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The ringdown of perturbed black holes has been studied since the 1970s, but until recently, studies
have focused on linear perturbations. There is now burgeoning interest in nonlinear perturbative
effects during ringdown. Here, using a hyperboloidal framework, we provide a complete treatment
of linear and quadratic quasinormal modes (QNMs and QQNMs) in second-order perturbation
theory, in Schwarzschild spacetime. We include novel methods for extracting QNMs and QQNMs
amplitudes using a Laplace transform treatment, allowing for the inclusion of arbitrary initial data.
We produce both time- and frequency-domain codes. From these codes, we present new results further
exploring the unforeseen dependence of QQNMs amplitudes on the parity of the progenitor system,
as demonstrated in our letter [Phys. Rev. Lett. 134, 061401 (2025)]. Our numerical results are
restricted to perturbations of a Schwarzschild black hole, but our methods extend straightforwardly
to the astrophysically realistic case of a Kerr black hole.
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I. INTRODUCTION

In the era of gravitational wave (GW) astronomy, black
hole (BH) spectroscopy plays a pivotal role in testing
the nature of BHs and general relativity (GR) [1–7].
The goal of this research program is to probe the BH
geometry by measuring the characteristic frequencies of
the BH spacetime in the so-called ringdown regime. The
ringdown phase starts after the merger of two compact
objects when the distorted final remnant settles down into
a stationary BH with GWs dissipating energy and linear
and angular momentum. The resulting waveform is (at
least for some time) well described by a superposition of
exponentially damped sinusoids, whose typical oscillatory
and decaying time scales are encoded into the complex
quasi-normal mode (QNM) frequencies. Most importantly,
these QNM frequencies are uniquely determined by the
mass and spin of the final BH in vacuum GR [1–4].

While the BH spectroscopy program is mature and
dates back to 1971 [6, 8, 9], recently, there have been
exciting developments on all fronts: observations, new
techniques for data analysis, and new theoretical insights.
Observationally, the measurement of the dominant QNM
is confirmed in various gravitational wave events [10–12].
More remarkably, there are already some debates on
whether sub-dominant QNM modes have been identified,
such as the GW150914 and GW190521 signals [13–
26]. Looking into the near future, data from the
next generation of GW detectors, such as the Einstein
Telescope, Cosmic Explorer, and LISA, will contribute
significantly to the BH spectroscopy program: not only
will there be more events observed, the signal-to-noise
ratio (SNR) will also be significantly higher and thereby
allow for more stringent tests. The latest estimates
suggest that ET shall observe at least two detectable
QNMs from stellar-mass binary mergers in 20-50 events
per year [27, 28] and LISA will observe even ∼ 5 − 8
QNMs from multiple massive BH binary mergers [29, 30].

Developments on the observational side are
complemented by new algorithms for detecting
QNMs on the data analysis side, such as the QNM
(rational) filters [31, 32]. Other improvements in
inferring the parameters using Bayesian analyses include
marginalizing over the starting time of the ringdown
phase and a deeper understanding of data conditioning
operations [19, 33–35].

In addition to all these advancements, future detection
will allow us to test the nonlinear nature of gravity using
the ringdown regime. Since GR is a nonlinear theory of
gravity, it has been recently emphasised that second-order
effects in BH perturbation theory (BHPT) also contribute
to the GW signal in the ringdown phase and may even
dominate over some linear contributions during parts of
the ringdown [22, 36–42]. In particular, by analyzing
numerical simulations of BH mergers, it was indeed found
that this is the case [36–38, 41].

More specifically, the QNM frequencies arising from
BHPT at first order are usually labelled by three integers,

as in ωℓmn. The pair (ℓ,m) corresponds to polar and
azimuthal indices resulting from projecting the underlying
field variables onto spherical harmonics on the celestial
sphere, while the overtone index n = 0, 1, . . . lists the
characteristic frequencies within a fixed angular mode.
The dynamics at second order in BHPT yield the same
set of frequencies as the linear equation (from the
homogeneous solution), but also an additional set of new
frequencies. These new frequencies arise from the coupling
of two linear QNMs ωℓ1m1n1 and ωℓ2m2n2 , yielding the
so-called quadratic QNMs (QQNMs): ωℓ1m1n1×ℓ2m2n2 =
ωℓ1m1n1 + ωℓ2m2n2 [36]. Since the QNM spectrum in the
frequency space is sparse, the detection of these QQNMs
is a clear signature of a nonlinear effect. In other words,
the QQNMs are essentially fingerprinted with the order
of perturbation theory that they arose from. This gives
a clean split of the GW signal into linear and non-linear
pieces and thus would allow for new tests of BHs and GR.

