The first law of binary black hole scattering
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In the last decade, the first law of binary black hole mechanics played an important unifying
role in the gravitational two-body problem. More recently, binary black hole scattering and the
application of high-energy physics methods have provided a new avenue into this classical problem.
In this Letter, we connect these two themes by extending the first law to the case of scattering
orbits. We present derivations based on classical S-matrix, Hamiltonian, and pseudo-Hamiltonian

methods, the last of which allows us to include dissipative effects for the first time.

Finally, a

“boundary to bound” map links this first law to the traditional bound-orbit version. Through this
map a little-known observable for scatter orbits, the elapsed proper time, is mapped to the Detweiler
redshift for bound orbits, which is an invariant building block in gravitational waveform models.

Introduction.—The discovery of gravitational waves
(GWs) from compact binary systems opened a new chap-
ter in astronomy. Given the enhanced sensitivity and
expanded frequency range of future GW detectors, we
expect a dramatic increase in the number and variety
of detectable compact binary sources [1-5]. Increasingly
accurate waveform models will be needed to detect and
analyse these sources [6, 7], calling for the development
of new tools to study the classical two-body problem.

Motivated by GW modeling, a host of techniques
have been developed to solve the two-body problem in
general relativity, including numerical relativity, which
numerically solves the fully nonlinear Einstein equa-
tions [8]; gravitational self-force (GSF) theory, a per-
turbative method that applies when one body is much
smaller than the other [9]; and Post-Newtonian (PN)
and Post-Minkowskian (PM) theory, weak-field expan-
sions that apply when the two bodies are widely sepa-
rated [10, 11]. Historically, focus has been on the bound,
inspiralling systems that are the dominant sources for
GW detectors. However, the case of hyperbolic, scatter-
ing encounters is now of great interest: it is now known
that data for scattering orbits can inform bound-orbit
models using the effective one-body framework [11-17]
or through an analytic continuation from scattering to
bound observables [18-23], spurring the development of
new particle physics tools [24-28] that have enabled an-
alytical computations of the two-body scattering Hamil-
tonian and related observables at high PM order [29-50].

In the bound case, synergies between different methods
have consistently helped drive progress [51, 52]. An im-
portant tool in those synergies has been the first law of bi-
nary black hole (BH) mechanics [53-60], which describes
how a binary system responds to variations of its parame-
ters (see also [61]). This law has played an important role
in the most accurate GSF waveform model [62, 63] and in
utilizing GSF results within PN, effective one body, and

numerical relativity calculations [64, 65]; see [66] for a re-
view. For spinless particles, the binary’s response to vari-
ations is determined by a basis of observables B< consist-
ing of the periastron advance A®, the radial frequency
Q,, and the averaged Detweiler redshift (z) [53, 57].

To date, a first law for scattering scenarios has not
been derived. In this Letter, we establish such a law and
find the corresponding basis of scattering observables B~ .
Two of these observables are well studied: the deflection
angle y and the time delay. We complete the basis with
a third observable: the elapsed proper time Ar. Our
approach is based on a pseudo-Hamiltonian formulation
of GSF theory [58, 67—69]. This allows us to include
dissipative contributions in the first law, unlike all pre-
vious formulations for bound orbits. By comparing to
bound-orbit formulations, we also establish a novel ana-
lytic continuation between the elements of the scattering
B~ and bound B< bases of observables.

Finally, we link our calculations to high-energy physics
methods, proving that the exponential representation of
the classical S-matrix [37, 38] provides a generating func-
tional for the basis of scattering observables and deriving
a first law from a PM Hamiltonian.

Conventions We use geometric units with G =c =1
and the (— + ++) metric signature.

