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ABSTRACT 

 

Pavlovian fear conditioning is a fundamental process in both health and disease. We investigated its 

neural correlates and sources of variability using harmonized functional magnetic resonance imaging 

data from 2,199 individuals across nine countries, including 1,888 healthy individuals and 311 with 

anxiety-related or depressive disorders. Using mega-analysis and normative modeling, we show that 

fear conditioning consistently engages brain regions within the "central autonomic–interoceptive" or 

"salience" network. Several task variables strongly modulate activity in these regions, contributing to 

variability in neural responses. Additionally, brain activation patterns differ between healthy 

individuals and those with anxiety-related or depressive disorders, with distinct profiles characterizing 

specific disorders such as post-traumatic stress disorder and obsessive-compulsive disorder. While the 

neural correlates of fear conditioning are highly generalizable at the population level, variability arises 

from differences in task design and clinical status, highlighting the importance of methodological 

diversity in capturing fear learning mechanisms.  
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INTRODUCTION 

Fear conditioning, also known as threat conditioning, is a psychological paradigm developed over a 

century ago to study associative learning mechanisms. It remains one of the most widely used and 

productive experimental models for investigating both normal and pathological fear and anxiety in 

humans1. Fear conditioning models how the association between an initially neutral stimulus 

(conditioned stimulus, CS) and an innately aversive stimulus (unconditioned stimulus, US) is learned. 

The success of learning in fear conditioning is typically assessed by comparing responses to the fear 

cue (CS+, paired with the US) and the safety cue (CS-, not paired with the US) across subjective, 

autonomic, or neural domains. Successful conditioning is indicated by greater responses to the CS+ 

than to the CS-2. In the brain, this involves activity changes within a “central autonomic–

interoceptive” or “salience” network, which in humans includes functionally and anatomically 

connected regions like the dorsal anterior cingulate cortex (dACC) and the anterior insular cortex 

(AIC)3. Additionally, fear conditioning has been linked to decreased activity in regions like the 

ventromedial prefrontal cortex (vmPFC), although such decreases have been less extensively studied3. 

Although the amygdala plays a crucial role in fear conditioning in rodents4–6, and classical lesion 

studies have implicated the amygdala in human fear conditioning7, this relationship has not been 

consistently identified in human fMRI studies 3,8–12.  

Limitations in prior research on the neural correlates of human fear conditioning include the 

use of small sample sizes (typically n<30) and the reliance on heterogeneous neuroimaging processing 

and analytical methods 3,13. While group-level meta-analyses can partially address the sample size 

issue3, individual-level mega-analyses offer additional advantages. These include enhanced statistical 

power, more precise effect size estimation, standardized preprocessing and analysis techniques, and 

substantially improved power to detect whether activation is modulated by individual variability -one 

of the primary goals of the current study14–16.   

Individual differences, such as sociodemographic factors (e.g., age) and trait variables (e.g., 

trait anxiety), are likely to modulate the neural correlates of fear conditioning, potentially affecting the 

generalizability of findings across groups, such as younger versus older adults or individuals with 

high versus low anxiety13. However, existing research on individual differences has been inconsistent 

and often hampered by limited sample sizes (n<5013) or sampling biases17. Moreover, task-specific 

variables, such as task instructions or characteristics of the US, may also influence conditioning at the 

behavioral or neural level 2,13,18,19. For example, compared to other USs, a tactile electric shock may 

elicit greater activation in the dACC and the ventral supplementary motor area3. A primary challenge 

in this field is integrating prior data to accurately assess how individual differences and task variables 

affect neural outcomes. This complexity arises from variations in adjustable factors and sampling 

across studies and participants, highlighting the need for methods that can account for and isolate 
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specific sources of variation—such as the normative modeling approach used here. Normative 

modeling allows us to integrate multiple smaller-scale studies into a common reference space—a 

standardised baseline against which to statistically quantify individual variations. This approach 

allows for meaningful comparisons across diverse studies by controlling for multiple sources of 

variation As a result, the variance associated with specific variables and individuals can be isolated, 

quantified, and systematically analysed20. (For details on the underlying mathematics, see references 

21–23; for applications, see 24–29). 

Fear conditioning has also been used to study the development and persistence of mental 

health disorders marked by pathological fear, such as anxiety-related disorders1,30–33, which are highly 

prevalent and rank among the leading causes of disability worldwide33. However, there is ongoing 

debate over whether anxiety-related disorders consistently show abnormal fear conditioning at 

behavioral or neural levels34,35 or if these abnormalities are specific to certain clinical groups—such as 

post-traumatic stress disorder (PTSD36) but not others, like social anxiety disorder (SAD)37. 

Inconsistencies maybe due in part to small sample sizes (ns<100 for anxiety-related disorders as a 

group, ns<25 for comparisons among clinical groups). Furthermore, most research in this area has 

relied on case-control designs and traditional analysis techniques, both of which have limitations that 

could be addressed through normative modeling. This framework enables statistical inference for 

individual subjects relative to an expected population pattern, providing a more detailed examination 

of the heterogeneity underlying group-level analyses20.   

In this study with pre-registered hypotheses and analyses (cf. Materials and Methods), we 

used both mega-analysis and normative modelling to analyse individual-level, harmonized fMRI data 

acquired during fear-conditioning from 43 samples from 21 laboratories across 9 countries (total 

n=2199), including both healthy participants and individuals diagnosed with anxiety-related and 

depressive disorders. First, we assessed the overall neural correlates of fear conditioning in healthy 

participants to provide a comprehensive delineation of the brain regions underlying human fear 

conditioning. Based on previous studies, we hypothesized that during fear conditioning, the CS+>CS- 

contrast would be associated with robust activations in regions such as the dACC, AIC, 

pre/supplementary motor areas, and dorsolateral prefrontal cortex (dlPFC), whereas the CS+<CS- 

contrast would be associated with deactivations in the vmPFC and hippocampus. We expected the 

mega-analysis to be more sensitive than previous studies in detecting subtle effects in other brain 

regions not previously (or not consistently) identified. Second, we assessed variation among healthy 

participants. Given their role in mediating subjective arousal and autonomic expression of fear38, we 

hypothesised that regions including the vmPFC and the anterior-to-mid cingulate cortex would show 

the greatest between-subject heterogeneity. Third, we examined how individual differences (e.g., age, 

trait anxiety) and task variables (e.g., task instructions) influenced this variation. Finally, we explored 

differences in the neural correlates of fear conditioning between individuals with anxiety-related and 
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depressive disorders and healthy controls, as well as among clinical subgroups (e.g., PTSD, SAD). 

We show that fear conditioning is consistently associated with brain activation in regions of the 

central autonomic-interoceptive network, despite methodological variations. However, specific task 

variables also influence the responses of these regions during conditioning. Additionally, brain 

activation patterns during conditioning differ between healthy individuals and those with anxiety-

related or depressive disorders, with certain groups displaying distinct activation profiles. 

 

RESULTS  

All results -including effect sizes for the linear models- are available in a free open-access repository 

(see Data availability statement). 

Conditioning is associated with extensive brain (de)activations  

In the mega-analysis (Fig. 1a), we included data from 1888 healthy individuals (42 experiment 

samples) and used linear mixed-effect models (LMMs) to perform a mega-analysis of whole-brain 

activation during fear conditioning (CS+>CS− contrast). We observed significant activation 

encompassing clusters within the bilateral anterior and mid insular cortices; the secondary 

somatosensory cortices (SII); the dlPFC; the lateral premotor cortices; and the dorsal and lateral 

cerebellum (Fig. 1b). Significant activation was also observed in multiple regions across the cortical 

midline, including the dACC extending to the pre-supplementary and supplementary motor areas 

(SMA), ventral posterior cingulate cortex, and dorsal precuneus (dPrec).   

Additionally, the CS+>CS- mega-analysis revealed the broad activation of subcortical 

regions, particularly the thalamus and basal ganglia. The largest of these activation patterns were 

observed in the dorsal striatum, specifically the caudate nucleus (CN); the globus pallidus extending 

to the striatum; the ventral tegmental area extending to the habenula; the mediodorsal thalamus 

(Thal); and the midbrain tegmentum. Activation of the midbrain was noted generally across the dorsal 

midbrain (~substantia nigra/red nucleus and pretectal nuclei) (Supplementary Fig. S1). To 

specifically assess the role of the amygdala, we conducted a Region of Interest (ROI) mega-analysis 

focusing on this region (see Materials and Methods), which indicated that neither the left (Cohen's d 

= 0.13, 95% CI [-0.029, 0.624]) nor the right amygdala (Cohen's d = 0.12, 95% CI [-0.002, 0.260]) 

showed significant activation during fear conditioning (both p-values > 0.05).  

We also observed significant deactivations (CS+<CS- contrast) during fear conditioning, 

predominantly in regions of the default mode network (Fig. 1c). This included the posterior cingulate 

cortex (PCC) and precuneus; the vmPFC extending to the mPFC and subgenual cingulate cortex 

medially, as well as the left dorsal prefrontal cortex (dPFC); the bilateral angular gyri; and the 

parahippocampi and hippocampi (Hipp). Additional deactivation was observed in the lateral 

orbitofrontal cortex; the primary somatosensory cortex (SI); as well as the left temporal (TG) and 
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fusiform gyri (see Supplementary Fig. S2 for detailed activation and deactivation across axial, 

sagittal, and coronal slices). 

 

Heterogeneity in the neural correlates of conditioning  

We estimated voxel-wise normative models of fear-conditioning related activation using the CS+>CS- 

contrast from 894 controls (training sample), and specifying age, biological sex, sample, and task 

variables as covariates (see Materials and Methods for all variables. The normative modeling 

sample is smaller than the mega-analysis due to the requirement for participants to have data on all 

covariates used in model construction). Testing these models with a held-out test sample (n=646) 

showed good model fit with explained variance reaching 0.3 in regions that showed activation during 

fear conditioning (Fig. 1b), and skew and kurtosis within acceptable limits (Supplementary Fig. S3). 

For each participant in our held-out test sample, we then calculated a deviation score (z-score) within 

each voxel. In other words, for each participant, we quantified the distance from the predicted mean 

activation of each voxel, relative to the normative reference distribution for that voxel (Fig. 1d). 

While almost every voxel had at least 5 participants with large deviations (deviations >±2.6), 

including areas such as the bilateral insula and expanses of the cingulate cortex extending to the 

medial prefrontal cortex (Supplementary Fig. S4), controls most frequently had large deviations 

(both positive and negative) within the most ventral region of the vmPFC and inferior temporal pole. 

As this ventral region is notoriously prone to signal drop out, we interpret this result as most likely 

reflecting varying signal intensity rather than individual differences, and thus chose to interpret 

deviations within this region with caution (Fig. 1e). 

 

Individual differences have small associations with conditioning  

We examined the role of the following individual differences variables using LMMs and normative 

models (Fig 1a): age, biological sex, and self-reported trait anxiety and depressive symptoms. In 

normative models, we analyzed both regression coefficients, reflecting each variable's contribution to 

the regression equation, and structure coefficients, indicating the direct bivariate relationship between 

a variable and brain activity without accounting for other predictors.  

In LMMs, age (n=1884 controls) and biological sex (n=1888 controls) showed a significant 

association with brain activation or deactivation during fear conditioning (Supplementary Fig. S5). 

However, the effect sizes were small (Supplementary Discussion). Additionally, the age range was 

restricted (see Table 1). Regression and structure coefficients also showed minimal effects of age and 

biological sex (n=646 controls) (Supplementary Fig. S5). Neither trait anxiety (n=1402 controls), 

using either harmonised or non-harmonised scores (Supplementary Methods), nor depressive 

symptoms (n=213 controls) were significantly associated with brain activation or deactivation during 

fear conditioning in LMMs. Similarly, elastic net regressions showed that whole-brain deviation 
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scores derived from normative models could not explain the variance in individual levels of trait 

anxiety (n = 751 controls and cases; r^2 = -0.095, p = 0.459), nor depressive symptoms (n = 152 

controls and cases; r^2 = -0.257, p = 0.605). See Methods for a note on negative r^2 values and 

Supplementary Table S1 for trait anxiety and depressive symptoms scores.  

 

Task variables have a robust effect on conditioning 

The influence of task variables on brain activation during fear conditioning was also examined using 

LMMs and structure coefficients from normative models in healthy controls. Several task variables 

were associated with robust effects across individuals, showing at least moderate effect sizes in 

LMMs and reaching significance in normative modeling analyses. These included instructions given 

to the participant about contingency prior to the task, the type of US, the use of a paradigm with 

multiple CSs (i.e., more than one CS+ or CS-), the pairing rate (i.e., percentage of CS+ followed by a 

US), and potential US confounding (i.e. whether trials followed by the US were included in the CS+ 

vs CS- contrast, and therefore the effects of the US may confound the effects of the CS+).  

Partial instructions about CS-US contingency (n=1388) were associated with significantly 

increased activation in the supplementary motor area and superior parietal lobule compared to no 

instructions about contingency (n=500) in LMMs. Structure coefficients from the normative models 

(n=646) showed that partial instructions (as compared to no instructions) produced a model predicting 

more activation in the bilateral anterior insula, the thalamus, the left caudate, clusters within the 

dorsomedial prefrontal cortex, the dorsolateral precuneus, and in the posterior region of the vmPFC. 

The model also predicted less activation within the bilateral visual cortex, the anterior medial 

temporal gyrus, and in the anterior vmPFC with the use of partial instructions (Figure 2a). Note that 

we excluded instructed conditioning studies (Materials and Methods).  

Compared with an auditory US (n=337), a tactile electric shock US (n=1472) produced 

significantly greater activation in bilateral dorsal mid-insula, dorsal medial thalamus, and pre-

supplementary motor area, extending to the dACC (n=337) in LMMs. In normative modelling 

analyses, a tactile electric shock US predicted increased activation within the dACC extending to the 

pre-supplementary motor area, the dorsal precuneus, secondary somatosensory cortex, the bilateral 

dorsal mid- to- posterior insula, the midbrain and pons, and the superior cerebellum, and less 

activation (i.e., more deactivation) within an expanse of the vmPFC, and SI. Moreover, the use of an 

auditory US was significantly associated with increased activation in the left auditory cortex and was 

predictive of increased activation in the bilateral auditory cortex (superior temporal lobe) and less 

deactivation (i.e., more differential activation) within an expanse of the vmPFC extending to the 

dorsomedial prefrontal cortex, posterior cingulate cortex, angular gyrus, and SI (Figure 2b).  