While QQNMs have so far only been identified in
numerical simulations, forecasts indicate that QQNMs will
be detected in up to a few tens of events per year [43, 44]
by the Einstein Telescope and Cosmic Explorer. Moreover,
the most optimistic predictions for LISA indicate that
up to O(1000) events may offer accurate data for BH
spectroscopy at second order in BHPT [43]. A recent
study [45] also found that including the GR predictions
for QQNM amplitudes dramatically improved fitting
techniques and the likelihood of detecting QQNMs.

This article focuses on QQNMs. It was argued in
the literature that the ratio of the amplitudes of the
QQNM and its linear parent modes would be initial-data
independent and would only depend on the mass and spin
of the final BH [38, 40, 46–48]. However, we have recently
shown [49] that this ratio is not initial-data independent
but, in fact, depends on the ratio between even- and odd-
parity linear QNMs. This ratio of even- to odd-parity
modes depends on the degree to which the progenitor
system possessed equatorial (up-down) symmetry. In
other words, contrary to previous expectations that the
QQNM/QNM ratio is independent of the past history of
the binary, we demonstrated that this ratio depends on
what created the ringing BH [49]. Our new understanding
of the QQNM/QNM ratio allowed us to reconcile some
contradictory results in the literature. Using second-order
BHPT in the simple case of a Schwarzschild background,
Ref. [42] found a QQNM/QNM ratio of magnitude ≈
0.137 for a particular mode combination, while other
works observed the value ≈ 0.15 for the same mode
combination [40, 50]. This difference is entirely due to
the different choices for the ratio of the linear even- and
odd-parity modes sourcing the quadratic mode. Our new
understanding has recently been used to study QQNMs
in Kerr [44].

The insight that the QQNM/QNM ratio depends on
the progenitor system through the even- to odd-parity
mode ratio impacts GW data analysis and astronomy
directly. In particular, analyses of numerical simulations
with up-down symmetry should use this knowledge in
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their fitting procedures. Moreover, in real data, the
measurements of QQNMs can be used to extract the
individual excitation of first-order even- and odd-sectors,
offering a route to explore the breaking of isospectrality
in beyond-GR theories or due to environmental effects.

This work expands the relevant results from [49],
provides a detailed description of the underlying
geometrical and numerical infrastructure, and is
accompanied by publicly available codes. Specifically,
to obtain the semi-analytical results in [49], we have
developed a novel code that fully controls the core
geometrical aspects of the problem. For this purpose,
we have employed the covariant second-order BHPT
formalism from [51–53], initially developed to address
challenges within the gravitational self-force program [54].

Black hole spacetimes are commonly studied in terms of
Schwarzschild (or Boyer-Lindquist) coordinates (t, r, θ, φ).
Even though the time evolution of the ringdown dynamics
shows a field decaying in time with the characteristic QNM
frequencies, it has long been known that the corresponding
QNM radial eigenfunctions diverge in the limit r → ∞,
and at the BH horizon r = rh. Because the source
term dictating the dynamics at second order depends
on quadratic products of these QNM eigenfunctions, it
inherits such divergence, making second-order BHPT
particularly challenging. Apart from being counter-
intuitive on physical grounds, these divergences make
calculations at second order extremely challenging at a
practical level (see, e.g., [55]).

Such divergences naturally appear in the standard
coordinate chart (t, r, θ, φ), in which r = rh and r →∞
correspond to the bifurcation two-sphere and spatial
infinity, where the time-domain QNM solutions diverge.
The hyperboloidal framework [56, 57] solves this issue
altogether as hyperboloidal slices do not reach the surfaces
where the QNM solutions are singular: the past horizon,
past null infinity and spatial infinity.1 Thus, this
framework naturally restricts to regions where the QNM
solutions are physically meaningful. Indeed, hyperboloidal
slicings are currently employed in several studies of
QQNMs [40, 44, 46].

Starting from the covariant second-order BHPT
formalism of Refs. [51–53], we have specialised the
equations to a time- and frequency-domain hyperboloidal
framework that allows us to directly and accurately
compute the physical waveform without requiring
regularization [57–64]. Such a combination of time- and
frequency-domain techniques is a unique feature of our
framework. Indeed, the majority of studies in nonlinear
GW spectroscopy are performed in the time domain,
where the QQNM amplitudes are extracted by fitting the

1 The blow-up there is a consequence of assuming that the QNM
solutions extend to the infinite past, whereas only their “late
time” behaviour is physically relevant following whatever event
has perturbed the black hole (or created the perturbed black
hole).

expected model to the time series resulting either from
NR [36–38, 41] or BHPT [40, 46]. In BHPT, however, the
QQNM amplitude is not a free parameter. Instead, it is
determined by the second-order source, whose content is
fully fixed by the even- and odd-parity amplitudes of the
linear QNMs. Thus, frequency-domain calculations, such
as those performed by [42, 44, 55], have the potential to
optimize the analyses of the QQNMs by predicting the
amplitude coefficients directly for the source term, and
avoiding the time evolution and the systematic errors
associated with a numerical fitting altogether.