First law in the probe limit.—In the GSF approach, the
smaller body (of mass my) is treated as a point-particle
perturbing the spacetime of the large body, which we take
to be a Schwarzschild BH of mass msy. We first consider
the probe limit (OSF order), in which the particle moves
on a geodesic of the Schwarzschild metric gi%hw. The par-
ticle’s motion is governed by the geodesic Hamiltonian
Ho = (1/2) g4, Puby, Where p, = mlgi%hwdx'@/dT is the
particle’s 4-momentum and 7 is its proper time. Assum-
ing, without loss of generality, that the motion lies on
the equatorial plane 8 = 7/2, we label the position of the
particle with «® (7) = (¢(7),7(7),7/2,¢(7)). Because



of Schwarzschild’s Killing symmetries, the particle’s en-
ergy and angular momentum E = —p;o and L = pgo
are conserved (here and below, a subscript 0 indicates
the on-shell geodesic value). We now consider unbound
geodesic orbits that begin and end at r = oo; such or-
bits have £ > my and L > Lt (F), where Lot (F) is a
critical value of the angular momentum [70].

Following Carter’s application of Hamilton-Jacobi the-
ory [71], we use the constants of motion P; = (m, E, L)
as canonical momenta and transform to canonical coor-
dinates (X, P;) using the type-2 generating function

W(t,r,p; P;) = —Et+ Lo + I o(r; P;),

T
Lo(riP) = [ drpra(ri P, (1)
Tm
where 7, (P;) is the geodesic’s minimum radius (i.e., clos-
est approach to the BH). g5% p,.opv,0 = —m? implies

pro(r; Py) = VERT — i~ 2ma) (B2 mir?). (2)

r(r — 2mg)

In the coordinates (X%, P;), where X* = dW/0P;, the
Hamiltonian is simply its on-shell value, Hy = —m?/2,
meaning that Hamilton’s equations become [72]

dX®  9H,
dr = 9P,

mi = _mléi . (3)

Therefore X2 and X3 are constants, while X! is linear
in 7. Since X¢ = OW/JP;, this implies
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where “in” and “out” denote the initial, incoming state
and final, outgoing state.

Equations (1) and (4) imply that the total changes in
coordinate time, azimuthal angle, and proper time be-
tween initial and final states are

0
A [IT,O(Touﬁ Pz)

At = tout — tin =
0 t OF

- IT,O(Tin; Pl)] 3 (5)
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A7—0 = Tout — Tin — —

T Io(rin; Pi)] .
We are interested in the limit where the initial and fi-
nal states are defined at past and future timelike infinity,
with 7y, = 00 = rou, passing through the single radial
turning point ry,. In this limit, Ay remains finite, but
Ly 0(Tinjout; Pi), Atg, and At all diverge. However, we

can define regularized versions. Using a convenient di-
mensionless regulator € [22], we first define the scattering
radial action

o0
IiéE(Pi) = 2/ drr€p.o(r; P;) . (6)

m

Intermediate results depend on the finite value of €, but
we obtain e-independent observables in the limit € — 0;
when necessary, functions are first defined in regions
of the complex-e¢ plane where integrals converge [e.g.,
Re(e) < —1 in Eq. (6)] and are then analytically con-
tinued to € = 0 [73]. In terms of I;ée we can write the
regularized 7y, /oy — 00 limit of Eq. (5) for the full scat-
tering path as
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where yo=1im._,o x§ is the physical scattering angle, and

Aty = 3%1566(3‘)’ At = —ainh[;;(pi) L ®
Unlike x§, the elapsed times Aty and Ar7§ diverge as
€— 0. The associated physical observables, which are well
defined when € — 0, are relative measurements: the differ-
ence between Aty(P;) along the geodesic and Aty(P; ref)
along some reference orbit; and these relative quantities
will take the same values as if we had worked consistently
with finite 7y, /oy and only taken the limit 7y, /64 — 00
at the end of the calculation. In the Supplemental Ma-
terial [74], we provide exact expressions for the geodesic
scattering observables as well as the first few terms in
their PM expansions (corresponding to mymsa/L < 1).

