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ABSTRACT

Pavlovian fear conditioning is a fundamental process in both health and disease. We investigated its
neural correlates and sources of variability using harmonized functional magnetic resonance imaging
data from 2,199 individuals across nine countries, including 1,888 healthy individuals and 311 with
anxiety-related or depressive disorders. Using mega-analysis and normative modeling, we show that
fear conditioning consistently engages brain regions within the "central autonomic—interoceptive" or
"salience" network. Several task variables strongly modulate activity in these regions, contributing to
variability in neural responses. Additionally, brain activation patterns differ between healthy
individuals and those with anxiety-related or depressive disorders, with distinct profiles characterizing
specific disorders such as post-traumatic stress disorder and obsessive-compulsive disorder. While the
neural correlates of fear conditioning are highly generalizable at the population level, variability arises
from differences in task design and clinical status, highlighting the importance of methodological

diversity in capturing fear learning mechanisms.



INTRODUCTION

Fear conditioning, also known as threat conditioning, is a psychological paradigm developed over a
century ago to study associative learning mechanisms. It remains one of the most widely used and
productive experimental models for investigating both normal and pathological fear and anxiety in
humans?. Fear conditioning models how the association between an initially neutral stimulus
(conditioned stimulus, CS) and an innately aversive stimulus (unconditioned stimulus, US) is learned.
The success of learning in fear conditioning is typically assessed by comparing responses to the fear
cue (CS+, paired with the US) and the safety cue (CS-, not paired with the US) across subjective,
autonomic, or neural domains. Successful conditioning is indicated by greater responses to the CS+
than to the CS-2. In the brain, this involves activity changes within a “central autonomic—
interoceptive” or “salience” network, which in humans includes functionally and anatomically
connected regions like the dorsal anterior cingulate cortex (dACC) and the anterior insular cortex
(AIC)®. Additionally, fear conditioning has been linked to decreased activity in regions like the
ventromedial prefrontal cortex (vmPFC), although such decreases have been less extensively studied?.
Although the amygdala plays a crucial role in fear conditioning in rodents*®, and classical lesion
studies have implicated the amygdala in human fear conditioning’, this relationship has not been

consistently identified in human fMRI studies *8-12,

Limitations in prior research on the neural correlates of human fear conditioning include the
use of small sample sizes (typically n<30) and the reliance on heterogeneous neuroimaging processing
and analytical methods 3. While group-level meta-analyses can partially address the sample size
issue®, individual-level mega-analyses offer additional advantages. These include enhanced statistical
power, more precise effect size estimation, standardized preprocessing and analysis techniques, and
substantially improved power to detect whether activation is modulated by individual variability -one

of the primary goals of the current study*2®,

Individual differences, such as sociodemographic factors (e.g., age) and trait variables (e.g.,
trait anxiety), are likely to modulate the neural correlates of fear conditioning, potentially affecting the
generalizability of findings across groups, such as younger versus older adults or individuals with
high versus low anxiety*3. However, existing research on individual differences has been inconsistent
and often hampered by limited sample sizes (n<50%%) or sampling biases'’. Moreover, task-specific
variables, such as task instructions or characteristics of the US, may also influence conditioning at the
behavioral or neural level 2131819, For example, compared to other USs, a tactile electric shock may
elicit greater activation in the dJACC and the ventral supplementary motor area®. A primary challenge
in this field is integrating prior data to accurately assess how individual differences and task variables
affect neural outcomes. This complexity arises from variations in adjustable factors and sampling

across studies and participants, highlighting the need for methods that can account for and isolate



specific sources of variation—such as the normative modeling approach used here. Normative
modeling allows us to integrate multiple smaller-scale studies into a common reference space—a
standardised baseline against which to statistically quantify individual variations. This approach
allows for meaningful comparisons across diverse studies by controlling for multiple sources of
variation As a result, the variance associated with specific variables and individuals can be isolated,
quantified, and systematically analysed®. (For details on the underlying mathematics, see references

21-23: for applications, see 2429),

Fear conditioning has also been used to study the development and persistence of mental
health disorders marked by pathological fear, such as anxiety-related disorders**-33, which are highly
prevalent and rank among the leading causes of disability worldwide®. However, there is ongoing
debate over whether anxiety-related disorders consistently show abnormal fear conditioning at
behavioral or neural levels®® or if these abnormalities are specific to certain clinical groups—such as
post-traumatic stress disorder (PTSD*) but not others, like social anxiety disorder (SAD)%.
Inconsistencies maybe due in part to small sample sizes (ns<100 for anxiety-related disorders as a
group, ns<25 for comparisons among clinical groups). Furthermore, most research in this area has
relied on case-control designs and traditional analysis techniques, both of which have limitations that
could be addressed through normative modeling. This framework enables statistical inference for
individual subjects relative to an expected population pattern, providing a more detailed examination

of the heterogeneity underlying group-level analyses®.

In this study with pre-registered hypotheses and analyses (cf. Materials and Methods), we
used both mega-analysis and normative modelling to analyse individual-level, harmonized fMRI data
acquired during fear-conditioning from 43 samples from 21 laboratories across 9 countries (total
n=2199), including both healthy participants and individuals diagnosed with anxiety-related and
depressive disorders. First, we assessed the overall neural correlates of fear conditioning in healthy
participants to provide a comprehensive delineation of the brain regions underlying human fear
conditioning. Based on previous studies, we hypothesized that during fear conditioning, the CS+>CS-
contrast would be associated with robust activations in regions such as the dACC, AIC,
pre/supplementary motor areas, and dorsolateral prefrontal cortex (dIPFC), whereas the CS+<CS-
contrast would be associated with deactivations in the vmPFC and hippocampus. We expected the
mega-analysis to be more sensitive than previous studies in detecting subtle effects in other brain
regions not previously (or not consistently) identified. Second, we assessed variation among healthy
participants. Given their role in mediating subjective arousal and autonomic expression of fear®®, we
hypothesised that regions including the vmPFC and the anterior-to-mid cingulate cortex would show
the greatest between-subject heterogeneity. Third, we examined how individual differences (e.g., age,
trait anxiety) and task variables (e.g., task instructions) influenced this variation. Finally, we explored

differences in the neural correlates of fear conditioning between individuals with anxiety-related and



depressive disorders and healthy controls, as well as among clinical subgroups (e.g., PTSD, SAD).
We show that fear conditioning is consistently associated with brain activation in regions of the
central autonomic-interoceptive network, despite methodological variations. However, specific task
variables also influence the responses of these regions during conditioning. Additionally, brain
activation patterns during conditioning differ between healthy individuals and those with anxiety-

related or depressive disorders, with certain groups displaying distinct activation profiles.

RESULTS

All results -including effect sizes for the linear models- are available in a free open-access repository
(see Data availability statement).

Conditioning is associated with extensive brain (de)activations

In the mega-analysis (Fig. 1a), we included data from 1888 healthy individuals (42 experiment
samples) and used linear mixed-effect models (LMMSs) to perform a mega-analysis of whole-brain
activation during fear conditioning (CS+>CS— contrast). We observed significant activation
encompassing clusters within the bilateral anterior and mid insular cortices; the secondary
somatosensory cortices (SlI); the dIPFC; the lateral premotor cortices; and the dorsal and lateral
cerebellum (Fig. 1b). Significant activation was also observed in multiple regions across the cortical
midline, including the dACC extending to the pre-supplementary and supplementary motor areas
(SMA), ventral posterior cingulate cortex, and dorsal precuneus (dPrec).

Additionally, the CS+>CS- mega-analysis revealed the broad activation of subcortical
regions, particularly the thalamus and basal ganglia. The largest of these activation patterns were
observed in the dorsal striatum, specifically the caudate nucleus (CN); the globus pallidus extending
to the striatum; the ventral tegmental area extending to the habenula; the mediodorsal thalamus
(Thal); and the midbrain tegmentum. Activation of the midbrain was noted generally across the dorsal
midbrain (~substantia nigra/red nucleus and pretectal nuclei) (Supplementary Fig. S1). To
specifically assess the role of the amygdala, we conducted a Region of Interest (ROI) mega-analysis
focusing on this region (see Materials and Methods), which indicated that neither the left (Cohen's d
=0.13, 95% CI [-0.029, 0.624]) nor the right amygdala (Cohen's d = 0.12, 95% CI [-0.002, 0.260])
showed significant activation during fear conditioning (both p-values > 0.05).

We also observed significant deactivations (CS+<CS- contrast) during fear conditioning,
predominantly in regions of the default mode network (Fig. 1c). This included the posterior cingulate
cortex (PCC) and precuneus; the vmPFC extending to the mPFC and subgenual cingulate cortex
medially, as well as the left dorsal prefrontal cortex (dPFC); the bilateral angular gyri; and the
parahippocampi and hippocampi (Hipp). Additional deactivation was observed in the lateral

orbitofrontal cortex; the primary somatosensory cortex (SlI); as well as the left temporal (TG) and



fusiform gyri (see Supplementary Fig. S2 for detailed activation and deactivation across axial,
sagittal, and coronal slices).

Heterogeneity in the neural correlates of conditioning

We estimated voxel-wise normative models of fear-conditioning related activation using the CS+>CS-
contrast from 894 controls (training sample), and specifying age, biological sex, sample, and task
variables as covariates (see Materials and Methods for all variables. The normative modeling
sample is smaller than the mega-analysis due to the requirement for participants to have data on all
covariates used in model construction). Testing these models with a held-out test sample (n=646)
showed good model fit with explained variance reaching 0.3 in regions that showed activation during
fear conditioning (Fig. 1b), and skew and kurtosis within acceptable limits (Supplementary Fig. S3).
For each participant in our held-out test sample, we then calculated a deviation score (z-score) within
each voxel. In other words, for each participant, we quantified the distance from the predicted mean
activation of each voxel, relative to the normative reference distribution for that voxel (Fig. 1d).
While almost every voxel had at least 5 participants with large deviations (deviations >+2.6),
including areas such as the bilateral insula and expanses of the cingulate cortex extending to the
medial prefrontal cortex (Supplementary Fig. S4), controls most frequently had large deviations
(both positive and negative) within the most ventral region of the vmPFC and inferior temporal pole.
As this ventral region is notoriously prone to signal drop out, we interpret this result as most likely
reflecting varying signal intensity rather than individual differences, and thus chose to interpret

deviations within this region with caution (Fig. 1e).

Individual differences have small associations with conditioning

We examined the role of the following individual differences variables using LMMs and normative
models (Fig 1a): age, biological sex, and self-reported trait anxiety and depressive symptoms. In
normative models, we analyzed both regression coefficients, reflecting each variable's contribution to
the regression equation, and structure coefficients, indicating the direct bivariate relationship between
a variable and brain activity without accounting for other predictors.

In LMMs, age (n=1884 controls) and biological sex (n=1888 controls) showed a significant
association with brain activation or deactivation during fear conditioning (Supplementary Fig. S5).
However, the effect sizes were small (Supplementary Discussion). Additionally, the age range was
restricted (see Table 1). Regression and structure coefficients also showed minimal effects of age and
biological sex (n=646 controls) (Supplementary Fig. S5). Neither trait anxiety (n=1402 controls),
using either harmonised or non-harmonised scores (Supplementary Methods), nor depressive
symptoms (n=213 controls) were significantly associated with brain activation or deactivation during

fear conditioning in LMMs. Similarly, elastic net regressions showed that whole-brain deviation



scores derived from normative models could not explain the variance in individual levels of trait
anxiety (n = 751 controls and cases; "2 = -0.095, p = 0.459), nor depressive symptoms (n = 152
controls and cases; "2 = -0.257, p = 0.605). See Methods for a note on negative r*2 values and
Supplementary Table S1 for trait anxiety and depressive symptoms scores.

Task variables have a robust effect on conditioning

The influence of task variables on brain activation during fear conditioning was also examined using
LMMs and structure coefficients from normative models in healthy controls. Several task variables
were associated with robust effects across individuals, showing at least moderate effect sizes in
LMMs and reaching significance in normative modeling analyses. These included instructions given
to the participant about contingency prior to the task, the type of US, the use of a paradigm with
multiple CSs (i.e., more than one CS+ or CS-), the pairing rate (i.e., percentage of CS+ followed by a
US), and potential US confounding (i.e. whether trials followed by the US were included in the CS+
vs CS- contrast, and therefore the effects of the US may confound the effects of the CS+).

Partial instructions about CS-US contingency (n=1388) were associated with significantly
increased activation in the supplementary motor area and superior parietal lobule compared to no
instructions about contingency (n=500) in LMMs. Structure coefficients from the normative models
(n=646) showed that partial instructions (as compared to no instructions) produced a model predicting
more activation in the bilateral anterior insula, the thalamus, the left caudate, clusters within the
dorsomedial prefrontal cortex, the dorsolateral precuneus, and in the posterior region of the vmPFC.
The model also predicted less activation within the bilateral visual cortex, the anterior medial
temporal gyrus, and in the anterior vmPFC with the use of partial instructions (Figure 2a). Note that
we excluded instructed conditioning studies (Materials and Methods).

Compared with an auditory US (n=337), a tactile electric shock US (n=1472) produced
significantly greater activation in bilateral dorsal mid-insula, dorsal medial thalamus, and pre-
supplementary motor area, extending to the dACC (n=337) in LMMs. In normative modelling
analyses, a tactile electric shock US predicted increased activation within the dACC extending to the
pre-supplementary motor area, the dorsal precuneus, secondary somatosensory cortex, the bilateral
dorsal mid- to- posterior insula, the midbrain and pons, and the superior cerebellum, and less
activation (i.e., more deactivation) within an expanse of the vmPFC, and SI. Moreover, the use of an
auditory US was significantly associated with increased activation in the left auditory cortex and was
predictive of increased activation in the bilateral auditory cortex (superior temporal lobe) and less
deactivation (i.e., more differential activation) within an expanse of the vmPFC extending to the
dorsomedial prefrontal cortex, posterior cingulate cortex, angular gyrus, and Sl (Figure 2b).

