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Use of nonprobability samples for official  
statistics, state of the art 

Danny Pfeffermann and Michael Sverchkov1 

Abstract 

Tightened budgets, continuing decrease of response rates in traditional probability surveys and increasing 
pressure by users for more timely data, has stimulated research on the use of nonprobability sample data, such as 
administrative records, web scraping, mobile phone data and voluntary internet surveys, for inference on finite 
population parameters like means and totals. These data are often easier, faster and cheaper to collect than 
traditional probability samples. However, a major concern with the use of this kind of data for official statistics 
is their nonrepresentativeness due to possible selection bias, which if not accounted for properly, could bias the 
inference. In this article, we review and discuss methods considered in the literature to deal with this problem 
and propose new methods, distinguishing between methods based on integration of the nonprobability sample 
with an appropriate probability sample, and methods that base the inference solely on the nonprobability sample. 
Empirical illustrations, based on simulated data are provided.  

 
Key Words: Empirical likelihood; Probability and nonprobability samples; Sample integration; Selection bias. 

 
 

1. Introduction 
 

Tightened budgets, continuing decrease in response rates, due in part by increased response burden in 

traditional probability surveys and privacy concerns, and increasing pressure by users for more timely data, 

has prompted research into the use of nonprobability sample data, such as administrative records, web 

scraping, mobile telephone data, online panels and voluntary internet surveys for inference on finite 

population characteristics. These data are often easier, faster and cheaper to collect than are traditional 

probability samples. However, a major concern with the use of this kind of data is their possible 

nonrepresentativeness, due to possible selection bias, which if not accounted for properly, could bias the 

inference. For example, house sales advertised on the internet do not represent properly all house sales. Web 

scraping for job vacancies does not represent all job vacancies. Data from social media do not generally 

represent the general public. All these examples can be considered as “big data”, but nonprobability samples 

do not need to be big. Baker, Brick, Bates, Battaglia, Couper, Dever, Gile and Tourangeau (2013), Keiding 

and Louis (2016) and Elliott and Valliant (2017) discuss other potential problems with the use of 

nonprobability samples for inference on finite population parameters.  

The basic definition of a probability sample is that every unit in the population has a positive probability 

of being included in the sample. Inference under the traditional randomization (design-based) distribution 

over all possible sample selections from a fixed target population requires that the first-order sample 

selection probabilities of the sampled units are known. The use of standard variance estimation procedures 

requires that the joint sample selection probabilities of the sampled units are also known, but these can be 



170 Pfeffermann and Sverchkov: Use of nonprobability samples for official statistics, state of the art 

 

 
Statistics Canada, Catalogue No. 12-001-X 

calculated to a desired approximation by repeated sampling from the sampling frame. (This is not usually 

available to analysts outside National Statistical Offices-NSOs.) 

By definition, nonprobability samples are not selected by use of probability sampling schemes, so no 

selection probabilities exist. The question arising therefore is how to draw inference from such samples, 

regarding the population, which they are supposed to represent. In this article, we restrict our attention to 

inference about target population parameters such as totals or means (proportions), which are the most 

common target parameters in official statistics, often published in tables.  

We mention in this respect that many survey statisticians claim that traditional probability samples 

should be replaced by external records. Citro (2014) states that “official statistical offices need to move 

from the probability sample survey paradigm for the past 75 years to a mixed mode data source paradigm 

for the future”. Clearly, if the nonprobability sample data are timely, accurate, with good coverage and 

contain all the required information, there is no reason to select a corresponding probability sample. 

However, this is seldom the case. Israel’s population register covers all the population residing in Israel, 

but about 15% of the home addresses are wrong. Tax records of businesses are often obtained with a delay 

of up to 2 years. No administrative data are available on opinions, sentiments, detailed expenditures, and 

many other variables of interest. We also mention in this regard that government and private agencies are 

often reluctant to transfer data to NSOs, claiming data protection issues. Furthermore, the desired 

information is often contained in more than one file, requiring matching them, which is problematic if 

personal identifiers are unknown. (It requires probabilistic algorithms based on information in all the 

records.) Coverage of records might be different and may not apply to same time periods. Definitions and 

accuracy of information may differ between records. Finally, matching of different administrative data could 

magnify problems of data protection. 

Methods considered in the literature to deal with possible non-representativeness of nonprobability (NP) 

samples can be divided into two classes: 

1. Integration of the NP sample with an appropriate probability sample (PS), 

2. Consideration of the NP sample on its own (no data integration). 
 

Remark 1. The methods considered in this article for inference from NP samples alone assume known 

population means of some of the survey values, which are used for enhancing the inference. However, no 

detailed probability sample data are used. 
 

In Section 2, we review several methods proposed in the literature for integration of a NP sample with 

an appropriate PS sample. We also present a new method. Section 3 reviews methods proposed for adjusting 

for selection bias of a NP sample without integration with a PS sample. In Section 4, we propose a new 

method for inference from a NP sample without integration with a PS sample. Section 5 contains simulation 

results illustrating the performance of our proposed method. We conclude with some summary remarks in 

Section 6. 
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2. Integration of nonprobability and probability samples 
 

One of the earliest articles on this topic is by Lee (2006). The author proposes to create a pooled sample 

PS NPPS S S   from the probability sample PSS  and the nonprobability sample NP ,S  assuming implicitly 

that the two samples do not overlap, and models the selection probability to the nonprobability sample. The 

NPS  sample is treated as a “treatment sample” in observational studies, and the PSS  sample is treated as the 

“control sample”. It is assumed that every unit in the population has a positive probability to be in the NPS

sample, estimated by use of propensity scores, NP( ) Pr ( | ; 1,..., ),j je j S j n  x x  where n  is the size of the 

pS  sample and the -x variables are assumed to be measured in both samples.  

Next, the PS  sample is divided into C classes based on the ascending values of the estimated propensity 

scores. An adjustment factor Cf  is computed for every class c as, 

 PS PS

NP NP

, PS , PS

, NP , NP

,
c

c

k kk S k S

c

j jj S j S

d d
f

d d

 

 


 
 

 (2.1) 

where , PSkd  and , NPjd  are some base weights. An adjusted weight , NP , NP
A
j c jd f d  is computed for every 

unit NP.j S  

The estimator of the target population total ii U
Y Y


  is, 

NP NP
, NP

ˆ .c

A
S j jc j S

Y d y


   

The use of this procedure for data integration requires the existence of -x variables such that the 

assignment to NPS  and the target y- variable are independent given ,x  NPPr ( | , ; ) Pr (j j Pj S y j S j   x  

NP | ; ).j PS j Sx  This is a limiting assumption. An extensive empirical study revealed that the use of this 

approach decreases (but not eliminates) the bias of inference from the NPS  sample, but increases the 

variance. See also Beaumont (2020). 

Kott and Ridenhour (2024) likewise consider the use of a pooled sample PS NPPS S S   for inference 

from the nonprobability sample. The authors model the NPS  selection probabilities by a logistic model with 

covariates kz  measured in both samples and for which the true population means ZT  are known or esti-

mated from the PSS  sample, which are used for calibration. The estimating equation is 
NP

[1
k S


exp( )]k k

 z g z ˆ( ).Z ZT T  This defines new weights 1 ˆ[1 exp( )]k k kw     z g  used for inference from the NPS  

sample, where PSPr ( ).k k S    When the PSS  sample is exposed to nonresponse, the weights 1
k kd    are 

adjusted to account for the nonresponse. 

Rivers (2007) considers the case where x  and y are measured in the NPS  sample but only x  is measured 

in the PSS  sample. The author proposes to deal with the non-representativeness of the NPS  sample by matching 

to every unit PSi S  an element k  from NP ,S  with similar values of auxiliary (matching) variables .x  

Denote by , 1,..., ,i i nx  the -x vectors in PSS  and by jx  the vectors in NP .S  The unit NPk S  satisfying 

NP| | | |k i j i j S    x x x x   is chosen as the matched element for unit PS,i S  where   is an appropriate 

distance metric. Selecting a matching element for every unit PSi S  defines a matched sample PSS  of size 

n  with y- values from the NPS  sample.  
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The proposed estimator of the population total Y  is 
PS

SM
ˆ ,k kk S

Y w y


 
  where (1/ );k k kw     

PSPr ( )k S  and { }ky  are the y- values measured in NP ,S  not measured in PS.S  The author establishes 

regularity conditions under which for a scalar continuous matching variable, as ,n  NPn   and 

NP/n n 0,  NP(n  is the size of NP ),S  0.5
SM
ˆ( ) /n Y Y N   converges to a normal distribution with mean zero, 

where N  is the population size. 
 

Remark 2. Rather than matching one record, one can match k nearest records and select at random the 

matched record out of the k records, known as the kNN method. See, e.g., Conti, Marella and Scanu (2008). 

Alternatively, a weighted mean of the y- values of the nearest records can be used for matching. 
 

Remark 3. The method requires a PS sample with similar x  values in NPS  and PS.S  It also assumes that 

NP
( | ) ( | ),S i i U i if y f yx x  implying NP NPPr ( | , ) Pr ( | ),i i ii S y i S  x x  where 

NP
( | )Sf y x  is the conditional 

distribution in the NPS  sample and ( | )Uf y x  is the conditional distribution in the population. See Yang, Kim 

and Hwang (2021) for other assumptions and related theoretical properties of matching methods. 
 

