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Use of nonprobability samples for official
statistics, state of the art

Danny Pfeffermann and Michael Sverchkov!

Abstract

Tightened budgets, continuing decrease of response rates in traditional probability surveys and increasing
pressure by users for more timely data, has stimulated research on the use of nonprobability sample data, such as
administrative records, web scraping, mobile phone data and voluntary internet surveys, for inference on finite
population parameters like means and totals. These data are often easier, faster and cheaper to collect than
traditional probability samples. However, a major concern with the use of this kind of data for official statistics
is their nonrepresentativeness due to possible selection bias, which if not accounted for properly, could bias the
inference. In this article, we review and discuss methods considered in the literature to deal with this problem
and propose new methods, distinguishing between methods based on integration of the nonprobability sample
with an appropriate probability sample, and methods that base the inference solely on the nonprobability sample.
Empirical illustrations, based on simulated data are provided.

Key Words: Empirical likelihood; Probability and nonprobability samples; Sample integration; Selection bias.

1. Introduction

Tightened budgets, continuing decrease in response rates, due in part by increased response burden in
traditional probability surveys and privacy concerns, and increasing pressure by users for more timely data,
has prompted research into the use of nonprobability sample data, such as administrative records, web
scraping, mobile telephone data, online panels and voluntary internet surveys for inference on finite
population characteristics. These data are often easier, faster and cheaper to collect than are traditional
probability samples. However, a major concern with the use of this kind of data is their possible
nonrepresentativeness, due to possible selection bias, which if not accounted for properly, could bias the
inference. For example, house sales advertised on the internet do not represent properly all house sales. Web
scraping for job vacancies does not represent all job vacancies. Data from social media do not generally
represent the general public. All these examples can be considered as “big data”, but nonprobability samples
do not need to be big. Baker, Brick, Bates, Battaglia, Couper, Dever, Gile and Tourangeau (2013), Keiding
and Louis (2016) and Elliott and Valliant (2017) discuss other potential problems with the use of

nonprobability samples for inference on finite population parameters.

The basic definition of a probability sample is that every unit in the population has a positive probability
of being included in the sample. Inference under the traditional randomization (design-based) distribution
over all possible sample selections from a fixed target population requires that the first-order sample
selection probabilities of the sampled units are known. The use of standard variance estimation procedures

requires that the joint sample selection probabilities of the sampled units are also known, but these can be
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calculated to a desired approximation by repeated sampling from the sampling frame. (This is not usually

available to analysts outside National Statistical Offices-NSOs.)

By definition, nonprobability samples are not selected by use of probability sampling schemes, so no
selection probabilities exist. The question arising therefore is how to draw inference from such samples,
regarding the population, which they are supposed to represent. In this article, we restrict our attention to
inference about target population parameters such as totals or means (proportions), which are the most

common target parameters in official statistics, often published in tables.

We mention in this respect that many survey statisticians claim that traditional probability samples
should be replaced by external records. Citro (2014) states that “official statistical offices need to move
from the probability sample survey paradigm for the past 75 years to a mixed mode data source paradigm
for the future”. Clearly, if the nonprobability sample data are timely, accurate, with good coverage and

contain all the required information, there is no reason to select a corresponding probability sample.

However, this is seldom the case. Israel’s population register covers all the population residing in Israel,
but about 15% of the home addresses are wrong. Tax records of businesses are often obtained with a delay
of up to 2 years. No administrative data are available on opinions, sentiments, detailed expenditures, and
many other variables of interest. We also mention in this regard that government and private agencies are
often reluctant to transfer data to NSOs, claiming data protection issues. Furthermore, the desired
information is often contained in more than one file, requiring matching them, which is problematic if
personal identifiers are unknown. (It requires probabilistic algorithms based on information in all the
records.) Coverage of records might be different and may not apply to same time periods. Definitions and
accuracy of information may differ between records. Finally, matching of different administrative data could

magnify problems of data protection.

Methods considered in the literature to deal with possible non-representativeness of nonprobability (NP)

samples can be divided into two classes:
1. Integration of the NP sample with an appropriate probability sample (PS),

2. Consideration of the NP sample on its own (no data integration).

Remark 1. The methods considered in this article for inference from NP samples alone assume known
population means of some of the survey values, which are used for enhancing the inference. However, no

detailed probability sample data are used.

In Section 2, we review several methods proposed in the literature for integration of a NP sample with
an appropriate PS sample. We also present a new method. Section 3 reviews methods proposed for adjusting
for selection bias of a NP sample without integration with a PS sample. In Section 4, we propose a new
method for inference from a NP sample without integration with a PS sample. Section 5 contains simulation
results illustrating the performance of our proposed method. We conclude with some summary remarks in

Section 6.
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2. Integration of nonprobability and probability samples

One of the earliest articles on this topic is by Lee (2006). The author proposes to create a pooled sample
S, =8, US,, from the probability sample S, and the nonprobability sample Sy,, assuming implicitly
that the two samples do not overlap, and models the selection probability to the nonprobability sample. The
Sy» sample is treated as a “treatment sample” in observational studies, and the S,; sample is treated as the
“control sample”. It is assumed that every unit in the population has a positive probability to be in the Sy,
sample, estimated by use of propensity scores, e(x ;) =Pr(j € Sy, |x;; j=1,...,n), where n is the size of the

S, sample and the X- variables are assumed to be measured in both samples.

Next, the S, sample is divided into C classes based on the ascending values of the estimated propensity

scores. An adjustment factor f,. is computed for every class c as,

f _ Zkesf,s dk,PS/ Zkesps dk,PS
c - b
Zjesﬁp d]-yNP/ ZjeSNI, d]-yNP

where d, ,; and d, \, are some base weights. An adjusted weight d_;fNP = f.d; \» is computed for every

2.1)

unit jeSy,.

The estimator of the target population total ¥ = ZieUYi is, )A’SNP = ZC Z/E s, dﬁNP ;-

The use of this procedure for data integration requires the existence of X- variables such that the
assignment to Sy, and the target y- variable are independent given X, Pr(jeSy|X;,»,;j€S,)=Pr(je
Sl X5 j€S8,). This is a limiting assumption. An extensive empirical study revealed that the use of this
approach decreases (but not eliminates) the bias of inference from the S, sample, but increases the

variance. See also Beaumont (2020).

Kott and Ridenhour (2024) likewise consider the use of a pooled sample S, =S, S, for inference
from the nonprobability sample. The authors model the Sy, selection probabilities by a logistic model with
covariates z, measured in both samples and for which the true population means T, are known or esti-

mated from the S,; sample, which are used for calibration. The estimating equation is z +

[1
keSyp
exp(z,g)] z, = T, (T,). This defines new weights w, = 7;'[1+exp(z,8)] used for inference from the S,
sample, where 7, = Pr(k € S,s). When the S, sample is exposed to nonresponse, the weights d, =7, are

adjusted to account for the nonresponse.

Rivers (2007) considers the case where X and y are measured in the Sy, sample but only X is measured
inthe S, sample. The author proposes to deal with the non-representativeness of the Sy, sample by matching

to every unit i € S, an element k from S,,, with similar values of auxiliary (matching) variables X.

Denote by x,,i=1,...,n, the X- vectorsin S5 and by X, the vectors in Sy,. The unit k € S, satisfying
| X, =X, | < |X,—x,|Vj €Sy, is chosen as the matched element for unit i € S;,5, where || is an appropriate
distance metric. Selecting a matching element for every unit i € S, defines a matched sample S s Of size

n with y- values from the Sy, sample.

