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This paper theoretically introduces a new architecture for pumping leaky-dielectric fluids.
For two such fluids layered in a channel, the mechanism utilizes Maxwell stresses on fluid
interfaces (referred to as menisci) induced by a periodic array of electrode pairs inserted
between the two fluids and separated by the menisci. The electrode pairs are asymmetrically
spaced and held at different potentials, generating an electric field with variation along the
menisci. To induce surface charge accumulation, an electric field (and thus current flow) is
also imposed in the direction normal to the menisci, using flat upper and lower electrodes,
one in each fluid. The existence of both a normal and tangential electric field gives rise
to Maxwell stresses on each meniscus, driving the flow in opposite directions on adjacent
menisci. If the two menisci are the same length, a vortex array is generated that results
in no net flow; however, if the spacing is asymmetric then the longer meniscus dominates,
causing a net pumping in one direction. The pumping direction can be controlled by the (four)
potentials of the electrodes, and the electrical properties of the two fluids. In the analysis,
an asymptotic approximation is made that the interfacial electrode period is small compared
to the fluid layer thicknesses, which reduces the analytical difficulty to an inner region close
to the menisci. Closed-form solutions are presented for the potentials, velocity field, and
resulting pumping speed, of which maximum values are estimated, with reference to the
electrical power required and feasibility.

1. Introduction

Applications for microscale pumping mechanisms span areas from biology and medicine to
microelectronics cooling. Although pumping mechanisms and design can vary widely, all
micropumps are united in their objective to move small volumes of fluid (Laser & Santiago
2004). In this microfluidic regime interfacial effects tend to dominate over volumetric ones
and the standard pressure driven pumps available at the macroscale lose their efficacy (Stone
et al. 2004). As a consequence, numerous pumping mechanisms have been considered that
rely on interfacial phenomena. One in particular that has received significant attention is in
the field of electrokinetics (Bazant & Squires 2010).

Electrokinetics is generally divided into electroosmosis (electrokinetically-driven flow
around stationary objects) and electrophoresis (electrokinetically-driven motion of bulk
particles) (Squires & Bazant 2004). Both rely on the formation of a charged double layer that
forms when a conductive liquid such as an aqueous salt solution comes into contact with a
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charged surface. Then an electric field native to the system interacts with the charged layer,
generating a force and driving flow. Although the driving mechanism is technically a body
force acting on the double layer, the length scale of this charged layer is quite small, leading
to large velocity gradients in the fluid and flows that often take the appearance of a plug
flow. As a consequence electroosmotic effects are commonly modelled as a given tangential
velocity at the solid interface, known as the Helmholtz—Smoluchowski slip velocity (Squires
& Bazant 2006).

Generally, research on electroosmotic pumping has been on solid-liquid interfaces;
however it has also been considered for liquid-liquid interfaces (Pascall & Squires 2011).
In Pascall & Squires (2011), a conductive liquid was considered to rest atop a thin liquid
film consisting of either a liquid metal or finite conductivity liquid. In the former case the
electrical physics is very similar to when the surface is solid; however, the hydrodynamic
coupling of the two liquids led to a flow enhancement over the solid wall case. Interestingly,
the leading order of the analysis of Pascall & Squires (2011) matched that of earlier work
by Frumkin (1946) (also presented in Levich (1962)) in investigations of the electrophoresis
of liquid metal drops. Instead of directly considering the double layer, Frumkin and Levich
argued spatially-varying zeta potentials led to gradients in surface tension via the Lippman
equation,
qV

7
causing electrocapillary motion. Here vy is the surface tension, yeq the surface tension in the
absence of electric fields, g is the excess charge per area of the interface and V the voltage drop
across the double layer. This showed the thermodynamic origins of the Lippman equation
were insufficient to capture the subdominant effects caused by the double layer. In the
case when both liquids have finite conductivities both fluids develop charged double layers.
However, Pascall & Squires (2011) showed that the electric stress from the Lorentz force
in the thin film was perfectly balanced by the osmotic pressure due to gradients in charge
concentration. Therefore, as when the internal fluid was a liquid metal, only hydrodynamic
stresses were left to balance the electrokinetic stress in the outer fluid, leading to predicted
slip velocities that differed only slightly to the case when the internal liquid was a metal.

Another pillar of electrohydrodynamics is the study of leaky-dielectric fluids. Melcher &
Taylor (1969) developed the canonical model of these fluids after Taylor (1966) noticed a
significant physical difference in systems where the fluids were pure dielectrics (perfectly
non-conducting) and ones that have a finite, but small conductivity. In the case of the latter,
interfacial charge build-up can have significant impacts on flows, most importantly causing
Maxwell stresses on fluid—fluid interfaces. Traditionally the fields of electrokinetics (specifi-
cally concerning electrolytes) and leaky dielectrics have been pursued independently (Saville
1997); however, some attempts have been made to connect the two. Zholkovskij et al. (2002)
considered general electrokinetic equations and took the limit of small electric field and small
double layer thickness, showing agreement for calculations on drop deformation with Taylor
(1966). Schnitzer & Yariv (2015) showed that in taking the double limit of large electrical
field and small double layer thickness, classical electrokinetic theory reduces to the Taylor—
Melcher leaky-dielectric model without surface charge advection. This corresponds to the
low electric Reynolds number limit which was consistent with their asymptotic analysis.
Schnitzer & Yariv (2015) built on prior work by Baygents & Saville (2008) and was a large
step in unifying the two fields of research (Bazant 2015). Mori & Young (2018) were able
to derive the full Taylor—Melcher model from general electrokinetic equations by assuming
the fluids were weak electrolytes along with the typical assumption of small double layer
thickness. More recently, the work by Mori & Young (2018) was corroborated by Lépez-

y(V) =Yeq — (1.1)
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Herrera et al. (2023) in a numerical simulation of electrospray. Their work also investigated
where the leaky-dielectric model became invalid which, not surprisingly, was for strong
electrolytes where charge inhomogeneities developed.

Although electrokinetics and the Taylor—Melcher leaky-dielectric model are clearly related,
most research into pumping remains in the electrokinetic regime with leaky-dielectric
research seemingly mostly related to liquid drops (Sherwood 1988; Salipante & Vlahovska
2010; He et al. 2013; Lanauze et al. 2015; Feng 1999, 2002; Schnitzer et al. 2013; Das &
Saintillan 2017). However, pumping oils has significant implications in applications. This
includes microfluidics, where converging flows of oil are often used to pinch and generate
water droplets to use in, e.g., mixing of reagents for high throughput assays and synthesis of
micro- or nanoparticles (Belousov et al. 2021) (see Moragues et al. (2023) for more on the
use of oil in droplet-based microfluidics). Therefore novel means of pumping oils appear to
be valuable. Two challenging aspects of a leaky-dielectric pump are as follows. The first is
that the driving mechanism, Maxwell stress, acts on liquid interfaces, i.e. solid—liquid and
liquid-liquid. Examples of solid—liquid include dielectrophoresis and the Quincke rotation
of solid particles suspended within a liquid. However, an experimental setup to realise a
tangential electric field in a channel, and thereby channel flow generation, is less clear. A
pump utilizing Maxwell stresses at liquid—liquid interfaces is another option, but the design
configuration may be complicated. A second challenge is that Maxwell stresses, given for a
flat mensicus or liquid—liquid interface by

om = €E,E, (1.2)

where € is the liquid’s dielectric constant, require the electric field at the interface to have
both a tangential (E£;) and normal component (E,,). This second point precludes even a simple
pump consisting of two leaky dielectrics in a channel due to the large voltage drop needed to
generate a significant electric field in the direction of the flow.

Perhaps a more feasible pumping design would be motivated by Ajdari (2000) who
demonstrated an electrokinetic pump that only required local gradients (i.e. micro- not macro-
scale gradients) in potential along the surface. His pump surface consisted of a series of finite
length electrodes separated by electrically-insulating material. He showed that geometric
asymmetry, in his case modifications to the capacitance of the surface, led to a net pumping
speed even when the electric field was periodic in time and space. The crux of his work was
that “any fluid in a locally asymmetric geometry globally drifts in the direction of broken
symmetry under any external action that induces local flows" (Ajdari 2000). This concept was
confirmed experimentally by Brown et al. (2001) who fabricated a pump with alternating
long and short electrodes, demonstrating pumping. The role of geometric asymmetry in
electrokinetics was further investigated by Squires & Bazant (2006) for a variety of problems
related to both electroosmosis (in the context of microfluidic flows) and electrophoresis
(in the context of colloids). Moreover, this phenomenon has appeared accidentally as in
work by Mansuripur et al. (2009), who set out to investigate symmetric vortices induced
by electroosmotic flow, but observed a net pumping speed caused by symmetry breaking
due to capacitive coupling between the electrode gate and the microscope stage. Outside of
electrokinetics, Crowdy et al. (2023) showed that thermocapillary stress can cause far-field
pumping for liquids suspended over superhydrophobic surfaces. There, the asymmetry is
provided by differing lengths of periodic pairs of menisci between alternating hot and cold
substrate microstructures. This design has the advantage of using local periodic temperature
gradients to pump flow without the need for an average global temperature gradient.

Pulling from the symmetry-breaking ideas of Ajdari (2000), we theoretically demonstrate
the viability of a new microfluidic pump architecture for leaky-dielectric fluids. The pump
consists of two leaky-dielectric fluids with a periodic array of pairs of thin electrodes,
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Figure 1: Schematic of the proposed pump architecture. Upper and lower electrodes
encase two different fluids separated by an asymmetric array of electrodes with interfacial
menisci spanning the gaps between them.

unequally spaced, inserted at the fluid—fluid interface. Between the electrodes the fluids
are in contact. Crucially the fluids are pinned to the electrodes edges due to there own
surface tension which requires fluids that are immiscible, e.g. castor oil and silicon oil are
one such pair, but other immiscible leaky dielectrics are common. The surface tension adds
mechanical stability to this setup similar to what happens in a superhydrophobic surface,
or even more relevant, a slippery liquid-infused porous surface (SLIPS). Wang & Guo
(2020) provide a review and comparison of superhydrophobic and SLIPS surfaces. Such
liquid-liquid configurations, pinned by surface tension across microscale pores/openings,
have been shown to be remarkably robust, even supporting the dynamic rolling of droplets.
A schematic of the proposed pump is in Figure 1. The two electrodes that make up a pair
are held at different potentials so that on moving along the channel the electrode potentials
alternate. This means there is no net electric field along the channel, but local tangential
components to the electric field are induced. A necessary normal component to the electric
field is forced by flowing a current through the fluids from a flat upper electrode to a flat lower
electrode. The resulting Maxwell stresses drive flow along the fluid—fluid interfaces (hereafter
referred to as menisci) in opposite directions. Crucially, since the menisci lengths differ, one
dominates over the other, leading to net fluid pumping in one direction. This direction of flow
is shown to be a function of the electrode potentials and the electrical properties of the two
fluids. In our analysis surface charge advection is neglected and the period is assumed to be
small compared to the thicknesses of the two fluids (equivalently, the distance between the
upper/lower electrodes) so that the method of matched asymptotic expansions can be used.
The fluid domains then decompose into an “inner region" close to the menisci, and “outer
regions" above and below where the fields appear one-dimensional (up to exponentially
small errors). The general electrical problem in the inner region turns out to be a nontrivial
two-phase problem, which is solved using a superposition of two different current flows: one
is taken from an analogy with a thermocapillary pump (Crowdy et al. 2023); and the other
is entirely new, and is described here in detail. As a result, we obtain explicit solutions for
the potential fields, pumping speed and analyse the optimal pumping configurations and give
estimates for the maximum speeds achievable. Two geometric assumptions are made in our
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analysis: that the problem is two-dimensional (2D), and that the menisci are flat. The 2D
assumption is often valid for channels wider than they are tall, which limits somewhat the
practical applicability of this problem, however, the relevant physics remain the same. The
menisci are assumed flat, which helps facilitate analytical techniques, but it is shown later
that the capillary number, defined as the ratio of viscous stresses to surface tension forces, is
small for most physical scenarios, meaning the menisci should be close to flat in practice.

