family”. A simple example for this argument is where
the population model f,, (y|X) is assumed to be defined by the sample model fg (y;|x;)
(Egq. 4.2), and the sample inclusion probability satisfies Pr(5 =1|y,,X;@)=
=Pr(5; =1]x;;¢). Clearly, f,(y,|x)="fs_(y,|%) is a very odd population distribution.
Molenberghs et al. (2008) also note that “we can make progress if attention is confined to
a given parametric family, in which we put sufficiently strong prior belief”. This is what we
do under our proposed approach. Notice that the selection model is used to obtain valid

estimates of the population model, and as shown below and illustrated in Section 5, it can

be tested.

Consider first the case where y is a continuous variable. In our empirical applications,

we applied the following UNIF test statistic (Krieger and Pfeffermann, 1997).

Preliminaries:

1- For a continuous variable Z with cumulative distribution F, F(z) ~U(0,1).

2- Under general conditions, the set of all the moments of F(z) determine the

distribution.

Proposed test:

(i) Compute T, = FSNP (y; %), 1=1...,n based on the estimated coefficients(f},&).
(ii) Compute the sample moments u_ = Zin:lTim /In,m=1..,M.

(11i) Compute the Wald test statistic based on the estimated sample moments.

For the moments of the U (0,1) distribution, g =E(u_)=1/(m+1);

Cov(u,,u)) =ml/[(m+D)( +)(Mm+I+1)n]. Assuming u' =(u,,...,u,) is normal,
HO
UNIF=(u-u)Z 7 (u-p) ~ yyy (4.4)

where X is the Variance-Covariance matrix defined by the covariances above.

18


JClGvpugt
Sticky Note
Although it is obvious, I don't think you have mentioned anywhere what H0 is.


REMARK 14. In the proposed test, we replace the true moments by the estimated
moments. The estimators (ﬁ,é) are obtained by MLE and under some regularity
conditions, they converge almost surely (a.s.) to the true parameters (B, ¢) (Zacks, 1971).

Then, if the true distributional function F is smooth, e.g. twice differentiable with respect

to pand g, F(y,|X, 3, =l;¢?,ﬁ)f>'F(yi | x;,0, =1,¢,B) , justifying the use of the UNIF test

defined by (4.4). See Figure 1 in Section 5 for a simulation illustration.

REMARK 15. In our simulation study we used M=5 moments, which was found to perform
o . 1 :
well in Krieger and Pfeffermann (1997). Notice that Corr®(u_,u. )= H—Zmz) , S0 higher

order moments add only marginally to the power of the test.

For the case where y is binary, we apply in Section 5 the Hosmer and Lemeshow (1980,

hereafter H-L) test defined as follows:

(i) Sortthe observed data in S,, based on the estimated probabilities

A =Pr(y, =1|x,,8 =1),ieS,,.

(ii) Divide the sorted data into G groups of approximately equal size n, =(n/G) and

compute for each group g; 0, - the number of values'y =1 and 7, :niziegﬁi . The test
g

statistic is,

(0, —n,7,)? o
HoL=)" —o ool 2 (4.5)
ot ngng (1_77g)

5. SIMULATION RESULTS

In this section, we present simulation results to illustrate the performance of our
proposed approach, separately for the case where the target variable y is continuous, and
for the case where it is binary.

5.1 Simulation setup with a continuous target variable- correct model

We start by repeating the same simulation study as performed by Kim and Morikawa

(2023), which consists of the following steps:

1. Generate 5,000 population values as Y, = £, + B X; + B, X, + &, where

Indep

Xi X ~ N(2,1); & ~ N(0,1). (The values of the B coefficients are in Table 1 below.)
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2. Generate selection probabilities to the S, sample as,

. =Pr(s =1|y,x)= exp(dy + dX; + Y1)
e TR T T L exp(dy + kg + Y,

3. Repeat Steps 1 and 2 1,000 times, yielding an average selection rate of 50%.

. (The ¢ coefficients are in Table 1.)

