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Abstract

Background Spatial navigation deficits are early symptoms of Alzheimer’s disease (AD). The apolipoprotein E (APOE) €4
allele is the most important genetic risk factor for AD. This study investigated effects of APOE genotype on spatial naviga-
tion in biomarker-defined individuals with amnestic mild cognitive impairment (aMCI) and associations of AD biomarkers
and atrophy of AD-related brain regions with spatial navigation.

Methods 107 participants, cognitively normal older adults (CN, n=48) and aMCI individuals stratified into AD aMCI
(n=28) and non-AD aMCI (n=31) groups, underwent cognitive assessment, brain MRI, and spatial navigation assessment
using the Virtual Supermarket Test with egocentric and allocentric tasks and a self-report questionnaire. Cerebrospinal fluid
(CSF) biomarkers (amyloid-f,_4,, phosphorylated tau,g; and total tau) and amyloid PET imaging were assessed in aMCI
participants.

Results AD aMCI participants had the highest prevalence of APOE €4 carriers and worst allocentric navigation. CSF levels
of AD biomarkers and atrophy in AD-related brain regions were associated with worse allocentric navigation. Between-group
differences in spatial navigation and associations with AD biomarkers and regional brain atrophy were not influenced by
APOE genotype. Self-reported navigation ability was similar across groups and unrelated to spatial navigation performance.
Conclusions These findings suggest that allocentric navigation deficits in aMCI individuals are predominantly driven by AD
pathology, independent of APOE genotype. This highlights the role of AD pathology as measured by biomarkers, rather than
genetic status, as a major factor in navigational impairment in aMCI, and emphasizes the assessment of spatial navigation
as a valuable tool for early detection of AD.
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Background

Alzheimer’s disease (AD) is the leading cause of cognitive
impairment in older adults [1], and its early detection is criti-
cal for effective intervention with new disease-modifying
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therapies [2—4]. While AD biomarkers, such as cerebrospinal
fluid (CSF) biomarkers and positron emission tomography
(PET) imaging of amyloid-f (Af) and tau, have advanced
diagnostic capabilities, their widespread use is hampered
by their invasiveness, high cost and limited availability [5].
Therefore, there is an urgent need for noninvasive and cost-
effective screening tools to aid in the early detection of AD.
Spatial navigation assessment has emerged as a promising
tool for the early detection of AD, particularly in people
with mild cognitive impairment (MCI), but also in those
with normal cognition [6—10]. Spatial navigation involves
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egocentric (body-centered) and allocentric (world-centered)
strategies, both of which are affected in AD [10, 11]. Spatial
navigation tests in virtual and real environments have shown
the potential to distinguish people with AD pathology from
those without [12—14], including amnestic MCI (aMCI)
individuals with positive AD biomarkers (AD aMCI) from
those with negative biomarkers (non-AD aMCI) [7, 15]. In
particular, virtual tasks such as the Virtual Supermarket Test
(VST) provide an ecologically valid and practical approach
to assessing spatial navigation deficits in realistic scenarios
[16, 17]. Previous research has linked spatial navigation per-
formance to AD-specific biomarkers, including CSF AB;_4,
and phosphorylated tau,g, (p-tau,g;) levels [9, 15, 18],
biomarkers of neurodegeneration, including CSF total tau
(t-tau) and neurofilament light levels [15, 18], and atrophy in
AD-related brain regions. Atrophy of the precuneus has been
associated with egocentric navigation deficits, atrophy of the
hippocampus and entorhinal cortex (EC), particularly the
posterior hippocampus and posteromedial entorhinal cortex
(pmEC), and atrophy of the basal forebrain (BF), particu-
larly the Ch1-2 nuclei, have been associated with allocentric
navigation deficits, and atrophy of the retrosplenial cortex
(RSC) has been associated with deficits in both navigation
strategies [15, 19]. These findings highlight the importance
of spatial navigation tasks in the early diagnosis of AD and
its differentiation from other amnestic neurodegenerative
diseases, including the newly established clinical entity of
limbic-predominant age-related TDP-43 encephalopathy
(LATE) [20].

The APOE €4 allele is the most important genetic risk
factor for sporadic AD. It increases the risk of disease,
lowers the age of onset and influences the clinical phenotype
including a greater prevalence of predominant hippocampal
atrophy and possibly more pronounced memory deficits
[21-24]. Emerging evidence also suggests that the APOE
€4 allele may exacerbate impairments in certain cognitive
functions, such as spatial navigation, that are sensitive to AD
pathology [25, 26]. However, it remains unclear whether the
APOE €4 allele directly affects spatial navigation or whether
its influence is primarily mediated through amyloid- and
tau-related mechanisms, as it is associated with increased
AP and tau accumulation [27-30]. Studies have shown that
APOE €4 carriers with aMCI had worse performance than
noncarriers in both egocentric and allocentric navigation
tasks [16, 31, 32]. However, these findings have not been
confirmed by biomarkers, raising the question of whether
these deficits reflect a true genetic influence or merely a
higher prevalence of underlying AD pathology in APOE
€4 carriers. This ambiguity highlights the need for studies
that integrate spatial navigation assessments with robust AD
biomarker data to elucidate the interplay between the APOE
€4 allele, AD pathology, and spatial navigation deficits.

@ Springer

To address this knowledge gap, the present study aimed to
assess: (1) the differences in spatial navigation performance
in virtual egocentric and allocentric navigation tasks between
participants with AD aMCI, non-AD aMCI (including those
with LATE) and cognitively normal older adults, and the
potential influence of APOE genotype on these differences;
(2) the association between AD biomarkers and spatial
navigation performance, and the potential influence of
APOE genotype on this association; and (3) the association
between atrophy in selected AD-related brain regions and
spatial navigation deficits and the potential influence of
APOE genotype on this association.

Methods
Recruitment and inclusion criteria

This study included 107 participants from the Czech Brain
Aging Study (CBAS) cohort [33]. Specifically, participants
with aMCI (n= 59) were recruited at the Memory Clinic
of the Charles University, Second Faculty of Medicine,
and Motol University Hospital, Prague, Czech Republic.
They were referred to the Memory Clinic by general
practitioners and neurologists for memory complaints
reported by the participants themselves, their informants,
or health professionals. Cognitively normal (CN) older
adults (n= 48) were recruited from the University of the
Third Age, senior centers, or were relatives of memory clinic
participants and hospital staff. All participants underwent
clinical assessment, including routine blood tests, cognitive
assessment, brain magnetic resonance imaging (MRI),
spatial navigation assessment, and completed a spatial
navigation questionnaire. All participants with aMCI
underwent biomarker assessment, including measurement of
CSF AB,_4,, p-tau;g; and t-tau, or amyloid PET imaging, or
both. Participants signed an informed consent form approved
by the institutional ethics committee (number EK701/16).
Demographic data of the participants are shown in Table 1.

i. Participants with AD aMCI (n= 28) met the criteria
for aMCI [34] including subjectively perceived mem-
ory decline from a previously normal state, objective
evidence of memory impairment (i.e., > 1.5 standard
deviations [SDs] below the mean of the age-, gender-
and education-adjusted norms on any memory test),
maintaining independence in functional abilities (as
confirmed by clinical interviews), and the absence
of dementia. The participants had a positive AD bio-
marker signature. Specifically, 18 participants had low
levels of CSF Af,_4, and 19 participants had a positive
visual reading of the flutemetamol (18 F) PET scan.
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Table 1 Demographic, genetic, cognitive, neuroimaging and biomarker characteristics

CN (n=48) non-AD aMCI (n=31) AD aMCI (n=28) Total memory F/X? P
clinic cohort (n=
107)
Demographic characteristics
Age (years) 68.88 (5.39) 74.42 (8.23)* 73.64 (5.15)* 71.73 (6.75) 9.08 < 0.001
Women, n (%) 40 (83) 13 (42)* 18 (64) 71 (66) 14.53 < 0.001
Education (years) 16.17 (1.95) 15.26 (2.59) 14.57 (3.06)* 15.49 (2.53) 3.88 0.024
MMSE (score) 29.42 (0.85) 27.39 (1.98)* 26.54 (2.01)* 28.07 (2.01) 3349 <0.001
Genetic characteristics