Our frequency-domain analysis complements other,
similar recent QQNM studies [44, 50], particularly
Ref. [44], which also used hyperboloidal methods. We
build on the techniques originally introduced by Refs. [59,
60], in which QNM excitation amplitudes are calculated
directly from the hyperboloidal source. We detail
how to use this approach to cleanly extract the linear
and quadratic QNM content from the full second-order
solution, without resorting to bi-linear orthogonality
operators that require the analytical extension of
the radial coordinate into the complex plane [65–67].
Additionally, our Laplace transformation approach allows
for the inclusion of initial data in our analysis.

Of course, all the above considerations rely on the
frequency-domain QQNM calculations being equivalent to
the QQNM excitation in gravitational wave signals. Thus,
a consistency check between time- and frequency-domain
approaches is necessary. To validate our frequency-domain
results, we use a fully spectral, hyperboloidal time-domain
code.

Even though the current work focuses on the
Schwarzschild spacetime, our approach offers an
independent infrastructure to consistently cross-check the
results in the field. By using well-established results from
self-force theory and the hyperboloidal framework, we
make different choices for the calculations (e.g. gauge and
coordinates employed, variables under consideration, and
the resulting source). Our independent analysis makes us
confident in the final results, and it allows us to develop
a self-consistent code to directly study QQNMs resulting
from the coupling of any parent QNM pair.

This paper is organized as follows. Section II reviews
the covariant formalism for BHPT at first and second
order. Section III introduces the specific hyperboloidal
coordinate system we use. Then, Sections IV and V detail
the techniques to calculate the relevant quantities at first
and second order: QNM frequencies and eigenfunctions,
as well as excitation factors associated with linear and
quadratic QNMs. Finally, Section VI outlines the
numerical methods used in the time- and frequency-
domain codes before we present our results in Section VII.
We conclude the work and discuss future directions in
Section VIII. Some review material and technical details
are relegated to appendices.
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II. PERTURBATION THEORY AT FIRST AND
SECOND ORDER

A. Black hole perturbation theory

To study linear and quadratic QNMs, we work with
BHPT up to second order. In BHPT, approximate
solutions to the Einstein field equation are found
perturbatively around a background BH spacetime. We
expand the metric (gab) around the background metric
(g(0)

ab ) in orders of a small parameter ε,

gab = g
(0)
ab + εh

(1)
ab + ε2h

(2)
ab + . . .+ εnh

(n)
ab + . . . , (1)

where h
(i)
ab is the ith-order metric perturbation. In

this work, Schwarzschild spacetime is our background;
however, we build our calculation using methods that
naturally extend to Kerr.

We can use Eq. (1) to perturbatively expand the
vacuum Einstein field equations, Gab[gab] = 0; up to
second order in ε, this gives [52, 54],

δGab[h(1)
ab ] = 0, (2)

δGab[h(2)
ab ] = −δ2Gab[h(1)

ab , h
(1)
ab ], (3)

where δGab is the linearised Einstein operator and δ2Gab is
the quadratic Einstein operator [52]. We use geometrized
units with G = c = 1. The left-hand side of Eqs. (2)
and (3) shows the same operator acting on h

(1)
ab and

h
(2)
ab . Thus, the homogeneous second-order solutions are

identical to linear QNM solutions; we assume that the
second-order homogeneous solutions are absorbed into the
first-order solution without loss of generality. At second
order, the particular solutions remain; these solutions
have distinct frequencies from the homogeneous solutions
of Eq. (3). The particular solution frequencies are the so-
called quadratic QNMs or QQNMs for short (the labelling
“quadratic” is due to the source in Eq. (3) being quadratic
in h

(1)
ab ).

Eqs. (2) and (3) are two sets of ten coupled differential
equations (with six independent and four constraint
equations each); they are generally non-separable on a
Kerr background. Hence, as we build our formalism
to naturally extend to Kerr, we opt to solve the
Teukolsky equations, rather than Eqs. (2) and (3) directly.
The Teukolsky equations offer multiple advantages over
the linearised Einstein field equations (2) and (3):
Instead of ten coupled equations, one solves a complex
second-order differential equation, called the Teukolsky
(master) equation, for the perturbed Weyl curvature
scalar. The Teukolsky equation is separable into
radial ordinary differential equations by decomposing
the angular dependence into spin-weighted spheroidal
harmonic modes. The perturbed Weyl curvature
scalars encode most of the information of the metric
perturbation [68]. In particular, the gravitational wave

strain at future null infinity is directly related to one of
the Weyl scalars [52, 69, 70].