In LMMs, compared to paradigms with a single CS+ (n=1283), paradigms with multiple CS+ 

(n=605) produced increased activation in the left supplementary motor area (SMA) and left dorsal 

precuneus and widespread increased deactivation in regions including the bilateral temporal poles, the 
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right parahippocampal gyrus extending to the fusiform gyrus, the left visual association cortex 

extending to the angular gyrus, and the right primary motor and somatosensory cortex. Comparing 

paradigms with multiple CS- (n=302) and those with a single CS- (n=1586) revealed identical regions 

with increased activation to paradigms with multiple CS+. Conversely, increased deactivation was 

shown in the bilateral anterior hippocampus, ventral PCC, primary motor and somatosensory cortex, 

precuneus, and right mid-insula. In normative models, this was modelled using two variables 

(multiple CS+ and multiple CS-). Multiple CS+ predicted less activation within the bilateral 

amygdala, a bilateral expanse of SI the angular gyrus, the posterior cingulate cortex, the bilateral 

putamen and caudate, and the lingual gyrus. Similarly, multiple CS- predicted decreased activation 

within a bilateral expanse of SI and the lingual gyrus (Figure 2c).  

Pairing rate, treated as a continuous variable, did not relate to brain activation during 

conditioning in LMMs. However, due to the non-normal distribution of pairing rates across studies 

and individuals, we categorized pairing rates (e.g., 30%, 50%, and 100%) and conducted ANOVA-

like LLMs followed by pairwise comparisons with Holm-Bonferroni correction, which revealed 

significant effects (Figure 2d). In particular, the comparisons involving the 50% pairing rate category 

was the category where significant differences between categories occurred most frequently. The 

significant differences between the pairing rate categories occurred both with (Supplementary Fig. 

S6) and without (Supplementary Fig. S7) US confounding. The structure coefficients for pairing rate 

(as a linear association), showed that a higher pairing rate predicted greater activation within visual 

regions (calcarine, lingual gyrus and cuneus), the precuneus, the left dorsolateral prefrontal cortex, the 

superior gyrus of the temporal lobe, and (less deactivation of) an anterior region of the vmPFC. 

Conversely, a higher pairing rate predicted less activation within the mid-cingulate cortex, the 

bilateral anterior insula, a posterior region of the vmPFC as well as the thalamus and caudate (Figure 

2d). 

Finally, potential US confounding (n = 997), compared to no confounding (n = 891), was 

associated with significantly increased widespread activation during fear conditioning (CS+ > CS- 

contrast). This activation was observed across the bilateral fusiform and lingual gyri, temporal poles, 

angular gyri, posterior insula, primary motor cortex, retrosplenial cortex (extending to the posterior 

hippocampus), and right amygdala, predominantly in the superficial amygdala, in linear mixed models 

(LMMs). Similarly, structure coefficients from the normative models showed that the model predicted 

greater activation within the bilateral mid-cingulate cortex extending to the dorsomedial prefrontal 

cortex and pre-supplementary motor area, angular gyri, mid-to-posterior insula, superior temporal 

gyrus and temporal poles, fusiform gyri and lateral mid-occipital gyrus, amygdala, caudate, dorsal 

thalamus, and dorsolateral cerebellum with potential US confounding (Figure 2e).  

None of the above results were affected by excessive multicollinearity, except for the 

association between pairing rate and the potential US confound (Supplementary Tables S2-S5). We 
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identified six small clusters where the effects of both variables overlapped. To further disentangle 

their contributions, we conducted mixed-effects models within these clusters, including both variables 

as predictors. Results indicated that both variables exerted statistically significant effects in all 

clusters except for one small cluster in the right middle occipital region, where the effect of the US 

confound was no longer significant. Given the absence of multicollinearity (Variance Inflation 

Factor= 1.8), we concluded that activation in this region is specifically modulated by the pairing rate, 

rather than by the US confound.  

The remaining task variables (for example, the number of trials during preconditioning) 

showed weaker effects or were not significantly associated with brain (de)activation during 

conditioning in the mega-analysis or normative modelling analyses (Supplementary Figs. S8 and S9 

and Supplementary Discussion).  

 

Cases and controls show differences in conditioning 

In the mega-analysis, individuals with anxiety-related and depressive disorders (cases, n=311) showed 

significantly increased activation in the right ventrolateral prefrontal cortex (anterior pars orbitalis), 

dorsal frontal pole, posterior cingulate cortex, left temporal pole, and bilateral primary motor areas 

compared to controls (n=1888) (Fig. 3a). Similar results were found when comparing individuals with 

anxiety-related disorders (i.e., excluding major depressive disorder; remaining n=297) and controls, 

with additional clusters observed in the dorsal prefrontal cortex, visual association cortex, and primary 

somatosensory cortex (Supplementary Fig. S10). After excluding individuals who were taking 

medication at the time of the scan (Supplementary Table S6), those with anxiety-related and 

depressive disorders (n=221) still showed significantly increased activation in the dorsal medial 

prefrontal cortex, dorsal PCC extending to the superior parietal lobule, left medial TG and bilateral 

ventrolateral prefrontal cortex compared to controls (Supplementary Fig. S11).  

In normative modelling, we tested our clinical test sample (260 controls + 222 cases) against 

our reference normative models. This analysis compared the individuals’ deviation scores (z-score) 

within each voxel, and quantified, as a percentage of the sample, the frequency of participants with 

large positive or large negative deviations (Fig. 3b). We compared the frequency of extreme 

deviations throughout the whole brain (Normative Probability Maps thresholded at > ±2.6), and found 

that cases had, on average, a greater frequency of extreme deviations than controls (Mann Whitney U-

test = 111167.5, p= 0.014; Fig. 3c). Qualitatively, cases showed a different pattern of deviation 

frequency than controls. Large deviations (i.e., more activity than would be predicted by the model) 

were common across cases within the dorsomedial prefrontal cortex, the primary somatomotor cortex, 

precuneus, the bilateral primary visual cortex (medial occipital lobe extending to the inferior medial 

and inferior lateral lobe) extending to the lingual and fusiform gyrus. As with controls, cases 

frequently had large negative deviations within the most ventral region of the vmPFC.  
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PTSD and OCD show distinct activation patterns and deviations 

We divided our patient sample by primary diagnosis (PTSD, n=141; OCD, n= 68; GAD, n=48; and 

SAD, n=31; other diagnoses were not included due to small sample size). ANOVA-like LMMs 

indicated that there were significant differences in brain activation during conditioning among patient 

groups. Post-hoc pairwise comparisons corrected for multiple comparisons showed that the most 

significant differences occurred between individuals with PTSD and OCD with respect to individuals 

with GAD and SAD (Supplementary Fig. S12). 

Similarly, normative modelling analyses identified a significant difference in the frequency of 

large deviations among patient groups (Kruskal-Wallis H-test = 71.529, p=1.984^-13; Fig. 3c). 

Follow-up Mann Whitney U-test’s (FDR corrected for multiple comparisons) clarified, for example, 

that extreme deviations occurred most frequently in individuals with PTSD, as compared to other 

disorders, followed by OCD. We then illustrated the location of these extreme deviations at the voxel 

level to determine whether they were spatially overlapping within and between patient groups (Fig. 

3d and Supplementary Fig. S13). Individuals with PTSD showed frequent large positive deviations 

within the bilateral medial occipital lobe extending to the inferior temporal lobe and lingual gyrus, 

bilateral vlPFC, an expanse of the dmPFC, precuneus, and bilateral amygdala. They also showed 

frequent large negative deviations within an expanse of the vmPFC (posterior vmPFC focus), 

precuneus, and a focus of the lingual gyrus and fusiform gyrus. There were very few regions wherein 

individuals with GAD showed overlapping large deviations, and similarly for SAD except for a small 

region of the bilateral lingual gyrus frequently found to have large positive deviations. Individuals 

with OCD showed frequent large deviations within the inferior parietal cortex, and temporal pole. 

 A support vector machine could not classify cases from controls better than chance using 

whole-brain deviation maps (mean AUC = 0.44 +/- 0.07, p = 1.0). However, a multi-class support 

vector classifier confirmed a unique pattern of deviations among cases (Fig. 3e). More specifically, 

PTSD, on average, was accurately classified 54.55% of the time (mean F1 score = 0.58; p= 2.06x10-

23, balanced accuracy = 0.43 where chance level across 4 classes = 0.25). Interestingly, despite fewer 

overlapping extreme deviations within the OCD group, the classifier was able to accurately label 

individuals with OCD 73.74% of the time (mean F1 score: 0.57; p =1.71x10-7). GAD and SAD were 

only accurately classified 31.78% (mean F1 score: 0.35) and 13.33% (mean F1 score: 0.17) of the 

time, respectively, and were often misclassified as OCD. The mean voxel-wise coefficient weights 

and frequency of contribution (in penalised permutations) to this classification are displayed in 

Supplementary Fig. S14. 
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Sample size for future studies 

We conducted a series of sample size analyses to guide the design of future fMRI fear-conditioning 

studies (Supplementary Methods). To detect activation or deactivation in 50% of the brain regions 

identified in the mega-analysis (based on the AAL atlas39), a sample size of 122 was required, while 

detecting 80% of these regions required 243 participants (Supplementary Figure S15). When 

considering activations only, the required sample sizes were slightly smaller: 100 participants to 

detect 50% and 199 participants to detect 80% of the mega-analytical findings. In contrast, 

substantially larger samples were needed to detect deactivations.263 for 50% detection and 522 for 

80%. The overall false positive rate was 9%, and 8% and 3% when activations and deactivations were 

assessed separately, averaging 5%. Additional sample sizes results are presented in Supplementary 

Figures S16-S18.  

Early and late conditioning 

Given the importance of accounting for temporal dynamics in brain activity during human fear 

conditioning8, we compared neural activation during the early and late phases of conditioning in a 

subset of participants (n = 634 controls; Supplementary Table S8). Consistent with the effects 

observed across the entire task, both phases showed significant activation in the CS+>CS- contrast 

across several brain regions. These included the insular cortices, SII, dlPFC, lateral premotor cortices, 

dorsal and lateral cerebellum, dACC extending to the pre-supplementary motor area and SMA, and 

the dPrec (Supplementary Figure S19).  Notably, there were several significant differences between 

the phases. The early phase showed greater activation in the bilateral fusiform gyrus, SMA, right 

amygdala, left frontal eye fields, and left motor cortex compared to the late phase (Supplementary 

Figure S19). Additionally, significant differences were also observed in the left angular gyrus; dorsal, 

medial, and ventral anterior prefrontal cortices; and lateral orbitofrontal cortex. However, as these 

regions were implicated in the CS+<CS- contrast, this suggests that they exhibited reduced 

deactivation during the late phase.  

 

DISCUSSION 

We compiled the largest (n=2199) sample of individual-level fear conditioning fMRI data to date to 

comprehensively delineate the neural correlates of human fear conditioning, to assess the influence of 

several relevant sources of variation - including individual differences and task variables- and to 

evaluate potential differences in fear conditioning at the neural level between individuals with 

anxiety-related and depressive disorders and controls.  
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Our individual-level mega-analysis mapped fear conditioning activation to the “central 

autonomic–interoceptive” or “salience” network. As hypothesised, fear conditioning was associated 

with robust activations in the anterior insula, ventral striatum, pre-supplementary /supplementary 

motor areas, dorsal anterior cingulate cortex, and dorsolateral prefrontal cortex. It was also associated 

with activation in several subcortical regions, particularly the thalamus and basal ganglia. While many 

of the observed effects replicated previous findings3, the increased statistical power provided by our 

analyses suggests that peak effects in the dorsal midbrain may originate in the substantia nigra/red 

nucleus and pretectal nuclei. Future work with a specific focus on these nuclei may aid in 

disentangling their specific contributions to fear conditioning. Also as hypothesised, fear conditioning 

was associated with robust deactivations in the ventromedial prefrontal cortex and hippocampus. 

Other brain regions that were deactivated during conditioning included primarily regions of the 

default mode network (e.g., posterior cingulate cortex and precuneus).  

By incorporating a large sample from multiple laboratories worldwide, our study underscores 

the generalizability of the neural correlates of conditioning at the population level. At the same time, 

the methodological diversity across laboratories and studies suggests that our findings extend beyond 

specific experimental conditions, reinforcing their relevance to the broader fear conditioning process. 

Notably, at a time when neuroimaging research is increasingly emphasizing sample sizes in the 

thousands40, our analyses show that studies with 100 participants can still reliably detect the neural 

correlates of fear conditioning, at least when considering activations only. Furthermore, our findings 

highlight that a significant source of variability in neural responses during fear conditioning stems 

from differences in task design. This insight is crucial for future human fMRI studies, as it enables 

researchers to anticipate the expected effects of various task and contrast design choices, along with 

their magnitudes, at the neural level. By making these adjustments in advance, researchers can strike a 

balance between the advantages of large, standardized studies and those of smaller studies with 

greater methodological diversity. Moreover, our normative modeling results underscore the potential 

of fear conditioning paradigms for informing the development of targeted interventions. Specifically, 

normative models can identify brain regions with atypical activation during conditioning, providing 

valuable guidance for interventions such as neuromodulatory treatments aimed at these regions41. 

Additionally, by pinpointing abnormal activation patterns, normative models enable clinicians to 

tailor treatments more precisely to address these specific neural deviations. 

The amygdala was not robustly activated during fear conditioning in either our mega-analysis 

or ROI-based mega-analysis for the contrast averaging across all trials, consistent with our previous 

group-level meta-analysis³. However, and in line with a recent study by Wen and colleagues8 (n = 

601, including individuals with anxiety-related disorders and controls), our analysis of early versus 
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late trials in a large subsample of participants (n=634 controls) revealed significantly greater 

activation in the right amygdala during early compared to late trials. 