APOE ¢4 carriers (%) 12 (25) 6(19) 17 (61)*® 35(33) 13.79 0.001
Cognitive characteristics
GDS-15 (score) 0.94 (1.69) 3.00 (2.36)* 2.29 (2.36) 1.87 (2.50) 4.95 0.009
BAI (score) 5.21 (4.50) 7.97 (7.42) 6.71 (6.15) 6.40 (5.96) 1.72 0.184
AVLT 1-5 (score) 57.19 (7.06)  36.24 (6.37)* 32.57 (6.97) 45.71 (13.24) 87.03 < 0.001
AVLT 30 (score) 11.94 (2.04) 4.69 (1.97) 2.76 (3.02)*° 7.83 (4.68) 118.73 < 0.001
TMT A (seconds) 38.99 (11.59) 48.43 (22.17) 57.94 (31.37) 46.68 (22.59) 3.05 0.052
TMT B (seconds) 84.22 (32.59) 145.70 (63.87)* 154.57 (88.28)* 120.44 (68.55) 7.16 0.001
COWAT (score) 49.27 (10.30) 42.52 (12.73)* 42.89 (7.71)* 45.64 (10.90) 4.49 0.014
ROCFT-C (score) 3147 2.64) 27.77 (4.81)* 25.75 (5.88)* 28.90 (4.94) 10.56 < 0.001
ROCFT-R (score) 19.56 (5.86)  10.55 (6.54)* 7.05 (6.16)* 13.68 (8.19) 27.17 <0.001
DSF (score) 9.42 (2.29) 8.00 (1.44)* 8.96 (2.05) 8.89 (2.08) 3.04 0.052
DSB (score) 6.90 (2.37) 5.48 (1.67)* 5.64 (1.70) 6.16 (2.12) 341 0.037
CDT (score) 15.40 (1.20) 14.94 (1.53) 13.46 (3.26)" 14.76 (2.15) 7.26 < 0.001
SVF Animals (score) 28.10 (5.64) 21.61 (4.75)* 19.54 (4.42)* 23.98 (6.33) 20.29 < 0.001
BNT (score) 28.23 (1.65) 26.65 (3.18) 25.11 (3.04)*° 26.95 (2.84) 9.20 < 0.001
Neuroimaging characteristics®
Hipp?ﬁampus posterior right (volume, 1.26 (0.14) 1.10 (0.22)* 1.05 (0.20)* 1.16 (0.20) 942 <0.001

cm”)
Hipp30<:§1mpus posterior left (volume, 1.32 (0.17) 1.14 (0.23)* 1.11 (0.17)* 1.21 (0.21) 8.57 < 0.001

cm”)
pmEC right (volume, cm?) ¢ 0.36 (0.04) 0.34 (0.05) 0.31 (0.06)* 0.34 (0.05) 8.56 0.033
pmEC left (volume, cm?) ¢ 0.40 (0.04) 0.36 (0.05) 0.35 (0.05)* 0.37 (0.05) 8.22 0.004
BF Ch1-2 (volume, cm®) ¢ 0.11 (0.02) 0.09 (0.03)* 0.10 (0.02) 0.10 (0.02) 4.96 0.009
Precuneus right (thickness, mm) 2.32 (0.13) 2.19 (0.22)* 2.15(0.18)* 2.24 (0.18) 7.87 < 0.001
Precuneus left (thickness, mm) 2.27 (0.12) 2.18 (0.21)* 2.10 (0.17)* 2.20 (0.18) 9.11 <0.001
Retrosplenial cortex right (thickness, 2.29 (0.13) 2.17 (0.20)* 2.17 (0.15) 2.23(0.17) 6.01 0.003

mm)
Retrosplenial cortex left (thickness, mm) 2.26 (0.12) 2.16 (0.22)* 2.17 (0.15)* 2.21(0.17) 3.75 0.027
Biomarker characteristics
CSF amyloid-B,_4, (pg/ml)® N/A 1166.77 (330.16) 468.91 (84.46)° 796.03 (422.02) 97.13 < 0.001
CSF p-taug; (pg/ml)* N/A 67.47 (80.33) 125.00 (61.28)° 98.03 (75.52) 6.87 0.014
CSF total tau (pg/ml)* N/A 366.25 (238.65) 576.81 (238.92)°  474.93 (258.00) 6.99 0.013
Amyloid PET positive, n (%) N/A 0/19 (0) 19/19 (100)® 19/38 (50) 38.00 < 0.001

Values are mean (SD) except for gender, APOE genotype, and amyloid PET positivity. F/X* and P values refer to the main effect across all

groups

a-bSignificant differences between the groups based on post hoc analyses

#Compared to the CN group
b

as compared to the non-AD aMCI group

“Based on a sample with complete brain imaging data (n= 102) with CN (n= 46), non-AD aMCI (n= 29) and AD aMCI (n= 27)
4Normalized to estimated total intracranial volume
°Based on a sample with CSF data (n= 34) with non-AD aMCI (n= 16) and AD aMCI (n= 18) participants

"Based on a sample with amyloid PET data (n =39) with non-AD aMCI (n= 20) and AD aMCI (n = 19) participants
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Table 1 (continued)

CN cognitively normal; AD aMCI amnestic mild cognitive impairment with positive Alzheimer’s disease biomarkers; non-AD aMCI amnestic
mild cognitive impairment with negative Alzheimer’s disease biomarkers; MMSE Mini-Mental State Examination; APOE Apolipoprotein E;
GDS-15 Geriatric Depression Scale 15-item version; BAI Beck Anxiety Inventory; LM Logical Memory; AVLT Rey Auditory Verbal Learning
Test; AVLT 1-5 trials 1-5 total; RAVLT 30 delayed word recall after 30 min; TMT A and B Trail Making Tests A and B; COWAT Controlled Oral
Word Association Test (Czech version with letters N, K and P); ROCFT-C Rey-Osterrieth Complex Figure Test-the Copy condition; ROCFT-R
Rey-Osterrieth Complex Figure Test-the Recall condition after 3 min; DSF Digit Span Forward total score; DSB Digit Span Backward
total score; CDT Clock Drawing Test-Cohen’s scoring; SVF Semantic Verbal Fluency; BNT Boston Naming Test (30-item version); pmEC

posteromedial entorhinal cortex; BF Chli-2 basal forebrain Ch1-2 nuclei; CSF cerebrospinal fluid

Of these, 9 participants had both low CSF AP, 4, lev-
els and a positive flutemetamol (18 F) PET scan.

ii. Participants with non-AD aMCI (n= 31) met the
criteria for aMCI [34] and had a negative AD
biomarker signature. Specifically, there were 16
participants with normal levels of CSF Af, 4, and
20 participants with negative visual reading of the
18 F-flutemetamol (18 F) PET scan. Of these, 5
participants had both normal CSF Ap,_,, levels
and a negative flutemetamol (18 F) PET scan. 14
participants met the criteria for probable LATE [35]
and 8 participants had isolated memory impairment
without pronounced hippocampal atrophy and
could thus have primary age-related tauopathy. The
remainder of participants with non-AD aMCI did not
fit into any diagnostic category.

iii. CN participants (n= 48) reported no cognitive
complaints and had normal performance on
standardized cognitive tests, adjusted for age,
gender, and education. These participants had no
family history of AD or other types of dementia in
first-degree relatives. In addition, these participants
showed no evidence of medial temporal lobe (MTL)
atrophy on MRI, as visually assessed by a trained
cognitive neurologist. These criteria were introduced
to minimize the risk of including participants who
may be at increased risk of AD, such as those with
subjective cognitive decline, hippocampal atrophy or
a positive family history of AD.

Exclusion criteria

Participants with low visual acuity, gait disturbances,
severe white matter hyperintensities on MRI (Fazekas
score > 2 points), primary brain disorders that may
affect cognitive functions, including neurological and
psychiatric disorders (e.g., epilepsy, multiple sclerosis, a
history of traumatic brain injury or stroke, and a history
or current major psychiatric disorder), and a history of
alcohol or drug abuse were not included in the study.

@ Springer

Spatial navigation assessment
Virtual supermarket test

Spatial orientation was assessed using an ecologically valid
VST, which consisted of 14 video trials presented from a
first-person perspective (Fig. 1) [13, 14]. Participants were
instructed to imagine that they were standing behind and
pushing a shopping trolley as they walked through the super-
market. In each trial, the participants travelled to a desig-
nated end location within the supermarket, making a series
of 90 degree turns along the way. All trials started from the
same start location, but followed different routes to reach
the designated end locations. The trials were standardized
in terms of both length and the number of turns (Sect. 1
lasted 20 s and included 3 turns, while Sect. 2 lasted 40 s and
included 5 turns). Section 1, consisting of trials 1 to 7, was
administered first, followed sequentially by Sect. 2, consist-
ing of trials 8 to 14 (Fig. 2).