Statistics Canada, Catalogue No. 12-001-X
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The proposed estimator of the population total Y is I?SM :ZkeS‘PS w,b,, where w, =(/7m,); 7, =
Pr(keS,s) and {y,} are the y- values measured in S,;,, not measured in S,;. The author establishes
regularity conditions under which for a scalar continuous matching variable, as n—>, n, - and
n/ny —0, (ny, isthesize of Sy,), n™*’ (I?'SM —Y)/ N converges to a normal distribution with mean zero,

where N is the population size.

Remark 2. Rather than matching one record, one can match k nearest records and select at random the
matched record out of the k records, known as the kNN method. See, e.g., Conti, Marella and Scanu (2008).

Alternatively, a weighted mean of the y- values of the nearest records can be used for matching.

Remark 3. The method requires a PS sample with similar x values in Sy, and S,¢. It also assumes that
fo, i 1x)=f, (v, |x,), implying Pr(i e Sy, |x,,5,)=Pr(ie S |x;), where f; (y|x) is the conditional
distribution in the Sy, sample and f;,(»|x) is the conditional distribution in the population. See Yang, Kim

and Hwang (2021) for other assumptions and related theoretical properties of matching methods.

Kim and Wang (2019) propose the following procedure of integrating the data in the S,; and Sy,
samples. The authors assume that membership of the S,; elements in Sy, is known. Let J, =1(0) if
ieSy (igSy). The S, data contains therefore the values {(X;,6,); i =1,...,n}. The procedure consists of
the following step:

1. Model p,(y)=Pr(5,=1|x,;v) by use of the S, data and estimate Y by maximizing the “pseudo

likelihood” I(y) = ziesm w,{6,log p,(yY)+(1-9,)log[1- p,(y)]}.

2. Estimate the population total Y as,

Y, =2 p'@y o Y @ =NY  p@®y/2 p@ (2.2)
when N is known.

The authors consider also a doubly robust estimator under the assumption of a population regression

model. Consistent variance estimators are developed.

Remark 4. This method again assumes that the sampling mechanism to Sy, is ignorable after controlling
for the covariates, i.e. Pr(ieSy,|X,,»,)=Pr(ieS,,|x;), often referred to as missing at random (MAR)
selection. In addition, the assumption that membership of the S, elements in Sy, is known, may not hold

in practice.

Chen, Li and Wu (2020) likewise assume noninformative sampling after controlling for the covariates
and assume a selection model 7™ =7 (X,; ¥)=Pr(i € Sy, | X;; ¥), which is estimated by maximizing the

pseudo loglikelihood

* _ ﬂ(Xi,’Y) _
lm—zwy%:%aﬂ+2%mmHMam, (23)
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where w, =1/, are the sampling weights in S,,. The authors consider 2 estimators of the population mean
Y= v ZieU Yio

2 1 v, 2 1 y, ~ A
Y = — ——  or Y ==) . —+4— N = M r(x,] 2.4
PW1 Nziesm, 7(x,;7) 1PW2 NZ,ESNP 27X 7) ZleSNp[ (x;,7)] (2.4)

depending on whether the population size is known or unknown.

The authors prove that for the case of a logistic selection model, both estimators have an error of order

~1/2 . . -1
O,(ng'"). Variance estimators are also developed, correct to order o(ng ).
PN Syp Snp

Remark 5. In a rejoinder to comments on an article by Beaumont, Bosa, Brennan, Charlebois and Chu
(2024a) (see below), Beaumont, Bosa, Brennan, Charlebois and Chu (2024b) argue that the use of the
likelihood (2.3) is not efficient because the second term only uses the S,; data and ignores relevant Sy,
auxiliary data. The authors propose an improved estimator of ¥ and a sample likelihood approach that

properly accounts for an overlap between the two samples, when it can be identified.

Chen et al. (2020) also consider a doubly robust estimator, defined as

o = A S, V2D D =] + X

i€Spg

w1, B, @5)

where m,(x,,B) is an assumed population regression model. When N is unknown, the estimator is modified
by dividing the first term by N S = Zie s [1/7(x,,¥)] and the second term by N Sos :zie " (/7). The

estimators are shown to be consistent for Y, even if the population model or the sample selection model

. . . . -1 . .. ..
are misspecified. Variance estimators correct to order o(ng ) are derived under some additional conditions.

Chen, Li, Rao and Wu (2022) consider the use of the pseudo empirical loglikelihood for inference from

nonprobability samples, defined as /, (p) = z d’log(p,), where the p,’s are the EL probabilities

and & =[1/7(x,.9)] / N - The parameters Y lezls;; estimated using the likelihood (2.3) and are considered
fixed in the likelihood /. (p). Maximization of the likelihood under the constraint ziesw p; =1 yields
po=d>.

The authors also develop a doubly robust estimator, similar to (2.5), obtained by adding the calibration
constraint Ziesw pim.(x;; ﬁ)] = N;l

PS i€Spg

w,m,(X;; ﬁ), and corresponding pseudo empirical likelihood
confidence intervals, which are shown to perform generally better than the customary normal theory

intervals.

We refer the readers also to a related article by Wu (2022), which contains a critical review and some

extended discussions on theoretical and practical issues with inference from non-probability samples.

Beaumont et al. (2024a) likewise consider integration of Sy, and S, samples, again assuming that the
probability of inclusion in the S, sample only depends on X. The authors assume a logistic model
p.(Y)=Pr(5, =1]x,; y) for the inclusion of unit i €U in S, and estimate Y by solving the likelihood

estimating equations U () = Z X, — Ziesps w,p,(Y)X, =0. The equations U(y) are design unbiased over

ieSyp
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174 Pfeffermann and Sverchkov: Use of nonprobability samples for official statistics, state of the art

all possible S, selections of the likelihood equations that would be obtained if the x- values were known
forall ieU.

The authors develop a modified AIC criterion for stepwise selection of the x- variables in the S, sample
selection model p,;(y). However, a problem with the use of this criterion is that it ignores the relationship
between y and the x-variables. To deal with this problem, the authors extend their AIC criterion by
partitioning the Sy, sample into homogeneous groups Sy, = Sy, ,\U,...,USy, ; based on the estimated
probabilities p,(y) and a ranking method, and then assigning each unit in the S,y sample to one of the
groups. Let Sy, . and S, . define the gth sets of units of the Sy, and S, samples, respectively. Assuming
that the selection probabilities in each group are the same, the resulting estimated selection probabilities in

group g are ﬁg =n§P/ Ng, where ngp is the size of S, , and N P =Z — w,. The estimator of ¥ is

g=1 i€S\p g

A _ ~ NP _ G A L ANP A NP . B yi
YSNP _Zkesw Wi Vi _Z . NgySNp.g’ Wi _Ng/ng K ESNP,g’ Ysa.e _Z e’ (2'6)
g

The variance of YSNP is estimated by an appropriate bootstrap algorithm.

Remark 6. Rao (2021) reviews several other estimators based on data integration, distinguishing between
the case where the target variable y is observed in both samples, and the case where it is only observed in

the Sy, sample.

The common feature of all the approaches considered so far is their reliance on the assumption that the
selection to the S, sample depends on known X- variables, but not on the target y- variable. (See Remark 4
above). In practice, it is likely that the selection to Sy, depends also ony. For example, people participating
in a voluntary web survey on political tendency, may choose not to participate in the survey, depending on
their tendency. Administrative data may be missing people who do not participate in government programs,
including people who do not have social security numbers, people with housing instability, or people

working in the informal economy.