In the next section, we provide a synopsis of the
covariant formulation of the Teukolsky equation.

B. The Teukolsky equation

The Teukolsky equation is expressed within the
Newman–Penrose (NP) or Geroch–Held–Penrose (GHP)
formalisms [71], reviewed in Appendix A. The basic
ingredient in these formalisms is an orthonormal null
tetrad {la, na,ma, m̄a}.

Due to the symmetry of Petrov type-D spacetimes,
Schwarzschild (and Kerr) admits decoupled spin +2 and
−2 equations constructed from the perturbative Einstein
equations δGab[h(i)

ab ] = S
(i)
ab . We write these decoupled

equations as

Ô
[
Ψ(i)

0L

]
= S(i)

0 , Ô′
[
Ψ(i)

4L

]
= S(i)

4 , (4)

respectively, at each perturbative order (i), where Ô and
Ô′ are second-order linear partial differential wave-like
operators. The sources are related to those in the Einstein
equation by

S(i)
0 = S0

[
S

(i)
ab

]
, S(i)

4 = S4

[
S

(i)
ab

]
, (5)

where S0 and S4 are second-order linear differential
operators. The curvature scalars Ψ(i)

0L and Ψ(i)
4L are

similarly related to the metric perturbations by

Ψ(i)
0L = T0

[
h

(i)
ab

]
, Ψ(i)

4L = T4

[
h

(i)
ab

]
, (6)

where T0, T4 are also second-order linear differential
operators. Explicit (tetrad- and coordinate-invariant)
definitions of the operators T0, T4, S0, S4, and Ô and Ô′

are available in Ref. [54].
In Eq. (6), we have isolated the linear parts of the

ith-order Weyl scalars. At first order, these constitute
the entire Weyl scalars: Ψ(1)

0 = Ψ(1)
0L and Ψ(1)

4 = Ψ(1)
4L . At

second order,

Ψ(2)
0 = Ψ(2)

0L + Ψ(2)
0Q, Ψ(2)

4 = Ψ(2)
4L + Ψ(2)

4Q; (7)

the label L indicates the contribution that is linear
in the second-order metric perturbation, whereas the
label Q indicates quadratic contributions from first-order
perturbations. We discuss the relationship between
the different variables Ψ(2)

0 , Ψ(2)
4 and Ψ(2)

0L , Ψ(2)
4L in

Appendix C.
In Kerr spacetime, Eq. (4) is separable when expressed

in terms of a master Teukolsky equation form [54, 69, 72].
The master Teukolsky equations are tetrad independent,
although the relationship between the Weyl scalars and
the master variable is tetrad dependent. From now on,
we will work with the Kinnersley tetrad; see Eq. (A10).
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In the Kinnersley tetrad, the master Teukolsky equation
is

sÔ[sΨ(i)] = sS(i), (8)

where sÔ is the spin-s master Teukolsky wave
operator [54]. The master functions sΨ(i) and source
terms sS(i) relate to their counterparts in Eq. (4) via

+2Ψ(i) = Ψ(i)
0L, +2S(i) = −2r2S(i)

0 , (9)

−2Ψ(i) = r4Ψ(i)
4L, −2S(i) = −2r6S(i)

4 . (10)

with r a radial coordinate in a spherical polar coordinate
system such as the Schwarzschild coordinates (t, r, θ, φ).

At first order, (i) = (1), the source term vanishes:
sS(1) = 0. At second order, (i) = (2), sS(2) depends
quadratically on the first-order metric perturbation:

+2S(2) = 2r2S0

[
δ2Gab[h(1)

ab , h
(1)
ab ]
]
, (11)

−2S(2) = 2r6S4

[
δ2Gab[h(1)

ab , h
(1)
ab ]
]
. (12)

These quadratic sources are given explicitly, in mode-
decomposed form, in the PerturbationEquations
package [73] in the Black Hole Perturbation Toolkit [74].
Note that they require the complete first-order metric
perturbation as input, not simply the first-order Weyl
scalar ±2Ψ(1). We review the procedure of reconstructing
h

(1)
ab from ±2Ψ(1), and further discuss the calculation of

the quadratic source, in Appendix B.
We are primarily interested in the perturbations of Ψ4,

rather than Ψ0, as they directly relate to the gravitational
wave strain at future null infinity. In the Kinnersley tetrad,
the limit towards future null infinity (r →∞ taken along
slices of constant retarded time u) yields