Kim and Wang (2019) propose the following procedure of integrating the data in the PSS  and NPS  

samples. The authors assume that membership of the PSS  elements in NPS  is known. Let 1(0)iδ   if 

NP NP( ).i S i S   The PSS  data contains therefore the values {( , ); 1,..., }.i i i n x  The procedure consists of 

the following step: 

1. Model ( ) Pr ( 1| ; )i i ip  γ x γ  by use of the PSS  data and estimate γ  by maximizing the “pseudo 

likelihood” 
PS

( ) { log ( ) (1 ) log[1 ( )]}.i i i i ii S
l w p p 


   γ γ γ  

2. Estimate the population total Y  as,  

 
NP NP

1ˆ ˆ(1) ( )γS i ii S
Y p y


       or     

NP NP NP

1 1ˆ ˆ ˆ(2) ( ) ( )γ γS i i ii S i S
Y N p y p 

 
    (2.2) 

when N  is known.  
 

The authors consider also a doubly robust estimator under the assumption of a population regression 

model. Consistent variance estimators are developed. 
 

Remark 4. This method again assumes that the sampling mechanism to NPS  is ignorable after controlling 

for the covariates, i.e. NP NPPr ( | , ) Pr ( | ),i i ii S y i S  x x  often referred to as missing at random (MAR) 

selection. In addition, the assumption that membership of the PSS  elements in NPS  is known, may not hold 

in practice. 
 

Chen, Li and Wu (2020) likewise assume noninformative sampling after controlling for the covariates 

and assume a selection model NP

NP( ; ) Pr ( | ; ),S

i i ii S   x γ x γ  which is estimated by maximizing the 

pseudo loglikelihood 

 
NP PS

* ( , )
( log log[1 ( , )],

1 ( , )
i

i ii S i S
i

l w



 

 
     

 
x γ

γ x γ
x γ

 (2.3) 



Survey Methodology, June 2025 173 

 

 
Statistics Canada, Catalogue No. 12-001-X 

where 1/i iw   are the sampling weights in PS.S  The authors consider 2 estimators of the population mean 
1 ,iN i U

Y y


   

 
NP

IPW1

1ˆ
ˆ( ; )

i

i S
i

y
Y

N 
 

x γ
     or     

NP NP
IPW2

1ˆ ˆ ˆ; [1 / ( , )],
ˆ ˆ( ; )

i
ii S i S

i

y
Y N

N


 
   x γ

x γ
 (2.4) 

depending on whether the population size is known or unknown. 

The authors prove that for the case of a logistic selection model, both estimators have an error of order 
1/2( ).
NPP SO n

 Variance estimators are also developed, correct to order 
NP

1( ).So n
 

 

Remark 5. In a rejoinder to comments on an article by Beaumont, Bosa, Brennan, Charlebois and Chu 

(2024a) (see below), Beaumont, Bosa, Brennan, Charlebois and Chu (2024b) argue that the use of the 

likelihood (2.3) is not efficient because the second term only uses the PSS  data and ignores relevant NPS  

auxiliary data. The authors propose an improved estimator of γ  and a sample likelihood approach that 

properly accounts for an overlap between the two samples, when it can be identified. 
 

Chen et al. (2020) also consider a doubly robust estimator, defined as 

  
NP PS

DR

1ˆ ˆ ˆˆ[1/ ( . )] [ ( , ] ( , ] ,i i i i i i ii S i S
Y y m w m

N


 
   x γ x β x β  (2.5) 

where ( , )i im x β  is an assumed population regression model. When N  is unknown, the estimator is modified 

by dividing the first term by 
NP NP

ˆ ˆ[1/ ( , )]S ii S
N 


 x γ  and the second term by 

PS PS

ˆ (1/ ).S ii S
N 


  The 

estimators are shown to be consistent for ,Y  even if the population model or the sample selection model 

are misspecified. Variance estimators correct to order 
NP

1( )So n
 are derived under some additional conditions. 

Chen, Li, Rao and Wu (2022) consider the use of the pseudo empirical loglikelihood for inference from 

nonprobability samples, defined as NP

NP
PEL ( ) log ( ),S

i ii S
l d p


p  where the ’sip  are the EL probabilities 

and NP

SNP
ˆˆ[1 / ( . )] .S

i id N x γ  The parameters γ  are estimated using the likelihood (2.3) and are considered 

fixed in the likelihood PEL ( ).l p  Maximization of the likelihood under the constraint 
NP

1ii S
p


  yields 

NPˆ .S
i ip d  

The authors also develop a doubly robust estimator, similar to (2.5), obtained by adding the calibration 

constraint 
PSNP PS

1ˆ ˆˆ[ ( ; )] ( ; ),i i i S i i ii S i S
p m N w m

 
 x β x β  and corresponding pseudo empirical likelihood 

confidence intervals, which are shown to perform generally better than the customary normal theory 

intervals.  

We refer the readers also to a related article by Wu (2022), which contains a critical review and some 

extended discussions on theoretical and practical issues with inference from non-probability samples.  

Beaumont et al. (2024a) likewise consider integration of NPS  and PSS  samples, again assuming that the 

probability of inclusion in the NPS  sample only depends on .x  The authors assume a logistic model 

( ) Pr ( 1| ; )i i ip  γ x γ  for the inclusion of unit i U  in NPS  and estimate γ  by solving the likelihood 

estimating equations 
NP PS

( ) ( ) 0.i i i ii S i S
U w p

 
   γ x γ x  The equations ( )U γ  are design unbiased over 
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all possible PSS  selections of the likelihood equations that would be obtained if the -x values were known 

for all .i U  

The authors develop a modified AIC criterion for stepwise selection of the -x variables in the NPS  sample 

selection model ( ).ip γ  However, a problem with the use of this criterion is that it ignores the relationship 

between y and the -x variables. To deal with this problem, the authors extend their AIC criterion by 

partitioning the NPS  sample into homogeneous groups NP NP,1 NP,,..., GS S S    based on the estimated 

probabilities ˆ( )ip γ  and a ranking method, and then assigning each unit in the PSS  sample to one of the 

groups. Let NP, gS  and PS, gS  define the thg  sets of units of the NPS  and PSS  samples, respectively. Assuming 

that the selection probabilities in each group are the same, the resulting estimated selection probabilities in 

group g  are 
NP ˆˆ / ,g g gp n N  where 

NP
gn  is the size of NP, gS  and 

PS,

ˆ .
g

g kk S
N w


  The estimator of Y  is 

 
NP , NP ,NP NP ,

NP NP NP
NP, NP1

ˆ ˆ ˆˆ ˆ; / , ; .
NP g g g

G i
S k k g S k g g g Sk S g i S

g

y
Y w y N y w N n k S y

n  
        (2.6) 

The variance of 
NP

ˆ
SY  is estimated by an appropriate bootstrap algorithm. 

 

Remark 6. Rao (2021) reviews several other estimators based on data integration, distinguishing between 

the case where the target variable y is observed in both samples, and the case where it is only observed in 

the NPS  sample. 
 

The common feature of all the approaches considered so far is their reliance on the assumption that the 

selection to the NPS  sample depends on known -x variables, but not on the target y- variable. (See Remark 4 

above). In practice, it is likely that the selection to NPS  depends also on y. For example, people participating 

in a voluntary web survey on political tendency, may choose not to participate in the survey, depending on 

their tendency. Administrative data may be missing people who do not participate in government programs, 

including people who do not have social security numbers, people with housing instability, or people 

working in the informal economy.  

In addition, the PSS  sample used for integration with the NPS  sample may be subject to not missing at 

random (NMAR) nonresponse, in the sense that that the probability to respond depends also on the target 

y- variable. For example, the response of people on income may depend on their level of income. Denote 

by iR  the response indicator. NMAR nonresponse occurs when, 

 Pr[ 1| , , ] Pr[ 1| , ].i i i i iR y i s R i s    x x  (2.7) 

Pfeffermann, Marella and Summa (2025a) consider data integration when the selection to the NPS  sample 

and the response probabilities in the PSS  sample depend on both y  and ,x  applying the empirical likelihood 

(EL) approach. It is assumed that x  is observed in both samples, but y is only observed in the NPS  sample. 

Let 
PS
iI  be the sample indicator for PS ,S  taking the value 1 if unit i  is sampled and 0 otherwise. For PS,i S  

the sample model of ix  is  

 
PS

PS
,PS PS

Pr ( 1| )
Pr ( | 1) ,

Pr ( 1)
X Xi i
i i i i

i

I
p I p

I


  



x
x  (2.8) 
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where Pr ( )X
i U ip  x x  is the probability in the population. As can be seen, under informative sampling 

with respect to ,x  the sample probability , PS
X
ip  is different from .X

ip  

Additionally, it is assumed that the PSS  sample is exposed to NMAR nonresponse. Let PS
iR  be the 

response indicator, taking the value 1 if sample unit PSi S  responds and 0 otherwise. Denote by PSR  the 

set of responding units in PS.S  Then,  

 
PS

PS PS
PS PS

, ,PSPS PS

Pr ( 1| , 1)
Pr ( | 1, 1) .

Pr ( 1| 1)
X Xi i i
i R i i i i

i i

R I
p I R p

R I

 
   

 

x
x  (2.9) 

By (2.8) and (2.9), the respondents model is a function of the true population probability, the conditional 

expectations of the sampling weights, PS
PS , PSPr ( 1| ) 1 / ( | )i i i iI E w x x  (Pfeffermann and Sverchkov, 

1999); , PS , PS1 /i iw   are the base sampling weights in PS ,S  and the response probabilities PSPr ( 1| ,i iR  x  
PS 1).iI   Assuming that the response is independent of the sample selection,

PSPS , PS , PS( | ) ( | ),i i R i iE w E wx x  

in which case the probabilities PSPr ( 1| )i iI  x  can be estimated by regressing , PSiw  against ,ix  using the 

data in PS.R  

The response probabilities PS PSPr ( 1| , 1)i i iR I x  in (2.9) are unknown and need to be estimated from 

the available data by postulating a parametric model, 

 PS PSPr ( 1| , 1, ) ( ; )i i i iR I g  x ρ x ρ  (2.10) 

for some known function ,g  (say, a logistic model), with ρ  defining the model parameters. 