In addition, the S,; sample used for integration with the Sy, sample may be subject to not missing at
random (NMAR) nonresponse, in the sense that that the probability to respond depends also on the target
y- variable. For example, the response of people on income may depend on their level of income. Denote

by R, the response indicator. NMAR nonresponse occurs when,

Pr[R =1|y,x,,ies] # Pr[R =1|x,,ies]. 2.7)

Pfeffermann, Marella and Summa (2025a) consider data integration when the selection to the Sy, sample
and the response probabilities in the S,4 sample depend onboth y and X, applying the empirical likelihood
(EL) approach. It is assumed that X is observed in both samples, but y is only observed in the Sy, sample.
Let /° be the sample indicator for Sy, taking the value 1 if unit i is sampled and 0 otherwise. For i € S,

the sample model of X, is

Pr(l™ =1|x
Prd”=1x) . 2.8)

Y = Pr(x. |IP=1) = :
pt,PS ( 1| i ) Pr(]l.PSZI) i

Statistics Canada, Catalogue No. 12-001-X



Survey Methodology, June 2025 175

where p* =Pr,(x=Xx,) is the probability in the population. As can be seen, under informative sampling
with respect to X, the sample probability pfps is different from p;*.

Additionally, it is assumed that the S,; sample is exposed to NMAR nonresponse. Let R 5 be the
response indicator, taking the value 1 if sample unit i € S, responds and 0 otherwise. Denote by R, the

set of responding units in S,. Then,

Pr(R™ =1|x,I" =1
(& PS x, 7S ) pi),(PS‘ (2.9
Pr(R™ =1|1" =1)

P, = Pr(x, [ [P =1LR"=1) =

By (2.8) and (2.9), the respondents model is a function of the true population probability, the conditional
expectations of the sampling weights, Pr(//®=1|x,)=1/E,(w, ,s|x,) (Pfeffermann and Sverchkov,
1999); w, ;s =1/ 7, ,s are the base sampling weights in S,s, and the response probabilities Pr (R’ S=1]x,,
I® =1). Assuming that the response is independent of the sample selection, Eps(W, s |X,) = Eg (W, 55 | X)),
in which case the probabilities Pr(/® =1|x,) can be estimated by regressing W, ps against x;, using the
datain R,.

The response probabilities Pr(R” S=1| X, I} >=1) in (2.9) are unknown and need to be estimated from

the available data by postulating a parametric model,
Pr(R™ =1|x,.I* =1,p) = g(x,:p) (2.10)

for some known function g, (say, a logistic model), with p defining the model parameters.

Assuming independence of the sampling and the response, the empirical respondents’ likelihood based

on R, is thus,

Pr(R™ =1|x,I"=1) Pr(I”® =1|x,) 4
Pr(RP®=1[I"=1) Pr(I®=1) '

ERLRPS {p’X} - HieRpspi)’(RPs = H (211)

1€Rpg
Next, consider the S, sample. Let I be the sample indicator, taking the value 1 if i €Sy, and 0

otherwise. Denote p/” =Pr(x=x,,y=1y,). For i € S,,,

Pr(]iNP:HX,'ayi) XY
P =1

pive = Pr(x,p, |17 =1) = : 2.12)

where Pr(I]" =1)= ZieSNP Pr(I" =1|x,,5,) p/". Because no sampling weights for Sy, are available, the
probabilities P(I)"" =1|x,,y,) need to be modelled parametrically,

Pr(I =11x,y:7) = h(y,X;7) (2.13)

for some known function 4, with Y defining the model parameters. Assuming independence of the Sy,

data, the empirical likelihood based on Sy, is

ESLy (2" = [, P (2.14)
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Assuming no overlap between the two samples, the empirical likelihood based on the data in S, and S,
is,

EL, o = ERLy(p)ESLy,(p") = 11 P, [1r5%: (2.15)

i€Rpg ieSyp

The unknown parameters in (2.15) are the population probabilities p;*, p*, the sampling parameters Y
and the response parameters P. The likelihood is maximized subject to normalizing constraints on the

unknown probabilities and calibration constraints.

Remark 7. The unknown probabilities {p"} can also be estimated from the S,, sample; f?,X NP =
z’i‘x:x } f)lXIﬁP This implies two sets of estimates of the probabilities {p;"}, which need to be harmonized.

See Marella and Pfeffermann (2023) for possible harmonization procedures. The final, integrated estimate

Y A XY

of p/" is p = pr (PN / Pw), where p;' is the harmonized estimator.

The population total ¥ can be estimated in one of the following two ways:

zieNPPril([iNP =1[x,,5);

Yo = N ypls Y2 = N . : 2.16
= N2 5l R @ = NS S S ) 19
where p; = Zi‘y:y ]A?ZXY . See Pfeffermann et al. (2025a) for an empirical comparison of the performance of

the two estimators.

Remark 8. One of the reviewers of this article raised a concern about the model used for the selection model
to the Sy, sample, noting that it seems difficult to obtain robustness to deviations from the model. As

discussed in Section 4.3 and illustrated in Section 5, the Sy, model can be tested.

3. Inference from a nonprobability sample without integration

In Section 2, we considered methods of inference from a nonprobability sample, based on integration of
the Sy, sample with an appropriate probability sample S,;. In this section, we consider methods for

adjusting the selection bias of the Sy, sample, without integration with a S,y sample (see Remark 1).

We start with an approach based on calibration. The basic idea underlying this approach is to change
some base weights, d, , to new weights d'\p» so that when applied to a set of variables Z observed in
Syr and for which the true population totals are known, the Sy, survey estimates will equal the corre-
sponding totals; ZJ,E - djf’;qp z,=T., where T, are the known population totals. (In practice, the true totals
can be replaced by reliable estimates from a probability sample, in which case it can be considered as
“sample integration”.) See AAPOR (2010) and Baker et al. (2013) for review of methods that follow this

approach, and Kott and Ridenhour (2024) reviewed in Section 2.
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The success of this approach depends on the availability of calibration variables, which are highly
correlated with the target y- variable (good prediction power). Lee and Valliant (2009) illustrate that
combining propensity scores and calibration adjustments is more effective in reducing the bias of Sy,

estimates than using just one of the approaches. See also Elliott and Valliant (2017).

Kim and Wang (2019) propose the use of inverse sampling to obtain a representative sample from the
finite population, and hence to correct for the selection bias of the Sy, sample. The proposed inverse
sampling can be viewed as a special case of two-phase sampling, where the first phase is the Sy, sample

and the second phase is a subsample from the first-phase sample to correct for the selection bias.

Denote, as before, by 6, the indicator of whether unit i €U is included in the Sy, sample. It is assumed
that Pr(d, =1|y,,x,)=Pr(5,=1|x,)>0 for all ieU. The S, sample contains the values (,,X,), i € Sy,.
Denote by f(x) the population distribution of the x- variables. If f(x) is known, an asymptotic unbiased
estimator of 6 = E(Y) is,

) _ S(x) f(x) _
QSNP] - ZieSNP f(xi ‘51_ =1) yi/ ZieSNP f(xi |5i =1) Ziesw Wi (3.1

For the more practical case where only the mean )_(U = Zl_eu X,/ N is known, the authors approximate
f(x) by the function f;(x), which minimizes the Kullback—Leibler distance. The solution to the

minimization distance is,

exp (x'A)

1) = f(x]5 =1 p SR

with A satisfying j xf,(x)dx=X,,. (3.2)

With this approximation, the estimator ést in (3.1) is replaced by,

A * * ,i . > . . * o
0, = z WY w, = M, with A satisfying z o WX, =X (3.3)
o T s > exp(xh) o

Finally, the authors propose to select the second-phase sample from Sy, with probabilities 7,5, = nw;,
i € Sy, withthe weights {w; } defined by (3.3) and 7 <[max

unbiased estimator of the QSNP] estimator defined in (3.1),

{w}1", yielding the approximately design-

ieSyp

1
T

A * 1 n
Os = D Wi = Ve (3.4)

A simple estimator of the design variance of QSN” is proposed.