Finally, Egs. (7) and (8) can be immediately combined
into a single equation,

I3 = —(m + x0)0L + Aty6E — Arsomy . (9)

This is our first law for scattering geodesics. Here and be-
low, we discard terms that vanish at € = 0, and equalities
should be understood in this sense.

First law at all SF orders.—Beyond leading order in
the mass ratio mj/ma, the particle generates a metric
perturbation h,g on the Schwarzschild background. m;
then moves on a geodesic of a certain effective metric
Gapg = gz%hw + hgﬁ [75], where hSB is a certain regular
piece of hog. At 1SF order, we can write hl;”ﬁ in terms of

the Detweiler-Whiting Green’s function G?{B o [76]:

1 1l
B (@ T) = - /I,G‘Eéﬁ“ Y@t (7)) porPpdF . (10)
Here po := Japdz®/dF, 7 is proper time in ., and
I" denotes the particle’s phase-space trajectory. Due to
curvature-induced tail effects, G?f @5 is nonzero for all
points z’# in the past of z*, implying h%ﬂ at a point on



T" depends on the entire prior history of I'. At higher SF
orders, there is no known Green’s-function form analo-
gous to (10), but an appropriate hljﬁ(x”; ') exists at all
SF orders [77].

In this setting, we again consider scattering orbits with
initial parameters P; = (mi, E,L). The particle’s en-
ergy and angular momentum evolve due to dissipation,
but the orbit remains planar (6 = 7/2, pp = 0). For L
above a critical threshold, the orbit remains close to a
Schwarzschild geodesic with the same initial P; [70, 78].

Since the motion is geodesic in g, it obeys Hamil-
ton’s equations with the test-mass pseudo-Hamiltonian
H = (1/2)§"pup, [58, 67, 68]. However, we devi-
ate from [58, 67] by restricting to the 4D phase space
(z?,p4) satisfying the on-shell condition H = —m?/2,

with 24 = (r,¢). Solving the on-shell condition for
pr = —H(t,z?,pa;T) gives the new pseudo-Hamiltonian
1

M= (5454 — \/@4pa)2 = 3" (545 app +m3)]

By ATV B 2
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with ¢ now the parameter along the trajectory. H is re-
ferred to as a pseudo-Hamiltonian because it depends on
the trajectory I' = {(2(t),pa(t)) | t € R}. Hamilton’s
equations in this context read

d:cA_[aH] dps [87—[]

and (12)

dt dpa dt dxA
where [-] indicates specification of I" as the self-consistent
trajectory [79] passing through (z“,p4); prior to that
specification, I' is treated as independent, and derivatives
do not act on it. We go further by replacing m; by m/ in
Eq. (10), setting m} = m; only when [-] is applied. Im-
portantly, Eq. (12) captures the full dynamics, including
dissipation, unlike an ordinary Hamiltonian description.
We derive the first law from H. Doing so will require
its relationship to the redshift z:
_d7 [ OH
Codt [ ]

13
o (13)
To establish this relationship, we consider the normaliza-
tion condition

_ dz# oH _
mi=p S = (<Hia || )

where we used p; = —H together with (12). Next we
note the first line of (11) shows that, at fixed m}, H
is a homogeneous function of (mq,p4) of order 1. Eu-
ler’ S homogeneous function theorem hence implies H =
Comparing this with (14), we ob-

my 6m1
tain (13).

Now, to derive the first law, we loosely follow [57] by
considering how H changes under variations dP; of the

initial data, with dzfi = 0. Given (12) and (13), we find
OH OH OH
OH] = ox p —0
0 = [ase®] + [ g 0ma] + [ o]
 dpa. 4 da? d7
i S + " 0pa + — 7 omy . (15)
Since h}},j vanishes for an inertial particle in

Minkowski [75], its contribution to pa and H van-
ishes in the initial state, such that pw = 10So o = L and
Hin = —pi’y = E. We isolate 6L and JE in (15) by
defining ‘interaction’ quantities p, := p, — L, pr = Dp,
and # := H — F, such that

dcft Spa + i‘f L+ g5ml
(16)
Next, we integrate (16) along the physical scattering tra-
jectory from t = —oo to t = 400, introducing the reg-
ularized integral (f)r := fr dtref as in the OSF case.