4. For each simulation, estimate the model parameters and the population mean
Va 5,000
Yo=2." Vi/N.

Estimators considered:

1

U X oomn = WZieU (B, + BX; + B,%,;) . The x-variables are known for every unit i eU , p

is estimated by maximization of the likelihood Iy _(¢,;y)= > log f; (y;|x;;B.4), under

ieSyp

Sne

the constraints in (4.3). Note: since the population model is linear, it suffices to know the

population means of the X-variables.

Z k;Y; z KiX;
Y, =ISw |§,’pk[)_(U L — ki=(@/7_ ), the GREG estimator with the

,GREG Z ki z kl

ieSyp ieSyp

standard base sampling weights W, =(1/7;) replaced by k; =(1/7%; ). Bpk is the
probability weighted estimator of f, with weights k..

\?U’KM = Zies p.V: , the estimator of Kim and Morikawa (2023). (\?EL in Equation 3.6).

A

Yu war- the estimator obtained by assuming that the selection probabilities only depend
on the X-variables;Pr(5, =1|y,,x,) =Pr(s, =1|x,), where X, =(X;,X,;)". We assume a
logistic model, using all the population X-values.

The first 2 estimators are obtained by application of our approach. The estimation of the

B -coefficients in the first estimator is only based on the data in S, .

REMARK 16. An important question regarding the models used in this simulation study is

whether the resulting sample model fg_ (Y, |X;;B.¢) = Pr(s, =11y, X;; ) f, (i [ X B) is

Pr(é} :1|Xi;¢’ﬂ)

20


JClGvpugt
Sticky Note
Please use a numbered list, otherwise it is a bit confusing.


identifiable. By identifiability we mean that there are no different pairs [Pr, (5, =1 y;,X;;4,)

, T (Y 1%58;)1, ] =1,2 inducing the same sample model for every y and X. Pfeffermann

and Landsman (2011) consider sets of conditions guaranteeing the identifiability of the
sample model. In particular, for the case of a normal population model and a logistic model
for the sample selection probabilities, the sample model is identifiable if the X-variables
in the two models differ by at least one variable. Notice that in the models underlying the

present simulation, the population model is a function of (x;, X,;) , but the selection logistic

model is only a function of X;;, so that the identifiability condition defined above is satisfied.

5.2 Results for continuous case when fitting the correct model, 1,000 simulations.

Table 1. Estimation of model coefficients under the proposed method.

Population model Selection model
coefficients coefficients

Po By P, %, ] #,

True coefficients -4 1 1 -2 1 0.5
Mean estimators* -3.92 | 0.98 0.99 -2.15 0.80 0.43
Empirical £.C. .004 .001 .001 0.023 0.008 0.002
Mean PWR estimator | -3.88 | 0.96 0.99 NA NA NA
Empirical S. 0.006 | .002 .001 NA NA NA

* The mean estimators are ¢i"the MLE estimators. The PvwR estimator is the probability

weighted estimator with weights k, =(1/ 7,5 ).

As can be seen, the B coefficients are estimated quite accurately on average. The

estimators of the ¢ coefficients are less accurate, but the estimators of the population

mean in Table 2 still have a negligible bias with these estimators.
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Table 2. Estimation of population mean. (Mean true value =-0.00), 1,000 simulations.

Method Bias Emp. Var X 1000 MSE X 1000
(Bootstrap estimates)*
? -0.01 2.263 2.363 (3.36)
U, X known
YA -0.02 2.423 2.823 (3.89)
U,GREG
va 0.01 2.030 2.080 (---)
U,KM
? 0.25 2.106 64.606 (65.11)
U,MAR

* The bootstrap MSE estimates are based on 100 simulations with 100 bootstrap samples
for each simulation.

Estimation of the population mean of the y-values is the primary target of inference in

the simulation study and the first three estimators are seen to be literally unbiased. The

estimator %YKM uses all the population x-values and performs best. The estimator

A

%’anown likewise uses all the population X-values (or X;,ieS,, and X,), but the

estimation of the model coefficients is only based on the S, sample. The estimator

A

Yucres uses the S, model for estimating the ¢ -coefficients and likewise performs well

on average although with somewhat larger variance and MSE. The bootstrap MSE
estimators are conservative with large upward bias. We selected the bootstrap samples
by following the procedure proposed in Sverchkov and Pfeffermann (2004), which consists
of selecting with replacement a pseudo-population from the sample with probabilities

proportional to k; =(1/7; ), and then selecting the bootstrap samples Spe With the
estimated probabilities ﬁi,sz obtained from the original sample. We only considered 100
simulations and 100 bootstrap samples for each simulation, which may explain the upward
biases. As expected, the estimator \?U’MAR , which assumes that the selection probabilities

only depend on the X-variables has a large positive bias and extremely large MSE. Kim

and Morikawa (2023) obtained similar bias and MSE figures in this case.

