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Abstract

We give a simple combinatorial criterion for a group that, when satisfied, implies the group
cannot be strongly relatively hyperbolic. Our criterion applies to several classes of groups, such
as surface mapping class groups, Torelli groups, and automorphism and outer automorphism
groups of free groups.

MSC 20F67 (primary), 20F65 (secondary)

1 Introduction

In recent years, the notion of relative hyperbolicity has become a powerful method for establishing
analytic and geometric properties of groups. Relatively hyperbolic groups, first introduced by
Gromov [11] and then elaborated on by various authors (see Farb [7], Szczepański [21], Bowditch
[3]), provide a natural generalization of hyperbolic groups and geometrically finite Kleinian groups.

When a finitely generated group G is strongly hyperbolic relative to a finite collection L1, L2, . . . , Lp

of proper subgroups, it is often possible to deduce that G has a given property provided the sub-
groups Lj have the same property. Examples of such properties include finite asymptotic dimension
(see Osin [18]), exactness (see Ozawa [20]), and uniform embeddability in Hilbert space (see Dadar-
lat and Guentner [5]). In light of this, identifying a strong relatively hyperbolic group structure for
a given group G, or indeed deciding whether or not one can exist, becomes an important objective.

The main result of this note, Theorem 2 in Section 3, asserts that such a structure cannot exist
whenever the group G satisfies a simple combinatorial property, namely that its commutativity
graph with respect to some generating set S is connected. We describe this graph in Section 3.

We then give elementary proofs that many groups of interest do not admit a strong relatively
hyperbolic group structure. This is the case for all but finitely many surface mapping class groups,
the Torelli group of a closed surface of genus at least 3, and the (special) automorphism and outer
automorphism groups of almost all free groups. We note that this has already been established for
many of these groups by other methods, and we indicate this where appropriate.
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2 Relatively hyperbolic groups

All groups appearing in this note are infinite, unless otherwise stated.

There are two related but inequivalent definitions of relative hyperbolicity, after Gromov [11], that
are commonly used, one developed by Farb [7], and the other developed by Szczepański [21] and
by Bowditch [3]. As we only go into as much detail as is required for us to state our results, we
refer the interested reader to the cited papers for an extensive treatment.

We first give the definition given by Farb [7] and refer to this as weak relative hyperbolicity. For
a group G, a finite generating set S and a finite family of proper finitely generated subgroups
{L1, L2, . . . , Lm}, we form an augmentation Cay∗(G, S) of the Cayley graph Cay(G, S) as follows:
Give Cay(G, S) the path-metric obtained by declaring each edge to have length 1. Then, for each
1 ≤ j ≤ m, adjoin to Cay(G, S) a new vertex vgLj for each coset gLj of Lj and declare the distance
between each new vertex vgLj and each vertex in the associated coset gLj to be 1. We say that G
is weakly hyperbolic relative to L1, L2, . . . , Lm if the resulting metric on Cay∗(G, S) is hyperbolic in
the sense of Gromov. This definition does not depend on the choice of generating set.

In the same paper, Farb introduces the bounded coset penetration property (BCP), satisfied by
many important examples of weakly relatively hyperbolic groups. Roughly speaking, BCP imposes
certain fellow-travelling conditions on pairs of quasi-geodesics on Cay(G, S) with the same endpoints
that enter cosets of the subgroups Lj , 1 ≤ j ≤ m.

Bowditch [3] gives two equivalent dynamical notions of relative hyperbolicity, of which we recall
the second. We will refer to this notion as strong relative hyperbolicity. We say that a group G is
strongly hyperbolic relative to the family L1, L2, . . . , Lm of proper finitely generated subgroups if G
admits an action on a connected, hyperbolic graph G such that G is fine (that is, for each n ∈ N,
each edge of G belongs to only finitely many circuits of length n), there are only finitely many
G-orbits of edges, each edge stabiliser is finite, and the stabilisers of vertices of infinite valence are
precisely the conjugates of the Lj .

