Final thesis submission: Examination - Miss Klaudia Piotrowska

Final thesis submission

Thesis

Final thesis

Abstract

Immune checkpoint blockade therapy (ICBT) has revolutionised cancer treatment, yet its efficacy remains limited to subset of patients. A significant barrier to successful treatment is the restricted infiltration of CD8+ T cells into the tumour microenvironment (TME). Cancer-associated fibroblasts (CAFs), a key component of the TME, are highly heterogeneous and perform diverse functions, including influencing immune exclusion. Myofibroblastic CAFs (myCAFs) have been implicated in immune-excluded tumours and poor ICBT responses, highlighting the need for CAF-targeting strategies to enhance immunotherapy efficacy.

This thesis investigates the role of ataxia-telangiectasia mutated (ATM) in regulating the myCAF phenotype. We demonstrate that pharmacological inhibition of ATM in TGF-β1-differentiated fibroblasts leads to the downregulation of extracellular matrix (ECM)-associated genes and myCAF markers, while upregulating iCAF markers and altering cytokine composition. These changes correlate with enhanced CD8+ T cell migration in vitro. Next, we explore the role of specific CAFderived ECM proteins, CTHRC1, POSTN, and COL11A1 on myCAF phenotype and function. Using CRISPR-Cas9 knockout models, we assess whether targeting these genes influences CD8+ T cell migration into tumours and enhances tumour suppressive properties in mouse models. We then investigate the activation of the cGAS-STING pathway in fibroblasts following ATM inhibition. We demonstrate that TGF-β1 suppresses the cGAS-STING pathway, whereas ATM deficiency induces a type I interferon response. Using mouse models, we show that targeting fibroblast ATM promotes intratumoural CD8+ T cell infiltration and that STING expression in myCAFs is essential for suppressing tumour growth in myCAF-rich environments. Finally, we evaluate the effects of different doses of the ATM inhibitor AZD0156 on key cellular processes, including target activity inhibition, cell proliferation, cell cycle progression, DNA synthesis, and regulation of myofibroblastic markers. Our findings demonstrate that AZD0156 is effective at low doses, which may have clinical applications in minimising potential toxicities.

Our work identifies a novel pathway regulating myCAF differentiation and provides a rationale for using ATM inhibitors to overcome CAF-mediated immunotherapy resistance. By investigating ECM-targeting and ATM inhibition, we uncover new therapeutic avenues to enhance immune infiltration and improve ICBT efficacy in solid tumours.

Year

2025

Depositing your Thesis and Research Data

Pure UUID for the Thesis:

ebe05c96-d692-4746-b6be-e9eceb0736cf

Do you have research data to deposit?

No

Please provide an explanation of why there are no data sets to deposit

All relevant data is included in the thesis.

Embargo Information

Are you applying for an embargo?

No

Declaration

I understand that once the thesis and accompanying research data (if any) are deposited, a citation to both the thesis and research data will always remain visible.

I agree as follows:

- 1. that I have the authority to make this agreement, and to hereby give the University of Southampton the right to make the thesis and research data (if any) available in the way described above;
- 2. that any errors or omissions in the content of the thesis and research data (if any) will be my responsibility as the author;
- 3. that I have exercised reasonable care to ensure that the thesis is original, and to the best of my knowledge, neither it nor the research data (where deposited) infringe upon anyone's rights, including copyright and related rights;
- 4. that my research was not sponsored/part sponsored or carried out in collaboration with an industrial or other organisation or if it was then their written permission to publish the thesis and research data (if any) is attached to this permission;
- 5. that the thesis and research data (if any) do not include confidential information belonging to another individual or organisation or if it does then their written permission for its publication is attached to this permission.

I have read and agree:

Contact details

Personal email address

klaudiaa.piotrowskaa@gmail.com

Supervisor declaration

Approve

1. There is no industrial or other individual/organisation whose permission is required prior to publication of this thesis and any supporting data on the institutional repository by virtue of their sponsoring or supporting the research, or

- 2. Where any industrial or other individual/organisation's permission prior to publication is required then this has been obtained and a copy is attached to this permission.
- 3. The student's preferred access for their thesis, research data (if any) and any embargos requested are appropriate.

I confirm the above permissions and thesis access

Gareth Thomas at 07 Oct 2025, 09:38