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ABSTRACT: Programming is a key transferable skill within the chemical sciences with
applications supporting data acquisition, as a tool for chemical and spectroscopic analysis and
as an environment for theoretical modeling. Of the many available programming languages,
Python stands out due to its broad functionality and open-source structure. However,
introducing any programming training to an undergraduate chemistry curriculum can be
challenging due to students’ lack of previous experience and limited time in pre-existing
curricula for dedicated training. Here, we present a modular approach to introducing
undergraduate students to Python programming through a series of taught undergraduate
physical chemistry laboratory experiments. Students are first provided with a carefully
scaffolded approach to basic Python syntax before enhancing the student skill set through
context-based learning integrated with practical chemistry challenges. In this way, we
demonstrate how a modularly integrated approach can provide a complete introduction to
Python programming regardless of previous experience and without needing dedicated training
time.

KEYWORDS: Python programming, curriculum design, scaffolded learning, active learning, undergraduate experiments, physical chemistry

1. INTRODUCTION laboratory experiments play a crucial role in providing context
for often abstract concepts taught in core modules and thus
stand as an ideal point to integrate a programming aspect into
the curriculum.

This paper outlines a curriculum-focused modular approach
to incorporating Python programming into undergraduate
physical chemistry experiments. We focus on first- and
second-year students enrolled in either the three-year Bachelor
of Science (BSc) course or the integrated four-year Master of
Chemistry (MChem) course. Both degree programs share an
identical curriculum during the first two years, comprising core

Programming has become increasingly essential in the chemical
sciences, enabling data analysis,1 automation of laboratory
2—4 . : .57 .
processes, chemical reaction modeling, and materials
design.® "% As this trend accelerates, there is a growing demand
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for programming proficiency in both industrial and academic
research.'"!? Among all programming languages, Python has
gained significant traction due to its ease of use, extensive
libraries, and ability to handle large data sets for data analysis and
visualization."® In response to this shift, numerous publications

have explored the integration of programming into chemist
P & prog & t and optional modules. The programming activities described are
degree programmes. Efforts have focused so far on general
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27-29 Python-based programming exercises are integrated into these
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for students.>*! While several resources and studies discuss the as part of the practical tasks. In total, eight practicals across these
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integration of programming into chemistry education, there " . . s
. . . opportunities for students to apply their coding skills in
remains a need for detailed and proven, curriculum-focused . . .
. nonprogramming practicals. Here, we present six of these
examples that demonstrate how programming can be embedded . .
programming-based practicals.
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For all lab practicals involving Python, students use lab-owned
laptops with Python preinstalled via the Anaconda distribution.
The Introduction to Python lab is completed in Spyder, with all
required libraries (Matplotlib, NumPy, and SciPy) readily
available. Recognizing that programming preferences vary, we
also offer alternative environments such as Jupyter Notebooks,
allowing students to explore and choose the interface that best
suits their workflow and productivity in the later lab practicals.

All practicals discussed here that include a wet chemistry
aspect should be performed wearing standard personal
protective equipment (lab coat, nitrile gloves, and splash
goggles) and in a well-ventilated space or fume cupboard to
mitigate any hazards. Chemical-specific hazards associated with
an experiment, ways to mitigate the risk to health, and disposal
methods are discussed in Section 1 of the Supporting
Information. However, there are no unexpected hazards
associated with any of the wet chemistry practicals reported
here.