dpA
Integrating the term =

SE + [69¢] = dpAé A4

533’4 by parts, we obtain
AtOE + ([0#])r

_ da? N
= Pa—gr + Ap oL + AT9my, (17)
r

where At® := (1), Ap® = < 20 and ATE = <%>F.
We have discarded boundary terms by choosing Re(e)
sufficiently negative and discarded terms that arise from
derivatives acting on r¢ because they vanish when ana-
lytically continued to € = 0. Defining also the regularized

‘interaction’ action

>,€ € d‘TA >,€ ~
I>c:= [ dtr pAH:IT’ + [ dep,, (18)
r I

with I7°¢ := [ drrp,, we rewrite (17) as
AtSE + ([6#))r = 617 + Ap“6L + A76my . (19)

We can rewrite Eq. (19) in an alternative form
by absorbing ([§#])r into ‘renormalized’ variables
{I26, Eveny Lyen}.  Following [58]’s treatment of the
bound case, we define renormalized variables

Eron = AE, Luen = AL, 2= \*. (20)

Choosing A(P;) appropriately to eliminate ([6#]) from
Eq. (19), we are left with
S =

ot = —(m+ X)0Lren + At G Eren — ATOmy;  (21)
see the Supplemental Material [74] for more details.
Equation (21) is the first law for scattering orbits, valid
at all SF orders and including all dissipative effects. To
help understand the renormalization of the variables, we
observe that the first law defines a sense of conjugacy

between variables and observables, just as in the first



law of thermodynamics. In that sense, the renormalized
variables are the ones conjugate to the physical observ-
ables. In Ref. [80], we show that in the conservative sec-
tor, this sense of conjugacy reduces to the usual sense in
Hamiltonian mechanics: the renormalized variables are
the true, invariant action variables that are canonically
conjugate to the system’s action-angles. The need for this
renormalization stems from the fact that, as highlighted
in Ref. [68], if a system can be equivalently described
by both a pseudo-Hamiltonian and a Hamiltonian, then
variables which are conjugate in one description are not
generally conjugate in the other. As a consequence, the
momenta p,, from which E, L, and I~ are built, are
not the canonical momenta in a Hamiltonian description
of the conservative sector (i.e., they are not the momenta
one would define from a Lagrangian for the conservative
sector). We refer to Refs. [69, 80] for details.

From scattering to bound.—There is a well-known ana-
lytic continuation between the deflection angle y for un-
bound orbits and the periastron advance A® for bound
orbits, as well as between the scattering and bound ra-
dial actions [18, 19, 22]. Here, using the first laws
for unbound and bound motion, we extend these ana-
lytic continuations to include all the observables in the
scattering and bound bases, B~ = (y, At?, Ar¢) and
B< = (A®,Q,,(z)). We limit our analysis to OSF or-
der, as the analytic continuation for the radial action is
not known to be valid beyond 0SF order due to nonlocal-
in-time tail effects [21, 43].

We write the first law for bound geodesics in terms of
the bound radial action,

4 (P;)
15(P) =2 / drpeo(riP),  (22)

r—(P;)

where r+ are the orbit’s minimum and maximum radius
(i.e., the radii at periapsis and apoapsis). Following the
same arguments as for unbound orbits, one can write
the accumulated ¢, t, and 7 over a single radial period
(Tr0 = 27/ 0) as derivatives of 5, leading to the first
law for bound orbits [56, 57

27 27
E—-— 2
Qno 1) Qrv() <z>05m1 y ( 3)

SISy = —(27 + Ad)SL +

where (2)o := (1/Ty0) [, dt (dr/dt),.
Knowing the scatter-to-bound map for the radial ac-
tion [19, 22, 39],

I50(Py) = W [175°(E, Lma) — 176 (B, —L,ma)], - (24)

and comparing Eq. (23) to Eq. (9), we immediately con-
clude that there is an analytic continuation between the

full set of scattering and bound observables:

APy = xo(E, L,m1) + xo(E, —L,my),

2T Yim[ALS (B, Lmy) — At (B, —L,my))]
7,0 e—0
2000 i [ArE(E, Loma) — ArS(E, —L,my)] . (25)
Qno e—0

We note that the infrared divergences in Aty and A7
cancel in these expressions because the divergences are
independent of L; see the Supplemental Material [74].