Fig. 1 Screenshots of the Virtual Supermarket Test. The video began
at the start location and followed various routes to a specified end
location. Participants saw the shopping trolley in front of them as
they walked through the supermarket aisles
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Fig.2 A spatial map of the supermarket, with the start location
marked by an"X". This map shows the correct positions of all 14 end
locations evaluated in the Allocentric Location Task. The trials were
standardized in terms of both length and the number of turns (Sec-
tion 1 lasted 20 s and included 3 turns, while Section 2 lasted 40 s
and included 5 turns). Section 1, consisting of trials 1-7, was admin-
istered first, followed sequentially by Section 2, consisting of trials
8-14

At the end of each trial, participants were asked to
perform three tasks after reaching the designated end
location. In the first task, the Egocentric Heading Task,
the participants were instructed to indicate the direction of
the start location. This was prompted by the on-screen text
“In which direction is the start location?”. It is important
to note that an accurate judgement of the start location
could not be made by viewing it from the end location.
This task required participants to perceive egocentric body
rotations while navigating the supermarket. Participants
were instructed to indicate only general directions, which
involved distinguishing between two main components: left/
right and front/back. A circular diagram representing a 360
degree field of view was provided. This diagram was divided
into four quadrants (i.e., left/front, right/front, right/back,
and left/back), giving the participants a total of four options
to choose from.

In the second task, the Allocentric Location Task,
participants were presented with a paper map of the
supermarket, with the start location marked by an"X".
They were asked to indicate the end location on each trial.
The third task, the Allocentric Heading Task, required
participants to indicate their final heading direction at the
end location on the paper supermarket map. Both the second
and third tasks required participants to translate their current
perspective into map coordinates and orientation, thereby
engaging allocentric spatial representations.

In the Egocentric and Allocentric Heading Tasks,
participants received 1 point for each correct response
and 0 points for incorrect responses. The mean score

across 14 trials was calculated for each participant. The
resulting overall mean task score ranged from O to 1, with
higher scores indicating better task performance. For the
Allocentric Location Task, performance was quantified
as the distance error between the participant's indicated
location and the correct location on the paper map of
the supermarket. The mean distance error, measured in
millimeters, was calculated over 14 trials.

No feedback was provided during the trials, and the test
did not require any prior training. A short introductory
video trial (10 s, 2 turns) was administered prior to testing
to familiarize participants with the virtual supermarket
environment and to ensure understanding of task
instructions. Participants were told that they would watch a
series of short video clips simulating movement to different
“end” locations within the supermarket, and that on reaching
each end location, they would have to make a directional
judgement about the initial start location. Participants
were explicitly instructed that the start location would
remain fixed across all trials and that they should maintain
orientation to this start location throughout each video.

Santa Barbara Sense of Direction Scale

The Santa Barbara Sense of Direction Scale (SBSOD) was
administered to participants prior to the spatial navigation
assessment to measure self-reported spatial navigation
ability [19]. The SBSOD was originally developed by
Hegarty and colleagues [36] and consists of 15 statements
that assess an individual’s spatial navigation ability in real-
life situations. Sample statements included, “I very easily get
lost in a new city” and “I am very good at reading maps.”
Participants responded to each statement on a Likert scale
ranging from 1 (strongly agree) to 7 (strongly disagree)
[37]. Positively worded items, such as “I am very good
at giving directions,” were reverse coded; for example, a
response of 1 (strongly agree) was converted to a score of 7.
Consequently, higher scores across all responses indicated
greater self-reported navigation ability. The composite score
was calculated as the average of all responses.

Cognitive assessment

The following tests were used to assess cognitive function:
(1) the Mini-Mental State Examination (MMSE) for global
cognitive function [38]; (2) the Rey Auditory Verbal
Learning Test (RAVLT)—trials 1-5 and 30-min Delayed
Recall trial (RAVLT-30) for verbal memory [39]; (3)
the Rey—Osterrieth Complex Figure Test (ROCFT) — the
Recall condition after 3 min for nonverbal memory [40];
(4) the ROCFT - the Copy condition [40] and the Clock
Drawing Test (CDT) [41] for visuospatial function; (5) the
Trail Making Test (TMT) B [42] and the Phonemic Verbal
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Fluency—Iletters N, K, P for executive function [43]; (6)
the Forward and Backward Digit Spans and the TMT A
for attention and working memory [42]; and (7) the Boston
Naming Test, a 30 odd-items version (BNT-30), and the
Categorical Verbal Fluency—Animals for language [39].
The maximum time to complete TMT A and B was 180 s and
300 s, respectively, and those who were unable to complete
the TMTs in a given time were scored as 181 s and 301
s, respectively. The self-report Geriatric Depression Scale,
a 15-item version [44], and the Beck Anxiety Inventory
[45] were administered to assess depressive and anxiety
symptoms. Table 1 shows the cognitive characteristics of
all study participants.

APOE genotyping

DNA was extracted from blood (9 ml) and collected in
ethylenediaminetetraacetic acid tubes using a commercial
DNA extraction kit (Qiagen) according to the manufacturer's
instructions. Genotyping was performed using the
Idaho Technology protocol (Luna Probes Genotyping
Apolipoprotein E Multiplexed Assay) for high resolution
melting analysis (HRM) [32, 46]. APOE genotype data were
available for all participants, who were further stratified into
APOE €4 carriers (n= 35) and noncarriers (n= 72) based on
the presence of at least one APOE €4 risk allele. APOE €4
carriers were €4 heterozygotes (n= 30) and €4 homozygotes
(n=15). Table 1 shows the genetic characteristics of all study
participants.

CSF AD biomarker analysis

CSF samples were obtained by lumbar puncture in the supine
position. Samples were collected in 8 mL polypropylene
tubes, gently mixed, centrifuged, divided into aliquots,
and stored at — 80 °C until analysis. Stored CSF samples
were thawed and vortexed prior to biomarker analysis.
Procedures for CSF collection, processing, and storage
followed European guidelines [47]. CSF AP, 4, p-taug,,
and t-tau levels were analyzed using commercial enzyme-
linked immunosorbent assays (ELISA) (Euroimmun) in
the CSF laboratory of the Institute of Immunology and the
Department of Neurology, Second Faculty of Medicine,
Charles University, and Motol University Hospital. Cutoff
values were set at less than 665 pg/mL for AB, 4,, more
than 48 pg/mL for p-tau,g;, and more than 358 pg/mL
for t-tau [15]. These cutoffs were based on the internal
receiver-operating characteristic (ROC) analyses and were
validated against amyloid PET status in the CBAS with 79%
agreement and areas under the ROC curves (AUCs) of 85
[48]. Table 1 shows the biomarker characteristics of study
participants.

@ Springer

Amyloid PET imaging

Dual-phase amyloid PET was used to assess Af positivity.
PET images were acquired using a Biograph 40 TrueV
HD PET/CT scanner (Siemens Healthineers AG) at the
Department of Nuclear Medicine and PET Centre, Na
Homolce Hospital. The participants received a single
intravenous dose of flutemetamol (18 F; Vizamyl, GE
Healthcare). Noncontrast, low-dose CT brain images were
obtained for attenuation correction prior to the PET scans.
A PET list-mode acquisition was performed in two phases:
early (perfusion) and late (amyloid). The early-phase
images were acquired at the time of flutemetamol (18 F)
administration for 8 min and rebinned into dynamic datasets
of 2 X 4 min for motion control. The late-phase images were
acquired 90 min after flutemetamol (18 F) administration for
a total of 10 min (2 X 5 min). The flutemetamol (18 F) PET
images were visually read as positive or negative by a board-
certified nuclear medicine specialist using the GM-EDGE
method [49].

Magnetic resonance imaging

MRI images were acquired using a Siemens Avanto 1.5
T scanner (Siemens AG) with a 12-channel phased-array
head coil. High-resolution three-dimensional T1-weighted
(3D T1w) Magnetization-Prepared Rapid Gradient Echo
(MPRAGE) sequences were used with the following
parameters: repetition time (TR) =2000 ms, echo time (TE)
=3.08 ms, inversion time (TI) = 1100 ms, flip angle =15°,
192 continuous partitions, slice thickness =1.0 mm, and
in-plane resolution =1 mm (91). All images were visually
inspected by a radiologist to exclude participants with
tumours, cortical infarcts, hydrocephalus, or other major
brain pathology. A trained data analyst performed quality
control assessments to identify excessive motion artefacts.
The 3D T1w images of sufficient quality were available for
102 participants, including CN (n = 46), non-AD aMCI (n=
29) and AD aMCI (n = 27) participants.

