
Modular Integration of Python Programming in Undergraduate

Physical Chemistry Experiments

Supporting Information

Derri J. Hughes1 and Samuel C. Perry1

1School of Chemistry and Chemical Engineering, University of Southampton,
University Road, Highfield, Southampton, SO17 1BJ, United Kingdom

1 Chemical Hazards

Colorimetry of Dyes

• Allura Red food dye

– Hazards: None

– Risk Mitigation: Wear standard PPE

– Disposal: Pour down sink with copious amounts of water

• Deionised Water

– Hazards: None

– Risk Mitigation: Wear standard PPE

– Disposal: Pour down sink with copious amounts of water

Iodine Clock Reaction

• H2SO4 (2M, 40 mL)

– Hazards: Corrosive to metals. Skin and serious eye irritant.

– Risk Mitigation: Use in a fume cupboard or ventilated area. Avoid inhalation. Wear
standard PPE.

– Disposal: Pour down sink with copious amounts of water.

• KI (solid, 1 g)

– Hazards: Harmful if swallowed. Skin and serious eye irritant.

– Risk Mitigation: Wear standard PPE. Ensure adequate ventilation.

– Disposal: Small quantities can be poured down sink with water.

• H2O2 (aq, 6% vol., 8 mL)

– Hazards: Harmful if swallowed. Causes serious eye damage.

– Risk Mitigation: Avoid inhalation. Wear standard PPE.

– Disposal: Pour down sink with copious amounts of water.

1

• Sodium Thiosulfate (0.5 M, 40 mL) and solid (2 g)

– Hazards: Eye and skin irritant. May evolve sulphurous fumes with other chemicals.

– Risk Mitigation: Use in ventilated area. Wear standard PPE.

– Disposal: Pour down sink with copious amounts of water.

• Reaction Solution (250 mL)

– Hazards: Toxic and irritant to skin, eyes, and internally if ingested.

– Risk Mitigation: Wear gloves and standard PPE. Use fume hood if coloured. Add solid
sodium thiosulfate until clear.

– Disposal:

∗ Clear solutions: Down sink with copious amounts of water.

∗ If cloudy white/yellow after thiosulfate: Dispose via fume hood sink with copious water.

Particle in a 1D Box

• Methanol (10 mL)

– Hazards: Highly flammable. Toxic via ingestion, inhalation, or skin contact. May damage
eyes/CNS.

– Risk Mitigation: Use in ventilated area. Keep away from heat. Wear PPE. Avoid inhalation.

– Disposal: Pour down sink with copious amounts of water.

Flash Photolysis of Benzophenone

• Benzophenone (0.5 g)

– Hazards: Possible carcinogen. May damage liver/kidneys with prolonged ingestion. Harm-
ful to aquatic life.

– Risk Mitigation: Avoid breathing dust. Use in ventilated area. Wear PPE. Prevent envi-
ronmental release.

– Disposal: Store in hazardous waste container.

• NaOH (0.5 M, 100 mL)

– Hazards: Corrosive. Causes severe burns and eye damage.

– Risk Mitigation: Avoid dust. Wear PPE.

– Disposal: Neutralise with acetic acid. Dispose down sink with water.

• Isopropyl Alcohol (300 mL)

– Hazards: Highly flammable. Eye irritant. May cause dizziness.

– Risk Mitigation: Avoid vapour. Wear PPE. Keep away from ignition sources.

– Disposal: Store in hazardous waste container.

2

2 Programming Skills

Table S1: Outline of programming skills that are developed over the course of each practical. Y1 refers
to a first year lab practical and Y2 a second year lab practical. *Skills are optional as discussed in the
main text.