Inconsistencies regarding amygdala involvement in human fMRI conditioning studies have 

been attributed to several factors, including small sample sizes and limited anatomical specificity. The 

amygdala consists of distinct subregions, such as the basolateral (BLA) and centromedial (CMA) 

amygdala, and averaging responses may mask specific activations8,10. Moreover, the amygdala’s 

subcortical and ventral location, its small size, and the susceptibility artifacts and low signal-to-noise 

ratio associated with traditional imaging techniques can further hinder detection of significant 

effects44. Ultra-high field imaging has been shown to reduce these limitations and allows for more 

precise investigation of amygdala subnuclei45,46, making it a valuable tool for future human fear 

conditioning studies.  

Taken together with the findings of Wen and colleagues, our results highlight the importance 

of considering temporal dynamics when assessing amygdala activity during fear conditioning⁸. 

Specifically, they confirm that amygdala activation is strongest during early trials and habituates 

thereafter⁴²,⁴³, suggesting that averaging across all conditioning trials may obscure these effects. In the 

current study, we also identified specific task features- such as the use of paradigms with multiple 

CS+ stimuli or US-related confounds- and diagnostic categories (e.g., PTSD; see also³⁶) that modulate 

amygdala activity during conditioning. These findings underscore that both clinical and task-related 

variables may also contribute to the inconsistencies observed in the literature. 

Biological sex had only minor effects, suggesting that fear conditioning mechanisms are 

relatively stable at the neural level between sexes. Additionally, none of our analyses found 

significant associations between brain activation during conditioning and levels of trait anxiety or 

depressive symptoms. While some mental health frameworks suggest that dimensional constructs of 

psychopathology, like trait anxiety, may better reflect neural activation patterns47, the variability and 

complexity in the neural states underlying these constructs and their lack of direct mapping to neural 

processes makes it challenging to identify clear linear relationships48,49.  

The brain activation differences during conditioning between individuals with anxiety-related 

and depressive disorders and healthy controls, observed in the mega-analysis, aligned with normative 

modeling results, showing a higher frequency of large deviations in cases. Importantly, these 

differences remained significant even after excluding medicated cases, suggesting that the observed 

effects are not due to medication. This is crucial, as commonly used treatments like selective 

serotonin reuptake inhibitors (SSRIs) can influence brain activation patterns observed with fMRI50. 

When the analysis was limited to anxiety-related disorders, significant differences in brain activation 

persisted, indicating that individuals with pathological anxiety are characterized by abnormal neural 
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responses during fear conditioning. These findings suggest that such abnormalities could eventually 

serve as neural markers for anxiety-related disorders51,52.  

Among individuals with anxiety-related disorders, those with PTSD and OCD showed 

distinct patterns of brain activation and had distinct patterns of voxel-wise deviations that can be used 

to distinguish them from other anxiety-related disorders. This provides neurobiological support for the 

decision of current diagnostic classifications to separate these conditions53. In addition, it may provide 

new insights into the underlying mechanisms of psychopathology. The sample of individuals with 

PTSD was still relatively heterogeneous, with data from three independent samples, and yet there 

were often overlapping extreme positive deviations. Furthermore, using the derived deviation scores 

we were able to differentiate and classify individuals with PTSD and OCD with striking precision, 

compared to GAD and SAD. This is consistent with the previous literature that used mean averaging 

methods and reported differences in activation levels between groups of individuals with PTSD, 

compared to controls36,54. Taken together, this suggests that the neural mechanisms engaged during a 

fear conditioning paradigm are specifically relevant to the psychopathology of, and to some extent, 

similarly altered across individuals with PTSD; reinforcing the notion that fear conditioning is a 

foundational process in PTSD psychopathology, and as such, related tasks are a useful clinical 

model31. The accurate differentiation of OCD, despite few regions of overlapping large deviations, 

appeared to be driven by consistent coefficient weights with a region of the bilateral superior temporal 

gyrus and right vlPFC. Combined with no strong behavioural evidence55, mixed imaging evidence of 

differences in fear conditioning tasks in this population56–59, and evidence of altered baseline activity 

within the superior temporal region60, this finding may be interpreted as capturing compensatory 

mechanisms that individuals with OCD engage to overcome obsessions and achieve the same 

behavioural output55,60,61. Despite significant differences in the frequency of extreme deviations 

between individuals with GAD and SAD compared to controls, their limited spatial overlap and less 

accurate classifications, suggest that there is significant heterogeneity in fear conditioning among 

individuals with these diagnoses. Thus, while we suggest that the psychopathology of PTSD is 

uniquely related to fear or threat processing as captured by fear conditioning tasks, we propose that 

other anxiety-related disorders, particularly GAD and SAD are less so.  

Our study has several limitations. First, despite using harmonized pre-processing pipelines 

and statistical models to account for site differences, variations in diagnostic routines and imaging 

acquisition contributed to sample heterogeneity, particularly among individuals with anxiety and 

depressive disorders (a label that includes already heterogenous disorders). Second, mega-analyses 

may have limited power to detect effects in small subgroups (e.g., SAD patients). Third, for 

participants with a mental health diagnosis, we focused on primary diagnoses and we could not assess 

(or control for) comorbidity. Fourth, while our normative models adjusted for site, age, biological sex, 
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and task influences on brain activity, future studies should explore the impact of adding more 

variables in the model construction. It is possible that alternative model structures could have 

increased the explained variance in the relatively noisy BOLD activation (where other literature has 

explained up to 51.3% of the variance25). However, care must be taken not to overfit or reduce the 

generalisability of models to ensure their wider utility. Fifth, we were unable to include other 

individual-level measures of conditioning (e.g., psychophysiological data) in our analyses, as this 

would have required separate collection and harmonization procedures. Finally, cross-sectional data 

on brain activation during fear conditioning raises concerns about the reliability of outcome measures. 

Although fMRI-based fear conditioning shows limited test-retest reliability at the whole-brain level, 

significant within-subject similarity across repeated time points has been observed62, suggesting that 

large test-retest samples could help further validate the normative modeling approach, as 

demonstrated in other tasks25.  

With this work, we provide the largest analysis of the neural correlates of human fear 

conditioning and potential sources of variation to date. Our results confirm that human fear 

conditioning is a robust phenomenon at the neural level, consistently engaging multiple brain regions 

within the central autonomic-interoceptive or salience network. Our comprehensive review of the 

influence of task design choices on elicited and predicted brain activation can be used to help interpret 

differences in the previous literature and should remind researchers of the potentially significant 

influence of task design choices. Finally, we found that there are overall differences in fear 

conditioning at the neural level between individuals with anxiety-related and depressive disorders and 

controls, and that a unique mechanism of PTSD psychopathology is well captured by fear 

conditioning paradigms, supporting the use of these models to study this disorder.  
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METHODS 

The current manuscript combines two pre-registered analyses of individual-level fear conditioning 

fMRI data (https://osf.io/7n953; https://osf.io/w74bt). Data were collated from 43 samples originating 

from 23 sites in 9 countries. Collation was coordinated by the lead group (IDIBAPS Barcelona). 

ENIGMA Fear Conditioning is part of the larger ENIGMA-Anxiety Working Group63. Table 1 and 

Table 3 summarize the descriptive information on the samples. Informed consent was obtained from 

all participants by the sites providing their data. Some site-specific data have been reported 

previously, but no reports have examined all individual data together. 

 

Fear conditioning task 

We included data from participants who completed a fear conditioning experiment during an fMRI 

scan. There are several human fear conditioning paradigms, which vary based on the time elapsed 

between the CS and the US (e.g., delay, trace, simultaneous, or backward conditioning), the use of 

one (single-cue) versus two or more (differential-cue) CSs, and the instructions given to participants2: 

1) No instructions: For example, “During this experiment, you will see various images and might 

experience mild electric shocks at certain times”; 2) Partial instructions: For example, “During this 

experiment, you may see a particular image sometimes followed by a mild electric shock. However, 

the shock won’t happen every time you see the image, and sometimes it might not appear at all. Pay 

attention to the images, as they might give you some indication of when the shock could occur”; 3) 

Full instructions (instructed conditioning): For example, “During this experiment, you will see the 

image X, which is always followed by a mild electric shock. Whenever this image appears, it will be 

followed by the shock shortly afterward. No other images will be associated with the shock”.  

We focused on delay differential cue-conditioning paradigms with no or partial instructions 

(i.e., excluded instructed conditioning studies), and focused our analysis on comparing the response to 

a CS+ compared to a CS-. Table 2 summarises information on the fear conditioning tasks included in 

this manuscript. 

 

Non-imaging data: sociodemographics and individual differences 

All sites were asked to provide information regarding sociodemographics (age, biological sex) and 

individual differences: trait anxiety, assessed with the Trait subscale of the State-Trait Anxiety 

Inventory (STAI-T)64; and depressive symptoms, assessed with the Beck Depression Inventory 

(BDI)65  (Supplementary Table S1). For individuals with anxiety-related and depressive disorders, 

sites were asked about principal mental health diagnosis and psychotropic medication use at the time 

of the scan (Supplementary Table S6. Previous normative studies of trait anxiety (STAI-T) have 

shown additive and multiplicative differences across countries, for which we harmonised trait anxiety 

https://osf.io/7n953
https://osf.io/w74bt
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scores across countries using ComBat14 (Supplementary Methods) and conducted subsequent 

analyses twice: once with the raw scores and once with the country-harmonised scores. 

 

Non-imaging data: task-related variables 

We collected information about the following task variables: instructions given to the 

participant about contingency prior to the task (partial versus no information); type of US (e.g., 

electric shock versus aversive sound); number of trials during pre-conditioning; use of a paradigm 

with multiple CSs (i.e., more than one CS+ or CS-) during conditioning; type of CS (e.g. geometrical 

figures, faces, etc); number of CS+ and CS- trials during conditioning; average ITI (inter-trial 

interval); average ISI (inter-stimulus interval, i.e., between the CS+ and the US); pairing rate 

(percentage of CS+ followed by a US); potential US confounding; and the number of CS+ trials and 

CS- trials included in the fMRI contrast. For studies assessing awareness (conscious recognition of the 

association between the CS+ and the US, after the task), we also asked about participant´s 

contingency awareness (yes vs. no). Task variables were not explicitly listed in the pre-registration. 

The decision to include these variables was based on previous research2,13.  

   

Processing of neuroimaging data 

We included only neuroimaging data acquired with whole-brain coverage. Individual-level 

raw task-based fMRI data were processed using the Harmonized Analysis of Functional MRI pipeline 

(HALFpipe, version 1.2.2)66, a tool developed within the ENIGMA consortium to harmonise fMRI 

analyses across sites and facilitate reproducible analyses. HALFpipe provides a standardised 

workflow that extends fMRIprep67 with several additional preprocessing steps, including spatial 

smoothing, grand mean scaling, temporal filtering, and confound regression. Moreover, HALFpipe 

generates a standardised quality assessment of the preprocessing outputs and imaging raw data 

(Supplementary Table S7). We used HALFPIPE default parameters (smoothing using 6mm FWHM; 

confound removals using ICA-AROMA; and a high-pass filter of 125 s).  

For the current study, each site was provided with a comprehensive manual to perform image 

pre-processing and quality control with HALFpipe in a fully harmonised manner, and each group 

shared the HALFPIPE output files for each individual along with the non-imaging data for each 

individual. The lead group (IDIBAPS-Barcelona) processed 5 sites, aggregated all the data, and 

carried out additional quality control procedures and measures to ensure the comparability of the data, 

as described in the Supplementary Methods).  

 

Statistical analyses 

We conducted two types of statistical analyses: mega-analyses and normative modelling 

analyses. 
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Mega-analyses 

Participants 

We included data from 2199 participants (M_Age=25.26, SD=5.47; 57.2% female), comprising 1888 

healthy controls (M_Age=25.85, SD=8.51; 51.53 % female) and 311 individuals with a primary 

diagnosis of an anxiety-related or depressive disorder (M_Age=29.91, SD=10.75; 58.84 % female) 

(Table 1 and Table 3). Diagnoses were established with structured clinical interviews.  

 

Pre-scaling 

Although we used the exact same processing protocol and conducted extensive quality control (see 

above), we observed differences in the BOLD response between samples, most likely due to varying 

units of measurement (note that MRI scans are acquired in arbitrary units68. To address these 

differences, we pre-scaled the images for healthy controls so that, for each sample, the voxel-wise-

median standard deviation (after removing the effects of covariates) was 1 (see Supplementary 

Methods). We then applied the pre-scaling parameters obtained from the healthy controls to the cases 

(individuals with a primary diagnosis of an anxiety-related or depressive disorder). This approach 

differs from using the individual z-statistic images (i.e., dividing the BOLD response by its standard 

error), which we did not adopt for the mega-analysis. The reason is that the standard error may differ 

between cases and controls, and thus, differences in z-statistics between groups could reflect 

differences in the standard error rather than in the BOLD response (for more details, see 

Supplementary Methods). 

 

Analyses 

Differences in brain coverage across sites prevented us from using the standard ComBat method, 

which determines the harmonisation parameters using all voxels14. Additionally, there was no need to 

remove differences in scaling because we had already pre-scaled the images as described above. Thus, 

we used LMMs (with the sample as a random intercept) to investigate: 1st the pattern of brain 

activation during fear conditioning in healthy controls and in cases (individuals with anxiety-related 

and depressive disorders), which tested whether the mean activation in each voxel was non-null; 2nd 

the pattern of differences in brain activation during fear conditioning between cases and controls, 

which tested whether activation in each voxel was different between cases and controls; 3rd the 

pattern of differences in brain activation during fear conditioning among patient groups (PTSD, OCD, 

GAD, SAD), testing whether activation in each voxel differed among patient groups;  4th the potential 

influence of individual differences and task variables (see above) on brain activation during fear 

conditioning in healthy controls, which tested whether activation in each voxel was significantly 

associated with each task variable. In all models, we incorporated age and sex as covariates. 
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Significant LMMs comparing three or more groups (analog to ANOVAs) were followed by pairwise 

comparisons with Holm-Bonferroni correction.  

We also conducted an ROI mega-analysis focusing on the amygdala. For this analysis, we extracted 

the pre-scaled BOLD response in the left and right amygdala based on the Automated Anatomical 

Labeling atlas39. We used an LMM, with age and sex as covariates, to test whether the mean 

activation significantly differed from zero. Potential differences between early and late conditioning 

were also analyzed using a LMM, with age and sex as covariates in a subsample of controls (n=679; 

Supplementary Table S8).  

