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Abstract

Background /Objectives: The experience of pregnancy and parturition has been associated
with long-term health effects in mothers, imparting protective effects against some diseases
while the risk of other diseases is increased. The mechanisms that drive these altered
disease risks are unknown. This study examined DNA methylation (DNAm) changes
from pre-pregnancy to several years after giving birth in parous women compared to
nulliparous controls over the same time interval. Methods: Using 180 parous-associated
CpGs, three analyses were carried out to test DNAm changes from pre-pregnancy at age
18 years to gestation; from gestation to post-pregnancy at age 26 years in parous women;
and from 18 to 26 years in nulliparous women using linear mixed models with repeated
measures. Results: The directions of DNAm changes were the same between the parous
and nulliparous groups. Most CpG dinucleotides (67%, 121 of 180) had a decreasing trend
while a small number (7%, 13 of 180) had an increasing trend. Of the CpGs showing
increasing or decreasing DNAm, approximately half had DNAm change to a smaller extent
in parous women and the other half changed more in parous women than nulliparous
controls. 9% (17 of 180) changed significantly in nulliparous women only, leading to a
significant difference in DNAm levels in parous women at the post-pregnancy 26 years
time point. Conclusions: Pregnancy and parturition may accelerate methylation changes in
some CpGs, but slow down or halt methylation changes over time in other CpGs.

Keywords: DNAm; CpG; gestation; pregnancy; parous; nulliparous; parturition

1. Introduction

The process of bearing children has significant and lasting effects on women’s health,
influencing cancer risk, metabolic health, cardiovascular health, bone health, and mental
health [1-7]. Recent research has highlighted how pregnancy and parturition can induce
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lasting changes in women’s DNA methylation (DNAm) patterns [8,9]. Parous women,
defined as those who have experienced at least one childbirth, exhibit distinct epigenetic
profiles compared to nulliparous women (those who have not given birth) years after deliv-
ery, suggesting that reproductive history leaves a lasting molecular imprint [8,10,11]. These
parous-associated methylation changes could potentially be caused by the childbearing
process due to the significant hormonal, metabolic, and immunological changes during
this time. For example, hormonal fluctuations during gestation, particularly in estrogen
and progesterone levels, are thought to play a key role in shaping the epigenome [12,13].
The parous-associated methylation changes could also occur after delivery and be re-
lated to postpartum stress (or depression), breastfeeding, and lifestyle changes due to
newborn(s) [14-16]. Investigating trends of methylation change from pre-pregnancy to
gestation and after parturition can help better understand childbirth’s long-term effects on
women’s health.

There are a small number of studies that have examined methylation around the time
of pregnancy in parous women. Gruzieva et al., 2019 identified 196 CpGs that changed from
before pregnancy, to during pregnancy (weeks 10 to 14 and 26 to 28 of gestation), and finally
at 2 to 4 days after delivery in 21 women [17]. Lin et al., 2022 found DNAm pattern changes
in 14,018 CpGs measured in each trimester of pregnancy and an average of 10 months
after delivery in 10 women [9]. Fradin et al., 2023 identified 57 CpGs with methylation
level changes between the first and third trimesters of pregnancy in 36 women [18]. These
important studies explored the dynamics of DNAm of gestation in parous women, however,
they did not include nulliparous women as controls. Without a comparison to nulliparous
counterparts, it is unknown whether the methylation changes were due to factors irrelevant
to pregnancy, such as a time effect. For example, 19 of the 57 CpGs identified by Fradin
et al., 2023 have been associated with chronological age in a large cohort of individuals
aged 14 to 94 years [18,19].

We recently identified 184 CpGs with significantly different methylation changes
from age 18 (pre-pregnancy) to age 26 years (at least 6 months after delivery) between
parous and nulliparous women [8]. We hypothesize that the experience of childbearing
(gestation and the post-pregnancy experience) itself is the origin of these DNAm changes.
In this paper, we extend our original observations by exploring the trends of methylation
changes from pre-pregnancy (at 18 years) to gestation, and from gestation to post-pregnancy
(at 26 years), in this subset of parous-associated CpGs. We also verified the trend (direc-
tional) changes in nulliparous women across the same ages (from 18 to 26 years) and
compared our results to the published literature with the closest study designs.

2. Results

2.1. Population and Participant Characteristics

The Isle of Wight (IOW) birth cohort contains 750 female subjects. For this study,
peripheral blood samples were collected for DNAm analysis from a subset of IOW partici-
pants: 252 subjects at age 18 years (pre-pregnancy for parous women), 210 subjects at age
26 years (post-pregnancy for parous women), including both parous and nulliparous
women, and 205 subjects during gestation in parous women. Figure 1 depicts how the
analyzed participants were selected from the IOW study population. DNAm samples were
available for 78 parous women at both age 18 and during gestation, and for 48 parous
women both during gestation (when maternal age was younger than 25.5 years) and at
age 26 (months to years after delivery). DNAm samples were available for 61 nulliparous
women at both age 18 and 26 years. Descriptive characteristics of the IOW study population
and the three analyzed samples are provided in Table 1. The characteristics, including
active smoking, passive/second-hand smoking, socioeconomic status (SES), body mass
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index (BMI), and birth order, are covariates used in downstream analyses. Multiple DNAm

measurements (378 DNAmM measurements from 205 women) were collected in a subset of

female subjects during gestation (Table 2).

Cohort Population
(n=1448 subjects)

Females

(n=750 subjects)

DNAm at age 18
(n=252 subjects)

[ parous |

DNAm at age 26
(n=210 subjects)

DNAm during pregnancy
(n=205 subjects; 378
DNAmM measurements*)
DNAm at both age 18 and DNAm both during pregnancy** DNAm at
during pregnancy and at age 26 18mdh‘:gm
(n=78 subjects; 169 DNAm (n=48 subjects; 98 DNAm (n=61 subjects)
measurements during measurements during
pregnancy*) pregnancy*)

Figure 1. Flow diagram depicting the numbers and timings of samples collected and subsets of

participants analysed in the context of the overall study design. * Some female subjects had DNAm

at multiple pregnancies and up to two measurements (early and/or late gestation) of DNAm in one

pregnancy (Table 2). ** DNAm data were retained only when the mother was younger than 25.5 years

of age at the time of gestation.

Table 1. Descriptive characteristics of the cohort population and subsets of analyzed samples.

Analyzed
Cohort Analyzed Parous Analyzed Parous Nulliparous
. Measurement . Samples: Samples:
Characteristic - Status Population . - Samples:
Time (%) * Age 18— Gestation Gestation — Age 18 — Age 26
° (%) ** Age 26 (%) *** 8 (%) **x-*g
Y (%) 159 (29%) 25 (39%) - 10 (19%)
Age 18
N (%) 388 (71%) 39 (61%) - 44 (81%)
Active P Y (%) 178 (32%) 54 (32%) 40 (41%) -
i regnanc
Smoking ghaney N (%) 385 (68%) 115 (68%) 58 (59%) -
Y (%) 176 (31%) - 20 (42%) 20 (33%)
Age 26
N (%) 385 (69%) - 28 (58%) 41 (67%)
Y (%) 438 (67%) 67 (86%) - 43 (70%)
Age 18
N (%) 215 (33%) 11 (14%) - 18 (30%)
Passive P Y (%) 171 (34%) 40 (24%) 38 (39%) -
; regnanc
Smoking gnaney N (%) 330 (66%) 125 (76%) 60 (61%) -
Y (%) 148 (26%) - 15 (31%) 18 (30%)
Age 26
N (%) 412 (74%) - 33 (69%) 43 (70%)
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Table 1. Cont.
Analyzed Parous Analyzed Parous Anz.llyzed
Cohort Nulliparous
. Measurement . Samples: Samples:
Characteristic . Status Population . g Samples:
Time (%) * Age 18— Gestation Gestation — Age 18 — Age 26
(%) XS Age 26 (0/0) FF g (OA)) *:ex-x-g
1: low education, low
housing, low 130 (20%) 16 (21%) - 13 (21%)
income (%)
2: low education, low
housing, high 269 (42%) 23 (29%) - 29 (48%)
Age 18 income (%)
3: high education, low
housing, medium 122 (19%) 20 (26%) - 14 (23%)
income (%)
4: high education, high
housing, high 124 (19%) 19 (24%) - 5 (8%)
income (%)
1: low education, low # o o o }
rooms, low income (%) 77 (19%) 23 (19%) 20 (21%)
2: low to medium
education, low # rooms, 97 (24%) 36 (29%) 29 (30%) -
low income (%)
3: high education, low #
room, low to medium 114 (29%) 41 (33%) 25 (26%) -
Pregnancy income (%)
Socioeconomic 4: low to medium
Status (SES) education, high # rooms, 61 (15%) 16 (13%) 15 (16%) -
medium income (%)
5: medium education,
high # rooms, high 51 (13%) 8 (6%) 7 (7%) -
income (%)
1: low education, low
housing, low 85 (30%) - 21 (44%) 9 (15%)
income (%)
2: low education, low
housing, high 34 (12%) - 7 (15%) 6 (10%)
income (%)
A 3: medium education,
ge 26 . . o o o
high housing, low 63 (22%) - 6 (13%) 16 (26%)
income (%)
4: high education, low
housing, medium 65 (23%) - 13 (27%) 18 (30%)
income (%)
5: medium education,
high housing, high 38 (13%) - 1(2%) 12 (20%)
income (%)
Body Mass Age 18 Mean (SD) 24 (11.6) - - 23 (4.0)
Index (BMI) Age 26 Mean (SD) 27(6.8) - - 26 (5.5)
1 (%) 233 (57%) 61 (52%) 56 (58%) -
Birth Order Pregnancy 2 (%) 126 (31%) 41 (35%) 28 (29%) -
3 (%) 38 (9%) 10 (8%) 9 (9%) -
4+ (%) 12 (3%) 6 (5%) 3 (8%) -