We note that strong relative hyperbolicity, with respect to some finite collection of proper finitely
generated subgroups, is equivalent to weak relative hyperbolicity plus BCP, with respect to the same
collection of subgroups (see Dahmani [6]). As noted by Szczepański [21], the group Z⊕Z is weakly
hyperbolic, though not strongly hyperbolic, relative to the diagonal subgroup {(m,m) : m ∈ Z}.
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3 The commutativity graph

We begin by describing a graph which attempts to capture the notion that a group is well generated
by large abelian subgroups. This graph, and generalizations, appears in Karlsson and Noskov [15]
and in Farb and Franks [8]. A more general graph, expressed in terms of minipotent words, appears
in Culler and Vogtmann [4].

Definition 1 (Commutativity graph) Let G be a group and let S be a (possibly infinite) gener-
ating set for G, all of whose elements have infinite order. The commutativity graph K(G, S) for G
with respect to S is the simplicial graph whose vertex set is S and where any two distinct vertices s,
s′ are connected by an edge if and only if there are non-zero integers ns, ns′ such that 〈sns , (s′)ns′ 〉
is abelian.

So long as there is no risk of confusion, we will use the same notation for elements of S and vertices
of K(G, S). Typically we shall only consider commutativity graphs in which adjacent vertices,
rather than powers of adjacent vertices, commute.

Our main result, giving an obstruction to the strong relative hyperbolicity of a group, may be
stated as follows.

Theorem 2 Let G be a finitely generated group. Suppose there exists a (possibly infinite) generating
set S of cardinality at least 2 such that every element of S has infinite order and K(G, S) is
connected. Suppose further that there exist adjacent vertices s, s′ of K(G, S) and non-zero integers
ns, ns′ such that 〈sns , (s′)ns′ 〉 is a rank 2 free abelian group. Then, G is not strongly hyperbolic
relative to any finite collection of proper finitely generated subgroups.

The remainder of this section is dedicated to proving Theorem 2. The main tool we use is the follow-
ing theorem on virtual malnormality for strongly relatively hyperbolic groups, which is contained
in the work of Farb [7] and Bowditch [3], and is explicitly stated as Theorem 1.4 and Theorem 1.5
of Osin [19].

Theorem 3 Let G be a finitely generated group that is strongly hyperbolic relative to the proper
finitely generated subgroups L1, . . . , Lp. Then,

1. For any g1, g2 ∈ G, the intersection g1Ljg
−1
1 ∩ g2Lkg

−1
2 is finite for 1 ≤ j 6= k ≤ p.

2. For 1 ≤ j ≤ m, the intersection Lj ∩ gLjg
−1 is finite for any g 6∈ Lj.

Remark 4 Theorem 3 immediately implies that if g ∈ G has infinite order and if gk lies in a
conjugate hLjh

−1 of some Lj, then g lies in the same conjugate hLjh
−1 of Lj.

We also need the following lemma, which follows directly from Theorem 4.16 and Theorem 4.19 of
Osin [19].

3



Lemma 5 Let G be a finitely generated group that is strongly hyperbolic relative to the proper
finitely generated subgroups L1, L2, . . . , Lp. If A is a free abelian subgroup of G of rank at least 2,
then A is contained in a conjugate of one of the Lj.

We are now ready to prove Theorem 2.

Proof [of Theorem 2] Suppose for contradiction that G is strongly hyperbolic relative to the finite
collection L1, L2, . . . , Lp of proper finitely generated subgroups. We first show that no conjugate
of any Lj can contain a non-zero power of an element of S. So, suppose there is some g ∈ G, some
s0 ∈ S, and some integer k 6= 0 such that sk

0 ∈ gLjg
−1 for some 1 ≤ j ≤ p. (Note that, by Remark

4, this implies that s0 ∈ gLjg
−1 as well.)

Let s1 be any vertex of K(G, S) adjacent to s0. As there are non-zero integers n0, n1 such that
〈sn0

0 , sn1
1 〉 is abelian, we see that 〈sn0

0 〉 ⊆ gLjg
−1 ∩ sn1

1 gLjg
−1s−n1

1 . However, since the subgroup
〈sn0

0 〉 of G is infinite, Theorem 3 implies that sn1
1 ∈ gLjg

−1. By Remark 4, we see that s1 ∈ gLjg
−1.