We used a previously published processing pipeline based
on a CBAS template to measure hippocampal head, body
and tail volumes, anterolateral EC and pmEC volumes,
and estimated total intracranial volume (eTIV) [15, 50,
51]. The skull-stripped 3D T1w images were processed
using statistical parametric mapping (SPMS8, Wellcome
Trust Center for Neuroimaging) [52] and the VBMS-
toolbox (http://dbm.neuro.uni-jena.de/vbm/) implemented
in MatLab R202b (MathWorks, Natick, MA). We used
a CBAS template based on manual segmentation of the
hippocampal and EC subregions aligned in MNI space,
derived from 26 cognitively normal older adults recruited
from the CBAS [33]. The CBAS template was registered
and diffeomorphically warped into each participant's space
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using the Advanced Normalization Tools package (http://
stnava.github.io/ANTSs/). The resulting warp field was used
to transform ROI masks of individual hippocampal and
EC subregions into the participants'space. The ROI masks
were then masked with a grey matter ROI and their volumes
were extracted. Hippocampal body and tail volumes were
summed to form posterior hippocampal volume. To reduce
the number of multiple comparisons, only volumes of the
posterior subregions of the hippocampus and EC (i.e., the
posterior hippocampus and pmEC), which are most closely
associated with spatial navigation [53, 54], were used in the
statistical analyses.

The FreeSurfer image analysis suite (v7.1.0; http://surfer.
nmr.mgh.harvard.edu/) was used to measure thickness of
the right and left precuneus, based on the designation in
the Desikan—Killiany atlas [55]. The thickness of the RSC,
considered as a fused region, was derived as the area-
weighted mean thickness of the ventral portions of the
isthmus cingulate and posterior cingulate regions from the
Desikan—Killiany atlas, based on the previous functional
[56, 57] and anatomical [58] studies of the RSC.

BF volume was measured according to the published
protocol [59-61]. MRI data were processed using SPM8
and the VBMS8-toolbox implemented in MatLab R2023b.
As in previous studies [6, 50, 51], we used a mask of the BF
derived from a cytoarchitectonic map of the BF cholinergic
nuclei aligned in MNI space, derived from combined
histology and MRI of a postmortem brain [60, 62]. The mask
included BF subregions corresponding to the Ch1-2, Ch3,
Ch4p (posterior), Ch4ai (anterior and intermediate) nuclei
and the nucleus subputaminalis. We nonlinearly registered
images into the MNI152 template and used the resulting
DARTEL parameters [62] to warp the cytoarchitectonic
map into individual brain scans. Volumes of the right and
left BF subregions were extracted and averaged across
both hemispheres. To reduce the number of multiple
comparisons, only volumes of the BF Ch1-2 nuclei, which
are most closely associated with spatial navigation [6, 63],
were used in the statistical analyses.

All volumes were normalized to eTIV using the
previously published regression formula [64, 65]. The
outputs were visually inspected for image and segmentation
quality by an experienced reader blinded to clinical and
biomarker data. Table 1 shows the biomarker characteristics
of study participants.

Statistical analysis

All analyses were performed in SPSS (version 28.0, IBM).
The R software (R Foundation for Statistical Computing,
https://www.rproject.org) was used to generate violin plots.
The GLIMMPSE software (General Linear Mixed Model
Power and Sample Size, http://glimmpse.samplesizeshop.

org) was used to calculate power [66]. Statistical significance
was set at two-tailed p < 0.05. Descriptive characteristics
are presented as means and SDs for continuous variables
and proportions for categorical variables. Data with non-
normal distribution (i.e., AD biomarker levels) were log-
transformed. Group differences in demographic and genetic
characteristics were analyzed using one-way analysis
of variance and chi-square tests. Group differences in
cognitive performance, self-reported navigation ability,
AD biomarkers, and volumes/thicknesses of selected brain
regions were analyzed using general linear models (GLM).
All GLM analyses were controlled for age and gender.
The GLM analyses for cognitive performance and self-
reported navigation ability were also controlled for years
of education.

Group differences in spatial navigation performance
for each VST task were analyzed using separate linear
mixed models (LMM) with intercept and participant
identifier as random effects, navigation trials as a repeated
measure, group status, section and group status by section
interaction as fixed factors, and spatial navigation score as
the outcome measure, controlling for age, gender, and years
of education. The supplementary LMM analyses with the
non-AD aMCI group restricted to participants with LATE
were also performed. Next, the MMSE score was added
to the LMM analyses to account for differences in global
cognition. To examine the potential effect of APOE genotype
on group differences in spatial navigation performance and
self-reported navigation ability, APOE genotype (1 or 2
€4 alleles vs. no &4 alleles) and the interaction terms with
APOE genotype (i.e., group status by APOE genotype,
section by APOE genotype and group status by section by
APOE genotype for spatial navigation performance and
group status by APOE genotype for self-reported navigation
ability) were included in the LMM and GLM analyses,
respectively. All post hoc tests were adjusted for multiple
comparisons using false discovery rate (FDR) correction.
To examine differences between APOE €4 carriers and
noncarriers in spatial navigation performance on each
VST task in participants with positive and negative AD
biomarkers, LMM with intercept and participant identifier
as random effects, navigation trials as a repeated measure,
APOE genotype as a fixed factor, and spatial navigation
score as the outcome measure, controlling for age, gender,
and years of education were used separately for the AD
aMCI and non-AD aMCI groups. The power to detect
significant interactions was calculated using a conditional
power method, the Lawley—Hotelling trace test, a type I error
rate of 0.05, data from previous VST studies [13, 14, 16],
and a sample size of 107 participants. ROC analysis was
used to assess the accuracy of each VST task to discriminate
between the groups. AUCs with 95% Cls are reported.
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The association of AD biomarkers, regional brain
measures, and self-reported navigation ability with spatial
navigation performance in each VST task was assessed using
separate LMMs with intercept and participant identifier as
random effects, navigation trials as a repeated measure,
SBSOD score, level of each CSF biomarker, or volume/
thickness of each selected brain region as a fixed factor, and
spatial navigation score as the outcome measure, controlling
for age, gender, and years of education. To examine the
potential effect of APOE genotype on these associations,
APOE genotype and the interaction term with the APOE
genotype (i.e., a given fixed factor by APOE genotype) were
included in the LMM analyses. The results are presented
as unstandardized regression coefficients (f) with 95% Cls.
FDR correction was used to adjust for multiple comparisons.

Results
Group characteristics

Table 1 shows the demographic, genetic, cognitive,
neuroimaging and biomarker characteristics. The AD aMCI
group was older, less educated and had lower MMSE scores
than the CN group. The non-AD aMCI group was older, had
a lower proportion of women, and had lower MMSE scores
than the CN group. There were no significant differences
in demographic characteristics between the AD aMCI and
non-AD aMCI groups. The AD aMCI group had a higher
proportion of APOE €4 carriers than the non-AD aMCI
and CN groups (61% vs. 19% and 25%, respectively). Both
aMCI groups performed worse than the CN group on most
cognitive tests, as expected. The AD aMCI and non-AD
aMCI groups performed similarly on most cognitive tests,
but the latter group performed better on the RAVLT-30,
BNT-30, and CDT. The AD aMCI and non-AD aMCI groups
had similar volumes/thicknesses of selected brain regions
that were smaller than those in the CN group. The AD
aMCI group had lower levels of AB,_4, and higher levels of
p-tau;g; and t-tau in the CSF than the non-AD aMCI group.

Spatial navigation performance, self-reported
navigation ability and the effect of APOE genotype

Figure 3 and Table 2 show the results of the differences
in spatial navigation performance between the groups and
Table 3 shows the results of the ROC analysis. On the Ego-
centric Heading Task, both aMCI groups performed worse
than the CN group. There were no significant differences
between the AD aMCI and non-AD aMCI groups. The
effects of section and the interaction between section and
group status were not significant. The task discriminated
the AD aMCI and non-AD aMCI groups from the CN group

@ Springer

with AUCs of 0.77 and 0.71, respectively. On the Allocentric
Location Task, both aMCI groups performed worse than the
CN group and the non-AD aMCI group was more accurate
than the AD aMCI group. The effects of section and the
interaction between section and group status were not sig-
nificant. The task discriminated the AD aMCI and non-AD
aMCI groups from the CN group with AUCs of 0.84 and
0.71, respectively, and from each other with an AUC of 0.71.
On the Allocentric Heading Task, both aMCI groups per-
formed worse than the CN group and there were no signifi-
cant differences between the AD aMCI and non-AD aMCI
groups. However, overall performance was more accurate
in Section 1 than in Section 2 and there was a significant
interaction between section and group status, showing that
the non-AD aMCI group was more accurate in Section 2
than the AD aMCI group. The task discriminated the AD
aMCI and non-AD aMCI groups from the CN group with
AUCs of 0.87 and 0.75, respectively, and from each other
in Section 2 with an AUC of 0.67. Supplementary analyses
with the non-AD aMCI group restricted to participants with
LATE showed that the LATE aMCI group was more accu-
rate than the AD aMCI group on the Allocentric Location
Task (see Table S1). Controlling for MMSE in the main
analyses did not affect the results, except that there were
no significant differences between the non-AD aMCI and
CN groups on the Allocentric Location Task (see Table S2).
Table 4 shows the results of the effect of APOE genotype
on group differences in spatial navigation performance in
the main analyses. We observed no significant association
between APOE genotype, the two-way interactions of group
status by APOE genotype and section by APOE genotype,
or the three-way interaction of group status by section by
APOE genotype and spatial navigation performance on any
of the VST tasks. The power to detect a significant group
status by APOE genotype interaction was > 0.805. Table 5
shows the results of the effect of APOE genotype on spatial
navigation performance for the AD aMCI and non-AD aMCI
groups. No significant differences were observed between
the APOE €4 carriers and noncarriers on any of the VST
tasks within the AD aMCI and non-AD aMCI groups.