* The cohort population contained 750 female subjects; percentages were calculated based on non-missing
observations for each characteristic. ** 78 subjects with samples at both age 18 years and during gestation, with
up to 169 data points per characteristic due to multiple measurements from one pregnancy and/or multiple
pregnancies; percentages calculated based on non-missing observations for each characteristic. *** 48 subjects
with samples at both during gestation (wWhen the mother was younger than 25.5 years of age at the time of
gestation) and age 26 years, with up to 98 data points per characteristic due to multiple measurements from one
pregnancy and/or multiple pregnancies; percentages were calculated based on non-missing observations for each
characteristic. **** 61 nulliparous subjects; percentages were calculated based on non-missing observations for

each characteristic. # indicates “number of”.
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Table 2. Descriptive characteristics of the DNA methylation measurements during gestation in the
cohort population and subsets of analyzed samples.

Analyzed Samples Analyzed Samples
Study Population (%) *  (Age 18— Gestation) (Gestation — Age 26)
(0/0) ¥ (0/0) Eaktd
1 143 (70%) 42 (54%) 34 (70%)
Number of pregnancies with 2 53 (26%) 30 (38%) 13 (27%)
DNAm per mother 3 8 (4%) 5 (6%) 1(2%)
4 1 (1%) 1 (1%) 0 (0%)
Number of DNAmM 1 176 (64%) 73 (60%) 28 (44%)
measurements per pregnancy 2 101 (36%) 48 (40%) 35 (56%)
Mean (SD) 21.5(8.3) 21.3(8.3) 21.4(8.5)
Gestational age (weeks)
Range 8~40 9~39 9~39
Mother’s age at Mean (SD) 24.4 (3.4) 25 (3.6) 22.8 (1.6)
pregnancy (years) Range 18~40 17~38 18~25

* Of the 750 females in the cohort population, 205 subjects had 378 gestational DNAm measurements; percentages
were calculated based on non-missing observations (out of the 205 female subjects) for each characteristic.
** 78 subjects with samples at both age 18 years and during gestation, with up to 169 data points per characteristic
due to multiple measurements from one pregnancy and/or multiple pregnancies; percentages were calculated
based on non-missing observations for each characteristic. *** 48 subjects with samples at both during gestation
(when the mother was younger than 25.5 years of age at the time of gestation) and age 26 years, with up to
98 data points per characteristic due to multiple measurements from one pregnancy and/or multiple pregnancies;
percentages were calculated based on non-missing observations for each characteristic.

2.2. Trends in DNA Methylation from Age 18 to 26 Years Between Parous and Nulliparous Women

Differential methylation changes from ages 18 to 26 years between parous women
(who had not given birth before age 18 and had at least one childbirth before age 26) and
nulliparous women (who had not given birth) enrolled in the IOW F1 cohort (IOW-F1) have
been identified in 184 CpGs [8]. Focusing on these parous-associated CpGs, we assessed
the trends of methylation changes from pre-pregnancy (age 18) to 9-39 weeks gestation,
and then to post-pregnancy (age 26; 6 months to 7.5 years after delivery) in parous women
and during the same time period (age 18 to 26 years) in nulliparous women in the IOW-F1
cohort. 180 out of 184 parous-associated CpGs identified in Chen et al., 2024 [§] had DNAm
measurements at all three time points: pre-pregnancy, gestation, and post-pregnancy.

Among these 180 CpGs, 121 CpGs (67%) had a trend of decreasing DNAm across the
three time points (Figure 2, complete list of CpGs in Supplemental Table S1). The most
common pattern was that of no change from pre-pregnancy at age 18 years to gestation and
then decreased DNAm between gestation and age 26 years (Figure 2A,C). This trend was
slightly more common for CpGs that had lower DNAm at age 26 in parous (vs nulliparous)
women (42 CpGs, Figure 2C), as compared to those CpGs with higher DNAm in parous
(vs nulliparous) women (35 CpGs, Figure 2A). Another 44 CpGs had DNAm decrease
from pre-pregnancy at age 18 years to gestation (Figure 2B,D); while the level of DNAm
continued to decline between gestation and age 26 years for the majority of these CpGs
(18 of 20 in Figure 2B and 22 of 24 in Figure 2D), a few CpGs stabilized over this interval
(2 of 20 in Figure 2B, 2 of 24 in Figure 2D). Almost the same number of CpGs in this
pattern group had DNAm that was lower in parous (vs nulliparous) women at age 26
(24 CpGs, Figure 2D), as compared to those with higher DNAm in parous (vs nulliparous)
women (20 CpGs, Figure 2B). Supplemental Table S1 shows the magnitude (regression
coefficients in parous vs. nulliparous subjects from Chen et al., 2024 [8]) and significance
(p-values and FDR-adjusted p-values) of the DNAm decreases in the 121 CpGs from Figure 2.
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Figure 2. Conceptual display demonstrating decreasing directional trends and patterns in DNAm

over time between parous and nulliparous subjects. CpGs in panels (A) (1 = 35) and (B) (n = 20) had

higher DNAm in parous women at age 26, adjusted by DNAm at age 18 years. CpGs in panels (C)

(n = 42) and (D) (n = 24) had lower methylation in parous women at age 26, adjusted by DNAm at

age 18 years. Note that the magnitude of DNAm change is not depicted.

An increase in DNAm across the three time points was far less common, occurring in only

13 of 180 CpGs (7%) (Figure 3). The patterns of change included (a) increasing only during the

gestation to post-pregnancy interval (12 CpG, Figure 3A,B), and (b) increasing only during the

18 years to gestation interval (1 CpG, Figure 3C). Twice as many CpGs (8 CpGs, Figure 3A)

that increased only during the second interval measured (gestation to post-pregnancy) had

higher DNAm in parous women (Figure 3A), as only 4 CpGs had lower DNAm in parous

(Figure 3B) as compared to nulliparous women. The single CpG that increased methylation

during the interval from pre-pregnancy to gestation had lower DNAm in parous as compared

to nulliparous controls (Figure 3C). Table 3 shows the magnitude (regression coefficients in

parous vs. nulliparous subjects from Chen et al., 2024 [8]) and significance (p-values and
FDR-adjusted p-values) of the DNAm increases in the 13 CpGs from Figure 3. Negative
regression coefficients between parous and nulliparous women (Supplemental Table S1 and

Table 3, fifth column) indicate lower methylation in parous women (compared to nulliparous)

at age 26, while positive regression coefficients (Supplemental Table S1 and Table 3, fifth

column) indicate higher methylation in parous women (compared to nulliparous) at age 26.