Let s be any element of S. By the connectivity of K(G, S), there exists a sequence of elements
s0, s1, . . . , sn = s of S such that sk−1 and sk are adjacent in K(G, S) for each 1 ≤ k ≤ n. The
argument given above implies that if sk−1 ∈ gLjg

−1, then sk ∈ gLjg
−1. In particular, we have that

s ∈ gLjg
−1. Since G is generated by S, it follows that G and gLjg

−1 are equal, contradicting the
assumption that the subgroup Lj is proper. We conclude that if G is strongly hyperbolic relative
to L1, L2, . . . , Lp then no conjugate of any Lj can contain a non-zero power of an element of S.

By assumption, there exist adjacent vertices t and t′ of K(G, S) for which there exist non-zero
integers nt, nt′ such that A = 〈tnt , (t′)nt′ 〉 is a rank 2 free abelian group. According to Lemma 5,
we see that A must lie in some conjugate of some Lj . In particular, this conjugate of Lj contains
a non-zero power of an element of S, and we have a final contradiction. QED

4 Applications

In this section, we apply Theorem 2 to a selection of finitely generated groups, and deduce that each
is not strongly hyperbolic relative to any finite collection of proper finitely generated subgroups.
We shall say that such a group is not strongly relatively hyperbolic.

4.1 Mapping class groups

Let Σ be a connected and oriented surface without boundary, of finite topological type and negative
Euler characteristic. The mapping class group MCG(Σ) associated to Σ is the group of all homotopy
classes of orientation preserving self-homeomorphisms of Σ. (For a thorough account of these
groups, we refer the reader to Ivanov [13].) It is known that every mapping class group MCG(Σ)
is finitely presentable and can be generated by Dehn twists. Masur and Minsky [16] prove that
MCG(Σ) is weakly hyperbolic relative to a finite collection of curve stabilisers.

Let S be the collection of all primitive positive Dehn twists about simple closed curves on Σ. Note,
an element of a group is said to be primitive if it is not the second or higher power of any element
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of the group. The associated commutativity graph is precisely the 1-skeleton of the curve complex
(see Harvey [12] for a definition), following from the observation that two non-trivial Dehn twists
commute if and only if their associated curves are disjoint. The curve complex is connected provided
Σ is not a pair of pants, a once-punctured torus or a four-times punctured sphere. Moreover, the
Dehn twists associated to any pair of adjacent vertices in the curve complex generate a rank 2 free
abelian group. We thus have the following:

Proposition 6 Let Σ be a connected and oriented surface without boundary, of finite topological
type and negative Euler characteristic. If Σ is not pair of pants, a once-punctured torus or a
four-times punctured sphere, then the mapping class group MCG(Σ) of Σ is not strongly relatively
hyperbolic.

We note that the mapping class group of a pair of pants is trivial and that, when Σ is a once-
punctured torus or a four-times punctured sphere, MCG(Σ) is isomorphic to PSL(2, Z) which is a
hyperbolic group.

The statement of Proposition 6 is implicit in both Karlsson and Noskov [15] and Bowditch [3],
using convergence groups. Another proof, by Behrstock, Druţu, and Mosher [1], uses asymptotic
cones and the description of relative hyperbolicity due to Druţu and Sapir.

Since the mapping class group of a punctured sphere can be viewed as a braid group, the braid
group Bn on n strings is not strongly relatively hyperbolic whenever n ≥ 5. This also follows by
considering the usual presentation for Bn and its corresponding commutativity graph.

4.2 Torelli groups

The Torelli group I(Σ) of a connected and oriented surface Σ is the kernel of the natural action
of the mapping class group MCG(Σ) on the first homology group H1(Σ, Z). It is of infinite index
in MCG(Σ). If Σ is closed and has genus at least 3, I(Σ) is generated by all Dehn twists around
separating simple closed curves and all double twists around pairs of disjoint simple closed nonsep-
arating curves that together separate (see Johnson [14]). Such a pair of non-separating curves is
called a bounding pair.

Farb and Ivanov [9] introduce a graph they call the Torelli geometry. The vertices of this graph
comprise all separating curves and bounding pairs in Σ, with two distinct vertices declared adjacent
if their corresponding curves or bounding pairs are disjoint. Whenever Σ has genus at least 3 this
graph is connected, as follows from Masur and Schleimer [17]. For this reason, let us take S
to be the collection of primitive positive Dehn twists about separating curves and double twists
around bounding pairs. The corresponding commutativity graph K(I(Σ), S) is precisely the Torelli
geometry. As is the case with mapping class groups, adjacent vertices generate a rank 2 free abelian
subgroup of I(Σ). We thus have:

Proposition 7 If Σ is a closed and oriented surface of genus at least 3, then the Torelli group
I(Σ) of Σ is not strongly relatively hyperbolic.