Overall, the use of our proposed approach seems to perform well in this part of the

simulation study.

22



Model testing: As discussed In Section 4.3, our proposed approach enables testing the
models assumed for the population and the sample selection probabilities. Figure 1,

compares the empirical cumulative distribution of the UNIF statistic (Equation 4.4) with the

corresponding )(,f,, distribution for the case M=5.

Figure 1. Empirical cumulative distribution of UNIF (dashed curve) and under the
)(,f,l distribution (solid curve). M=5, 1,000 simulations.

16
14
12

10

We applied the UNIF test for this part of the simulation study and obtained the following

results for the case of M=5 and « = 0.05 significance level.

Mean Standard Deviation Minimum Maximum
UNIF statistic 4.64 2.93 0.45 22.80
P-value 0.53 0.28 ~0 0.99
HO not rejected 0.97 0.18 0 1

We conclude that the UNIF test performs well when testing the correct model, with non-

rejection rate of 97%.
5.3 Application of the proposed procedure when the models are misspecified

In Section 5.2 we assume that the population model and the model for the selection
probabilities are specified correctly. In this section, we consider the case where they are
misspecified, using the same simulation setup as in Section 5.1.

Case 1. The population model is specified correctly, the sample selection model is
misspecified.

In this case, we selected the S, sample with probabilities,
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__eXpldy + X + YY)
1+exp(d, + dx; + @, Y7)

probabilities are as in Section 5.1 (with y, in the exponent rather than yf ). The population

, but assumed as our working model that the selection

i,Snp

model of y is specified correctly. The average selection rate over the 1,000 simulations is

in this case 0.53, similar to what we had before. ¢

Table 3. Estimation of model coefficients with misspecified selection probabilities,
1,000 simulations.

Population model Selection model
coefficients coefficients

By By B, %o 2} #,

True coefficients -4 1 1 -2 1 0.5
Mean estimators -4.66 1.14 1.14 -0.52 0.33 0.02
Empirical S.E. .002 .001 .001 | 0.007 | 0.003 0.002
Mean PWR estimator -4.69 1.16 1.14 NA NA NA
Empirical S.E. .006 .002 .002 NA NA NA

Estimation of the ¢-coefficients is of little interest in this case because the

selection model is misspecified, but notice the relative large bias in the estimation

of the B-coefficients even though the population model is specified correctly. Thus,

misspecifying the selection model affects the estimation of the population model.

Table 4. Estimation of population mean. (Mean true value =-0.00).

Method Bias Emp. Var. X 1000 MSE x 1000
7 0.091 1.089 9.37
U, X known

va 0.096 1.369 10.585
U,GREG

7 0.231 0.676 54.037
U, MAR

As can be seen, the bias, empirical variance and MSEs are much larger in this case

than under the correct model (Table 2). This is not surprising since we fitted a wrong

model. Here again, we applied the UNIF test for each simulation and obtained the

following results.
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Mean Standard Deviation Minimum Maximum
UNIF statistic 27.24 10.75 2.23 71.18
P-value 0.01 0.04 ~0 0.82
HO not rejected 0.04 0.17 0 1

For this case, the UNIF test performs well in rejecting the model fitted, with an average

rejection rate of 96%.

Case 2. The sample selection model is specified correctly, the population model is
misspecified.

Here, we consider the case where the sample selection model is specified correctly

(same as in Section 5.1), but the population model is misspecified. Specifically, the

population values have been generated as y, = 3, + B, + 3%, +¢&, but the assumed

working model is as in Section 5.1 (with X, instead of x’). All the other model

specifications are the same as in Section 5.1.

Table 5. Estimation of model coefficients with misspecified population model.
1,000 simulations.