We fitted the LMMs using custom functions (included in ‘combat.enigma’ R package) that 

call the 'nlme' R package voxel-wise and address voxel-specific details (e.g., varying collinearity due 

to differing brain coverage; see Supplementary Methods). FSL was then used to derive cluster-based 

corrected p-values using Gaussian Random Field (GRF) theory.  

Analyses of multicollinearity 

Given the diverse range of variables examined in this study—many of which may be influenced by 

methodological factors (e.g., pairing rate, type of conditioned stimuli) or sample characteristics (e.g., 

patient vs. control group)—there is a potential risk of confounding. That is, the observed effects 

attributed to one task variable may partially or wholly reflect the influence of another. To address this 

possibility, we systematically assessed interrelationships among all methodological and clinical 

variables using correlation analysis and evaluated multicollinearity using variance inflation factors 

(VIF). For pairs of variables with correlation coefficients exceeding 0.5 (or eta and Cramér's V when 

involving categorical variables), we further examined whether their associated activation maps 

exhibited spatial overlap. Overlap was defined as clusters of at least 10 contiguous voxels showing 

significant activation for both task contrasts. This approach was guided by the rationale that classical 

confounding requires both variables to be associated with activation in the same brain region. For any 

pair of correlated variables with overlapping activation, we re-estimated the mixed-effects linear 

models within the overlapping clusters, this time including both variables as predictors, to determine 

whether their effects remained statistically significant. A reduction to non-significance upon joint 

inclusion could indicate either collinearity (as suggested by the VIF) or potential confounding. 

Effect sizes 

To compare the effect sizes of different variables and to exclude findings with negligible or very 

small effects, we converted the regression coefficients of the peaks into correlation coefficients 

(Pearson r). For variables comparing two groups (e.g., cases vs. controls), we also calculated the 

corresponding standardised mean differences (Cohen's d). We considered effects with r<0.2 (roughly 

equivalent to d<0.4 for balanced binary variables) to be small, and only highlighted larger effects (i.e., 
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r>0.2, i.e., at least moderate) in the main text. It is important to note that peak effect sizes should be 

interpreted with caution, as they correspond to the peaks of clusters of statistical significance and are, 

therefore, larger than those obtained by other methods. Effect sizes for all the LMMs can be found at 

https://figshare.com/s/d44cc1390711bad3c147 

 

Normative modelling analyses 

Participants 

We included data from 2022 participants; 1800 healthy controls (age range 8-66 years, mean age: 

25.66 ± 8.4, 53.05% female) and 222 individuals with anxiety-related and depressive disorders (age 

range 9-63, mean age: 28.27 ± 11.06, 54.95% female) to build and test the normative models. See 

Table 1 note to explain discrepancy in participant numbers from mega-analysis. 

Generating Normative Models of Activation to the CS+ > CS- contrast 

The z-statistic maps (files) from the CS+ > CS- contrast for each participant were used as inputs 

(response variables) for the normative models. We created a normative model of fear-related 

activation per voxel, as a function of age, sex, and task variables (the same reported in the Non-

imaging data: task-related variables section, except contingency awareness) by training a Gaussian 

Bayesian Linear Regression (BLR) model to predict activation for the CS+ > CS- contrast22. We 

included dummy coded site-related variables (sample, and MR strength) and a b-spline basis 

expansion as additional covariates of no-interest. This was performed in the Predictive Clinical 

Neuroscience toolkit (PCNtoolkit) software v0.26 (https://pcntoolkit.readthedocs.io/en/latest) 

implemented in python 3.8. Generalisability was assessed by using a stratified train-test sample (train: 

894, control test sample: 646).  

 

Quantifying voxel-wise deviations from the normative model 

To estimate a pattern of regional deviations from typical brain function for each participant in the 

control test sample (n = 646, mean age: 25.45 ± 7.19 years, 52.16% female), we derived a normative 

probability map (NPM) that quantifies the voxel-wise deviation from the normative model. The 

subject-specific Z-score indicates the difference between the predicted activation and true activation 

scaled by the prediction variance. This was repeated for the clinical test sample (n = 482, 260 controls 

+ 222 cases, mean age: 26.76 ± 10.94 years, 54.97% female). We thresholded participant’s NPM at Z 

= ±2.6 (i.e., p < .005) as in previous work69–71 and summed the number of significantly deviating 

voxels for each participant. Kruskal-Wallis H-tests were used to test for group (cases or controls) and 

https://figshare.com/s/d44cc1390711bad3c147
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diagnosis effects and, when applicable, follow-up Mann Whitney U-tests were False Discovery Rate 

(FDR)72 corrected at α = 0.05.  

 

Normative models:  individual differences and task variables 

Model Coefficients: To probe the magnitude of the influence of individual differences 

(sociodemographics) and task variables on the predicted brain activation, we examined both the 

regression coefficients and the structure coefficients (correlation coefficients) of all sociodemographic 

and task variables input variables. Structure coefficients are preferable to regression coefficients when 

variables are collinear73. Note that negative R^2 values (“negative” explained variance) is a possible 

outcome when the model fails to generalize effectively to new data, despite in-sample performance 

yielding non-negative explained variance (which is always positive or zero by construction). This 

phenomenon is not uncommon and arises when the model's predictions result in a residual sum of 

squares that exceeds the variance of the true values.  

Linear Regression (Elastic Net) and Support Vector Classification (SVC): We applied an elastic net 

linear regression as implemented in the scikit-learn package (version 1.0.2)74 with 10 repeats of nested 

5-fold cross validation [alphas = 0.0001, 0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 1; 90% train, 10% test split] to 

predict trait anxiety as measured by the STAI-T (n = 751), or depressive symptoms as measured by 

the BDI (n = 440) from participants’ whole brain (unthresholded) deviation maps. The mean 

coefficient values and the frequency of the voxel’s contribution (in other words, how many of the 

cross-folds split found this voxel to be important) indicate which voxel contributed to the prediction. 

The statistical significance of these results was tested against a 1000-fold nested 5-fold test for each 

variable. To classify participants (n = 703) who were contingency aware from those who were not 

based on their unthresholded whole-brain deviation maps, we used an SVC model with a linear 

kernel, regularisation parameter set to 1.0, and balanced class weights as implemented in the scikit-

learn package (version 1.0.2).  

 

Quantifying patterns of deviations between cases and controls 

To classify individuals with anxiety-related or mood disorders and controls based on their whole brain 

unthresholded deviation maps, we used a SVC model with a linear kernel, regularisation parameter set 

to 1.0, as is common in neuroimaging, and balanced class weights (i.e. adjusted inversely proportional 

to class frequencies in the input data) as implemented in the scikit-learn package (version 1.0.2)74. The 

evaluation metric for the classification is area under the receiving operator curve (AUC) averaged 

across all folds within a 10-fold cross validation framework. 
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Quantifying patterns of deviations among patient groups 

We used a one versus rest support vector classifier (SVC OvR) model as implemented in the scikit-

learn package (sklearn.multiclass.OneVsRestClassifier version 1.0.2) to determine if there were 

quantifiably differentiable patterns within the whole brain unthresholded deviation maps among 

patient groups. Due to the small number of individuals with major depressive disorder (n = 11), 

specific phobia (n=7) and panic disorder (n=2), this analysis only included individuals with a 

diagnosis of PTSD (n=55), OCD (n=68), GAD (n=48) and SAD (n=31) (total n = 202). The model 

classes were the participants’ diagnosis. The evaluation metric for the classification was the F1-metric 

(the harmonic mean of precision and recall, also known as the balanced F-score, where values closer 

to 1 indicate greater classification success) per class within a 5-fold cross-validation framework, and 

the statistical significance was tested against a 1000-fold nested 5-fold test. 

 

Data availability statement 

All results from this manuscript can be found at https://figshare.com/s/d44cc1390711bad3c147 

The ENIGMA-Fear Conditioning Group (part of the ENIGMA-Anxiety Working Group63 is open to 

sharing the individual-level data (HALFIPE results files) from this investigation to researchers for 

secondary data analysis. To request access to data, an analysis plan can be submitted to the ENIGMA-

Anxiety Working Group (http://enigma.ini.usc.edu/ongoing/enigma-anxiety/). Data access is 

contingent on approval by PIs from contributing samples.  

Code availability statement 

All code to reproduce the analyses in this manuscript is available at: 

https://figshare.com/s/d44cc1390711bad3c147. The functions needed to conduct the mega-analysis 

are also included in the ‘combat.enigma’ R package. 

 

https://figshare.com/s/d44cc1390711bad3c147
http://enigma.ini.usc.edu/ongoing/enigma-anxiety/
https://figshare.com/s/d44cc1390711bad3c147
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Table 1. Descriptive statistics for all samples (N=43) included in the analyses.          

             

Sample Country N 
Sex 

(%females) 

Healthy 

Controls (n) 

Patients 

(n) 

Age 

M (SD) | Range (min-max) 

Years of education 

M (SD) | Range 

(min-max) 

Amsterdam_Visser/Kindt__sample_1 NL 18 72 18 0 22.06 (3.35) | 18-31 not available 

Amsterdam_Visser/Kindt__sample_2 NL 41 73 41 0 20.56 (1.79) | 18-24 not available 

Amsterdam_Visser/Kindt__sample_3 NL 12 75 12 0 21 (1.35) | 19-23 not available 

Amsterdam_Visser/Kindt__sample_4 NL 10 80 10 0 22.8 (2.04) | 20-26 not available 

Amsterdam_Visser/Kindt__sample_5 NL 13 85 13 0 22.23 (4.07) | 19-35 not available 

Amsterdam_Visser/Kindt__sample_6 NL 14 79 14 0 23.43 (2.71) | 18-29 not available 

Amsterdam_Visser/Kindt__sample_7 NL 16 44 16 0 24.06 (3.36) | 18-29 not available 

Amsterdam_Visser/Kindt__sample_8 NL 9 100 9 0 20.33 (1.41) | 18-22 not available 

Amsterdam_Visser/Kindt__sample_9 NL 38 58 38 0 23.66 (3.78) | 18-33 not available 

Austin_Cisler US 61 100 0 61 33.72 (8.48) | 21-50 15.46 (2.64) | 10-22 

Barcelona_Cardoner SP 71 66 45 26 22.66 (4.67) | 18-40 14.49 (2.15) | 12-20 

Barcelona_Soriano_sample_1 SP 35 51 17 18 37.43 (10.54) | 19-58 14.69 (3.72) | 6-18 

Barcelona_Soriano_sample_2 SP 147 50 122 25 24.76 (4.22) | 19-36 18.63 (3.95) | 13-26 

Bielefeld_Lonsdorf_sample_1 GE 116 66 116 0 24.61 (3.61) | 18-34 15.26 (2.14) | 1-16 

Bielefeld_Lonsdorf_sample_2 GE 80 56 80 0 24.88 (3.51) | 19-34 not available 

Bielefeld_Lonsdorf_sample_3 GE 28 64 28 0 24.68 (4.95) | 18-39 13.36 (1.75) | 11-20 

Bochum_Elsenbruch GE 29 48 29 0 26.45 (3.59) | 19-33 17.45 (4.02) | 3-23 
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Bochum_Merz_sample_1 GE 59 49 59 0 23.88 (4.17) | 18-34 16.07 (3.4) | 9-26 

Bochum_Merz_sample_2 GE 59 47 59 0 24.39 (3.83) | 18-35 15.86 (3.72) | 5-23 

Bochum_Merz_sample_3 GE 47 49 47 0 22.87 (2.61) | 19-30 not available 

Bochum_Merz_sample_4 GE 29 0 29 0 24.21 (3.62) | 19-33 not available 

Bochum_Merz_sample_5 GE 31 0 31 0 24.71 (3.87) | 20-34 not available 

Bochum_Merz_sample_6 GE 60 50 60 0 23.57 (2.95) | 18-33 not available 

Columbia_Neria US 95 46 65 30 35.65 (12.26) | 18-60 15.11 (2.45) | 10-24 

Duke_LaBar_sample_1 US 38 47 38 0 24.68 (4.2) | 19-35 not available 

Duke_LaBar_sample_2 US 37 49 37 0 29.16 (11.07) | 19-66 not available 

Florida_Keil US 14 36 14 0 19.79 (2.08) | 18-26 14 (0) | 14-14 

Harvard_McLaughlin US 89 55 75 14 13.06 (2.6) | 8-17 7.04 (2.32) | 2-10 

Manitoba_Greening_sample_1 CA 13 38 13 0 24 (5.07) | 19-36 17.15 (3.02) | 14-23 

Manitoba_Greening_sample_2 CA 31 55 31 0 24.23 (4.56) | 17-33 not available 

Melbourne_Harrison AU 112 61 75 37 20.88 (2.34) | 16-25 15.02 (2.21) | 11-21 

Munich_Koch GE 45 56 23 22 34.47 (12.39) | 20-63 not available 

Munster_Moeck_sample_1 GE 42 69 42 0 26.02 (6.22) | 19-51 12.33 (1.37) | 7-15 

Munster_Moeck_sample_2 GE 29 52 29 0 15.79 (0.98) | 14-17 10.64 (0.99) | 8-12 

Reading_Reekum_sample_1 UK 21 57 21 0 24 (2.59) | 21-31 not available 

Reading_Reekum_sample_2 UK 50 60 50 0 17.8 (3.46) | 12-25 11.34 (1.82) | 8-14 

MGH_Tuominen_sample_1 US 14 0 14 0 36.36 (9.61) | 22-49 15.69 (1.84) | 12-19 
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MGH_Tuominen_sample_2 US 37 43 37 0 28.51 (5.81) | 19-42 17.08 (2.27) | 12-23 

USP_Diniz BR 55 58 27 28 35.56 (10.97) | 19-63 13.13 (4.1) | 1-17 

Texas_Dunsmoor US 45 64 23 22 23.47 (4.51) | 18-37 NA 

Ulm_Abler GE 50 0 50 0 22.6 (2.92) | 18-29 NA 

Uppsala_Ahs SW 278 58 278 0 33.87 (10) | 20-58 14.16 (1.65) | 9-15 

Vanderbilt_Kaczkurkin US 81 0 53 28 33.47 (9.7) | 19-61 15.74 (2.18) | 13-20 

Total n/Mean (SD)/Range  2199 52.69 1888 311 25.26 (5.47) | 8-66 14.53 (2.56) | 1-26 

 

AU, Australia; BR, Brazil; CA, Canada; GE, Germany; NA, Not available; NL, The Netherlands; SP, Spain; SW, Sweden; UK, United Kingdom, US, United 

States. Note: To be included in the normative modelling analysis each participant had to have all essential data (age, sex) available, samples had to have 

control participants and larger samples required both genders available. These reasons lead to the exclusion of the entire Austin_Cisler and 

Vanderbilt_Kaczkurkin datasets, as well as 7 additional participants. The Bielefeld_Lonsdorf_sample_3 was not approved for inclusion in the normative 

modelling analysis. Thus, a total of 177 fewer participants were included in the normative modelling analysis. 
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Table 2. Characteristics of the fear conditioning tasks for each sample.  