5



4.3 The special automorphism group of a free group

In this subsection, we use the notation and basic results from Gersten [10]. Let Fn be the free
group on n generators and consider the automorphism group Aut(Fn) of Fn. Abelianisation gives
a surjective homomorphism

Aut(Fn) → Aut(Zn) = GL(n, Z).

There is a natural surjective homomorphism from GL(n, Z) onto Z2 which assigns, to any given
element of GL(n, Z), the sign of its determinant. Thus, we have a surjective homomorphism

ϕ : Aut(Fn) → Z2.

The special automorphism group of Fn is Aut+(Fn) = ker(ϕ), and has the following finite presen-
tation in terms of right Nielsen maps: Let X be a free basis for Fn and let E = X ∪X−1. Given
a, b ∈ E with a 6= b, b−1, define the right Nielsen map Rab for a, b by Rab : Fn → Fn, where
Rab(a) = ab and Rab(c) = c for c 6= a, a−1.

Gersten [10] shows that Aut+(Fn) is generated by the finite set

{Rab | a, b ∈ E with a 6= b, b−1}

of right Nielsen maps, and that the following relation holds:

[Rab, Rcd] = 1 if a 6= c, d, d−1 and b 6= c, c−1.

Proposition 8 If n ≥ 3, then Aut+(Fn) is not strongly relatively hyperbolic.

Proof Given a, b ∈ E with a /∈ {b, b−1}, define also the left Nielsen map Lab : Fn → Fn by
Lab(a) = ba and Lab(c) = c for all c /∈ {a, a−1}. Observe that [Rab, Lcd] = 1 for all a, b, c, d ∈ E
with a /∈ {d, d−1} and b /∈ {c, c−1}. Let

S = {Rab | a, b ∈ E with a 6= b, b−1} ∪ {Lab | a, b ∈ E with a 6= b, b−1}

be the set of all of right and left Nielsen maps. The set S generates Aut+(Fn), as immediately
follows from the comments above. We first show that K(Aut+(Fn), S) is connected for n ≥ 3.
From the commutativity relation between right and left Nielsen maps described above, it suffices
to show that any two vertices corresponding to right Nielsen maps can be connected by a path in
K(Aut+(Fn), S).

Let Rab and Rcd be two vertices of K(Aut+(Fn), S). We have Rab and Rcd are adjacent in
K(Aut+(Fn), S) unless a ∈ {c, d, d−1} or b ∈ {c, c−1}. Let us consider the case a = c, noting
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the remaining cases can be similarly proven. In this case, a /∈ {b, d} and the sequence of generators
Rab, Lab, Rad represents a path in K(Aut+(Fn), S) from Rab to Rad.

Also, note that the Nielsen maps corresponding to two adjacent vertices of K(Aut+(Fn), S) generate
a rank 2 free abelian subgroup of Aut+(Fn), since they commute, they both have infinite order and
neither is a power of the other. The result now follows from Theorem 2.

QED

Let Out+(Fn) = Aut+(Fn)/Inn(Fn) be the special outer automorphism group of Fn. It is im-
mediate that the natural surjective homomorphism from Aut+(Fn) to Out+(Fn) preserves the
connectivity of the commutativity graph for Aut+(Fn). We thus note the following:

Corollary 9 Out+(Fn) is not strongly relatively hyperbolic for n ≥ 3.

Restricting the surjective homomorphism Aut(Fn) → GL(n,Z) to Aut+(Fn), we obtain a homo-
morphism Aut+(Fn) → SL(n,Z). The generating set S = {Eab | a, b ∈ E with a 6= b, b−1} projects
onto a generating set S for SL(n,Z) whose elements have infinite order in SL(n,Z), as immedi-
ately follows from the definition of the Nielsen maps. Also, K(SL(n,Z), S) is connected, since
K(Aut+(Fn), S) is connected. We thus have:

Corollary 10 SL(n,Z) is not strongly relatively hyperbolic for n ≥ 3.

We note that the results in this section are implicit in Karlsson and Noskov [15]. See also Behrstock,
Druţu and Mosher [1] for an alternative proof.
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