In LMMs, compared to paradigms with a single CS+ (n=1283), paradigms with multiple CS+
(n=605) produced increased activation in the left supplementary motor area (SMA) and left dorsal

precuneus and widespread increased deactivation in regions including the bilateral temporal poles, the



right parahippocampal gyrus extending to the fusiform gyrus, the left visual association cortex
extending to the angular gyrus, and the right primary motor and somatosensory cortex. Comparing
paradigms with multiple CS- (n=302) and those with a single CS- (n=1586) revealed identical regions
with increased activation to paradigms with multiple CS+. Conversely, increased deactivation was
shown in the bilateral anterior hippocampus, ventral PCC, primary motor and somatosensory cortex,
precuneus, and right mid-insula. In normative models, this was modelled using two variables
(multiple CS+ and multiple CS-). Multiple CS+ predicted less activation within the bilateral
amygdala, a bilateral expanse of Sl the angular gyrus, the posterior cingulate cortex, the bilateral
putamen and caudate, and the lingual gyrus. Similarly, multiple CS- predicted decreased activation

within a bilateral expanse of Sl and the lingual gyrus (Figure 2c).

Pairing rate, treated as a continuous variable, did not relate to brain activation during
conditioning in LMMs. However, due to the non-normal distribution of pairing rates across studies
and individuals, we categorized pairing rates (e.g., 30%, 50%, and 100%) and conducted ANOVA-
like LLMs followed by pairwise comparisons with Holm-Bonferroni correction, which revealed
significant effects (Figure 2d). In particular, the comparisons involving the 50% pairing rate category
was the category where significant differences between categories occurred most frequently. The
significant differences between the pairing rate categories occurred both with (Supplementary Fig.
S6) and without (Supplementary Fig. S7) US confounding. The structure coefficients for pairing rate
(as a linear association), showed that a higher pairing rate predicted greater activation within visual
regions (calcarine, lingual gyrus and cuneus), the precuneus, the left dorsolateral prefrontal cortex, the
superior gyrus of the temporal lobe, and (less deactivation of) an anterior region of the vmPFC.
Conversely, a higher pairing rate predicted less activation within the mid-cingulate cortex, the
bilateral anterior insula, a posterior region of the vmPFC as well as the thalamus and caudate (Figure
2d).

Finally, potential US confounding (n = 997), compared to no confounding (n = 891), was
associated with significantly increased widespread activation during fear conditioning (CS+ > CS-
contrast). This activation was observed across the bilateral fusiform and lingual gyri, temporal poles,
angular gyri, posterior insula, primary motor cortex, retrosplenial cortex (extending to the posterior
hippocampus), and right amygdala, predominantly in the superficial amygdala, in linear mixed models
(LMMs). Similarly, structure coefficients from the normative models showed that the model predicted
greater activation within the bilateral mid-cingulate cortex extending to the dorsomedial prefrontal
cortex and pre-supplementary motor area, angular gyri, mid-to-posterior insula, superior temporal
gyrus and temporal poles, fusiform gyri and lateral mid-occipital gyrus, amygdala, caudate, dorsal
thalamus, and dorsolateral cerebellum with potential US confounding (Figure 2e).

None of the above results were affected by excessive multicollinearity, except for the

association between pairing rate and the potential US confound (Supplementary Tables S2-S5). We
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identified six small clusters where the effects of both variables overlapped. To further disentangle
their contributions, we conducted mixed-effects models within these clusters, including both variables
as predictors. Results indicated that both variables exerted statistically significant effects in all
clusters except for one small cluster in the right middle occipital region, where the effect of the US
confound was no longer significant. Given the absence of multicollinearity (Variance Inflation
Factor=1.8), we concluded that activation in this region is specifically modulated by the pairing rate,
rather than by the US confound.

The remaining task variables (for example, the number of trials during preconditioning)
showed weaker effects or were not significantly associated with brain (de)activation during
conditioning in the mega-analysis or normative modelling analyses (Supplementary Figs. S8 and S9

and Supplementary Discussion).

Cases and controls show differences in conditioning

In the mega-analysis, individuals with anxiety-related and depressive disorders (cases, n=311) showed
significantly increased activation in the right ventrolateral prefrontal cortex (anterior pars orbitalis),
dorsal frontal pole, posterior cingulate cortex, left temporal pole, and bilateral primary motor areas
compared to controls (n=1888) (Fig. 3a). Similar results were found when comparing individuals with
anxiety-related disorders (i.e., excluding major depressive disorder; remaining n=297) and controls,
with additional clusters observed in the dorsal prefrontal cortex, visual association cortex, and primary
somatosensory cortex (Supplementary Fig. S10). After excluding individuals who were taking
medication at the time of the scan (Supplementary Table S6), those with anxiety-related and
depressive disorders (n=221) still showed significantly increased activation in the dorsal medial
prefrontal cortex, dorsal PCC extending to the superior parietal lobule, left medial TG and bilateral

ventrolateral prefrontal cortex compared to controls (Supplementary Fig. S11).

In normative modelling, we tested our clinical test sample (260 controls + 222 cases) against
our reference normative models. This analysis compared the individuals’ deviation scores (z-score)
within each voxel, and quantified, as a percentage of the sample, the frequency of participants with
large positive or large negative deviations (Fig. 3b). We compared the frequency of extreme
deviations throughout the whole brain (Normative Probability Maps thresholded at > +2.6), and found
that cases had, on average, a greater frequency of extreme deviations than controls (Mann Whitney U-
test = 111167.5, p= 0.014; Fig. 3c). Qualitatively, cases showed a different pattern of deviation
frequency than controls. Large deviations (i.e., more activity than would be predicted by the model)
were common across cases within the dorsomedial prefrontal cortex, the primary somatomotor cortex,
precuneus, the bilateral primary visual cortex (medial occipital lobe extending to the inferior medial
and inferior lateral lobe) extending to the lingual and fusiform gyrus. As with controls, cases

frequently had large negative deviations within the most ventral region of the vmPFC.
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PTSD and OCD show distinct activation patterns and deviations

We divided our patient sample by primary diagnosis (PTSD, n=141; OCD, n= 68; GAD, n=48; and
SAD, n=31; other diagnoses were not included due to small sample size). ANOVA-like LMMs
indicated that there were significant differences in brain activation during conditioning among patient
groups. Post-hoc pairwise comparisons corrected for multiple comparisons showed that the most
significant differences occurred between individuals with PTSD and OCD with respect to individuals
with GAD and SAD (Supplementary Fig. S12).

Similarly, normative modelling analyses identified a significant difference in the frequency of
large deviations among patient groups (Kruskal-Wallis H-test = 71.529, p=1.984"-13; Fig. 3c).
Follow-up Mann Whitney U-test’s (FDR corrected for multiple comparisons) clarified, for example,
that extreme deviations occurred most frequently in individuals with PTSD, as compared to other
disorders, followed by OCD. We then illustrated the location of these extreme deviations at the voxel
level to determine whether they were spatially overlapping within and between patient groups (Fig.
3d and Supplementary Fig. S13). Individuals with PTSD showed frequent large positive deviations
within the bilateral medial occipital lobe extending to the inferior temporal lobe and lingual gyrus,
bilateral vIPFC, an expanse of the dmPFC, precuneus, and bilateral amygdala. They also showed
frequent large negative deviations within an expanse of the vmPFC (posterior vmPFC focus),
precuneus, and a focus of the lingual gyrus and fusiform gyrus. There were very few regions wherein
individuals with GAD showed overlapping large deviations, and similarly for SAD except for a small
region of the bilateral lingual gyrus frequently found to have large positive deviations. Individuals
with OCD showed frequent large deviations within the inferior parietal cortex, and temporal pole.

A support vector machine could not classify cases from controls better than chance using
whole-brain deviation maps (mean AUC = 0.44 +/- 0.07, p = 1.0). However, a multi-class support
vector classifier confirmed a unique pattern of deviations among cases (Fig. 3e). More specifically,
PTSD, on average, was accurately classified 54.55% of the time (mean F1 score = 0.58; p= 2.06x10-
23, balanced accuracy = 0.43 where chance level across 4 classes = 0.25). Interestingly, despite fewer
overlapping extreme deviations within the OCD group, the classifier was able to accurately label
individuals with OCD 73.74% of the time (mean F1 score: 0.57; p =1.71x10-7). GAD and SAD were
only accurately classified 31.78% (mean F1 score: 0.35) and 13.33% (mean F1 score: 0.17) of the
time, respectively, and were often misclassified as OCD. The mean voxel-wise coefficient weights
and frequency of contribution (in penalised permutations) to this classification are displayed in

Supplementary Fig. S14.
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Sample size for future studies

We conducted a series of sample size analyses to guide the design of future fMRI fear-conditioning
studies (Supplementary Methods). To detect activation or deactivation in 50% of the brain regions
identified in the mega-analysis (based on the AAL atlas®), a sample size of 122 was required, while
detecting 80% of these regions required 243 participants (Supplementary Figure S15). When
considering activations only, the required sample sizes were slightly smaller: 100 participants to
detect 50% and 199 participants to detect 80% of the mega-analytical findings. In contrast,
substantially larger samples were needed to detect deactivations.263 for 50% detection and 522 for
80%. The overall false positive rate was 9%, and 8% and 3% when activations and deactivations were
assessed separately, averaging 5%. Additional sample sizes results are presented in Supplementary
Figures S16-S18.

Early and late conditioning

Given the importance of accounting for temporal dynamics in brain activity during human fear
conditioning®, we compared neural activation during the early and late phases of conditioning in a
subset of participants (n = 634 controls; Supplementary Table S8). Consistent with the effects
observed across the entire task, both phases showed significant activation in the CS+>CS- contrast
across several brain regions. These included the insular cortices, SlI, dIPFC, lateral premotor cortices,
dorsal and lateral cerebellum, dACC extending to the pre-supplementary motor area and SMA, and
the dPrec (Supplementary Figure S19). Notably, there were several significant differences between
the phases. The early phase showed greater activation in the bilateral fusiform gyrus, SMA, right
amygdala, left frontal eye fields, and left motor cortex compared to the late phase (Supplementary
Figure S19). Additionally, significant differences were also observed in the left angular gyrus; dorsal,
medial, and ventral anterior prefrontal cortices; and lateral orbitofrontal cortex. However, as these
regions were implicated in the CS+<CS- contrast, this suggests that they exhibited reduced

deactivation during the late phase.

DISCUSSION

We compiled the largest (n=2199) sample of individual-level fear conditioning fMRI data to date to
comprehensively delineate the neural correlates of human fear conditioning, to assess the influence of
several relevant sources of variation - including individual differences and task variables- and to
evaluate potential differences in fear conditioning at the neural level between individuals with

anxiety-related and depressive disorders and controls.
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Our individual-level mega-analysis mapped fear conditioning activation to the “central
autonomic—interoceptive” or “salience” network. As hypothesised, fear conditioning was associated
with robust activations in the anterior insula, ventral striatum, pre-supplementary /supplementary
motor areas, dorsal anterior cingulate cortex, and dorsolateral prefrontal cortex. It was also associated
with activation in several subcortical regions, particularly the thalamus and basal ganglia. While many
of the observed effects replicated previous findings®, the increased statistical power provided by our
analyses suggests that peak effects in the dorsal midbrain may originate in the substantia nigra/red
nucleus and pretectal nuclei. Future work with a specific focus on these nuclei may aid in
disentangling their specific contributions to fear conditioning. Also as hypothesised, fear conditioning
was associated with robust deactivations in the ventromedial prefrontal cortex and hippocampus.
Other brain regions that were deactivated during conditioning included primarily regions of the

default mode network (e.g., posterior cingulate cortex and precuneus).

By incorporating a large sample from multiple laboratories worldwide, our study underscores
the generalizability of the neural correlates of conditioning at the population level. At the same time,
the methodological diversity across laboratories and studies suggests that our findings extend beyond
specific experimental conditions, reinforcing their relevance to the broader fear conditioning process.
Notably, at a time when neuroimaging research is increasingly emphasizing sample sizes in the
thousands®, our analyses show that studies with 100 participants can still reliably detect the neural
correlates of fear conditioning, at least when considering activations only. Furthermore, our findings
highlight that a significant source of variability in neural responses during fear conditioning stems
from differences in task design. This insight is crucial for future human fMRI studies, as it enables
researchers to anticipate the expected effects of various task and contrast design choices, along with
their magnitudes, at the neural level. By making these adjustments in advance, researchers can strike a
balance between the advantages of large, standardized studies and those of smaller studies with
greater methodological diversity. Moreover, our normative modeling results underscore the potential
of fear conditioning paradigms for informing the development of targeted interventions. Specifically,
normative models can identify brain regions with atypical activation during conditioning, providing
valuable guidance for interventions such as neuromodulatory treatments aimed at these regions*..
Additionally, by pinpointing abnormal activation patterns, normative models enable clinicians to

tailor treatments more precisely to address these specific neural deviations.

The amygdala was not robustly activated during fear conditioning in either our mega-analysis
or ROI-based mega-analysis for the contrast averaging across all trials, consistent with our previous
group-level meta-analysis3. However, and in line with a recent study by Wen and colleagues® (n =

601, including individuals with anxiety-related disorders and controls), our analysis of early versus
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late trials in a large subsample of participants (n=634 controls) revealed significantly greater
activation in the right amygdala during early compared to late trials.