Selection model
coefficients

Population model
coefficients

By b b, # % #,

True coefficients -4 1 0.5 -2 1 0.5
Mean estimators 5.77 | 094 | 220 | -1.39 0.600 0.390
Empirical S.E. 0.013 | 0.002 | 0.002 | 0.040 | 0.011 0.007

Mean PWR estimator -5.36 | 0.94 | 1.99 NA NA NA

Empirical S.E. 0.01 | 0.005 | 0.007 NA NA NA

As expected, the estimators of the P -coefficients are highly biased and so are the
estimators of the ¢-coefficients. Thus, as already noted regarding Table 3,

misspecification of one of the models affects the estimation of both models.
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Table 6. Estimation of population mean. (Mean true value =-0.00).

Method Bias Emp. Var. X 1000 MSE x 1000
VA -0.024 20.16 20.74
U, X known

va -0.010 42.03 42.11
U,GREG

VA -0.209 5.85 49.53
U, MAR

The estimators of the population mean are less biased than for the case where the
sample selection model is misspecified (Table 4), but with relatively large variances,
particularly for the GREG estimator. Notice that the GREG estimator depends directly on
the estimated sample selection probabilities, which are highly biased (Table 5).

Application of the UNIF test yields in this case,

Mean Standard Deviation Minimum Maximum
UNIF statistic 207.12 46.49 82.12 394.47
P-value ~0.00 ~0 ~0 ~0
HO not rejected 0 0 0 0

The UNIF test rejects the models fitted in each of the 1,000 simulations.
5.4 Simulation setup with binary target variable- correct model

So far, we illustrated the performance of our proposed method for the case where the
target y-variable is continuous. Following, we consider the case wherey is binary. We use
a similar simulation setup to the setup used for the continuous case, except that the
population y-values are now generated as Pr(y, =1) = logit (3, + BX, + B,X,) » With the
x-values generated as before. We again use the logistic model
7. =PI(S =1] y,,X,) = exp(dy + diX, +4,Y)

o 1+exp(dy + 4 + Vi)

maximizing the likelihood under the same constraints as before.

for selecting the S, sample,

The question arising is whether the S, model (4.2) is identifiable in this case as well.

Wang et al. (2014) establish the following condition for model identifiability. The auxiliary

variables X in the population model can be decomposed as X=(X;,X,), with the
dimension of X, >1, such that ;s = Pr(o, =1| y.,x.) =Pr(5, =1 y;,X,;), implying that
the sample selection model does not depend on X,, given y and X,. This condition is
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satisfied in our simulation setup. Recall that for a normal population model and logistic
selection probabilities, the sample model is identifiable if the X variables in the two models

differ in at least one variable, a somewhat weaker condition. See Remark 16.

The results in Tables 7 and 8 below are based on 1,000 simulations with an average
selection rate of 70%. The estimated value is again the true population mean (proportion)
of the target y-variable.

Table 7. Estimation of model coefficients under correct models. 1,000 simulations.

Population model Selection model
coefficients coefficients

Pa By P %o ] #,

True coefficients -4 1 1 -2 1 5
Mean estimators* -4.40 1.18 1.01 -2.89 | 1.50 5.65
Empirical S.E. 0.01 0.004 | 0.002 | 0.016 | 0.008 | 0.085
PWR mean estimator -0.24 0.20 0.16 NA NA NA
PWR Empirical S.E. 0.001 0.0005 | 0.0005 NA NA NA

* The mean estimators of the model coefficients are ui the MLE estimators. The PWR
estimator is the probability weighted estimator with weights k. = (1/ ﬁi,sz) .

The MLE and PWR estimators are biased, notably the PWR estimator and the MLE
estimators of the ¢ - coefficients, but as can be seen in Table 8, the bias seems to have

little effect on the estimation of the population mean of the target y-variable.

We consider the following estimators of the population mean:
Y_UvH = ZieSNP ki yi /ZiESNP ki ’ kl - (1/ ﬁi’SNP) ’

mZies (k. —1)y,]; see Sverchkov and Pfeffermann

ieSyp

o 1 N —n
Yoa =—01) . +

UEL TN [Z,Esz Yi Z
(2004) for derivation of this estimator.