First law from the S-matriz—In this section, we put
our first law in the broader context of the quantum S-
matrix description of the classical two-body problem [81].
Given the two-body initial state of well-separated mas-
sive point particles |¥;,) = |[p1p2) of mass m; and ma,
the action of the unitary S-matrix operator,

§ = Texp (_; / at Hint(t)> , (26)

describes the time evolution of the state in terms of the
interaction Hamiltonian H;,t, with 7 denoting time or-
dering. The classical two-body scattering dynamics in
the asymptotic &~ — 0 limit is equivalently obtained by
evaluating the action, and therefore H;y;, on-shell.
Motivated by (26), we define the exponential represen-

tation S = exp (zN/h) (37, 38], where N is a Hermitian
operator. We then study the real-valued two-body ma-
trix element

N(E7qam17m2) = <p/1p/2|N|p1p2> I (27)

where we defined |U,,) = |piph), the initial total energy
E of both particles, and the exchanged momentum g¢* =
pi* — p1# = phy — pht. To make contact with the incom-
ing total angular momentum L = (myma+/v2 — 10)/E,
where v := M pz“;pé“ and b is the impact parameter
in the center of mass (CM) frame, we perform the Fourier
transform

N><(E, L, {mg}) (28)

d2+2€ ) q
T e " N(E, ¢, {ma}),

=/
= PR~ (27)2+2e

using dimensional regularization with d = 4 4+ 2¢. In-
frared, 1/e divergences arise due to the long-range nature
of gravity, but their analytic structure is understood [82].

In complete generality, the expectation value (27) is
a function of the kinematic data (E,L,{m,}), and its
variation in the phase space is

SN =cf 6L+ 5 OR+ ) ¢, 0ma,  (29)

a=1,2

e« . . . .
where cf , cg, and cj, are gauge-invariant coefficients.



Using insights from the PM Hamiltonian descrip-
tion [30] and the relation with the radial action [38], we
now identify the coefficients with the observables B~.
First, by matching the scattering angle x in the CM
frame, it was shown that the matrix element (27) in the
conservative case agrees with the radial action up to a
constant proportional to L [38]:

N>,e

= /> dr prem. (r E, L, {my}) +7L, (30)
cons CT y€

I

where P, c.m. is the radial relative momentum in the CM
frame and C>>€ is the contour of integration for scattering
orbits, which implicitly includes a regulator e inherited
from the dimensional regularization. In the Supplemen-
tal Material [74], using the PM conservative Hamiltonian
and its symmetries in the CM frame [19, 30], we then pro-
vide a proof of the following conservative first law for the
two-body scattering problem,

SN = —x0L+ At6E — Y Ariom,,  (31)
a=1,2

where A7¢ is the elapsed proper time of particle a and
At€ is the elapsed global time.