Methylation of the remaining 46 CpGs was stable in parous women across the three

time points assessed (Supplemental Figure S1, Supplemental Table S2). Most of these

46 CpGs had methylation that changed over time in nulliparous subjects, as 12 of 17 of these

CpGs decreased between ages 18 to 26 years, resulting in higher DNAm in parous subjects at

age 26 years (Supplemental Figure S1A), while 5 of 29 CpGs increased in nulliparous women

over time, resulting in lower DNAm in parous subjects at age 26 years (Supplemental Figure

S1B). Eight other CpGs changed in nulliparous subjects only, in directions not consistent

with the overall DNAm trends between parous and nulliparous subjects.
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Figure 3. Conceptual display demonstrating increasing directional trends and patterns in DNAm
over time between parous and nulliparous subjects. CpGs in panel (A) (n = 8) had higher DNAm
in parous women at age 26, adjusted by DNAm at age 18 years. CpGs in panels (B) (n = 4) and

(C) (n = 1) had lower methylation in parous women at age 26, adjusted by DNAm at age 18 years.

Note that the magnitude of DNAm change is not depicted.

Although the directions of change (increase or decrease) over time were the same

for parous and nulliparous women, the magnitude of the changes differed between these

groups. For example, DNAm of the 42 CpGs in Figure 2C and Supplemental Table S1

panel C did not change from age 18 to gestation, and then decreased significantly from

gestation to age 26 in parous women (negative regression coefficients in the ninth column of

Supplemental Table S1). The majority of these CpGs (39 of 42) also decreased significantly

from age 18 to 26 years in nulliparous women (negative regression coefficients in twelfth

column of Supplemental Table S1). Furthermore, when the CpGs in these two trend groups

are compared to one another, they have negative regression coefficients (Supplemental

Table S1, fifth column), indicating that DNAm at age 26 at these CpGs is significantly lower

in parous than nulliparous women (while controlling cell-adjusted DNAm at age 18 and

other confounding factors, see Chen et al., 2024 for more details [8]). Thus, we can infer that

CpGs in Figure 2C and Supplemental Table S1 Panel C decrease more in parous women.
By the same token, the 8 CpGs in Figure 3A and Table 3 Panel A have positive regression
coefficients (Table 3, ninth, twelfth, and fifth columns), indicating that they increase to a

larger magnitude in parous as compared to nulliparous women.
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Table 3. Magnitude and significance indicators of CpGs with DNA methylation that increase across the timepoints of pre-pregnancy (age 18), gestation (for parous

subjects), and post-pregnancy (age 26) between parous and nulliparous subjects.

Chen et al., 2024 [8] .
(Parous vs. Parous . ) Parous Nulliparous
Panel CpG Chr Gene Name Nulliparous) (Pre-Pregnancy to Gestation) (Gestation to Post- Pregnancy) (Age 18 to Age 26)

Coef (FDRp) ** Coef p-Value FDR-p Coef p-Value FDR-p Coef p-Value FDR-p
cg13600489 14 NKX2-1 0.51 (5 x 107%) —0.025 0.882 0.912 0.423 22 x 1072 3.1 x 1072 0.307 1.8 x 1072 2.1 x 1072
€g24693287 1 SERINC2 0.50 (6 x 107%) 0.435 0.097 0.206 0.799 7.2 x 107° 1.9 x 1075 0.741 1.4 x 107 2.1 %107
cg27549834 3 MYRIP * 0.28 (7 x 107%) 0.236 0.336 0.495 0.716 1.3 x 1075 3.1 x107° 0.808 23 x107° 45 x 107°
€g20824761 15 PAQR5 * 0.53 (9 x 107%) 0.431 0.569 0.692 1.746 44 x 1074 8.7 x 1074 1.865 1.2 x 1078 21 x 1078

A *.

c§24737639 12 Cl\gfr ;478; 0.37 (1 x 10-3) 0.187 0.691 0.776 1.206 73x 1074 14x10°3 1417 55x10°8 93 x 108
cg25074185 11 PHOX2A * 0.45 (1 x 1073) 0.895 0.086 0.194 0.843 1.5 x 1072 2.3 x 1072 1.886 2.4 %107 46 x107°
cg09754845 7 MLII(I:\‘]“CL)I(‘Z" 0.29 (2 x 1073) 0.123 0.453 0.586 0.309 29 x 1072 41 %1072 0.316 3.1x 1073 3.8 x 1073
€g27395066 17 ACBD4 0.22 (4 x 1073) 0.254 0.186 0.309 0.685 2.6 x 1074 53 x 1074 0.508 5.6 x 107° 7.3 x 1075
cg11236850 4 ACOX3* —0.19 (9 x 107%) 0.362 0.101 0.208 0.846 42x107%  12x107° 1.135 15x 1077 59 x 1077
RANGREF; -3 -2 -2 -15 -15

B cg25418406 17 SLCI5AZE —0.30 (1 x 1073) 0.787 0.103 0.208 0.712 1.2 x 10 1.9 x 10 2.480 2.6 x 10 7.4 x 10
g25734490 12 ASCL1 —0.28 (3 x 1073) 0.456 0.063 0.157 0.376 2.8 x 1072 39 x 1072 1.221 30x10718  75x10°13
26316702 2 TEKT4 —0.09 (6 x 1073) 0.102 0.039 0.128 0.140 4.0 x 1073 6.3 x 1073 0.138 1.1x 104 14 x 1074
BLOC154, -3 4 -3 _7 _7

C cg10773016 4 KIAAO232 * —0.21 (3 x 1073) 0.561 9.0x 10 6.8x 10 0.149 0.223 0.257 0.580 25 x 10 4.0 x 10

Coef, regression coefficient; FDR-p, false discovery rate adjusted p-value. * Overlapped genes between our study and Lin et al., 2022 [9]. ** Regression coefficients of DNAm at age 26 on
parous status (yes/no) and cell-adjusted DNAm at age 18 and other covariates (see Chen et al., 2024 for more details [8]). Note: The sum of regression coefficients in columns 6 and 9 is
not comparable to coefficients in column 12 to quantify differential methylation changes between parous and nulliparous women; column 5 reports the comparison of differential
methylation changes between parous and nulliparous in the same model while adjusting for appropriate covariates.
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Furthermore, among CpGs that decrease over time, roughly half of them (55 CpGs) de-
crease to a smaller extent in parous women (Figure 2A,B, Supplemental Tables S1A and S1B)
and the other half (66 CpGs) decrease to a larger extent in parous women (Figure 2C,D,
Supplemental Table S1 Panels C and D). Similarly, among CpGs that increase over time,
roughly half of them (8 CpGs) increase to a larger magnitude in parous women (Figure 3A,
Table 3 Panel A) and the other half (5 CpGs) increase in a smaller extent in parous women
(Figure 3B,C, Table 3 Panels B and C). Thus, the different magnitudes of change between
parous and nulliparous groups results in methylation differences at the endpoint of our
study: DNAm at age 26, which is post-pregnancy for our parous subjects. To visualize
the magnitude of changes in the four groups of CpGs that increase (or decrease) to a
larger (or smaller) extent in parous women, we made boxplots of adjusted DNAm changes
(M-values) from age 18 to 26 yrs in parous, nulliparous, and “parous minus nulliparous”
groups (Figure 4A-D). DNAm decreased over time in the majority of CpGs (Figure 4A,B),
with slightly more than half of these decreasing to a greater extent in parous women.