The two approaches considered so far assume that the selection to the Sy, sample is MAR, in the sense
that Pr(6, =1|y,,x,)=Pr(d, =1|x,)>0 for all i €U. However, as discussed before, this assumption may
not hold and in what follows, we consider alternative approaches aimed to deal with the case of informative

sample selection.
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Sayag, Ben-Hur and Pfeffermann (2022) consider the following problem, underlying the computation of
monthly house price indices (HPI) in many countries. A large amount of the house sales are reported several
months after they occur, implying that if not accounted for, the provisional HPIs based on the on-time
reported transactions are subject to large revisions, as further transactions are reported. This happens
because the late-reported transactions behave differently from the transactions reported on time. This is a
nice example of a nonprobability sample (the on-time reported sales), which is subject to selection bias due

to late data availability of some of the sales (~40% in Israel).

To deal with this problem, the authors propose nowcasting three types of variables and adding them as
input data to the hedonic regression model used for the computation of the HPI: (1)- the average charac-
teristics of the upcoming late-reported transactions, such as the average number of rooms, the average net
area size, the average age of the sold houses, etc. (2)- the average price of the late-reported transactions and
(3)- the number of late-reported transactions. The three types of variables are nowcasted based on simple
models fitted to data from previous months. Application of the proposed methodology shows more than
50% reduction in the magnitude of the revisions. This is a unique example of a time series of non-
representative nonprobability samples for which the true population data (all the sales corresponding to a

given month) become known only several months later.

Kim and Morikawa (2023) consider a non-ignorable (informative) sample selection model 7, (y;,X;;
¢)=Pr (5, =1|y,,x,; ¢), where 6, =(1,0) is the Sy, sample indicator, assuming that the variables X, are
known for all €U and 7,(y,,x,)>0 for all i €U. For the case where the population model f, (y,|X,) is

known, the authors propose estimating ¢ by maximizing the likelihood,

L@ =TT, o0 %) 7(rox; P -7 95 #(x39) = E[r (%3 0) X1 (3.5)

However, this likelihood requires modelling the population model and the authors note that the MLE
estimator obtained from (3.5) is not robust to misspecification of the model. Consequently, they develop
a likelihood based on the model fq, (¥, |X;)=f(»,|X,,0, =1), which can be identified and estimated

consistently.

Alternatively, the authors develop a methodology for estimating ¢ and the population mean of the y-
values by applying the empirical likelihood (EL) approach. For the case where the selection probabilities
7, (y,,X,) are known, the authors propose estimating the p,’s underlying the EL by maximizing the loglike-
lihood, /(p) = Z,-Esm, log(p,), subject to the constraints (1)- Z,-esm, =1, (2)- ZESNP pr.(y,X,)=n/N,
3)- Zie 5 PiXi =X,, where n is the size of the S, sample, N is the population size and X, =
Zieu X,/ N. The constraint (2) is referred to as a bias calibration constraint, whereas the constraint (3) is

added to improve the efficiency of EL estimator.

In practice, the sample selection probabilities are unknown. The authors assume a parametric model;

7.(3,X,)=g(»,,X;; &) (say, logistic, X, is a subset of X, to guarantee model identifiability, see Sections 4
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and 5), and estimate 7.(y,,x,)=g(y,,X; ¢) by solving the estimating equations Z,}L [ﬁ—l} x, =0.
These equations do not require knowledge of the x- values for every unit in the population. By considering the
estimated probabilities 7,(y,,x,) = g(y,, X ; ¢) as the true selection probabilities, the authors maximize the
constrained EL likelihood defined above, with the bias calibration constraint (2) replaced by Zie 5o Pi€ (67
X;; (i)) =N ’IZZI g(y,x; (i)), which does require knowledge of the population X - values, yielding the esti-

mates {p,}. The population mean of the y- values are estimated as,

2 1 V; e N
Y. = — . ﬁ or Y = . Vi 36
ELIPW = T ZIESN,, 7.(x: ) EL Z’ESNP by (3.6)

The authors derive asymptotic properties of their estimators and variance estimators.

This article proposes a novel approach for estimating finite population means from Sy, samples subject
to nonignorable selection probabilities, but the assumption that the x- variables are known for every unit in

the population is restrictive.

Remark 9. In Section 2, we proposed a method of inference from a Sy, sample alone, which likewise
combines a non-ignorable sample selection model with the empirical likelihood. See equations (2.12)-
(2.14). This method does not require knowledge of the x- values for every unit in the population. See also

Section 4 below.

4. A new (old) approach for inference from a nonprobability sample

4.1 Relationship between the population distribution and the S,
distribution

In the following, we propose an alternative approach for inference from a nonprobability sample alone.

It relies in large on Pfeffermann and Sverchkov (1999).

Denote the model holding for the target variable y in U by f,(»,|X,). Denote the model holding for
y in the Sy, sample by f; (y;]x,), and let 6, =1(0) if i€ Sy, (i € Sy;). The target model is f,(y; [x,),
but observations {y,,X,} are only available for S, (| x,). We assume, Pr(ieSy,)>0 for all ieU (also
assumed in the other approaches considered before). The two distributions are connected via the link

function Pr(6 =1| y,x).

Bzes Pr(5i :1|Xi5yi)fu(yi |Xi)

fSNp(yi|Xi):f(yi|Xi’5i:1) Pr(5i:1|xi)

4.1)

As discussed below, the relationship (4.1) enables estimating the target population distribution from the

observations in Sy, alone. Notice that f; (y,[x,)=f, (¥, |x,) iff Pr(5, =1[x,,»,)=Pr(5, =1|x,) Vy,, in
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which case the model fitted based on the Sy, sample holds for the population data and if the x- values are
known for all i eU, (or in the case of a linear population model )_(U is known), inference based on the Sy,

sample is valid. See Rao (2021) for discussion of this method under these conditions.

Remark 10. In the first part of their article, Kim and Morikawa (2023) also assume parametric models for
the population model and the sample selection probabilities (see above), but we do not assume knowledge
of the population x-values. Additionally, the authors estimate the parameters underlying the sample
selection model outside the likelihood, whereas we estimate them jointly with the population model
parameters (see below). We utilize similar calibration constraints to the ones used by Kim and Morikawa
(2023), see equation (4.3) below. We also test the goodness of fit of the resulting model f; (y,|x,), see
Section 4.3.

The probabilities Pr(5, =1|x,,»,) need to be modelled. They are allowed to depend on the target y
variable, thus accounting for informative sample selection. They may depend also on other variables Z, but
we only need to model Pr(d, =1|x;,y,). The use of a Logistic model for 6, has some theoretical
justification. See Lemma 1 in Pfeffermann, Preminger and Sikov (2025b) for details. When z is observed

in the Sy, sample, we may include it among the Xx- variables.