1 A N —n ki —1 -
:W{Ziesw Yi +ZJ’%SNP Es,. (Y; %)+ 0 Ziesz ﬁ[)/i —Es, (Vi [X)1};

NP

A

YU, X known

= 1 s : . .
ke, == E . ki, E; isthe estimated expectation under the model (4.2). The estimator
NP n ieSyp NP
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when all the population x’s are known. See Sverchkov and Pfeffermann (2004) for the

derivation of this estimator.

Z ki Yi Z kixi
_ ISw + |§,'pk[)_(U — iESL] ; Same as when y is continuous.

YU,GREG - Z ki z kl

ieSyp ieSyp

A

VU'MAR = the estimator obtained from _u,a when replacing k; by the MAR weight,

1+ exp(a, + ayX,; + a,X%,,
exp(ay, + aX; + Xy,

k*

Table 8. Estimation of population mean. (Mean true value=0.5). 1,000 simulations.

Estimator Bias Emp. Var X1000 Emp. MSE x 1000*
(Bootstrap estimate)*

2 -0.051 1.600 4.201 (5.60)
U,H

7 0.001 0.009 0.010 (0.026)
U,EI

7 -0.006 0.169 0.205 (0.300)

U, X known

va -0.006 0.172 0.208 (0.309)
U,GREG

7 0.149 0.049 22.25 (22.50)
U,MAR

* The bootstrap MSE estimates are based on 100 simulations with 100 bootstrap samples
for each simulation.

As can be seen, all the estimators except Y_U,MAR have a negligible bias, despite the bias
of the estimated ¢ -coefficients. Among the estimators, Y, is the clear winner, with

surprisingly small MSE, much lower than the MSE of %’anown. This might be due to the
fact that this estimator uses the observed y’s, (~70% in this case), and only predicts the

sum of the unobserved y’s. The estimator %’anown also uses the observed y’s, but it uses
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the estimated expectation under the S, model for predicting the sum of the unobserved

y’s. The estimator VUH has a relatively large MSE due to its relatively larger bias.

Model testing: As for the continuous case, we tested the goodness of fit of our model,
using in this case the Hosmer and Lemeshow (1980, H-L) test (Equatior.\~.5). Figure 2

compares the empirical cumulative distribution of the H-L statistic with the corresponding

x&_, distribution with G=10 groups.
Figure 2. Empirical cumulative distribution of H-L statistic (dashed curve) and
under the y&_, distribution (solid curve). G=10, 1,000 simulations.
25
20

15

10

Application of the test in the simulations with « =0.05 significance level yields,

Mean Standard deviation | Minimum Maximum
H-L test 8.56 4.30 1.108 30.57
p-value 0.46 0.29 ~0 ~1
HO not rejected 0.934 0.248 0 1

The H-L test performs well when testing the correct model.

5.5 Application of proposed method for binary case with misspecified models

In Section 5.4, we assumed that the population model and the model for the selection
probabilities are specified correctly. In this section we consider the case where they are

misspecified, using the same simulation setup as before.
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Case 1. The population model is specified correctly, the sample selection model is
misspecified.

In this case, we selected the S, sample with probabilities,

PI‘(5 _1| X ) _ exp(_2+5X1iyi)
) T exp(24 5, y,)

, but assumed as our working model the same

model as in Section 5.4. The population model of y is specified correctly. The average

selection rate over the 1,000 simulations is in this case 54%.

Table 9. Estimation of model coefficients under misspecified model. 1,000

simulations.
Population model Selection model
coefficients coefficients
Py By Py 23 ) 9,
True coefficients -4 1 1 NA NA NA
Mean estimators -4.78 1.75 1.00 -3.1 0.96 3.1
Empirical S.E 0.01 .003 .003 0.02 0.003 0.14
PWR mean estimator -0.16 0.25 0.14 NA NA NA
PWR empirical S.E 0.002 0.001 0.0004 NA NA NA

As can be seen, except for 5, , the MLE estimates of the other [ -coefficients are biased,

with larger bias than when the sample selection model was specified correctly (Table 7.)

Table 10. Estimation of population mean. (Mean true value=0.5).