Assuming independence of the sampling and the response, the empirical respondents’ likelihood based 

on PSR  is thus, 

 
PS PSPS

PS

PS PS PS

, PS PS PS

Pr ( 1| , 1) Pr ( 1| )
ERL { } .

Pr ( 1| 1) Pr ( 1)
X X Xi i i i i

R i i R ii R
i R i i i

R x I I x
p = p p

R I I


  


  
   (2.11) 

Next, consider the NPS  sample. Let NP
iI  be the sample indicator, taking the value 1 if NPi S  and 0 

otherwise. Denote Pr ( , ).XY
i i ip y y  x x  For NP ,i S  

 
NP

NP
,NP NP

Pr( 1| , )
Pr ( , | 1) ,

Pr ( 1)
XY XYi i i
i i i i i

i

I y
p y I p

I


  



x
x  (2.12) 

where 
NP

NP NPPr( 1) Pr( 1| , ) .XY
i i i i ii S

I I y p


   x  Because no sampling weights for NPS  are available, the 

probabilities NP( 1| , )i i iP I y x  need to be modelled parametrically, 

 
NPPr ( 1| , ; ) ( , ; )i i i i iI y h y x γ x γ  (2.13) 

for some known function ,h  with γ  defining the model parameters. Assuming independence of the NPS  

data, the empirical likelihood based on NPS  is 

 
NP

NP , NPESL ( ) .XY XY
i ii S

p p


   (2.14) 
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Assuming no overlap between the two samples, the empirical likelihood based on the data in NPS  and PSS  

is, 

 
PS PS

PS NP

NP PS NP , , NPEL ERL ( )ESL ( ) .X XY X XY
R i i i R i

i R i S

= p p = p p
 
   (2.15) 

The unknown parameters in (2.15) are the population probabilities , ,X XY
i ip p  the sampling parameters γ  

and the response parameters .ρ  The likelihood is maximized subject to normalizing constraints on the 

unknown probabilities and calibration constraints.  
 

Remark 7. The unknown probabilities { }X
ip  can also be estimated from the NPS  sample; , NP

ˆ X
ip   

,NP{ ; }
ˆ .

i

XY
ii x x

p
  This implies two sets of estimates of the probabilities { },X

ip  which need to be harmonized. 

See Marella and Pfeffermann (2023) for possible harmonization procedures. The final, integrated estimate 

of XY
ip  is , NP , NP

ˆ ˆ ˆ ˆ( / ),XY X XY X
i i i ip p p p  where ˆ X

ip  is the harmonized estimator.  
 

The population total Y  can be estimated in one of the following two ways: 

 
NP

1 NP

NP
NP NP 1 NP

NP

P̂r ( 1| , )
ˆ ˆˆ(1) ; (2) ,

P̂r ( 1| , )

i i i iY i
i i

i S i i ii

I y y
Y N y p Y N

I y











 







x

x
 (2.16) 

where 
;

ˆ ˆ .
i

y XY
i ii y y

p p


  See Pfeffermann et al. (2025a) for an empirical comparison of the performance of 

the two estimators. 
 

Remark 8. One of the reviewers of this article raised a concern about the model used for the selection model 

to the NPS  sample, noting that it seems difficult to obtain robustness to deviations from the model. As 

discussed in Section 4.3 and illustrated in Section 5, the NPS  model can be tested.  

 
3. Inference from a nonprobability sample without integration 
 

In Section 2, we considered methods of inference from a nonprobability sample, based on integration of 

the NPS  sample with an appropriate probability sample PS.S  In this section, we consider methods for 

adjusting the selection bias of the NPS  sample, without integration with a PSS  sample (see Remark 1). 

We start with an approach based on calibration. The basic idea underlying this approach is to change 

some base weights, , NPjd  to new weights 
cal
, NP ,jd  so that when applied to a set of variables Z observed in 

NPS  and for which the true population totals are known, the NPS  survey estimates will equal the corre-

sponding totals; 
NP

cal
, NP ,j j zj S

d


 z T  where zT  are the known population totals. (In practice, the true totals 

can be replaced by reliable estimates from a probability sample, in which case it can be considered as 

“sample integration”.) See AAPOR (2010) and Baker et al. (2013) for review of methods that follow this 

approach, and Kott and Ridenhour (2024) reviewed in Section 2. 
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The success of this approach depends on the availability of calibration variables, which are highly 

correlated with the target y- variable (good prediction power). Lee and Valliant (2009) illustrate that 

combining propensity scores and calibration adjustments is more effective in reducing the bias of NPS  

estimates than using just one of the approaches. See also Elliott and Valliant (2017). 

Kim and Wang (2019) propose the use of inverse sampling to obtain a representative sample from the 

finite population, and hence to correct for the selection bias of the NPS  sample. The proposed inverse 

sampling can be viewed as a special case of two-phase sampling, where the first phase is the NPS  sample 

and the second phase is a subsample from the first-phase sample to correct for the selection bias.  

Denote, as before, by i  the indicator of whether unit i U  is included in the NPS  sample. It is assumed 

that Pr ( 1| , ) Pr ( 1| ) 0i i i i iy    x x  for all .i U  The NPS  sample contains the values NP( , ), .i iy i Sx  

Denote by ( )f x  the population distribution of the -x variables. If ( )f x  is known, an asymptotic unbiased 

estimator of ( )E Y   is, 

 
NP1 NP NP NP

1

( ) ( )ˆ .
( | 1) ( | 1)

i i
S i i ii S i S i S

i i i i

f f
y w y

f f


   
 

 
  

x x

x x
 (3.1) 

For the more practical case where only the mean /U ii U
N


X x  is known, the authors approximate 

( )f x  by the function 0 ( ),f x  which minimizes the Kullback–Leibler distance. The solution to the 

minimization distance is, 

 0

exp( )
( ) ( | 1) ,

[exp( | 1)]
f f

E





 

 

x λ
x x

x λ
 with λ  satisfying 0 ( ) .Uf d  x x x X  (3.2) 

With this approximation, the estimator 
NP1

ˆ
S  in (3.1) is replaced by, 

 
NP 2 NP

*ˆ ;S i ii S
w y


 

NP

*
ˆexp( )

,
ˆexp( )

i
i

ii S

w







x λ

x λ
 with λ̂  satisfying 

NP

* .i i Ui S
w


 x X  (3.3) 

Finally, the authors propose to select the second-phase sample from NPS  with probabilities 
*

2|1 ,i inw   

NPi S  with the weights *{ }iw  defined by (3.3) and 
NP

* 1[max { }] ,i S in w 
  yielding the approximately design-

unbiased estimator of the 
NP1

ˆ
S  estimator defined in (3.1), 

 
NP3 NP

*

1
2|1

1 1ˆ .
n

S i i ii S i
i

w y y
n


 

    (3.4) 

A simple estimator of the design variance of 
NP3

ˆ
S  is proposed. 

The two approaches considered so far assume that the selection to the NPS  sample is MAR, in the sense 

that Pr ( 1| , ) Pr ( 1| ) 0i i i i iy    x x  for all .i U  However, as discussed before, this assumption may 

not hold and in what follows, we consider alternative approaches aimed to deal with the case of informative 

sample selection.  
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Sayag, Ben-Hur and Pfeffermann (2022) consider the following problem, underlying the computation of 

monthly house price indices (HPI) in many countries. A large amount of the house sales are reported several 

months after they occur, implying that if not accounted for, the provisional HPIs based on the on-time 

reported transactions are subject to large revisions, as further transactions are reported. This happens 

because the late-reported transactions behave differently from the transactions reported on time. This is a 

nice example of a nonprobability sample (the on-time reported sales), which is subject to selection bias due 

to late data availability of some of the sales (~40% in Israel). 

To deal with this problem, the authors propose nowcasting three types of variables and adding them as 

input data to the hedonic regression model used for the computation of the HPI: (1)- the average charac-

teristics of the upcoming late-reported transactions, such as the average number of rooms, the average net 

area size, the average age of the sold houses, etc. (2)- the average price of the late-reported transactions and 

(3)- the number of late-reported transactions. The three types of variables are nowcasted based on simple 

models fitted to data from previous months. Application of the proposed methodology shows more than 

50% reduction in the magnitude of the revisions. This is a unique example of a time series of non-

representative nonprobability samples for which the true population data (all the sales corresponding to a 

given month) become known only several months later.  

Kim and Morikawa (2023) consider a non-ignorable (informative) sample selection model ( , ;i i iy x  

) Pr ( 1| , ; ),i i iy  x   where (1,0)i   is the NPS  sample indicator, assuming that the variables ix  are 

known for all i U  and ( , ) 0i i iy x  for all .i U  For the case where the population model ( | )U i if y x  is 

known, the authors propose estimating   by maximizing the likelihood, 

 
(1 )

obs ( ) [ ( | ) ( , ; ] [1 ( ; ; ( ; ( , ; ].
i

i

U i i i i i i i i ii U
L f y y y

   



         x x x x x x        (3.5) 

However, this likelihood requires modelling the population model and the authors note that the MLE 

estimator obtained from (3.5) is not robust to misspecification of the model. Consequently, they develop 

a likelihood based on the model SNP ( | ) ( | , 1),i i i i if y f y  x x  which can be identified and estimated 

consistently.  