The paper is organised as follows. The mathematical problem is formulated in section 2,
and the small period approximation (decomposing the problem into inner and outer regions)
is detailed in section 3. The solutions for the potential in the inner region are presented,
in two parts, in sections 4 and 5, followed by those for the flow velocity in section 6 with
expressions for power given in 7. The results and discussion are given in section 8, with a
(dimensional) summary of the theoretical formulas given in section 9. Finally, a discussion
section closes the article.

2. Problem formulation

We consider a 2D microchannel of height 2H, whose top and bottom walls are electrodes
held at different constant voltages, V, and -V, respectively. At y. = 0, the midline of
the channel, there exists an array of thin electrodes that are asymmetrically spaced but all
assumed to be of equal width. Specifically, these electrodes appear in pairs in which the
distance between the electrodes is unequal, leading to a periodic array of electrode pairs
with structural asymmetry. Above and below this electrode array there exist two different
leaky-dielectric fluids. To denote differences between the fluids, the parameters and variables
related to the upper fluid are decorated with the superscript (+), and the lower fluid with
superscript (—). For example, each liquid has its own dielectric conductivity o*, electric
permittivity €*, and viscosity u*.

To examine this problem we focus on a single period within this channel, containing two
electrodes. The period is such that the right-hand side of the high potential electrode is
located at x, = 0. The period is denoted by D, the width of both electrode plates is denoted
by L., and the width of the meniscus to the right of the high potential plate is S... Dimensional
lengths and variables will be indicated with an asterisk subscript.

According to the Melcher-Taylor leaky-dielectric model (Melcher & Taylor 1969), all
charges accumulate on the fluid interfaces, so that the electric potentials ¢ are electroneutral
and therefore, by Gauss’ law, are harmonic:

V2¢E = 0. 2.1)

Aty, = Othere is a mixed boundary condition where one of the electrodes is held at ¢} = V).,
the other at ¢ = —V), and at the menisci between the electrodes the electrical potentials
(and therefore tangential gradients) are continuous, but the normal component of the electric
field undergoes a jump due to mismatches in the electric properties of the two fluids (Das &
Saintillan 2017):

[¢.]F =0 on the menisci (2.2)
ag.|" 0
o il (g+u,) on the menisci, (2.3)
0y |_ Ox,
where
+
q«=— [E%] , 2.4)
0y |_

is the surface charge distribution. Again o*, €*, u* are the electrical conductivity,
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permittivity and viscosity, respectively. Additionally, there is a potential difference between
the top and bottom electrodes,

¢I = VI* at y* = H*? ¢; = VI* at y* = _H*> (25)

which ensures there is a normal electric field component at the menisci, needed for surface
charge accumulation and therefore Maxwell stresses.
The velocity fields uf = (uf, v¥) are assumed to satisfy the Stokes equations, i.e.,

V.pi = p*viuk, V. uf =0, (2.6)

where pT denote pressures in the fluids. At the mixed boundary at y* = 0, the electrodes are
considered no slip surfaces while on the fluid interfaces a tangential stress balance between
shear stress and Maxwell stress leads to a coupling of the velocity and potential fields,

uf =0 on the electrodes Q2.7
ou, |* ¢t

[ au ] =q. 8¢ on the menisci. (2.8)
Vi | X

The no-slip condition is imposed on the top and bottom electrodes,
u; =0 aty,==+H.. (2.9

Finally both the potential and velocity fields are taken to be periodic with period D.., closing
the problem.

We have assumed here that the menisci here are flat, which is equivalent to assuming that
the effects of surface tension are large, i.e. that the capillary number Ca (ratio of viscous
stresses to surface tension forces) is small. Given the small scale of the pump, and typical
dielectric liquids that could be used, a small capillary number is a reasonable assumption
in this case — see the next section. This means that the viscous terms in the normal stress
balance at the meniscus could be neglected, giving a leading order balance between curvature
and pressure terms, i.e pf — p. + negligible normal viscous stresses = yk., where k. is the
curvature. However, the flow we consider is not driven by a pressure gradient but by Maxwell
stresses that appear in tangential stress, and hence the pressure variations are purely periodic,
driven by viscous effects, and thus scale with viscous stresses, p: ~ u*U../H* (see the
next section where the problem is non-dimensionalised). Therefore, pressure variations are
also negligible compared to the curvature for small capillary number, and the leading order
balance is in fact y«. = 0. The lack of a macroscale pressure gradient then ensures that the
menisci remain flat down the entire length of the pump. This flat assumption can be relaxed,
using additional analytical techniques, but that is outside the scope of this paper.

2.1. Dimensionless formulation

The potentials ¢; are made dimensionless using the potential scale ¢.. = V|, from the positive
electrode on the interface, and g, is made dimensionless using €*¢.../H.. Additionally, H. is
used as a length scale, Ue, = €*¢2,/[H.(u* + u~)] as a velocity scale, and pressures p* are
scaled with u*U../H,. Then the capillary number can be defined as Ca = (u* + u~)Uc./y
which, using liquid properties for silicone and castor oil (Salipante & Vlahovska 2010) and
the example operating parameters given later in section 9, takes values of O(107%), small
compared to one. The dimensionless width of the electrodes becomes 6L = L./H, where
6 = D./H, is the dimensionless period, and L = L../D, is the fraction of a period occupied
by one electrode. Similarly, the dimensionless length of one meniscus (right of the positive
electrode) is 6S = S./H., where S = S./D. is the meniscus fraction. The equations for ¢=
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Figure 2: Problem domains for a) the potential fields and b) the velocity fields. Here a
periodic array of high and low potential electrodes separate two leaky-dielectric fluids.
The electric field created by the electrodes, along with one generated by current flowing
vertically through the system, generate Maxwell stresses on the menisci between
electrodes, driving flow.

remain unchanged, but on the mixed boundary the potential fields satisfy,

¢* =1, ony =0, on the positive electrode (—6L < x < 0) (2.10)
¢* =—1, ony =0, on the negative electrode (6S < x < 6S + L)

(2.11)
¢" =¢~, ony =0, on the menisci (2.12)
oot 0¢~ 0
R ¢ - i = Re.—(qu), ony =0, on the menisci, (2.13)
Jy dy ox
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where Re, = €U,/ (0~ H,) is the electric Reynolds number and R = o* /o~ is the ratio of
the fluid conductivities. In the subsequent analysis we set Re. = 0, an assumption which is
discussed later. The dimensionless charge is given by

__[9¢"| _ 904
=7\ 5y dy

) : (2.14)
y=0

where Q = €~ /€ is aratio of electric permittivities. The potential conditions on the top and
bottom electrodes become

y=0

¢t =<V aty==l. (2.15)
The velocity field now satisfies the dimensionless Stokes equations
Vp* = Vut, V-ut=0, (2.16)
and, at y = 0:
ut =0, on the electrodes, 2.17)
ut=u", on the menisci, (2.18)
vE =0, on the menisci, (2.19)
+ %L;Jr -m- % =q 8;:, on the menisci, (2.20)
where m* = u*/(u* + u~). At the top and bottom electrodes the no-slip conditions are
u* =0 aty==+l. (2.21)

Combined with the appropriate periodicity conditions, with period ¢, the problem is now
fully stated.

2.2. Symmetry of the velocity fields

It is useful at this stage to point out a surprising symmetry in the flow fields of the two
fluids. The flows in both fluids are driven entirely by the tangential stress condition (2.20), in
which the Maxwell stress forcing divides its action between the two fluids, and the division
is in general different owing to their differing (nondimensional) viscosities, i.e. m*. But, it
turns out, if the flow domain is exactly symmetric about the interfacial plane y = 0 (which
is assumed here), then the velocity fields in both fluids are identical up to reflection. To
show this, imagine that u™ is known, and then the flow u* satisfies the Stokes equations in
0 < y < 1 with prescribed tangential velocities at y = 0 (where either u™ = 0 or u™ = u™)
and y = 1 (where u* = 0). Combined with the periodic boundary conditions in x, where p*
is periodic with no linear component, this gives a unique solution for u*. The same argument
applies in the lower fluid, u™, given a known menisci velocity u*. The key observation is that
u* and u~ on the menisci are the same by velocity continuity, even if they are not yet known,
and thus u* satisfy the same boundary value problems, up to reflection in y = 0, and thus:

ui(x’ )’) :u+(-x’ _)’) (222)

Then, on the menisci we have du~/dy = —0u™/dy, which when substituted into (2.20) gives
ou* oo

4 q 4 , on the menisci (2.23)
ady ox

using that m* + m~ = 1. This means that, even though the shear stress experienced by

each fluid on the menisci is different (owing to the differing viscosities), they are in exactly
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the right proportion so that the resulting velocity shear (and hence velocities) are the same
magnitude and given by (2.23). This is true for any choice of liquid property (e.g. viscosity
ratio, electric Reynolds number) and interfacial electrode configuration, the only requirement
being geometrical symmetry about y = 0. Clearly, this will no longer hold if the two fluid
layers are of different thicknesses.

It is important to remark that no similar symmetry exists in the electrical problems for ¢,
and hence both phases always must be considered for that problem. Hence, it is convenient
still to use the notation u* in the following sections for convenience, with the symmetry
understood.

2.3. Zero electric Reynolds number

In above problem description, (2.13) is a general form of current continuity for a flat meniscus.
It states that any jump in current between the two fluids must be due to the advection of
charge along the interface and the degree to which charge advection occurs is determined by
the value of the electric Reynolds number.

To obtain physical values of the relevant properties we turn to Salipante & Vlahovska (2010)
who examined the rotation of liquid drops of silicone oil (e/€y = 3.0, o = 1.23 x 1072
S/m, u = 0.97 kg/ms) in castor oil (/€9 = 5.3, o = 4.5 x 10" S/m, p = 0.69 kg/ms) where
€ ~ 8.85 x 10712 F/m is the permittivity of free space. With these values the remaining
factor in Re, is ¢§* /H?. Recalling that ¢, = V||« we can then define a new parameter

Eo. = Vj./H., (2.24)

where E. (units: V/m) is a scale for the background electric field in the lower fluid. In this
way the electric Reynolds number can be rewritten

+ 2

Re. = —(6 Eo.) ,

o (ut+pu7)
a form similar to that found in Das & Saintillan (2017).

An alternative definition that is perhaps more representative of the problem considered
here is one with different scaling for the electric field in the x and y directions, which can be
varied independently in our problem (and could differ by orders of magnitude). That is, we
can define characteristic electric field strengths

Ejes = Vje/Ds, Eice=Vi./H. (2.26)

(2.25)

and also

€E||c+E Lo €V Vi

o~ (pt+p7)  H.D.om(ut+p7)’
which we call the modified electric Reynolds number. It captures variation in field
strength both perpendicular and tangential to the interface. It is easy to see that
Ree,m = ReC(H*/D*)(VJ_*/VH*)

From (2.27) itis clear that the maximum value of Re, , will occur in the pump when silicon
oil is on the top, so we restrict ourselves to this case. Since the fluids are leaky dielectrics,
electric field strengths can be quite large with experimental maxima of 4.5 kV/cm (Vizika
& Saville 1992) in a study of small deformations of droplets and 20 kV/cm (Salipante &
Vlahovska 2010) in the study of spontaneous rotation of liquid drops under large electric
fields. Taylor (1966) himself used two experimental values, Eg. = 0.65 kV/cm and Ey. = 1.6
kV/cm. However, to validate their experimental setup, Salipante & Vlahovska (2010) tested
and measured deformation of the drop in weak electric fields to enable comparison to
Taylor’s theory. They found that significant deviation began at electric field values of around

Ree.m = (2.27)
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Nondimensional parameter R 0 mt Reem Ca

Value 0.027 1.7 059 3.4 0.006

Table 1: Representative values for nondimensional parameter groups, using values for
silicon oil ((+) fluid) and caster oil ((—) fluid) (Salipante & Vlahovska 2010). Recall that
m~ =1—m". Here V”* =0.1kV,V, . =2kV,H, =1cm, and D, = 2 mm so that

Ejcx =5x10* V/imand Ey ¢ =2 X 10° V/m.