There were no significant differences in self-reported
navigation ability between the groups and no significant
association between APOE genotype or the interaction of
group status by APOE genotype and self-reported navigation
ability (see Table 6). There was no significant association
between self-reported navigation ability or the interaction
of self-reported navigation ability by APOE genotype and
spatial navigation performance on any of the VST tasks (see
Table 7).
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Associations of AD biomarkers and regional brain
measures with spatial navigation performance
and the effect of APOE genotype
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performance on each of the VST tasks are shown in
Tables 8 and 9, respectively. CSF AB,_4,, p-tau;g; and t-tau
levels were associated with spatial navigation performance
on the Allocentric Location Task. CSF t-tau levels were
associated with spatial navigation performance on the
Allocentric Heading Task. No significant association was

@ Springer



SIOYIRWOIq ISBASIP S JOWIAYZ[Y 2ANEIoU (3IM Judureduur
9ANTUS0O PIIW JNSAUWE JHAP (JV-UOU SID[ILWOIq SBASIP S JOWISYZ[Y 2AnIsod yim juswnrredwr aAnTuSoo priw onssuwe [HWP (JV ewiou K[ANIUS0d A {[eAISIUT 90USPYUOD %G6 [D %S6

s0y 150d

UONO01I09 (Y() 2IeX KIOA0ISIP as[e] Jo)Je JuedYTuSIS dIom P[oq Ul Sanfea d "199JJ9 UTEW ) 0} JJoI SAN[BA J PUE f

Journal of Neurology (2025) 272:438

438 Page 10 of 24

IDNE AV sA JDINE

¥20°0 SYTO-L10°0 I1€1°0 (v-uou 7 uonodg
IONE
100°0 > 9LY0-65T°0 L9€°0 AV 'sa ND g uonoag
[OE QV-uou
100°0 > LYE0-921°0 9€T0 "SA ND T UO10as
IDINE AV 'sA IDINE
$65°0 €770 0178070~ 0£0°0 v-uou : uonodg
IONE
100°0 > 61€0-201°0 0120 AV "sA NO :[ uonoag
[OE QV-uou
100°0 062°0-0L00 081°0 "SA ND (] UOI0aS €200 0T8'¢  UONIAg 4 sIsousel
T uonosg
100°0 > 78C°0-660°0 061°0 "SA | UONOAG 10070 > L8L91 uondeg
IOWE av
L6070 9LI'0 0 G100 — 180°0 "SA IDINE (V-UON
10070 > T8€°0-S61°0 68C°0 IONE AV 'sA ND
yse)
10070 > S0€0—CIT°0 80C°0 DN QV-UOU "SA ND 10070 > 878°61 sisouSelq  SUIPEAY OLNUAO[Y
€78°0 S6I°0  UONIAS , sisoudeiq
70L°0 910 LIREN
IDNE aV
000 6LY'S— 0 169+T — 980°S1 - "SA [DINE QV-UON
1000 > 8T6'LT — 01 0SL9E — 6£€°LT — ION® AV 'SA ND
ysey
v10°0 $8CT— 01 IT6 1T~ €6TTI—  IDNE QV-Uou 'sA ND 10070 > ¥L9'91 SISOUSEI(  UONEDO[ JLNUAO[[Y
€61°0 [S9T  UONDAS , SISOUTEI(
TIT0 6551 uonoeg
IOE AV
€180 LTI0 0100170~ ¥10°0 “SA [DIN® QV-UON
10070 > 60£°0-L80°0 861°0 IOE AV 'sA ND
ysey
2000 662°0—0L00 ¥81°0 [DNE (1V-UOU "SA ND 1000 > 099°L sisouSelq  Surpeay onuedosy
poued 1D %S6 QOUSIRYIP UBSIN SO[qeLIEA d A

douewioytad uonediaeu [eneds g ajqel

pringer

AQs



Journal of Neurology (2025) 272:438 Page 11 0f 24 438

observed between AD biomarkers and spatial navigation
performance on the Egocentric Heading Task. There was
no significant association between the interaction of any
AD biomarker by APOE genotype and spatial navigation
performance on any of the VST tasks.

The associations of regional brain measures and the
interaction of regional brain measures by APOE genotype
with spatial navigation performance on each of the VST
tasks are shown in Tables 10, and 11, respectively. Volumes/
thicknesses of all selected brain regions were associated
with spatial navigation performance on the Allocentric
Location Task. Volumes/thicknesses of all selected MTL
regions and precuneus thickness were associated with spatial
navigation performance on the Allocentric Heading Task.
No significant association was observed between volumes/
thicknesses of selected brain regions and spatial navigation
performance on the Egocentric Heading Task. There was no
significant association between the interaction of volume/
thickness of any selected brain region by APOE genotype
and spatial navigation performance on any of the VST tasks.

95% Cl1
< 0.001 0.635-0.861
< 0.001 0.805-0.959
0.019 0.528-0.807

Allocentric heading task —

Sect. 2
AUC P

95% Cl1
0.001 0.575-0.818 0.748

< 0.001 0.653-0.879 0.882
0.357 0.421-0.718 0.667

Allocentric heading task —

Sect. 1

AUC P

95% Cl1

Discussion

< 0.001 0.632-0.870 0.697
< 0.001 0.780-0.950 0.766
0.037 0.509-0.791 0.570

The aim of this study was to investigate the effect of
APOE genotype on spatial navigation in the context of AD
pathology. As expected, AD aMCI participants showed
worse spatial navigation performance than the non-AD
aMCI participants, particularly on allocentric navigation
tasks, and both aMCI groups performed worse than the CN
group. APOE €4 carriers were overrepresented in the AD
aMCI group, but APOE genotype had no effect on baseline
spatial navigation deficits. Instead, allocentric navigation
deficits were primarily associated with AD biomarkers
and atrophy in AD-related brain regions, regardless of
APOE genotype. These findings suggest that the previously
reported effect of the APOE €4 allele on spatial navigation is
more likely due to its contribution to Ap and tau pathology.
Importantly, self-reported navigation ability did not differ
between groups, reinforcing the need for objective spatial
navigation tasks, such as the VST for early detection of
cognitive changes associated with AD.

The Allocentric Location Task showed the highest dis-
criminative power between AD and non-AD aMCI par-
ticipants and was particularly effective in identifying AD-
related allocentric navigation deficits. The Allocentric
Heading Task showed weaker discrimination between these
participants, with differences only apparent on longer routes.
The observed differences remained significant after control-
ling for global cognitive function. The Allocentric Location
Task also discriminated between participants with AD aMCI
and LATE aMCI, a subgroup of non-AD aMCI participants.
These findings highlight the usefulness of allocentric tasks

Allocentric heading task

AUC P

95% Cl1
0.003 0.569-0.842 0.650

< 0.001 0.599-0.829 0.751
< 0.001 0.746-0.938 0.865

Allocentric location task
AUC P

95% Cl1
0.910 0.359-0.658 0.705

0.001 0.588-0.831 0.714
< 0.001 0.668-0.879 0.842

Egocentric heading task

0.709
0.773

AUC P

AUC area under the curve; 95% CI 95% confidence interval; CN cognitively normal; AD aMCI amnestic mild cognitive impairment with positive Alzheimer’s disease biomarkers; non-AD aMCI

amnestic mild cognitive impairment with negative Alzheimer’s disease biomarkers

Table 3 ROC analysis of spatial navigation performance

Non-AD aMCI vs. AD aMCI  0.509

CN vs. non-AD aMCI
CN vs. AD aMCI
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Table 5 Spatial navigation
performance and the effect of
APOE genotype in AD aMCI
and non-AD aMCI groups