Experiment Previously Learned Skills Used New Python Skills Learned

Introduction to Python (Y1) None Basic input/output (1), data types
(variables, lists, floats, integers,
strings) (2), conditional statements (if,
elif, else) (3), arithmetic operations
(4), while loops (5), plotting with
matplotlib (6), linear regression (7),
data extraction (8)

Kinetics of Nuclear Decay (Y1) (1), (2), (4), (6), (8) For loops (9), mathematical functions
(absolute values) (10), mathematical
functions (exponentials) (11), list in-
dexing (12), generating model data
(13), appending data to a list (14)

Basic Simulations of Nuclear Fu-
sion (Y1)

(1), (2), (4), (6), (8), (9), (12), (13),
(14)

Writing simulations (15), simulating
ordinary differential equations (16)

Colorimetry of Dyes (Y1) (1), (2), (3), (4), (5), (6), (7), (8), (9),
(12), (14)

Arduino interfacing with Python (17),
real-time data acquisition (18), math-
ematical functions (log10) (19), er-
ror handling (try-catch blocks) (20),
Boolean operators (21), iterative data
analysis (22)

Iodine Clock Reaction (Y1) (1), (2), (3), (4), (5), (6), (7), (8), (9),
(12), (14), (17), (18), (20), (21), (22)

Data thresholding (23), averaging over
windowed data (24), sound generation
(winsound) (25)

Particle in a 1D Box (Y2) (1), (2), (4), (6), (8), (9), (12), (13),
(14), (22)

File I/O (26), list slicing (27), mathe-
matical functions (trigonometric func-
tions) (28)

Flash Photolysis of Benzophenone
(Y2)

(1), (2), (4), (6), (8), (12), (14), (22),
(26), (27)

Curve (non-linear) fitting (29), statis-
tical analysis (30), defining functions
(31), GUIs (32)*, object-oriented pro-
gramming (33)*

3

3 Introduction to Python

Algorithm 1 Calculator to convert between ◦C and K

1: a← input “Enter ‘C’ to convert to Celsius or ‘K’ to convert to Kelvin”
2: if a = “K” then
3: C ← input “Enter the value to be converted to Kelvin”
4: K ← C + 273.15
5: Output: “C ◦C = K K”
6: else if a = “C” then
7: K ← input “Enter the value to be converted to Celsius”
8: C ← K − 273.15
9: Output: “K K = C ◦C”

10: end if

Algorithm 2 Find activation energy

Require: oscillation data: list of rate constants, temperature: corresponding temperature values
list

1: Plot oscillation data versus temperature as a scatter plot
2: (m, c) ← numpy.polyfit(temperature, oscillation data, 1) {Linear regression: gradient

and intercept}
3: Plot linear fit as line
4: Ea ← −8.314×m
5: Output: “Activation energy = Ea kJ mol−1” and linear plot.

4

4 Creating Kinetic Models and Simulations

4.1 Kinetics of Nuclear Decay

Algorithm 3 Find Half Life

Require: decay data: array of concentrations, time: array of time values
1: conc half← max(decay data)/2 {Calculate half the intial concentration}
2: Initialise conc diff as an empty list
3: for each c in decay data do
4: diff← |c− conc half|
5: Append diff to conc diff

6: end for
7: idx← index of minimum value in conc diff {Closest value to 0}
8: half life← time[idx]
9: Output: “Half-life of isotope = half life seconds”

Algorithm 4 Generate and Plot 15O Model Data

1: d← 0.00568 {Decay constant in s−1}
2: O15 initial← 8372146872633.971
3: Convert time to numpy array
4: decay data← O15 initial · exp(−d · time)
5: Plot decay data against time with 18F data
6: Find the half life using the same method as Algorithm 3

4.2 Basic Simulations of Nuclear Fusion

4.2.1 Derivation of Model - Student Instructions

The relevant expressions (needed to program a simulation of the system) will be derived for the
following reaction mechanism (that comprises three elementary steps):

Reaction 1: B→ 2O (k1)
Reaction 2: R+O→ 2G (k2)

1. Write down the reaction rate for each of the elementary reaction steps.

Rate of 1st reaction: R1 = k1[B]

Rate of 2nd reaction: R2 = k2[R][O]

2. Write the overall rate expressions for the species of interest, in terms of the expressions derived
in Step 1:

d[B]

dt
= −R1 (1 mole of B is lost in the 1st reaction)

d[O]

dt
= 2R1 −R2 (2 moles of O produced in 1st, 1 lost in 2nd)

d[R]

dt
= −R2 (1 mole of R is lost in the 2nd reaction)

d[G]

dt
= 2R2 (2 moles of G are produced in the 2nd reaction)

5

3. Rewrite the overall rate expressions as numerical integrals and re-arrange to isolate ∆[Species]:

∆[B]

∆t
= −R1 ⇒ ∆[B] = −R1∆t

∆[O]

∆t
= 2R1 −R2 ⇒ ∆[O] = 2R1∆t−R2∆t

∆[R]

∆t
= −R2 ⇒ ∆[R] = −R2∆t

∆[G]

∆t
= 2R2 ⇒ ∆[G] = 2R2∆t

Note: Providing ∆t is small compared to the total reaction time, ∆[Species]/∆t approximates
d[Species]/dt.