Inconsistencies regarding amygdala involvement in human fMRI conditioning studies have
been attributed to several factors, including small sample sizes and limited anatomical specificity. The
amygdala consists of distinct subregions, such as the basolateral (BLA) and centromedial (CMA)
amygdala, and averaging responses may mask specific activations®°, Moreover, the amygdala’s
subcortical and ventral location, its small size, and the susceptibility artifacts and low signal-to-noise
ratio associated with traditional imaging techniques can further hinder detection of significant
effects*. Ultra-high field imaging has been shown to reduce these limitations and allows for more
precise investigation of amygdala subnuclei**“®, making it a valuable tool for future human fear

conditioning studies.

Taken together with the findings of Wen and colleagues, our results highlight the importance
of considering temporal dynamics when assessing amygdala activity during fear conditioning®.
Specifically, they confirm that amygdala activation is strongest during early trials and habituates
thereafter*?,*, suggesting that averaging across all conditioning trials may obscure these effects. In the
current study, we also identified specific task features- such as the use of paradigms with multiple
CS+ stimuli or US-related confounds- and diagnostic categories (e.g., PTSD; see also®®) that modulate
amygdala activity during conditioning. These findings underscore that both clinical and task-related

variables may also contribute to the inconsistencies observed in the literature.

Biological sex had only minor effects, suggesting that fear conditioning mechanisms are
relatively stable at the neural level between sexes. Additionally, none of our analyses found
significant associations between brain activation during conditioning and levels of trait anxiety or
depressive symptoms. While some mental health frameworks suggest that dimensional constructs of
psychopathology, like trait anxiety, may better reflect neural activation patterns*, the variability and
complexity in the neural states underlying these constructs and their lack of direct mapping to neural

processes makes it challenging to identify clear linear relationships*3°,

The brain activation differences during conditioning between individuals with anxiety-related
and depressive disorders and healthy controls, observed in the mega-analysis, aligned with normative
modeling results, showing a higher frequency of large deviations in cases. Importantly, these
differences remained significant even after excluding medicated cases, suggesting that the observed
effects are not due to medication. This is crucial, as commonly used treatments like selective
serotonin reuptake inhibitors (SSRIs) can influence brain activation patterns observed with fMRI.
When the analysis was limited to anxiety-related disorders, significant differences in brain activation

persisted, indicating that individuals with pathological anxiety are characterized by abnormal neural
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responses during fear conditioning. These findings suggest that such abnormalities could eventually

serve as neural markers for anxiety-related disorders®!-2,

Among individuals with anxiety-related disorders, those with PTSD and OCD showed
distinct patterns of brain activation and had distinct patterns of voxel-wise deviations that can be used
to distinguish them from other anxiety-related disorders. This provides neurobiological support for the
decision of current diagnostic classifications to separate these conditions®3. In addition, it may provide
new insights into the underlying mechanisms of psychopathology. The sample of individuals with
PTSD was still relatively heterogeneous, with data from three independent samples, and yet there
were often overlapping extreme positive deviations. Furthermore, using the derived deviation scores
we were able to differentiate and classify individuals with PTSD and OCD with striking precision,
compared to GAD and SAD. This is consistent with the previous literature that used mean averaging
methods and reported differences in activation levels between groups of individuals with PTSD,
compared to controls®°*, Taken together, this suggests that the neural mechanisms engaged during a
fear conditioning paradigm are specifically relevant to the psychopathology of, and to some extent,
similarly altered across individuals with PTSD; reinforcing the notion that fear conditioning is a
foundational process in PTSD psychopathology, and as such, related tasks are a useful clinical
model®. The accurate differentiation of OCD, despite few regions of overlapping large deviations,
appeared to be driven by consistent coefficient weights with a region of the bilateral superior temporal
gyrus and right vIPFC. Combined with no strong behavioural evidence®, mixed imaging evidence of
differences in fear conditioning tasks in this population®®-°, and evidence of altered baseline activity
within the superior temporal region®, this finding may be interpreted as capturing compensatory
mechanisms that individuals with OCD engage to overcome obsessions and achieve the same
behavioural output>%6!, Despite significant differences in the frequency of extreme deviations
between individuals with GAD and SAD compared to controls, their limited spatial overlap and less
accurate classifications, suggest that there is significant heterogeneity in fear conditioning among
individuals with these diagnoses. Thus, while we suggest that the psychopathology of PTSD is
uniquely related to fear or threat processing as captured by fear conditioning tasks, we propose that

other anxiety-related disorders, particularly GAD and SAD are less so.

Our study has several limitations. First, despite using harmonized pre-processing pipelines
and statistical models to account for site differences, variations in diagnostic routines and imaging
acquisition contributed to sample heterogeneity, particularly among individuals with anxiety and
depressive disorders (a label that includes already heterogenous disorders). Second, mega-analyses
may have limited power to detect effects in small subgroups (e.g., SAD patients). Third, for
participants with a mental health diagnosis, we focused on primary diagnoses and we could not assess

(or control for) comorbidity. Fourth, while our normative models adjusted for site, age, biological sex,
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and task influences on brain activity, future studies should explore the impact of adding more
variables in the model construction. It is possible that alternative model structures could have
increased the explained variance in the relatively noisy BOLD activation (where other literature has
explained up to 51.3% of the variance?). However, care must be taken not to overfit or reduce the
generalisability of models to ensure their wider utility. Fifth, we were unable to include other
individual-level measures of conditioning (e.g., psychophysiological data) in our analyses, as this
would have required separate collection and harmonization procedures. Finally, cross-sectional data
on brain activation during fear conditioning raises concerns about the reliability of outcome measures.
Although fMRI-based fear conditioning shows limited test-retest reliability at the whole-brain level,
significant within-subject similarity across repeated time points has been observed®?, suggesting that
large test-retest samples could help further validate the normative modeling approach, as

demonstrated in other tasks?.

With this work, we provide the largest analysis of the neural correlates of human fear
conditioning and potential sources of variation to date. Our results confirm that human fear
conditioning is a robust phenomenon at the neural level, consistently engaging multiple brain regions
within the central autonomic-interoceptive or salience network. Our comprehensive review of the
influence of task design choices on elicited and predicted brain activation can be used to help interpret
differences in the previous literature and should remind researchers of the potentially significant
influence of task design choices. Finally, we found that there are overall differences in fear
conditioning at the neural level between individuals with anxiety-related and depressive disorders and
controls, and that a unique mechanism of PTSD psychopathology is well captured by fear
conditioning paradigms, supporting the use of these models to study this disorder.
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METHODS
The current manuscript combines two pre-registered analyses of individual-level fear conditioning

fMRI data (https://osf.io/7n953; https://osf.io/w74bt). Data were collated from 43 samples originating

from 23 sites in 9 countries. Collation was coordinated by the lead group (IDIBAPS Barcelona).
ENIGMA Fear Conditioning is part of the larger ENIGMA-Anxiety Working Group®®. Table 1 and
Table 3 summarize the descriptive information on the samples. Informed consent was obtained from
all participants by the sites providing their data. Some site-specific data have been reported

previously, but no reports have examined all individual data together.

Fear conditioning task

We included data from participants who completed a fear conditioning experiment during an fMRI
scan. There are several human fear conditioning paradigms, which vary based on the time elapsed
between the CS and the US (e.g., delay, trace, simultaneous, or backward conditioning), the use of
one (single-cue) versus two or more (differential-cue) CSs, and the instructions given to participants?:
1) No instructions: For example, “During this experiment, you will see various images and might
experience mild electric shocks at certain times”; 2) Partial instructions: For example, “During this
experiment, you may see a particular image sometimes followed by a mild electric shock. However,
the shock won’t happen every time you see the image, and sometimes it might not appear at all. Pay
attention to the images, as they might give you some indication of when the shock could occur”; 3)
Full instructions (instructed conditioning): For example, “During this experiment, you will see the
image X, which is always followed by a mild electric shock. Whenever this image appears, it will be

followed by the shock shortly afterward. No other images will be associated with the shock™.

We focused on delay differential cue-conditioning paradigms with no or partial instructions
(i.e., excluded instructed conditioning studies), and focused our analysis on comparing the response to
a CS+ compared to a CS-. Table 2 summarises information on the fear conditioning tasks included in

this manuscript.

Non-imaging data: sociodemographics and individual differences

All sites were asked to provide information regarding sociodemographics (age, biological sex) and
individual differences: trait anxiety, assessed with the Trait subscale of the State-Trait Anxiety
Inventory (STAI-T)®; and depressive symptoms, assessed with the Beck Depression Inventory
(BDI)% (Supplementary Table S1). For individuals with anxiety-related and depressive disorders,
sites were asked about principal mental health diagnosis and psychotropic medication use at the time
of the scan (Supplementary Table S6. Previous normative studies of trait anxiety (STAI-T) have

shown additive and multiplicative differences across countries, for which we harmonised trait anxiety
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scores across countries using ComBat'* (Supplementary Methods) and conducted subsequent

analyses twice: once with the raw scores and once with the country-harmonised scores.

Non-imaging data: task-related variables

We collected information about the following task variables: instructions given to the
participant about contingency prior to the task (partial versus no information); type of US (e.qg.,
electric shock versus aversive sound); number of trials during pre-conditioning; use of a paradigm
with multiple CSs (i.e., more than one CS+ or CS-) during conditioning; type of CS (e.g. geometrical
figures, faces, etc); number of CS+ and CS- trials during conditioning; average ITI (inter-trial
interval); average ISI (inter-stimulus interval, i.e., between the CS+ and the US); pairing rate
(percentage of CS+ followed by a US); potential US confounding; and the number of CS+ trials and
CS- trials included in the fMRI contrast. For studies assessing awareness (conscious recognition of the
association between the CS+ and the US, after the task), we also asked about participant’s
contingency awareness (yes vs. no). Task variables were not explicitly listed in the pre-registration.

The decision to include these variables was based on previous research?*2,

Processing of neuroimaging data

We included only neuroimaging data acquired with whole-brain coverage. Individual-level
raw task-based fMRI data were processed using the Harmonized Analysis of Functional MRI pipeline
(HALFpipe, version 1.2.2)%, a tool developed within the ENIGMA consortium to harmonise fMRI
analyses across sites and facilitate reproducible analyses. HALFpipe provides a standardised
workflow that extends fMRIprep®” with several additional preprocessing steps, including spatial
smoothing, grand mean scaling, temporal filtering, and confound regression. Moreover, HALFpipe
generates a standardised quality assessment of the preprocessing outputs and imaging raw data
(Supplementary Table S7). We used HALFPIPE default parameters (smoothing using 6mm FWHM;
confound removals using ICA-AROMA,; and a high-pass filter of 125 s).

For the current study, each site was provided with a comprehensive manual to perform image
pre-processing and quality control with HALFpipe in a fully harmonised manner, and each group
shared the HALFPIPE output files for each individual along with the non-imaging data for each
individual. The lead group (IDIBAPS-Barcelona) processed 5 sites, aggregated all the data, and
carried out additional quality control procedures and measures to ensure the comparability of the data,

as described in the Supplementary Methods).
Statistical analyses

We conducted two types of statistical analyses: mega-analyses and normative modelling

analyses.
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Mega-analyses

Participants

We included data from 2199 participants (M_Age=25.26, SD=5.47; 57.2% female), comprising 1888
healthy controls (M_Age=25.85, SD=8.51; 51.53 % female) and 311 individuals with a primary
diagnosis of an anxiety-related or depressive disorder (M_Age=29.91, SD=10.75; 58.84 % female)

(Table 1 and Table 3). Diagnoses were established with structured clinical interviews.

Pre-scaling

Although we used the exact same processing protocol and conducted extensive quality control (see
above), we observed differences in the BOLD response between samples, most likely due to varying
units of measurement (note that MRI scans are acquired in arbitrary units®. To address these
differences, we pre-scaled the images for healthy controls so that, for each sample, the voxel-wise-
median standard deviation (after removing the effects of covariates) was 1 (see Supplementary
Methods). We then applied the pre-scaling parameters obtained from the healthy controls to the cases
(individuals with a primary diagnosis of an anxiety-related or depressive disorder). This approach
differs from using the individual z-statistic images (i.e., dividing the BOLD response by its standard
error), which we did not adopt for the mega-analysis. The reason is that the standard error may differ
between cases and controls, and thus, differences in z-statistics between groups could reflect
differences in the standard error rather than in the BOLD response (for more details, see

Supplementary Methods).

Analyses

Differences in brain coverage across sites prevented us from using the standard ComBat method,
which determines the harmonisation parameters using all voxels**. Additionally, there was no need to
remove differences in scaling because we had already pre-scaled the images as described above. Thus,
we used LMMs (with the sample as a random intercept) to investigate: 1st the pattern of brain
activation during fear conditioning in healthy controls and in cases (individuals with anxiety-related
and depressive disorders), which tested whether the mean activation in each voxel was non-null; 2nd
the pattern of differences in brain activation during fear conditioning between cases and controls,
which tested whether activation in each voxel was different between cases and controls; 3rd the
pattern of differences in brain activation during fear conditioning among patient groups (PTSD, OCD,
GAD, SAD), testing whether activation in each voxel differed among patient groups; 4th the potential
influence of individual differences and task variables (see above) on brain activation during fear
conditioning in healthy controls, which tested whether activation in each voxel was significantly

associated with each task variable. In all models, we incorporated age and sex as covariates.
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Significant LMMs comparing three or more groups (analog to ANOVAs) were followed by pairwise
comparisons with Holm-Bonferroni correction.
We also conducted an ROl mega-analysis focusing on the amygdala. For this analysis, we extracted
the pre-scaled BOLD response in the left and right amygdala based on the Automated Anatomical
Labeling atlas®®. We used an LMM, with age and sex as covariates, to test whether the mean
activation significantly differed from zero. Potential differences between early and late conditioning
were also analyzed using a LMM, with age and sex as covariates in a subsample of controls (n=679;
Supplementary Table S8).