A: 55 CpGs decrease to a smaller extent in parous women B: 66 CpGs decrease to a larger extent in parous women

*

1
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'

o
)
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)
IS
'

I
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Adjusted DNAm changes (M-value) between age 18 and 26
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' ' ' ' '
Parous Nulliparous Parous minus Nulliparous Parous Nulliparous Parous minus Nulliparous
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Figure 4. Comparison of adjusted DNAm changes from 18 to 26 years in four groups of CpGs
(A-D) between parous (1 = 28) and nulliparous (n = 61) subjects. Depicted are the averages
(+/— one standard deviation) of the regression coefficients in the corresponding CpG groups (A-D);
more specifically, the y-axis values for the parous and nulliparous group are DNAm changes in M-value
(log2(B/(1-P)) between ages 18 and 26 adjusted by covariates specified in Section 4.5. The y-axis
values for the “parous minus nulliparous” group are differential DNAm changes in M-value from ages
18 to 26 between parous and nulliparous subjects adjusted by covariates described in Chen et al., 2024 [8].
The regression coefficient values for the nulliparous group can be found in column 12 of Table 3 and
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Table S1. The regression coefficients for the parous group are calculated with the same model as the
nulliparous group (See Section 4.6 for details of statistical modelings). Positive (negative) values
indicate that DNAm increased (decreased) from age 18 to 26 yrs. The regression coefficients for the
“parous minus nulliparous” group are obtained from Chen et al., 2024 (Table 1, column 2) [8] with
positive values indicating higher DNAm in parous subjects at age 26 (DNAm at age 18 adjusted
in the model). (A) 55 CpGs (CpGs in Figure 2A,B) decrease to a smaller extent in parous women.
(B) 66 CpGs (CpGs in Figure 2C,D) decrease to a larger extent in parous women. (C) 8 CpGs (CpGs in
Figure 3A) increase to a larger extent in parous women. (D) 5 CpGs (CpGs in Figure 3B,C) increase
to a smaller extent in parous women. The adjusted DNAm changes between age 18 and 26 in
(D) had large standard deviations with similar central tendency measurements between parous and
nulliparous groups (n = 5 CpGs), thus, image (D) does not reflect the increase to a smaller extent in
parous women. Asterisks (*) indicate significant DNAm changes with FDR-adjusted p-values less
than 0.05.

2.3. Validation and Comparison with Other Studies

Three other independent studies have investigated the methylation trajectories during
pregnancy: (i) Lin et al., 2022 [9], (ii) Fradin et al., 2023 [18], and (iii) Gruzieva et al., 2019 [17].
Figure 5A summarizes the designs of these studies in comparison to ours. Figure 5B depicts
the CpGs that overlap across the four studies. Among 180 parous-associated CpGs with
DNAm levels measured at pre-pregnancy, gestation, and post-pregnancy in IOW-F1, two
CpGs (cg21879513 and ¢g00519039; Table 4) were among the 14,018 CpGs identified by Lin
et al. (2022) [9]. The DNAm trend of these two CpGs was to decrease over the interval from
gestation to post-pregnancy at age 26 (negative regression coefficients in Supplemental
Table S1 (ninth column), panels A and D, respectively). To explore their external validation
further, we analyzed the data reported in the Lin et al., 2022 [9] study by determining their
mean methylation during gestation (average of methylation in beta values at 1st, 2nd, and
3rd trimesters) for ¢g21879513 and cg00519039 and found that the DNAm at these CpGs
also decreased from gestation to their post-pregnancy sampling period, which was months
to years after delivery. No CpGs overlapped with the 57 CpGs identified by Fradin et al.,
2023 [18] or the 196 CpGs identified by Gruzieva et al., 2019 (Figure 5B) [17].

We also checked the numbers of genes associated with the parous-associated CpGs
in each study (Figure 5C): 180 CpGs associated with 226 genes in the IOW-F1 cohort;
14,018 CpGs associated with 6398 genes in Lin et al., 2022 [9]; 57 CpGs associated
with 57 genes in Fradin et al., 2023 [18]; and 196 CpGs associated with 117 genes in
Gruzieva et al., 2019 [17]. There was a single gene, neurotrophic receptor tyrosine kinase 3
(NTRK3, associated with cg13632630), that was common to all studies. An additional
75 genes associated with the identified CpGs overlapped between our study (IOW-F1
cohort) and the Lin et al., 2022 study [9].

Among the 76 genes (associated with 67 CpGs) in common with genes associated with
CpGs identified in Lin et al., 2022 [9], the majority (72%, 48 of 67) had downward trending
DNAm (Table 4), while 9% (6 of 67) were upward trending (asterisks (*) mark upward
trending genes in Table 3). The remaining 13 CpGs did not show a clear trend of change
(asterisks (*) mark in Supplemental Table S2A,B). An additional 112 genes overlapped
between Lin et al., 2022 [9] and at least one of the following studies: Gruzieva et al,,
2019 [17] or Fradin et al., 2023 [18].
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Table 4. Magnitude and significance indicators of 47 CpGs with DNAm that decrease across the timepoints of pre-pregnancy (age 18), during gestation (for parous

subjects), and post-pregnancy (age 26) between parous and nulliparous subjects.

Chen et al., 2024 [8] .
(Parous vs. Parous ) F’arous Nulliparous
Panel CpG Chr Gene Name Nulliparous) (Age 18 to Gestation) (Gestation to Age 26) (Age 18 to Age 26)
Coef (FDRp) * Coef p-Value FDR-p Coef p-Value FDR-p Coef p-Value FDR-p

cg04413148 16 CTRL 0.16 (5 x 107%) —0.186 0.145 0.266 —0.683 44 x 10710 3.7%x 1077 —0.900 1.4x 1073 3.5x 10732
€g25364469 3 ZBTB20 0.18 (9 x 107%) —0.159 0.095 0.205 —-0.310 9.5 x 1075 2.0x 1074 —0.788 25x107%  30x 107%
cg17675386 10 RGS10 0.17 (9 x 107%) 0.022 0.820 0.869 —0.544 99 x 10710  68x107° —0.685 1.7x 10717 6.7x 107V
cg14312661 11 CARS 0.14 (9 x 107%) —0.139 0.039 0.128 —0.707 12x107°  69x 10718 —0.951 3.4x 107% 1.3x 10~%
cg00050271 16 CMIP 0.29 (9 x 107%) —-0.207 0.084 0.192 —0.515 1.5 x 107 3.6x 1075 —0.944 1.0x 1072 8.8x 1072
€g20009923 12 ATP2B1 0.29 (1 x 1073) —0.042 0.792 0.844 —0.535 33 x 1075 7.4x 1075 —0.768 49x 10°11 1.0x 10710
g20368567 17 NF1; EVI2A 0.30 (1 x 1073) —0.079 0.613 0.720 —0.617 52 x 1077 1.9x 1076 —0.867 9.8x 107 31x 1071

A SND1;
cg00243040 7 MIR129-1; 0.19 (1 x 1073) —0.066 0.425 0.571 —0.312 58 x 1075 13x 1074 —0.500 8.0x 10714 21x 10718

LEP
cg10705060 3 BFSP2 0.33 (1 x 1073) —0.158 0.374 0.521 —0.755 1.1 x 107 3.6x 107 -1.273 40x 10716 1.3x 10715
cg08557624 6 FARS2 0.28 (2 x 1073) —0.172 0.257 0.406 —0.298 3.5 x 1072 49x 1072 —0.679 25x 1078 43x 1078
cg03972656 18 SETBP1 0.22 (2 x 107%) —0.227 0.034 0.120 —0.700 1.4 x 10710 1.3x 107° —0.886 15x 107V  59x 10~
cg03626857 19 ZNF227 0.24 (2 x 107%) —0.069 0.655 0.751 —0.525 3.8 x 1075 8.4x 1075 —0.553 7.4x 107° 1.4x 1078
cg08285768 15 AKAP13 0.27 (2 x 1073) —0.413 0.062 0.157 —0.829 3.8 x 107° 1.1x 1075 —0.941 24x 1071 53x 1071
cg06944982 8 PTK2 0.33 (2 x 1073) —0.103 0.616 0.720 —0.761 41x107° 12x 1073 —0.899 22x 10710 45x 10710
€g23033749 7 ST7 0.10 (2 x 1073) —0.160 0.045 0.136 —0.159 1.1 x 1072 1.6x 1072 —0.205 3.9x 1076 5.7x 1076
cg21879513 20 COL20A1 0.15 (2 x 1072) 0.081 0.567 0.692 —0.313 2.0 x 1072 29x% 1072 —0.396 23x 1074 29% 1074
SPMIP3; -2 ~12 -1 —20 ~19

cg26436731 1 ZBTB1S 0.10 (2 x 1072) —0.174 0.038 0.128 —0.606 7.0 x 10 7.9% 10 —0.722 7.3x 10 3.8x 10
cg02133624 3 DLDGLIC-;}};SI 0.16 (1 x 107%) —0.310 1.3 x 107 4.0x 1075 —0.294 1.3 x 107 41x 1076 —0.705 59x 1072 53x 1072
g19035181 20 NU\’GLI’AII‘]S‘;‘NP ; 0.14 (6 x 104 0307 14x10*  18x 1073 0496  55x10°10  40x10°° 0885  21x10°%  37x 102

b 11003536 11 PRDM10; 0.18 (9 x 107%) —0.341 2.0 x 1074 23x 1073 —0.750 1.0x 107  23x 1071 —0.983 1.7x 1072 25x% 10728
6 LINC00167 : ' : : ' : : ' : :
cg13632630 15 LINC00052; 0.16 (9 x 1074 —0.174 42 %1073 2.32x 1072 —0.251 1.1 x 1073 2.7%x 1075 —0.497 55x 10717 2.8x 10718
g