4. Rewrite the overall rate expressions as (indexed) numerical integrals and re-arrange to isolate
[Species]i:

Note: ∆[Species] = [Species]i − [Species]i−1 and ∆t = ti − ti−1

[B]i = [B]i−1 −R1,i−1(ti − ti−1)

[O]i = [O]i−1 + 2R1,i−1(ti − ti−1)−R2,i−1(ti − ti−1)

[R]i = [R]i−1 −R2,i−1(ti − ti−1)

[G]i = [G]i−1 + 2R2,i−1(ti − ti−1)

5. Rewrite the Step 1 expressions, incorporating the indexing:

R1,i−1 = k1[B]i−1

R2,i−1 = k2[R]i−1[O]i−1

If the initial conditions were known, the equations from Steps 4 and 5 could then be used to write
a program to simulate the reaction.

Algorithm 5 Simulation of Stellar Nuclear Fusion

1: k1 ← 0.0125, k2 ← 0.025
2: Initialise D ← [10], T ← [0], He← [0], t← [0]
3: for i = 1 to 50 do
4: ti ← ti−1 + 2
5: Calculate R1, R2

6: Update and append Di, Ti, Hei
7: Append ti to t
8: end for
9: Plot D, T , and He vs. t

6

5 Data Acquisition with an Arduino

5.1 Arduino Components

All Arduino components can be sourced from any reputable electronics supplier. Manufacturer product
codes are given where possible for ease of searching. Product codes are intended to help find a product
similar to those in use at Southampton, and are not intended to be a recommendation for a specific
product or supplier.

• Arduino Uno Board (Part No: A000066)

• RGB light emitting diode (LED) (Part No: L-154A4SUREQBFZGEC)

• Light sensor (Part No: OPL551)

• Breadboard (Part No: 2444)

• 40 Ω, 50 Ω and 100 Ω resistors (Part No: YR1B40R2CC, 45F50RE, 45F100E)

• 4-pin push button switch (Part No: 1301.9302)

• Jumper wires (Part No: MIKROE-513)

Our Arduino-based equipment is often supported by a LEGO architecture, supported by an assem-
bly of LEGO bricks on a 32x32 baseboard.

7

5.2 Wiring Diagram and Code Repository

Figure S1: Arduino wiring diagram for the light sensor setups described in section 4 of the main text.
Note: the setup shown is for the Colorimetry of Dyes practical. To adjust the setup for the Iodine
Clock practical, simply do not include the RGB LED.

8

The C++ microcontroller codes and example Python data acquisition codes for the Arduino UNO
board is available freely on GitHub. [1] Here, we present a summary of the repository’s content.

Table S2: Table of contents for the Arduino codes GitHub repository. [1]
Contents Description

ArduinoConfig.cpp Arduino sketch that measures the frequency of an incoming 5V TTL signal on
pin 5 using the FreqCounter library. It supports mode selection via a button
(pin 4) or serial input, and sets output pins 10–12 HIGH according to the
active mode (0–3). The device prints the measured frequency to the serial
port every 120 ms.

README.md Full documentation of the project, including hardware setup, pin configura-
tion, serial interface commands, upload instructions via Arduino IDE, and
operational notes. Includes detailed description of the application’s purpose
and limitations.

python serial example.py Example Python script to communicate with the Arduino over a USB serial
connection. Reads 100 frequency measurements from the device, handles con-
version and error checking, and outputs the average frequency. Designed for
use with the Arduino sketch.

LICENSE GNU GENERAL PUBLIC LICENSE.