We fitted the LMMs using custom functions (included in ‘combat.enigma’ R package) that
call the 'nIme' R package voxel-wise and address voxel-specific details (e.g., varying collinearity due
to differing brain coverage; see Supplementary Methods). FSL was then used to derive cluster-based

corrected p-values using Gaussian Random Field (GRF) theory.
Analyses of multicollinearity

Given the diverse range of variables examined in this study—many of which may be influenced by
methodological factors (e.g., pairing rate, type of conditioned stimuli) or sample characteristics (e.g.,
patient vs. control group)—there is a potential risk of confounding. That is, the observed effects
attributed to one task variable may partially or wholly reflect the influence of another. To address this
possibility, we systematically assessed interrelationships among all methodological and clinical
variables using correlation analysis and evaluated multicollinearity using variance inflation factors
(VIF). For pairs of variables with correlation coefficients exceeding 0.5 (or eta and Cramér's VV when
involving categorical variables), we further examined whether their associated activation maps
exhibited spatial overlap. Overlap was defined as clusters of at least 10 contiguous voxels showing
significant activation for both task contrasts. This approach was guided by the rationale that classical
confounding requires both variables to be associated with activation in the same brain region. For any
pair of correlated variables with overlapping activation, we re-estimated the mixed-effects linear
models within the overlapping clusters, this time including both variables as predictors, to determine
whether their effects remained statistically significant. A reduction to non-significance upon joint

inclusion could indicate either collinearity (as suggested by the VIF) or potential confounding.
Effect sizes

To compare the effect sizes of different variables and to exclude findings with negligible or very
small effects, we converted the regression coefficients of the peaks into correlation coefficients
(Pearson r). For variables comparing two groups (e.g., cases vs. controls), we also calculated the
corresponding standardised mean differences (Cohen's d). We considered effects with r<0.2 (roughly

equivalent to d<0.4 for balanced binary variables) to be small, and only highlighted larger effects (i.e.,
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r>0.2, i.e., at least moderate) in the main text. It is important to note that peak effect sizes should be
interpreted with caution, as they correspond to the peaks of clusters of statistical significance and are,
therefore, larger than those obtained by other methods. Effect sizes for all the LMMs can be found at
https://figshare.com/s/d44cc1390711bad3c147

Normative modelling analyses
Participants

We included data from 2022 participants; 1800 healthy controls (age range 8-66 years, mean age:
25.66 + 8.4, 53.05% female) and 222 individuals with anxiety-related and depressive disorders (age
range 9-63, mean age: 28.27 + 11.06, 54.95% female) to build and test the normative models. See

Table 1 note to explain discrepancy in participant numbers from mega-analysis.

Generating Normative Models of Activation to the CS+ > CS- contrast

The z-statistic maps (files) from the CS+ > CS- contrast for each participant were used as inputs
(response variables) for the normative models. We created a normative model of fear-related
activation per voxel, as a function of age, sex, and task variables (the same reported in the Non-
imaging data: task-related variables section, except contingency awareness) by training a Gaussian
Bayesian Linear Regression (BLR) model to predict activation for the CS+ > CS- contrast®?. We
included dummy coded site-related variables (sample, and MR strength) and a b-spline basis
expansion as additional covariates of no-interest. This was performed in the Predictive Clinical
Neuroscience toolkit (PCNtoolkit) software v0.26 (https://pcntoolkit.readthedocs.io/en/latest)
implemented in python 3.8. Generalisability was assessed by using a stratified train-test sample (train:
894, control test sample: 646).

Quantifying voxel-wise deviations from the normative model

To estimate a pattern of regional deviations from typical brain function for each participant in the
control test sample (n = 646, mean age: 25.45 + 7.19 years, 52.16% female), we derived a normative
probability map (NPM) that quantifies the voxel-wise deviation from the normative model. The
subject-specific Z-score indicates the difference between the predicted activation and true activation
scaled by the prediction variance. This was repeated for the clinical test sample (n = 482, 260 controls
+ 222 cases, mean age: 26.76 + 10.94 years, 54.97% female). We thresholded participant’s NPM at Z
= +2.6 (i.e., p < .005) as in previous work®"* and summed the number of significantly deviating

voxels for each participant. Kruskal-Wallis H-tests were used to test for group (cases or controls) and
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diagnosis effects and, when applicable, follow-up Mann Whitney U-tests were False Discovery Rate
(FDR)" corrected at o. = 0.05.

Normative models: individual differences and task variables

Model Coefficients: To probe the magnitude of the influence of individual differences
(sociodemographics) and task variables on the predicted brain activation, we examined both the
regression coefficients and the structure coefficients (correlation coefficients) of all sociodemographic
and task variables input variables. Structure coefficients are preferable to regression coefficients when
variables are collinear™. Note that negative R*2 values (“negative” explained variance) is a possible
outcome when the model fails to generalize effectively to new data, despite in-sample performance
yielding non-negative explained variance (which is always positive or zero by construction). This
phenomenon is not uncommon and arises when the model's predictions result in a residual sum of

squares that exceeds the variance of the true values.

Linear Regression (Elastic Net) and Support Vector Classification (SVC): We applied an elastic net
linear regression as implemented in the scikit-learn package (version 1.0.2) with 10 repeats of nested
5-fold cross validation [alphas = 0.0001, 0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 1; 90% train, 10% test split] to
predict trait anxiety as measured by the STAI-T (n = 751), or depressive symptoms as measured by
the BDI (n = 440) from participants’ whole brain (unthresholded) deviation maps. The mean
coefficient values and the frequency of the voxel’s contribution (in other words, how many of the
cross-folds split found this voxel to be important) indicate which voxel contributed to the prediction.
The statistical significance of these results was tested against a 1000-fold nested 5-fold test for each
variable. To classify participants (n = 703) who were contingency aware from those who were not
based on their unthresholded whole-brain deviation maps, we used an SVC model with a linear
kernel, regularisation parameter set to 1.0, and balanced class weights as implemented in the scikit-

learn package (version 1.0.2).

Quantifying patterns of deviations between cases and controls

To classify individuals with anxiety-related or mood disorders and controls based on their whole brain
unthresholded deviation maps, we used a SVC model with a linear kernel, regularisation parameter set
to 1.0, as is common in neuroimaging, and balanced class weights (i.e. adjusted inversely proportional
to class frequencies in the input data) as implemented in the scikit-learn package (version 1.0.2)™. The
evaluation metric for the classification is area under the receiving operator curve (AUC) averaged

across all folds within a 10-fold cross validation framework.
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Quantifying patterns of deviations among patient groups

We used a one versus rest support vector classifier (SVC OvR) model as implemented in the scikit-
learn package (sklearn.multiclass.OneVsRestClassifier version 1.0.2) to determine if there were
guantifiably differentiable patterns within the whole brain unthresholded deviation maps among
patient groups. Due to the small number of individuals with major depressive disorder (n = 11),
specific phobia (n=7) and panic disorder (n=2), this analysis only included individuals with a
diagnosis of PTSD (n=55), OCD (n=68), GAD (n=48) and SAD (n=31) (total n = 202). The model
classes were the participants’ diagnosis. The evaluation metric for the classification was the F1-metric
(the harmonic mean of precision and recall, also known as the balanced F-score, where values closer
to 1 indicate greater classification success) per class within a 5-fold cross-validation framework, and

the statistical significance was tested against a 1000-fold nested 5-fold test.

Data availability statement

All results from this manuscript can be found at https://figshare.com/s/d44cc1390711bad3c147

The ENIGMA-Fear Conditioning Group (part of the ENIGMA-Anxiety Working Group®® is open to
sharing the individual-level data (HALFIPE results files) from this investigation to researchers for
secondary data analysis. To request access to data, an analysis plan can be submitted to the ENIGMA-
Anxiety Working Group (http://enigma.ini.usc.edu/ongoing/enigma-anxiety/). Data access is

contingent on approval by Pls from contributing samples.
Code availability statement

All code to reproduce the analyses in this manuscript is available at:

https://figshare.com/s/d44cc1390711bad3c147. The functions needed to conduct the mega-analysis

are also included in the ‘combat.enigma’ R package.
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Table 1. Descriptive statistics for all samples (N=43) included in the analyses.

Years of education

X Health Patient: A
Sample Country N (%fesriales) cOnf?ms)En) a(ne) S M (SD) | Rangi (min-max) ((:E]).rlnzlir)]ge
Amsterdam_Visser/Kindt__sample_1 NL 18 72 18 0 22.06 (3.35) | 18-31 not available
Amsterdam_Visser/Kindt__sample_2 NL 41 73 41 0 20.56 (1.79) | 18-24 not available
Amsterdam_Visser/Kindt__sample_3 NL 12 75 12 0 21 (1.35) | 19-23 not available
Amsterdam_Visser/Kindt__sample_4 NL 10 80 10 0 22.8 (2.04) | 20-26 not available
Amsterdam_Visser/Kindt__sample_5 NL 13 85 13 0 22.23 (4.07) | 19-35 not available
Amsterdam_Visser/Kindt__sample_6 NL 14 79 14 0 23.43 (2.71) | 18-29 not available
Amsterdam_Visser/Kindt__sample_7 NL 16 44 16 0 24.06 (3.36) | 18-29 not available
Amsterdam_Visser/Kindt__sample_8 NL 9 100 9 0 20.33 (1.41) | 18-22 not available
Amsterdam_Visser/Kindt__sample_9 NL 38 58 38 0 23.66 (3.78) | 18-33 not available
Austin_Cisler us 61 100 0 61 33.72 (8.48) | 21-50 15.46 (2.64) | 10-22
Barcelona_Cardoner SP 71 66 45 26 22.66 (4.67) | 18-40 14.49 (2.15) | 12-20
Barcelona_Soriano_sample_1 SP 35 51 17 18 37.43 (10.54) | 19-58 14.69 (3.72) | 6-18
Barcelona_Soriano_sample_2 SP 147 50 122 25 24.76 (4.22) | 19-36 18.63 (3.95) | 13-26
Bielefeld_Lonsdorf_sample_1 GE 116 66 116 0 24.61 (3.61) | 18-34 15.26 (2.14) | 1-16
Bielefeld_Lonsdorf_sample 2 GE 80 56 80 0 24.88 (3.51) | 19-34 not available
Bielefeld_Lonsdorf_sample_3 GE 28 64 28 0 24.68 (4.95) | 18-39 13.36 (1.75) | 11-20
Bochum_Elsenbruch GE 29 48 29 0 26.45 (3.59) | 19-33 17.45 (4.02) | 3-23
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Bochum_Merz_sample_1 GE 59 49 59 0 23.88 (4.17) | 18-34 16.07 (3.4) | 9-26

Bochum_Merz_sample_2 GE 59 47 59 0 24.39 (3.83) | 18-35 15.86 (3.72) | 5-23
Bochum_Merz_sample_3 GE 47 49 47 0 22.87 (2.61) | 19-30 not available
Bochum_Merz_sample_4 GE 29 0 29 0 24.21 (3.62) | 19-33 not available
Bochum_Merz_sample 5 GE 31 0 31 0 24.71 (3.87) | 20-34 not available
Bochum_Merz_sample_6 GE 60 50 60 0 23.57 (2.95) | 18-33 not available
Columbia_Neria us 95 46 65 30 35.65 (12.26) | 18-60 15.11 (2.45) | 10-24
Duke_LaBar_sample_1 us 38 47 38 0 24.68 (4.2) | 19-35 not available
Duke_LaBar_sample_2 us 37 49 37 0 29.16 (11.07) | 19-66 not available
Florida_Keil us 14 36 14 0 19.79 (2.08) | 18-26 14 (0) | 14-14
Harvard_McLaughlin us 89 55 75 14 13.06 (2.6) | 8-17 7.04 (2.32) | 2-10
Manitoba_Greening_sample_1 CA 13 38 13 0 24 (5.07) | 19-36 17.15(3.02) | 14-23
Manitoba_Greening_sample_2 CA 31 55 31 0 24.23 (4.56) | 17-33 not available
Melbourne_Harrison AU 112 61 75 37 20.88 (2.34) | 16-25 15.02 (2.21) | 11-21
Munich_Koch GE 45 56 23 22 34.47 (12.39) | 20-63 not available
Munster_Moeck_sample_1 GE 42 69 42 0 26.02 (6.22) | 19-51 12.33(1.37) | 7-15
Munster_Moeck_sample_2 GE 29 52 29 0 15.79 (0.98) | 14-17 10.64 (0.99) | 8-12
Reading_Reekum_sample_1 UK 21 57 21 0 24 (2.59) | 21-31 not available
Reading_Reekum_sample_2 UK 50 60 50 0 17.8 (3.46) | 12-25 11.34(1.82) | 8-14
MGH_Tuominen_sample_1 us 14 0 14 0 36.36 (9.61) | 22-49 15.69 (1.84) | 12-19
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MGH_Tuominen_sample_2
USP_Diniz
Texas_Dunsmoor
Ulm_Abler

Uppsala_Ahs
Vanderbilt_Kaczkurkin

Total n/Mean (SD)/Range

uUs

BR

uUs

GE

SW

uUs

37

55

45

50

278

81

2199

43

58

64

0

58

0

52.69

37

27

23

50

278

53

1888

28

22

0

0

28

311

28.51 (5.81) | 19-42

35.56 (10.97) | 19-63
23.47 (4.51) | 18-37
22.6 (2.92) | 18-29
33.87 (10) | 20-58
33.47 (9.7) | 19-61

25.26 (5.47) | 8-66

17.08 (2.27) | 12-23
13.13 (4.1) | 1-17
NA
NA
14.16 (1.65) | 9-15
15.74 (2.18) | 13-20

14.53 (2.56) | 1-26

AU, Australia; BR, Brazil; CA, Canada; GE, Germany; NA, Not available; NL, The Netherlands; SP, Spain; SW, Sweden; UK, United Kingdom, US, United
States. Note: To be included in the normative modelling analysis each participant had to have all essential data (age, sex) available, samples had to have

control participants and larger samples required both genders available. These reasons lead to the exclusion of the entire Austin_Cisler and

Vanderbilt_Kaczkurkin datasets, as well as 7 additional participants. The Bielefeld_Lonsdorf sample_3 was not approved for inclusion in the normative

modelling analysis. Thus, a total of 177 fewer participants were included in the normative modelling analysis.
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Table 2. Characteristics of the fear conditioning tasks for each sample.