If we appeal to N~»¢ = I>>¢ + 7l and restrict to vari-
ations with dmy = 0 [83], then we see Eq. (31) is struc-
turally identical to our previous first law (21). However,
the quantities in these laws might differ. Even in the
conservative sector, the two-body incoming energy E and
angular momentum I might not agree with the renormal-
ized one-body, SF counterparts F,o, and L,.,. Moreover,
while N~¢ is computed here in the CM frame, GSF cal-
culations might be in the initial rest frame of the heavy
BH [84-86] or in any ‘nearby’ frame (including the CM
frame); the frame of a GSF calculation is implicitly de-
termined by the choice of gauge for the metric perturba-
tions. However, at OSF order, we can trivially identify
E with E + mq, L with L, and the CM frame with the
heavy BH frame, as the relative radial momentum p; c.m.
coincides with the geodesic one p,o. Then (31) identi-
cally matches (9), and we have x© — x§, At® — At§,
and A7f — A7§. At nSF order, the matching with our
SF first law is more challenging as the dynamics of the
heavy BH (as well as the choice of frame) is encoded in a
nontrivial way in the metric perturbations [87, 88]. We
leave study of this to future work.

Incorporating dissipation in this framework is possible
by combining the in-in expectation value [81] with the
exponential representation of S [38]: for every observable
O [89],

(AO) = (U3, | STOS|W;) — (Ui | O |W5,)
—+o0 N
I e G A .
_j:1 i [N,[{vf...,[N,O]...]], (32)

SN><(E,L, {mq})= E=XOILH AtOE — 5 o—1 2 AT OM,
¢5N<(E,]L, {ma}) = ON>*(E,L,{m,}) — IN><(E,—L, {m,})
ON<(E, L, {m,})= CABOL +ZL0E — 3 0m1 22(2,) 6114

FIG. 1. Relation between the basis of scattering observables
(coordinate time difference At®, elapsed proper time A7¢, and
deflection angle x) and the corresponding bound-orbit ones
(radial frequency €),, averaged redshift (z), and periastron
advance A®) for the classical gravitational two-body problem.

where now also the N matrix elements with on-shell
gravitons are relevant. This suggests a physical princi-
ple to connect the coefficients (cf , ¢, cf,, ) to observables
at all orders, with dissipation included; see for example
Eq. (3.48) of [38].

Conclusion.—In recent years, the study of unbound
orbits through the S-matrix formalism has transformed
the gravitational two-body problem. In this Letter, we
developed a powerful new tool for such studies: an ex-
tension of the first law of binary BH mechanics to the
unbound (and dissipative) case. Our derivation at all SF
orders utilizes a novel version of the pseudo-Hamiltonian
formalism [58, 67, 69]. More generally, we showed how
the first law can be derived from the variation of the clas-
sical S-matrix in the phase space of the kinematic data
P, = (&,L,{m4}); see Fig. 1. In that context, the S-
matrix can be interpreted as a generating functional of
classical observables. Among those observables, we have
highlighted the elapsed proper time A7€ as a new, core el-
ement of the (regularized) basis of scattering observables
B> = (x, At¢, AT°).

Using the relation between the scattering and bound
radial action, we also established a full correspon-
dence (25) between the bases of scattering observables
B> and bound observables B< at OSF order, as again
summarized in Fig. 1. This extends the well-known map
between the deflection angle and periastron advance.

Given the first law’s varied applications for bound or-
bits [62, 63, 90-111], we expect our work to open many
new avenues for scattering calculations. We particularly
encourage self-force scattering calculations [70, 78, 112
114] of the observables At and A7¢. For bound or-
bits, the 1SF conservative Hamiltonian can be calcu-
lated directly from the averaged redshift (z), and post-
adiabatic waveform models [62, 115, 116] can be written
in a gauge-invariant form with (z) as an invariant build-
ing block [80, 117]. This implies that if the analytic con-
tinuation between A7¢ and (z) can be extended to 1SF
order, then scattering calculations of A7¢ can provide
direct inputs to bound-orbit self-force waveform models.

Natural extensions also present themselves. First, one
might consider scattering orbits of spinning BHs [55, 60,
118]. Second, we considered only two-body matrix ele-



ments, but nothing prevents us from studying the varia-
tion of matrix elements involving on-shell graviton states,
which should be related to the gravitational waveform.
Finally, we hope that linking the first laws for scattering
and bound orbits beyond 0SF can shed light on the tail
effects that have limited the applicability of scatter-to-
bound maps [43, 49].
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