2. INTRODUCTION TO PYTHON

Python is integrated throughout our curriculum for first- and
second-year undergraduates, with an emphasis on coupling
programming with chemistry to create a holistic learning
experience. Embedding programming challenges within relevant
laboratory contexts has been shown to enhance student
engagement and underscore the practical relevance of coding
skills.*®

In our revised first-year course, we assume no prior experience
with Python or significant hands-on laboratory work, acknowl-
edging the variability in students’ educational backgrounds.’”
Introducing both new chemistry skills and a programming
language simultaneously presents a cognitive burden that can
hinder learning, particularly for neurodiverse students.’*™*’
Therefore, we implemented a scaffolded approach to Python
instruction that supports incremental learning and promotes
accessibility. This approach is embedded within a spiral learning
model, wherein each subsequent practical introduces new
Python functionality while reinforcing previously acquired
skills.*""** The iterative structure promotes knowledge retention
and incremental skill development, aligning with a constructivist
framework, in which students engage with project-based tasks.
These tasks encourage active exploration of code, experimenta-
tion with different solutions, and reflection on errors as part of
the learning process.'>** We outline the skills introduced in each
of the laboratories presented here and those reinforced in Table
S1 of the Supporting Information.

The introductory Python module focuses on foundational
concepts such as syntax, data types (e.g., strings, floats, variables,
and lists), and user inputs. Instruction is delivered through a
blended learning model, incorporating prelab tasks supported by
written materials and accompanying “code-along” video
tutorials."**> These resources feature worked examples and
high levels of instructional guidance.*® This format fosters active
learning by allowing students to engage with the material at their
own pace, building both confidence and familiarity."”

Debugging is introduced early to demystify Python error
messages, which are often verbose and intimidating.*® Students
are given functional code and are then asked to intentionally
introduce an error to observe the resulting message. This
promotes early and structured exposure to common debugging
strategies that are linked to the concepts being taught.

Successful completion of prelab activities equips students to
undertake the first contextualized coding challenge in the lab:
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building a temperature conversion calculator between Celsius
and Kelvin. Previously introduced skills (inputs, floats,
arithmetic operations) are extended to include conditional
logic (1f, elif, or else) to allow user selection of
conversion direction. Pseudocode for this exercise is shown in
Algorithm 1 (Supporting Information).'®

This scaffolded foundation enables the introduction of more
advanced Python techniques within a contextualised framework.
For this purpose, we use the Belousov—Zhabotinsky (BZ)
reaction—a well-established oscillating reaction between
bromate and bromide species, and a metal catalyst—as a
thematic case study.*”” Students complete the BZ experiment
the week prior, recording oscillation rates (via red-blue color
changes) as a function of temperature. This data are used to
calculate activation energy using the Arrhenius equation:

Ea
RT (1)

where k is the rate constant (inverse of the oscillation period), A
is the pre-exponential factor, E, is the activation energy, R is the
ideal gas constant, and T is the absolute temperature. Students
are already familiar with this analysis from previous coursework
using Excel, ensuring the data and methodology are accessible.

Python is then used to revisit the same analysis. Students
begin by compiling a list of reagents and progress to import their
own experimental data. They use numpy.polyfit () to
compute the linear fit and extract the slope corresponding to
—E,/R, from which E, is calculated. Algorithm 2 (Supporting
Information) outlines this process.

The final task integrates all skills developed during the session:
list handling to organize data, plotting to visualize the Arrhenius
relationship, and use of print functions to report E, (Figure 1).
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Figure 1. Student-generated figure from the kinetic analysis of the
Belousov—Zhabotinsky reaction, reporting the rate constant (k) as a
function of temperature (T). Analysis using the Arrhenius eq (eq 1)
allows calculation of the activation energy (E,).

This capstone activity enables students to apply new
programming skills to a familiar chemical system, reinforcing
learning through contextualiztion while minimizing cognitive
overload.

After completing the introductory session, students gain
confidence in essential Python programming skills, including
basic syntax, data handling, mathematical operations, and the
use of core libraries, such as NumPy and Matplotlib. This
foundational knowledge equips them to progress through the
remainder of the Python-integrated curriculum.