NTRK3




Epigenomes 2025, 9, 24 12 of 24
Table 4. Cont.
Chelzpe:rilu"sz‘?:‘l (8] Parous Parous Nulliparous
Panel CpG Chr Gene Name Nulliparou;) (Age 18 to Gestation) (Gestation to Age 26) (Age 18 to Age 26)

Coef (FDRp) * Coef p-Value FDR-p Coef p-Value FDR-p Coef p-Value FDR-p
cg18777774 17 ABR; BHLHA9 0.14 (9 x 107%) —0.524 3.7 x 1078 1.7x 10~° —0.783 41x 10717 1.1x 10715 —1.209 39x107%0  23x 1073
cg08166720 17 Z7EF1 0.25 (2 x 1073) —0.410 11x1072  4.62x 1072 —0.788 1.5 x 107 9.9x 107 —1.192 1.1x 10718 52x 10718
cg18909525 9 ASB6 0.30 (2 x 1073) —0.412 33 x 1075 53x 1074 —-0.330 25x 1073 41x 1073 —0.883 24x 10715 7.1x 1071
cg00697880 3 OSBPL10 0.19 (2 x 1073) —0.366 1.0 x 1073 7.2%x 1073 —0.735 45x 10713 67x 10712 —1.033 54x 10720 3.0x 1071
cg00335252 2 RBMS1 0.17 (3 x 1073) —0.422 2.6 x 1077 1.5% 1077 —0.433 59 x 1077 3.4x 108 —0.891 7.0x 107% 9.0x 102
cg08653258 3 Blzgggo’ —0.19 (9 x 1074 —0.253 0.013 0.051 —0.402 29 x 1078 1.5x 1077 —0.737 31x 1072 1.9x 107
cg17672798 10 ADARB?2 —0.17 (9 x 107%) —0.178 0.148 0.266 —0.485 58 x 1078 2.6x 1077 —0.745 1.3x 1072 8.4x 10~
cgismml 19 ACORNSS 0199 x 107 —0.066 0.588 0.708 ~0.220 32x102  45x102 0208  16x10°  19x 10-3
INPP5A; 5 3 3 _7 _7

cg00647046 10 CEAP46 —0.34(1 x 1073) 0.055 0.772 0.829 —0.531 1.5 x 10~ 2.6x 10 —0.661 1.4% 10 2.4x 10
€g26328510 10 CUGBP2 —0.56 (1 x 1073) —0.061 0.715 0.794 —1.054 3.4 x10°° 1.0x 1075 —0.857 3.9% 107 5.7x 1076
= NAIF1; 3 -7 —6 -18 -18

cg14575222 9 SLCI5A%5 —0.18(2 x 1073) —0.144 0.184 0.309 —4.79 33 % 10 1.3x 10 —0.770 1.7x 10 7.8x 10
€g22279507 2 FARSB —0.30 (2 x 1073) —0.246 0.058 0.156 —0.739 52 x 10710 40x 107 —0.747 6.9x 10~11 1.5x 10710
cg14594063 10 ADAM12 —0.27 (2 x 1073) —0.297 0.063 0.157 —0.412 1.9 x 1073 33x 1073 —0.880 6.8x 10714 1.8x 10713
RADSIC, _3 —9 —8 -5 -5

cg03964554 17 PPMIE —0.17 3 x 1073) 0.085 0.395 0.535 —0.532 33x10 2.0x 10 —0.281 5.8x 10 7.4% 10
€g26319015 7 ACTB; FSCN1 —0.28 (3 x 1073) —0.181 0.385 0.526 —0.788 3.0 x107° 6.9x 1075 —0.588 6.3x 1070 9.1x 107
cg01832012 7 TPK1 —0.14 2 x 1072) —0.153 0.083 0.192 —0.348 7.9 x 10°© 2.0x 1073 —0.354 59x 108 1.0x 1077
cg03029734 6 GRIK2 —0.12(5 x 1072) 0.008 0.928 0.938 —0.282 7.7% 1074 1.4x 1073 —0.252 1.4x 107> 2.0x 1075
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Table 4. Cont.
Chelzpe:rilu"sz‘?:‘l 181 Parous Parous Nulliparous
Panel CpG Chr Gene Name Nulliparou;) (Age 18 to Gestation) (Gestation to Age 26) (Age 18 to Age 26)
Coef (FDRp) * Coef p-Value FDR-p Coef p-Value FDR-p Coef p-Value FDR-p
cg08870757 17 ALOX12 —0.320 (4 x 107%) —0.451 25 x 1075 45 x 1074 —0.845 33x 1071  6.0x 1071 —0.820 1.7x 10715 52x 10715
g22789605 12 SLC11A2 —0.207 (6 x 107%) —0.433 3.4 x 107 8.7 x 1075 —0.294 1.1 x 1073 2.0x 1073 —0.573 9.3x 1071 2.6x 10714
cg15210276 19 HAPLN4 —0.183 (7 x 107%) —0.306 43 x107* 3.4 x 1073 —0.470 49 x 1078 22x 1077 —-0.715 1.3x 10718 59x 10718
cg19681610 1 NOS1AP —0.155 (9 x 107%) —0.290 1.3 x 1073 8.6 x 1073 —0.568 17x10712  22x 1071 —0.768 34x 1075 34x 1072
cg08288130 8 DOK?2 —0.255 (9 x 107%) —0.402 5.4 x 1075 8.1 x 1074 —0.506 55 x 1078 25% 1077 —0.710 2.0x 1071 62x 1071°
D
cg01788221 16 ANKRD11 —0.106 (9 x 107%) —0.392 1.3 x 107 40 x 107° —0.830 61x1072%  11x107% —1.039 41x 107% 3.7x 1074
cg09043104 8 LH;:IICFOS(EI%’ —0.118 (1 x 1073) —0.338 8.1 x 107 1.8 x 1074 —0.372 9.6 x 1077 3.2x 1076 —0.650 1.9x 1072 1.6x 1072
cg00519039 10 ARfRif}ljw; —0.201 2 x 10-3) 0293 70x10°%  3.1x10°2 —0.476 52x 1077 19x10° 0619  55x 10~  13x 1012
cg13676583 5 DDX41; DOK3 —0.131 (3 x 1073) —0.200 1.3 x 1073 8.6 x 1073 —0.368 1.1 x 107 7.3x 107 —0.476 9.0x 10716 29% 1071
cg16419756 5 SLC12A8 —0.094 (1 x 1072) —0.224 2.6 x107% 24 %1073 —0.537 1.3%x 10715 2.6x 10714 —0.736 1.1x 1030 22x 1072

Coef, regression coefficient; FDR-p, false discovery rate adjusted p-value. * Regression coefficients of DNAm at age 26 on parous status (yes/no) and cell-adjusted DNAm at age 18
and other covariates (see Chen et al., 2024 for more details [8]). Note: The sum of regression coefficients in columns 6 and 9 is not comparable to coefficients in column 12 to quantify
differential methylation changes between parous and nulliparous women; column 5 reports the comparison of differential methylation changes between parous and nulliparous in the
same model while adjusting for appropriate covariates.
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A: Timespan of multiple measurements of DNA methylation
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48 parous Caucasian
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| G2: Lin et al (2022) > 10 parous Asian*
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B:CpGs C: Genes D: Distribution of overlapped genes
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\ 4 Fig. 3: Panel C 1 (50% of 2)
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SO e
S

Figure 5. Summary of studies examining DNAm changes in parous women around the time of
pregnancy. (A) Timespan of multiple measurements of DNAm for trajectory analyses. Our study (G1)
investigated methylation changes at pre-pregnancy, during gestation, and months to years after delivery.
Lin et al., 2022 [9] (G2) investigated methylation changes from the first trimester to months to years after
delivery. Fradin et al., 2023 [18] (G3) assessed the methylation changes from the first to third trimesters
of pregnancy. Gruzieva et al., 2019 [17] (G4) investigated methylation changes from pre-pregnancy
to 2 to 4 days after delivery. * Race is inferred for the Lin and Gruziva studies as participants were
enrolled at hospitals in Taiwan and Sweden, respectively. (B) Numbers of parous-associated CpGs that
overlap across the studies. The two CpGs that overlapped between our results (G1) and Lin (G2) were
€g21879513 and cg00519039. (C) Numbers of genes associated with the parous-associated CpGs that
overlap across the studies. The one gene that overlapped across all studies was NTRK3. (D) Distribution
of 76 overlapped genes among the groups of associated CpGs showing trends of increasing or decreasing
DNAm across the timepoints of pre-pregnancy, gestation, and post-pregnancy (percentages of total
genes in each group).