Estimator Bias Emp. Var 1000 Emp. MSE x 1000

va 0.04 1.60 3.2
U,H

7 0.05 0.29 2.8
U,EI

va 0.11 0.53 12.6
U, X known

YL 0.11 0.53 12.6
U,GREG

? 0.29 0.17 84.3
U, MAR
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The results in Table 10 indicate that the first 2 estimators have small bias despite of the

model misspecification, with smaller MSE of Y, , but much larger MSEs of Y, ., , Y, y xoun

and \QGREG, compared to the MSEs obtained under the correct model (Table 8). These

large MSEs are clearly explained by the misspecification of the sample selection model.

As before, %,MAR has a large bias and an extreme MSE.

We applied the H-L test with & = 0.05 significance level and obtained the following

results.
Mean Standard deviation | Minimum Maximum
H-L test 16.12 179.4 0.778 5557.8
p-value 0.43 0.30 ~0 ~1
HO not rejected 0.89 0.312 0 1

It follows that the H-L test fails to reject the misspecified model in this case. In an attempt

to understand this outcome, Figure 3 compares the correct S, model with true coeffiients,

used to select the sample with the corresponding estimated model under the misspecified

model, for a simple random sample of 100 observations from the S, sample.

Figure 3. Comparison of Correct model and estimated misspecified model*

1.2

0.8
0.6
0.4
0.2

0

* Dashed curve represents the correct S,, model, twisted curve represents the

estimated S, model based on the misspecified model.

As can be seen, the estimated model under wrong specification yields almost perfect

estimators of the correct model producing the S, data, which explains why the H-L test
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does not reject the model. This is an example for what is known as “practical

nonidentifiability” (Lee and Berger, 2001), meaning that even though the S, model is

theoretically identifiable, another model may fit the data almost as well. Notice in Table
10 that the use of the misspecified working model yields two almost unbiased estimators

of the true population mean.

Case 2. The population model is misspecified, the sample selection model is
specified correctly.

In this case, we used the same sample selection model as in Section 5.4 (correct

specification of our working model), but we generated the population values as,

y, = logit(B, + Bx,; + B,%5;) . As our working model we assumed the model of Section 5.4

(X,;, instead of x5 ). We used 1,000 simulations with an average selection rate of 0.73.

All the other model specifications are as in Section 5.4.

Table 11. Estimation of model coefficients under misspecified model

Population model Selection model
coefficients coefficients

By By B, 9 ) 9,
True coefficients -4 1 1 -2 1 5
Mean estimators -6.07 1.34 1.62 -3.50 1.55 10.66
Empirical S.E .015 .005 .002 .025 .01 129
PWR mean estimator -0.35 0.18 0.23 NA NA NA
PWR empirical S.E .001 .001 .001 NA NA NA

As can be seen, all the estimators are highly biased, due to misspecification of the

population model.
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Table 12. Estimation of population mean (True mean value=0.55)

Estimator Bias Emp. Var 1000 Emp. MSE x 1000
va -0.15 3.64 26.14
U,H
7 -0.004 0.01 0.026
U,EI
? -0.06 0.53 4.13
U, X known
YA -0.05 0.58 3.08
U,GREG
? 0.11 0.05 12.15
U, MAR

All the estimators except for Y,

un and Y_U,MAR have a negligible bias in this case, with

A

Y,z performing really well, as in the case of correct model specification (Section 5.4).
On the other hand, VU,anown , although having a negligible bias, has a large MSE, even
larger than the MSE of LU’GREG.

Application of the H-L test with « = 0.05 significance level yields in this case,

Mean Standard deviation | Minimum | Maximum
H-L test 42.5 41.3 6.09 950.0
p-value 0.002 0.02 ~0 0.637
HO not rejected 0.006 0.08 0 1

The H-L test performs well in rejecting the misspecified model.

6. CONCLUSION

In recent years, there is growing research on the use of NP samples for inference on
population parameters, as an alternative or complement to the use of probability samples.
A major problem with the use of these samples is their possible nonrepresentativeness of
the corresponding target population, which if not accounted for properly, may lead to large
bias in the inference process. In this article, we review and discuss several approaches
proposed in the literature to deal with this problem, distinguishing between methods based

on integration of the NP sample with an appropriate probability sample, and methods that
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base the inference solely on the NP sample. Another distinction emphasized is between
methods that assume that the selection to the NP sample depends on known auxiliary
variables x, but not on the target study y variable, and methods that assume that the
selection depends also ony.