AD aMCI group  Non-AD aMCI
group

F P F P

Egocentric heading task
Allocentric location task

Allocentric heading task

APOE (g4 carriers vs. non-carriers) 0.003 956 2.460 129
APOE (g4 carriers vs. non-carriers) 0.060 .809 0.390 538
APOE (€4 carriers vs. non-carriers) 1.445 241 0.120 7132

F and P values refer to the main effect

AD aMCI, amnestic mild cognitive impairment with positive Alzheimer’s disease biomarkers; non-AD
aMCIL, amnestic mild cognitive impairment with negative Alzheimer’s disease biomarkers; APOE

apolipoprotein E

in detecting early AD and are consistent with a previous
study showing greater allocentric navigation deficits in AD
aMCI than in non-AD aMCI participants in a real-world
task based on planning novel routes [7], and a recent study
showing allocentric navigation deficits in AD aMCI, but not
in non-AD aMCI, participants in a virtual city with 5 inter-
sections [15]. Allocentric navigation deficits have also been
found in individuals with preclinical AD in virtual environ-
ment studies, where CN participants with low CSF Ap,,
levels correctly identified fewer landmark locations out of
the 20 available than those with high CSF Af,, levels [8,
9]. Allocentric navigation tasks may further identify indi-
viduals with AD in the dementia stage, as shown in a study
using the VST in which AD participants performed worse
on the Allocentric Heading Task, but not on the Allocen-
tric Location Task, than participants with frontotemporal
lobar degeneration (FTLD) [14]. The results of these studies
suggest that the cognitive demands of specific allocentric
navigation tasks are crucial for the discriminative potential
of the tasks and should be tailored to the specific stages of
neurodegenerative diseases.

On the Egocentric Heading Task, non-AD aMCI and AD
aMCI participants performed worse than CN participants,
but no significant differences were found between the aMCI
groups. Previous research has shown differences in ego-
centric navigation between AD aMCI and non-AD aMCI
individuals in virtual [15] and real-world [7] route learn-
ing tasks. Studies using the VST found that the Egocentric
Heading Task discriminated between participants with AD
and FTLD dementia, but they did not use biomarkers to
define the underlying pathology [13, 14]. In a recent study,
worse performance on the Egocentric Heading Task was
shown to be more specific for vascular cognitive impair-
ment than for cognitive impairment due to AD [67]. The
lack of differences between AD aMCI and non-AD aMCI
participants in the VST Egocentric Heading Task in the cur-
rent study may be due to the limitations of the task and the
absence of control for regional vascular lesions (e.g., white
matter hyperintensities). In this task, there are four options
to indicate egocentric heading direction, which may not have

@ Springer

been sufficient to detect differences between AD aMCI and
non-AD MCI individuals. The measurement of response
angles on a continuous scale may be useful in future studies
to improve the discrimination accuracy of the task. Future
studies should also measure and control for regional white
matter hyperintensities when examining differences in ego-
centric navigation tasks between AD aMCI and non-AD
MCI individuals.

This is the first study to examine whether APOE genotype
influences spatial navigation differences between biomarker-
defined AD aMCI and non-AD aMCI participants. Our
results showed that APOE €4 allele had no significant effect
on allocentric or egocentric spatial navigation performance
at baseline. Previous studies have reported greater spatial
navigation deficits in aMCI APOE €4 carriers than in
noncarriers, with a dose-dependent effect observed in
virtual navigation tasks [31, 32]. However, these studies
often lacked biomarker data, making it unclear whether
spatial navigation deficits were caused by the genetic risk
factor itself or by the underlying AD pathology. In CN older
adults, the APOE €4 allele appears to have only a minimal
effect on spatial cognition, as shown in a meta-analysis
and cross-sectional studies [26, 68—70], although some
individual studies suggest that this allele may be associated
worse performance on certain tasks [16, 25]. Longitudinal
studies have demonstrated the role of the APOE €4 allele in
accelerating cognitive decline in AB-positive individuals,
particularly in memory and executive function [71-73].
Our findings suggest that the APOE €4 allele does not affect
baseline spatial navigation in AD aMCI participants, but
highlight the need for longitudinal studies to explore its
potential impact on the rate of decline of spatial navigation.

Previous studies have shown that more advanced AD
pathology and neurodegeneration, as measured by CSF A,
p-tau and neurofilament light (NfL) levels, respectively, are
associated with greater spatial navigation deficits. Specifi-
cally, lower CSF Ap,_y, levels were associated with worse
allocentric and egocentric navigation in CN older adults [8,
17], higher CSF p-tau,g; levels were associated with worse
allocentric and egocentric navigation in aMCI individuals
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Table 8 Association between AD biomarkers and spatial navigation performance

Egocentric heading task Allocentric location task Allocentric heading task

p P 95% Cl1 p P 95% Cl1 p P 95% Cl1
Amyloid-f,4, 0.187 0307 -0.183t00.557 -50.849 0.003 -82.717t0-18.980 0.331 0.038  0.020 to 0.642
p-tau g, -0.105 0461 -0.392t00.183  33.989 0.013  7.848 to 60.130 -0216 0.081 —0.460to 0.028
t-tau -0213 0231 -0.570t00.144  44.782 0.002 17.687to 71.877 -0.409 0.005 -0.683t00.134

P values in bold were significant after FDR correction

P regression coefficient; 95% CI 95% confidence interval; Af;_,, amyloid-B,_4,; p-tau,g, phosphorylated tau;; ¢-tau total tau

Table 9 Associations between AD biomarkers and spatial navigation performance, and the effect of APOE genotype

Egocentric heading task Allocentric location task Allocentric heading task
p p 95% Cl1 p P 95% Cl1 p P 95% Cl1
Amyloid- Amyloid-f, 4, —-0.135 0.626 -0.700to0 -37916 0.171 —93.353 to 0.275 0.267 -0.223t0 0.772
Bian 0.430 17.522
APOE -1.079 0.334 —3.333t0 84.970 0.437 —136.027 -0.533 0.586 —2.520t0 1.453
1.176 to 305.966
Amyloid-p,_4, 0.423 0.282 -0370to0 —29.599 0.440 —107.243 0.175 0.611 —0.524 t0 0.873
* APOE 1.216 to 48.045
p-tau,g, p-tau,g, 0.144 0.527 -0.319t0 15.846 0.457 -27.319t0 -0.133 0.533 —0.564 t0 0.299
0.608 59.011
APOE 0.663 0.224 -0432t0 -53.145 0.295 —155.271 -0.003 0.995 -0.024 t0 1.018
1.759 to 48.980
p-tau,g, -0.277 0.322 -0.842t0 24.323 0.352 —28.457 to 0.013 0.959 —0.514 t0 0.540
* APOE 0.288 77.102
t-tau t-tau -0.371 0.150 —0.886t0 31.885 0.115 -8403t0 -0.558 0.013 —0.985 to -
0.144 72.173 0.130
APOE -0.765 0.403 —-2.624t0 -71.652 0.319 -216916 -1.199 0.123 —2.746 t0 0.348
1.093 to 73.611
t-tau * APOE  0.345 0.325 -0.364t0o 24.632 0.368 —30.823 to 0.468 0.114 —0.122 t0 1.058
1.054 80.087

P values in bold were significant after FDR correction

P regression coefficient; 95% CI 95% confidence interval; Af;_,, amyloid-B,_y,; p-tau,s; phosphorylated tau,g,; #-tau total tau; APOE apolipopro-
tein E

Table 10 Association between regional brain measures and spatial navigation performance

Egocentric heading task Allocentric location task Allocentric heading task

B P 95% Cl1 p P 95% Cl1 p P 95% Cl1
Hippocampus posterior 0.275 0.019 0.046 to 0.503 -27.835 0.009 —48.547t0-17.123 0.350 0.001 0.144 to 0.556

right

Hippocampus posterior left 0.272 0.018 0.048 to 0.496 -28.717  0.006 -48.961t0-8.473 0381 < 0.001 0.182to 0.581
pmEC right 1.065 0.025 0.140 to 1.991 —153.296 < 0.001 -234.306to—72.286 1.149 0.008 0.303 to 1.996
pmEC left 0.963 0.044 0.244 to 1.901 —124.729 0.004 —208.777 to — 40.681 1.303 0.003 0.456 to 2.150
BF 6 Ch 1-2 1.691 0.084 -0.230t03.613 —-203.639 0.022 —-376.997 to — 30.282 1.795 0.047 0.027 to 3.563
Precuneus right 0.117 0.354 -0.132t00.367 -46.052 <0.001 -66.927t0-25.178 0.271 0.019 0.046 to 0.497
Precuneus left 0.164 0201 -0.089t00.417 -47.476 <0.001 -68.676t0—-26.276 0.307 0.009 0.080 to 0.535
Retrosplenial cortex right ~ 0.068 0.622 —-0.204t0 0.340 -31.855 0.010 —55.765t0-7.945  0.192 0.129 —0.057 to 0.441
Retrosplenial cortex left 0.095 0494 -0.180t00.370 -43.500 <0.001 -67.041t0—19.958 0.234 0.066 —-0.016 t0 0.484