5.3 Colorimetry of Dyes

5.3.1 Experimental Procedure:

The dye present in the supplied cough sweets was first identified by its E number. The mass of
the cough sweets provided (two lozenges) was recorded using a top-pan balance. The lozenges were
transferred to a 100 mL beaker, and approximately 60 mL of deionised water was added. The mixture
was left to stand until the lozenges had fully dissolved, with occasional gentle stirring using a wooden
stirrer to aid dissolution. Once dissolved, the solution was quantitatively transferred to a 100 mL
volumetric flask using a small funnel. To ensure complete transfer, the beaker was rinsed twice with
approximately 15 mL of deionised water per rinse, and the rinsings were added to the volumetric flask.
The solution was then diluted to the mark with deionised water, stoppered, and inverted several times
to ensure homogeneity. This solution constituted the cough sweet sample solution.

Calibration standards were prepared from a 50 µM stock solution of the Allura red dye (Sigma
Aldrich). Five calibration solutions were prepared by pipetting appropriate volumes of the stock
solution into 10 mL volumetric flasks and diluting each to the mark with deionised water to achieve
final concentrations of 2.5 × 10−5 M, 2.0 × 10−5 M, 1.5 × 10−5 M, 1.0 × 10−5 M, and 0.5 × 10−5 M.
All dilutions were performed using a 5 mL graduated pipette and disposable droppers for deionised
water.

To characterise the colorimeter, two cuvettes were filled: one with deionised water (reference) and
one with the most concentrated calibration solution (2.5 × 10−5 M). Each LED (red, green, and blue)
was tested in turn. For each LED, the reference signal and the absorbance of the calibration solution
were measured using the Python-acquisition program. The LED producing the highest absorbance
was selected for subsequent measurements.

Cuvettes were filled with each of the five calibration solutions, the reference solution (deionised
water), and the cough sweet sample solution. Using the selected LED (as determined in the char-
acterisation step), the absorbance of each solution was measured. Prior to each measurement, the
cuvette was placed into the holder and the lid secured to minimise stray light. Absorbance values were
calculated using Beer-Lambert’s Law.

Cough sweets were purchased at a local supermarket.

9

Algorithm 6 Colorimetry of Allura Red dye in a cough sweet

1: Prepare dye solutions of known concentrations
2: Construct LEGO housing with Arduino, LED, cuvette, light sensor
3: Connect components to appropriate Arduino pins
4: Open connection between Python and Arduino board
5: I0 ← intensity through solvent
6: I ← intensity through dye solution
7: A← log10(I0/I)
8: Select optimal LED wavelength
9: Record A for each concentration c

10: Fit linear regression of A vs. c
11: ε← gradient/path length

12: Measure A of cough sweet solution
13: c← A/(ε · l)
14: Output: “Concentration of dye = c mol L−1”

5.4 Iodine Clock

5.4.1 Experimental Procedure:

A reaction mixture was prepared by adding the following to a 250 mL stoppered conical flask placed
on a magnetic stirrer: deionised water (160 mL), 2 M sulfuric acid (40 mL), potassium iodide (4.0
g), and hydrogen peroxide solution (8 mL, 6 vol). A magnetic stirrer bar was added, the flask was
stoppered, and the solution was stirred at a moderate rate. The mixture was allowed to react to
completion over the course of at least one hour. Following this period, the total amount of sodium
thiosulfate solution (0.5 M) required to fully decolourise the reaction mixture was determined through
incremental titration.

Aliquots of thiosulfate were added using an autopipette in decreasing volumes to improve precision
near the endpoint. Initially, 4 mL aliquots were added with gentle swirling after each addition until
the brown colouration faded to approximately half its original intensity. Subsequently, 2 mL aliquots
were used under the same conditions until further fading occurred. Finally, 1 mL aliquots were added
until the solution became fully colourless. The number of aliquots at each volume was recorded. The
total volume of sodium thiosulfate (Vtotal) required to clear the solution was calculated as the sum of
the individual volumes added.

Prior to starting the kinetic run, the previously determined Vtotal was entered into the Python
analysis-acquisition program. The autopipette was set to deliver 1 mL aliquots of 0.5 M sodium
thiosulfate. A measuring cylinder (250 mL) was placed on a magnetic stirrer and positioned centrally
over a light sensor secured beneath it. The measuring cylinder was enclosed in a cardboard sheath
to reduce ambient light interference. A flexible LED light was positioned above the setup to ensure
uniform illumination. The cylinder was charged with deionised water (160 mL), 2 M sulfuric acid (40
mL), and potassium iodide (1 g), and the mixture stirred at 500 rpm.