4.2 Estimation of model parameters

Unlike the use of the empirical likelihood approach, application of this approach requires specifying the
population model and the model for the sample selection probabilities, which depend on unknown
parameters that need to be estimated from the observations in the Sy, sample. Adding parameters to (4.1),
and assuming Pr(5,=1|y,x,; 0)=Pr(5, =1|y,,x;; ¢), with X, denoting a subset of the vector x, to

guarantee the identifiability of the model (see Section 4.3), we have

Pr(3, =115,,%;; )./ (0 [%: B)
Pr(5,=1|x; ¢,B)

fSN], i [x;5B,9) = (4.2)

Assuming independence of the observations in Sy, the corresponding log likelihood is /g (0.B; »)=
Ziesw log /5, (v, [x;; B,$), which we maximize subject to the constraints,

- Z X, = —Zx = X,. (4.3)

zeSNP Pr(5 _1|ynxls¢) 1€U

The constraints (4.3) are used for enhancing the estimation of the parameters (B, ¢). We assume throughout

that the X and X vectors contain a “1” in the first position.

Remark 11. In the empirical study in Section 5 with continuous y, we approximated the probabilities

Pr (5, =1| X;; ¢,B) by Riemann’s sums over 350 sub-groups of the y- values. When y is binary,

Pr(6, =1x; 0,B) = Pr(6, =1]y, =Lx; ) Pr(y, =1|x,; B)
+ Pr(éi =1|yi =O,X;; ¢5B) Pr(yi :O|X,-; B).
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We maximized the likelihood with the constraints by use of the SAS procedure NLIN, iterating between
the maximization with respect to ¢ for given P, and the maximization of p for given ¢, with the “given”
values defined by the estimates in the previous iteration. See Section 5 for how we estimated the population

mean of the y- values in our simulations.

4.3 Model testing and identifiability conditions

The application of the proposed approach assumes a model f,,(y,|x;; B) for the population values and
amodel Pr(5,=1|y,x;; ¢) for the selection probabilities, which permits estimating the parameters (¢, )
by means of (4.2) and (4.3), using the data in S,,. No direct testing of the population model or the model
for the selection probabilities is possible, since no data are available from the population distribution and
the y- values are unknown for units j ¢ Sy,. However, contrary to a common perception that it is impossible
to test a model fitted to the S, data, we contend this is not true. We have observations from the fitted
model, so we are faced with the classical problem of testing the goodness of fit of a hypothesized model to
the observed data. See Krieger and Pfeffermann (1997) and Pfeffermann and Sikov (2011) for plausible

tests.

Remark 12. Rejection of the null hypothesis that the model fits the data implies that at least one of the two

models is misspecified. See Section 5 for examples and the concluding remarks in Section 6.

A common argument in favor of the claim that the S, model cannot be tested is that it may be the case
that there is more than one combination of a population model and a selection model, yielding the same
model for the observed data, such that the model fitted to the Sy, data is not identifiable or “practically not
identifiable”. Pfeffermann and Landsman (2011) and Wang, Shao and Kim (2014) establish conditions
under which the model f; (y,|x,) is identifiable, with references to other related studies. See Section 5 for

the identifiability conditions of the models considered in the simulation study.

Remark 13. In a highly cited article, Molenberghs, Beunckens and Kenward (2008) prove and illustrate that
for every NMAR model fitted to a set of data, there is a MAR counterpart providing exactly the same fit to
the data. The authors note that “such a construction does not lead to a member of a conventional parametric
family”. A simple example for this argument is where the population model f,(y|x) is assumed to be
defined by the sample model f; (»,X,) (equation4.2), and the sample inclusion probability satisfies
Pr(6,=1]y.x;; ¢) = Pr(5,=1|x;; ). Clearly, f,(y;|x)= fs (v|x,) defined by (4.2) is a very odd
population distribution. Molenberghs et al. (2008) also note that “we can make progress if attention is
confined to a given parametric family, in which we put sufficiently strong prior belief”. This is what we do
under our proposed approach. Notice that the selection model is used to obtain valid estimates of the

population model, and as shown below and illustrated in Section 5, it can be tested.

Consider first the case where y is a continuous variable. In our empirical applications, we applied the
following UNIF test statistic (Krieger and Pfeffermann, 1997).
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Preliminaries:

1. For a continuous variable Z with cumulative distribution F, F(z)~U(0,1).

2. Under general conditions, the set of all the moments of F(z) determines the distribution.

Proposed test:

(1) Compute 7, = F, (y,|x,),i=1,..,n based on the estimated coefficients B, §).
(i1)) Compute the sample moments u, = Z::ITZ.’" /n,m=1,...M.

(iii)) Compute the Wald test statistic based on the estimated sample moments.

For the moments of the U(0,1) distribution, u, = E(u,)=1/(m+1); Cov(u,,u,)=ml/[(m+1)([+1)(m+

[+1)n]. Assuming u'=(u,,...,u, ) is normal,
HO
UNIF = (u-p)E ' (u—-p) ~ x5, (4.4)

where X is the Variance-Covariance matrix defined by the covariances above. The null hypothesis is that

the assumed working model is “correct”.

Remark 14. In the proposed test, we replace the true moments by the estimated moments. The estimators
(ﬁ, $) are obtained by MLE and under some regularity conditions, they converge almost surely (a.s.) to the
true parameters (B, ), (Zacks, 1971). Then, if the true distributional function F' is smooth, e.g. twice
differentiable with respect to B and ¢, F(y,|Xx;,0,=1; $,ﬁ) i> F(y,|x,,0,=1; ¢,B), justifying the use of
the UNIF test defined by (4.4). See Figure 5.1 in Section 5 for a simulation illustration.

Remark 15. In our simulation study we used M = 5 moments, which was found to perform well in Krieger
and Pfeffermann (1997). Notice that Corr’(u,,u, ,)=1-(m —1)2/ [(m+1)+1]°, so that higher order

moments add only marginally to the power of the test.

m?

For the case where y is binary, we apply in Section 5 the Hosmer and Lemeshow (1980, hereafter H-L)

test, defined as follows:
(i) Sort the observed data in Sy, based on the estimated probabilities 7, = Pr(y, =1|x,,8, =1), i € Sy,.
(ii) Divide the sorted data into G groups of approximately equal size n . =(n/G) and compute for each

group g: o,-the number of values y =1 and 1, =éziegﬁ,-. The test statistic is,

(0, —m,i7,)" "
H-L = ZGf —EEE— 7((2672)' (4.5)
< oni, (1-17,)

5. Simulation study

In this section, we present simulation results to illustrate the performance of our proposed approach,

separately for the case where the target variable y is continuous, and for the case where y is binary.
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5.1 Simulation setup with a continuous target variable- correct model

We start by repeating the same simulation study as performed by Kim and Morikawa (2023), which

consists of the following steps:
Indep

S1. Generate 5,000 population values as y, = f, + B,x,, + B,x,; +&,, where x,,,x,, ~ N(2,1); &, ~ N(0,1).
(The values of the B coefficients are in Table 5.1 below.)

S2. Generate selection probabilities to the Sy, sample as,

exp(g, +dx,; +9,0,)
1+exp(¢, +dx, +9,5,) ‘

T, = Pr (o, =1|yi,xf;¢) =

(The ¢ coefficients are in Table 5.1.)

S3. Repeat Steps 1 and 2 1,000 times, yielding an average selection rate of 50%.
S4. For each simulation, estimate the model parameters and the population mean Y, ZS - ./ N.