 

Sample 
CS+/CS- 

(n/n) 

CS+ 

trials 

(n) 

CS- 

trials 

(n) 

Average ITI 

(ms) 

Average 

ISI (ms) 

Pairing 

rate (%) 
CS type Type of US 

US 

confound 

Assessment of 

awareness 

Preconditi

oning 

phase 

Amsterdam_Visser/Kindt__sample_1 2/2 22 22 22000 6000 55 
Neutral faces 

& pictures 

Electric 

shock 
no yes yes 

Amsterdam_Visser/Kindt__sample_2 2/2 22 22 20000 4000 55 
Neutral faces 

& pictures 

Electric 

shock 
no yes yes 

Amsterdam_Visser/Kindt__sample_3 2/2 18 18 17500 4000 56 
Neutral faces 

& pictures 

Electric 

shock 
no yes yes 

Amsterdam_Visser/Kindt__sample_4 2/2 18 18 17500 4000 56 
Neutral faces 

& pictures 

Electric 

shock 
no yes yes 

Amsterdam_Visser/Kindt__sample_5 2/2 18 18 10350 4000 56 
Neutral faces 

& pictures 

Electric 

shock 
no yes yes 

Amsterdam_Visser/Kindt__sample_6 2/2 18 18 10350 4000 56 
Neutral faces 

& pictures 

Electric 

shock 
no yes yes 

Amsterdam_Visser/Kindt__sample_7 2/2 18 18 4650 4000 56 
Neutral faces 

& pictures 

Electric 

shock 
no yes yes 

Amsterdam_Visser/Kindt__sample_8 2/2 18 18 17500 4000 56 
Neutral faces 

& pictures 

Electric 

shock 
no yes yes 

Amsterdam_Visser/Kindt__sample_9 2/2 22 22 20000 4000 55 
Neutral faces 

& pictures 

Electric 

shock 
no yes yes 

Austin_Cisler 1/1 18 18 4000 2500 50 
Neutral 

pictures 

Electric 

shock 
no yes yes 
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Barcelona_Cardoner 1/1 32 32 5891 1900 50 
Neutral 

pictures 

Auditory 

stimulus 
no yes yes 

Barcelona_Soriano_sample_1 2/1 16 16 15000 5800 62.5 
Neutral 

pictures 

Electric 

shock 
yes yes yes 

Barcelona_Soriano_sample_2 1/1 15 10 12000 1750 33 
Neutral 

pictures 

Electric 

shock 
no yes yes 

Bielefeld_Lonsdorf_sample_1 1/1 14 14 13000 6800 100 
Neutral 

pictures 

Electric 

shock 
yes yes yes 

Bielefeld_Lonsdorf_sample_2 1/1 14 14 13000 7000 100 
Neutral 

pictures 

Electric 

shock 
yes no yes 

Bielefeld_Lonsdorf_sample_3 2/2 18 18 10000 7000 100 
Grey 

fractals 

Electric 

shock 
yes yes yes 

Bochum_Elsenbruch 1/1 8 8 25000 9000 100 
Neutral 

pictures 
Other* yes yes no 

Bochum_Merz_sample_1 2/1 16 8 10750 8000 62.5 
Neutral 

pictures 

Electric 

shock 
no yes no 

Bochum_Merz_sample_2 2/1 16 8 10750 8000 62.5 
Neutral 

pictures 

Electric 

shock 
no yes no 

Bochum_Merz_sample_3 1/1 21 21 12000 8000 100 
Neutral 

pictures 

Electric 

shock 
yes yes no 

Bochum_Merz_sample_4 2/1 16 8 10062 6000 62.5 
Neutral 

pictures 

Electric 

shock 
no yes no 

Bochum_Merz_sample_5 1/1 16 16 10750 8000 62.5 
Neutral 

pictures 

Electric 

shock 
no yes no 



30 

Bochum_Merz_sample_6 2/1 16 8 10062 6000 62.5 
Neutral 

pictures 

Electric 

shock 
no yes no 

Columbia_Neria 1/2 15 30 3600 4000 80 
Neutral 

pictures 

Electric 

shock 
yes no yes 

Duke_LaBar_sample_1 2/2 20 20 5750 6000 50 

Avatars 

with 

neutral 

faces 

Electric 

shock 
yes no yes 

Duke_LaBar_sample_2 1/1 16 16 15900 4000 31 

VR 

affective 

pictures 

Electric 

shock 
yes no yes 

Florida_Keil 1/1 29 20 7000 5100 25 
Gabor 

patches 

Electric 

shock 
yes yes yes 

Harvard_McLaughlin 1/1 8 4 20000 1500 40 
Neutral 

pictures 

Auditory 

stimulus 
no no no 

Manitoba_Greening_sample_1 1/1 24 24 12000 6000 50 
Gabor 

patches 

Electric 

shock 
no no yes 

Manitoba_Greening_sample_2 1/1 24 24 12000 3995 50 
Gabor 

patches 

Electric 

shock 
no no yes 

Melbourne_Harrison 1/1 15 10 12000 1950 33 
Neutral 

pictures 

Auditory 

stimulus 
no yes yes 

Munich_Koch 1/1 8 8 12000 12000 50 

Affective 

faces and 

pictures 

Electric 

shock 
yes no no 

Munster_Moeck_sample_1 1/1 27 27 5750 300 33 
Neutral 

faces 

Auditory 

stimulus 
no yes yes 
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Munster_Moeck_sample_2 1/1 27 27 5750 300 33 
Neutral 

faces 

Auditory 

stimulus 
no yes yes 

Reading_Reekum_sample_1 1/1 12 12 10530 500 100 
Neutral 

pictures 

Auditory 

stimulus 
yes no no 

Reading_Reekum_sample_2 1/1 12 12 10530 500 100 
Neutral 

pictures 

Auditory 

stimulus 
yes no no 

MGH_Tuominen_sample_1 2/1 16 16 15000 6000 62.5 
Neutral 

pictures 

Electric 

shock 
yes no no 

MGH_Tuominen_sample_2 1/1 8 8 15000 6000 62.5 
Neutral 

faces 

Electric 

shock 
yes no no 

USP_Diniz 2/1 16 16 15000 3000 62.5 
Neutral 

pictures 

Electric 

shock 
yes yes no 

Texas_Dunsmoor 1/1 24 24 6000 5000 50 Other** 
Electric 

shock 
yes no no 

Ulm_Abler 2/1 80 20 variable 2500 50 
Neutral 

pictures 

Thermal 

stimulus 
no no no 

Uppshala_Ahs 1/1 16 16 14000 6000 50 

Humanoi

d 

characters 

Electric 

shock 
yes yes yes 

Vanderbilt_Kaczkurkin 2/1 15 30 3600 3900 80 
Neutral 

pictures 

Electric 

shock 
yes yes yes 

 

CS, conditioned stimulus; CS+, CS followed by unconditioned stimulus; CS −, CS not followed by unconditioned stimulus; CS+/CS-, Number of different 

CS+ and CS-; ITI, intertrial interval; ISI, inter-stimulus interval; US=Unconditioned stimulus. All samples used visual conditioned stimuli. All samples 

included an independent assessment of conditioning (e.g., skin conductance responses) except Amsterdam_Visser/Kindt__1. For all samples, the fMRI 

contrast (CS+ > CS-) included either all CS+ trials (with US present) or all CS+ trials without the US, along with all CS- trials. Exceptions included 
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Barcelona_Cardoner, Duke_LaBar_sample_1, and Duke_LaBar_sample_2, which only included trials from an early conditioning phase (n = 4CS+/4CS-, 

5CS+/5CS-, and 8CS+/8CS- trials, respectively). *Rectal distension. ** Typical exemplars.    
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Table 3. Characteristics of individuals with anxiety-related and depressive disorders included in the analyses.       

    

 

Sample N Age M (SD) 
Females 

(%) 

Medicatio

n (%) 

Comorbidity 

(%) 

GAD 

(n) 

MDD 

(n) 

OCD 

(n) 

PTSD 

(n) 

SAD 

(n) 

PD 

(n) 

SP 

(n) 

Austin_Cisler 61 33.72 (8.48) 100 59.02 67.21 0 0 0 61 0 0 0 

Barcelona_Cardoner 26 23.88 (4.78) 61.54 3.85 11.54 26 0 0 0 0 0 0 

Barcelona_Soriano_sample_1 18 40.56 (11.91) 61.11 88.89 50 0 0 18 0 0 0 0 

Barcelona_Soriano_sample_2 25 25.56 (3.68) 64 0 16 21 0 0 0 4 0 0 

Columbia_Neria 30 35.07 (13.82) 33.33 0 80 0 0 0 30 0 0 0 

Harvard_McLaughlin 14 14.57 (2.14) 50 0 0 1 0 0 3 1 2 7 

Melbourne_Harrison 37 19.89 (2.31) 51.35 0 56.76 0 11 0 0 26 0 0 

Munich_Koch 22 33.55 (13.59) 59.09 54.55 27.27 0 0 22 0 0 0 0 

USP_Diniz 28 33.68 (8.09) 53.57 0 71.43 0 0 28 0 0 0 0 

Texas_Dunsmoor 22 25.95 (5.04) 68.18 NA 0 0 0 0 22 0 0 0 

Vanderbilt_Kaczkurkin 28 34.57 (9.36) 0 3.57 32.14 0 3 0 25 0 0 0 

Total n/M 
31

1 
29.91 (10.75) 58.84 21.22 44.05 48 14 68 141 31 2 7 

        

Data refer to primary mental health diagnoses. "‘Comorbidity’ refers to the presence of at least one additional mental disorder. Data on comorbidity were not 

included in the analyses. GAD=Generalized Anxiety Disorder, MDD=Major Depressive Disorder, NA=Not available, OCD=Obsessive-Compulsive Disorder, 

PD=Panic Disorder; PTSD=Post-traumatic Stress Disorder, SAD=Social Anxiety Disorder; SP=Specific Phobia.      
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Figure 1. Neural correlates and individual-level heterogeneity in human fear conditioning. Schematic indicating the levels of analysis 

(a). Significant brain functional activation (b) and deactivation (c) to the CS+ versus CS− determined by mega-analysis (n=1888 healthy 

controls). Schematic of normative modelling framework (d). Normative probability maps illustrate the percentage of participants in the 

healthy control test sample who had positive (hot colours -right) or negative deviations (cool colours - left) >±2.6 within each voxel. Circle 

highlights frequent large deviations (both positive and negative) within the most ventral region of the vmPFC (e). Abbreviations: AIC, 

anterior insular cortex; AG, angular gyrus; CN, caudate nucleus; dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal 

cortex; dPFC, dorsal prefrontal cortex; dPons, dorsal pons; dPrec, dorsal precuneus; Hipp, hippocampus; HYP, hypothalamus; lOFC, lateral 

orbitofrontal cortex; PCC, posterior cingulate cortex; SI, primary somatosensory cortex; SII, secondary somatosensory cortex; SMA, 

supplementary motor area; TG, temporal gyrus; Thal, thalamus; vmPFC, ventromedial prefrontal cortex. 
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Figure 2. Robust influence of task variables on brain activation during fear conditioning. Maps show the influence of pre-task 

instructions about CS-US contingency (a), type of US (b), number of CS used in paradigm (i.e. multiple CS+ or CS- or single CS+ or CS-) 

(c), pairing rate (d), and potential US confounding in CS+ > CS- contrast (e) on mean activation (left; mega-analysis linear mixed-effects 

models) and relation to predicted activation (right; normative model structure coefficients). Structure coefficient maps show the correlation 

coefficients (rho) thresholded by their respective coefficients of determination (rho2 > 0.3) of selected task variables. This can be interpreted 

as showing how predicted activation to the CS+ > CS- contrast relates to the task variables included in the building of the normative models. 

Positive correlations (warm colours) indicate greater activation for higher values of the input variable and negative correlations (cool 

colours) greater activation for lower values of the input variable (note that some variables are dummy coded, e.g. pre-task instructions, type 

of US).CS=Conditioned Stimulus; US=Unconditioned Stimulus. For Pairing Rate (RR) in linear mixed-effects models, the figure shows 

significant results in the ANOVA comparing four categories (RR30, RR50, RR62, RR100). For the results of post-hoc tests, see 

Supplementary Figures S5 and S6.  
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Figure 3. Differences between individuals with anxiety-related and depressive disorders and healthy controls in human fear 

conditioning. Regions wherein individuals with anxiety-related and depressive disorders (n=311) (a) showed significantly increased 

functional activation to the CS+ versus CS−, as compared to healthy controls. Normative probability maps illustrate the percentage of 

participants of the sample (test controls - top; individuals with anxiety-related and depressive disorders - bottom) who had positive (hot 

colours - right) or negative deviations (cool colours - left) >±2.6 within each voxel (b). Box plots show frequency (median line) of the total 

number of large deviations (>±2.6) per clinical group. Whiskers show ±1.5 times interquartile range (c). Normative probability maps 

illustrate the percentage of each clinical group who had positive (hot colours - right) or negative deviations (cool colours - left) >±2.6 within 

each voxel (d). Confusion matrix for multi-class support vector differentiating patterns of deviations among clinical groups (e). 