P values in bold were significant after FDR correction

P regression coefficient; 95% CI 95% confidence interval; pmEC posteromedial entorhinal cortex; BF Chl-2 basal forebrain Ch1-2 nuclei
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Table 11 Association between regional brain measures and spatial navigation performance, and the effect of APOE genotype

Egocentric heading task Allocentric location task Allocentric heading task
p P 95% Cl1 p P 95% Cl1 p P 95% Cl1
Hippocampus posterior right
Hippocampus 0.0004  0.038 0.00002 to 0.0007 -0.039 0.020 -0.071t0 - 0.006 0.0005  0.005 0.0002 to 0.008
posterior right
APOE 0.434 0.122 —0.119to0 0.987 -41.678 0.102 -91.773t0 8.418  0.366 0.154 -0.1391t0 0.871
Hippocampus —0.0003 0.221 -0.0008 to 0.0002 0.029 0.186 —0.014 t0 0.073 —0.0003 0.206 -0.0007 to 0.0002
posterior right *
APOE
Hippocampus posterior left
Hippocampus 0.0003  0.137 -0.00009 to -0.037 0.032 —0.071t0—0.003 0.0005  0.006 0.0001 to 0.0008
posterior left 0.0007
APOE 0.220 0.438 —0.341to 0.781 —33.103 0.198 —83.813t0 17.608 0.282 0271 -0.224t0 0.787
Hippocampus —0.0001 0.667 -0.0006 to 0.0004 0.020 0.337 —0.022 t0 0.062 —0.0002 0.355 -0.0006 to 0.0002
posterior left *
APOE
pmEC right
pmEC right 0.001 0.155 -0.0004 t0 0.002 -0.207 <0.001 -0.326t0-0.089 0.002 0.011  0.0004 to 0.003
APOE 0.210 0.511 -0.4231t00.844 -54.361 0.053 —109.417t0 0.695 0.464 0.117  -0.118 to 1.047
pmEC right * —0.0003 0.725 -0.002 to 0.002 0.139 0.090 —-0.022 t0 0.301 -0.001 0.162 -0.003 to 0.0004
APOE
pmEC left
pmEC left 0.001 0.087 —.0002 to 0.003 -0.188  0.006 —0.046 t0 0.292 0.002 0.004 -0.003 to 0.003
APOE 0.399 0.265 -0.308 to 1.106 —55.146 0.006 -0.321t0—-0.055 0.542 0.098 -0.102to 1.186
pmEC left * —0.0008 0.415 -0.003 to 0.001 0.123 0.152 —0.046 t0 0.292 -0.001 0.143 -0.003 to 0.0004
APOE
BF Chl1-2
BF Ch1-2 —0.0005 0.743 -0.004 to 0.003 -0.116 0.432 —0.406 t0 0.175 0.0007  0.626  —0.002 to 0.004
APOE -0.173  0.397 -0.578 to 0.232 -1.817 0.922 —38.800to0 35.167 —0.059 0.758 —0.440 to 0.322
BF Ch1-2 * 0.003 0.168 —0.001 to 0.007 -0.073 0.684 —0.429 t0 0.283 0.001 0.515  -.002 to 0.005
APOE
Precuneus right
Precuneus right 0.028 0.866 —0.299 to 0.355 —33.845 00.017 -61.545t06.145 0.188 0.217  -0.113 to 0.490
APOE 0.004 0.994 -1.121to 1.130 36.389  0.451 —59.008 to -0.195 0.710 -1.231t00.841
131.786
Precuneus right ¥ - 0.048 0.850 —0.454 to 0.551 -19.318 0.370 -61.919to— 0.113 0.629 -0.350to0 0.576
APOE 6.145
Precuneus left
Precuneus left 0.110 0.556 —-0.258t0 0.477 —44.450 0.006 —75.611t0 13.289 0.321 0.062  -0.016 to 0.658
APOE 0.097 0.861 —1.002to 1.196 -10.217 0.828 —103.405 to 0.235 0.644 -0.772 to 1.243
82.971
Precuneus left *  0.005 0.983 —0.495 to 0.506 1.198 0.955 -41.209t043.604 -0.080 00.730 -0.538 to 0.379
APOE
Retrosplenial cortex right
Retrosplenial 0.146 0.413 -0.207 to 0.499 —34.038 0.033 —65311to— 0.219 0.191  —0.111 to 0.548
cortex right 2.765
APOE 0.617 0.301 -0.559t01.793 -30.515 0.562 —134.501 to 0.283 0.610 -0.814to 1.380
73.472
Retrosplenial -0.226 0.398 -0.753t0 0.302 9.269 0.694 —37.347t055.884 —-0.093 0.707 -0.5851t00.399
cortex right *
APOE
Retrosplenial cortex left
Retrosplenial 0.250 0.183 —-0.120to 0.621 -59.231 <0.001 -90.876to — 0.465 0.008 0.125 to 0.804
cortex left 27.587
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Table 11 (continued)

Egocentric heading task

Allocentric location task

Allocentric heading task

p P 95% C1 p P 95% C1 p P 95% C1
APOE 0.847 0.156 —-0.329 t0 2.024 —84.497 0.098 —184.856 to 1.143 0.038 0.067t0 2.218
15.862
Retrosplenial -0.331 0.218 -0.861t00.199 33.527 0.144 - 11.712to 78.766  33.527 0.144 -11.712 to 78.766
cortex left *
APOE

P values in bold were significant after FDR correction

P regression coefficient; 95% CI 95% confidence interval; APOE apolipoprotein E; pmEC posteromedial entorhinal cortex; BF Chl-2 basal

forebrain Ch1-2 nuclei

[15] and CN older adults [8, 9, 17], and higher NfL lev-
els were associated with worse real-world navigation in
MCI individuals [18]. Consistent with these findings, the
present study found associations between lower levels of
CSF A, _y,, higher levels of CSF p-tau;g; and higher levels
of CSF t-tau, as a marker of neurodegeneration, and worse
navigation performance on the Allocentric Location Task.
Higher levels of CSF t-tau were also associated with worse
navigation performance on the Allocentric Heading Task.
AP and p-tau accumulate early in posterior cortical and MTL
regions [74, 75], the earliest sites of neurodegeneration in
AD [76], which are important for egocentric to allocen-
tric reference frame translation and allocentric processing,
respectively [77-79]. Successful completion of the Allocen-
tric Location and Allocentric Heading Tasks requires accu-
rate processing of allocentric information along with correct
translation from egocentric to allocentric perspective [14],
which may underlie the observed associations between CSF
AD biomarkers and navigation performance in these tasks.
The nonsignificant associations between CSF AP, 4, and
p-taug; levels and performance on the Allocentric Heading
Task may be due to the limitations of this task, which is not
measured on a continuous scale. Given the accumulation
of AP in parietal cortical regions important for egocentric
navigation [80, 81], and the association between CSF A, 4,
and egocentric navigation performance in our previous study
[15], we expected that lower levels of CSF Af,_,, would be
associated with worse performance on the Egocentric Head-
ing Task. The lack of the hypothesized association may be
due to the limitations of this task, in which performance was
not assessed on a continuous scale, potentially limiting the
ability to detect differences in performance associated with
Ap pathology.

To our knowledge, no previous study has examined the
effect of the APOE €4 allele on the association between CSF
AD biomarkers and spatial navigation. In our current study,
APOE genotype did not modify the association between CSF
AD biomarkers and spatial navigation performance in any
of the VST tasks. A previous study examining the associa-
tion between AP and memory found a moderating effect of

@ Springer

APOE genotype, such that the association between CSF
AB,_4, levels and memory performance was significant in
APOE €4 carriers but not in noncarriers [82]. These findings
were not replicated in a more recent study using amyloid
PET, in which APOE genotype had no effect on the associa-
tion between cortical AP accumulation and memory [83].
However, there was a moderating effect of APOE genotype
on the association between tau accumulation in the MTL
regions, as measured by tau PET, and memory performance,
such that higher tau levels were more strongly associated
with worse memory in APOE €4 carriers. In our study, we
measured CSF p-tau,g;, a marker of tau pathology that is not
specific to regional tau deposition [84], and found no effect
of APOE genotype on the association with spatial navigation
performance. However, we cannot exclude that the associa-
tion between region-specific tau pathology, particularly in
the MTL regions, and allocentric spatial navigation may be
influenced by APOE genotype. Future studies using tau PET
are needed to investigate in detail the relationships between
tau pathology, spatial navigation and APOE genotype.