Formal assessment of the programming elements in each
practical is based on students’ code outputs and results, which
provides a direct measure of the code functionality, rather than
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the specific structure of their code. This approach accom-
modates variation in coding styles, which we have informally
observed to evolve as students engage with more complex tasks.
However, we currently do not have formal data evaluating its
impact on the learning objectives of each practical. Our
indication of increasing Python literacy and competence
comes from informal observations—specifically, students’
ability to complete more advanced programming tasks,
producing the expected code output within the allocated time
frame, and relying less on supplementary Python instruction as
the lab practicals progress from highly scaffolded activities
(Sections 2—4.2) to independent, project-focused challenges
(Sections 4.3—5.3).

3. CREATING KINETIC MODELS AND SIMULATIONS

The next set of practical experiments incorporating Python-
based programming focuses on the derivation and simulation of
chemical kinetic models. So far, we run three different
laboratories: two in the first semester of the first year, and one
in the first semester of the second year. In our example, we
introduce students to the physics and chemistry of nuclear
processes—a topic not formally covered by any core or optional
Chemistry modules at Southampton. Our aim was to adopt an
active learning, “learn as you go” approach, allowing students to
e}g}lalore a new area of chemistry while solving problems within
it”" and continuing to develop their Python programming skills
introduced in Section 2.

3.1. Kinetics of Nuclear Decay

The first programming-based objective of the lab is for students
to generate model data for the first-order # decay of the 'O
isotope, extract its half-life (7,5), and compare this to the
extracted 7, 5 of the '*F isotope. Both decay processes follow the
same general reaction scheme:

A A 0 0
7X = 7z X+ et v ()

where X represents the isotopic element of interest, A is the mass

number, Z is the atomic number, +(1)e is a positron, and gl/ is a
neutrino.”>**

To begin, model experimental data for the decay of '*F are
provided to students. They are guided to plot this data
appropriately (i.e., plotting data points as markers and fits or
continuous data as a line, and with informative axis titles and
unit), apply a sorting operation based on the absolute difference
from a reference value to extract 7, s, and print the half-life in the
terminal. We explicitly define the concept of half-life within the
lab script to support students in identifying the correct
parameters for extracting the appropriate value. The pseudocode
for the sorting algorithm is presented in Algorithm 3
(Supporting Information).

The extracted half-life for *F is 6588 s (or 109.8 min).
Following this and using the universal rate law for radioactive
decay, students are introduced to the % decay of 'O and
instructed to generate model data based on the known decay
constant of this isotope. The universal rate law for radioactive
decay is given by

N, = Nye ™ 3)

where N, is the number of radioactive particles at time £, N is the
initial number of radioactive particles, and k is the decay
constant for the isotope. For °O, the decay constant is 0.00568
s~". Using this equation, students generate model data following

the pseudocode provided in Algorithm 4 and extract 7,5 using
Algorithm 3—both presented in the Supporting Information.

At the end of the program, the output plot will consist of both
the experimental '*F data and the model *O data as shown in
Figure 2 alongside the extracted 7 in the terminal.

18F Data
150 Model Decay Data

9 °

18F 155 = 6588 s

[Isotope] (x10%2 atomsi/L)
a

150 75 = 122's

0 2000 4000 6000 8000 10000
Time (s)

Figure 2. Modified student-generated output nuclear decay profile
showing the variations in the concentration of isotopes as a function of
time. Red data points (every 200 data points plotted) and blue line
denote the '*F decay data. The green line denotes the model *O data
generated in the lab practical. 7,5 values for each isotope are given.

Educators can generate their own model data by generating a
list of times using numpy.linspace (0, 10000,
10000) and the data using eq 3 and the extracted decay
constant (1.52 X 107 s71).

3.2. Basic Simulations of Nuclear Fusion

The second part of the lab practical involves simulating the
deuterium (*H)—tritium (*H) fusion reaction, a key process in
stellar nucleosynthesis, to form helium (*He) and a neutron
('n).>>* The reaction proceeds in two sequential steps:

k

‘H+’H-SH+'H (4)
k

H+°H 3 *He + 'n (s)

where k; and k, are the respective rate constants for each
reaction step. Students are provided with a worked example as
guidance to derive indexed numerical rate equations (explicit
rate calculations at each discrete time step, indexed by the time
step counter) for each species and reaction rates for each overall
reaction step. This enables the calculation of concentration
changes and rates of reaction at each time step of the simulation
(see Section 4.2.1 in the Supporting Information). These rate
equations are thus solved iteratively rather than via direct
integration.