Ψ(i)
4L = −1

2∂
2
uh

(i)
m̄m̄ = −1

2∂
2
u

(
h

(i)
+ − ih

(i)
×

)
, (13)

where h(i)
+ and h(i)

× are the two independent polarizations
of the gravitational wave strain.2 The variables Ψ(i)

4 and
Ψ(i)

4L are identical at leading order in 1
r (see Appendix C),

so that

Ψ(i)
4 = −1

2∂
2
uh

(i)
m̄m̄ = −1

2∂
2
u

(
h

(i)
+ − ih

(i)
×

)
(14)

also holds for r →∞ along constant u.
In the rest of this paper, we will suppress the spin index

s for most variables, and will restore it when a potential
confusion could arise. In particular, we have chosen to
keep the spin index s for the spherical harmonics for
clarity.

2 This result is derived by examining the leading-order behaviour
in T4; see Refs. [54, 75–77].

III. THE HYPERBOLOIDAL FRAMEWORK

A. Hyperboloidal equations in the time domain

We now specialise the formalism in the previous section
to a coordinate system adapted to the geometry at the
black-hole horizon and the wave zone. For this purpose,
we introduce the hyperboloidal coordinates (τ, σ, θ, φ) via
the scri-fixing technique [78] with notation from Ref. [57]:

t = λ

(
τ −H(σ)

)
, r = rh

σ
, (15)

with λ a convenient length scale for the spacetime and
rh = 2M . The so-called height function H(σ) ensures
that, along τ = constant, the surfaces r →∞ (σ = 0) and
r = rh (σ = 1) correspond, respectively, to future null
infinity I + and the black-hole horizon H+; see Fig. 1.
Note that in a Laplace framework, one is interested in
the region τ ≥ 0, where τ = 0 (the blue curve) represents
the “initial time-slice”; see Eq. (33). This is in contrast
to a Fourier decomposition, where the entire past and
future history is taken into account; that is, −∞ < τ <∞
instead.

In the following, we will work in the minimal gauge,
where the height function reads [57]

H(σ) = rh

λ

(
− 1
σ

+ ln(σ) + ln(1− σ)
)
. (16)

The hyperboloidal coordinates (τ, σ, θ, φ) allow for a
straightforward conformal decomposition of the physical
spacetime gab into gab = Ω−2g̃ab, with Ω = σ/λ. The
components of the conformal background metric, g̃(0)

ab , are
then all regular (and dimensionless) in the entire region
σ ∈ [0, 1]. For example, the non-trivial components for a
Schwarzschild background read

g̃(0)
ττ = −(1− σ)σ2, (17)

g̃(0)
τσ = 2M

λ
(1− 2σ2), (18)

g̃(0)
σσ = 16M2

λ2 (1 + σ), (19)

g̃
(0)
θθ = 4M2

λ2 , (20)

g̃(0)
φφ = sin2(θ) g̃(0)

θθ . (21)

We do not have a rigorous argument that this same
conformal factor also causes the components of the
conformal metric perturbation, h̃

(i)
ab , to be regular,

although our results in the later sections for i = 1, 2
seem to suggest that this is the case.

In the hyperboloidal framework, one aims to work
with only regular quantities. In particular, the
Teukolsky master function undergoes the conformal
transformation [56, 62, 79]

Ψ(i) = Z Ψ̃(i), Z = λ−sσ1+2s(1− σ)−s, (22)
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i+

H+ I +

i0B

H− I −

i−

FIG. 1. Penrose diagram of the Schwarzschild exterior
demonstrating the minimal-gauge hyperboloidal slicing we
employ in this work. The solid curves each depict surfaces of
constant hyperboloidal time τ that extend smoothly from the
black-hole horizon, H+, to future null infinity, I +. In this
choice of hyperboloidal coordinate system, with λ = 4M , the
future horizon and future null infinity are located at σ = 1
and σ = 0, respectively. The “initial time surface” τ = 0 is
highlighted in blue.

The function Z ensures that the conformal master
function Ψ̃(i) is dimensionless and regular in the entire
domain σ ∈ [0, 1], assuming non-vanishing values at the
boundaries.