1 kV/cm, which assuming similar field strengths in the x and y directions, corresponding
to Ree m = 3.4. This result is critical because it shows that deviations from the solutions by
Taylor (1966) occurred when the electric Reynolds number became order one, highlighting
the importance of charge advection at large field strengths. Consequently, we posit that
the small or zero electric Reynolds assumption is valid when the \/E| o E c. < 10° V/m.
Representative values of Re. n, at this maximal constraint, along with the other relevant
dimensionless groups, can be found in table 1 using E . = 5 X 10* V/imand E . = 2% 10°
V/m.

3. Bounded two-phase problem: small period limit

In this section we analyse the problem detailed in section 2, where the two fluid layers are
in a channel of finite thickness, i.e. are bounded by upper and lower electrodes at y = +1,
where the potential is specified, ¢ = £V{. A simplifying assumption is that the interfacial
electrode period is small compared to the channel height, i.e. 6 = D*/H* <« 1. The problem
will then be reduced to finding a solution to a (still highly nontrivial) “unbounded" problem,
which appears as the local (or “inner") solution close to the interface y = 0. The analysis of
this section shows how that problem arises naturally within the channel problem, and what
the far-field conditions should be, which is more practically relevant. The unbounded inner
problem is then solved, in two parts, in sections 4 and 5. Figure 3 gives a schematic showing
how the domain is divided, and the structure of the inner problem.

To consider the limit § < 1, it is convenient to make the domain geometry independent of
the small parameter ¢ and transform to a new coordinate X = x/§. Henceforth, the electric
Reynolds number is assumed to be zero, Re. = 0.

3.1. Outer region

Away from the interfacial electrodes (y = 0) the periodic nature of the interface is not
expected to be important. The governing equations in the transformed coordinate X = x/d
are written

2 4+ 2 4+ + 2+ 2+
L()g{) +(9¢ —0. lap =L6u +6u’ 3.1)
02 80X 0y? 6 X 62 9X?  0y?
10u* Ov* ap* 1 9% Rt
Z — =0, = — ) 32
59x T oy 8y 52 0x2 " ay? (3-2)

If we then consider § <« 1 with y = O(1) (fixed), and formally expand all variables,
¢* = ¢y +0p7 + 0(6?), etc., it can be easily shown (integrating at each order and applying
periodicity in X (Hodes et al. 2023)) that for all orders of ¢, the vertical velocity is zero and the
potentials and horizontal velocity are functions of y alone. That is, ¢;; = ¢ (y), u; = uy;(y)
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Figure 3: Schematic summarizing the decomposition of the dimensionless problem for
electric potentials in the limit of large channel height (§ < 1). Inner potential problem ¢*
shown as the superposition of ¢3’ (current flow between inner electrodes) and SO+
(disparate far-field currents). Red arrows indicate current flow. For brevity, the continuity
of potentials and currents on fluid—fluid interfaces is not shown.

and v;—’l =0 (and pﬁ constant) for all n > 0. Therefore, at each order the equations are one
dimensional,

&y _ duy
el (3.3)

Integrating these, and applying the boundary conditions (2.15) and (2.21) on y = +1 at each
order, it is found that the series solutions are simply linear in y,

T ~VI+IT(6)(y - 1), (3.4
¢ ~ =V +RI"(6)(y + 1), (3.5)
ut ~U*(6)(1Fy), (3.6)
vE~ 0, (3.7)

where I*(8) and U*(6) are constants that depend (algebraically) on 6. The constants I* are
the dimensionless currents (per unit area) leaving the top electrode, and entering the bottom
electrode, respectively (this explains the factor of R introduced in (3.5)). Also, U*(6) are the
“slip velocities" at y = 0, as viewed from the outer region (note that U* = U~ here as the
domain is symmetric in y = 0). These are determined by matching with the solution in an
inner region close to the interface y = 0.
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3.2. Inner region

The outer solution, depending only on y, cannot satisfy the mixed condition at the interface
y = 0, so a different solution is needed close to the interface. Within an O(¢) distance, the
diffusive terms in X will balance the diffusive terms in y and the problem will be 2D, but
now “unbounded” in y. An inner variable Y = y/§ is now introduced which is taken to be
O(1) as 6§ — 0. In terms of the inner variables X and Y, the potentials and flow are governed
by the full Laplace and Stokes equations (now holding for O < |Y| < oo in each fluid):

62 + 52 + 0 + 62 + 62 +
LI o, P2, (3.8)
0x?2  o0y? 0X  9Xx? oY?
ou*r vt ap* vt oWt
=0, = . 3.9
ax "oy oYy ~ ax2 oy’ (39)

The boundary conditions at ¥ = 0 are identical to (2.10)-(2.13) and (2.17)-(2.20) but written
in inner variables:

¢* =1, onY =0, on the positive electrode (—L < x < 0) (3.10)
¢* =—1, onY =0, on the negative electrode (S < x < S+ L) (3.11)
¢" =¢~, onY =0, on the menisci (3.12)

op*  0¢~
;; - % =0, onY =0, on the menisci, (3.13)

and

ut =0, on Y =0, on the electrodes (3.14)
ut=u", on Y = 0, on the menisci (3.15)
vE =0, on Y = 0, on the menisci (3.16)

out ou~ ot
+ (;; —m_aLY :qa(?(, on Y = 0, on the menisci (3.17)

with only the expression for ¢ differing:

1 ({d¢* op~ OR -1 9¢*
q=-= ¢ —Q—¢ = ¢ . (3.18)
o\ oY oY |y 0 Y |y
Note that the tangential stress condition can be replaced with
ou* ou~ a¢*
g 4 i on Y = 0, on the menisci (3.19)

oy ~ ov  Toxv
due to the symmetry arguments in section 2.2. Finally, there are matching conditions on this
inner solution (as ¥ — *o0) with the outer solution (as y = Y — 0), giving

¢~V + I (8)(8Y - 1), Y — oo (3.20)
¢~ ~ VI + RI"(8)(6Y + 1), Y — —oo (3.21)
Wt ~ U%(8)(1 F 6Y), Y — %00 (3.22)
vE >0, Y — o0 (3.23)

The potential problem can be considered first, followed by the velocity field, which is
driven by interfacial charge build up. Hence, the solutions for the velocity field are presented
later in section 6.

The solution to the potential problem will be presented in terms of two components: (1) the
leading order solution (corresponding to ¢ = 0) where there is no current entering or leaving
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in the far field, only flowing from one interfacial electrode to the other; and (2) a higher order
solution (accounting for all higher orders in §) where current is entering and leaving in the
far field, but with no current flowing between the interfacial electrodes themselves (although
there may be net current to/from the interfacial electrodes collectively).

3.3. Leading order: current flow between interfacial electrodes

The case where current flows only between the two interfacial electrodes, and not into the
far field, corresponds to the leading order solution ¢7, where § = 0. Then ¢{ is harmonic
and satisfies

¢y =1, onY =0, on the positive electrode (—L < x < 0) (3.24)
¢5 =—1, onY =0, on the negative electrode (S < x < S+ L) (3.25)
¢g = ¢y, onY =0, on the menisci (3.26)
d¢r  0¢-
R% - % =0, onY =0, on the menisci (3.27)
oot 0¢o
% - Q% =0, onY =0, on the menisci. (3.28)

The last two conditions simplify to d¢/0Y = 0. Finally, the matching conditions reduce to

o5 — Vi-13, Y — oo, (3.29)
¢, — =V +RI, Y — —oo. (3.30)

The problem in each individual phase (+) is identical (up to a constant multiple and shift)
to one solved in Crowdy et al. (2023) for the thermocapillary-driven pump in the same
architecture. The solution is given by (5.5)-(5.6) in section 5. Relevant here is that, as
Y — +o0, g{;g — 0, i.e. the average of the two interfacial electrode values, and this fixes the
leading order currents in the outer region(s) to be I = V{ and RI; = V.

3.4. Higher order: far-field current flow past grounded interfacial electrodes

With the leading order potential ¢ known, instead of proceeding with a regular expansion
in §, seeking corrections of O(6) and so on, here we will find a solution satisfying all
orders (order ¢ and higher) at once. The behaviour at leading order (driven by the potential
difference between the interfacial electrodes at Y = 0) is distinct from the behaviour at higher
orders (driven by a difference in current at Y — =+co0), so we define the following perturbation
potential ®*:

" - ¢

* = . 3.31
5 (3.31)

Noticing that ¢7 satisfies the inhomogeneous conditions on the electrodes at ¥ = 0, but
otherwise satisfies homogeneous versions of all other conditions, then ®* is harmonic and
satisfies

®* =0, onY =0, onbothelectrodes (-L <x <0,S<x<S+L) (3.32)
ot =d~, onY =0, on the menisci (3.33)

oDt 00~
— —— =0, onY =0, on the menisci (3.34)
oY oY
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and now with far field conditions
1
ot ~ 'Y + 5 (Vir - I+) , Y — +oo, (3.35)
1
O~ I"RY + < (I"TR-V[), Y — —oo. (3.36)

This corresponds to the interfacial electrodes being grounded (®* = 0), and two current
densities I* at the far field. As I* are not yet known, they will differ in general, corresponding
to net current flow (in some unknown proportion) between the two far fields ¥ — +co and
the two interfacial electrodes at Y = 0. The two-phase nature of this problem, combined with
asymmetric current conditions, makes it highly nontrivial but, remarkably, a closed form
result can be found. It is derived separately in appendix A.

The solution is given by (A 46), and turns out to have the following far-field behaviour,
with voltage perturbations (It — I7)A:

O ~I'Y+(I'=1)A, Y — +oo, (3.37)
O ~I"RY+(I*'—T)A, Y — —c0, (3.38)

where A is a constant known from the geometry, given by (4.9). To determine the currents
I*, we compare (3.35)-(3.36) with (3.37)-(3.38), giving relations

1 1
5 (Vi-I')=(I"-1")A, 5 (ITR-V)=(I"-1)A, (3.39)
which can be rearranged into the matrix equation

1+6A  —=6A \ (I _ (V!
( -0A R +5A) (1‘) h (VI) (3.40)
involving an effective resistance matrix that depends on ¢, and accounts for the combined
resistance of the two phases, but also the loss (or gain) of current at the electrodes on the

interface. When 6 = 0, all of the current flows into or out of the interfacial electrodes, with
no current bypassing. Inverting the above system results in

_(R+6M)VI+6AV]

I"= R+(R+1)6A (341
s

With 7* determined as above, the full inner solution is
¢* ~ g5 (X,Y) +60*(X,Y;I', 1), Y=y/6=0(1), 6 > 0. (3.43)

Special case: It = I~

We remark about a special case where, for a particular choice of lower potential V| = VIR,
then the above collapses to I* = I~ = V], and the ®* solutions are trivial linear functions
of Y, i.e., the current flowing between the upper and lower electrodes does not interact
mathematically with the interfacial electrodes. Physically, this case corresponds to one
where no net current is generated by the inner electrodes so that the current at the top and
the bottom of the domain is identical. Importantly, this does not mean that no current from
the far-field flows into the inner electrodes, but exactly the same flows in as flows out. This
case is discussed in more detail later in the manuscript, including visualization.
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Composite potential solution

Remarkably, the above solution (3.43) (when substituting for outer variables (X,Y) =
(x/6,y/6)) is also the composite solution, uniformly valid for all -1 < y < 1. This is because
(3.43) becomes precisely the outer solution to all orders if expanded for Y = y/§ — +oo.

4. Solution for far-field current flow past interfacial electrodes

This section summarises the solution to the unbounded two-phase potential problem, where
the far-field currents in both phases are in general different, and the interfacial electrodes are
grounded. This appears as one component of the inner solution, close to the interface y = 0,
embedded within a finite channel as described in section 3. However, since it is nontrivial and
will also likely have applications in other contexts, a detailed derivation is given in Appendix
A.