2.4. Biological Pathway Analysis

Functional enrichment analysis of the 76 CpG-associated genes overlapping between
Lin’s study and our study was carried out using the ToppFun module of ToppGene
(https:/ /toppgene.cchmc.org/, accessed on 8 June 2025) to explore KEGG pathways, diseases,
and biological processes. We identified two KEGG pathways: “Aminoacyl-tRNA Biosyn-
thesis” and “Shigella IpaB/C/D to ITGA /B-TALIN/VINCULIN signaling pathway” with
FDR-adjusted p-value < 0.05 (Table 5). The top 10 diseases most significantly associated
with these 76 genes include nervous system (including mental health) disorders and cancers
(Table 6). No biological processes were identified.
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Table 5. KEGG biological pathway associated with 76 overlapped genes between our study and
Lin et al., 2022 [9].

. . Hit Count in Query s .
KEGG Biological Pathway Source p-Value g-Value FDR B&H (Hit Count in Genome) Hits in the Query List
Shigella IpaB/C/D to
ITGA/ KEGG Medicus 4
B-TALIN/VINCULIN Pathways 6.29 <10 0.03 20) ACTB, PTK2
signaling pathway
Argl.“"acyl'tRNA KEGG Legacy 6.97 x 104 0.03 3 (41) CARS1, FARSB, FARS?
iosynthesis Pathways

Table 6. Top 10 diseases associated with 76 overlapped genes between our study and Lin et al., 2022 [9].

. Hit Count in Query o .
Disease Name p-Value g-Value FDR B&H (Hit Count in Genome) Hits in the Query List
CELF2, INPP5A, NTRK3, ACTB,
. . NFASC, DLG1, GRIK2, CTRL
-7 7 7 7 4
Schizophrenia 3.23 x 10 0.001 13 (883) ADAM12, BHLHE40, ALOX12,
LEP, NOS1AP
Attention deficit
hyperactivity disorder, PHOX?2A, ZBTB20, CELF2, SND1,
substance abuse, 5.55 x 10~ 0.004 11 (801) UNC5B, NTRK3, SETBP1, NINL,
antisocial behaviour NFASC, PARPBP, PTK2
measurement
Fibrosarcoma 1.91 x 1073 0.010 2(3) NF1, NTRK3
Glioblastoma 501 x 107° 0.016 4(79) NF1, GRIK2, BHLHE40, PTK2
Shirslgf::fntgggryeﬁem 552 x 1073 0.016 4(81) TPK1, ZKSCAN3, MYRIP, NFASC
Gf(‘)fl‘;gsia 6.37 x 1075 0.016 4 (84) NF1, GRIK2, BHLHE40, PTK2
ACAP1,TCF3,SLC11A2, NF1,
Colorectal Carcinoma 7.19 x 1075 0.016 9 (702) SETBP1, PPMI1E, ZKSCANS3,
EIF3H, ADARB?2
ZBTB20, NF1, SND1, NUP37,
Risk-taking Behaviour 1.36 x 1074 0.020 9 (764) NTRK3, ZKSCAN3, NFASC,
PARPBP, ARHGAP19
APOE carrier status,
cerebral amyloid 1.69 x 10~ 0.020 3 (42) FZR1, SETBP1, GRIK2
angiopathy
Glioblastoma 4
Multiforme 1.88 x 10 0.020 4 (111) NF1, GRIK2, BHLHE40, PTK2

We conducted the same functional enrichment analysis of the 112 genes overlapped

between Lin’s and either Fradin’s or Gruzieva’s studies. One KEGG pathway, “Medicus

pathogen HPV E6 to notch signaling pathway,” and 13 biological processes were identified

(Supplemental Table S3). The top 10 diseases that were most significantly associated with

these 112 genes were related to blood cell parameters, primarily counts of various white

blood cells and platelets (Supplemental Table S4).

3. Discussion

Focusing on 180 parous-associated CpGs, this study evaluates the temporal changes

in DNAm from pre-pregnancy (age 18), to early and/or late gestation in 78 parous women

and from gestation to at least 6 months after-delivery (age 26) in 48 parous women of the

IOW-F1 birth cohort in comparison to 61 nulliparous women from age 18 to 26 years in
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the same cohort. Of these 180 parous-associated CpGs, 46 (25.6%) were characterized by
methylation that remained stable across the three time points of before-, during-, and after-
pregnancy in parous women, while 121 (90% of the remaining 134) decreased across the
same time intervals in parous women as well as from 18 to 26 years in nulliparous women.
This agrees with existing studies reporting a tendency for overall DNAm to decrease over
time [20]. A much smaller number of CpGs (13, 10% of 134) had methylation increase from
age 18 to gestation and post-pregnancy (age 26) in parous women and also increased from
age 18 to 26 years in nulliparous controls.

Of the CpGs showing a trend change (either increasing or decreasing DNAm), approxi-
mately half had DNAm change to a smaller extent in parous women
(Figure 4A,D). Furthermore, 9% (17 of 180) changed significantly in nulliparous women only
(Supplemental Figure S1; 12 CpGs in panel A and 5 CpGs in panel B), leading to a signifi-
cant difference in DNAm levels as compared to parous women at the 26 year time point.
These findings offer an additional explanation that, rather than changes being induced by
pregnancy, aspects of parturition and the post-pregnancy process may slow down or halt
the methylation changes (either increases or decreases) that otherwise occur over time in
some CpGs.

Next, CpGs with different trends in DNAm changes may be driven by different factors.
This is supported by our results in which some CpGs (Figures 2B,D and 3C; Supplemen-
tal Table S1 Panels B and D, Table 3 Panel C) change significantly from pre-pregnancy
to gestation, with most going on to further change significantly from gestation to post-
pregnancy (only 5 of 45 CpGs remain unchanged in this second time interval), which
may be due to the rise of pregnancy-related hormones such as estrogen and progesterone.
Furthermore, methylation changes from gestation to post-pregnancy may reflect the dif-
ferent drivers of the methylation changes. For example, the CpGs that remain unchanged
from pre-pregnancy (age 18) to gestation, and then change significantly from gestation to
post-pregnancy (age 26) (Figures 2A,C and 3A,B) may be related to factors associated with
parturition, e.g., rises in 17(3-estradiol, oxytocin, and prostaglandins along with withdrawal
of progesterone, and/or the postpartum period, e.g., postnatal stress, sleep disruption,
and nursing.

These findings have been further validated by comparing our study to other studies
of methylation changes in parous women by Lin et al., 2022 [9], Fradin et al., 2023 [18], and
Gruzieva et al., 2019 [17] (Figure 5). All of the four studies (including ours) focused on
uncomplicated pregnancies and blood methylation changes. The participants in Fradin
et al., 2023 [18], Gruzieva et al., 2019 [17] and our study were mostly Caucasians and in
Lin et al., 2022 [9] were Asians (Taiwanese). Our study and Gruzieva et al., 2019 [17]
collected DNAm data at a pre-pregnancy time point, while the others did not. Our study
and Lin et al., 2022 [9] collected DNAm data months to years after childbirth; in contrast,
DNAm was available for only a few days after delivery in the Gruzieva et al., 2019 [17]
studies. Fradin et al., 2023 [18] only collected DNAm data during pregnancy. Despite these
study design and methodological differences, our study had two CpGs (cg00519039 and
¢g21879513) and 76 genes that overlapped with the results reported by Lin et al., 2022 [9]
(Figure 5B,C). One of these genes (NTRK3) was reported in all four studies (Figure 5C).