CS+ CS- . iti
CS+/CS- . . Average ITI Average Pairing us Assessment of PreC(.)nd't'
Sample (n/n) trials trials (ms) IS1 (ms) rate (%) CS type Type of US confound AVArENess oning
(n) (n) phase
Amsterdam_Visser/Kindt__sample_1 2/2 22 22 22000 6000 55 Neutr.al faces Electric no yes yes
& pictures shock
Amsterdam_Visser/Kindt__sample_2 212 22 22 20000 4000 55 Neutr.al faces Electric no yes yes
& pictures shock
Amsterdam_Visser/Kindt__sample_3 2/2 18 18 17500 4000 56 Neutr.al faces Electric no yes yes
& pictures shock
Amsterdam_Visser/Kindt__sample_4 212 18 18 17500 4000 56 Neutr.al faces Electric no yes yes
& pictures shock
Amsterdam_Visser/Kindt__sample_5 212 18 18 10350 4000 56 Neutr.al faces Electric no yes yes
& pictures shock
. . N | fi Electri
Amsterdam_Visser/Kindt__sample_6 212 18 18 10350 4000 56 eutr.a aces ectric no yes yes
& pictures shock
. . N | fi Electri
Amsterdam_Visser/Kindt__sample_7 212 18 18 4650 4000 56 eutr.a aces ectric no yes yes
& pictures shock
. . N | fi Electri
Amsterdam_Visser/Kindt__sample_8 212 18 18 17500 4000 56 eutr.a aces ectric no yes yes
& pictures shock
. . N | fi Electri
Amsterdam_Visser/Kindt__sample_9 212 22 22 20000 4000 55 eutr.a aces ectric no yes yes
& pictures shock
. . N | Electri
Austin_Cisler 11 18 18 4000 2500 50 leutra ectric no yes yes
pictures shock
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Barcelona_Cardoner

Barcelona_Soriano_sample_1

Barcelona_Soriano_sample_2

Bielefeld_Lonsdorf_sample 1

Bielefeld_Lonsdorf_sample_2

Bielefeld_Lonsdorf_sample_3

Bochum_Elsenbruch

Bochum_Merz_sample_1

Bochum_Merz_sample_2

Bochum_Merz_sample_3

Bochum_Merz_sample_4

Bochum_Merz_sample_5

1/1

2/1

1/1

1/1

1/1

212

1/1

2/1

2/1

1/1

2/1

1/1

32

16

15

14

14

18

16

16

21

16

16

32

16

10

14

14

18

21

16

5891

15000

12000

13000

13000

10000

25000

10750

10750

12000

10062

10750

1900

5800

1750

6800

7000

7000

9000

8000

8000

8000

6000

8000

50

62.5

33

100

100

100

100

62.5

62.5

100

62.5

62.5

Neutral
pictures

Neutral
pictures

Neutral
pictures

Neutral
pictures

Neutral
pictures

Grey
fractals

Neutral
pictures

Neutral
pictures

Neutral
pictures

Neutral
pictures

Neutral
pictures

Neutral
pictures

Auditory
stimulus

Electric
shock

Electric
shock

Electric
shock

Electric
shock

Electric
shock

Other*

Electric
shock

Electric
shock

Electric
shock

Electric
shock

Electric
shock

no

yes

no

yes

yes

yes

yes

no

no

yes

no

no

yes

yes

yes

yes

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no
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Bochum_Merz_sample_6

Columbia_Neria

Duke_LaBar_sample 1

Duke_LaBar_sample_2

Florida_Keil

Harvard_McLaughlin

Manitoba_Greening_sample_1

Manitoba_Greening_sample_2

Melbourne_Harrison

Munich_Koch

Munster_Moeck_sample_1

2/1

172

212

1/1

11

11

11

11

11

1/1

1/1

16

15

20

16

29

24

24

15

27

30

20

16

20

24

24

10

27

10062

3600

5750

15900

7000

20000

12000

12000

12000

12000

5750

6000

4000

6000

4000

5100

1500

6000

3995

1950

12000

300

62.5

80

50

31

25

40

50

50

33

50

33

Neutral
pictures

Neutral
pictures

Avatars
with
neutral
faces
VR
affective
pictures

Gabor
patches

Neutral
pictures

Gabor
patches

Gabor
patches

Neutral
pictures

Affective
faces and
pictures

Neutral
faces

Electric
shock

Electric

shock

Electric
shock

Electric
shock

Electric
shock

Auditory
stimulus

Electric
shock

Electric
shock

Auditory
stimulus

Electric
shock

Auditory
stimulus

no

yes

yes

yes

yes

no

no

no

no

yes

no

yes

no

no

no

yes

no

no

no

yes

no

yes

no

yes

yes

yes

yes

no

yes

yes

yes

no

yes
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Munster_Moeck _sample_2

Reading_Reekum_sample_1

Reading_Reekum_sample_2

MGH_Tuominen_sample_1

MGH_Tuominen_sample_2

USP_Diniz

Texas_Dunsmoor

Ulm_Abler

Uppshala_Ahs

Vanderbilt_Kaczkurkin

1/1

1/1

1/1

2/1

1/1

2/1

1/1

2/1

11

2/1

27

12

12

16

16

24

80

16

15

27

12

12

16

16

24

20

16

30

5750

10530

10530

15000

15000

15000

6000

variable

14000

3600

300

500

500

6000

6000

3000

5000

2500

6000

3900

33

100

100

62.5

62.5

62.5

50

50

50

80

Neutral
faces

Neutral
pictures

Neutral
pictures

Neutral
pictures

Neutral
faces

Neutral
pictures

Other**

Neutral
pictures

Humanoi

d

characters

Neutral
pictures

Auditory
stimulus

Auditory
stimulus

Auditory
stimulus

Electric
shock

Electric
shock

Electric
shock

Electric
shock

Thermal
stimulus

Electric
shock

Electric
shock

no

yes

yes

yes

yes

yes

yes

no

yes

yes

yes

no

no

no

no

yes

no

no

yes

yes

yes

no

no

no

no

no

no

no

yes

yes

CS, conditioned stimulus; CS+, CS followed by unconditioned stimulus; CS —, CS not followed by unconditioned stimulus; CS+/CS-, Number of different

CS+ and CS-; ITI, intertrial interval; ISI, inter-stimulus interval; US=Unconditioned stimulus. All samples used visual conditioned stimuli. All samples
included an independent assessment of conditioning (e.g., skin conductance responses) except Amsterdam_Visser/Kindt__1. For all samples, the fMRI
contrast (CS+ > CS-) included either all CS+ trials (with US present) or all CS+ trials without the US, along with all CS- trials. Exceptions included
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Barcelona_Cardoner, Duke_LaBar_sample_1, and Duke_LaBar_sample_2, which only included trials from an early conditioning phase (n = 4CS+/4CS-,
5CS+/5CS-, and 8CS+/8CS- trials, respectively). *Rectal distension. ** Typical exemplars.
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Table 3. Characteristics of individuals with anxiety-related and depressive disorders included in the analyses.

Females Medicatio = Comorbidity @GAD MDD OCD PTSD SAD PD SP

Sample NOAEMED ey new (%) M m m m ® @
Austin_Cisler 61 33.72(8.48) 100 59.02 67.21 0 0 0 61 0 0 0
Barcelona_Cardoner 26  23.88 (4.78) 61.54 3.85 11.54 26 0 0 0 0 0 0
Barcelona_Soriano_sample_1 18 40.56 (11.91) 61.11 88.89 50 0 0 18 0 0 0 0
Barcelona_Soriano_sample_ 2 25  25.56 (3.68) 64 0 16 21 0 0 0 4 0 0
Columbia_Neria 30 35.07(13.82) 33.33 0 80 0 0 0 30 0 0 0
Harvard_McLaughlin 14 1457 (2.14) 50 0 0 1 0 0 3 1 2 7
Melbourne_Harrison 37 19.89(2.31) 51.35 0 56.76 0 11 0 0 26 0 0
Munich_Kaoch 22 33.55(13.59) 59.09 54.55 27.27 0 0 22 0 0 0 0
USP_Diniz 28  33.68 (8.09) 53.57 0 71.43 0 0 28 0 0 0 0
Texas_Dunsmoor 22 25.95(5.04) 68.18 NA 0 0 0 0 22 0 0 0
Vanderbilt_Kaczkurkin 28  34.57 (9.36) 0 3.57 32.14 0 3 0 25 0 0 0
Total n/M 311 29.91 (10.75) 58.84 21.22 44.05 48 14 68 141 31 2 7

Data refer to primary mental health diagnoses. "*Comorbidity’ refers to the presence of at least one additional mental disorder. Data on comorbidity were not
included in the analyses. GAD=Generalized Anxiety Disorder, MDD=Major Depressive Disorder, NA=Not available, OCD=0bsessive-Compulsive Disorder,
PD=Panic Disorder; PTSD=Post-traumatic Stress Disorder, SAD=Social Anxiety Disorder; SP=Specific Phobia.
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Figure 1. Neural correlates and individual-level heterogeneity in human fear conditioning. Schematic indicating the levels of analysis
(a). Significant brain functional activation (b) and deactivation (c) to the CS+ versus CS— determined by mega-analysis (n=1888 healthy
controls). Schematic of normative modelling framework (d). Normative probability maps illustrate the percentage of participants in the
healthy control test sample who had positive (hot colours -right) or negative deviations (cool colours - left) >+2.6 within each voxel. Circle
highlights frequent large deviations (both positive and negative) within the most ventral region of the vmPFC (e). Abbreviations: AIC,
anterior insular cortex; AG, angular gyrus; CN, caudate nucleus; dACC, dorsal anterior cingulate cortex; dIPFC, dorsolateral prefrontal
cortex; dPFC, dorsal prefrontal cortex; dPons, dorsal pons; dPrec, dorsal precuneus; Hipp, hippocampus; HYP, hypothalamus; IOFC, lateral
orbitofrontal cortex; PCC, posterior cingulate cortex; Sl, primary somatosensory cortex; Sll, secondary somatosensory cortex; SMA,

supplementary motor area; TG, temporal gyrus; Thal, thalamus; vmPFC, ventromedial prefrontal cortex.
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Linear mixed-effect models Structure Coefficient

Porticl instructions vs No instructions
3e3 s 0 EEEE 202

b)

Figure 2. Robust influence of task variables on brain activation during fear conditioning. Maps show the influence of pre-task
instructions about CS-US contingency (a), type of US (b), number of CS used in paradigm (i.e. multiple CS+ or CS- or single CS+ or CS-)
(c), pairing rate (d), and potential US confounding in CS+ > CS- contrast (€) on mean activation (left; mega-analysis linear mixed-effects
models) and relation to predicted activation (right; normative model structure coefficients). Structure coefficient maps show the correlation
coefficients (rho) thresholded by their respective coefficients of determination (rho2 > 0.3) of selected task variables. This can be interpreted
as showing how predicted activation to the CS+ > CS- contrast relates to the task variables included in the building of the normative models.
Positive correlations (warm colours) indicate greater activation for higher values of the input variable and negative correlations (cool
colours) greater activation for lower values of the input variable (note that some variables are dummy coded, e.g. pre-task instructions, type
of US).CS=Conditioned Stimulus; US=Unconditioned Stimulus. For Pairing Rate (RR) in linear mixed-effects models, the figure shows
significant results in the ANOVA comparing four categories (RR30, RR50, RR62, RR100). For the results of post-hoc tests, see

Supplementary Figures S5 and S6.
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Figure 3. Differences between individuals with anxiety-related and depressive disorders and healthy controls in human fear

conditioning. Regions wherein individuals with anxiety-related and depressive disorders (n=311) (a) showed significantly increased
functional activation to the CS+ versus CS—, as compared to healthy controls. Normative probability maps illustrate the percentage of

participants of the sample (test controls - top; individuals with anxiety-related and depressive disorders - bottom) who had positive (hot

100%

% of sample accurately classified

colours - right) or negative deviations (cool colours - left) >+2.6 within each voxel (b). Box plots show frequency (median line) of the total

number of large deviations (>+2.6) per clinical group. Whiskers show +1.5 times interquartile range (c). Normative probability maps

illustrate the percentage of each clinical group who had positive (hot colours - right) or negative deviations (cool colours - left) >+2.6 within

each voxel (d). Confusion matrix for multi-class support vector differentiating patterns of deviations among clinical groups (e).

Abbreviations: GAD, Generalised Anxiety Disorder; OCD, Obsessive Compulsive Disorder; PTSD, Post-traumatic Stress Disorder; SAD,

Social Anxiety Disorder.
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Supplementary Figures

Supplementary Figure S1. CS+ versus CS- contrast thresholded to the top 1% of activated
voxels (Z > 6.06) to highlight specific subcortical regions. Masks for the substantia nigra
(blue), red nucleus (red), and periaqueductal grey area (green) are shown to aid in the

localization of effects.



Supplementary Figure S2. Significant brain activation (hot colours) and
deactivation (cool colours) to the CS+ versus CS- across axial (a; Z = -68 to 106),

sagittal (b; X =-86 to 88) and coronal (c; Y =-120 to 86) slices (n=1888 controls).
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Supplementary Figure S3. Evaluation metrics of normative models. Explained

variance (a), skew (b), kurtosis (c), and Standardized Mean Squared Error (SMSE)

(d) for control test (n = 646 controls - left, pink) and clinical test (n = 260 controls +

222 individuals with anxiety-related or depressive disorders).