The solution is given in terms of complex potentials

wh(z) = ®* +iy*, w(z) =® +iy", where z = X +1Y, 4.1)

in the upper (+) and lower (—) period semi-strips. The conformal mapping function

2= 2() = =5 logn(?). (42)
/e
where

P({/a,p)P({a, p)
P(¢{[a,p)P({a,p)’

with @ = ir for p < r < 1 transplants the upper half annulus
p<Ifl <1, Im[{] >0, (4.4)

to the upper-half period strip—see Appendix A for full details.
The two-phase solution in this auxiliary {-annulus is found to be

n(¢) = P.p)=(1-0]Ja-p"00-p"10), @43
n=1

R |(I*+ RI‘) (rr-r
+ +
= = — 1
R e A e SR
- _ R |(I*+ RI‘) (I -17) '
= = — l
W) = W) =~ | logn(0) - 0zé(0)|.
where
P(l/a,p)P(la,
£(0) = ({/a, p)P(L@,p) 4.6)
P/, p)P({a, p)
The required potentials ®* then follow as the real parts of the above functions w*.
When I~ = I, these formulas reduce to the trivial linear solutions
wh(z) =—-il*z,  w7(z) =—iRIz, 4.7)

as expected.
It can also be shown that the far-field behaviours (real part of (4.5) as Y — +o0) are

O ~I'Y + (I' — I7)A, ® ~RITY+(I"-1)A, 4.8)
where

P(a?, p)

=X+ °g‘P<|a|2,p> ‘ (*9)
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The constants @ and p are easily found (Appendix A) as part of the conformal map for use
in the above formulas, and they depend only on the geometry.

5. Solution for current flow between interfacial electrodes

The solution for the separate case, where the two interfacial electrodes are held at constant

potentials +1 and —1, with no current entering/leaving in the far field, is also a relevant

component of the solution close to the interface (it is the problem for ¢ in section 3.3). It

utilises the same conformal map (A 7), and relies on a solution from Crowdy et al. (2023).
Notice that the boundary conditions (3.26)-(3.27) can be satisfied exactly if

gy 04,

oYy oY
and we choose ¢, (X,Y) = ¢{(X,-Y). Then the solution in the lower fluid (-) is simply
the reflection of that in the upper fluid (+) in ¥ = 0. The problem in the (+) fluid then is
identical (up to a constant multiple and shift) to one solved in Crowdy et al. (2023) for a
thermocapillary-driven pump in the same architecture where the electrodes in the present
problem are hot/cold “ridges” in the thermocapillary-driven pump. Let T be the temperature
field solution from Crowdy et al. (2023) where one ridge is at temperature 7 = 1 and the
other at 7' = 0. Then the solution here for the potential ¢ is given by ¢§ = 2T — 1.

Writing the complex potentials in the two phases as

wy (2) = ¢ + 15, (5.2)

then the solution w((Z({)) = Wy ({) in the upper { annulus under map (A7) is simply
(Crowdy et al. 2023)

=0, on the menisci 5.1

2
Wi (2) =1+ =logd, (5.3)
n
and, by symmetry, the solution w (Z({)) = W ({) in the lower annulus is also
_ 2i
W, ({)zl—;log{. (5.4)
Taking the real parts yields the potentials ¢{,
. 2
¢ =1-—arg{, (5.5)
2
¢y =1+ —argl. (5.6)
i

In the far field, it turns out that { — « and { — & which have arguments +7/2 and —7/2,
respectively, leading to ¢3’ — 0, as expected.

6. Induced velocity

If the potential fields ¢* are known, as detailed in sections 3-5, then the flow velocity, induced
by the interfacial Maxwell stress, can now be calculated. It is sufficient to focus on the flow
in the inner region close to the interface, since the solution in the outer region is simple,
given by (3.6). The equations governing the flow in the inner region are given by (3.8)-(3.9),
(3.14)-(3.18), (3.22)-(3.23).

First, the surface charge accumulated on the menisci is given by (3.18). Substituting the
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asymptotic solution (3.43) for the potentials and noting that d¢;/0Y = 0 on the menisci, we
find

oot

Y |y_o
We remark that it was shown earlier in section 2.2 that the velocity fields in both fluids are
the same, surprisingly, up to reflection in y = 0, so it is sufficient to solve for u* only, with
meniscus condition (2.23). It is convenient in the complex variable formation to consider

both u* simultaneously. Substituting g into the stress balance (3.17) on the menisci, the flow
fields can be resolved. We introduce the streamfunctions *,

q=(QR-1) (6.1)

L Oy* L oy
£ _ t_ _ 6.2
wh= v X (6.2)
which have the representation in the complex z = X + 1Y plane as (Crowdy et al. 2023)
p*=Im[(Z-2) f*()]. (6.3)

where f*(z) are analytic functions in the upper and lower domains, respectively. It can
be easily shown that u* — iv* = —2Re[f*(z)] + (Z — 2)(f*(z))’, from which the far-field
behaviours (3.22)-(3.23) imply conditions on f*(z):

1 1
fH(z) ~ —§U+ +ic — Z(SU+iz, as z — oo, Im[z] > 0, (6.4)

1 1
f(2) ~ _EU_ +ic+ ZéU‘iz, as z — oo, Im[z] <0, (6.5)

for some inconsequential imaginary constant ic. From symmetry (section 2.2), we must have
U* = U™ =: U. An implication of the complex representation is that (Crowdy et al. 2023)

u*=-2Re[f*(z)], onY=0 (6.6)

which means continuity of the velocities on Y = 0 can be written
Re[f~ ()] =Re[f*(2)] =Re [f*(@)]| =Re[ ()| on¥ =0, 6.7)

where the Schwarz conjugate function f(z) is defined as f(z) = f(Z). An important

observation is that if f(z) is upper analytic then f(z) is lower analytic with the same
far-field behaviour. The up—down flow symmetry in the plane ¥ = 0 can be expressed here

as f~(z) = f*(z). And the tangential stress condition (3.19) for u* can be written, using that
ou*/dY = -2Im[f*(z)]on Y = 0:
a¢*
ox’

—2Im [f*(2)] =¢ on Y = 0, on the menisci. (6.8)

6.1. Pumping speed formula from reciprocity

In general, solution of the inner velocity field with Maxwell stress forcing is somewhat
difficult. However, due to the form of the outer solutions in (3.6) and (3.7), the key parameters
of interest are the effective slip velocities U* (which are identical by symmetry, and denoted
by U). Therefore we can focus on solving for U, which can be done using reciprocal theorem
arguments, without the need to resolve the full velocity field.

Lorentz reciprocity holds, on some domain D given our solution {u}, o';fj} and an auxiliary
solution {#;, 0y}, that

f u;'&ijnjdl Zjé‘ 12[O';ji’ljdl, (69)
oD oD
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where o;; denotes a hydrodynamic stress tensor. To calculate U, it is sufficient to choose the
domain to be the upper periodic domain (semi-strip) and define the auxiliary solution to be
that of a shear flow over an arbitrary array of unequal no-shear menisci between transverse
electrodes as solved by Crowdy (2011). Crucially, it has the behaviour

i~Y+A4,, as Y — oo, (6.10)
where
1 P(a?,
AL =— —(azp) 6.11)
P(lal?, p)

is the hydrodynamic slip length (notice the similarity to (4.9) mentioned earlier). Along
solid electrodes, # satisfies no-slip conditions and along the two menisci it satisfies no-shear
conditions.

On the left-hand side of (6.9) the only term that is non-zero is at the boundary at ¥ = co.
Conversely, on the right-hand side the Y = oo term and terms along both menisci are non-zero.
The result is

1/2 1/2
/ U(1—6Y)dX:/ —oU (Y +4,)dX

-1/2 -1/2
out ou*
— dX — / i dX. (6.12)
-/men 1 6Y men 2 oY
The first two integrals can be directly evaluated and the equation rearranged to give
1 2o a¢*
U=- /] dX + /] x|, 6.13
1+ (5/lJ_ [[nen 1 H X [nen 2 “ ox ( )
where we have applied (3.19). Substituting (6.1) for ¢ and (3.43) for ¢* gives
__ OR- 1
14064,

0Dt (0¢) Dt 0Dt (0¢) DT
5 dx 5 ax|. (.14
[/menl ay (ax+ ax) +/menz oY (ax+ ax) 6.14)

After using one of the Cauchy-Riemann equations to replace Y derivatives, it follows that
_OR- 1
T 1+64,

e aq>+) / (8¢0 aq>+) }
+0 dX + i +0 dx|. (6.15)
[Len 1 ( 0X men 2 BX 0X 0X

which must be evaluated numerically, but is easily done. Note that all derivatives are in X
and so knowledge of the functions on the interfaces is all that is required to evaluate the
integrand.

6.2. Special case: V[ = RV}

The special case (shown later to be the case for optimal pumping speed) where the upper/lower
electrode values satisfy V{ = RV}, and hence the currents leaving the upper and entering
the lower electrodes are equal (I" = I7), simplifies considerably. In this case, ®* simplifies
to a linear function of Y, and I" = V}:

= VY. (6.16)
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Thus, (6.14) reduces to

R-1)Vt a¢;
Uz_ﬁi__li[/' ﬁlﬁdx+/' ‘%dx] 6.17)
1+ 5/1J_ men 1 men 2 6X

The flow 7 is known from Crowdy (2011),andon Y = Oitcanbe expressed as i = —2Re[ f (2)]
where, in the £ annulus,

@)= F2(0) = ¢ ogé (), (6.18)

P({/a,p)P({a, p)
P({/a,p)P({a,p)|’

where Cjj, C are upper half circles representing the location of the menisci in the £ plane—
see Fig. 14. On either meniscus, ¢ is constant and so d¢;) = dW; = 2id{/(n{) from (5.3).
Putting these elements together, (6.17) becomes

dg

_2(QR-1V} ( ) / / ‘P(g/a, p)P({@, p)
e Ao Jer) TP p)P(Casp)| i
where Cj and C are traversed anticlockwise. It is also noted that, for this special case
V[ = RV}, the detailed velocity field can be found throughout the domain since the Maxwell
stress becomes identical, up to scaling factors, with the Marangoni stress determined in
Crowdy et al. (2023). The solution in Crowdy et al. (2023) has no linear component, and

corresponds here to the quantity f*(z) + 6Uiz/4, and so the function f*(z) giving the
streamfunction (6.3) has the series representation

+ i(QOR-1VT |1 1—(=1)" n U
=50 |2 Zup ( s )(é’ 5,,) -z 62D

1 1
i=-—1log|é(d)| = —— log {on Cj,CY, (6.19)
4m 4r

(6.20)

From this analytical solution, and recalling that u —iv = —2Re[ f*], the far-field velocity can
simply be evaluated at { = «, yielding a second expression for U given by

_(R-DVE ISy 2 (=D (g
T & T ( )2 )(a +a—n) - (6.22)

This can be further manipulated, on use of a = ir, to give

_ HQR-1)VI (-1)m+! m-1 (P!
B 7T2(1+6J,J_) = (2m_1)2(1+p2m—1) (r (l") ) . (623)

(]

7. Currents and power

Some quantities of interest to the operation of the pump are: (1) the total current flowing
between each of the electrodes, and hence (2) the electrical power requirement. Given a
choice of electrode potentials, the current follows from integrals of the solution.