Students then develop their own Python code to perform the
simulation, supported by code snippets and instructions within
the lab script. A for loop is introduced to the students and used to
control the necessary calculations at each time step. The
workflow of this code is given in Algorithm S (Supporting
Information).

Using a given set of initial values for [*H], [*H], [*He], and k;,
students run the initial simulation and plot how the
concentration of each species changes over time. The initial
parameters and resulting plot are shown in Figure 3a. The
simulation spans 100 billion years, in increments of 2 billion
years per time step.

To extend the exercise, students modify the initial parameters
to investigate how changes in [*H] and [*H] affect the
simulation results. This enables them to determine the rate
order for each species in the reaction and to identify the rate-
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Figure 3. A kinetic model of deuterium—tritium fusion using the initial model parameters (a), where [D] is doubled (b), where [D] is halved (c), and
where there is a starting amount of [T] (d). [D] is the concentration of deuterium (red), [T] is the concentration of tritium (blue), and [He] is the
concentration of helium (black). The values for k; and k, are 1.25 X 107 and 2.50 X 107 years™" respectively.
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Figure 4. Left: Schematic provided to students demonstrating how to correctly connect a light sensor to an Arduino board. Further steps direct
students to connect a RGB LED via the breadboard. Right: Photograph of the Arduino colorimeter inside its LEGO scaffold. The glass cuvette is
contained in the LEGO box at the back left to provide a dark environment.

limiting step. The modified parameters and the corresponding
plots are presented in Figures 3b—d, respectively.

Although this model is crude, overly simplistic, and heavily
dependent on the chosen rate constants, we found during the
first delivery of the lab practical that it provides a valuable
opportunity for students to freely modify the system and
critically engage with its limitations. These include the absence
of temperature and pressure effects, side reactions, the complete
lifecycle dynamics of a star, and additional mechanisms such as
quantum tunnelling,

4. DATA ACQUISITION WITH AN ARDUINO

A key motivation for incorporating Python coding as a skill in
chemistry laboratories is that it is open source, proving free
access to powerful computational functions. This concept can be
extended to data acquisition using open-source electronics, such
as Arduino boards. These microcontrollers can be coupled to
commercial or homemade equipment to facilitate remote or
automated data acquisition.”* Educators may use this concept to
provide prebuilt equipment at greatly reduced costs”>*® and or
may incorporate construction of the device into the lesson plan
to incorporate electronics as an additional skill.>”>*

4008 https://doi.org/10.1021/acs jchemed.5c00677
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4.1. General Arduino Light Sensor Setup

In our laboratories, we use an Arduino board coupled to a simple
light sensor as the basis for colorimetric experiments. Students
follow a step-by-step guide for constructing the electronic
components themselves by connecting the light sensor to an
Arduino via a breadboard. An exception is that the Arduino
board itself is provided with a preassembled C++ micro-
controller code. Students are also provided with a simple python
code, written using the Serial library, that forms the basis of their
data acquisition code. Both codebases are freely available for
educators online,”” with a summary of the repository’s content
in Section 5 of the Supporting Information. Students also
construct the basic architecture of the equipment out of either
cardboard or LEGO to provide an engaging experience (Figure
4). A full component list and wiring diagram for the Arduino
setups presented here are given in Section 5 of the Supporting
Information.

We present these practicalities within the context of
automated data acquisition. Students are provided with a
scaffolded introduction to the new Arduino integration while
being given the opportunity to independently construct analysis
and plotting codes based on previous exercises. This is
reinforced through two separate sessions built upon popular
teaching lab experiments: Colorimetry®® and Todine Clock.”’