In a separate beaker, hydrogen peroxide solution (8 mL, 6% vol.) was mixed with 0.5 M sodium
thiosulfate (1 mL). Prior to initiating the reaction, the light sensor response was tested using the basic
acquisition program. The signal was recorded five times with the sensor uncovered, and the average of
these readings was calculated. A threshold value was defined as 75% of this average (rounded to the
nearest integer) and input into the full acquisition program.

The reaction was initiated by simultaneously adding the pre-mixed H2O2/thiosulfate solution to
the prepared reaction mixture in the measuring cylinder. The Python program monitored the light
sensor in real time. When the signal dropped below the threshold (indicating iodine accumulation),
a beep signalled the need for additional thiosulfate. A 1 mL aliquot of 0.5 M sodium thiosulfate was
then added to restore the colourless state, and the number of aliquots used at each beep was entered
into the program. This process was repeated until six to eight data points were acquired.

All chemicals were supplied from Sigma Aldrich or Thermo Fisher Scientific.

10

Algorithm 7 Iodine Clock Reaction

1: Connect light sensor to Arduino
2: Open connection between Python and Arduino board
3: Load cell with 200 mL H2SO4 and 0.03 M KI
4: threshold← 0.75· intensity of colourless solution
5: t0 ← current time
6: Add 8 mL H2O2 and 1 mL Na2S2O3

7: while True do
8: signal← sensor reading
9: avg ← average of last 10 values

10: if avg < threshold then
11: Beep using winsound

12: t← current time
13: Store t− t0
14: User adds thiosulfate until colourless
15: Record added volume v
16: if v = 0 then
17: break

18: end if
19: end if
20: end while
21: y ← ln(total− v)
22: Plot y vs. time
23: k′ ← − gradient from regression
24: Output: “Pseudo rate constant k′ = k′ s−1”

6 Incorporation of Chemical Data Analysis

6.1 Useful Plotting Functions

Throughout the following description, terms such as ’plt’ and ’np’ are used as part of functions. These
describe the library and their common call names: plt refers to the matplotlib library [2], and np to
the NumPy library [3].

The spectral data shown in Figure 5a of the main text is saved in a .csv file format, which
can be conveniently imported using the np.loadtxt() function, with Raman shift frequencies and
intensities stored in separate lists or NumPy arrays. Plotting these data is straightforward us-
ing the plt.plot(X data, Y data) command, followed by plt.show() to render the figure. Plot
customisation—such as adjusting line colour and width—can be achieved by adding parameters within
the plt.plot() function. Axis labels are added using plt.xlabel() and plt.ylabel(), and to focus
on the spectral region of interest (in this case, the 1000–1600 cm-1 range, encompassing the Fermi
resonance and symmetric stretching modes), the x-axis limits are set using plt.xlim(min, max).
Adding annotations is similarly accessible, though slightly more involved. This is accomplished using
the plt.text(X position, Y position, text) function, allowing students to highlight key features
within their spectra. Additional options for text alignment, font style, size, and colour can also be
specified, enabling clear and informative data presentation.

Although this has described the basic functions used to plot Figure 5a in the main text, we encour-
age readers to consult with the NumPy and Matplotlib online resources [4, 5] for more information
regarding optional arguments that can be used with these functions for full customisation.

11

6.2 Particle in a 1D Box

Algorithm 8 Extract λmax from absorbance data

1: Load CSV file, skip first two rows {Using numpy.loadtxt()}
2: Extract columns: wavelength, absorbance
3: absorbance max← max(absorbance)
4: idx← index of absorbance max

5: λmax ← wavelength[idx]

6: Output: “λmax = λmax nm”

Algorithm 9 Particle in a Box: Wavefunctions and Probability Amplitudes

1: Define box length L, number of points N ← 1000
2: Create x← list of N points from 0 to L
3: n values← [n,m] {Quantum numbers}
4: for each i in n values do

5: ψn ←
√

2
L sin

(
niπx
L

)
6: ψ2

n ← (ψn)
2

7: Normalize: ψn ← (ψn/max(ψn)) + i
8: Plot x vs. ψn with label n = ni
9: end for

10: Label axes and display plot

12

6.3 Flash Photolysis of Benzophenone

The transient processing app is freely available online on GitHub. [6] Here, we present a summative
list of contents for the repository.