Alternatively, the authors develop a methodology for estimating   and the population mean of the y-

values by applying the empirical likelihood (EL) approach. For the case where the selection probabilities 

( , )i i iy x  are known, the authors propose estimating the ’sip  underlying the EL by maximizing the loglike-

lihood, 
NP

( ) log ( ),ii S
l p p


  subject to the constraints (1)- 

NP

1,ii S
p


  (2)- 

NP

( , ) / ,i i i ii S
p y n N


 x  

(3)- 
NP

,i i Ui S
p


 x X  where n  is the size of the NPS  sample, N  is the population size and U X  

/ .ii U
N

 x  The constraint (2) is referred to as a bias calibration constraint, whereas the constraint (3) is 

added to improve the efficiency of EL estimator. 

In practice, the sample selection probabilities are unknown. The authors assume a parametric model; 
*( , ) ( , ; )i i i i iy g y x x   (say, logistic, *

ix  is a subset of ix  to guarantee model identifiability, see Sections 4 
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and 5), and estimate * ˆˆ ( , ) ( , ; )i i i i iy g y x x   by solving the estimating equations *( , ;1
1 .i

i i

N

ig yi




  
  x

x 0


 

These equations do not require knowledge of the -x values for every unit in the population. By considering the 

estimated probabilities * ˆˆ ( , ) ( , ; )i i i i iy g y x x   as the true selection probabilities, the authors maximize the 

constrained EL likelihood defined above, with the bias calibration constraint (2) replaced by 
NP

( ,i ii S
p g y

  
* 1 *

1
ˆ ˆ; ) ( , ; ),

N

i i ii
N g y


 x x   which does require knowledge of the population 

*-x values, yielding the esti-

mates ˆ{ }.ip  The population mean of the y- values are estimated as, 

 
NP

EL,IPW *

1ˆ
ˆ( ; )

i

i S
i i

y
Y

N 
 

x 
     or     

NP
EL
ˆ ˆ .i ii S

Y p y


   (3.6) 

The authors derive asymptotic properties of their estimators and variance estimators.  

This article proposes a novel approach for estimating finite population means from NPS  samples subject 

to nonignorable selection probabilities, but the assumption that the -x variables are known for every unit in 

the population is restrictive. 
 

Remark 9. In Section 2, we proposed a method of inference from a NPS  sample alone, which likewise 

combines a non-ignorable sample selection model with the empirical likelihood. See equations (2.12)-

(2.14). This method does not require knowledge of the -x values for every unit in the population. See also 

Section 4 below. 

 
4. A new (old) approach for inference from a nonprobability sample 
 
4.1 Relationship between the population distribution and the NPS  

distribution 
 

In the following, we propose an alternative approach for inference from a nonprobability sample alone. 

It relies in large on Pfeffermann and Sverchkov (1999). 

Denote the model holding for the target variable y  in U  by ( | ).U i if y x  Denote the model holding for 

y  in the NPS  sample by 
NP

( | ),S i if y x  and let 1(0)iδ   if NP NP( ).i S i S   The target model is ( | ),U i if y x  

but observations { , }i iy x  are only available for 
NP

( | ).S i if y x  We assume, NPPr ( ) 0i S   for all i U  (also 

assumed in the other approaches considered before). The two distributions are connected via the link 

function Pr ( 1| , ).y  x  

 
NP

Bayes Pr ( 1| , ) ( | )
( | ) ( | , 1) .

Pr ( 1| )
i i i U i i

S i i i i i

i i

y f y
f y f y







  



x x
x x

x
 (4.1) 

As discussed below, the relationship (4.1) enables estimating the target population distribution from the 

observations in NPS  alone. Notice that 
NP

( | ) ( )S i i U i if y f y |x x  iff Pr ( 1| , ) Pr ( 1| )i i i i iy   x x ,iy  in 
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which case the model fitted based on the NPS  sample holds for the population data and if the -x values are 

known for all ,i U  (or in the case of a linear population model UX  is known), inference based on the NPS  

sample is valid. See Rao (2021) for discussion of this method under these conditions. 
 

Remark 10. In the first part of their article, Kim and Morikawa (2023) also assume parametric models for 

the population model and the sample selection probabilities (see above), but we do not assume knowledge 

of the population -x values. Additionally, the authors estimate the parameters underlying the sample 

selection model outside the likelihood, whereas we estimate them jointly with the population model 

parameters (see below). We utilize similar calibration constraints to the ones used by Kim and Morikawa 

(2023), see equation (4.3) below. We also test the goodness of fit of the resulting model 
NP

( | ),S i if y x  see 

Section 4.3. 
 

The probabilities Pr ( 1| , )i i iy  x  need to be modelled. They are allowed to depend on the target y 

variable, thus accounting for informative sample selection. They may depend also on other variables ,z  but 

we only need to model Pr ( 1| , ).i i iy  x  The use of a Logistic model for i  has some theoretical 

justification. See Lemma 1 in Pfeffermann, Preminger and Sikov (2025b) for details. When z  is observed 

in the NPS  sample, we may include it among the -x variables. 

 

4.2 Estimation of model parameters  
 

Unlike the use of the empirical likelihood approach, application of this approach requires specifying the 

population model and the model for the sample selection probabilities, which depend on unknown 

parameters that need to be estimated from the observations in the NPS  sample. Adding parameters to (4.1), 

and assuming *Pr ( 1| , ; ) Pr ( 1| , ; ),i i i i i iy y   x x   with *
ix  denoting a subset of the vector ix  to 

guarantee the identifiability of the model (see Section 4.3), we have 

 
NP

*

*

Pr( 1| , ; ) ( | ; )
( | ; , ) .

Pr ( 1| ; , )
i i i U i i

S i i

i i

y f y
f y










x x β
x β

x β





 (4.2) 

Assuming independence of the observations in NP ,S  the corresponding log likelihood is 
NP

( , ; )Sl y β  

NPNP

log ( | ; , ),S i ii S
f y

 x β   which we maximize subject to the constraints, 

 
NP

*

1 1 1
.

Pr ( 1| , ; )
i j U

i S j Ui i iN y N 

 


 x x X
x 

 (4.3) 

The constraints (4.3) are used for enhancing the estimation of the parameters ( , ).β   We assume throughout 

that the x  and 
*x  vectors contain a “1” in the first position. 

 

Remark 11. In the empirical study in Section 5 with continuous y, we approximated the probabilities 
*Pr ( 1| ; , )i i  x β  by Riemann’s sums over 350 sub-groups of the y- values. When y is binary, 

 

* *

*

Pr ( 1| ; , ) Pr ( 1| 1, ; ) Pr ( 1| ; )

Pr ( 1| 0, ; , ) Pr ( 0 | ; ).

i i i i i i i

i i i i i

y y

y y

 



    

   

x β x x β

x β x β

 


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We maximized the likelihood with the constraints by use of the SAS procedure NLIN, iterating between 

the maximization with respect to   for given ,β  and the maximization of β  for given ,  with the “given” 

values defined by the estimates in the previous iteration. See Section 5 for how we estimated the population 

mean of the y- values in our simulations. 

 
4.3 Model testing and identifiability conditions 
 

The application of the proposed approach assumes a model ( | ; )U i if y x β  for the population values and 

a model *Pr ( 1| , ; )i i iy  x   for the selection probabilities, which permits estimating the parameters ( , )β  

by means of (4.2) and (4.3), using the data in NP .S  No direct testing of the population model or the model 

for the selection probabilities is possible, since no data are available from the population distribution and 

the -y values are unknown for units NP.j S  However, contrary to a common perception that it is impossible 

to test a model fitted to the NPS  data, we contend this is not true. We have observations from the fitted 

model, so we are faced with the classical problem of testing the goodness of fit of a hypothesized model to 

the observed data. See Krieger and Pfeffermann (1997) and Pfeffermann and Sikov (2011) for plausible 

tests.  
 

Remark 12. Rejection of the null hypothesis that the model fits the data implies that at least one of the two 

models is misspecified. See Section 5 for examples and the concluding remarks in Section 6. 
 

A common argument in favor of the claim that the NPS  model cannot be tested is that it may be the case 

that there is more than one combination of a population model and a selection model, yielding the same 

model for the observed data, such that the model fitted to the NPS  data is not identifiable or “practically not 

identifiable”. Pfeffermann and Landsman (2011) and Wang, Shao and Kim (2014) establish conditions 

under which the model 
NP

( | )S i if y x  is identifiable, with references to other related studies. See Section 5 for 

the identifiability conditions of the models considered in the simulation study. 
 

Remark 13. In a highly cited article, Molenberghs, Beunckens and Kenward (2008) prove and illustrate that 

for every NMAR model fitted to a set of data, there is a MAR counterpart providing exactly the same fit to 

the data. The authors note that “such a construction does not lead to a member of a conventional parametric 

family”. A simple example for this argument is where the population model ( | )Uf y x  is assumed to be 

defined by the sample model 
NP

( | )S i if y x  (equation 4.2), and the sample inclusion probability satisfies 
*Pr ( 1 | , ; )i i iy  x  *Pr ( 1| ; ).i i  x   Clearly, ( | )U i if y x

NP
( | )S i if y x  defined by (4.2) is a very odd 

population distribution. Molenberghs et al. (2008) also note that “we can make progress if attention is 

confined to a given parametric family, in which we put sufficiently strong prior belief”. This is what we do 

under our proposed approach. Notice that the selection model is used to obtain valid estimates of the 

population model, and as shown below and illustrated in Section 5, it can be tested. 