4.2. Colorimetry of Dyes

Colorimetry relates the absorbance of a species in solution to its
concentration according to Beer—Lambert’s law

1
A= logw(—o) = ecl
I (6)

where A is the absorbance, I is the background intensity, I is the
intensity through the sample, € is the molar extinction coeficient
and [ is the path length of the colorimeter cell.

Students are guided through the process of coding data
acquisition code for the colorimeter by being presented with the
mathematical steps and then independently writing the code to
achieve each calculation stage. For absorbance measurements,
this involves recording the intensity detected at the light sensor
when using the solvent (), then the intensity through the
sample (I) to determine the absorbance. This reinforces the
origin of the absorbance value (eq 6), which is advantageous
over standard colorimeters that simply report a value.

Students then use their Arduino-based colorimeter that they
build to determine first the value of ¢ for Allura Red, a red food
dye, and then build a calibration curve to quantify the amount of
that dye in a commercial cough sweet. The analysis techniques
required to achieve this build on skills first introduced in the
Introduction to Python lab. Concentration and absorbance
values are stored in lists in the code, Matplotlib and NumPy
modules are used to plot graphs and perform a linear regression
on the data respectively, and native Python functions are used to
calculate values and print outputs. The workflow of the
generated code is given in Algorithm 6, and the experimental
procedure for this practical is given in Section 5.3.1 in the
Supporting Information.

We add wider thinking and experimental design into the lab
practical by requiring students to first select the appropriate
color LED for the absorption of Allura red. This incorporates a
discussion on complementary colors and encourages students to
verify their answer experimentally.

4009

4.3. lodine Clock

The iodine clock is a cyclical reaction mechanism consisting of
simultaneous oxidation and reduction steps. Different variants
to the mechanism are used in various teaching laboratories, but
the core concept centers on the reaction between iodide,
hydrogen peroxide, and thiosulfate. Peroxide can oxidize iodide
into iodine

H,0, + 2H" + 21" > I, + OH" (7)

The resultant iodine can be reduced back to iodide through a
reaction with thiosulfate.

I, + 25,0,>" = 21" + S$,05*” (8)

Once all of the thiosulfate is consumed, iodine can be
observed as a persistent brown color, or blue if used in
combination with a starch indicator.”” This can be detected and
quantified through absorbance measurements.

For this experiment, we advance the student experience with
automation further. Students are instructed to produce a code
that produces full automation of both the experimental
procedure and data analysis. The automation is built around
input statements. Connection to the Arduino light sensor
measures the intensity of the reaction through the working
solution. When the thiosulfate is consumed and the solution
turns yellow, the intensity drops due to light absorption.
Students are introduced to the concept of a while loop and
Boolean operators (True, False) and, using these, are guided to
construct the code to continually record the measured intensity
until it drops below a threshold value, thereby automatically
detecting the reaction end point.

The code then prompts the user to add aliquots of thiosulfate
until the solution turns colorless, indicating all iodine has been
consumed. The input statement then records the number of
aliquots added, and the time module records the time at which
the threshold was breached, which are both added to lists for
later analysis.

The code continues until prompted by the student to break
the loop, at which point students use their data analysis and
visualization to plot the trend in consumed thiosulfate vs time in
order to extract a pseudo first order rate coefficient. Student
outputs of the plotted linear trend and extracted parameters are
presented in a similar way to that demonstrated in Figure 1.

In this way, students produce code that can fully automate
both data acquisition and analysis, whereby their constructed
code prompts the user how to perform the experiment and then
returns an extracted kinetic parameter. The workflow of the
generated code is given in Algorithm 7 in the Supporting
Information, alongside the experimental procedure in Section
S54.1.