Frequency of large negative deviations

Number of participants

Supplementary Figure S4. Normative probability maps illustrate the number of
participants in the sample (test controls - top; individuals with anxiety-related or
depressive disorders (AMD) - bottom) who had positive (hot colours - right) or

negative deviations (cool colours - left) >+2.6 within each voxel.



LMM Norm. Modelling: Structure Coefficient Norm. Modelling: Regression Coefficient

Supplementary Figure S5. Association of age and sex with brain (de)activation
during fear conditioning. Results from linear mixed-effect models and normative
modeling. For normative modeling, maps show the regression coefficient or structure
coefficients (rho) from normative models for each task variable, thresholded by their
respective coefficients of determination (rho?2 > 0.3). Positive correlations (warm
colours) indicate greater activation for higher values of the input variable and
negative correlations (cool colours) greater activation for lower values of the input

variable.



Supplementary Figure S6. Differences in brain activation between different
reinforcement rates (including participants with potential US confounding
effect). RR30 (n=268); RR50 (n=501); RR62 (n=333); RR100 (n=371).
RR=reinforcement rate. Results of pairwise comparisons after significant ANOVAs.
Asterisks indicate significant differences between groups with Bonferroni correction
(*p<.05, *p<.01; **p<.001). Dashed blue lines indicate mean brain activation for

healthy controls. Error bars represent standard errors



Supplementary Figure S7. Differences in brain activation between different
reinforcement rates (excluding participants with potential US confounding
effect). RR30 (n=268); RR50 (n=139); RR62 (n=238). RR=reinforcement rate.
Results of pairwise comparisons after significant ANOVAS. Asterisks indicate
significant differences between groups with Bonferroni correction (*p<.05, **p<.01,
***n<.001). Dashed blue lines indicate mean brain activation for healthy controls.

Error bars represent standard errors.
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Supplementary Figure S8. Influence of task variables on brain activation during
fear conditioning. Results from linear mixed-effect models for task variables not
presented in the main text. CS+=Conditioned Stimulus followed by the
Unconditioned Stimulus. ITI= Intertrial Interval. Number of CS+ in fMRI=Number of
CS+ included in fMRI contrast. For type of CS, the figure shows significant results in
the ANOVA comparing three categories (humanoid, affective pictures, and neutral

faces).
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Supplementary Figure S9. Influence of task variables on brain activation during
fear conditioning. Results from normative models. Maps show the regression
coefficient or structure coefficients (rho) from normative models for each task
variable, thresholded by their respective coefficients of determination (rho”2 > 0.3).
Positive correlations (warm colours) indicate greater activation for higher values of
the input variable and negative correlations (cool colours) greater activation for lower
values of the input variable (note that some variables are dummy coded, e.g.,
instructions, type of US stimuli). CS=Conditioned Stimulus; US=Unconditioned
Stimulus. Any task-related variable maps not shown in the main text or in this table

did not contain any voxels exceeding the threshold (i.e., they were empty maps).

10



Individuals with anxiety-related disorders in comparison to controls
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Supplementary Figure S10. Differences in brain activation between individuals with

anxiety-related disorders (n=297) and healthy controls (n=1888).
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Supplementary Figure S11. Differences in brain activation between unmedicated
individuals with anxiety or mood-related disorders (n=221) and healthy controls

(n=1859).
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Supplementary Figure S12 Differences in brain activation between patient
groups. PTSD=post-traumatic stress disorder; OCD=0bsessive-compulsive
disorder; GAD=generalized anxiety disorder; SAD=social anxiety disorder. Results of
pairwise comparisons after significant ANOVASs. Asterisks indicate significant
differences between groups with Bonferroni correction (*p<.05, **p<.01; ***p<.001).
Dashed blue lines indicate mean brain activation for healthy controls. Dashed blue
lines indicate mean brain activation for healthy controls. Error bars represent

standard errors.
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Supplementary Figure S13. Expanded version of Figure 3d from the main

manuscript with enhanced visualization for improved clarity and detail.
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Supplementary Figure S14. Mean coefficient weights from multi-class support
vector classifier, used to differentiate whole-brain unthresholded deviation maps
between patient groups. Yellow indicates voxels that had a mean coefficient weight >

0.001 in all cross-folds (i.e. were frequently used to inform classification).
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Supplementary Figure S15. Sample size analyses. Percentage of (de)activated brain

regions detected in the mega-analysis according to sample size.
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Supplementary Figure S16. (Fisher-transformed) correlation between the study and the
mega-analysis. Sample sizes of 33 and 132 were required to achieve correlations of 0.5 and

0.8, respectively.
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Supplementary Figure S17. (Arcsine-transformed) Dice coefficient between the study and
the mega-analysis. Sample sizes of 122 and 275 were required to attain Dice coefficients of
25% and 50%, respectively.
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Supplementary Figure S18. Sample size analyses. Mean absolute error (MAE) between

the study and the mega-analysis. Sample sizes of 51 and 203 were required to achieve MAE

values of 0.2 and 0.1, respectively.

19



Early conditioning

Late conditioning

Supplementary Figure S19. Significant brain activation in response to CS+ versus
CS- during early (n=679) and late (N=634) phases of conditioning, and brain regions
showing significant differential activation between early and late conditioning in
healthy controls (n = 634). Samples included in the analysis are reported in
Supplementary Table S8
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Supplementary Tables

Supplementary Table S1. Descriptive statistics for STAI-T and BDI across samples.

STAI-T STAI-T STAI-T BDI BDI BDI
Sample (n) M (SD) range (n) M (SD) range
Amsterdam_Visser sample_ 1 18 35.33(10.39) 22-59 NA NA NA
Amsterdam_Visser_sample_2 41 34.66 (8.84) 22-53 NA NA NA
Amsterdam_Visser_sample_3 12 32.67(5.82) 23-44 NA NA NA
Amsterdam_Visser_sample_ 4 10 35.3 (5.38) 29-46 NA NA NA
Amsterdam_Visser_sample_ 5 13 37.46 (9.47) 26-60 NA NA NA
Amsterdam_Visser_sample 6 14 35.29(9.71) 21-58 NA NA NA
Amsterdam_Visser_sample 7 16 33.5(6.04) 25-46 NA NA NA
Amsterdam_Visser_sample_ 8 9 36.44 (8.14) 27-52 NA NA NA
Amsterdam_Visser_sample 9 38 35.03(8.63) 20-52 NA NA NA
Austin_Cisler NA NA NA 61 22.57 (12.51) 0-55
Barcelona_Cardoner* 71 25.49 (13.49) 1-53 71 14 (11.87) 0-46
Barcelona_Soriano_sample_2* 147 20.47 (10.73) 1-52 NA NA NA
Bielefeld_Lonsdorf_sample_1 116 34.86 (7.36) 24-55 NA NA NA
Bielefeld_Lonsdorf_sample_2 80 35.37 (10) 20-59 NA NA NA
Bielefeld_Lonsdorf_sample_3 28 35.93(6.96) 24-52 NA NA NA
Bochum_Elsenbruch 29 33.03(6.51) 21-44 NA NA NA
Bochum_Merz_sample_5 31 33.32(6.82) 20-52 NA NA NA
Bochum_Merz_sample_6 60 36.2 (6.88) 23-52 NA NA NA
Duke_LaBar_sample 1 38 32.39(7.86) 21-53 NA NA NA
Duke_LaBar_sample_2 37 33.28(6.55) 20-48 NA NA NA
Manitoba_Greening_sample_1 13 38.92 (9.3) 29-59 NA NA NA
Manitoba_Greening_sample 2 31 35.27 (10.45) 21-57 NA NA NA
Melbourne_Harrison 112 38.97 (13.05) 21-73 NA NA NA
Munster_Moeck_sample_1 42 34.19 (7.3) 22-50 42 3.62 (4.36) 0-16
Reading_Reekum_sample_1 21 41.62 (8.66) 27-59 NA NA NA
Reading_Reekum_sample 2 50 42.92(9.82) 26-75 NA NA NA
Royal_Tuominen_sample_1 28 35.57(13.83) 20-67 28 5.68 (7.98) 0-27
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Royal_Tuominen_sample 2 71 34.97 (10.33) 20-68 71 5.15 (6.48) 0-23
USP_Diniz NA NA NA 25 20.4 (11.47) 0-44
Texas_Dunsmoor NA NA NA 45 15.68 (10.89) 0-41
Ulm_Abler 50 33.38(6.13) 23-52 NA NA NA

Uppshala_Ahs 278 36.27 (11.44) 20-67 NA NA NA

Vanderbilt_Kaczkurkin 82 43.38 (12.14) 21-70 82 12.38(8.62) 0-31
TOTAL 1586 34.45(11.56) 1-75 425 12.41 (11.48) 0-55

BDI: Beck Depression Inventory; NA: Not available: STAI-T: State Trait Anxiety
Inventory-Trait version. *These samples used the Spanish version of the STAI-T
(scores range from 0 to 60)
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Supplementary Table S2. Pairwise Pearson correlation

between sociodemographic, individual differences and task variables.

Sex 0.03

Anxiety score 0.11 | 0.02

Depression score 0.12 | 0.19 | 0.73

lgztkructlons given about contingency prior to the 006 | 0.08 0 0.33

Number of trials in preconditioning 0.07 | 0.24 | 0.16 | 0.07 | 0.2

Paradigm with multiple CS plus 0.03 | 0.12 0 0 0.23 | 0.16

Paradigm with multiple CS minus 0.02 | 0.07 | 0.05 0.17 | 0.16 | 0.37

Type of CS 033 005| 014 | 041 | 03 | 031 | 0.27 | 0.16

Number of CS plus during conditioning 0.06 | 0.09 | 0.02 | 0.11 | 0.26 | 0.18 | 0.26 | 0.03 | 0.07

Number of CS minus during conditioning 0.23 1002 |005| 012 | 0.09 058 | 0.08]|0.38|0.08]|0.42

Average ITI 0.2 | 004|012 | 0.25| 0.12 | 0.49 | 0.02 | 0.06 | 0.21 | 0.43 | 0.59

Average ISI 0.26 | 0.04 | 0.14 | 0.14 | 0.11 | 0.07 | 0.16 0 0.26 | 0.2 | 0.15 | 0.13

Pairing rate 0.34 | 0.17 | 0.13 | 0.44 | 0.71 | 0.26 | 0.68 | 0.18 | 0.46 | 0.36 | 0.53 | 0.3 | 0.62

Type of US used 0.43 | 0.06 | 0.17 | 0.12 | 0.08 | 0.02 | 0.33 | 0.22 | 0.23 | 0.04 | 0.1 | 0.06 | 0.66 | 0.45

Potential US confounding 0.41 | 0.04 | 0.12 | 0.15 | 0.13 | 0.09 | 0.18 | 0.03 | 0.39 | 0.25 | 0.18 | 0.05 | 0.44 | 0.6 | 0.38

Number of CS plus included in the fMRI contrast | 0.29 | 0.03 | 0.06 | 0.03 | 0.05 | 0.09 | 0.11 | 0.07 | 0.33 | 0.39 | 0.54 | 0.28 | 0.03 | 0.42 | 0.24 | 0.52

number of CS minus included in the fMRI 0.22 | 0.03 | 0.03 | 0.07 | 0.02 | 043 | 0.2 | 017 [ 011 | 0.4 | 079 | 0.4 | 011|036 | 017 | 0.17 | 0.7

Contingency awareness 0.1 | 001|004 | 006 | 001|004 |001| 01 |023]|0.06]|0.09|0.07]|021|019|0.18| 0.03|0.14 | 0.09

gi%”;%igf‘g’“etyre'ateddisorder 0.49 | 0.06 | 0.38 | 0.16 | 0.31 | 0.4 | 058 | 0.35 06 | 062 | 087 | 066 | 0.78 | 0.78 | 0.72 | 0.42 | 0.65 | 0.18

Patient versus controls 0.16 | 0.05 | 0.47 | 0.65 | 0.07 | 0.15 | 0.06 | 0.06 | 0.2 | 0.04 | 0.12 | 0.25 | 0.16 | 0.23 | 0.05 | 0.04 | 0.01 | 0.09 | 0.16

< < %) %) %) n B
S5 |23ls |38 38 8 |Seef e | 2|2 |g |28 2F 5 &y
> |3 | 6% 5| 22/ 52| 5 | 55|82 9| 8| = |5 | S5 52 5E| 28
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5| 3| 2|85/ 82 58 55| 53| 5|52/ 52| 2| 2|5 |58 25 5858 5¢
< 0 < Oal El zE|laE|laE|l F Zol zE| < < o ES|laoclzZzalZzE|l O
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Supplementary Table S3. Pairwise variance inflation factor (VIF) between sociodemographic, individual differences and task variables*

Sex 1.0

Anxiety score 10 | 10

Depression score 10 | 10 | 1.6

Instructions given about contingency prior to the 10 | 1.0 1 10 | 10

task

Number of trials in preconditioning 10|10 |10 |11 |11

Paradigm with multiple CS plus 10|10 | 10| 10| 10| 10

Paradigm with multiple CS minus 10| 10 | 10 10 | 10 | 1.2

Type of CS 1.2 {10 (10|12 (11|11 |11 ]| 10

Number of CS plus during conditioning 10|10 |10 |10 | 11|10 | 11| 10| 10

Number of CS minus during conditioning 10|10 |10 |11 |10 |14 |10 | 12| 10| 12

Average ITI 101010 |12 (10|13 10|10 | 11|12 ] 13

Average ISI 1110|210 |10|10|210|20 |10 |11 |11 |10 10

Pairing rate 11 (10|10 |14 |22 | 10|19 |10 |21 |12 |14 | 11 | 18

Type of US used 1.2 |{10(10|10|(10|10|21 10|12 (10| 10| 10]| 20| 12

Potential US confounding 12 (10|10 |10| 11|10 |11 |10 |12 |11 |10 | 10| 12| 18| 11

Number of CS plus included in the fMRI contrast | 1.1 | 1.0 | 1.0 | 1.1 | 1.0 | 1.0 | 11 | 10 | 12 | 12 | 14 | 11 | 1.0 | 14 | 10 | 1.3

Number of CS minus included in the fMRI 1010|120 |21 |10 | 11|10 |20 |10 |12 |25 | 11|10 |12 |10 1.0 | 1.9

contrast

Contingency awareness i0|10|2120|(10|10|2120|20|210(|112|10|10|210 |11 |10 11|10 ]| 10| 10

Diagnosis of anxiety related disorder

(PTSD,GAD,...) 13|10 (12|10 (11|12 |15 |11 16 | 16 | 40 | 18 | 78 | 25 | 21 |12 | 17 | 1.0

Patient versus controls i10(10(13|17{(10|10}2120|(10|10|(10})10|212 10|12 10| 10|20 10 10

0 a ? c
o g2 | £9 £ B84 2 ngl N
g | ¢ wsl 2 Sl 3v v |[SHd88 Fl o] 2|0 |80 23 2,
9 o S o © O] 0O O Ocl o =— = < =) —5| ©5 oGl S50
o 7 S al o So So = P ] ) © = = T -5 =g Lo
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* The VIF analysis revealed no collinearity concerns (VIF > 5), except for the pair of variables highlighted in red. However, their activation maps
did not show any overlap.
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Supplementary Table S4. Task variables showing high (>0.5) inter-correlations.