Consider first the case where y is a continuous variable. In our empirical applications, we applied the 

following UNIF test statistic (Krieger and Pfeffermann, 1997). 
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Preliminaries:  
 

1. For a continuous variable Z  with cumulative distribution ,F ( ) ~ (0,1).F z U  

2. Under general conditions, the set of all the moments of ( )F z  determines the distribution. 

 

Proposed test:  
 

(i) Compute 
NP

( | ), 1,...,i S i iT F y i n x  based on the estimated coefficients ˆ ˆ( , ).β   

(ii) Compute the sample moments 
1

/ , 1,..., .
n m

m ii
u T n m M


   

(iii) Compute the Wald test statistic based on the estimated sample moments. 
 

For the moments of the (0,1)U  distribution, ( ) 1/ ( 1);m mE u m    Cov( , ) / [( 1)( 1)(m lu u ml m l m     

1) ].l n  Assuming 1( ,..., )m' u uu  is normal,  

 
0

1UNIF ( ) ( ) ~ ,
H

2
Mχ  u μ Σ u μ  (4.4) 

where Σ  is the Variance-Covariance matrix defined by the covariances above. The null hypothesis is that 

the assumed working model is “correct”. 
 

Remark 14. In the proposed test, we replace the true moments by the estimated moments. The estimators 

ˆ ˆ( , )β   are obtained by MLE and under some regularity conditions, they converge almost surely (a.s.) to the 

true parameters ( , ),β   (Zacks, 1971). Then, if the true distributional function F  is smooth, e.g. twice 

differentiable with respect to β  and ,  
a.s.

ˆ ˆ( | , 1; , ) ( | , 1; , ),i i i i i iF y F y   x β x β   justifying the use of 

the UNIF test defined by (4.4). See Figure 5.1 in Section 5 for a simulation illustration. 
 

Remark 15. In our simulation study we used M   5 moments, which was found to perform well in Krieger 

and Pfeffermann (1997). Notice that 2 2 2Corr ( , ) 1 ( ) [( ) 1] ,m m lu u m l m l       so that higher order 

moments add only marginally to the power of the test. 
 

For the case where y is binary, we apply in Section 5 the Hosmer and Lemeshow (1980, hereafter H-L) 

test, defined as follows: 
 

(i) Sort the observed data in NPS  based on the estimated probabilities NP
ˆˆ Pr ( 1 | , 1), .i i i iy i S    x  

(ii) Divide the sorted data into G  groups of approximately equal size ( / )gn n G  and compute for each 

group :g  -go the number of values 1y   and 1 ˆ .
gg in i g

 


   The test statistic is, 

 
0

2

2
( 2)1

( )
~ .

(1 )

H
G g g g

Gg
g g g

o n
H L

n




 



 


  (4.5) 

 
5. Simulation study 
 

In this section, we present simulation results to illustrate the performance of our proposed approach, 

separately for the case where the target variable y is continuous, and for the case where y is binary. 
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5.1 Simulation setup with a continuous target variable- correct model 
 

We start by repeating the same simulation study as performed by Kim and Morikawa (2023), which 

consists of the following steps: 

S1. Generate 5,000 population values as 0 1 1 2 2 ,i i i iy x x        where 
Indep

1 2, ~ (2,1); ~ (0,1).i i ix x N N  

(The values of the β  coefficients are in Table 5.1 below.) 

S2. Generate selection probabilities to the NPS  sample as,  

 
NP

* 0 1 1 2

0 1 1 2

exp( )
Pr ( 1| , ; ) .

1 exp( )
i i

i,S i i i

i i

x y
π y

x y

  


  

 
  

  
x    

(The   coefficients are in Table 5.1.) 

S3. Repeat Steps 1 and 2 1,000 times, yielding an average selection rate of 50%. 

S4. For each simulation, estimate the model parameters and the population mean 
5,000

1
/ .U ii

Y y N


  

 

Estimators considered: 
 

1- 1
, known 0 1 1 2 2

ˆ ˆ ˆ ˆ( ).U X i iN i U
Y x x  


    The x- variables are known for every unit ,i U β  is estimated 

by maximization of the likelihood 
NP NPNP

( , ; ) log ( | ; , ),S S i ii S
l y f y


β x β   under the constraints in 

(4.3). Note: since the population model is linear, it suffices to know the population means of the -x

variables.  

2- 
NP NP NP NP

,GREG
ˆ ˆ ;U i i i pk U i i ii S i S i S i S

Y k y k k k
   

    
    B X x

NP,
ˆ(1 / ).i i Sk   The GREG esti-

mator with the standard base sampling weights (1/ )i iw   replaced by 
NP,

ˆ(1/ ).i i Sk   ˆ pkB  is the 

probability weighted estimator of ,β  with weights .ik  

3- 
NP

,KM
ˆ ˆ ,U i ii S

Y p y


  the estimator of Kim and Morikawa (2023). EL
ˆ(Y  in equation 3.6). 

4- ,MAR
ˆ -UY the estimator obtained by assuming that the selection probabilities only depend on the -x

variables; Pr ( 1| , ) Pr ( 1| ),i i i i iy   x x  where 1 2( , ) .i i ix x x  We assume a logistic model, using all 

the population -x values. 
 

The first 2 estimators are obtained by application of our approach. The estimation of the -β coefficients 

in the first estimator is only based on the data in NP .S  
 

Remark 16. An important question regarding the models used in this simulation study is whether the 

resulting sample model 
NP

* *( | ; , ) Pr ( 1| , ; ) ( | ; ) Pr ( 1| ; , )S i i i i i U i i i if y y f y   x β x x β x β    is identifiable. 

By identifiability we mean that there are no different pairs 
*[Pr ( 1| , ; ), ( | ; )],x x βj i i i j Uj i i jy f y  1,2j   

inducing the same sample model for every y  and .x  Pfeffermann and Landsman (2011) consider sets of 

conditions guaranteeing the identifiability of the sample model. In particular, for the case of a normal 

population model and a logistic model for the sample selection probabilities, the sample model is identifiable 

if the -x variables in the two models differ by at least one variable. Notice that in the models underlying the 
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present simulation, the population model is a function of 1 2( , ),i ix x  but the selection logistic model is only a 

function of 1 ,ix  so that the identifiability condition is satisfied. 
 

The results in all the tables in this article are based on 1,000 simulated samples. 

 
5.2 Results for continuous case when fitting the correct model 
 

Table 5.1 

Mean estimators and standard errors of model coefficients under the proposed method 
 

 Population model coefficients Selection model coefficients 
 

0  1  2  0  1  2  

True coefficients -4 1 1 -2 1 0.5 
Mean estimators -3.92 0.98 0.99 -2.15 0.80 0.43 
Standard errors 0.004 0.001 0.001 0.023 0.008 0.002 
Mean PWR estimators -3.88 0.96 0.99 NA NA NA 
Standard errors 0.006 0.002 0.001 NA NA NA 

Note: The mean estimators are the MLE estimators. The probability weighted estimator (PWR) is computed with weights 
NP,

ˆ(1 / ).i i Sk   

 

As can be seen, the β  coefficients are estimated quite accurately on average. The estimators of the   

coefficients are somewhat less accurate, but the estimators of the population mean in Table 5.2 still have a 

negligible bias with these estimators.  

 
Table 5.2 

Estimation of population mean. (Mean true value = -0.00) 
 

Method Bias Emp. Var   1,000 MSE   1,000 (Bootstrap estimates)* 

, known
ˆ
U XY  -0.01 2.263 2.363 (3.36) 

,GREG
ˆ
UY  -0.02 2.423 2.823 (3.89) 

,KM
ˆ
UY  0.01 2.030 2.080 (---) 

, MAR
ˆ
UY  0.25 2.106 64.606 (65.11) 

* The bootstrap MSE estimates are based on 100 simulations with 100 bootstrap samples for each simulation.  

 
Estimation of the population mean of the y- values is the primary target of inference in the simulation 

study and the first three estimators are seen to be literally unbiased. The estimator ,KM
ˆ
UY  uses all the 

population -x values and performs best. The estimator , known
ˆ
U XY  likewise uses all the population -x values 

(or NP,i i Sx  and ),UX  but the estimation of the model coefficients is only based on the NPS  sample. The 

estimator ,GREG
ˆ
UY  uses the NPS  model for estimating the - coefficients and likewise performs well on 

average, although with somewhat larger variance and MSE. The bootstrap MSE estimators are conservative 

with large upward bias. We selected the bootstrap samples by following the procedure proposed in 

Sverchkov and Pfeffermann (2004), which consists of selecting with replacement a pseudo-population from 

the sample with probabilities proportional to 
NP,

ˆ(1 / ),i i Sk   and then selecting the bootstrap samples NP
bS  

with the estimated probabilities 
NP,

ˆ
i Sπ  obtained from the original sample. We only considered 100 simu-

lations and 100 bootstrap samples for each simulation, which may explain the upward biases. As expected, 
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the estimator ,MAR
ˆ ,UY  which assumes that the selection probabilities only depend on the -x variables has a 

large positive bias and extremely large MSE. Kim and Morikawa (2023) obtained similar bias and MSE 

figures in this case. 

Overall, the use of our proposed approach seems to perform well in this part of the simulation study. 
 

Model testing: As discussed in Section 4.3, our proposed approach enables testing the models assumed for 

the population and the sample selection probabilities. Figure 5.1 compares the empirical quantiles of the 

UNIF statistic (equation 4.4) with the corresponding 2
Mχ  quantiles under the correct model for the case of 

M   5 moments.  

 

Figure 5.1 Empirical quantiles of UNIF statistic (dashed curve) and 2
Mχ  quantiles (solid curve) under the 

correct model with M = 5 moments 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
We applied the UNIF test for this part of the simulation study and obtained the following results for the 

case of M   5 and   0.05 significance level. 