¥ The same function f(z) is stated with the incorrect sign in equation (63) of Crowdy ef al. (2023).
However, the final pumping speed formulas reported there are correctly stated.
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7.1. Current flow from interfacial electrodes

We are interested in the dimensionless current (per unit depth) entering (or leaving) from the
high and low electrodes at the interface. The direct way to calculate this is by integrating the
current density entering both fluids from a given interfacial electrode. For the high electrode
plate, referred to here as “electrode 1" (where ¢* = +1), this is

ot 1 6¢‘]
1 :/ [— + ——— | dX. (7.1)
! electrode 1 aY R oY
However, we can substitute solution (3.43) for ¢*,
oy 9D\ 1 (¢ 9D~
I :/ [—(—°+5—)+—(—+5—)]dx (7.2)
! electrode 1 aY aY R aY aY
ags  10¢, ot 10D
=—/ 900 _100)  5(9% _19O7\] (7.3)
electrode 1 |\ Y R Y oY R 0Y

Then, using that d¢; /0Y = —8¢g /dY (the same does not hold for ®*), and the Cauchy-
Riemann equations,

1\ 0yg (af 1 aX-)]
I = 1+ +6 - = dx, (7.4)
1 </electr0de1 [( R) 0xX X R 0X

which can readily be integrated and evaluated at the edges of the electrode,

1
1+ —) v } +6
( R electrode 1

where [.] denotes the jump across the electrode, from right to left.
The same can be done for the second interfacial electrode, or “electrode 2” (where ¢* =
-1):

1
xt-=x" , (7.5)

I = ]
R electrode 1

1
Xt -—=x (7.6)

I = } .
R electrode 2

1
(1 + —) v ] +6
R electrode 2

For the first term: taking the imaginary part of solution (5.3) gives ¢, and evaluating at
the electrode edges (£ = p and 1 for electrode 1, and { = —1 and —p for electrode 2) and
taking the difference gives simply +(2/7)log(1/p). In addition, it was shown in (A 6) that
X" — x~ /R is constant on the menisci (where the fluids are in contact), taking different
constant values (¢ and c;) on the different menisci (1 and 2). From the arrangement shown
in Figure 14, and that y* is continuous at electrode edges, we have

1 _ _
[XJr—}X } =ci—ca=("-1/2, (7.7
electrode 1

since we chose ¢y = 0, and ¢ followed from the solution. The electrodes can be interchanged

in the problem for ®* (as they both appear grounded, at the same potential) and thus the

current out of both electrodes for that case must be the same, hence (7.7) holds for electrode
2 also. Putting these results together, expressions for /; and I are

1)\2 I--I
L=+|1+= —10g(1/p)+6¥, (7.8)
R n 2

-1

1)2
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To interpret the terms in each, consider the sum and (half the) difference of /; and /,:

L-1
2

L+L=61I"-1, = (1+%)%10g(1/p). (7.10)
The first equation is a statement that the combined total current entering the fluid via the two
interfacial electrodes must balance the current leaving via the upper and lower electrodes,
and hence is expected from a global current balance. Then the second equation is a measure
of the current flowing from interfacial electrode 1 to interfacial electrode 2 (the factor of
1 + 1/R accounting for fact the current can travel through both fluids). Hence, the currents
(7.8)-(7.9) can be clearly seen as a superposition of these two components.

7.2. Power

From these currents we can evaluate the electric power required to operate the pump. There
are 4 electrodes per period and hence 4 sources or sinks of current, with 6 independent
pathways for current to flow. The current could: flow from one inner electrode to the other
(path 1); flow from the top electrode to either inner electrode (paths 2-3); flow from either
inner electrode to bottom electrode (paths 4-5); flow directly from the top electrode to the
bottom electrode (path 6).

Power density can be defined locally in the upper and lower domains as

1
Pt =—-¢'V¢* and P = —§¢‘V¢‘, (7.11)
respectively. To calculate the total power (per unit depth) input to operate the pump, we need

to integrate the (inward) normal component along the boundaries. In the upper and lower
domains, this becomes (where n is the inward normal in each case),

+ +
P;:f P+-ndl:/ VIa¢ dx+/ —¢+aidx (7.12)
upper fluid y=1 ay y=0 ay
1/2 +
=SV - / #27 ax (7.13)
-1/2 Y |y
VI 0™ - 8¢~
Pi;:yf P_-ndl:—/ —Lid“/ ¢ 99" (7.14)
Jower fluid y=—1 R 0dy y=1 R dy
| 12 -
— VI + —/ -2 ax (7.15)
R ) oY Y=0

since the only non-zero power flux is at the interface y = O or the top and bottom, y = +1.
The integrals along the interface are written in terms of inner variables.

Adding together P and P, leads to the total power in, Pj,. We can use that potentials and
currents (and hence power flux) are continuous across fluid—fluid portions of ¥ = 0, and on
the electrode portions we have constant potentials, so the total power is

opt  10¢~ opt 190¢~
Pm=5(1+vj+1—V;)+/ [—i+—i] dX—/ [—i+—i}dX
electrode 1 oY R oY electrode 2 oY R oY
=6(I'Vi+1I'V))+ 1, - I, (7.16)
where 1, I, are the currents leaving the interfacial electrodes.

Using our asymptotic solution, /1 —I5 is simply twice the current flowing between interfacial
electrodes, given by (7.10). And I*, I~ are given by (3.41)-(3.42).
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7.3. Efficiency

One measure of the performance of the pump is the efficiency, which we define here as the
ratio of the output power to the input power. The input power, Pj,, is given by (7.16). The
output power corresponds here to the rate of work done by the interfacial driving stresses
on the fluid. This can be calculated from our solution most easily from the outer solution
(3.6) as y — 0. (Note, this neglects some small losses due to viscous dissipation in the inner
region, which are higher order in ¢.) For the (+) fluid, the rate of work here is velocity U
times shear stress —m*du*/dy = m*U, integrated over one period:

+ +6u+ +772
ot = U-|-m — dx ~om U~ (7.17)
period ay y=0

Similarly for the lower fluid, P, ~ 6m~U?, hence the total output power to both fluids,
Pout = P, + Py, is simply (using that m*™ + m™ = 1),

Pou ~ 6U?. (7.18)

This output power is dimensionless, and it corresponds to a dimensional power (using the
scalings in section 2)

Pous = (U + 07 )UZ, Pou. (7.19)

The corresponding dimensional input electrical power, using voltage scale V|, and current
scale oV, is

Pin. = 0V} Pin, (7.20)
where Pj, is (7.16). Hence the efficiency, the ratio of output to input power, is

_ Pout,+ _ Ree Pouwr  Ree sU?
Tt = pe R Pnm R Pu

(7.21)

Note that we have assumed that Re. is small in our analysis, and therefore we expect the
efficiency to be low for the solutions presented here.

The above energy output is subsequently dissipated as heat via viscous dissipation. But,
after reaching steady state, kinetic energy has also been imparted to the fluid, totalling (per
period, and per unit mass)

1 0 2
1 1 oU
KE = 5/ —(u)2dy + 5/ —(u")dy ~ —. (7.22)
0o 2 12 3
So even if the mechanical work is being dissipated in the present set up, usable mechanical

energy has been stored which also scales with §U?.

8. Results
8.1. Potential fields

Contours of the inner variable potential fields are plotted in Figures 4-6. In each figure: the
left-most plot (a) is the leading order solution, capturing current flow directly from one inner
electrode to the next; the middle plot (b) is the solution capturing the far-field current; and
the right-most plot (c) the combined composite solution. In each, the colors denote potential
values (with solid contours lines of equipotential), the arrows directions of current flow, the
solid black lines at y = 0 represent the inner electrodes (with the left-most being the positive
one), and the dashed lines at y = O represent the flat interface between the two fluids. Across
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Figure 4: Contour plots of a) leading order potential, b) correction to the leading order due
to disparate far-field currents, and c) combined full solution for the inner electric potential.
Inall, R =1/5, VI =10,V =1,5=0.2, L = 0.2 and 6 = 0.2. This results in far-field
currents of I* ~ 10 and I~ ~ 5.1, meaning the inner electrodes combined act as current
sinks. The solid contours (separating colored regions) are the lines of equipotential while
the arrowed lines are everywhere tangent to current flow.
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Figure 5: Contour plots of a) leading order potential, b) correction to the leading order due
to disparate far-field currents, and c) combined full solution for the inner electric potential.
InallR =1/5, VI =10,V =2,5§=0.2,L =0.2 and 6 = 0.2. This results in far-field
currents of I* = I~ = 10 such that the induced current is unidirectional as per b). The
solid contours (separating colored regions) are the lines of equipotential while the arrowed
lines are everywhere tangent to current flow.

the images we have chosen for geometric parameters, S = 0.2, L = 0.2 and 6 = 0.2 (hence
the top/bottom electrodes are not pictured).

In Figure 4, R = 1/5, V] =5, V[ = 1, resulting in far-field currents of /* ~ 10 and
I~ ~ 5.1, such that the inner electrodes combined act as current sinks. In Figure 5, R = 1/5,
VI =5, V] =2, resulting in far-field currents of /* = I~ ~ 10, such that the inner electrodes
have zero impact on the far-field currents. Finally, in Figure 4, R = 1/5, V] =5, V[ =3, s0
that I* ~ 10 and I~ =~ 14.9 and the inner electrodes combined now act as current sources.

The parameter that controls whether the inner electrodes act as net sources or sinks is
RV} — V. When this is zero then I* = I~. When it is negative, the driving force for current
flowing into the upper fluid exceeds that leaving the lower, forcing the inner electrodes to
collectively absorb current. Conversely, when it is positive, the opposite is true and the inner
electrodes collectively release current.
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Figure 6: Contour plots of a) leading order potential, b) correction to the leading order due
to disparate far-field currents, and ¢) combined full solution for the inner electric potential.
InallR =1/5, VI =10,V =3,5=0.2,L =0.2and § = 0.2. This results in far-field
currents of I* ~ 10 and I~ ~ 14.9, meaning the inner electrodes combined act as current
sources. The solid contours (separating colored regions) are the lines of equipotential
while the arrowed lines are everywhere tangent to current flow.

8.2. Overall pumping ability

‘We now move to a presentation of the pumping speed. In order to more conveniently compare
the pumping speed across the multiple parameters, we fix the overall electrical power input
of the system and solve for a relationship between V{ and V. From (7.16), after substituting
for 11 and I, and rearranging,

1 1\4
I+VI+IVLZS[PIH_(1+E);IOg(1/p)]’ (81)

where the right hand side is determined purely by fluid properties and geometric parameters,
and I™ and I~ are given in terms of V{ by (3.41) and (3.42), respectively. For a given V,
solutions for V can readily be obtained since this equation is quadratic in V7, resulting in
two solution branches,

_ =6AV £ VM(p, R)(SA+R) — [R+ (1 + R)SA] (V)2

.
2
Vi R +6A 8.2)
where
1 1\4
M(p,R) = 5 [R+ (R+1)6A] | Pin — (1 + E) —log (l/p)} . (8.3)
b
Since R, A, M > 0, then real-valued solutions only exist when
M(p,R)(A+ R _ M(p,R)(A+ R
_ [M(p,R)(SA + )<VL< (p,R)(6A+R) (8.4)
R+ (1+R)6A R+ (1+R)OA

To start, we fix the geometric parameters L = S = 0.1, 6 = 0.2, the power Py, = 100 and
choose R = 1/2 (upper fluid less conductive) and Q = 1. Figure 7a) plots the two solution
branches for V} for the range of V. The solid line is the (+) solution branch, the dashed
line is the (—) one. Although the branches appear symmetric about V{ = 0, there is a slight
leftwards tilt caused by the term —d AV in (8.2). This tilt is much clearer in 8a) for which we
have changed the geometric parameters so that L = S = 0.01 and 6 = 0.5. The remaining two
panels, (b) and (c), show the corresponding pumping velocities (from (6.15)) and average
charge on the interface(s), respectively.