The Rho GTPase activating protein 19 gene (ARHGAP19) is associated with cg00519039,
one of two CpGs that overlapped between our results and the Lin study. This gene
encodes regulators of Rho GTPases, which are involved in cell migration, proliferation,
differentiation, and G1 cell cycle progression [21]. This CpG is also associated with the
FRAT regulator of WNT signaling pathway 1 gene (FRAT1). FRAT1 (frequently rearranged
in advanced T-cell lymphomas) positively regulates the WNT signaling pathway and may
function in tumor progression and lymphomagenesis [22]. The other CpG identified by both
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studies, cg21879513, is associated with the COL20A1 gene encoding the alpha-1 chain of
type XX collagen, which appears in cartilage. The COL20A1 gene has been associated with
a variety of conditions, including pulmonary fibrosis [23], palmoplantar keratoderma [24],
diabetic kidney disease [25], and several cancers [26]. Interestingly, DNAm of COL20A1
was associated with a microbiota taxon that influences gut metabolism in adults during
behavioral weight loss treatment [27] and also with polycyclic aromatic hydrocarbons
(PAHs) exposure among non-smokers [28].

Neurotrophic receptor tyrosine kinase 3 (NTRK3) was the one gene that overlapped with all
studies (Figure 4C), based on its associated CpG (cg13632630, Supplemental Table S1 panel B).
NTRKS3 has been found to be frequently involved in gene fusion events underlying soft tis-
sue neoplasms [29-31], in which these gene fusions alter kinase activity. More specifically,
ETV6-NTRKS fusions are present in various hematopoietic and epithelial neoplasms [32-34],
including secretory breast carcinoma [35].

The top diseases associated with the 76 genes we identified to overlap between Lin
et al., 2022 [9] and our data were related to mental health (e.g., schizophrenia, ADHD),
brain neoplasia (e.g., glioblastoma) and other neoplasias (e.g., fibrosarcoma, colorectal
carcinoma) (Table 6). These 76 overlapped genes were also associated with two KEGG
biological pathways: (1) Aminoacyl-tRNA Biosynthesis and (2) Shigella IpaB/C/D to
ITGA/B-TALIN/VINCULIN signaling pathway (Table 5). The biosynthesis of aminoacyl-
tRNA synthases may be related to the altered disease risk seen in parous women later in life
stemming from the biosynthesis and regulatory roles of these enzymes. Aminoacyl-tRNA
synthases play a key step in ensuring the proper amino acid sequence during translation of
RNA into protein. In addition, they have recently been shown to be involved in immune
cell development and signaling, and thus are increasingly recognized as having a role in
infectious disease, autoimmune disease, tumor immunity, and neurological disease [36-39].
The connection between later life disease risk modifications among parous women may
seem less obviously related to Shigella signaling, however, in a recent systematic review of
62 studies on gut microbiota composition in autoimmune neurologic diseases, Deng et al.
found that an increase in Escherichia-Shigella was found in patients with autoimmune
encephalitis, neuromyelitis optica spectrum disorders, myasthenia gravis, and multiple
sclerosis [40].

The overlapped CpGs and genes between Lin et al., 2022 [9] and our study may
capture post-pregnancy changes that are due to reasons like postnatal stress and sleep
disruption. This finding was supported by our further investigation of the two overlapped
CpGs, as well as the biological pathways, biological processes, and top diseases associated
with 76 overlapped genes. It should be noted that the sample size of Lin et al., 2022 [9]
was too small (n = 10) to withstand multiple testing adjustments and thus relatively large
numbers of CpGs with raw p-values < 0.001 were reported. This may have contributed to
the higher level of overlapping results with ours and the other two comparison studies.
We also observed overlapping results among the three comparison studies (and not shared
by ours) as Lin et al., 2022 [9] had 120 overlapped CpGs and 112 overlapped genes (some
CpGs had no genes reported in the manifest file) with either Fradin et al., 2023 or Gruzieva
etal., 2019 [17] (Figure 5C). These 112 overlapping genes were associated with the KEGG
pathway “Medicus pathogen HPV E6 to notch signaling pathway” and 13 biological
processes mainly in cell differentiation and cell adhesion (Supplemental Table S3). The
top diseases associated with the 112 genes were related to the immune system such as
leukocyte and platelet counts (Supplemental Table S4).

Two critical design elements shared by the three comparison studies that differed from
ours were: (1) they investigated methylation changes in parous women only, while our
work has a nulliparous group for comparison; and (2) they did not extend as far into the pre-
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pregnancy (months to years prior) and/or post-pregnancy (months to years after) periods
as ours did. Thus, the DNAm changes of the overlapped CpGs among the three studies
may be temporary due to reasons like hormone changes, returning to pre-pregnancy values
soon after delivery. Our study was intentionally designed to ignore temporarily changing
CpGs, and focus instead on the CpGs that change from the pre-pregnancy (months to years
prior) and/or post-pregnancy (months to years after) periods in parous women compared
to nulliparous women in the same time interval.

While our study is the largest in the current literature, it is still relatively small in terms
of the number of subjects (28 parous and 61 nulliparous women with DNAm at both ages
18 and 26 years). Our sample size allowed us to identify 180 parous-associated CpGs [8],
however, we may have missed some CpGs with smaller effect sizes, or we could have
identified false positives. To assess the risk for this, we conducted a power analysis, which
indicated we have 80% power to detect a medium effect size 0.5 with 27 subjects in each
group and a significance level of 1.5 x 107 (after Bonferroni correction) using linear mixed
modeling with repeated measures. While these 180 CpGs may not reflect those with the
smallest effect size, our focus on parous-associated CpGs is a strength because we avoid
random, temporal changes that are not related or are only temporarily related to gestation.
Next, our statistical analyses were carried out in two steps (changes from pre-pregnancy
to gestation, and then changes from gestation to post-pregnancy) in parous women with
different sets of subjects (only 9 subjects had DNAm at all three time points) to maximize
the sample size at each analysis. We included all 78 women with DN Am both at age 18
and during gestation, including mothers older than 25.5 years when pregnant (52 mothers
were age 18-25.4 years and 44 mothers were age 25.5-42 years at pregnancy; some mothers
had pregnancies both before and after 25.5 years). To additionally test the validity of this
approach, we performed two sensitivity analyses: (1) DNAm changes from pre-pregnancy
to gestation, and gestation to post-pregnancy with 9 subjects that had DNAm at all three
time points; and (2) DNAm changes from pre-pregnancy to gestation with all mothers
younger than 25.5 years when pregnant. Similar coefficient directions (positive or negative)
were observed in significant CpGs in both analyses. Furthermore, the second sensitivity
analysis indicated that the trend changes may be similar between mothers with pregnancy
at different ages, say 24 vs. 29 years. However, women in our cohort study are likely
too young to formally investigate whether the mother’s age at pregnancy contributes to
changing methylation trends. Third, while we identified similar decreasing and increasing
DNAm trends in parous and nulliparous women on the same CpGs, we did not collect
DNAm data between ages 18 and 26 years in nulliparous women and thus did not have a
time point comparable to when parous women were pregnant. Thus, we had to assume
a linear trend in our modeling. Finally, there are currently no other independent cohort
studies with DNAm at all three of our time points (before, during, and months to years
after pregnancy) and in nulliparous controls for a formal validation analysis. Thus, the
three studies we used for validation each had some, but not all, of these elements in their
study design and that may be why our findings were only partially validated.

4. Materials and Methods
4.1. Study Population

The IOW birth cohort is a longitudinal, population-based study established in the
United Kingdom to investigate the developmental origins and natural progression of
asthma, allergic diseases, and related chronic conditions [41]. The study initially enrolled
expectant parents (first generation, IOW-F0) between 1989 and 1990 while they were
expecting the second generation (IOW-F1). As the IOW-F1 participants reached adulthood,
female members were further monitored during their pregnancies (2011-2015), giving rise
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to the third generation (IOW-F2). The IOW-F1 cohort has been prospectively followed
up for 26 years, in which a subset of parous female participants have been followed up
months to years after delivery at age 26. The cohort is predominantly white, with 98% of the
F1 generation identifying as such.