  
Mean Standard Deviation Minimum Maximum 

UNIF statistic 4.64 2.93 0.45 22.80 
P-value 0.53 0.28 ~0 0.99 
H0 not rejected 0.97 0.18 0 1 

 

We conclude that the UNIF test performs well when testing the correct model, with an average non-rejection 

rate of 97%.  

 
5.3 Application of the proposed procedure when the models are misspecified 
 

In Section 5.2 we assume that the population model and the model for the selection probabilities are 

specified correctly. In this section, we consider the case where they are misspecified, using the same 

simulation setup as in Section 5.1. 
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Case 1. The population model is specified correctly, the sample selection model is 
misspecified. 

 

In this case, we selected the NPS  sample with probabilities, 
NP

2
, 0 1 1 2 0exp( ) [1 exp(i S i ix y          

2
1 1 2 )],i ix y   but assumed as our working model that the selection probabilities are as in Section 5.1 (with 

iy  in the exponent rather than 2 ).iy  The population model of y is specified correctly. The average selection 

rate over the 1,000 simulations is in this case 0.53, similar to what we had before.  

 
Table 5.3 

Estimation of model coefficients and standard errors with misspecified selection probabilities 
 

 Population model coefficients Selection model coefficients 
 

0  1  2  0  1  2  

True coefficients -4 1 1 -3 1 0.5 
Mean estimators -4.66 1.14 1.14 -0.52 0.33 0.02 
Standard errors 0.002 0.001 0.001 0.007 0.003 0.002 
Mean PWR estimators -4.69 1.16 1.14 NA NA NA 
Standard errors 0.006 0.002 0.002 NA NA NA 

 

Estimation of the - coefficients is of little interest in this case because the selection model is mis-

specified, but notice the relative large bias in the estimation of the -β coefficients even though the population 

model is specified correctly. Thus, misspecifying the selection model affects the estimation of the population 

model. 

 
Table 5.4 

Estimation of population mean. (Mean true value = -0.00) 
 

Method Bias Emp. Var.   1,000 MSE   1,000 

, known
ˆ
U XY  0.091 1.089 9.37 

,GREG
ˆ
UY  0.096 1.369 10.585 

,MAR
ˆ
UY  0.231 0.676 54.037 

 

As can be seen, the bias, empirical variance and MSEs are much larger in this case than under the correct 

model (Table 5.2). This is not surprising since we fitted a wrong selection model. Here again, we applied 

the UNIF test for each simulation and obtained the following results. 

  
Mean Standard Deviation Minimum Maximum 

UNIF statistic 27.24 10.75 2.23 71.18 
P-value 0.01 0.04 ~0 0.82 
H0 not rejected 0.04 0.17 0 1 

 

For this case, the UNIF test performs well in rejecting the model fitted, with an average rejection rate of 

96%.  
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Case 2. The sample selection model is specified correctly, the population model is 
misspecified.  

 

Here, we consider the case where the sample selection model is specified correctly (same as in 

Section 5.1), but the population model is misspecified. Specifically, the population values have been 

generated as 2
0 1 1 2 2 ,i i i iy x x        but the assumed working model is as in Section 5.1 (with 2ix  

instead of 2
2 ).ix  All the other model specifications are as in Section 5.1. 

 
Table 5.5 

Estimation of model coefficients and standard errors with misspecified population model 
 

 Population model coefficients Selection model coefficients 
 

0  1  2  0  1  2  

True coefficients -4 1 0.5 -2 1 0.5 
Mean estimators -5.77 0.94 2.20 -1.39 0.600 0.390 
Standard errors 0.013 0.002 0.002 0.040 0.011 0.007 
Mean PWR estimators -5.36 0.94 1.99 NA NA NA 
Standard errors  0.01 0.005 0.007 NA NA NA 

 

As expected, the estimators of the -β coefficients are highly biased and so are the estimators of the -

coefficients. Thus, as already noted regarding Table 5.3, misspecification of one of the models affects the 

estimation of both models.  

 
Table 5.6 

Estimation of population mean. (Mean true value = -0.00)  
 

Method Bias Emp. Var.   1,000 MSE   1,000 

, known
ˆ
U XY  -0.024 20.16 20.74 

,GREG
ˆ
UY  -0.010 42.03 42.11 

,MAR
ˆ
UY  -0.209 5.85 49.53 

 

The estimators of the population mean are less biased than for the case where the sample selection model 

is misspecified (Table 5.4), but with relatively large variances, particularly for the GREG estimator. Notice 

that the GREG estimator depends directly on the estimated sample selection probabilities, which are highly 

biased (Table 5.5). 
 

Application of the UNIF test yields in this case, 

  
Mean Standard Deviation Minimum Maximum 

UNIF statistic 207.12 46.49 82.12 394.47 
P-value ~0.00 ~0 ~0 ~0 
H0 not rejected 0 0 0 0 

 

The UNIF test rejects the models fitted in each of the 1,000 simulations. 
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5.4 Simulation setup with binary target variable- correct model 
 

So far, we illustrated the performance of our proposed method for the case where the target y- variable 

is continuous. Following, we consider the case where y is binary. We use a similar simulation setup to the 

setup used for the continuous case, except that the population y- values are now generated as Pr ( 1)iy    
1

0 1 1 2 2logit ( ),i ix x      with the -x values generated as before. We again use the logistic model 
NP,i Sπ   

*
0 1 1 2 0 1 1 2Pr ( 1| , ; ) exp( ) [1 exp( )]i i i i i i iy x y x y            x   for selecting the NPS  sample, maxi-

mizing the likelihood under the same constraints as before.  

The question arising is whether the NPS  model is identifiable in this case as well. Wang et al. (2014) 

establish the following condition for model identifiability. The auxiliary variables x  in the population model 

can be decomposed as 1 2( , )x x x  with the dimension of 2 1,x  such that 
NP, Pr ( 1| , )i S i i iπ y  x  

1Pr ( 1| , ),i i iy  x  implying that the sample selection model does not depend on 2,x  given y  and 1.x  This 

condition is satisfied in our simulation setup. Recall that for a normal population model and logistic selection 

probabilities, the sample model is identifiable if the x  variables in the two models differ in at least one 

variable, a somewhat weaker condition. See Remark 16.  

The results in the following tables are based on 1,000 simulations with an average selection rate of 70%. 

The estimated value is again the true population mean (proportion) of the target y- variable.  

 

Table 5.7 

Mean estimators and standard errors of model coefficients 
 

 Population model coefficients Selection model coefficients 
 

0  1  2  0  1  2  

True coefficients -4 1 1 -2 1 5 
Mean estimators -4.40 1.18 1.01 -2.89 1.50 5.65 
Standard errors 0.01 0.004 0.002 0.016 0.008 0.085 
Mean PWR estimators -0.24 0.20 0.16 NA NA NA 
Standard errors 0.001 0.0005 0.0005 NA NA NA 

Note: The mean estimators are the MLE estimators. The probability weighted estimator (PWR) is computed with weights 
NP,

ˆ(1/ ).i i Sk   

 

The MLE and PWR estimators are biased, notably the PWR estimator and the MLE estimators of the 

- coefficients, but as can be seen in Table 5.8, the bias seems to have little effect on the estimation of the 

population mean of the target y- variable. 

We consider the following estimators of the population mean: 

1- 
NP NP

,
ˆ ;U H i i ii S i S

k y k
 

 Y
NP,

ˆ(1/ ).i i Sk   

2-  
NP NP NP

,EI
ˆ (1/ ) ( ) ( 1) ( 1) ;U i i i ii S i S i S

N y N n k k y
  

     
   Y  see Sverchkov and Pfeffermann 

(2004) for derivation of this estimator. 

3-  NP NP NPNP NP NP
, known

ˆ ˆ ˆ(1 / ) ( | ) [( ) ] ( 1) ( 1) [ ( | )] ;U X i S j j i S i S i ii S j S i S
N y E y N n n k k y E y

  
        Y x x  

NPSk 
NP

(1/ ) ,ii S
n k

 NP

ˆ
SE  is the estimated expectation under the model (4.2). The estimator when all 

the population ’sx  are known. See Sverchkov and Pfeffermann (2004) for the derivation of this 

estimator. 
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4-    
NP NP NP NP

, GREG
ˆ ˆ ;U i i i pk U i i ii S i S i S i S

k y k k k
   

     Y B X x  same as when y is continuous. 

5- ,MAR
ˆ ;UY  the estimator obtained from ,EI

ˆ
UY  when replacing ik  by the MAR weight, *

0
ˆ[1 exp(ik     

1 1 2 2 0 1 1 2 2
ˆ ˆ ˆ ˆ ˆ)] exp( ).i i i ix x x x        

 

Table 5.8 

Estimation of population mean. (Mean true value = 0.5) 
 

Estimator Bias Emp. Var   1,000 Emp. MSE   1,000* (Bootstrap estimate)* 

,
ˆ
U HY  -0.051 1.600 4.201 (5.60) 

,EI
ˆ
UY  0.001 0.009 0.010 (0.026) 

, known
ˆ
U XY  -0.006 0.169 0.205 (0.300) 

,GREG
ˆ
UY  -0.006 0.172 0.208 (0.309) 

,MAR
ˆ
UY  0.149 0.049 22.25 (22.50) 

* The bootstrap MSE estimates are based on 100 simulations with 100 bootstrap samples for each simulation. 

 

As can be seen, all the estimators except ,MAR
ˆ
UY  have a negligible bias, despite the bias of the estimated 

- coefficients. Among the estimators, ,EI
ˆ
UY  is the clear winner, with surprisingly small MSE, much lower 

than the MSE of , known
ˆ .U XY  This might be due to the fact that this estimator uses the observed y’s, (~ 70% 

in this case), and only predicts the sum of the unobserved y’s. The estimator , known
ˆ
U XY  also uses the observed 

y’s, but it uses the estimated expectation under the NPS  model for predicting the sum of the unobserved y’s. 