Variable 1 Variable 2 n r VIF Overlap

Number of CS minus during Number of CS minus
conditioning included in the fMRI contrast 1884 0.774975  2.503673 NO
Instructions given about Pairing rate 1506  0.736404  2.184792 NO
contingency prior to the task
Average ISI Type of US used 1805 0.698958 1.955196 NO
Number of CS plus included in Number of CS minus
the fMRI contrast included in the fMRI contrast 1884 0695982  1.939456 NO
Paradigm with multiple CS plus Pairing rate 1506  0.680728  1.863555 NO
Pairing rate Potential US confound 1506 0.675691  1.840122 YES*
Average ISI Pairing rate 1506  0.658202  1.764384 NO
Anxiety score Depression score 189 0.625581  1.642984 NO

L Number of CS plus included
Pairing rate in the fMRI contrast 1506  0.538111 1.407584 NO
Number of CS minus during .
conditioning Pairing rate 1506 0.536643 1.404466 NO
Type of CS Pairing rate 1446  0.533694  2.135761 YES**
Number of CS minus during Number of CS plus included
conditioning in the fMRI contrast 1884 0.525154 1.38081 NO
Number of trials in Number of CS minus during
preconditioning conditioning 1251 0523602 1.377713 NO
Depression score Pairing rate 160 0.519464  1.369569 NO

*(see main text)

** Pairing rate and CS type shared two small clusters. In one cluster, both variables
remained statistically significant when included in the same model. In the other cluster,
located in the left orbitofrontal cortex, only the pairing rate remained significant. With no

collinearity concerns (VIF = 2.1), this suggests that activation in this region is modulated by

the pairing rate rather than CS type.
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Supplementary Table S5. Task and clinical variables showing high (>0.5) inter-

correlations.

Variable 1 Variable 2 n r VIF Overlap
Diagnosis of
Average ITI anxiety related 288 0.866338 4.008687 NO
disorder
Diagnosis of
Pairing rate anxiety related 228 0.784478 7.796471 NO
disorder
Diagnosis of
Type of US used anxiety related 288 0.775372 2.507536 NO
disorder
: Diagnosis of
Potential US anxigty related 288 0.717325 2.059966  NO
confound .
disorder
Diagnosis of
Average ISI anxiety related 288 0.656201 1.756235 NO
disorder
_ Patient versus
Depression score 375 0.652073 1.739734 NO
controls
Number of CS Diagnosis of
minus included in anxiety related 288 0.648278 1.724925 NO
the fMRI contrast disorder
Number of CS Diagnosis of
minus during anxiety related 288 0.622024 1.631092 NO
conditioning disorder
Diagnosis of
g'umbﬂ ofCSplus — ietyrelated 288 0597379 1.554877  NO
uring conditioning ;
disorder
Paradigm with Dlggn05|s of
anxiety related 288 0.580814 1.509081 NO

multiple CS plus

disorder
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Supplementary Table S6. Patient's medications.

SSRI or SNRI

Sample Medicated (n) ") BZD (n) Other* (n)
Austin_Cisler 36 2 0 34
Barcelona_Cardoner 1 0 1 0
Barcelona_Soriano_sample_1 16 10 0 6
Munich_Koch 12 7 0 5
Vanderbilt_Kaczkurkin 1 1 0 0
TOTAL 66 20 1 45

SSRI: Selective Serotonin Reuptake Inhibitors; SNRI: Selective Noradrenaline
Reuptake Inhibitors; BZD: Benzodiazepines. *Includes other medications or

combinations of medications.
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Supplementary Table S7. Participants excluded after quality control (QC)

N excluded N excluded

Sample N collected after after manual iangr?;LIJ;seig
HALFpipe QC QC

Amsterdam_Visser_sample_1 19 0 1 18
Amsterdam_Visser_sample_2 41 0 0 41
Amsterdam_Visser_sample_3 12 0 0 12
Amsterdam_Visser_sample 4 11 1 0 10
Amsterdam_Visser_sample_5 13 0 0 13
Amsterdam_Visser_sample_6 14 0 0 14
Amsterdam_Visser_sample_7 16 0 0 16
Amsterdam_Visser_sample_8 10 1 0 9
Amsterdam_Visser_sample_9 38 0 0 38
Austin_Cisler 88 27 0 61
Barcelona_Cardoner 90 16 3 71
Barcelona_Soriano_sample_1 37 2 0 35
Barcelona_Soriano_sample_2 191 44 0 147
Bielefeld_Lonsdorf_sample 1 120 4 0 116
Bielefeld_Lonsdorf_sample_2 83 1 2 80
Bielefeld_Lonsdorf_sample_3 32 4 0 28
Bochum_Elsenbruch 30 1 0 29
Bochum_Merz_sample_1 60 1 0 59
Bochum_Merz_sample_2 60 1 0 59
Bochum_Merz_sample_3 48 1 0 47
Bochum_Merz_sample 4 33 4 0 29
Bochum_Merz_sample 5 32 1 0 31
Bochum_Merz_sample_6 64 4 0 60
Columbia_Neria 114 15 4 95
Duke LaBar_sample_1 40 2 0 38
Duke LaBar_sample_ 2 40 3 0 37
Florida_Keil 15 0 1 14
Harvard_McLaughlin 95 6 0 89
Manitoba_Greening_sample_1 13 0 0 13
Manitoba_Greening_sample_2 31 0 0 31
Melbourne_Harrison 154 40 2 112
Munich_Koch 52 4 3 45
Munster_Moeck _sample_1 44 2 0 42
Munster_Moeck_sample_2 31 2 0 29
Reading_Reekum_sample_1 22 1 0 21
Reading_Reekum_sample_2 52 2 0 50
Royal_Tuominen_sample_1 17 0 3 14
Royal_Tuominen_sample 2 37 0 0 37
Texas_Dunsmoor 48 3 0 45




Ulm_Abler 51 1 0 50
Uppsala_Ahs 306 28 0 278
USP_Diniz 56 1 0 55
Vanderbilt_Kaczkurkin 88 6 1 81
TOTAL 2448 229 20 2199
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Supplementary Table S8. Samples included in the early versus late analyses

CS+ trials CS-trials US confound
included in included in - :
Sample n early/late early/late Pairing n
) . rate (%) early/late
analysis analysis analvsis

(n/n) (n/n) Y
Barcelona_Cardoner* 45 8/- 16/- 50 no
Barcelona_Soriano_datas 122 5/5 5/5 33 no
et 2
Bochum_Elsenbruch 29 4/4 4/4 100 yes
Bochum_Merz_dataset 1 56 8/8 4/4 62.5 yes
Bochum_Merz_dataset 2 58 8/8 4/4 62.5 yes
Bochum_Merz_dataset_3 47 10/10 10/10 100 yes
Bochum_Merz_dataset 4 28 8/8 4/4 62.5 yes
Bochum_Merz_dataset 5 31 8/8 4/4 62.5 yes
Bochum_Merz_dataset 6 60 8/8 4/4 62.5 yes
Duke LaBar_dataset 1 38 5/5 5/5 50 yes
Duke LaBar_dataset 2 37 8/8 8/8 31 yes
Harvard_McLaughlin 75 4/4 2/2 40 yes
Vanderbilt_Kaczkurkin 53 717 15/15 80 yes

CS, conditioned stimulus; CS+, CS followed by unconditioned stimulus; CS -, CS not

followed by unconditioned stimulus; CS+/CS-, US=Unconditioned stimulus.

All samples used visual conditioned stimuli. All samples used an electric shock as US except

Barcelona_Cardoner and Harvard_McLaughlin, which used an auditory stimulus.

*Only early trials were available.
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Supplementary Methods

Changes with respect to pre-registration
As noted in the main text, both the mega-analysis (https://osf.io/7n953) and

normative modeling analysis (https://osf.io/w74bt) were pre-registered. The following

changes were made after pre-registration:

1. At the time of pre-registration, we had collected data from 43 samples. We
excluded one sample (n=22) because it employed a “multi-CS” conditioning
paradigm (36 CS+, 18 CS-) which is difficult to compare with the other experiments
included.

2. For the mega-analysis, we used pre-scaling instead of Combat to reduce site-
related heterogeneity (see “Pre-scaling” in page 5).

The normative modelling analysis plan was updated to best complement the meta-
analysis approach and thus the following changes were made after pre-registration:
1. Sample size. The participants included were a subset of the final sample used in
the meta-analysis, for whom all required data were available.

2. Variables included. The variables used were matched to those included in the
mega-analysis study to facilitate a better comparison between the results of these
complementary methods

3. Analysis plan. Research question 1A. We chose not to create models for separate
ROls. Research question 1C. We did not perform whole-brain sparse canonical
correlation analysis to determine how deviations in task activation predicted outcome
measures, rather, we chose statistical approaches more appropriate to the type of
data. Research question 2B. Again, we did not perform whole-brain sparse canonical
correlation analysis, for the same reasons as mentioned above. We did not perform
analyses on transdiagnostic scales with insufficient sample sizes (e.g., Beck Anxiety
Inventory, Hamilton-Anxiety, Hamilton-Depression) and similarly excluded small

diagnostic groups from relevant analyses. We did not use a clustering method.

Variables collected and not included in analyses

The following variables were collected but not included in the analyses because the
data collected were insufficient, or too heterogeneous to be aggregated: 1Q,
comorbidity, ethnicity, years of education, use of a concurrent task during

conditioning, and US aversiveness. We excluded the variable “use of preconditioning
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phase” from the analyses because we already accounted for it by including “number of
trials during preconditioning”. Descriptive data on years of education and comorbidity
for the samples with available data are reported in Tables 1 and 3 of the main

manuscript.

Non-imaging data

Harmonization of trait anxiety scores

As noted in the main text, we conducted the analysis of the State-Trait Anxiety
Inventory-Trait version (STAI-T) scores using both raw and harmonized scores.

To harmonize the STAI-T scores, we took the following steps, we first assessed the
potential variability of STAI-T scores across versions, languages, or countries, by
conducting a meta-analysis of the mean STAI-T scores reported in the normative
studies*! as well as a meta-analysis of the reported standard deviations. In both
analyses, substantial heterogeneity between studies was observed (I? statistic for the
mean: 99%; I? statistic for the standard deviation: 95%, Q test p<0.001 in both
cases). This heterogeneity indicates significant differences in the reported means
and standard deviations between studies. We then examined potential moderators of
this heterogeneity, including the version of the STAI-T (X or Y), language, and
country. The results revealed statistically significant differences in the mean and
standard deviation across countries (p=0.014 and 0.001, respectively) and in the

mean across languages (p=0.012) but not on the version of the STAI-T.
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Version X
Y
Language Dutch
English
French
German
Japanese
Spanish
Country America
Australia
England
France
Germany
Japan
Netherlands

Spain

Mean Log SD

Estimate (95%Cl) P Estimate (95%Cl) P
41.2 (36.9-45.4) n.s. 2.36 (2.31-2.41) n.s.
39.2 (36.4-42.0) 2.22 (2.09-2.35)

35.2 (33.0-37.5) 0.012 2.23(1.97-2.48) 0.353
38.0 (35.7-40.4) 2.17 (2.01-2.32)

41.9 (40.7-43.1) 2.15 (2.05-2.25)

43.0 (41.0-44.9) 2.39 (2.36-2.42)

46.8 (44.6-49.1) 2.43 (2.29-2.57)

46.2 (37.5-55.0) 2.32 (2.25-2.39)

36.5 (33.9-39.1) 0.014 2.13(1.88-2.39) 0.001

36.4 (35.8-37.0)
41.1 (36.1-46.2)
41.9 (40.7-43.1)
43.0 (41.0-44.9)
46.8 (44.6-49.1)
35.2 (33.0-37.5)

46.2 (37.5-55.0)

2.41 (2.37-2.45)
2.02 (1.79-2.25)
2.15 (2.05-2.25)
2.39 (2.36-2.42)
2.43 (2.29-2.57)
2.23 (1.97-2.48)

2.32 (2.25-2.39)

These findings suggest that the observed heterogeneity in STAI-T scores is partly

explained by country (or language) differences in the included studies. We could not

separate the effects of “country” and “language” because each language

corresponded to one country, except for English (which corresponded to America,

Australia, and England). However, given that “country” better explained the

heterogeneity and that we expected cultural differences among English-speaking

countries, we decided to harmonize STAI-T scores based on country (rather than

language). The harmonization was conducted with ComBat for ENIGMA?? (see

expanded code in the figshare repository):
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i_controls = which(X$patient == 0)

age_sex = chind(X$age, X$sex)

combat = combat_fit(X$stai[i_controls],
site = X$country[i_controls], cov = age_sex]i_controls,],
n.min = 8, impute_missing_cov = TRUE)

X$stai = combat_apply(combat, X$stai, site = X$country, cov = age_sex)$dat

Quiality control
Three investigators (EV, HS, MAF) independently performed quality control of the

non-imaging data and contacted the sites for additional information when necessary.