Abbreviations: GAD, Generalised Anxiety Disorder; OCD, Obsessive Compulsive Disorder; PTSD, Post-traumatic Stress Disorder; SAD, 

Social Anxiety Disorder. 
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Supplementary Figures 

 

 

 

 

 

Supplementary Figure S1. CS+ versus CS− contrast thresholded to the top 1% of activated 

voxels (Z > 6.06) to highlight specific subcortical regions. Masks for the substantia nigra 

(blue), red nucleus (red), and periaqueductal grey area (green) are shown to aid in the 

localization of effects. 
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Supplementary Figure S2. Significant brain activation (hot colours) and 

deactivation (cool colours) to the CS+ versus CS- across axial (a; Z = -68 to 106), 

sagittal (b; X = -86 to 88) and coronal (c; Y = -120 to 86) slices (n=1888 controls).  
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Supplementary Figure S3. Evaluation metrics of normative models. Explained 

variance (a), skew (b), kurtosis (c), and Standardized Mean Squared Error (SMSE) 

(d) for control test (n = 646 controls - left, pink) and clinical test (n = 260 controls + 

222 individuals with anxiety-related or depressive disorders). 
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Supplementary Figure S4. Normative probability maps illustrate the number of 

participants in the sample (test controls - top; individuals with anxiety-related or 

depressive disorders (AMD) - bottom) who had positive (hot colours - right) or 

negative deviations (cool colours - left) >±2.6 within each voxel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

 

 

 

Supplementary Figure S5. Association of age and sex with brain (de)activation 

during fear conditioning. Results from linear mixed-effect models and normative 

modeling. For normative modeling, maps show the regression coefficient or structure 

coefficients (rho) from normative models for each task variable, thresholded by their 

respective coefficients of determination (rho^2 > 0.3). Positive correlations (warm 

colours) indicate greater activation for higher values of the input variable and 

negative correlations (cool colours) greater activation for lower values of the input 

variable.  
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Supplementary Figure S6. Differences in brain activation between different 

reinforcement rates (including participants with potential US confounding 

effect). RR30 (n=268); RR50 (n=501); RR62 (n=333); RR100 (n=371). 

RR=reinforcement rate. Results of pairwise comparisons after significant ANOVAs. 

Asterisks indicate significant differences between groups with Bonferroni correction 

(*p<.05, **p<.01; ***p<.001). Dashed blue lines indicate mean brain activation for 

healthy controls. Error bars represent standard errors 
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Supplementary Figure S7. Differences in brain activation between different 

reinforcement rates (excluding participants with potential US confounding 

effect). RR30 (n=268); RR50 (n=139); RR62 (n=238). RR=reinforcement rate. 

Results of pairwise comparisons after significant ANOVAs. Asterisks indicate 

significant differences between groups with Bonferroni correction (*p<.05, **p<.01; 

***p<.001). Dashed blue lines indicate mean brain activation for healthy controls. 

Error bars represent standard errors.  

 

 

 

 

 

 

 

 

 

 



9 

 

 

 

Supplementary Figure S8. Influence of task variables on brain activation during 

fear conditioning. Results from linear mixed-effect models for task variables not 

presented in the main text. CS+=Conditioned Stimulus followed by the 

Unconditioned Stimulus. ITI= Intertrial Interval. Number of CS+ in fMRI=Number of 

CS+ included in fMRI contrast. For type of CS, the figure shows significant results in 

the ANOVA comparing three categories (humanoid, affective pictures, and neutral 

faces).   
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Supplementary Figure S9. Influence of task variables on brain activation during 

fear conditioning. Results from normative models. Maps show the regression 

coefficient or structure coefficients (rho) from normative models for each task 

variable, thresholded by their respective coefficients of determination (rho^2 > 0.3). 

Positive correlations (warm colours) indicate greater activation for higher values of 

the input variable and negative correlations (cool colours) greater activation for lower 

values of the input variable (note that some variables are dummy coded, e.g., 

instructions, type of US stimuli). CS=Conditioned Stimulus; US=Unconditioned 

Stimulus. Any task-related variable maps not shown in the main text or in this table 

did not contain any voxels exceeding the threshold (i.e., they were empty maps).  
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Supplementary Figure S10. Differences in brain activation between individuals with 

anxiety-related disorders (n=297) and healthy controls (n=1888). 
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Supplementary Figure S11. Differences in brain activation between unmedicated 

individuals with anxiety or mood-related disorders (n=221) and healthy controls 

(n=1859). 
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Supplementary Figure S12 Differences in brain activation between patient 

groups. PTSD=post-traumatic stress disorder; OCD=obsessive-compulsive 

disorder; GAD=generalized anxiety disorder; SAD=social anxiety disorder. Results of 

pairwise comparisons after significant ANOVAs. Asterisks indicate significant 

differences between groups with Bonferroni correction (*p<.05, **p<.01; ***p<.001). 

Dashed blue lines indicate mean brain activation for healthy controls. Dashed blue 

lines indicate mean brain activation for healthy controls. Error bars represent 

standard errors.   
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Supplementary Figure S13. Expanded version of Figure 3d from the main 

manuscript with enhanced visualization for improved clarity and detail.  
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Supplementary Figure S14. Mean coefficient weights from multi-class support 

vector classifier, used to differentiate whole-brain unthresholded deviation maps 

between patient groups. Yellow indicates voxels that had a mean coefficient weight > 

0.001 in all cross-folds (i.e. were frequently used to inform classification). 
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Supplementary Figure S15. Sample size analyses. Percentage of (de)activated brain 

regions detected in the mega-analysis according to sample size.  
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Supplementary Figure S16. (Fisher-transformed) correlation between the study and the 

mega-analysis. Sample sizes of 33 and 132 were required to achieve correlations of 0.5 and 

0.8, respectively. 
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Supplementary Figure S17. (Arcsine-transformed) Dice coefficient between the study and 

the mega-analysis. Sample sizes of 122 and 275 were required to attain Dice coefficients of 

25% and 50%, respectively. 
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Supplementary Figure S18. Sample size analyses. Mean absolute error (MAE) between 

the study and the mega-analysis. Sample sizes of 51 and 203 were required to achieve MAE 

values of 0.2 and 0.1, respectively. 
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Early conditioning 

 

Late conditioning 

 
 

Early versus late conditioning 

 
 

 

Supplementary Figure S19. Significant brain activation in response to CS+ versus 

CS− during early (n=679) and late (N=634) phases of conditioning, and brain regions 

showing significant differential activation between early and late conditioning in 

healthy controls (n = 634). Samples included in the analysis are reported in 

Supplementary Table S8 
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Supplementary Tables 

 

Supplementary Table S1. Descriptive statistics for STAI-T and BDI across samples. 

Sample 

STAI-T 

(n) 

STAI-T  

M (SD) 

STAI-T 

range 

BDI 

(n) 

BDI 

M (SD) 

BDI 

range 

Amsterdam_Visser_sample_1 18 35.33 (10.39) 22 - 59 NA NA NA 

Amsterdam_Visser_sample_2 41 34.66 (8.84) 22 - 53 NA NA NA 

Amsterdam_Visser_sample_3 12 32.67 (5.82) 23 - 44 NA NA NA 

Amsterdam_Visser_sample_4 10 35.3 (5.38) 29 - 46 NA NA NA 

Amsterdam_Visser_sample_5 13 37.46 (9.47) 26 - 60 NA NA NA 

Amsterdam_Visser_sample_6 14 35.29 (9.71) 21 - 58 NA NA NA 

Amsterdam_Visser_sample_7 16 33.5 (6.04) 25 - 46 NA NA NA 

Amsterdam_Visser_sample_8 9 36.44 (8.14) 27 - 52 NA NA NA 

Amsterdam_Visser_sample_9 38 35.03 (8.63) 20 - 52 NA NA NA 

Austin_Cisler NA NA NA 61 22.57 (12.51) 0 - 55 

Barcelona_Cardoner* 71 25.49 (13.49) 1 - 53 71 14 (11.87) 0 - 46 

Barcelona_Soriano_sample_2* 147 20.47 (10.73) 1 - 52 NA NA NA 

Bielefeld_Lonsdorf_sample_1 116 34.86 (7.36) 24 - 55 NA NA NA 

Bielefeld_Lonsdorf_sample_2 80 35.37 (10) 20 - 59 NA NA NA 

Bielefeld_Lonsdorf_sample_3 28 35.93 (6.96) 24 - 52 NA NA NA 

Bochum_Elsenbruch 29 33.03 (6.51) 21 - 44 NA NA NA 

Bochum_Merz_sample_5 31 33.32 (6.82) 20 - 52 NA NA NA 

Bochum_Merz_sample_6 60 36.2 (6.88) 23 - 52 NA NA NA 

Duke_LaBar_sample_1 38 32.39 (7.86) 21 - 53 NA NA NA 

Duke_LaBar_sample_2 37 33.28 (6.55) 20 - 48 NA NA NA 

Manitoba_Greening_sample_1 13 38.92 (9.3) 29 - 59 NA NA NA 

Manitoba_Greening_sample_2 31 35.27 (10.45) 21 - 57 NA NA NA 

Melbourne_Harrison 112 38.97 (13.05) 21 - 73 NA NA NA 

Munster_Moeck_sample_1 42 34.19 (7.3) 22 - 50 42 3.62 (4.36) 0 - 16 

Reading_Reekum_sample_1 21 41.62 (8.66) 27 - 59 NA NA NA 

Reading_Reekum_sample_2 50 42.92 (9.82) 26 - 75 NA NA NA 

Royal_Tuominen_sample_1 28 35.57 (13.83) 20 - 67 28 5.68 (7.98) 0 - 27 
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Royal_Tuominen_sample_2 71 34.97 (10.33) 20 - 68 71 5.15 (6.48) 0 - 23 

USP_Diniz NA NA NA 25 20.4 (11.47) 0 - 44 

Texas_Dunsmoor NA NA NA 45 15.68 (10.89) 0 - 41 

Ulm_Abler 50 33.38 (6.13) 23 - 52 NA NA NA 

Uppshala_Ahs 278 36.27 (11.44) 20 - 67 NA NA NA 

Vanderbilt_Kaczkurkin 82 43.38 (12.14) 21 - 70 82 12.38 (8.62) 0 - 31 

TOTAL 1586 34.45 (11.56) 1 - 75 425 12.41 (11.48) 0 - 55 

BDI: Beck Depression Inventory; NA: Not available: STAI-T: State Trait Anxiety 

Inventory-Trait version. *These samples used the Spanish version of the STAI-T 

(scores range from 0 to 60) 
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Supplementary Table S2. Pairwise Pearson correlation between sociodemographic, individual differences and task variables. 
 

Sex 0.03                   

Anxiety score 0.11 0.02                  

Depression score 0.12 0.19 0.73                 

Instructions given about contingency prior to the 
task 

0.06 0.08 0 0.33                

Number of trials in preconditioning 0.07 0.24 0.16 0.07 0.2               

Paradigm with multiple CS plus  0.03 0.12 0 0 0.23 0.16              

Paradigm with multiple CS minus  0.02 0.07 0.05   0.17 0.16 0.37             

Type of CS 0.33 0.05 0.14 0.41 0.3 0.31 0.27 0.16            

Number of CS plus during conditioning 0.06 0.09 0.02 0.11 0.26 0.18 0.26 0.03 0.07           

Number of CS minus during conditioning 0.23 0.02 0.05 0.1 0.09 0.58 0.08 0.38 0.08 0.42          

Average ITI 0.2 0.04 0.12 0.25 0.12 0.49 0.02 0.06 0.21 0.43 0.59         

Average ISI 0.26 0.04 0.14 0.14 0.11 0.07 0.16 0 0.26 0.2 0.15 0.13        

Pairing rate 0.34 0.17 0.13 0.44 0.71 0.26 0.68 0.18 0.46 0.36 0.53 0.3 0.62       

Type of US used 0.43 0.06 0.17 0.12 0.08 0.02 0.33 0.22 0.23 0.04 0.1 0.06 0.66 0.45      

Potential US confounding  0.41 0.04 0.12 0.15 0.13 0.09 0.18 0.03 0.39 0.25 0.18 0.05 0.44 0.6 0.38     

Number of CS plus included in the fMRI contrast 0.29 0.03 0.06 0.03 0.05 0.09 0.11 0.07 0.33 0.39 0.54 0.28 0.03 0.42 0.24 0.52    

Number of CS minus included in the fMRI 
contrast 

0.22 0.03 0.03 0.07 0.02 0.43 0.2 0.17 0.11 0.4 0.79 0.4 0.11 0.36 0.17 0.17 0.7   

Contingency awareness 0.1 0.01 0.04 0.06 0.01 0.04 0.01 0.1 0.23 0.06 0.09 0.07 0.21 0.19 0.18 0.03 0.14 0.09  

Diagnosis of anxiety related disorder 
(PTSD,GAD,...) 

0.49 0.06 0.38 0.16 0.31 0.4 0.58 0.35   0.6 0.62 0.87 0.66 0.78 0.78 0.72 0.42 0.65 0.18 

Patient versus controls 0.16 0.05 0.47 0.65 0.07 0.15 0.06 0.06 0.2 0.04 0.12 0.25 0.16 0.23 0.05 0.04 0.01 0.09 0.16 
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Supplementary Table S3. Pairwise variance inflation factor (VIF) between sociodemographic, individual differences and task variables* 

 

Sex 1.0                   

Anxiety score 1.0 1.0                  

Depression score 1.0 1.0 1.6                 

Instructions given about contingency prior to the 
task 

1.0 1.0 1.0 1.0                

Number of trials in preconditioning 1.0 1.0 1.0 1.1 1.1               

Paradigm with multiple CS plus  1.0 1.0 1.0 1.0 1.0 1.0              

Paradigm with multiple CS minus  1.0 1.0 1.0   1.0 1.0 1.2             

Type of CS 1.2 1.0 1.0 1.2 1.1 1.1 1.1 1.0            

Number of CS plus during conditioning 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.0           

Number of CS minus during conditioning 1.0 1.0 1.0 1.1 1.0 1.4 1.0 1.2 1.0 1.2          

Average ITI 1.0 1.0 1.0 1.2 1.0 1.3 1.0 1.0 1.1 1.2 1.3         

Average ISI 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.0 1.0        

Pairing rate 1.1 1.0 1.0 1.4 2.2 1.0 1.9 1.0 2.1 1.2 1.4 1.1 1.8       

Type of US used 1.2 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.0 1.0 2.0 1.2      

Potential US confounding  1.2 1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.2 1.1 1.0 1.0 1.2 1.8 1.1     

Number of CS plus included in the fMRI contrast 1.1 1.0 1.0 1.1 1.0 1.0 1.1 1.0 1.2 1.2 1.4 1.1 1.0 1.4 1.0 1.3    

Number of CS minus included in the fMRI 
contrast 

1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.0 1.0 1.2 2.5 1.1 1.0 1.2 1.0 1.0 1.9   

Contingency awareness 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.0 1.0  

Diagnosis of anxiety related disorder 
(PTSD,GAD,...) 