The estimator ,
ˆ
U HY  has a relatively large MSE due to its relatively larger bias. 

 

Model testing: As for the continuous case, we tested the goodness of fit of our model, using in this case the 

Hosmer and Lemeshow (1980, H-L) test (equation 4.5). Figure 5.2 compares the empirical quantiles of the 

H-L statistic with the corresponding 2
2
Gχ   quantiles under the correct model with G = 10 groups.  

 

Figure 5.2 Empirical quantiles of H-L statistic (dashed curve) and 2

2Gχ   quantiles (solid curve) under the 

correct model with G = 10 groups 
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Application of the test in the simulations with   0.05 significance level yields, 

 
 Mean Standard deviation Minimum Maximum 
H-L test 8.56 4.30 1.108 30.57 
p-value 0.46 0.29 ~0 ~1 
H0 not rejected 0.934 0.248 0 1 

 
The H-L test performs well when testing the correct model.  

 
5.5 Application of proposed method for binary case with misspecified models 
 

In Section 5.4, we assumed that the population model and the model for the selection probabilities are 

specified correctly. In this section we consider the case where they are misspecified, using the same 

simulation setup as before. 
 

Case 1. The population model is specified correctly, the sample selection model is 
misspecified. 

 

In this case, we selected the NPS  sample with probabilities, 1Pr( 1| , ) exp( 2 5 ) [1i i i i iy x y     x  

1exp( 2 5 )],i ix y   but assumed as our working model the same model as in Section 5.4. The population 

model of y is specified correctly. The average selection rate over the 1,000 simulations is in this case 54%.  

 
Table 5.9 

Estimation of model coefficients under misspecified model 
 

 Population model coefficients Selection model coefficients 
 

0  1  2  0  1  2  

True coefficients -4 1 1 NA NA NA 
Mean estimators -4.78 1.75 1.00 -3.1 0.96 3.1 
Standard errors 0.01 0.003 0.003 0.02 0.003 0.14 
Mean PWR estimators -0.16 0.25 0.14 NA NA NA 
Standard errors 0.002 0.001 0.0004 NA NA NA 

 

Except for 2 ,  the MLE estimates of the other -β coefficients are biased, with larger bias than when the 

sample selection model was specified correctly (Table 5.7). 

 
Table 5.10 

Estimation of population mean. (Mean true value = 0.5) 
 

Estimator Bias Emp. Var   1,000 Emp. MSE   1,000 

,
ˆ
U HY  0.04 1.60 3.2 

,EI
ˆ
UY  0.05 0.29 2.8 

, known
ˆ
U XY  0.11 0.53 12.6 

,GREG
ˆ
UY  0.11 0.53 12.6 

, MAR
ˆ
UY  0.29 0.17 84.3 
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The results in Table 5.10 indicate that the first 2 estimators have small bias despite of the model 

misspecification, with smaller MSE of ,
ˆ ,U HY  but much larger MSEs of ,EI

ˆ ,UY  , known
ˆ
U XY  and ,GREG

ˆ ,UY  

compared to the MSEs obtained under the correct model (Table 5.8). These large MSEs are clearly 

explained by the misspecification of the sample selection model. As before, ,MAR
ˆ
UY  has a large bias and an 

extreme MSE. 

We applied the H-L test with   0.05 significance level, yielding the following results:  

 
 Mean Standard deviation Minimum Maximum 
H-L test 16.12 179.4 0.778 5557.8 
p-value 0.43 0.30 ~0 ~1 
H0 not rejected 0.89 0.312 0 1 

 
Clearly, the H-L test fails to reject the misspecified model in this case. In an attempt to understand this 

outcome, Figure 5.3 compares the NPS  model 
NP 1Pr ( | ; , ) Pr ( 1| ,x ; )Pr ( | ; ) Pr (S i i i i i U i i iy y y   x β x β   

11| x ; , )i β  with true coefficients used to select the sample, with the corresponding estimated model under 

the misspecified model, for a simple random sample of 100 observations from the NPS  sample. The 

horizontal axis is ordered based on the sampled values of 
NP

Pr ( | )S i iy x  of the true model.  

 
Figure 5.3 Comparison of correct model and estimated misspecified model* 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* Dashed curve represents the correct NPS  model, twisted curve represents the estimated (misspecified) model. 

 
 

The estimated model under wrong specification is seen to yield almost perfect estimators of the correct 

model producing the NPS  data, which explains why the H-L test does not reject the model. This is an example 

for what is known as “practical nonidentifiability” (Lee and Berger, 2001), meaning that even though the 

NPS  model is theoretically identifiable, another model may fit the data almost as well. Notice in Table 5.10 
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that the use of the misspecified working model yields two almost unbiased estimators of the true population 

mean. 

 

Case 2. The population model is misspecified, the sample selection model is specified 
correctly. 

 

In this case, we used the same sample selection model as in Section 5.4 (correct specification of the 

working model), but we generated the population values as 1 2
0 1 1 2 2logit ( ).i i iy x x      As our working 

model we assumed the model of Section 5.4 2( ,ix  instead of 2
2 ).ix  The average selection rate is in this case 

73%. All the other model specifications are as in Section 5.4. 

 
Table 5.11 

Estimation of model coefficients under misspecified model 
 

 Population model coefficients Selection model coefficients 
 

0  1  2  0  1  2  

True coefficients -4 1 1 -2 1 5 
Mean estimators -6.07 1.34 1.62 -3.50 1.55 10.66 
Standard errors 0.015 0.005 0.002 0.025 0.01 0.129 
Mean PWR estimators -0.35 0.18 0.23 NA NA NA 
Standard errors 0.001 0.001 0.001 NA NA NA 

 

All the estimators are highly biased, due to misspecification of the population model. 

 
Table 5.12 

Estimation of population mean (True mean value = 0.55) 
 

Estimator Bias Emp. Var   1,000 Emp. MSE   1,000 

,
ˆ
U HY  -0.15 3.64 26.14 

,EI
ˆ
UY  -0.004 0.01 0.026 

, known
ˆ
U XY  -0.06 0.53 4.13 

,GREG
ˆ
UY  -0.05 0.58 3.08 

, MAR
ˆ
UY  0.11 0.05 12.15 

 

All the estimators except for ,
ˆ
U HY  and U,MARŶ  have a negligible bias in this case, with ,EI

ˆ
UY  performing 

really well, as in the case of correct model specification (Section 5.4). On the other hand, , known
ˆ ,U XY  although 

having a negligible bias, has a large MSE, even larger than the MSE of ,GREG
ˆ .UY  

Application of the H-L test with   0.05 significance level yields in this case, 

 

 Mean Standard deviation Minimum Maximum 
H-L test 42.5 41.3 6.09 950.0 
p-value 0.002 0.02 ~0 0.637 
H0 not rejected 0.006 0.08 0 1 

 

The H-L test performs well in rejecting the misspecified model. 
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6. Concluding remarks 
 

In recent years, there is growing research on the use of NP samples for inference on population 

parameters, as an alternative or complement to the use of probability samples. A major problem with the 

use of these samples is their possible nonrepresentativeness of the corresponding target population, which 

if not accounted for properly, may lead to large bias in the inference process. In this article, we review and 

discuss several approaches proposed in the literature to deal with this problem, distinguishing between 

methods based on integration of the NP sample with a corresponding probability sample, and methods that 

base the inference solely on the NP sample with added calibration constraints. Another distinction empha-

sized is between methods that assume that the selection to the NP sample depends on known auxiliary 

variables ,x  but not on the target study y variable, and methods that assume that the selection depends also 

on y. 

We also propose two additional methods for inference from a nonprobability sample, one that employs 

the empirical likelihood approach and one that requires specifying the population model parametrically. We 

discuss the conditions guaranteeing that the resulting model holding for the NP sample is identifiable, and 

propose simple tests for testing that the models are specified correctly. Our simulation study illustrates good 

performance of the proposed method and generally good performance of the test statistics. 

A major problem underlying all the methods considered in this article is that they assume, at least 

implicitly, that every unit in the population has a positive probability to be in the NP sample. Clearly, if this 

is not the case, inference on the target population could be highly biased. This problem also exists with 

traditional probability samples when the sampling frame is not complete, known as “under-coverage”. When 

the group of units with zero probability to be included in the NP sample is known, say certain geographical 

areas, industries or ethnic groups, the target population should be redefined accordingly. When this is not 

the case, integration of the NP sample with an appropriate PS sample and the use of known population 

means of the -x variables for calibration, is a possible way to at least reduce the bias of the NP sample. This 

is an important topic for further research.  

There are two important questions regarding the use of our proposed method that require further 

investigation. The first question is how to proceed when the test statistic rejects the models defining the NP 

model. We do not have a clear answer to this question at this stage other than a scholarly consideration of 

alternative models. We mention again that the use of a logistic model for the selection probabilities has 

some theoretical justification, and this model is in common use. 

The second related question is the choice of the -x variables in the models, when there are many of them. 

In practice, it may be the case that the analyst has a set of variables that he likes to include in the population 

model, which as explained in Section 4.1, defines also the variables included in the sample selection model. 

When this is not the case, one can use an appropriate stepwise algorithm. Beaumont et al. (2024a) use a 

forward stepwise procedure, aimed at minimizing their proposed AIC criterion. 

All the methods discussed in the present article should be considered as first attempts of inference from 

nonprobability samples, and more theoretical research and practical applications are required before they 

can be used routinely for the production of official statistics.  