Estimators considered:

1- )_’U Ynown = ﬁzid} ( ﬁo + ﬁlx“ + ﬁzxzi). The x- variables are known for every unit i U, B is estimated
by maximization of the likelihood /; (B,¢; v)= Zie  log fs (v [x;5 B,¢), under the constraints in
(4.3). Note: since the population model is linear, it suffices to know the population means of the x-

variables.

2 Voo = Dus ki) Xs kit B[ Xy = kXY K Jsk=(/#). The GREG esti-

zeSNP

mator with the standard base sampling weights w, =(1/7,) replaced by k, =(1/7, ). B o 1s the

probability weighted estimator of B, with weights £,.

W
1
<<b

o = Zie . D,y;» the estimator of Kim and Morikawa (2023). (Y,, in equation 3.6).

4- YUQMAR-the estimator obtained by assuming that the selection probabilities only depend on the x-
variables; Pr(d, =1|y,,x,)=Pr(5, =1|x,), where x, =(x,,,x,,). We assume a logistic model, using all

the population x- values.

The first 2 estimators are obtained by application of our approach. The estimation of the B- coefficients

in the first estimator is only based on the data in Sy,.

Remark 16. An important question regarding the models used in this simulation study is whether the
resulting sample model f; (y;[x;; B,¢)=Pr(5, =1 v X 0 1, (01X B)/ Pr(5, =1|x;; &,B) is identifiable.
By identifiability we mean that there are no different pairs [Pr;(5, =1| VX ¢, f; (i 18], j=1,2
inducing the same sample model for every y and X. Pfeffermann and Landsman (2011) consider sets of
conditions guaranteeing the identifiability of the sample model. In particular, for the case of a normal
population model and a logistic model for the sample selection probabilities, the sample model is identifiable

if the X- variables in the two models differ by at least one variable. Notice that in the models underlying the
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present simulation, the population model is a function of (x,,,x,;), but the selection logistic model is only a

function of x,,, so that the identifiability condition is satisfied.

The results in all the tables in this article are based on 1,000 simulated samples.

5.2 Results for continuous case when fitting the correct model

Table 5.1

Mean estimators and standard errors of model coefficients under the proposed method

Population model coefficients Selection model coefficients
B B B, 9, 9, 9,
True coefficients -4 1 1 -2 1 0.5
Mean estimators -3.92 0.98 0.99 -2.15 0.80 043
Standard errors 0.004 0.001 0.001 0.023 0.008 0.002
Mean PWR estimators -3.88 0.96 0.99 NA NA NA
Standard errors 0.006 0.002 0.001 NA NA NA

Note: The mean estimators are the MLE estimators. The probability weighted estimator (PWR) is computed with weights &, =(1/7, ).

As can be seen, the B coefficients are estimated quite accurately on average. The estimators of the ¢

coefficients are somewhat less accurate, but the estimators of the population mean in Table 5.2 still have a

negligible bias with these estimators.

Table 5.2
Estimation of population mean. (Mean true value = -0.00)
Method Bias Emp. Var x 1,000 MSE x 1,000 (Bootstrap estimates)*
¥y s -0.01 2.263 2.363 (3.36)
Y, neo -0.02 2.423 2.823 (3.89)
Y, e 0.01 2.030 2.080 (-—-)
¥y 0.25 2.106 64.606 (65.11)

* The bootstrap MSE estimates are based on 100 simulations with 100 bootstrap samples for each simulation.

Estimation of the population mean of the y- values is the primary target of inference in the simulation
study and the first three estimators are seen to be literally unbiased. The estimator )L’UKM uses all the
population X- values and performs best. The estimator )%U Yrnown l1IkeWise uses all the population X- values
(or x,,ie Sy, and X,,), but the estimation of the model coefficients is only based on the Sy, sample. The
estimator }A’U,GREG uses the Sy, model for estimating the ¢- coefficients and likewise performs well on
average, although with somewhat larger variance and MSE. The bootstrap MSE estimators are conservative
with large upward bias. We selected the bootstrap samples by following the procedure proposed in
Sverchkov and Pfeffermann (2004), which consists of selecting with replacement a pseudo-population from
the sample with probabilities proportional to &, =(1/7, ¢ ), and then selecting the bootstrap samples S
with the estimated probabilities 7, ; ~ obtained from the original sample. We only considered 100 simu-

lations and 100 bootstrap samples for each simulation, which may explain the upward biases. As expected,
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the estimator I%U,MAR, which assumes that the selection probabilities only depend on the x- variables has a
large positive bias and extremely large MSE. Kim and Morikawa (2023) obtained similar bias and MSE

figures in this case.

Overall, the use of our proposed approach seems to perform well in this part of the simulation study.

Model testing: As discussed in Section 4.3, our proposed approach enables testing the models assumed for
the population and the sample selection probabilities. Figure 5.1 compares the empirical quantiles of the
UNIF statistic (equation 4.4) with the corresponding yx;, quantiles under the correct model for the case of

M = 5 moments.

Figure 5.1 Empirical quantiles of UNIF statistic (dashed curve) and y;, quantiles (solid curve) under the
correct model with M = 5 moments

16
14

12
10

1% 25% 50% 75% 100%

We applied the UNIF test for this part of the simulation study and obtained the following results for the

case of M = 5 and a = 0.05 significance level.

Mean Standard Deviation Minimum Maximum
UNIF statistic 4.64 2.93 0.45 22.80
P-value 0.53 0.28 ~0 0.99
HO not rejected 0.97 0.18 0 1

We conclude that the UNIF test performs well when testing the correct model, with an average non-rejection
rate of 97%.

5.3 Application of the proposed procedure when the models are misspecified

In Section 5.2 we assume that the population model and the model for the selection probabilities are
specified correctly. In this section, we consider the case where they are misspecified, using the same

simulation setup as in Section 5.1.
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Case 1. The population model is specified correctly, the sample selection model is
misspecified.

In this case, we selected the Sy, sample with probabilities, 7, 3 =exp(¢,+x, +¢, y7)/ [ +exp(¢, +
¢.x,,+$,y°)], but assumed as our working model that the selection probabilities are as in Section 5.1 (with
y, in the exponent rather than y”). The population model of y is specified correctly. The average selection

rate over the 1,000 simulations is in this case 0.53, similar to what we had before.

Table 5.3
Estimation of model coefficients and standard errors with misspecified selection probabilities
Population model coefficients Selection model coefficients
B, B, B, 9, 2 9,
True coefficients -4 1 1 -3 1 0.5
Mean estimators -4.66 1.14 1.14 -0.52 0.33 0.02
Standard errors 0.002 0.001 0.001 0.007 0.003 0.002
Mean PWR estimators -4.69 1.16 1.14 NA NA NA
Standard errors 0.006 0.002 0.002 NA NA NA

Estimation of the ¢-coefficients is of little interest in this case because the selection model is mis-
specified, but notice the relative large bias in the estimation of the - coefficients even though the population

model is specified correctly. Thus, misspecifying the selection model affects the estimation of the population

model.
Table 5.4
Estimation of population mean. (Mean true value =-0.00)
Method Bias Emp. Var. x 1,000 MSE x 1,000
V. oo 0.091 1.089 9.37
- 0.096 1.369 10.585
Y, e 0.231 0.676 54.037

As can be seen, the bias, empirical variance and MSEs are much larger in this case than under the correct
model (Table 5.2). This is not surprising since we fitted a wrong selection model. Here again, we applied

the UNIF test for each simulation and obtained the following results.