In Figures 7a)-c) and 8a)-c), the relationship (8.2) between the voltages takes the shape
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Figure 7: a) Two solution branches for VT, given by (8.2) for § =0.1, L =0.1,6 = 0.2,
and R = 0.5. Additionally, the input power is restricted to P;, = 100. b) Corresponding
pumping velocities for the voltage combination in part a). ¢) Average charge on the two
menisci. The solid lines refer to the positive solution branch and dashed the negative.
Markers correspond to the same solution across each panel. Blue stars and circles
correspond to where there is zero charge on the interfaces (¢ = 0) and consequentially the
pumping speed is zero (U = 0). The red circle and triangle correspond to the points of
maximal pumping velocity in the positive and negative x-directions, respectively.
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Figure 8: a) Two solution branches for V*, given by (8.2) for S = 0.01, L = 0.01, § = 0.5,
R = 0.5 and Pj;, = 100. b) Corresponding pumping velocities for the voltage combination
in part a). ¢) Average charge on the two menisci. See caption for Figure 7.

of an ellipse. Based on the signs of V7, i.e. the quadrants of the (V, V) plane in a), four
regions can be defined. Region I corresponds to the typical case when V{, V[ > 0 and current
is entering the domain at the top electrode and leaving at the bottom (recall that the potentials
of the upper/lower electrodes are £V7). Region II corresponds to when Vi > 0, but V[ <0
so that current is entering the domain at the top electrode and bottom electrodes and exits
entirely through the inner electrodes. Region III corresponds to when V{, V[ < 0 so that
current is entering from the bottom and leaving from the top (opposite of Region I). Finally,
Region IV corresponds to when V{ < 0, but V[ > 0, meaning current will leave the domain
at both the top and the bottom with all current entering through the inner electrodes (opposite
of Region II). In Figures 7 and 8 there are four points of interests to highlight. The two blue
symbols mark the cases where there is zero surface charge (¢ = ¢ = 0) and therefore no
pumping (U = 0). The red symbols represent the extrema of the pumping velocity U, with
the square indicating the point of maximal pumping in the x-direction (thus U > 0) and the
triangle that of maximal pumping in the (—x)-direction (U < 0). These points are marked in
each panel of Figures 7 and 8.

Clearly, the best pumping performance occurs when the device is in Region I or III and
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Figure 9: Contour plots of a) leading order potential, b) correction to the leading order due
to disparate far-field currents, and c) combined full solution for the inner electric potential.
Solid contours refer to lines of equipotential and the arrowed ones a everywhere tangent to
current flow. In all, R = 1/2, VI =12.6,V] =-12.6,5=0.1, L =0.1 and 6 = 0.2. This
case leads to zero charge accumulation and fluid pumping and corresponds to the blue star
in Figure 7.

the period-averaged current is flowing in the same direction through both fluids (either
top to bottom, or bottom to top). Because far-field potential gradients point in the same
direction in these cases, continuity of current allows for significant potential gradients at the
interface. Then the jump in the electric field (really “displacement field") between adjoining
fluids allows for significant charge accumulation. Conversely, in Regions II and IV, far-field
potentials are of different signs so that current is flowing either into or out of the domain at
the outer electrodes, respectively. Current continuity at the interface can therefore only be
satisfied if the normal interfacial gradients are close to zero, leading to very low charge build
up and hence pumping.

Notably, Figures 7-8 both show that for these particular geometries, negative surface charge
leads to pumping in the positive x—direction (U > 0). This is because d¢*/dx > 0 along
the larger meniscus. A surface Lorentz force therefore will act to drive the negative charge
up the potential gradient, producing a Maxwell stress on the fluid in the positive x-direction.
The reverse happens on the shorter meniscus (where d¢*/dx < 0), but to a lesser extent.
This difference leads to a net flow in the positive x-direction.

The points of zero pumping velocity and maximal velocity magnitude are ones of interest.
Zero velocity occurs when V' = =V, i.e. when the far-field potentials are equal (note the
signs in the definitions (2.15)). All current therefore must either be absorbed by or originate
from the inner electrodes. Either way, the electric fields are completely symmetric about y = 0
and zero current crosses the menisci, leading to zero charge accumulation. To illustrate one
of these cases, Figure 9a)-c) plots the (a) leading order, (b) correction and (c) full potentials,
for the case of the blue star in Figure 7, where V| ~ 12.6 and V[ ~ —12.6. It is particularly
clear in Figure 9b) that all far-field current flows into the inner electrodes. Moreover, both
the leading order solution in Figure 9a) and the correction in Figure 9b) are symmetric about
y = 0, thus necessitating that no current crosses this line and precluding charge accumulation
on menisci.

Conversely, maximal pumping magnitude occurs when V! = (1/R)V[. This is the limit
where zero net current flows from the far-field into or out of the inner electrodes and therefore
all current that originates at one far-field exits at the other (I* = I7). This limit maximises the
current flowing across menisci, which maximises the differences in the electric (or strictly
displacement) fields across menisci, leading to maximal charge accumulation. Conveniently,
this is also the only case in which we have obtained an analytical solution for the velocity
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Figure 10: Plots of a) velocity streamlines in the full domain, b) velocity streamlines in the
inner region (a zoomed-in perspective of (a)), and c¢) contours of electric potential. In b)
the streamlines spacing is 8 times smaller than in a), but the overlapping streamlines have
been highlighted. The flow is mostly towards the right, except close to the inner electrodes
where it recirculates. Here R = 1/2, V{ ~ 17.4,V =RV} = 8.7,§=0.1,L =0.1 and
¢ = 0.2. Since the current entering at the top equals that leaving the bottom, this case leads
to maximal charge accumulation and fluid pumping and it corresponds to the red square in
Figure 7.

streamfunction, given by (6.3) and (6.21). To visualise the flow pattern and the potential for
this case, Figure 10 a)-c) plots streamlines for the full composite velocity field, streamlines
for the flow close to the interface (inner region), and potential in the inner region, respectively.
In the zoomed-in perspective of Figure 10 b), additional streamlines have been added for
visual clarity. Figure 10 a) shows that the flow becomes one-dimensional relatively quickly
away from the interface between the two fluids. Near the interface, the streamlines appear to
bend around a region of recirculation centered on the shorter meniscus. Then, in the outer
region, the flow tends to a linear shear flow. Finally, Figure 10 c) shows the electric potential.

8.3. Effect of R and Q: conductivity and permittivity ratios

How the scenarios of zero pumping and maximal pumping (discussed in the previous
section) change with the conductivity ratio R can be viewed clearly in Figure 11. The
voltage relationships are plotted for fixed power (Pj, = 100), but this time R is varied from
R =1 down to R = 1/16. The points of zero pumping remain fixed on the line Vi = -V,
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Figure 11: Effect of varying R on: a) Two solution branches for V1, given by (8.2) for
§=0.1,L =0.1,5 = 0.2 and Pj, = 100. b) Corresponding pumping velocities for the
voltage combination in part a). For marker descriptions, see caption for Figure 7.

while those of maximal pumping lie on the intersection of VI = (1/R)V[ with (8.4). This
intersection point, when varied with R, traces out the curve shown in Figure 11a). In Figure
I1a) it is clear that decreasing R lowers the overall magnitude of both voltages. This is
because decreasing R means that the lower fluid becomes more conductive. Then for the
fixed potential difference (between inner electrodes) more power will flow between the inner
electrodes via the lower fluid, leaving less power available for the inputs at the top and bottom
electrodes. In Figure 11b) we plot the corresponding pumping velocities. When R = 1 there
is zero pumping speed, and hence the curve appears as a horizontal line segment on U = 0.
When this is the case, the electric fields in the two fluids are continuous across the menisci
and, since Q = 1 here, the displacement field is as well. Therefore no charge can accumulate.
As R decreases from 1, the ellipse formed by the velocity starts to orient itself to align with
V| = 0. This happens because as the lower fluid becomes more conductive and the overall
input power is still constrained, the optimal situation becomes one where the driving potential,
V1, and therefore potential gradient in the lower fluid is small. Then as the potential gradient
shrinks in the lower fluid, its deleterious impact on the charge accumulation is negligible,
leading to more charge on the interface and more pumping. However, as R is decreased
further, the power required to flow current between the two inner electrodes in the lower fluid
eventually begins to dominate. This leads to a decrease in the available power to supply at
the far-fields and therefore smaller magnitudes of the normal electric fields.

This trend in the pumping velocity is further elucidated by Figure 12, which shows how
the maximum achievable velocity, at a fixed power Pj, = 100, varies with R and Q. The left
axis is pumping velocity, while the right axis is power consumed by the inner electrodes,
namely I; — I (see (7.10)). For reference, the Q = 1 curve is a continuation of the discrete
maximal velocities depicted (red squares) in Figure 11. The power constraint (P;, = 100)
results in a minimum value of R to exist; in this case R > 0.033. When R ~ 0.033, then the
inner electrodes consume all available power, with no power left to generate normal gradients
in the potential fields, yielding zero charge accumulation and pumping. For all curves with
Q > 0, the pumping speed is also zero when QR = 1. This is because the two fluids
have identical displacement fields and therefore there is no interfacial charge accumulation.
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However, when Q = 0, the impact of the displacement field of the bottom fluid is removed
entirely and the normal potential gradient in the upper fluid is completely responsible for
charge accumulation. Because the signs of the normal gradients in both fluids are the same,
this maximises charge accumulation and pumping for any R, and hence minimising Q would
be desirable. However, even if Q = 0, the pumping speed decreases back to zero in the limit
R — o0, as the power flowing vertically in the upper fluid vanishes, with the power flowing
in the lower fluid dominating {. In reality if Q is small but finite, then the pumping speed will
return to O at a finite R value, where QR = 1. Finally, if QR > 1 the interfacial charge will
become positive and the flow driven in the opposite direction, leading to negative values of
U.

A direct consequence of the pumping speed approaching 0 as R — 0 and R — oo is that
there exists some R that maximizes the pumping speed, easily observed in Figure 12. To
calculate this value of R we use (7.16) with V[ = RV (the optimal electrode configuration)
and I = I~ (= V) to write that

Pin — (1+%) +log (1/p)

Vi =
+ 5(1+R)

(8.5)

Substituting this into the formula for the pumping velocity, (6.23), results in an explicit
expression that can be differentiated to maximize U for any parameter; here we maximize
over R. Taking the derivative with respect to R and setting this to O results in the cubic
equation

27PiuR*[Q (R+2)+1] =8 (R+1)? (QR + 1) log(1/p) = 0. (8.6)

Recall, p is a purely geometric parameter and independent of R. Given a Q, this is trivially
solved numerically and the value inserted into (6.23) to compute a maximum velocity
Umax (Q). This maximum is plotted in Figure 12, tracing out a black dashed line. The curve
is parametrized by Q and intersects each blue curve at its maximum value.

8.4. Efficiency

Now we discuss the efficiency of the pump, a concept initially defined and discussed in
section 7.3. To do this we fix the geometric parameters, § = 0.2, S = 0.1 and L = 0.1
and the fluid dependent parameters R and Q. Figure 13 plots (all dimensionless): a) power
input, b) pumping velocity per unit power and c¢) pump efficiency normalised by the electric
Reynolds number; and shows how each varies with the potentials Vi (the potentials of the
upper and lower electrodes). The equation for efficiency is given by (7.21). The values of R
and Q were set at R = 0.027 and Q = 1.72, taken from droplet experiments by Salipante &
Vlahovska (2010) and they correspond to silicon oil as the upper fluid and castor oil as the
lower. From Figure 13a) we see large power inputs when either |V}| or |V | is increased, but
power increases quicker with |V |. This is because, as R is small, the lower fluid is much
more conductive than the upper, therefore yielding significantly more current through the
lower fluid when |V | is large than in the upper fluid when |V}] is large.

Figure 13b) shows that there are two global extrema for pumping velocity per unit power.
In view of previous discussions it is not surprising the two extrema are located along the
line VI = (1/R)V . Additionally, Figure 13b) shows zero velocity along V} = —V . Finally,

T When V} = (1/R)V] is substituted into (8.2), it can be shown that V{ = OR Y2y as R > oo,
but V| = O(Rl/ 2). The current leaving the top electrode (the same as that entering the bottom one) is

I* = I~ = O(R™'/?) and thus the power of the top electrode I*V} = O(R™!) vanishes as R — oo, whereas
the power of the bottom electrode, /- V|, remains finite.
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Figure 12: Left axis: Maximum pumping velocity (over all choices of V) for a fixed
power input P;, = 100 as a function of R and Q. Right axis: Total power consumed by the
inner electrodes, I; — I (see (7.16)).

Figure 13c) plots efficiency normalised by Re. (assumed to be small) to create a parameter
independent of the inner electrode potentials, V.. A choice of V). (hence Re.) will then
simply result in a scaling of the values shown. Figure 13c) shows that the pump efficiency
is also generally largest along the line V] = (1/R)V[. Interestingly there is no global
maximum but rather the efficiency increases monotonically moving out from the origin
along VI = (1/R)V, eventually tending towards a constant value. This happens because,
by the definition of the far-field currents, the input power will scale like the potentials
squared, while U increases linearly with the potentials (so the output power is also quadratic
in potentials, and the efficiency is thus bounded). This linear scaling of the velocity is a
consequence of our decision to scale potential fields using the inner two electrode potentials.
In reality, one can expect velocities that scale linearly with both the top/bottom and inner
potentials, possibly yielding quadratic growth if the far-field potentials and inner electrode
potentials are scaled at the same time.