1.3 1.0 1.2 1.0 1.1 1.2 1.5 1.1   1.6 1.6 4.0 1.8 7.8 2.5 2.1 1.2 1.7 1.0 

Patient versus controls 1.0 1.0 1.3 1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.0 1.0 1.0 1.0 
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* The VIF analysis revealed no collinearity concerns (VIF > 5), except for the pair of variables highlighted in red. However, their activation maps 

did not show any overlap.  
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Supplementary Table S4. Task variables showing high (>0.5) inter-correlations. 

 

Variable 1 Variable 2 n r VIF Overlap 

Number of CS minus during 
conditioning 

Number of CS minus 
included in the fMRI contrast 

1884 0.774975 2.503673 NO 

Instructions given about 
contingency prior to the task 

Pairing rate 1506 0.736404 2.184792 NO 

Average ISI Type of US used 1805 0.698958 1.955196 NO 

Number of CS plus included in 
the fMRI contrast 

Number of CS minus 
included in the fMRI contrast 

1884 0.695982 1.939456 NO 

Paradigm with multiple CS plus Pairing rate 1506 0.680728 1.863555 NO 

Pairing rate Potential US confound 1506 0.675691 1.840122 YES* 

Average ISI Pairing rate 1506 0.658202 1.764384 NO 

Anxiety score Depression score 189 0.625581 1.642984 NO 

Pairing rate 
Number of CS plus included 
in the fMRI contrast 

1506 0.538111 1.407584 NO 

Number of CS minus during 
conditioning 

Pairing rate 1506 0.536643 1.404466 NO 

Type of CS Pairing rate 1446 0.533694 2.135761 YES** 

Number of CS minus during 
conditioning 

Number of CS plus included 
in the fMRI contrast 

1884 0.525154 1.38081 NO 

Number of trials in 
preconditioning 

Number of CS minus during 
conditioning 

1251 0.523602 1.377713 NO 

Depression score Pairing rate 160 0.519464 1.369569 NO 

 

 

*(see main text)  

** Pairing rate and CS type shared two small clusters. In one cluster, both variables 

remained statistically significant when included in the same model. In the other cluster, 

located in the left orbitofrontal cortex, only the pairing rate remained significant. With no 

collinearity concerns (VIF = 2.1), this suggests that activation in this region is modulated by 

the pairing rate rather than CS type. 
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Supplementary Table S5. Task and clinical variables showing high (>0.5) inter-

correlations. 

 

 

Variable 1 Variable 2 n r VIF Overlap 

Average ITI 
Diagnosis of 

anxiety related 
disorder 

288 0.866338 4.008687 NO 

Pairing rate 
Diagnosis of 

anxiety related 
disorder 

228 0.784478 7.796471 NO 

Type of US used 
Diagnosis of 

anxiety related 
disorder 

288 0.775372 2.507536 NO 

Potential US 
confound 

Diagnosis of 
anxiety related 

disorder 
288 0.717325 2.059966 NO 

Average ISI 
Diagnosis of 

anxiety related 
disorder 

288 0.656201 1.756235 NO 

Depression score 
Patient versus 

controls 
375 0.652073 1.739734 NO 

Number of CS 
minus included in 
the fMRI contrast 

Diagnosis of 
anxiety related 

disorder 
288 0.648278 1.724925 NO 

Number of CS 
minus during 
conditioning 

Diagnosis of 
anxiety related 

disorder 
288 0.622024 1.631092 NO 

Number of CS plus 
during conditioning 

Diagnosis of 
anxiety related 

disorder 
288 0.597379 1.554877 NO 

Paradigm with 
multiple CS plus 

Diagnosis of 
anxiety related 

disorder 
288 0.580814 1.509081 NO 
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Supplementary Table S6. Patient's medications. 

 

Sample Medicated (n) 
SSRI or SNRI 

(n) 
BZD (n) Other* (n) 

Austin_Cisler 36 2 0 34 

Barcelona_Cardoner 1 0 1 0 

Barcelona_Soriano_sample_1 16 10 0 6 

Munich_Koch 12 7 0 5 

Vanderbilt_Kaczkurkin 1 1 0 0 

TOTAL 66 20 1 45 

 

SSRI: Selective Serotonin Reuptake Inhibitors; SNRI: Selective Noradrenaline 

Reuptake Inhibitors; BZD: Benzodiazepines. *Includes other medications or 

combinations of medications. 
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Supplementary Table S7. Participants excluded after quality control (QC) 

Sample N collected  

N excluded 

after 

HALFpipe QC 

N excluded 

after manual 

QC 

N included 

in analysis 

Amsterdam_Visser_sample_1 19 0 1 18 

Amsterdam_Visser_sample_2 41 0 0 41 

Amsterdam_Visser_sample_3 12 0 0 12 

Amsterdam_Visser_sample_4 11 1 0 10 

Amsterdam_Visser_sample_5 13 0 0 13 

Amsterdam_Visser_sample_6 14 0 0 14 

Amsterdam_Visser_sample_7 16 0 0 16 

Amsterdam_Visser_sample_8 10 1 0 9 

Amsterdam_Visser_sample_9 38 0 0 38 

Austin_Cisler 88 27 0 61 

Barcelona_Cardoner 90 16 3 71 

Barcelona_Soriano_sample_1 37 2 0 35 

Barcelona_Soriano_sample_2 191 44 0 147 

Bielefeld_Lonsdorf_sample_1 120 4 0 116 

Bielefeld_Lonsdorf_sample_2 83 1 2 80 

Bielefeld_Lonsdorf_sample_3 32 4 0 28 

Bochum_Elsenbruch 30 1 0 29 

Bochum_Merz_sample_1 60 1 0 59 

Bochum_Merz_sample_2 60 1 0 59 

Bochum_Merz_sample_3 48 1 0 47 

Bochum_Merz_sample_4 33 4 0 29 

Bochum_Merz_sample_5 32 1 0 31 

Bochum_Merz_sample_6 64 4 0 60 

Columbia_Neria 114 15 4 95 

Duke_LaBar_sample_1 40 2 0 38 

Duke_LaBar_sample_2 40 3 0 37 

Florida_Keil 15 0 1 14 

Harvard_McLaughlin 95 6 0 89 

Manitoba_Greening_sample_1 13 0 0 13 

Manitoba_Greening_sample_2 31 0 0 31 

Melbourne_Harrison 154 40 2 112 

Munich_Koch 52 4 3 45 

Munster_Moeck_sample_1 44 2 0 42 

Munster_Moeck_sample_2 31 2 0 29 

Reading_Reekum_sample_1 22 1 0 21 

Reading_Reekum_sample_2 52 2 0 50 

Royal_Tuominen_sample_1 17 0 3 14 

Royal_Tuominen_sample_2 37 0 0 37 

Texas_Dunsmoor 48 3 0 45 
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Ulm_Abler 51 1 0 50 

Uppsala_Ahs 306 28 0 278 

USP_Diniz 56 1 0 55 

Vanderbilt_Kaczkurkin 88 6 1 81 

TOTAL 2448 229 20 2199 
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Supplementary Table S8. Samples included in the early versus late analyses 

 

Sample n 

CS+ trials 
included in 
early/late 
analysis  

(n/n) 

CS- trials 
included in 
early/late 
analysis  

(n/n) 

Pairing 
rate (%) 

US confound 
in  

early/late 
analysis 

Barcelona_Cardoner* 45 8/- 16/- 50 no 

Barcelona_Soriano_datas
et_2 

122 5/5 5/5 33 no 

Bochum_Elsenbruch 29 4/4 4/4 100 yes 

Bochum_Merz_dataset_1 56 8/8 4/4 62.5 yes 

Bochum_Merz_dataset_2 58 8/8 4/4 62.5 yes 

Bochum_Merz_dataset_3 47 10/10 10/10 100 yes 

Bochum_Merz_dataset_4 28 8/8 4/4 62.5 yes 

Bochum_Merz_dataset_5 31 8/8 4/4 62.5 yes 

Bochum_Merz_dataset_6 60 8/8 4/4 62.5 yes 

Duke_LaBar_dataset_1 38 5/5 5/5 50 yes 

Duke_LaBar_dataset_2 37 8/8 8/8 31 yes 

Harvard_McLaughlin 75 4/4 2/2 40 yes 

Vanderbilt_Kaczkurkin 53 7/7 15/15 80 yes 

 

CS, conditioned stimulus; CS+, CS followed by unconditioned stimulus; CS −, CS not 

followed by unconditioned stimulus; CS+/CS-, US=Unconditioned stimulus.  

All samples used visual conditioned stimuli. All samples used an electric shock as US except 

Barcelona_Cardoner and Harvard_McLaughlin, which used an auditory stimulus.  

*Only early trials were available.  
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Supplementary Methods 

 

Changes with respect to pre-registration  

As noted in the main text, both the mega-analysis (https://osf.io/7n953) and 

normative modeling analysis (https://osf.io/w74bt) were pre-registered. The following 

changes were made after pre-registration: 

1. At the time of pre-registration, we had collected data from 43 samples. We 

excluded one sample (n=22) because it employed a “multi-CS” conditioning 

paradigm (36 CS+, 18 CS-) which is difficult to compare with the other experiments 

included.  

2. For the mega-analysis, we used pre-scaling instead of Combat to reduce site-

related heterogeneity (see “Pre-scaling” in page 5).   

The normative modelling analysis plan was updated to best complement the meta-

analysis approach and thus the following changes were made after pre-registration:  

1. Sample size. The participants included were a subset of the final sample used in 

the meta-analysis, for whom all required data were available. 

2. Variables included. The variables used were matched to those included in the 

mega-analysis study to facilitate a better comparison between the results of these 

complementary methods 

3. Analysis plan. Research question 1A. We chose not to create models for separate 

ROIs. Research question 1C. We did not perform whole-brain sparse canonical 

correlation analysis to determine how deviations in task activation predicted outcome 

measures, rather, we chose statistical approaches more appropriate to the type of 

data. Research question 2B. Again, we did not perform whole-brain sparse canonical 

correlation analysis, for the same reasons as mentioned above. We did not perform 

analyses on transdiagnostic scales with insufficient sample sizes (e.g., Beck Anxiety 

Inventory, Hamilton-Anxiety, Hamilton-Depression) and similarly excluded small 

diagnostic groups from relevant analyses. We did not use a clustering method.    

  

Variables collected and not included in analyses 

The following variables were collected but not included in the analyses because the 

data collected were insufficient, or too heterogeneous to be aggregated: IQ, 

comorbidity, ethnicity, years of education, use of a concurrent task during 

conditioning, and US aversiveness. We excluded the variable “use of preconditioning 

https://osf.io/7n953
https://osf.io/w74bt
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phase” from the analyses because we already accounted for it by including “number of 

trials during preconditioning”. Descriptive data on years of education and comorbidity 

for the samples with available data are reported in Tables 1 and 3 of the main 

manuscript.   

 

 

Non-imaging data  

Harmonization of trait anxiety scores 

As noted in the main text, we conducted the analysis of the State-Trait Anxiety 

Inventory-Trait version (STAI-T) scores using both raw and harmonized scores.  

To harmonize the STAI-T scores, we took the following steps, we first assessed the 

potential variability of STAI-T scores across versions, languages, or countries, by 

conducting a meta-analysis of the mean STAI-T scores reported in the normative 

studies1-11  as well as a meta-analysis of the reported standard deviations. In both 

analyses, substantial heterogeneity between studies was observed (I2 statistic for the 

mean: 99%; I2 statistic for the standard deviation: 95%, Q test p<0.001 in both 

cases). This heterogeneity indicates significant differences in the reported means 

and standard deviations between studies. We then examined potential moderators of 

this heterogeneity, including the version of the STAI-T (X or Y), language, and 

country. The results revealed statistically significant differences in the mean and 

standard deviation across countries (p=0.014 and 0.001, respectively) and in the 

mean across languages (p=0.012) but not on the version of the STAI-T. 
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    Mean   Log SD   

    Estimate (95%CI) P Estimate (95%CI) P 

            

Version X 41.2 (36.9-45.4) n.s. 2.36 (2.31-2.41) n.s. 

  Y 39.2 (36.4-42.0)   2.22 (2.09-2.35)   

            

Language Dutch 35.2 (33.0-37.5) 0.012 2.23 (1.97-2.48) 0.353 

  English 38.0 (35.7-40.4)   2.17 (2.01-2.32)   

  French 41.9 (40.7-43.1)   2.15 (2.05-2.25)   

  German 43.0 (41.0-44.9)   2.39 (2.36-2.42)   

  Japanese 46.8 (44.6-49.1)   2.43 (2.29-2.57)   

  Spanish 46.2 (37.5-55.0)   2.32 (2.25-2.39)   

            

Country America 36.5 (33.9-39.1) 0.014 2.13 (1.88-2.39) 0.001 

  Australia 36.4 (35.8-37.0)   2.41 (2.37-2.45)   

  England 41.1 (36.1-46.2)   2.02 (1.79-2.25)   

  France 41.9 (40.7-43.1)   2.15 (2.05-2.25)   

  Germany 43.0 (41.0-44.9)   2.39 (2.36-2.42)   

  Japan 46.8 (44.6-49.1)   2.43 (2.29-2.57)   

  Netherlands 35.2 (33.0-37.5)   2.23 (1.97-2.48)   

  Spain 46.2 (37.5-55.0)   2.32 (2.25-2.39)   

            

 

These findings suggest that the observed heterogeneity in STAI-T scores is partly 

explained by country (or language) differences in the included studies. We could not 

separate the effects of “country” and “language” because each language 

corresponded to one country, except for English (which corresponded to America, 

Australia, and England). However, given that “country” better explained the 

heterogeneity and that we expected cultural differences among English-speaking 

countries, we decided to harmonize STAI-T scores based on country (rather than 

language). The harmonization was conducted with ComBat for ENIGMA12 (see 

expanded code in the figshare repository): 
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i_controls = which(X$patient == 0) 

age_sex = cbind(X$age, X$sex) 

combat = combat_fit(X$stai[i_controls], 

                    site = X$country[i_controls], cov = age_sex[i_controls,], 

                    n.min = 8, impute_missing_cov = TRUE) 

X$stai  = combat_apply(combat, X$stai, site = X$country, cov = age_sex)$dat 

 

  

Quality control 

Three investigators (EV, HS, MAF) independently performed quality control of the 

non-imaging data and contacted the sites for additional information when necessary. 