4.2. Parous Status

Participants” parous or nulliparous status up to age 26 years was assessed by their
participation (or not) in the third generation IOW study as well as from the medical
records. Female participants were classified as nulliparous up to age 26 years if they
met the following criteria: (1) no DNAm data collected during pregnancy, (2) no child
enrolled in the IOW-F2 cohort, and (3) no documented history of pregnancy, childbirth,
early pregnancy termination, infertility treatment, or late miscarriage based on IOW study
records or linked medical data.

4.3. DNA Methylation Measurements, Processing, and Quality Control

Peripheral whole blood samples were collected at three time points: age 18 years,
during 9-39 weeks gestation for parous women, and age 26 years. DNA extraction was
performed using either a standard salting procedure [42] or commercial kits (Qiagen,
Germantown, MD, USA) with DNA concentration determined by fluorometry (Qubit,
Invitrogen™, Thermo Fisher Scientific, Waltham, MA, USA). To assess epigenome-wide
methylation, age 18 and gestation samples were assayed using either Illumina Infinium
HumanMethylation450 arrays or Infinium MethylationEPIC BeadChips (Illumina, Inc.,
San Diego, CA, USA), while all the age 26 year samples were processed exclusively on
MethylationEPIC BeadChips. Multiple identical control samples were assigned to each
bisulfite conversion batch to assess assay variability. DNAm data preprocessing was
conducted using the CPACOR pipeline [43], including (1) background correction and
quantile normalization using the minfi R package (v1.36.0) [44]; (2) calculation of beta
(B) values using quantile-normalized intensities from (1), defined as proportions of inten-
sity of methylated (M) over the sum of methylated and unmethylated (U) sites/probes
(B = M/[c + M + U], where c is a constant to prevent zero in the denominator if
M + U is too small); (3) conversion to M-values (logit-transformed 3-values) for down-
stream statistical analysis [45]; and (4) quality control to exclude (i) probes with detection
p-value > 1071 in at least 95% samples, (i) samples with poor detection (p-value > 1071¢) in
>95% of CpGs [43], and (iii) sex chromosome CpGs. The use of both HumanMethylation450
(containing > 450 K CpGs) and MethylationEPIC (containing > 850 K CpGs) platforms
is a consequence of technology evolution as HumanMethylation450 arrays are no longer
available. To account for potential technical variation, DNAm data also underwent batch
correction using the ComBat algorithm in R, which adjusts for platform differences and
processing batches while preserving biological variability [46].

4.4. Cell Estimation

It has been shown that DNAm varies substantially between cell types [47,48]. Prior
studies suggested accounting for the cell-type composition of samples when analyzing
DNAm data [49-51]. Our DNAm was analyzed in whole blood and thus we adjusted for
cell composition of whole blood while assessing DNAm changes. Proportions of the cell
types CD4 + T-cells, CD8 + T-cells, natural killer cells, B-cells, neutrophils, monocytes, and
eosinophils were estimated through the estimateCellCounts function from the R package
minfi and were then included in the analyses as confounders [44].
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4.5. Confounding Variables

For the DNAm changes from age 18 years (reference group) to during gestation, the
following confounding variables were adjusted in the model: age, gestational weeks when
DNAm were collected during pregnancy (set zero for age 18 years), active and passive
smoking, socio-economic status (SES), birth order (set zero for age 18 years), and cell
composition. Body mass index (BMI) during pregnancy did not reflect a woman’s realistic
BMI and thus was not included in the analyses involving DNAm during pregnancy. For the
DNAm changes from gestation (reference group) to age 26, similar confounding variables
including age, gestational weeks when DNAm were collected during pregnancy (set zero
for age 26 data), active and passive smoking, SES, and cell composition. The number of
children mothers had by age 26 (i.e., their birth order) was not collected by the study and
thus not included in the model. For the DNAm changes from age 18 (reference group) to
age 26 in nulliparous women, we adjusted for age, active and passive smoking, SES, BMI,
and cell composition as confounding variables.

Active smoking was recorded as “yes” for a current smoker. Second-hand smoking
was recorded as “yes” if anyone in the household smokes inside the home. SES categories at
each time point were generated separately by K-mean clustering using education, housing
information, and income, which were extracted from the corresponding questionnaires.
Education was recorded as “School,” “6th Form College,” “Further Education,” and “Other.”
Housing information at age 18 and 26 years was recorded in ordinal data as “Rented
Council/Housing Assoc.,” “Rented Private,” “Lives with Parents,” “Owned Private,” and
“Other.” Housing information during pregnancy was recorded as “number of rooms in the
house.” Income was also recorded in the ordinal groups as “Less than £12,000,” “£12,000 to
£17,999,” “£18,000 to £29,999,” “£30,000 to £41,999,” “Greater than £42,000,” and “Prefer
not to say.” In the cluster analysis, education and housing were recoded as ordinal integers
from the worst to the best. “Other” in education and housing information, and “Prefer
not to say” in income were treated as missing values. Clusters were chosen based on R2,
Pseudo-F, and CCC statistics. Four SES clusters (1, worst; 4, best) were identified for ages
18 and 26 and five clusters (1, worst; 5, best) for during pregnancy. See Table 1 for detailed
interpretation of the clusters.

4.6. Statistical Analysis

Focusing on the 184 CpGs that were differentially methylated between parous and
nulliparous women at age 26 years [8], we examined the trends of methylation changes
before (age 18 years), during gestation, and post-pregnancy (age 26 years) in parous women.
The upward/downward trends were also validated in nulliparous women during the same
period (at ages 18 and 26 years). Among the 184 CpGs, 180 CpGs have DNAm data
at all three timepoints and thus were included in our analyses. To identify CpG sites
that were significantly differentially methylated, three linear mixed models with repeated
measures were implemented, each adjusting for confounding variables as described in
Section 4.5. The models compared DNA methylation levels between the following time
points: (1) age 18 years (reference group) and gestation, (2) gestation (reference group) and
age 26 years, and (3) age 18 years (reference group) and age 26 years in nulliparous women
only. Repeated measures per subject were utilized to assess random subject effects reflected
by random intercepts in the linear mixed models. Addressing random subject effects helps
improve statistical power. Only overlapping individuals in both time points were used in
the corresponding analysis. Multiple testing was adjusted by controlling the false discovery
rate (FDR) at 0.05 for each set of analyses [52]. We then grouped the 180 CpGs according to
their changing trends in parous and nulliparous women.
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Next, we compared the findings with three other independent studies that investigated
the methylation trajectories during pregnancy: Lin et al., 2022 [9], Fradin et al., 2023 [18],
and Gruzieva et al., 2019 [17], focusing on overlapping CpGs and genes. We checked
the consistency of trend changes for overlapped CpGs and performed gene enrichment
analysis in ToppFun (https://toppgene.cchmc.org/enrichment.jsp, accessed on 8 June
2025) to identify significant biological processes, KEGG biological pathways, and diseases
associated with the overlapped genes.

5. Conclusions

In conclusion, our results identified trends in DNAm changes associated with child-
bearing status in women. Furthermore, pregnancy may not only accelerate methylation
changes in CpGs, but also slow down or halt methylation changes. Some CpGs that
change significantly during pregnancy may be temporary, while other CpGs that remain
unchanged or change in a smaller magnitude during pregnancy (compared to nulliparous
women) may be affected by pregnancy. Diseases associated with the CpGs and genes we
identified involved cancers, the nervous system, and substance uses. In particular, the
methylation on CpG sites on the ARHGAP19 and NTRK3 genes, identified in all four studies,
promise potential explanation of disease risk variation in nulliparous and parous women.
Additional studies are needed in cohorts with follow up years to decades after childbirth to
investigate whether and how these parous-associated DNAm changes are related to health
outcomes later in life. We also need to explore whether one’s age at pregnancy affects the
trend changes from pre-pregnancy to gestation and post-pregnancy in the long run. Finally,
our results suggest that there is a need to include nulliparous women as a reference while
investigating the pattern of DNAm changes due to pregnancy and childbirth.
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FDR False discovery rate

IOW Isle of Wight
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