5. INCORPORATION OF CHEMICAL DATA ANALYSIS

One of the main challenges we encountered when designing new
undergraduate physical chemistry experiments was striking a
balance between the increasing complexity of Python program-
ming and the demands of wet chemistry. The most effective
solution was to completely shift the analysis component of the
practicals to Python. Traditionally, our laboratory sessions have
relied on spreadsheet software for data analysis, plotting, and
annotation and performing extensive calculations. While this
approach is convenient and often less time-consuming, we have
found that students develop a stronger understanding of data
handling and analysis when working programmatically. They
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Figure S. Basic implementations of Python-based programming in chemical data analysis. In (a), we plot the annotated Raman spectrum of dry ice
obtained in out astrochemical spectroscopy practical. In (b), we present a flow diagram to show the operation of a particle size calculator based on the
Brus equation from our quantum dots practical, and in (c) we show the output of the code for ZnO quantum dots.

also become more critically aware of how data should be plotted
and whether calculated values are physically reasonable.

To support this, we provide several example practicals in this
section and the next section, in which these tasks are carried out
exclusively in Python, concentrating on the context-learning
aspect and building further on fundamental programming skills
with more advanced techniques.

5.1. Basic Implementations: Plotting Data and Equation
Calculators

Our most fundamental applications of Python programming in
chemical data analysis involve plotting, annotating experimental
data, and developing simple equation calculators.

For data visualization, we routinely use the Matplotlib library
in our undergraduate laboratories as it offers straightforward and
versatile tools for plotting chemical data. This also encouraged
students to reuse their own codes to save time. As an example,
Figure Sa shows the Raman spectrum of dry ice (CO,) obtained
during an astrochemical spectroscopy practical class. In this
experiment, students are tasked with acquiring both infrared and
Raman spectra of dry ice, alongside a micrometer-wavelength
spectrum, and determining which vibrational mode of CO, is
responsible for its detection in the GW Lup protoplanetary
disk.® Detailed information about each plotting function used
to create Figure Sa is provided in Section 6.1 of the Supporting
Information.

Over the past decade, there has been a significant increase in
the development and use of online calculators, often employed
by students to avoid lengthy or repetitive calculations. Common
examples used in our teaching laboratories include conversions
between wavelength (nm) < photon energy (eV), or between
moles (mol) and concentration (M). However, one important
point we emphasize to students is that no online calculator exists
for every possible equation they might encounter. As such, we
actively encourage students to develop their own custom
calculators for laboratory practicals involving multiple, laborious
calculations. In Figure Sb, we present a flow diagram and
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example terminal output for a Brus equation calculator, which is
used to determine nanoparticle particle size from its measured
band gap. This activity is part of our quantum dots laboratory,
where students synthesize and dope ZnO quantum dots via
microwave (oven) irradiation. The terminal output from this
program is shown in Figure Sc. The underlying code can be
easily adapted to calculate particle sizes for a range of band gap
values using a while loop with a user-defined break condition to
terminate the program when desired.

5.2. Particle in a Box: Electronic Structure of
Naturally-Occurring Chromophores

In this example, we developed a particle in a box experiment that
integrates chromophore extraction, UV—visible absorption
spectroscopy, and Python-based data analysis to facilitate
student exploration of quantum mechanical phenomena in
conjugated systems. Students examine electronic transitions in
naturally occurring chromophores, calculate the conjugation
lengths, and visualize corresponding wave functions and
probability amplitudes.

The experimental procedure, adapted from ref 64, involves
extracting lutein, f-carotene, and lycopene from fresh spinach,
carrot, and deseeded tomato, respectively, using 10 mL of
methanol. These plant-derived chromophores were selected to
underscore the relevance of quantum mechanics in everyday
materials and to minimize laboratory costs. The Python analysis
tools described below are equally applicable to synthetic dyes
commonly employed in traditional particle in a box exercises.”®

Students record UV—vis absorption spectra (400—700 nm)
using a PerkinElmer Lambda XLS spectrometer, identify
absorption maxima (4,,,,), and export the data as .csv files
for further analysis. As part of the prelaboratory preparation,
students research expected A, values: 470—480 nm for
lycopene,”® 430—450 nm for lutein, and 440—460 nm for f3-
carotene.”” Co-extracted chlorophyll a from spinach typically
yields an additional absorption feature near 650—670 nm.**

https://doi.org/10.1021/acs.jchemed.5c00677
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Representative overlaid spectra and associated A, values are
presented in Figure 6.