9. Summary of dimensional theoretical results for optimal pumping

Finally, we summarise the closed-form theoretical results in dimensional form for the reader’s
convenience. The potential and velocity fields were found, assuming a small period D.
compared to height H,, in parametric form in terms of the complex variable £, which lies in
the annulus p < |£| < 1. The upper and lower halves of the annulus correspond to the upper
and lower fluids, respectively. The potential in each fluid (asymptotic composite solution) is:

2
2 ey = Vi (17 2are) 4 Re [WE) 1)
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Figure 13: As a function of the upper and lower potentials (all dimensionless): a) Contours
of power, Pj,; b) Contours of pumping velocity per unit power (U/Pj,); ¢) Contours of
efficiency, scaled by electric Reynolds number, 7. /Ree. In all figures, S = L = 0.1,
0=0.2,0 =1.72 and R = 0.027. The values for Q and R are taken from experiments by
Salipante & Vlahovska (2010), corresponding to silicone oil above and castor oil below.
The two dashed lines visible in b) and ¢) are given by VI = (1/R)V [, the scenario that
gives the maximal pumping speed for a given Pj,.
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ot+o 2 2r ©92)
D, IF oI Ir—1I; '
Woe) = -2 [ EET I gy - B ogec .
where the complex conformal map is
So=xt iy = Zu(0) =~ logn(). ©3)
Vs
with
P ,P)P(La, P ,P)P({a,
n(¢) = mLElxpIPCa.p) £(¢) = Lé/@p)P(ea. p) 9.4)

P(¢[@,p)P(Sa,p)’ P(¢/a, p)P(Sa.p)’
and P(Z, p) given by (A 8) (and M is such that [p({)| = 1). The parameters @ = ir and
p depend on the geometric parameters L and S and can be determined from the solution
of two simple non-linear equations. The current densities leaving/entering the top/bottom
electrodes are

. 1 ((c*/o7)H* + D.N)c*V], + D.Ac*V],
*  H, (oct/o)H, + (c*/o~ +1)D.A ’
__ 1 DAc'VI +(1+ DNV,
*  H,(0ct/oc )H, + (0c*/oc~ +1)D.A’
where A is given by formula (4.9). The total current flowing from the high potential (+V).)
inner electrode to the low potential (—=V).) inner electrode is given by

(9.5)

(9.6)

_\ 4
11*—12*:‘/“* (O’++0' )7—rlog(1/p). 9.7)

The pumping velocity in both fluids can in general be found using an integral derived
from the reciprocal theorem, requiring integration along the fluid—fluid interfaces only. The
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case of maximal pumping (which is when V{,/o* = V[, /o) conveniently simplifies to the
closed-form result

_20’+(E_/0'_—€+/0'+)V||*VI*( 1 )(/ _/ )log‘P@/a,P)P({@’P) a7

T (ut+p)(H.+ D)\ 4n? P({/@, p)P({a,p)| il
(9.8)

where A, is (6.11), and C(J)r and C; are the outer and inner semi-circular boundaries (traversed
anticlockwise) of the upper half-annulus. Moreover, the detailed analytical solution for the
velocity field has been found in this optimal pumping case (not just the pumping speed).
An asymptotic composite solution (valid throughout the domain of each fluid) for the
streamfunction is:

v =Im[(Z. - z) [ (z)], (9.9)

where there is reflectional symmetry, f,” (z.) = fif (z+), and

1 S 2 1_(_1)2 n pn
2 L e )+ 5)

- ——iz,. (9.10)

H,ioc* (e” /o™ —€" /o) V|.V],
D, 2ut+u )(H.+D.A,)

[H(Z.(0) =

From this, another expression for U, arises (by considering the limit { — a = ir in the
above), given by

Aot (e o —€[o) VLV, i (—1)m+! - (p)2m—l
TR ) A DA A -2 r )
(9.11)
Finally, the total power consumed per period per unit depth is given by
Py =D, (VI*I: + VI*I;) + Vi (I1s = D) . 9.12)

9.1. Example calculations

To provide intuition on the ability of this pump to move leaky dielectrics, here we calculate
some device metrics for realistic parameter sets. We return to the experiments of Salipante
& Vlahovska (2010) who studied droplets of silicone oil in a castor oil medium. We choose
silicone oil (¢*/€y = 3.0, o* = 1.23 x 107'2 S/m, u* = 0.97 kg/ms) to be the upper fluid
and castor oil (¢” /ey = 5.3, 0~ = 4.5 x 107" S/m, u~ = 0.69 kg/ms) to be the lower.
The parameter €y = 8.85 x 10712 F/m is the permittivity of free space. Next, we choose
D, =2mmand H, = 1 cm so that 6 = 0.2, S = L = 0.1, and the smallest feature size is
200 pm. Finally, we choose V|, = 0.1 kV and V{, = 2kV (this is the same as in table 1) with
V[, = Vi.R. This results in U, ~ 0.5 mm/s with a power consumption of Pj,. = 2.5 x 107°
W per period per unit depth. If the microchannel is 10 cm long and 2 mm wide then there
are 50 total periods and the pump would require a total of around 0.26 W to run.

10. Discussion

In this paper, we presented a microfluidic architecture for pumping a pair of leaky-dielectric
liquids in a channel, driven by Maxwell stresses on common liquid-liquid interfaces
(menisci). Gradients in interfacial charge were induced with an alternating array of positive
and negative electrodes inserted into the liquid-liquid interface (inducing current flow
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“parallel" to the interface), and an upper and a lower electrode in the far field (inducing
current flow “normal” to the interface). The necessary existence of both normal and tangential
electric field gradients leads to Maxwell stresses on the fluids, and due to asymmetric spacing
of the interfacial electrodes, a net flow.

To explore the theoretical potential of such a design, we assumed the Taylor—Melcher leaky-
dielectric model and Stokes flow, and proceeded to solve for the electric potential, velocity
field, and resulting pumping speeds. To make analytical progress, we neglected charge
advection (zero electric Reynolds number) and considered the geometric limit where the
inner electrode period is small in comparison to the channel thickness (i.e. distance between
the far-field electrodes). This enabled the use of matched asymptotic expansions, whereby the
liquid domains decomposed into an “inner region" close to the liquid interfaces, and “outer
regions" above and below where the fields appear one-dimensional (up to exponentially
small errors). The electrical problem in the inner region was then a nontrivial two-phase
one, which was exactly solvable using complex variable techniques. It was a superposition of
two current flow problems: (i) current flow between the inner electrodes (solution following
from prior work); (ii) current flow to/from the far field, with the inner electrodes grounded.
This latter solution, presented in section 4 (and derived in A) will likely have applications to
other physical two-phase problems governed by Laplace’s equation. Our analysis yielded an
explicit formula for the pumping speed for any choice of electrode potentials. Moreover, the
entire flow fields for both liquids were found to be identical, up to reflection in their contact
plane, no matter their viscosities. During our analysis we also assumed that the menisci
were flat (small capillary number), which facilitated the analytical methods used, but this
could be relaxed by the use of boundary perturbations or different complex methods. Similar
flows over periodic surfaces with curved menisci have been solved with analytical methods
in the context of superhydrophobic surfaces (Crowdy 2016, 2017), and could potentially be
employed here.

Next, we investigated the optimal choice of control parameters, in particular the electrode
potentials, that maximise pumping velocity. We found that by varying the electrode potentials
relative to each other, one has control over the magnitude and direction (i.e. to the left or right)
of the pumping. For a given input power, the magnitude is limited by a maximum value that
depends on the liquid conductivity and permittivity ratios (R and Q) and the inner electrode
spacing/width. This maximum occurs when there is net-zero current flowing from the inner
electrodes, i.e. when the component of the current flowing to/from the far field is uniform
(or unidirectional)—this is easily ensured by choosing the electrode potentials appropriately.
This “optimal pumping" scenario has even simpler formulas, and we conveniently provide the
entire (composite) velocity field in closed form. This optimal pumping speed can be achieved
in either direction, given a liquid pair and geometry, by simply exchanging (up to a factor of
R) the potentials of the far-field electrodes. In general, the pumping direction depends on the
sign of RQ — 1, the electrode potentials, and also the spacing of the inner electrodes, thus it
has several control pathways. For example, the set of positive and negative inner electrodes
can be realised practically using two interdigitated combs, and hence these could be moved
relative to each other mechanically, changing the electrode spacing and hence flow direction.

Pumping efficiency—the ratio of mechanical output power to electrical input power—was
also analysed and found to be maximised by maximising pumping velocity, which is perhaps
expected. However, the efficiency increases towards a maximum as the magnitude of the
far-field potentials is increased (relative to the inner electrodes). The efficiency is, however,
proportional to the electric Reynolds number (7.4 = O(Re,)) which we assumed here to be
small for tractability, and thus the efficiencies are not expected to be significant. If greater
efficiency is desired, one could consider scenarios with larger Re. values and this would
necessitate the inclusion of charge advection on the interfaces.
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Employing periodic, asymmetric structures as we have done here, has many general
advantages for microfluidic pumping as pointed out by Ajdari (2000). A major advantage
is that no global (or macroscale) electric potential gradients in the direction of flow are
necessary; only local (or microscale) potential gradients are employed, with the global net
flow arising from symmetry breaking. This is particularly significant for leaky-dielectric
fluids which, due to their very low conductivity, would need prohibitively large streamwise
potential drops in a simple planar channel geometry, and thus pumping would be limited to
short channels. However, the periodic design considered here has no limit on the length of
the channel.

In order to employ Maxwell stresses here for fluid pumping, it was necessary to induce
a surface charge on the liquid-liquid interfaces, and we achieved that here by imposing a
normal electric field with additional upper and lower electrodes. This may not be ideal, given
this implies an additional flow of current and therefore energy losses, so exploring other set
ups to generate normal electric fields in future work may be advantageous, e.g. altering the
shape of the inner electrodes in an asymmetric fashion.

Finally, although we have focused on the combination of silicon and castor oil, there are
many other fluids that could be pumped with this architecture, including the mineral oils
and fluorinated oils often used in microfluidic droplet generation (Moragues et al. 2023). In
fact, a whole class of fluids, so-called electro-conjugate fluids, are leaky-dielectrics which
have been used to generate jet-like flows using breaks in symmetry of normal Maxwell
stresses (Raghavan et al. 2009). Additionally, beyond leaky-dielectrics, our mathematical
model loses its efficacy but the geometry presented here should still provide pumping
power. As an example, Pascall & Squires (2011) considered the electro-kinetic behaviour
of electrolyte—electrolyte interfaces and electrolyte-liquid metal interfaces. If, say, you
considered such fluid combinations in our geometry, the break in symmetry of our electrodes
may still cause significant electrokinetic flow. Set up in this manner, the device could be
viewed as the fluid—fluid counterpart to the Ajdari’s initial pump design (Ajdari 2000). This
is a possible source of future modelling work that could lead to significant microfluidic

pumping.

Appendix A. Derivation of far-field current flow past interfacial electrodes

This appendix focusses on the derivation of the unbounded two-phase problem, where the
far-field currents in both phases are in general different, and the interfacial electrodes are
grounded. This appears as one component of the inner solution, close to the interface y = 0,
embedded within a finite channel as described in section 3.