The conformal master function satisfies the equation

Õ[Ψ̃(i)] = S̃(i), S̃(i) = Z−1 S(i), (23)

where the conformal operator Õ is defined by

Õ := Z−1
sÔZ. (24)

Taking advantage of the angular separability of
the operator Õ in the Schwarzschild background, we
decompose the conformal master function and the
conformal source into spin-weighted spherical harmonic
modes via

Ψ̃(i) =
∑
ℓ,m

Ψ̃(i)
ℓm(τ, σ)sYℓm(θ, φ), (25)

S̃(i) =
∑
ℓ,m

S̃
(i)
ℓm(τ, σ)sYℓm(θ, φ). (26)

By construction, the spherical harmonics satisfy the
angular equation, and we are left with two-dimensional
partial differential equations for each mode coefficient:

Õℓm[Ψ̃(i)
ℓm] = S̃(i)

ℓm. (27)

In the hyperboloidal coordinates (τ, σ), the operator
Õℓm assumes the explicit form

Õℓm = −w(σ)∂2
τ + L̂2∂τ + L̂1, (28)

with

L̂1 = σ2(1− σ)∂2
σ + σ

[
2(1 + s)− (3 + s)σ

]
∂σ

−
[
ℓ(ℓ+ 1)− s(s + 1) + (1 + s)σ

]
, (29)

L̂2 = 2rh

λ

(
1− 2σ2) ∂σ −

2rh

λ

[
s− (2 + s)σ

]
, (30)

w(σ) =
(

2rh

λ

)2
(1 + σ). (31)

In the time domain, Eq. (27) is solved after a
prescription of regular data on the initial time slice τ = 0:

Ψ̃(i)
ℓm(0, σ) = Ψ̃(i)

o ℓm(σ),

∂ Ψ̃(i)
ℓm

∂τ
(0, σ) = ˙̃Ψ(i)

o ℓm(σ),
(32)

which suffices to uniquely determine the dynamics of the
regular fields Ψ̃(i)

ℓm for τ > 0 and σ ∈ [0, 1].

B. Frequency-domain approach: the Laplace
transform

The Laplace framework allows us to incorporate the
initial data (32) into a frequency-domain formulation. In
what follows, for an arbitrary function F (τ), its Laplace
transform L[F (τ)](s) will be defined by

f(s) := L[F (τ)](s) :=
ˆ ∞

0
e−sτF (τ)dτ. (33)

The Laplace parameter s is related to the commonly used
Fourier frequency ω [3] by s = −iλω. We will informally
refer to s as a frequency.

We introduce the frequency-domain field ψ̃
(i)
ℓm via

ψ̃
(i)
ℓm(σ; s) = L

[
Ψ̃(i)

ℓm(τ, σ)
]

(s). (34)

By applying the Laplace transform to Eq. (27) and
integrating by parts, we find ψ̃

(i)
ℓm satisfies the ordinary

differential equation

D̃ℓm

[
ψ̃

(i)
ℓm

]
= R̃(i)

ℓm, D̃ℓm = −s2w(σ) + sL̂2 + L̂1. (35)

The conformal source term in the frequency domain is
composed of two pieces,

R̃(i)
ℓm = Ĩ(i)

ℓm + s̃
(i)
ℓm. (36)

The first term,

Ĩ(i)
ℓm(σ; s) = −w(σ)

(
Ψ̃(i)

o ℓm(σ) s+ ˙̃Ψ(i)
o ℓm(σ)

)
+ L̂2

[
Ψ̃(i)

o ℓm(σ)
]
, (37)
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results from incorporating the initial data (32) into the
frequency domain. The second term follows directly from
the Laplace transform of the time-domain source,

s̃
(i)
ℓm(σ; s) := L

[
S̃(i)

ℓm(τ, σ)
]

(s). (38)

Once a solution to the inhomogeneous equation is
available for Re(s) > 0, the time-domain evolution follows
from the inverse Laplace transform

Ψ̃(i)
ℓm(τ, σ) = 1

2πi

ˆ
Γ
ψ̃

(i)
ℓm(σ; s) esτds, (39)

where the integration path Γ is parametrised by s =
sR + isI, with an arbitrary constant real part sR > 0 and
sI ∈ (−∞,∞).

To pin down the specific elements of the ringdown
dynamics, we analytically extend ψ̃

(i)
ℓm to the region

Re(s) < 0. QNMs and QQNMs are associated with
poles of the function ψ̃(i)

ℓm: (i) QNMs correspond to poles
of the Green’s functions associated with the Teukolsky
wave operator Õ [2, 80]; (ii) QQNMs correspond to poles
of the Laplace transformed source R̃(2)

ℓm(σ; s) [81].
In the next sections, we discuss how to control these

contributions at first and second order in perturbation
theory.