Table S3: Table of contents for Transient Processing App GitHub repository. [6]
Contents Description

Transient Processing App.py Main commented Python script implementing the GUI. Written using the
Tkinter library, this tool processes and averages transient absorption traces
and converts voltage to absorbance using Beer-Lambert’s law.

README.md Instructions for setup, use, and troubleshooting. Includes system require-
ments, guidance on configuring Spyder for interactive plotting, and a step-by-
step walkthrough for students using the application in a lab setting.

LICENSE GNU GENERAL PUBLIC LICENSE

1.csv – 30.csv Example transient datasets in .csv format. Each file contains two columns
(time and voltage). These datasets should be used to test the app and is real
experimental data collected during the design of the flash photolysis experi-
ment.

Algorithm 10 Fit experimental data to a second-order decay model

1: data← Load CSV, transpose to get t, A {Using numpy.loadtxt()}
2: Define model as function: A(t) = A0

1+kA0t
3: Set initial guesses: A0 = 0.3, k = 0.1
4: Fit using a least squares approach {Using scipy.optimize.curve fit()}
5: Extract optimal parameters: A∗

0, k
∗ {popt}

6: Compute uncertainties ∆A0, ∆k {Using pcov}
7: τ ← 1/k∗

8: Output: A∗
0 ±∆A0, k

∗ ±∆k, and τ
9: Plot experimental data and fitted curve

References

(1) Perry, S. ArduinoConfig v1.0.0, https://github.com/Perry-SC/ArduinoConfig/tree/v1.0.0
(Accessed 08/08/2025).

(2) Hunter, J. D. Matplotlib: A 2D graphics environment. Computing in Science & Engineering 2007,
9, 90–95.

(3) Harris, C. R.; Millman, K. J.; van der Walt, S. J.; Gommers, R.; Virtanen, P.; Cournapeau, D.;
Wieser, E.; Taylor, J.; Berg, S.; Smith, N. J.; Kern, R.; Picus, M.; Hoyer, S.; van Kerkwijk, M. H.;
Brett, M.; Haldane, A.; del Ŕıo, J. F.; Wiebe, M.; Peterson, P.; Gérard-Marchant, P.; Sheppard,
K.; Reddy, T.; Weckesser, W.; Abbasi, H.; Gohlke, C.; Oliphant, T. E. Array programming with
NumPy. Nature 2020, 585, 357–362.

(4) NumPy v2.3 Manual — numpy.org, https://numpy.org/doc/stable/reference/, (Accessed
17-07-2025).

(5) Matplotlib 3.10.3 documentation — matplotlib.org, https://matplotlib.org/stable/users/
explain/figure/api_interfaces.html, (Accessed 17-07-2025).

(6) Hughes, D.; Perry, S. Transient Processing App v1.0.1, https://github.com/Perry- SC/
Transient_Processing_App/tree/v1.0.1 (Accessed 08/08/2025).

13

https://github.com/Perry-SC/ArduinoConfig/tree/v1.0.0
https://numpy.org/doc/stable/reference/
https://matplotlib.org/stable/users/explain/figure/api_interfaces.html
https://matplotlib.org/stable/users/explain/figure/api_interfaces.html
https://github.com/Perry-SC/Transient_Processing_App/tree/v1.0.1
https://github.com/Perry-SC/Transient_Processing_App/tree/v1.0.1

	Chemical Hazards
	Programming Skills
	Introduction to Python
	Creating Kinetic Models and Simulations
	Kinetics of Nuclear Decay
	Basic Simulations of Nuclear Fusion
	Derivation of Model - Student Instructions

	Data Acquisition with an Arduino
	Arduino Components
	Wiring Diagram and Code Repository
	Colorimetry of Dyes
	Experimental Procedure:

	Iodine Clock
	Experimental Procedure:

	Incorporation of Chemical Data Analysis
	Useful Plotting Functions
	Particle in a 1D Box
	Flash Photolysis of Benzophenone