Mean Standard Deviation Minimum Maximum
UNIF statistic 27.24 10.75 2.23 71.18
P-value 0.01 0.04 ~0 0.82
HO not rejected 0.04 0.17 0 1

For this case, the UNIF test performs well in rejecting the model fitted, with an average rejection rate of

96%.
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Case 2. The sample selection model is specified correctly, the population model is
misspecified.

Here, we consider the case where the sample selection model is specified correctly (same as in
Section 5.1), but the population model is misspecified. Specifically, the population values have been
generated as y, = 3, + B.x,, + B,x;, +¢&,, but the assumed working model is as in Section 5.1 (with x,,

instead of x3,). All the other model specifications are as in Section 5.1.

Table 5.5
Estimation of model coefficients and standard errors with misspecified population model
Population model coefficients Selection model coefficients
ﬁo ﬁl ﬁz ¢0 ¢1 ¢2

True coefficients -4 1 0.5 -2 1 0.5
Mean estimators -5.77 0.94 2.20 -1.39 0.600 0.390
Standard errors 0.013 0.002 0.002 0.040 0.011 0.007
Mean PWR estimators -5.36 0.94 1.99 NA NA NA
Standard errors 0.01 0.005 0.007 NA NA NA

As expected, the estimators of the P- coefficients are highly biased and so are the estimators of the ¢-
coefficients. Thus, as already noted regarding Table 5.3, misspecification of one of the models affects the

estimation of both models.

Table 5.6
Estimation of population mean. (Mean true value =-0.00)
Method Bias Emp. Var. x 1,000 MSE x 1,000
A -0.024 20.16 20.74
Vyonec -0.010 42.03 42.11
Y, -0.209 5.85 49.53

The estimators of the population mean are less biased than for the case where the sample selection model
is misspecified (Table 5.4), but with relatively large variances, particularly for the GREG estimator. Notice
that the GREG estimator depends directly on the estimated sample selection probabilities, which are highly
biased (Table 5.5).

Application of the UNIF test yields in this case,

Mean Standard Deviation Minimum Maximum
UNIF statistic 207.12 46.49 82.12 394.47
P-value ~0.00 ~0 ~0 ~0
HO not rejected 0 0 0 0

The UNIF test rejects the models fitted in each of the 1,000 simulations.
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5.4 Simulation setup with binary target variable- correct model

So far, we illustrated the performance of our proposed method for the case where the target y- variable
is continuous. Following, we consider the case where y is binary. We use a similar simulation setup to the
setup used for the continuous case, except that the population y- values are now generated as Pr(y, =1) =
logit™' (B, + B,x,; + B,X,;), with the x- values generated as before. We again use the logistic model Ty, =
Pr(5, =1|y,,x;; §) =exp(¢, + dx, +b,v,)/ [ +exp(¢, + dx,; +#,,)] for selecting the S, sample, maxi-
mizing the likelihood under the same constraints as before.

The question arising is whether the S, model is identifiable in this case as well. Wang et al. (2014)
establish the following condition for model identifiability. The auxiliary variables X in the population model
can be decomposed as x=(x;,X,) with the dimension of x, >1, such that z,; =Pr(5,=1|y,x;)=
Pr (5, =1|y,,x,,), implying that the sample selection model does not depend on x,, given y and x,. This
condition is satisfied in our simulation setup. Recall that for a normal population model and logistic selection
probabilities, the sample model is identifiable if the x variables in the two models differ in at least one

variable, a somewhat weaker condition. See Remark 16.

The results in the following tables are based on 1,000 simulations with an average selection rate of 70%.

The estimated value is again the true population mean (proportion) of the target y- variable.

Table 5.7
Mean estimators and standard errors of model coefficients
Population model coefficients Selection model coefficients
ﬂo ﬁ] ﬂz ¢0 ¢l ¢2
True coefficients -4 1 1 -2 1 5
Mean estimators -4.40 1.18 1.01 -2.89 1.50 5.65
Standard errors 0.01 0.004 0.002 0.016 0.008 0.085
Mean PWR estimators -0.24 0.20 0.16 NA NA NA
Standard errors 0.001 0.0005 0.0005 NA NA NA

Note: The mean estimators are the MLE estimators. The probability weighted estimator (PWR) is computed with weights &, =(1/7%, ).

The MLE and PWR estimators are biased, notably the PWR estimator and the MLE estimators of the
¢- coefficients, but as can be seen in Table 5.8, the bias seems to have little effect on the estimation of the

population mean of the target y- variable.

We consider the following estimators of the population mean:

A

- Yy =2 kv D ks k=7 ).

2- SA(U,EI =(1/N) {z[esw Y, +[(N —n) / Z;esw (k; —l)} ziesw (k,—1) yl-}; see Sverchkov and Pfeffermann
(2004) for derivation of this estimator.

3 Voo = NE o 04D B 0y X )N =m) /m Y, (k=1 [y, =Dy, (5 1%)1);
IFSNP = (1/n) ZESNP k., ESNT’ is the estimated expectation under the model (4.2). The estimator when all
the population X’s are known. See Sverchkov and Pfeffermann (2004) for the derivation of this

estimator.
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4- \L{U’ oREG = (Ziesw k.y, / ZieSNP kl.)+ ﬁ’pk ()_(U —ziesw k.x, / ziesw kl.); same as when y is continuous.

A

5- Yy uars the estimator obtained from )%MEI when replacing k, by the MAR weight, k, =[1+exp(d, +

a,x, +a,x,,)] [exp(Q, + a,x, + A,x,,).

Table 5.8
Estimation of population mean. (Mean true value = 0.5)
Estimator Bias Emp. Var x 1,000 Emp. MSE x 1,000% (Bootstrap estimate)*
)L’U.,, -0.051 1.600 4.201 (5.60)
}%U,EI 0.001 0.009 0.010 (0.026)
Y, i -0.006 0.169 0.205 (0.300)
I?U’GREG -0.006 0.172 0.208 (0.309)
¥y ae 0.149 0.049 22.25 (22.50)

* The bootstrap MSE estimates are based on 100 simulations with 100 bootstrap samples for each simulation.

A

As can be seen, all the estimators except Y, i,z have a negligible bias, despite the bias of the estimated
¢- coefficients. Among the estimators, I%U!EI is the clear winner, with surprisingly small MSE, much lower
than the MSE of )%U! Yinown- This might be due to the fact that this estimator uses the observed y’s, (~ 70%
in this case), and only predicts the sum of the unobserved y’s. The estimator I%U Yiown 3180 Uses the observed
y’s, but it uses the estimated expectation under the Sy, model for predicting the sum of the unobserved y’s.

The estimator )7U » has arelatively large MSE due to its relatively larger bias.

Model testing: As for the continuous case, we tested the goodness of fit of our model, using in this case the
Hosmer and Lemeshow (1980, H-L) test (equation 4.5). Figure 5.2 compares the empirical quantiles of the

H-L statistic with the corresponding y;._, quantiles under the correct model with G = 10 groups.

Figure 5.2 Empirical quantiles of H-L statistic (dashed curve) and xé_z quantiles (solid curve) under the

correct model with G =10 groups
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Application of the test in the simulations with & = 0.05 significance level yields,

Mean Standard deviation Minimum Maximum
H-L test 8.56 4.30 1.108 30.57
p-value 0.46 0.29 ~0 ~1
HO not rejected 0.934 0.248 0 1

The H-L test performs well when testing the correct model.

5.5 Application of proposed method for binary case with misspecified models

In Section 5.4, we assumed that the population model and the model for the selection probabilities are
specified correctly. In this section we consider the case where they are misspecified, using the same

simulation setup as before.