To analyze their UV—visible spectra, students import the
absorbance data into separate lists. For lutein and f-carotene,
they identify the maximum absorbance and its corresponding
index, which directly maps to A, in the wavelength list. This
exercise reinforces basic Python skills, including list manipu-
lation and indexing. The corresponding pseudocode is
presented in Algorithm 8 (Supporting Information).

While this method is effective for lutein and f-carotene, the
lycopene spectrum is complicated by overlap with other
extractable compounds from tomato. To resolve this, students
compute the first derivative of absorbance with respect to
wavelength (dA/dA) and plot it as a function of A. This derivative
can be obtained either iteratively or via numpy.gradient-
(). Although the iterative method is detailed in the lab script,
students are encouraged to use NumPy to improve the
efficiency. This step strengthens their computational proficiency
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and spectroscopic interpretation. As shown in Figure 6, the
resulting plot reveals zero crossings, aiding in the visual
identification of A, for lycopene.

Next, students assign quantum numbers (n) to each
chromophore’s transition and calculate the effective box length
(L) using the particle in a box model:

2

AE

1 2n+1)

€

()

where AE is the transition energy (converted from A,,,,), & is
Planck’s constant, and m, is the mass of an electron. Further
problems may include comparing calculated L values with those
from electronic structure calculations or from applying the law of
cosines, considering model limitations, and exploring the effects
of replacing the particle with a muon or antiproton. Students
may also examine how chromophore structure affects absorption
characteristics.
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Finally, students calculate and plot the electronic wave
functions (,) and corresponding probability amplitudes (l//n2)

for each transition. For a 1D box, the wave function is defined as

)
ENT L (10)

with x denoting the electron’s position. Squaring v, yields the
probability amplitude. Students generate these plots using a

custom Python script, iterating over x to compute y, and l,llnz, as

detailed in Algorithm 9 (Supporting Information). Figure 7
shows the results for lycopene with L = 1.82 nm and quantum
numbers n = 11 and n = 12. The x values are generated using
numpy.linspace (), producing 1000 evenly spaced points.
Students can then estimate the electron’s probability distribu-
tion by analyzing the peaks in the probability amplitude plot.

5.3. Flash Photolysis of Benzophenone

In our final example, we demonstrate how Python programming
can be used to fit time-resolved spectroscopic data and extract
meaningful error estimates from the fitting process. In this
laboratory practical, students explore how the concentration of
sodium hydroxide (NaOH) in solution influences the lifetime of
the deprotonated ketyl radical (DKR), using a simplified
transient absorption spectroscopy setup. The DKR is generated
photochemically from benzophenone upon excitation with a
382 nm light. The key photochemical steps and subsequent
reactions are summarized in Figure 8.58 7!

The sample preparation procedure was adapted from
literature.”” Students begin by preparing a 5 mM solution of
benzophenone in 2-propanol (250 mL), along with a series of
sodium hydroxide (NaOH) solutions at varying concentrations
(10—50 mM, 100 mL each). For each measurement, 25 mL of
the benzophenone solution is combined with 25 mL of a
selected NaOH solution. The resulting mixtures are deoxy-
genated by bubbling nitrogen (N,) through them for 30 min.