IV. FIRST-ORDER QUASINORMAL MODES

At first order in perturbation theory, the wave
equation (23), has a vanishing right-hand side, and
therefore, the source term in the Laplace transformed
equation (35), has contributions only from the field’s
initial data. The time evolution is then obtained via
the inverse Laplace transform through Eq. (39), where
the Green’s function associated with the operator D̃ℓm

determines the solution ψ̃
(i)
ℓm(σ; s). Using the residue

theorem as illustrated on the left panel of Fig. 2, we
can express the integral along the path Γ in Eq. (39)
as a sum of contributions from the Green’s function in
the region Re(s) < 0 [3, 80]: (i) residues at the discrete
poles s(1)

ℓmn in the half-plane Re(s) < 0, which give rise to
QNM dynamics; (ii) a branch cut contribution along the
negative real axis (in the s-plane); and (iii) a contribution
from the high-frequency arc that closes the contour. More
explicitly, we express the integral along Γ asˆ

Γ
fds = 2πi

∑
n

Res(f, sℓmn)−
ˆ

b.c.

fds−
ˆ

arc
fds, (40)

where f = 1
2πi ψ̃

(1)
ℓme

sτ , “b.c.” stands for the path β1 ∪ β2
around the branch cut, and “arc” denotes the path α1∪α2
in Fig. 2 along the high-frequency arc. If we neglect the
branch cut and high-frequency arc contributions, the time-
domain solution then reads

Ψ̃(1)
ℓm(τ, σ) ≈

∑
n

A
(1)
ℓmn ψ̃

(1)
ℓmn(σ) es

(1)
ℓmn

τ (41)

for some constant amplitudes A(1)
ℓmn. Without loss of

generality, ψ̃(1)
ℓmn(σ) is normalised to unity at future null

infinity:

ψ̃
(1)
ℓmn(0) = 1. (42)

As we will see below, the function ψ̃
(1)
ℓmn(σ) satisfies the

homogeneous version of Eq. (35).
In the next section, we discuss how to make Eq. (41)

exact; i.e., how to specialize the dynamics at first order to
uniquely single out the contributions of individual QNM
frequencies.

A. First-order QNMs: initial-data-driven dynamics
with pure quasinormal modes

A key advantage of the hyperboloidal framework is that
the QNM eigenfunctions ψ̃(1)

ℓmn(σ) are regular in the entire
BH exterior region σ ∈ [0, 1]. We exploit this property
to fine-tune first-order initial data that excites QNMs
individually, therefore yielding a single QNM dynamic. In
other words, our goal is to impose a first-order dynamics
exactly of the form

Ψ̃(1)
ℓm(τ, σ) = A

(1)
ℓmnψ̃

(1)
ℓmn(σ)es

(1)
ℓmn

τ , (43)

where s(1)
ℓmn is a (for now arbitrary) frequency, A(1)

ℓmn is an
arbitrary complex constant, and ψ̃(1)

ℓmn(σ) is normalised as
in Eq. (42). With the above ansatz, the initial data (32)
are given by

Ψ̃(1)
o ℓm(σ) = A

(1)
ℓmnψ̃

(1)
ℓmn(σ), (44)

˙̃Ψ(1)
o ℓm(σ) = A

(1)
ℓmns

(1)
ℓmnψ̃

(1)
ℓmn(σ). (45)

In the Laplace domain, the time-domain ansatz (43)
transforms into

ψ̃
(1)
ℓm(σ; s) = A

(1)
ℓmn

ψ̃
(1)
ℓmn(σ)

s− s(1)
ℓmn

. (46)

Plugging this ansatz into Eq. (35), we obtain

A
(1)
ℓmnD̃ℓm

[
ψ̃

(1)
ℓmn(σ)

s− s(1)
ℓmn

]
= Ĩ(1)

ℓm, (47)

with the right-hand side containing information only from
the initial data (44) via Ĩ(1)

ℓm, cf. Eq. (37), because s
(1)
ℓm = 0.

Without loss of generality, it is convenient to re-express
the frequency-domain operator D̃ℓm, defined in Eq. (35),
as

D̃ℓm = D̃ℓmn +
(
s− s(1)

ℓmn

)
∂̃Dℓm, (48)

with
D̃ℓmn = D̃ℓm

∣∣
s=s

(1)
ℓmn

= −
(
s

(1)
ℓmn

)2
w(σ) + L̂1 + s

(1)
ℓmn L̂2, (49)

∂̃Dℓm = L̂2 −
(
s+ s

(1)
ℓmn

)
w(σ). (50)
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s0

s∗0

s1

s∗1

s2

s∗2

s3

s∗3

Im(s)

Re(s)

α1

α2

β1

β2

Γ

Im(s)

Re(s)

Γ

FIG. 2. Left Panel: The first-order solution in the time domain is obtained via the inverse Laplace transform (39), consisting of
an integration over the frequency parameter s along the path Γ. In the complex s plane, the factor ψ̃(1)

ℓm(σ; s) in the integrand
has poles at each QNM frequency sℓmn and a branch cut along the negative real axis, inherited from the Green’s function for
the wave operator Õ. Right Panel: The second-order Laplace-transformed solution, ψ̃(2)