Neuroimaging data

Quiality control

Data were collected from 2448 participants. In addition to quality control using
HALFpipe, which excluded 229 individuals (Supplementary Table S7, two
investigators (EV, HS) independently reviewed all neuroimaging data, which
excluded 20 additional participants. Two of the included samples
(Manitoba_Greening_sample_1 and Manitoba_Greening_sample_2) were analyzed
in different runs. For these samples, we used the average of all runs to obtain the
main contrast. One sample (Harvard_McLaughlin) was analyzed using blocks; due to
the short interval-stimulus-interval (1SI), individual events could not be reliably

obtained.

Statistical analyses. Mega-analyses

Pre-scaling

As noted in the main text, after processing with HALFpipe, we observed differences
in the BOLD response between sites. Such variability exceeded the expected small
normally distributed differences typically addressed by site-harmonizing mixed-
effects models such as ComBat!?. To remove these differences, we performed a pre-
scaling step that consisted of dividing the BOLD response of individuals from each
site by their standard deviation. The use of such standardized scores is common in
many areas of psychology and neuroscience. Specifically, for each voxel with brain
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coverage across all sites, we estimated the standard deviation using linear models
with appropriate covariates (see below). We then calculated the median of the
standard deviations across these voxels and divided all images in the sample by this
standard deviation. We have included this step in the "combat.enigma" package?!? in
R for use by other groups. Following recommendations for between-site
harmonization (see below), we estimated the standard deviations exclusively using

data from healthy controls.

A note about the use of z-statistics in mega-analyses

HALFpipe generates “z-statistic images”, and one may (wrongly) assume that these
z-statistic images are equivalent to z-scores. However, z-statistic images are
calculated by dividing each participant’s mean BOLD response (to different trials) by
its standard error rather than by the standard deviation across participants. Thus,
critically, these z-statistic images mix the task-related BOLD response with its
standard error. This is not inherently wrong, but it means that differences in z-
statistics between cases and controls may be due not only to differences in the task-

related BOLD response but also to differences in its standard error.

These differences in standard error could be unrelated to the task, for
example, due to differences in the amplitude of BOLD signal fluctuations. In the
following R code, we simulated a study comparing the task-related BOLD response
between cases and controls, with no actual differences in the task-related BOLD
response but differences in its standard error. As expected, the t-tests comparing the
groups show no differences in the task-related BOLD response. However, they do

show statistically significant differences in within-subject z-scores.
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# Create a task time-series design matrix
design = rep(c(rep(0:1, 20), 0), each = 8)
dat = NULL

# For each group
for (group in c("patient", "control")) {

# For each individual in the group
for (i in 1:30) {

# Simulate the BOLD signal with the same BOLD response but more noise
# in patients
ts = rnorm(length(design), design, ifelse(group == "patient”, 1.2, 1))

# Simplified analysis to estimate the task-related BOLD response
m = summary(Im(ts ~ design))$coefficients[2,]

# Save the individual task-related BOLD response and z-statistic

dat = rbind(dat, data.frame(
group!
bold_response = m[1],
z_statistic = m[1] / m[2]

)

}
}

# Conduct t-tests to compare patients and controls
t.test(dat$bold_response ~ dat$group)
t.test(dat$z_statistic ~ dat$group)

In other words, we do not know whether differences in z-statistics are related
to differences in the task-related BOLD response or to differences in other aspects of
the BOLD signal that may be unrelated to the task. Indeed, we examined whether
cases (individuals with anxiety-related and depressive disorders) and controls in this
study might have different standard errors of the fear conditioning-related BOLD
response and found that they might. For each sample containing cases and controls,
we calculated the standardized mean difference (Cohen's d) in standard error and
then averaged d across the samples. At a descriptive level, using a threshold of
d=0.2, cases showed larger standard errors in the cerebellum, but smaller in the mid-

cingulum (see figure).
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Linear mixed-effects models

To fit the models, we created a new function that, for each voxel, performs the following
steps:

1) Assesses which participants and sites have information, taking into account the
specific brain coverage of each individual fMRI scan;

2) Detects and discards collinear or constant covariates, which can vary depending on
the participants with information in that voxel;

3) Fits a linear mixed-effects model using the "Ime" function from the “nlme” R
package?s:

m = Ime(y ~ x, random = ~ 1 | sample)
or a simple linear model if the participants are from only one sample:
m = Im(y ~ x)

Where “m” is the model, “y” is the voxel value, “X” is a matrix with the variables of
interest and covariates, and “site” is a random intercept.

4) Tests the linear hypothesis if specified (e.g., for ANOVAS):
linearHypothesis(m, hypothesis)
where “m” is the model, and “hypothesis” is the hypothesis matrix.

5) Saves the results, including maps of sigma (the standard deviation estimated in the
model), the model coefficients, and z-statistics. We have included this function in the
‘combat.enigma” R package.

We used cluster-based inference to correct for multiple testing. Specifically, we
created clusters of voxels with Z=3.1 and converted cluster sizes to cluster-wise p-
values using the Gaussian Random Field (GRF) theory, using the FSL utilities
smoothest and cluster.

Normative modelling: Thresholding
We follow existing work in the field and apply a threshold equal to or greater than 2.6
(Z£2.6) to determine ‘large’ deviation scores. With the normative modelling

approach, we are not performing a group-level hypothesis test as would be done
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using a statistical parameteric mapping framework, rather we are aiming to
statistically detect differences in individual subjects with respect to the common
reference model. For this type of analysis, it is not clear that how spatial
comparisons, and multiple comparison correction ought to be done, nor that doing so
is even appropriate because multiple comparisons correction obscures the degree of
inter-individual differences that are detected. In prior work'4, a subject level FDR
method was evaluated where the results did not differ from the conclusions made
when using the original un-corrected input data. The interpretation of the single
subject FDR correction method is not straightforward as a different threshold is
estimated for every subject. In other words, an individual with widespread decreased
or increased BOLD activation during the task (as quantified using a contrast z-
statistic) may appear to have ‘normal’ findings using an FDR threshold as the overall
distribution of their voxel intensities is shifted. Therefore, in this work we elected to
use a single fixed threshold (Z+2.6) to determine the significance of a deviation,
which simplifies the comparison across individuals and is in line with other work on

normative models14-16,

Sample size analyses

Leveraging data from the 43 samples included in the study, we conducted a series of
sample size analyses to inform the design of future studies. Specifically, we treated
the mega-analytic primary activation map as the ground truth and examined how
activation patterns at varying sample sizes compared to this reference. To ensure
harmonization across datasets, all analyses were re-run using the Imm_fit function
and corrected for multiple comparisons using Gaussian random field theory. The
primary objective was to examine how study sample size relates to the proportion of
brain regions showing activation or deactivation in the mega-analysis. To this end,
we parcellated the brain using the AAL atlas'’, and defined a region as activated (or
deactivated) if it contained at least 10 statistically significant activating (or
deactivating) voxels. For each study, we then calculated the percentage of AAL
regions identified as activated (or deactivated) in the mega-analysis that were also
detected in the individual study. The relationship between the arcsine-
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transformed percentage of detected regions and the square root of the study’s

sample size was subsequently assessed.

For completeness, we also computed the average false positive rate—defined as the
percentage of regions not activated or deactivated in the mega-analysis but
incorrectly identified as such in the individual studies. All analyses were conducted
separately for activations and deactivations. Secondary analyses examined how

the square root of the study's sample size related to several additional metrics:

a) the Fisher-transformed correlation between the study and mega-analytic maps;

b) the mean absolute error between the two; and

c) the arcsine-transformed Dice coefficient*® quantifying their spatial overlap.

Supplementary Discussion

In the main text, we highlighted those individual differences or task variables

with more robust effects. Here we discuss the remaining significant associations.

Sociodemographic variables

Older age was significantly associated with greater activation in the ventromedial
prefrontal cortex and medial temporal gyrus, as well as significantly less activation in
the anterior insula, pre-supplementary motor area extending to the dorsal anterior
cingulate, dorsal caudate and bilateral supramarginal gyrus extending to the
posterior insula. Female participants (n=973) showed greater activation across the
visual cortex, and left medial/superior temporal gyrus than males (n=915).
Regression coefficients from the normative models indicated a minimal effect of age
on the predicted BOLD signal, but unthresholded effects largely replicated the
findings of the mega-analysis. Structure coefficients from the normative models
showed minimal relation between sex and predicted BOLD signal, with only a very
small cluster in the mid-anterior cerebellum predicted to show heightened activation

in females. These results are presented in Sup. Figure Sb.

Task variables
The following task variables showed significant albeit small/weak associations with
brain activation during conditioning (see Sup. Figure S8 for the mega-analysis
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results and Sup. Figure S9 for the structure coefficients of the normative modeling
results). Normative modelling regression coefficient maps are also shown in Sup.
Figure S9 for completeness but are not discussed below.

The number of trials during preconditioning showed a significant positive

association with activation in the inferior cerebellum in the mega-analysis. Structure
coefficients did not show a relationship between the number of trials during
preconditioning and predicted BOLD signal.

In the mega-analysis, the type of CS (categorized as humanoid, affective
pictures, and neutral faces) revealed significant effects. See full results at
https://figshare.com/s/d44cc1390711bad3c147.In normative modeling analyses, the

use of a humanoid CS was predictive of increased activation in the cingulate cortex,
extending to the dorsomedial prefrontal cortex and pre-supplementary motor area,
secondary somatosensory cortex (Sll), dorsal precuneus, dorsolateral prefrontal
cortex, the bilateral insula, the bilateral temporoparietal junction, the thalamus, the
caudate and the left anterior cerebellum, as well as decreased activation (i.e. more
deactivation) in the anterior ventromedial prefrontal cortex and posterior cingulate
cortex. Moreover, the use of neutral pictures as CS predicted more activation (i.e.
less deactivation) in the anterior ventromedial prefrontal cortex and posterior
cingulate cortex, and less activation within the cingulate cortex, extending to the
dorsomedial prefrontal cortex and pre-supplementary motor area, dorsal precuneus,
SlI, the bilateral insula, the bilateral temporoparietal junction, the thalamus, the
caudate and left anterior cerebellum Finally, the use of neutral faces as CS predicted
more activation within the subgenual anterior cingulate cortex, and less activation
within the bilateral fusiform face area and Sll. The use of other types of CS (affective
faces and pictures, a gabor patch, a neutral male avatar, images of animals or tools,

or of snakes and spiders) did not have an influence on predicted BOLD signal.

Average intertrial-interval (ITl) length demonstrated a significant positive

association with activation within the bilateral primary visual cortex and a significant
negative association with the bilateral posterior parietal cortex, and superior frontal
gyri extending to the supplementary motor area in the mega-analysis. Structure
coefficients showed that increased average ITI was predictive of increased activation
within the primary visual cortex, dorsomedial prefrontal cortex, extending to the pre

SMA, the bilateral thalamus, caudate and putamen, the brainstem, and the anterior
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and medial cerebellum. Conversely, a longer ITI predicted less activation (i.e., more
deactivation) within an expanse of the ventromedial prefrontal cortex, within the
dorsolateral prefrontal cortex, primary somatosensory cortex (Sl) the precuneus, the
lingual gyrus and fusiform face area extending into bilateral middle gyri of the
temporal lobe, and bilateral hippocampus.

In the mega-analysis, the number of CS+ included in the fMRI

contrast showed a significant positive association with activation in the left primary

visual cortex, right orbitofrontal cortex, right precuneus, right superior parietal lobule,

and right dorsolateral prefrontal cortex. Moreover, the number of CS- included in the
fMRI contrast showed a significant positive association with activation in the left
superior parietal lobule and the right dorsolateral prefrontal cortex.

Being unaware of the relationship between CS and US (i.e., contingency
unawareness; n=72) showed a positive association with activation in the ventral
posterior cingulate extending to the dorsal anterior cingulate/precuneus compared
with being aware (n=1260). As contingency awareness was not available for all
participants this variable was not included in the construction of the normative
models, and therefore their relationship to predicted task (de)activation cannot be
assessed using structure coefficients. Rather, for participants in the two test samples
(controls + individuals with an anxiety or mood-related disorder) with these data
available (n = 703) we used a support vector classifier and found whole-brain
deviation score could not be used to predict whether a participant was contingency
aware or not (mean accuracy = 50% +/- 16%; p = 0.426; 10-fold cross validation;
1000 permutations).

For the main results on type of US, please refer to the main text. In addition to
these main results, in normative modeling analyses, the use of a thermal stimuli as
US was predictive of decreased activation within the bilateral amygdala, the mid-
cingulate cortex extending to the pre-supplementary motor area, the dorsomedial
prefrontal cortex, a posterior region of the ventromedial prefrontal cortex, the cuneus,
and (i.e., more deactivation) in the angular gyrus. The use of a visceral stimuli as US
had no influence on predicted BOLD signal during CS+>CS-. These two variables

were not investigated separately using linear models.

The following task variables were not significant in the mega-analysis nor in

normative modelling analyses: number of CS+ trials during conditioning; number of
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CS- trials during conditioning; and average ISl (inter-stimulus interval, i.e., between
the CS+ and the US).
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