Case 1. The population model is specified correctly, the sample selection model is
misspecified.

In this case, we selected the Sy, sample with probabilities, Pr(5, =1|y,,x,) =exp(-2+5x,y,)/[1+
exp(—2+5x,,)], but assumed as our working model the same model as in Section 5.4. The population

model of y is specified correctly. The average selection rate over the 1,000 simulations is in this case 54%.

Table 5.9
Estimation of model coefficients under misspecified model
Population model coefficients Selection model coefficients
B, B, B, é, 4 9,
True coefficients -4 1 1 NA NA NA
Mean estimators -4.78 1.75 1.00 -3.1 0.96 3.1
Standard errors 0.01 0.003 0.003 0.02 0.003 0.14
Mean PWR estimators -0.16 0.25 0.14 NA NA NA
Standard errors 0.002 0.001 0.0004 NA NA NA

Except for B,, the MLE estimates of the other P- coefficients are biased, with larger bias than when the

sample selection model was specified correctly (Table 5.7).

Table 5.10
Estimation of population mean. (Mean true value = 0.5)
Estimator Bias Emp. Var x 1,000 Emp. MSE x 1,000
Y, 0.04 1.60 32
You 0.05 0.29 2.8
Y. xiaown 0.1 0.53 12.6
YAU.GREG 0.11 0.53 12.6
LU.MAR 0.29 0.17 843
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The results in Table 5.10 indicate that the first 2 estimators have srnall bias desplte of the model
misspecification, with smaller MSE of YU > but much larger MSEs of YUEI, YU! yioown A0d Y Gre o
compared to the MSEs obtained under the correct model (Table 5.8). These large MSEs are clearly
explained by the misspecification of the sample selection model. As before, Y\, has a large bias and an

extreme MSE.

We applied the H-L test with & = 0.05 significance level, yielding the following results:

Mean Standard deviation Minimum Maximum
H-L test 16.12 179.4 0.778 5557.8
p-value 0.43 0.30 ~0 ~1
HO not rejected 0.89 0.312 0 1

Clearly, the H-L test fails to reject the misspecified model in this case. In an attempt to understand this
outcome, Figure 5.3 compares the Sy, model Pry (v, |x;; B,¢)=Pr(5, =1|y,,x,;; &) Pr, (¥, [x;; B)/Pr(s, =
1]1x,;; &,B) with true coefficients used to select the sample, with the corresponding estimated model under
the misspecified model, for a simple random sample of 100 observations from the Sy, sample. The

horizontal axis is ordered based on the sampled values of Pry (y,[x,) of the true model.

Figure 5.3 Comparison of correct model and estimated misspecified model*
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* Dashed curve represents the correct Sy, model, twisted curve represents the estimated (misspecified) model.

The estimated model under wrong specification is seen to yield almost perfect estimators of the correct
model producing the S, data, which explains why the H-L test does not reject the model. This is an example
for what is known as “practical nonidentifiability” (Lee and Berger, 2001), meaning that even though the

Sy» model is theoretically identifiable, another model may fit the data almost as well. Notice in Table 5.10
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that the use of the misspecified working model yields two almost unbiased estimators of the true population

mean.

Case 2. The population model is misspecified, the sample selection model is specified

correctly.

In this case, we used the same sample selection model as in Section 5.4 (correct specification of the
working model), but we generated the population values as y, =logit™ (3, + B,x,; + B,X3,). As our working
model we assumed the model of Section 5.4 (x,,, instead of x;,). The average selection rate is in this case

73%. All the other model specifications are as in Section 5.4.

Table 5.11

Estimation of model coefficients under misspecified model

Population model coefficients

Selection model coefficients

B, B, B, 9, ¢, 9,
True coefficients -4 1 1 -2 1 5
Mean estimators -6.07 1.34 1.62 -3.50 1.55 10.66
Standard errors 0.015 0.005 0.002 0.025 0.01 0.129
Mean PWR estimators -0.35 0.18 0.23 NA NA NA
Standard errors 0.001 0.001 0.001 NA NA NA

All the estimators are highly biased, due to misspecification of the population model.

Table 5.12

Estimation of population mean (True mean value = 0.55)

Estimator Bias Emp. Var x_1,000 Emp. MSE x 1,000
Y, -0.15 3.64 26.14
Y -0.004 0.01 0.026
7[/’,anown -0.06 0.53 4.13
YAU.GREG -0.05 0.58 3.08
7U.MAR 0.11 0.05 12.15

All the estimators except for )_’U y and YU’ var have a negligible bias in this case, with I_’U g performing

really well, as in the case of correct model specification (Section 5.4). On the other hand, )_’U Yinown» although

having a negligible bias, has a large MSE, even larger than the MSE of }_’U’GREg.

Application of the H-L test with @ = 0.05 significance level yields in this case,

Mean Standard deviation Minimum Maximum
H-L test 42.5 41.3 6.09 950.0
p-value 0.002 0.02 ~0 0.637
HO not rejected 0.006 0.08 0 1

The H-L test performs well in rejecting the misspecified model.
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6. Concluding remarks

In recent years, there is growing research on the use of NP samples for inference on population
parameters, as an alternative or complement to the use of probability samples. A major problem with the
use of these samples is their possible nonrepresentativeness of the corresponding target population, which
if not accounted for properly, may lead to large bias in the inference process. In this article, we review and
discuss several approaches proposed in the literature to deal with this problem, distinguishing between
methods based on integration of the NP sample with a corresponding probability sample, and methods that
base the inference solely on the NP sample with added calibration constraints. Another distinction empha-
sized is between methods that assume that the selection to the NP sample depends on known auxiliary
variables X, but not on the target study y variable, and methods that assume that the selection depends also
ony.

We also propose two additional methods for inference from a nonprobability sample, one that employs
the empirical likelihood approach and one that requires specifying the population model parametrically. We
discuss the conditions guaranteeing that the resulting model holding for the NP sample is identifiable, and
propose simple tests for testing that the models are specified correctly. Our simulation study illustrates good

performance of the proposed method and generally good performance of the test statistics.

A major problem underlying all the methods considered in this article is that they assume, at least
implicitly, that every unit in the population has a positive probability to be in the NP sample. Clearly, if this
is not the case, inference on the target population could be highly biased. This problem also exists with
traditional probability samples when the sampling frame is not complete, known as “under-coverage”. When
the group of units with zero probability to be included in the NP sample is known, say certain geographical
areas, industries or ethnic groups, the target population should be redefined accordingly. When this is not
the case, integration of the NP sample with an appropriate PS sample and the use of known population
means of the X- variables for calibration, is a possible way to at least reduce the bias of the NP sample. This

is an important topic for further research.

There are two important questions regarding the use of our proposed method that require further
investigation. The first question is how to proceed when the test statistic rejects the models defining the NP
model. We do not have a clear answer to this question at this stage other than a scholarly consideration of
alternative models. We mention again that the use of a logistic model for the selection probabilities has

some theoretical justification, and this model is in common use.

The second related question is the choice of the X- variables in the models, when there are many of them.
In practice, it may be the case that the analyst has a set of variables that he likes to include in the population
model, which as explained in Section 4.1, defines also the variables included in the sample selection model.
When this is not the case, one can use an appropriate stepwise algorithm. Beaumont et al. (2024a) use a

forward stepwise procedure, aimed at minimizing their proposed AIC criterion.

All the methods discussed in the present article should be considered as first attempts of inference from
nonprobability samples, and more theoretical research and practical applications are required before they

can be used routinely for the production of official statistics.
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