Following deoxygenation, students assembled the flash
photolysis apparatus, shown in Figure 9. The custom-built
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Figure 9. Experimental setup to study the lifetime of the deprotonated
ketyl radical in solution. A description of the setup is given in the main
text.

setup features a 635 nm laser, detector, and amplifier housed
within a sample chamber, with a xenon flash lamp mounted
above a cut-out . To operate the system, students activate the
laser, amplifier (set to 9 V), detector, and flash lamp. Absorbance
at 635 nm is monitored continuously, producing clear transient
signals upon flashing the xenon lamp. While the apparatus is
specific to this laboratory, similar designs may be adapted from
other sources.””’*

Transient absorption data are collected using Picoscope 6
software, with 20—30 single-shot transients recorded for each
NaOH concentration. These data are exported as . ¢ sV files for
further processing. Students average the transients and identify
the time zero (reaction start) and time end (reaction
completion) points. While conceptually straightforward, data
processing can be tedious. To streamline this step, a custom
Python-based graphical user interface (GUI) is provided,
allowing students to load raw traces, interactively define time
zero and time end, compute an average trace, and convert the
voltage to absorbance. The GUI, developed using the Tkinter
library, is supplied with raw Python code and a flowchart to
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support student understanding of the data workflow. Although
GUI programming is not formally taught, this activity provides
an accessible introduction to graphical programming concepts.
The app, alongside example data, is freely available online for
educators to use and adapt in their own laboratories.”> We also
include a summary of the repository’s contents in Section 6.3 of
the Supporting Information.

Processed data are analyzed by fitting the averaged transients
to a second-order rate equation:

A= — o

1+ kAt (11)

where A, is the absorbance at time t, A, the fitted initial
absorbance, and k the second-order rate constant. This model is
implemented in Python as a function receiving initial parameter
guesses and arrays of time and absorbance values. Fitting is
performed using a least-squares fit via the
scipy.optimize.curve fit (), function which returns
the best fit parameters (popt) and the covariance matrix
(pcov). The standard errors of the fitted parameters (perr)
are obtained from the square root of the diagonal elements of
pcov.

The lifetime 7 of the deprotonated ketyl radical is then
calculated as

(12)

The modular Python code enables students to repeat the
analysis across data sets by loading new . csv files. Pseudocode
for the full workflow is provided in Algorithm 10 (Supporting
Information). After fitting, students evaluated the effect of
NaOH concentration on radical lifetime by plotting 7 versus
[NaOH], using numpy . polyfit () to perform alinear fit and
including error bars for both variables. The slope of this line
indicates the change in lifetime (ms) per mM increase in NaOH.
Representative kinetic fits and concentration—lifetime trends
are shown in Figure 10. Finally, students critically assess the
robustness of the observed trend, especially in the context of the
limited data set.

6. CONCLUSIONS

We have presented a curriculum-focused, modular approach to
integrating Python coding as a key transferable skill into
undergraduate physical chemistry experiments. Python is first
introduced with a carefully scaffolded approach that assumes no
previous coding or practical chemistry experience. As students
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gain basic skills and confidence, the course design shifts to
project-based learning, where coding skills are integrated into
chemical tasks to provide an engaging and relatable learning
experience.

Although not demonstrated in this work, the core concept has
the scope to extend the student skill set into powerful
computational operations through Python, including develop-
ment of bespoke GUIs and machine learning. We recommend
care is taken in the introduction of coding as a concept, with a
carefully scaffolded approach through worked examples and
“code-along” exercises prioritizing support and confidence in
early learning environments. This provides students with a
sufficient foundation in coding to benefit from, and enjoy
contextualized learning opportunities, as they develop their skills
toward exciting higher order Python operations.

Finally, a brief note on the use of large language models
(LLMs). The use of LLMs in programming has grown
significantly in recent years. In our courses, we discourage
their use during the foundational learning stages (sections 2—4).
This is because the fundamental understanding of core Python
concepts from our introduction is essential in both under-
standing LLM replies and engineering a prompt capable of
producing a helpful response. At more advanced stages (sections
5.2 and 5.3), we encourage responsible use of LLMs for code
debugging and general support, provided students do not use
them to generate complete, Al-generated code and submit this
as their own work.
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