The MTL regions play an important role in allocentric
navigation, where the hippocampus, particularly its posterior
subregions, is involved in the accurate formation and use of
cognitive maps [85] and supports fine-grained allocentric
spatial representations [53]. The adjacent EC, particularly
the pmEC, is important for positional and directional rep-
resentations [86] and allocentric directional computations
[87]. The medial parietal cortex, including the precuneus, is
important for maintaining allocentric heading information
during navigation [88]. Consistent with these findings, the
present study showed that greater atrophy in these regions
was associated with worse performance on the Allocentric
Location and Allocentric Heading Tasks. We also found
an association between greater atrophy of the RSC and BF
Ch1-2 nuclei, and worse performance on the Allocentric
Location Task. This is not surprising, as successful perfor-
mance in this task relies on the translation of egocentric
to allocentric reference frames, which is supported by the
RSC [77]. Next, the Ch1-2 nuclei are the major source of
cholinergic projections to the hippocampus [89] and their
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lesions cause allocentric navigation deficits [90]. The results
of the present study complement and further extend previous
findings on the association between atrophy in AD-related
brain regions and allocentric spatial navigation deficits in
aMClI individuals [6, 15, 63, 91], showing that greater atro-
phy is associated with less efficient cognitive mapping and
estimation of allocentric directions. We found no associa-
tion between regional brain atrophy and performance on the
Egocentric Heading Task. Previous studies have shown that
atrophy of the precuneus and RSC is associated with worse
egocentric navigation in individuals with aMCI and AD
dementia, respectively [13, 92]. Notably, a recent study of
nearly 2000 CN older adults, including those with preclini-
cal AD, found that smaller EC and precuneus volumes were
associated with worse egocentric navigation performance on
the VST [17]. However, egocentric navigation performance
on the VST is also affected by white matter lesions [67],
particularly those that disrupt the association pathways of
the parietal cortex [93]. Our nonsignificant results may be
due to a combination of the limitations of this task, which
does not assess heading direction on a continuous scale, the
moderate sample size, which may have reduced the statisti-
cal power to detect the associations between atrophy and
egocentric navigation performance, and the lack of assess-
ment of regional white matter hyperintensities, which may
interfere with egocentric navigation performance on the
VST. Future studies measuring egocentric heading direction
on a continuous scale in a larger cohort of aMCI individuals
and controlling for regional white matter hyperintensities
are therefore needed to address these potential associations.

Studies investigating the effect of the APOE €4 allele
on the association between atrophy in AD-related brain
regions and spatial navigation performance are lacking.
In the present study, we did not find a moderating effect
of APOE genotype on the association between atrophy in
any of the selected AD-related brain regions and spatial
navigation performance on any of the VST tasks. The
APOE genotype has previously been shown to influence
the rate of brain atrophy over time and regional changes
in brain function during cognitive tasks. Specifically, CN
older adults with the APOE €4 allele had accelerated atrophy
over time in the hippocampus and AD-related cortical brain
regions as compared to those without the APOE €4 allele
[94, 95]. Next, when compared with noncarriers, the CN
APOE €4 carriers had reduced memory-related hippocampal
activation over time, increased magnitude and the extent
of brain activation during memory activation tasks in the
hippocampus, parietal, and prefrontal regions, which was
associated with memory decline over 2 years, and increased
frontal recruitment during a demanding working memory
task [96-99]. It is therefore possible that longitudinal
follow-up may reveal the potential effect of APOE genotype
on the association between regional brain atrophy and

spatial navigation decline, and that functional brain changes
associated with spatial navigation performance may be
more susceptible to the effect of the APOFE €4 allele than
structural brain changes. Future studies are needed to test
these hypotheses.

Our previous study showed that informant-report spatial
navigation questionnaires can discriminate between AD
aMCI and non-AD aMCI individuals, and that their scores
are strongly associated with performance in virtual and real
space navigation tasks [19]. Self-report questionnaires did
not discriminate between participant groups and their scores
were not associated with spatial navigation performance.
The only exception was the SBSOD, which discriminated
between AD aMCI participants and CN older adults, and its
score was weakly associated with egocentric and allocentric
navigation performance in virtual and real space tasks
[19]. The present study did not replicate these findings,
as self-reported spatial navigation ability, as measured
by the SBSOD, was similar between the groups and was
not associated with allocentric or egocentric navigation
performance on the VST. In addition, our study showed
that APOE genotype did not influence nonsignificant
group differences in self-reported navigation ability or its
association with spatial navigation performance. These
findings are consistent with previous research showing
that individuals with aMCI may tend to underreport
cognitive difficulties due to reduced awareness of cognitive
dysfunction or an inability to accurately assess their own
cognitive abilities [100].

Our study has several limitations. First, information
on the biomarker profiles of the CN participants was not
available. Therefore, we cannot exclude that some of them
had preclinical AD. However, strict inclusion criteria were
applied to minimize the likelihood of recruiting participants
with preclinical AD. Second, the participants were not fully
matched on demographic characteristics. In particular, the
CN group was younger, more educated and had a higher
proportion of women than the aMCI groups. However, all
analyses were controlled for demographic characteristics to
reduce the effect of these differences. Importantly, there were
no differences between participants with biomarker-defined
aMCI. Third, because of the small number of APOE €4
homozygotes in our cohort (i.e., five APOE e4/e4 carriers),
we were not able to examine a dose-dependent effect of
the APOE €4 allele. In addition, a moderate sample size
may have reduced the statistical power to detect a possible
small effect of the APOE genotype. Fourth, AP positivity
or negativity was assessed using CSF A,_,, levels, which
is less accurate than using the CSF Af,_,,/AB;_4, ratio.
Fifth, most participants were classified into AD aMCI and
non-AD aMCI groups based on CSF AB,_, or amyloid PET
results, which is less accurate than classification based on
the results of both methods. Sixth, although information on
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Ap was available for all aMCI participants, information on
p-tau was available for a subset of them (32 of 59). Seventh,
the dichotomous assessment of amyloid PET by visual
reading did not allow quantification of Ap accumulation
and examination of the association between Af load and
spatial navigation performance. Eighth, although some of
the non-AD aMCI participants met the clinical criteria for
probable LATE, the lack of specific biomarkers limited
the ability to detect their underlying pathology. Ninth, the
study was cross-sectional, so the effect of APOE genotype
on spatial navigation decline could not be determined.
However, longitudinal follow-up is ongoing.

Practical implications and future directions

From a clinical perspective, these findings highlight the
potential utility of incorporating spatial navigation tasks
such as the VST into early diagnostic workflows for AD.
The ecological validity of the VST, which mimics real-
world navigation challenges, offers a unique advantage
over traditional cognitive tests, particularly as part
of a noninvasive and cost-effective screening battery.
Future versions of this test, possibly adapted for remote
administration via tablets or other digital platforms, could
facilitate its widespread use in different clinical settings. In
addition, the integration of novel, less invasive biomarkers,
such as blood-based assays, together with refined spatial
navigation measures (e.g., continuous angular deviation
metrics for egocentric and allocentric tasks) may further
improve diagnostic accuracy and clinical feasibility.
Longitudinal follow-up of this cohort is an important next
step. This would allow us to determine whether the APOE
€4 allele has a greater influence on the progression of spatial
navigation deficits and the overall rate of cognitive decline
over time. In addition, these efforts may help to elucidate
whether the APOE €4 allele interacts with AD biomarkers
to accelerate disease progression or influence changes in
the cognitive profile. Finally, we propose the development
of a standardized spatial navigation battery, including
both allocentric and egocentric tasks, as a valuable tool
for the early detection of AD. Combined with advances in
digital health technologies and biomarker development,
such a battery holds the promise of identifying high risk
individuals in the preclinical or MCI stages, allowing for
timely intervention and personalized therapeutic strategies.

Conclusions
Our study highlights several key findings that advance our

understanding of spatial navigation deficits in AD and their
association with APOE €4 genotype. The VST allocentric

@ Springer

navigation tasks were shown to reliably discriminate
participants with AD aMCI from those with non-AD aMCI.
Importantly, these deficits were primarily driven by AD
pathology, as evidenced by CSF biomarkers and atrophy of
AD-related brain regions, rather than the presence of the
APOE €4 allele. This supports the conclusion that the APOE
€4 allele has a limited effect on baseline spatial navigation
ability but may influence longitudinal cognitive trajectories,
a hypothesis that warrants further investigation.
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tary material available at https://doi.org/10.1007/s00415-025-13151-8.
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