We also propose two additional methods for inference from a nonprobability sample,
one that employs the empirical likelihood approach and one that requires specifying the
population model parametrically. We discuss the conditions guaranteeing that the
resulting model holding for the NP sample is identifiable, and propose simple tests for
testing that the models are specified correctly. Our simulation study illustrates good
performance of the proposed method and generally good performance of the test
statistics.

A major problem underlying all the methods considered in this article is that they
assume, at least implicitly, that every unit in the population has a positive probability to be
in the NP sample. Clearly, if this is not the case, inference on the target population could
be highly biased. This problem also exists with traditional probability samples when the
sampling frame is not complete, known as under-coverage. When the group of units with
zero probability to be included in the NP sample is known, say certain geographical areas,
industries or ethnic groups, the target population should be redefined accordingly. When
this is not the case, integration of the NP sample with an appropriate PS sample and the
use of known population means of the true target population for calibration is a possible
way to at least reduce the bias of the NP sample. This is an important topic for more

research.

There are two important questions regarding our proposed method that require further
investigation. The first question is how to proceed when the test statistic rejects the models
defining the NP model. We do not have a clear answer to this question at this stage other
than a scholarly consideration of alternative models. We mention again that the use of a
logistic model for the selection probabilities has some theoretical justification, and this

model is in common use.
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The second related question is the choice of the X variables in the models, when there
are many of them. In practice, it may be the case that the analyst has a set of variables
that he likes to include in the population model, which as explained in Section (4.1),
defines also the variables included in the sample selection model. When this is not the
case, one can use an appropriate stepwise algorithm. Beaumont et al. (2024) use a
forward stepwise procedure, aimed at minimizing their proposed AIC criterion.

All the methods discussed in the present article should be considered as first attempts
of inference from nonprobability samples, and more theoretical research and practical
applications are required before they can be used routinely for the production of official
statistics.

REFERENCES

AAPOR (2010), “Report on Online Survey Panels.” available at
http://poqg.oxfordjournals.org/content/early/2010/10/19/poq.nfq048.full.html

Baker, R., Brick, J. M., Bates, N. A., Battaglia, M., Couper, M. P., Dever, J. A., Gile, K.
J. and Tourangeau, R. (2013). Report of the AAPOR Task Force on Non-probability
Sampling. Journal of Survey Statistics and Methodology, 1, 90-143.

Beaumont, J.F. (2020). Are probability surveys bound to disappear for the production of
official statistics? Survey Methodology, 46, 1-28.

Beaumont, J.F., Bosa, K., Brennan, A., Charlebois, J. and Chu, K. (2024a). Handling
non-probability samples through inverse probability weighting with an application to
Statistics Canada’s crowdsourcing data. Survey Methodology, 50, 77-106.

Beaumont, J.F., Bosa, K., Brennan, A., Charlebois, J. and Chu, K. (2024b). Authors’
response to comments on “Handling non-probability samples through inverse probability

weighting with an application to Statistics Canada’s crowdsourcing data.’
Methodology, 50, 123-141.

Survey

Chen, Y., Li, P. and Wu, C. (2020). Doubly robust inference with non-probability survey

samples. Journal of the American Statistical Association, 115, 2011-2021.

Chen, Y.; Li, P.; Rao, J.N.K and Wu, C. (2022). Pseudo empirical likelihood inference for
non-probability survey samples. Canadian Journal of Statistics, 50, 1166-1185.

35


http://poq.oxfordjournals.org/content/early/2010/10/19/poq.nfq048.full.html
https://onlinelibrary.wiley.com/journal/1708945x

Citro, C. (2014). From multiple modes for surveys to multiple data sources for estimates.
Survey Methodology, 40, 137-161.

Conti, P.L., Marella, D. and Scanu, M. (2008). Evaluation of matching noise for imputation
techniques based on nonparametric local linear regression estimators. Computational
Statistics and Data Analysis, 53, 354-365.