 

Neuroimaging data 

Quality control  

Data were collected from 2448 participants. In addition to quality control using 

HALFpipe, which excluded 229 individuals (Supplementary Table S7, two 

investigators (EV, HS) independently reviewed all neuroimaging data, which 

excluded 20 additional participants. Two of the included samples 

(Manitoba_Greening_sample_1 and Manitoba_Greening_sample_2) were analyzed 

in different runs. For these samples, we used the average of all runs to obtain the 

main contrast. One sample (Harvard_McLaughlin) was analyzed using blocks; due to 

the short interval-stimulus-interval (ISI), individual events could not be reliably 

obtained. 

 

Statistical analyses. Mega-analyses 

Pre-scaling 

As noted in the main text, after processing with HALFpipe, we observed differences 

in the BOLD response between sites. Such variability exceeded the expected small 

normally distributed differences typically addressed by site-harmonizing mixed-

effects models such as ComBat12. To remove these differences, we performed a pre-

scaling step that consisted of dividing the BOLD response of individuals from each 

site by their standard deviation. The use of such standardized scores is common in 

many areas of psychology and neuroscience. Specifically, for each voxel with brain 
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coverage across all sites, we estimated the standard deviation using linear models 

with appropriate covariates (see below). We then calculated the median of the 

standard deviations across these voxels and divided all images in the sample by this 

standard deviation. We have included this step in the "combat.enigma" package12 in 

R for use by other groups. Following recommendations for between-site 

harmonization (see below), we estimated the standard deviations exclusively using 

data from healthy controls.  

 

A note about the use of z-statistics in mega-analyses 

HALFpipe generates “z-statistic images”, and one may (wrongly) assume that these 

z-statistic images are equivalent to z-scores. However, z-statistic images are 

calculated by dividing each participant´s mean BOLD response (to different trials) by 

its standard error rather than by the standard deviation across participants. Thus, 

critically, these z-statistic images mix the task-related BOLD response with its 

standard error. This is not inherently wrong, but it means that differences in z-

statistics between cases and controls may be due not only to differences in the task-

related BOLD response but also to differences in its standard error. 

These differences in standard error could be unrelated to the task, for 

example, due to differences in the amplitude of BOLD signal fluctuations. In the 

following R code, we simulated a study comparing the task-related BOLD response 

between cases and controls, with no actual differences in the task-related BOLD 

response but differences in its standard error. As expected, the t-tests comparing the 

groups show no differences in the task-related BOLD response. However, they do 

show statistically significant differences in within-subject z-scores.  
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# Create a task time-series design matrix 
design = rep(c(rep(0:1, 20), 0), each = 8) 
dat = NULL 
 
# For each group 
for (group in c("patient", "control")) { 
   
  # For each individual in the group 
  for (i in 1:30) { 
     
    # Simulate the BOLD signal with the same BOLD response but more noise 
    # in patients 
    ts = rnorm(length(design), design, ifelse(group == "patient", 1.2, 1)) 
     
    # Simplified analysis to estimate the task-related BOLD response 
    m = summary(lm(ts ~ design))$coefficients[2,] 
     
    # Save the individual task-related BOLD response and z-statistic 
    dat = rbind(dat, data.frame( 
      group, 
      bold_response = m[1], 
      z_statistic = m[1] / m[2] 
    )) 
  } 
} 
 
# Conduct t-tests to compare patients and controls 
t.test(dat$bold_response ~ dat$group) 
t.test(dat$z_statistic ~ dat$group) 

In other words, we do not know whether differences in z-statistics are related 

to differences in the task-related BOLD response or to differences in other aspects of 

the BOLD signal that may be unrelated to the task. Indeed, we examined whether 

cases (individuals with anxiety-related and depressive disorders) and controls in this 

study might have different standard errors of the fear conditioning-related BOLD 

response and found that they might. For each sample containing cases and controls, 

we calculated the standardized mean difference (Cohen's d) in standard error and 

then averaged d across the samples. At a descriptive level, using a threshold of 

d≥0.2, cases showed larger standard errors in the cerebellum, but smaller in the mid-

cingulum (see figure). 
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Linear mixed-effects models 

To fit the models, we created a new function that, for each voxel, performs the following 

steps:  

1) Assesses which participants and sites have information, taking into account the 

specific brain coverage of each individual fMRI scan;  

2) Detects and discards collinear or constant covariates, which can vary depending on 

the participants with information in that voxel; 

3) Fits a linear mixed-effects model using the "lme" function from the “nlme” R 

package13: 

m = lme(y ~ x, random = ~ 1 | sample) 

or a simple linear model if the participants are from only one sample: 

 m = lm(y ~ x) 

Where “m” is the model, “y” is the voxel value, “x” is a matrix with the variables of 

interest and covariates, and “site” is a random intercept. 

4) Tests the linear hypothesis if specified (e.g., for ANOVAs): 

linearHypothesis(m, hypothesis) 

where “m” is the model, and “hypothesis” is the hypothesis matrix. 

5) Saves the results, including maps of sigma (the standard deviation estimated in the 

model), the model coefficients, and z-statistics. We have included this function in the 

“combat.enigma” R package. 

We used cluster-based inference to correct for multiple testing. Specifically, we 

created clusters of voxels with Z≥3.1 and converted cluster sizes to cluster-wise p-

values using the Gaussian Random Field (GRF) theory, using the FSL utilities 

smoothest and cluster. 

 

Normative modelling: Thresholding 

We follow existing work in the field and apply a threshold equal to or greater than 2.6 

(Z±2.6) to determine ‘large’ deviation scores. With the normative modelling 

approach, we are not performing a group-level hypothesis test as would be done 
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using a statistical parameteric mapping framework, rather we are aiming to 

statistically detect differences in individual subjects with respect to the common 

reference model. For this type of analysis, it is not clear that how spatial 

comparisons, and multiple comparison correction ought to be done, nor that doing so 

is even appropriate because multiple comparisons correction obscures the degree of 

inter-individual differences that are detected. In prior work14, a subject level FDR 

method was evaluated where the results did not differ from the conclusions made 

when using the original un-corrected input data. The interpretation of the single 

subject FDR correction method is not straightforward as a different threshold is 

estimated for every subject. In other words, an individual with widespread decreased 

or increased BOLD activation during the task (as quantified using a contrast z-

statistic) may appear to have ‘normal’ findings using an FDR threshold as the overall 

distribution of their voxel intensities is shifted. Therefore, in this work we elected to 

use a single fixed threshold (Z±2.6) to determine the significance of a deviation, 

which simplifies the comparison across individuals and is in line with other work on 

normative models14-16. 

 

Sample size analyses 

Leveraging data from the 43 samples included in the study, we conducted a series of 

sample size analyses to inform the design of future studies. Specifically, we treated 

the mega-analytic primary activation map as the ground truth and examined how 

activation patterns at varying sample sizes compared to this reference. To ensure 

harmonization across datasets, all analyses were re-run using the lmm_fit function 

and corrected for multiple comparisons using Gaussian random field theory. The 

primary objective was to examine how study sample size relates to the proportion of 

brain regions showing activation or deactivation in the mega-analysis. To this end, 

we parcellated the brain using the AAL atlas17, and defined a region as activated (or 

deactivated) if it contained at least 10 statistically significant activating (or 

deactivating) voxels. For each study, we then calculated the percentage of AAL 

regions identified as activated (or deactivated) in the mega-analysis that were also 

detected in the individual study. The relationship between the arcsine-
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transformed percentage of detected regions and the square root of the study’s 

sample size was subsequently assessed. 

For completeness, we also computed the average false positive rate—defined as the 

percentage of regions not activated or deactivated in the mega-analysis but 

incorrectly identified as such in the individual studies. All analyses were conducted 

separately for activations and deactivations. Secondary analyses examined how 

the square root of the study's sample size related to several additional metrics: 

a) the Fisher-transformed correlation between the study and mega-analytic maps; 

b) the mean absolute error between the two; and 

c) the arcsine-transformed Dice coefficient18 quantifying their spatial overlap. 

 

Supplementary Discussion  

In the main text, we highlighted those individual differences or task variables 

with more robust effects. Here we discuss the remaining significant associations.  

 

Sociodemographic variables 

Older age was significantly associated with greater activation in the ventromedial 

prefrontal cortex and medial temporal gyrus, as well as significantly less activation in 

the anterior insula, pre-supplementary motor area extending to the dorsal anterior 

cingulate, dorsal caudate and bilateral supramarginal gyrus extending to the 

posterior insula. Female participants (n=973) showed greater activation across the 

visual cortex, and left medial/superior temporal gyrus than males (n=915). 

Regression coefficients from the normative models indicated a minimal effect of age 

on the predicted BOLD signal, but unthresholded effects largely replicated the 

findings of the mega-analysis. Structure coefficients from the normative models 

showed minimal relation between sex and predicted BOLD signal, with only a very 

small cluster in the mid-anterior cerebellum predicted to show heightened activation 

in females. These results are presented in Sup. Figure S5.  

 

Task variables  

The following task variables showed significant albeit small/weak associations with 

brain activation during conditioning (see Sup. Figure S8 for the mega-analysis 
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results and Sup. Figure S9 for the structure coefficients of the normative modeling 

results). Normative modelling regression coefficient maps are also shown in Sup. 

Figure S9 for completeness but are not discussed below. 

The number of trials during preconditioning showed a significant positive 

association with activation in the inferior cerebellum in the mega-analysis. Structure 

coefficients did not show a relationship between the number of trials during 

preconditioning and predicted BOLD signal. 

In the mega-analysis, the type of CS (categorized as humanoid, affective 

pictures, and neutral faces) revealed significant effects. See full results at 

https://figshare.com/s/d44cc1390711bad3c147.In normative modeling analyses, the 

use of a humanoid CS was predictive of increased activation in the cingulate cortex, 

extending to the dorsomedial prefrontal cortex and pre-supplementary motor area, 

secondary somatosensory cortex (SII), dorsal precuneus, dorsolateral prefrontal 

cortex, the bilateral insula, the bilateral temporoparietal junction, the thalamus, the 

caudate and the left anterior cerebellum, as well as decreased activation (i.e. more 

deactivation) in the anterior ventromedial prefrontal cortex and posterior cingulate 

cortex. Moreover, the use of neutral pictures as CS predicted more activation (i.e. 

less deactivation) in the anterior ventromedial prefrontal cortex and posterior 

cingulate cortex, and less activation within the cingulate cortex, extending to the 

dorsomedial prefrontal cortex and pre-supplementary motor area, dorsal precuneus, 

SII, the bilateral insula, the bilateral temporoparietal junction, the thalamus, the 

caudate and left anterior cerebellum Finally, the use of neutral faces as CS predicted 

more activation within the subgenual anterior cingulate cortex, and less activation 

within the bilateral fusiform face area and SII. The use of other types of CS (affective 

faces and pictures, a gabor patch, a neutral male avatar, images of animals or tools, 

or of snakes and spiders) did not have an influence on predicted BOLD signal.  

Average intertrial-interval (ITI) length demonstrated a significant positive 

association with activation within the bilateral primary visual cortex and a significant 

negative association with the bilateral posterior parietal cortex, and superior frontal 

gyri extending to the supplementary motor area in the mega-analysis. Structure 

coefficients showed that increased average ITI was predictive of increased activation 

within the primary visual cortex, dorsomedial prefrontal cortex, extending to the pre 

SMA, the bilateral thalamus, caudate and putamen, the brainstem, and the anterior 

https://figshare.com/s/d44cc1390711bad3c147
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and medial cerebellum. Conversely, a longer ITI predicted less activation (i.e., more 

deactivation) within an expanse of the ventromedial prefrontal cortex, within the 

dorsolateral prefrontal cortex, primary somatosensory cortex (SI) the precuneus, the 

lingual gyrus and fusiform face area extending into bilateral middle gyri of the 

temporal lobe, and bilateral hippocampus. 

In the mega-analysis, the number of CS+ included in the fMRI 

contrast showed a significant positive association with activation in the left primary 

visual cortex, right orbitofrontal cortex, right precuneus, right superior parietal lobule, 

and right dorsolateral prefrontal cortex.  Moreover, the number of CS- included in the 

fMRI contrast showed a significant positive association with activation in the left 

superior parietal lobule and the right dorsolateral prefrontal cortex.  

Being unaware of the relationship between CS and US (i.e., contingency 

unawareness; n=72) showed a positive association with activation in the ventral 

posterior cingulate extending to the dorsal anterior cingulate/precuneus compared 

with being aware (n=1260). As contingency awareness was not available for all 

participants this variable was not included in the construction of the normative 

models, and therefore their relationship to predicted task (de)activation cannot be 

assessed using structure coefficients. Rather, for participants in the two test samples 

(controls + individuals with an anxiety or mood-related disorder) with these data 

available (n = 703) we used a support vector classifier and found whole-brain 

deviation score could not be used to predict whether a participant was contingency 

aware or not (mean accuracy = 50% +/- 16%; p = 0.426; 10-fold cross validation; 

1000 permutations). 

For the main results on type of US, please refer to the main text. In addition to 

these main results, in normative modeling analyses, the use of a thermal stimuli as 

US was predictive of decreased activation within the bilateral amygdala, the mid-

cingulate cortex extending to the pre-supplementary motor area, the dorsomedial 

prefrontal cortex, a posterior region of the ventromedial prefrontal cortex, the cuneus, 

and (i.e., more deactivation) in the angular gyrus. The use of a visceral stimuli as US 

had no influence on predicted BOLD signal during CS+>CS-. These two variables 

were not investigated separately using linear models.  

The following task variables were not significant in the mega-analysis nor in 

normative modelling analyses: number of CS+ trials during conditioning; number of 
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CS- trials during conditioning; and average ISI (inter-stimulus interval, i.e., between 

the CS+ and the US).  
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