194 Pfeffermann and Sverchkov: Use of nonprobability samples for official statistics, state of the art 

 

 
Statistics Canada, Catalogue No. 12-001-X 

 

References 
 

AAPOR (2010). “Report on Online Survey Panels”, available at http://poq.oxfordjournals.org/content/early/ 

2010/10/19/poq.nfq048.full.html. 
 

Baker, R., Brick, J.M., Bates, N.A., Battaglia, M., Couper, M.P., Dever, J.A., Gile, K.J. and Tourangeau, R. 

(2013). Report of the AAPOR task force on non-probability sampling. Journal of Survey Statistics and 

Methodology, 1, 90-143. 
 

Beaumont, J.-F. (2020). Are probability surveys bound to disappear for the production of official statistics? 

Survey Methodology, 46(1), 1-28. Paper available at https://www150.statcan.gc.ca/n1/en/pub/12-001-

x/2020001/article/00001-eng.pdf. 
 

Beaumont, J.-F., Bosa, K., Brennan, A., Charlebois, J. and Chu, K. (2024a). Handling non-probability 

samples through inverse probability weighting with an application to Statistics Canada’s crowdsourcing 

data. Survey Methodology, 50(1), 77-106. Paper available at https://www150.statcan.gc.ca/n1/en/pub/12-

001-x/2024001/article/00004-eng.pdf. 
 

Beaumont, J.-F., Bosa, K., Brennan, A., Charlebois, J. and Chu, K. (2024b). Authors’ response to comments 

on “Handling non-probability samples through inverse probability weighting with an application to 

Statistics Canada’s crowdsourcing data”: Some new developments on likelihood approaches to 

estimation of participation probabilities for non-probability samples. Survey Methodology, 50(1), 123-

141. Paper available at https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2024001/article/00001-

eng.pdf. 
 

Chen, Y., Li, P. and Wu, C. (2020). Doubly robust inference with non-probability survey samples. Journal 

of the American Statistical Association, 115, 2011-2021. 
 

Chen, Y., Li, P., Rao, J.N.K. and Wu, C. (2022). Pseudo empirical likelihood inference for non-probability 

survey samples. Canadian Journal of Statistics, 50, 1166-1185.  
 

Citro, C.F. (2014). From multiple modes for surveys to multiple data sources for estimates. Survey 

Methodology, 40(2), 137-161. Paper available at https://www150.statcan.gc.ca/n1/en/pub/12-001-

x/2014002/article/14128-eng.pdf. 
 

Conti, P.L., Marella, D. and Scanu, M. (2008). Evaluation of matching noise for imputation techniques 

based on nonparametric local linear regression estimators. Computational Statistics and Data Analysis, 

53, 354-365. 
 

Elliott, M.R., and Valliant, R. (2017). Inference for nonprobability samples. Statistical Science, 32, 249-

264.  
 

https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2020001/article/00001-eng.pdf
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2024001/article/00004-eng.pdf
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2024001/article/00004-eng.pdf
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2024001/article/00004-eng.pdf
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2024001/article/00001-eng.pdf
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2024001/article/00001-eng.pdf
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2024001/article/00001-eng.pdf
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2024001/article/00001-eng.pdf
https://onlinelibrary.wiley.com/journal/1708945x
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2014002/article/14128-eng.pdf


Survey Methodology, June 2025 195 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Hosmer, D.W., and Lemeshow, S. (1980). A goodness-of-fit test for the multiple logistic regression model. 

Communications in Statistics, A10, 1043-1069. 
 

Keiding, N., and Louis, T.A. (2016). Perils and potentials of self-selected entry to epidemiological studies 

and surveys. Journal of the Royal Statistical Society, Series A, 179, 319-376. 
 

Kim, J.K., and Morikawa, K. (2023). An empirical likelihood approach to reduce selection bias in voluntary 

samples. Calcutta Statistical Association Bulletin, 75, 8-27. 
 

Kim, J.K., and Wang, Z. (2019). Sampling techniques for big data analysis. International Statistical Review, 

87, 177-191.  
 

Kott, P., and Ridenhour, J. (2024). Calibration weighting with a blended (probability and nonprobability) 

sample: Mean and variance estimation when errors can come from both samples. Methods Report, RTI 

Press. 
 

Krieger, A.M., and Pfeffermann, D. (1997). Testing of distribution functions from complex sample surveys. 

Journal of Official Statistics, 13, 123-142. 
 

Lee, J., and Berger, J.O. (2001). Semiparametric Bayesian analysis of selection models. Journal of the 

American Statistical Association, 96, 1397-1409. 
 

Lee, S. (2006). Propensity score adjustment as a weighting scheme for volunteer panel Web survey. Journal 

of Official Statistics, 22, 329-349. 
 

Lee, S., and Valliant, R. (2009). Estimation for volunteer panel web surveys using propensity score 

adjustment and calibration adjustment, Sociological Methods and Research, 37, 319-343. 
 

Marella, D., and Pfeffermann, D. (2023). Accounting for non-ignorable sampling and non-response in 

statistical matching. International Statistical Review, 91, 269-293. 
 

Molenberghs, G., Beunckens, C. and Kenward, M.G. (2008). Every missing not at random has a missingness 

at random counterpart with equal fit. Journal of the Royal Statistical Society, Series B, 70, 371-388. 
 

Pfeffermann, D., and Landsman, A. (2011). Are private schools really better than public schools? 

Assessment by methods for observational studies. Annals of Applied Statistics, 5, 1726-1751. 
 

Pfeffermann, D., Marella, D. and Summa, D. (2025a). Matching of a non-probability sample with a 

probability sample affected by nonignorable sampling and nonresponse. Submitted for publication. 
 

Pfeffermann, D., Preminger, A. and Sikov, S. (2025b). Statistical inference under nonignorable sampling 

and nonresponse - An empirical likelihood approach. (Under revision).  
 



196 Pfeffermann and Sverchkov: Use of nonprobability samples for official statistics, state of the art 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Pfeffermann, D., and Sikov, A. (2011). Imputation and estimation under non ignorable nonresponse in 

household surveys with missing covariate information. Journal of Official Statistics, 27, 181-209. 
 

Pfeffermann, D., and Sverchkov, M. (1999). Parametric and semiparametric estimation of regression models 

fitted to survey data. Sankhyā, Series B, 61, 166-186. 
 

Rao, J.N.K. (2021). On making valid inferences by integrating data from surveys and other sources. 

Sankhyā, Series B, 83, 242-272. 
 

Rivers, D. (2007). Sampling from web surveys. Proceedings of the Survey Research Methods Section, 

American Statistical Association, Alexandria, VA. 
 

Sayag, D., Ben-Hur, D. and Pfeffermann, D. (2022). Reducing revisions in hedonic house price indices by 

the use of nowcasts. International Journal of Forecasting, 38, 253-266. 
 

Sverchkov, M., and Pfeffermann, D. (2004). Prediction of finite population totals based on the sample 

distribution. Survey Methodology, 30(1), 79-92. Paper available at https://www150.statcan.gc.ca/ 

n1/en/pub/12-001-x/2004001/article/6996-eng.pdf. 
 

Wang, S., Shao, J. and Kim, J.K. (2014). An instrument variable approach for identification and estimation 

with nonignorable nonresponse. Statistica Sinica, 24, 1097-1116. 
 

Wu, C. (2022). Statistical inference with non-probability survey samples. Survey Methodology, 48(2), 283-

311. Paper available at https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2022002/article/00002-

eng.pdf. 
 

Yang, S., Kim, J.K. and Hwang, Y. (2021). Integration of data from probability surveys and big found data 

for finite population inference using mass imputation. Survey Methodology, 47(1), 29-58. Paper available 

at https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2021001/article/00004-eng.pdf. 
 

Zacks, S. (1971). The Theory of Statistical Inference. (Wiley series in probability and mathematical 

statistics). 

https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2004001/article/6996-eng.pdf
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2004001/article/6996-eng.pdf
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2022002/article/00002-eng.pdf
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2021001/article/00004-eng.pdf
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2021001/article/00004-eng.pdf

	Use of nonprobability samples for official  statistics, state of the art
	Abstract
	1. Introduction
	2. Integration of nonprobability and probability samples
	3. Inference from a nonprobability sample without integration
	4. A new (old) approach for inference from a nonprobability sample
	4.1 Relationship between the population distribution and the  distribution
	4.2 Estimation of model parameters
	4.3 Model testing and identifiability conditions

	5. Simulation study
	5.1 Simulation setup with a continuous target variable- correct model
	5.2 Results for continuous case when fitting the correct model

	Table 5.1
	Table 5.2
	Figure 5.1 Empirical quantiles of UNIF statistic (dashed curve) and  quantiles (solid curve) under the correct model with M = 5 moments
	5.3 Application of the proposed procedure when the models are misspecified
	Case 1. The population model is specified correctly, the sample selection model is misspecified.


	Table 5.3
	Table 5.4
	Case 2. The sample selection model is specified correctly, the population model is misspecified.

	Table 5.5
	Table 5.6
	5.4 Simulation setup with binary target variable- correct model

	Table 5.7
	Table 5.8
	Figure 5.2 Empirical quantiles of H-L statistic (dashed curve) and  quantiles (solid curve) under the correct model with G = 10 groups
	5.5 Application of proposed method for binary case with misspecified models
	Case 1. The population model is specified correctly, the sample selection model is misspecified.


	Table 5.9
	Table 5.10
	Figure 5.3 Comparison of correct model and estimated misspecified model*
	Case 2. The population model is misspecified, the sample selection model is specified correctly.

	Table 5.11
	Table 5.12
	6. Concluding remarks
	References