It is necessary to determine the two fields ®*(X,Y), which are harmonic in the upper
(¥ > 0) and lower (Y < 0) semi-strip, respectively, as shown in Figure 14. They satisfy
conditions (3.32)-(3.34) on the interface Y = 0, with far-field behaviours

ot ~ I'Y, Y — 400, (A1)
d" ~RIY, Y — —c0. (A2)

A.1. The complex potentials
Let

wh(z) = @ +iy™, w () =@ +iy~, where z = X +iY, (A3)
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" ~RITY

Figure 14: Two phase electric field problem on either side of a grating of electrodes. There
are two electrodes per period. The period is taken to be unity. The upper half annulus
maps to the upper-half period strip, the lower half annulus to the lower-half period strip.
An important fact is that, if the mapping Z(¢) in (A 7) takes £y on Ca“ to a point zg on

meniscus 1, then it transplants the complex conjugate point Z; on C,, to the same point.

denote the complex potentials in the upper (+) and lower (—) period semi-strips assumed to
be of unit period. The boundary conditions (A 1)-(A 2) necessitate that
wt(z) ~ —-il"z, asY — +oo,
_ (@) R (Ad)
w™(z) ~ —iRI z, asY — —oo.
The electrodes are grounded, (3.32), and the continuity conditions on the menisci, (3.33)-
(3.34), can be written using the Cauchy—Riemann relations as:

oxt 10y~
Pt =0, = ——=—. AS
0X R 0X (A5)
On integration of the second condition along the menisci, it can be inferred that
b o +_ | X /R+c1, onmeniscus 1,
T=0, X = { X /R +cy, onmeniscus 2, (A6)

where ¢ and c; are real-valued constants. Without loss of generality one of these can be set
to zero (but not both).

A.2. Conformal mapping
The conformal mapping function

2= 2(8) = —5= logn(2). (A7)

where

n(0) = P({/a,p)P({a,p)
P(¢{[a, p)P({a, p)’

with @ = ir for p < r < 1 transplants the upper half annulus

p<ldl<1, Im[Z] >0, (A9)

P.p) == (1= -p"/0), (A8)

n=1
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to the upper-half period strip—see Figure 14. This mapping is familiar from Crowdy (2011)
and Crowdy et al. (2023) (see also Crowdy (2020)). The two real-axis portions p < ¢ < 1
and —1 < ¢ < —p are transplanted to the two grounded electrodes of equal length, the upper
half circle

Co ={¢ : 1£I=1, Im[{] > 0} (A 10)
is transplanted to meniscus 1, the upper half circle
Ci ={¢ : I{I=p, Im[{] > O} (ATD)
is transplanted to meniscus 2. The constant M is taken to be
P(1/a, p)P(a,
_ P(1/a,p)P(a,p) (A12)

~ P(1/a,p)P(a,p)’
to ensure that the section of the annulus on the positive real axis maps to the electrode plate
pinned to (the left of) the origin in Figure 14, i.e., Z(1) = 0. The constants p and & = ir are
fixed by the requirements that

Z(p)=-L,  Z(-1) =S, (A 13)

furnishing two algebraic equations for the two unknown p and r. It is the fact that « is chosen
on the imaginary axis that means that the two electrodes are of equal length. A generalization
to unequal electrodes simply requires @ to be a more general point in the upper half annulus
p <[] < 1,Im[Z] > 0. It turns out that the same mapping transplants the lower half annulus

p <<l Im[{] <O, (Al14)

to the lower half period strip.
The function P(Z, p), which is closely related to the so-called prime function of the annulus
(Crowdy 2020), satisfies two important functional relations:

P p) ==L p), PP p)=—-CT'P(Lp). (A15)

These can be verified from the infinite product definition (A 8). An important observation is
that if z is a point on either meniscus with preimage ¢ on either Cj or C{ then the image of

2, which lies on the boundary of the lower half annulus, is the same point z.

A.3. Solution method
Define the two composed functions

W) =w™(Z(0), W () =w (Z()). (A 16)
First note that, by the conditions (3.32),
Re[W*(£)] =Re[W™({)] =0, onl={. (A17)
This implies that the Schwarz conjugate functions W, () defined by
W=(5) = W=(2), (A18)
satisfy the functional relations
W) = -W*(2). (A19)

It is important to study the singularity structure of W*(¢) inside the annulus p < |£] < 1.
Since, as { — «,

Z(0) ~ —i log(£ - a), (A20)



then, by (A4),as { — «,

+

I
WH(Q) ~ =5 log(£ - a).
By (A 19), it can be inferred, by a Schwarz reflection argument, that

2

I -
W* () = -=—1log f-a + a function analytic in the annulus.
¢

Similar arguments reveal that

2r (-«

The condition (A 6) on meniscus 1 implies that, on C,

RI™ -
W= () =—-———]Iog (g’ Q) + a function analytic in the annulus.

Re[W* ()] =Re[W™(D)],  Im[W'({)] = %Im[W‘@] *ei,
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(A21)

(A22)

(A23)

(A 24)

where use has been made of the fact that complex conjugate points on Cy correspond to the

same point on the meniscus. The first of these implies that
WHO + W) =W (D) + W= ().
This can be written
W) +WH(1/8) =W (1/) +W=(2)
or, on rearrangement,
W) = W=(0) = =(W*(1/0) =W (1/0)).
Using (A 19), this becomes
WHO) + W™ () = =(WH(1/0) + W= (1/2)).
This can be restated as
Re[F({)] =0,  onC,
with
F(O) =W () +W ().
The second condition in (A 24) implies that

WHO) - T(Q) = 5 (WD) - (0)) + 2iey,

or

WHQ) = TF(1/0) = 5 W (1/0) = W=(0)) + ey,

On rearrangement,

W) + L=

|

Using (A 19), this becomes

WHQ) = 5 W0 =WH(1/2) = 5 (1/2) + 2iey,

This can be restated as
Im[G({)] = ¢y, on Cy

W=(0) =WH(1/0) + %W‘(l/g) +2icy.

(A25)

(A26)

(A27)

(A28)

(A29)

(A 30)

(A31)

(A32)

(A 33)

(A34)

(A35)
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with
1
GO =W ()= W (). (A36)

An identical set of arguments on the other meniscus, corresponding to Cj, can be used to
show that

Re[F()] =0,  onCy, (A37)
Im[G({)] = ca, on Cj. (A 38)
From (A 22) and (A 23) it can be deduced that, inside the annulus p < || < 1,
I"+RI™ -
F()=- al log (é’ f) + a function analytic in the annulus. (A39)
2r {—a
and
-1 [ —a . .
G)=- > log [—% + a function analytic in the annulus. (A 40)
Vs -

If F (/) and G(¢) can be found then, from their definitions (A 30) and (A 36), it follows that

N .. _ R ~
WO = 7 (FO+RGQ), W= = (FO=G@).  (A4D)

It is now posed, based on conformal slit mapping ideas presented elsewhere (Crowdy
2020, 2011, 2012), that admissible F({) and G({) are given by

FO =+ ROZQ. 60 = Toge, )
where
= BT o g1 =
This choice corresponds to ¢; = 0. First, note that
F({) =i(I" +RIT)Z({) = =F(Q), (A44)
and that
G0 =-E 1070 = - D tog1/60) = —G0), (A 45)

2n 2r
thus confirming that both functions given in (A 41) satisfy (A 19), as required. It is also clear
from the given functional forms that F({) and G ({) have the singularity structure given in
(A 39) and (A 40).

It is easy to check, using the properties of the mapping function Z () and the properties
(A 15), that F(¢) satisfies condition (A 29) on Cy and condition (A 37) on Cy. To confirm
that G(¢) satisfies (A 35) on Cp and condition (A 38) on Cj it is noted that, as shown in
Chapter 5 of Crowdy (2020), the function £(¢) is a radial slit mapping from the annulus
p < || < 1 that takes Cy and C to radial slits with the two real axis portions -1 < ¢ < —p
and p < ¢ < 1 being transplanted to the unit circle, i.e., |£(¢)| = 1 for =1 < ¢ < —p and
p < ¢ < 1. In particular, the fact that Cy and C; are transplanted by £(¢) to radial slits, where
£(£) has constant argument, means that G () satisfies (A 35) on Cyp and condition (A 38) on
C.
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On substitution of the functional forms (A 42) into (A 41) we arrive at the final results

o B[R 020

W) = | g+ P g, »
R [(U*+RI) (1+— )

W0 =~ [ oo - L g

The required potentials ®* then follow as the real parts of the two functions in (A 46). The
relevant value of ¢; can be found from this solution (note we chose ¢, = 0), and it turns out
to correspond to the total current flowing out of a single interfacial electrode. This is easily
computed by a global current balance to be ¢y = (I~ — I*)/2.

Any pure imaginary constant can be added to this solution pair and this will not affect the
grounded condition on the electrodes or the continuity conditions across the menisci.

A.4. Special case: I~ =T
When I~ = I'* formulas (A 46) reduce to

+ - +
W) = - (TR 1ogn<4>] = -3 logn(0), i
w0 =~ [ CE g | - -

R+1 2r
which correspond to the trivial solutions
w(z) = —il'z, w™(z) = —iRI z. (A 48)

A.S. Special case: R =1

When R = 1, which is the case of a single fluid occupying both regions, it can be verified that
all potential fields are continuous on the menisci. These checks are performed in appendix
B.

A.6. Far field behaviours

A useful observation following from (A 8) and (A 43) (and used previously in Crowdy (2011))
is that

n(¢) (P(ga, p))2 A4
§(0) = M \Pa.p)) (A49)
Therefore, (A 46) can be written as
e RUI* =17 P(la,p)\’
WO =120+ g e M )
-1 (¢a.p)\’ "0
_ I— _RI+—I_ P(la,p
W0 = iR 200 - e ()
Since { — «a corresponds to Y — +co then it can be inferred that
wh(z) ~ —ilTz + A%, (A51)
where
. RU* -1 P(a?p) \’
I e o) (Ao
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Similarly, since { — @ corresponds to Y — —co then

w (z) ~—iRI"z+ A7, (A53)
where
R(I* =1~ Pl p)\
-__ ( ) ( (|0/|2,P)) ) (A 54)
2n(R + 1) P(@, p)
On taking the real part, it follows that (using that |[M| = 1)
O ~I'Y + (I = I7)A, O ~RITY+(I"—1)A, (A55)
where
R P(a?, p)

: (A56)

A= 0
7R+ 1) [P(laf, p)
It is worth pointing out that this formula is reminiscent of that derived in Crowdy (2011) for
an “effective slip length” relevant in the problem considered there.

Appendix B. Solution for far-field current flow: special case R = 1

In this appendix, we consider the complex variable solution in the inner region for far-
field current flow (and grounded interfacial electrodes) in the special case R = 1, i.e. the
conductivities of the two fluids are the same. This corresponds to the case of a single fluid
occupying both regions, and here we verify that the complex potentials are continuous on the
menisci. This is more subtle than it appears: it must be verified, for meniscus 1, that when
¢ € Co,

W) =W (0). (B1)
and not that W*({) = W~ ({). Note however that

P(1/(¢a), p)P(a/L, p) _MP(é“a,p)P(é“/a,p) _

"O=Mpir@m, pp@icp - NP prame " C
but that
c1)e) < PUCD DP@/Lp) P p)PETp) 1 53
P(1/(@), P@[C.p) P p)P(Cfap)  EQ)
When R =1,
w0 =5 | ogno + L g
L[(IF+17) (I* = I) (B4
W= () = ) [Tlogﬂ(f) - Tlogf@)} ,
therefore on Cy where £ = 1/¢,
w0 =5 [ ogn+ P g,
w1j0) =5 [ eenar0 - o P 0] @9
1 o+ - +_ 7=
3 [ o0+ Eo g,

thereby confirming (B 1).
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W) =W () =W (p*/0). (B6)
Note however that
2, P(0*/ (L), p)P(p*a/L,p) _ P({a,p)P({]a,p) _
MO b . Pl - PEEp P BT
but that
> P(p*/(La), p)P(p*@/L,p) _ PLa,p)PL[@.p) 1
SO = (2 (@) p)P(Pallp) - PEE P ap)  EQ) D
Therefore, from (B 4), on C; where ¢ = p?/¢,
1 [ (7t - + _ - 1
w0 =3 | Yo togn(o) + L oge 0]
1 : + - + _ - )
w010 =~ | o wogn(e20) - S P oge 20| ®9)
L[+ 1
-3 | e o+ )1og§(§) ,

thereby confirming (B 6).
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