Elliott, M.R. and Valliant, R. (2017). Inference for Nonprobability Samples. Statistical
Science, 32, 249-264.

Hosmer, D.W. and Lemeshow, S. (1980). A goodness-of-fit test for the multiple logistic

regression model. Communications in Statistics, A10, 1043—-1069.

Keiding, N. and Louis, T. A. (2016). Perils and potentials of self-selected entry to
epidemiological studies and surveys. Journal of the Royal Statistical Society, Series A,
179, 319-376.

Kim, J.K. and Wang, Z. (2019). Sampling techniques for big data analysis. International
Statistical Review, 87, 177-191.

Kim, J. K. and Morikawa, K. (2023). An empirical likelihood approach to reduce selection

bias in voluntary samples. Calcutta Statistical Association Bulletin, 75, 8-27.

Kott, P. and Ridenhour, J. (2024). Calibration weighting with a blended (probability and
nonprobability) sample: mean and variance estimation when errors can come from both

samples. Methods Report, RTI Press.

Krieger, A.M. and Pfeffermann, D. (1997). Testing of Distribution Functions from complex

Sample Surveys. Journal of Official Statistics, 13, 123-142.

Lee, J. and Berger, J. O. (2001). Semiparametric Bayesian analysis of selection models.
Journal of the American Statistical Association, 96, 1397-14009.

Lee, S. (2006). Propensity score adjustment as a weighting scheme for volunteer panel
Web survey. Journal of Official Statistics, 22, 329-349.

Lee, S. and Valliant, R. (2009), Estimation for volunteer panel web surveys Using
propensity score adjustment and calibration adjustment, Sociological Methods and
Research, 37, 319-343.

Marella, D. and Pfeffermann, D. (2023). Accounting for Non-ignorable Sampling and
Non-response in Statistical Matching. International Statistical Review, 91, 269-293.

36



Molenberghs, G. Beunckens, C., and Kenward, M.G. (2008). Every missing not at random
has a missingness at random counterpart with equal fit. Journal of the Royal Statistical
Society, Series B, 70, 371-388.

Pfeffermann D. and Sverchkov M. (1999). Parametric and semiparametric estimation of

regression models fitted to survey data. Sankhya, Series B, 61, 166—186.

Pfeffermann, D. and Landsman, A. (2011). Are private schools really better than public
schools? Assessment by methods for observational studies. Annals of Applied Statistics,
5,1726-1751.

Pfeffermann, D. and Sikov, A. (2011). Imputation and estimation under non ignorable
nonresponse in household surveys with missing covariate information. Journal of Official
Statistics, 27, 181-209.

Pfeffermann, D., Marella, D. and Summa, D. (2025). Matching of a Non-probability
sample with a probability sample affected by nonignorable sampling and nonresponse.
Submitted for publication.

Pfeffermann, D., Preminger, A. and Sikov, S. (2025). Statistical inference under
nonignorable sampling and nonresponse - an empirical likelihood approach. (Under

revision).

Qin J., Leung, D. and Shao J. (2022). Estimation with survey data under non-ignorable
nonresponse or informative sampling. Journal of the American Statistical Association, 97,
193-200.

Rao, J.N.K. (2021). On making valid inferences by integrating data from surveys and other
sources. Sankhya, Series B, 83, 242-272.

Rivers, D. (2007). Sampling from web surveys. Proceedings of the Survey Research

Methods Section, American Statistical Association, Alexandria, VA.

Sayag, D., Ben-Hur, D. and Pfeffermann, D. (2022). Reducing revisions in hedonic house
price indices by the use of nowcasts. International Journal of Forecasting, 38, 253—-266.

Sverchkov, M. and Pfeffermann, D. (2004). Prediction of Finite Population Totals Based
on the Sample Distribution. Survey Methodology, 79, 79-92.

Wang, S., Shao, J. and Kim, J. K. (2014), An Instrument Variable Approach for
Identification and Estimation with Nonignorable Nonresponse. Statistica Sinica, 24, 1097—
1116.

37



Wu, C. (2022). Statistical inference with non-probability survey samples. Survey
Methodology, 48, 283-311.

Zacks, S. (1971) The theory of statistical inference. (Wiley series in probability and
mathematical statistics)

38