ℓm(σ; s), shows poles from two sources.
Grey crosses mark the Green’s function poles of the frequency-domain operator (D̃ℓm in Eq. (35)), corresponding to the linear
QNMs, while circles denote the quadratic QNMs. Colour coding distinguishes the fundamental mode (dark blue) and its mirror
mode (orange) as well as the first overtone (red) and its mirror (purple). Quadratic QNMs arise from the product of linear
QNMs – for example, the product of the fundamental mode, s0, with itself is the solid blue circle, while the product of s0
with its mirror mode, s⋆

0, is a half-filled blue and orange circle. Here, QQNMs arise from linear QNMs with ℓ1 = m1 = 2 and
ℓ2 = m2 = 2. Consequently, the poles of the QQNMs lie in the (L,M) = (4, 4) plane and the associated linear QNMs likewise
are characterized by (L,M) = (4, 4). Since some QQNMs lie on the branch cut, we have deformed β1 and β2 to indicate that
the integral over β1 ∪ β2 is no longer simply a branch cut contribution.

Equation (47) then reads

A
(1)
ℓmn

 D̃ℓmn

[
ψ̃

(1)
ℓmn(σ)

]
s− s(1)

ℓmn

+ ∂̃Dℓm

[
ψ̃

(1)
ℓmn(σ)

] = Ĩ(1)
ℓm.

(51)
This equation needs to be satisfied for all s. In particular,
taking the limit s−sℓmn implies that the function ψ(1)

ℓmn(σ)
must satisfy

D̃ℓmn[ψ̃(1)
ℓmn(σ)] = 0. (52)

Assuming Eq. (52) holds, and using Eqs. (37), (44), (45)
and (50), it is straightforward to check that (51) is then
satisfied in the limit s→ s

(1)
ℓmn.

We are therefore left with finding all the regular
solutions ψ̃(1)

ℓmn(σ), and their associated frequencies s(1)
ℓmn

to Eq. (52). Due to regularity conditions at the
boundaries, only a countable number of such solutions

exist, which can be conveniently labelled by the index n
and referred to as the (first-order) QNMs [57, 59, 82–85].
Note that if sℓmn is not a QNM frequency, then Eq. (52)
has no solution that is regular at the boundaries σ = 0
and 1.

By introducing the auxiliary variable Ξ̃(1)
ℓmn(σ) =

s
(1)
ℓmn ψ̃

(1)
ℓmn(σ), we recast Eq. (52) as an eigenvalue

problem [57],

Lℓm

[
u⃗

(1)
ℓmn

]
= s

(1)
ℓmnu⃗

(1)
ℓmn (53)

with

Lℓm =
(

0 1
w−1L̂1 w−1L̂2

)
, u⃗

(1)
ℓmn =

(
ψ̃

(1)
ℓmn

Ξ̃(1)
ℓmn

)
. (54)

The functions w(σ), L̂1 and L̂2 are defined in Eqs. (29)–
(31).
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In Sec. VI, we discuss the numerical techniques to
discretize the operator Lℓm, from which the first-order
QNMs are computed as the eigensolutions of the resulting
discrete matrix [63].

In later sections, we will be interested in the individual
mode contributions of the QNM to the strain. For a given
(ℓ,m, n), we define the first-order QNM amplitude to be

Ã(1)
ℓmn(σ) = A

(1)
ℓmn ψ̃

(1)
ℓmn(σ). (55)

B. Regular and mirror modes

As mentioned in the previous section, the index n labels
the countable set of QNM frequencies of the independent
operator D̃ℓm at a fixed (ℓ,m) mode. What is the most
natural choice for labelling these frequencies?

In Fig. 3, we show a plot in the complex s-plane of the
first few QNM frequencies in Kerr with the smallest decay
rate (given by |Re(s(1)

ℓmn)|), for ℓ = 2 and m = ±2, and
m = 0.

Focusing first on the top plot, corresponding to m > 0,
it is natural to label the slowest decaying mode with
n = 0, the second slowest by n = 1, and so on. As a
result, increasing overtone number n directly corresponds
to an increase in the decay rate of the associated mode.
It is then typical to proceed in the same manner for the
m < 0 frequencies (middle plot). As is shown in the
figure, an important point to realise is that a given n
actually refers to two complex frequencies. In Kerr, the
real and imaginary parts of these two frequencies are
essentially unrelated, although the imaginary parts do
not share the same sign. This motivates the definition
of regular and mirror QNMs, depending, respectively, on
whether Im(s(1)

ℓmn) < 0 or Im(s(1)
ℓmn) > 0. The overtone

index n then separately labels the regular and mirror
mode branches according to increasing damping times
(increasing |Re(s(1)

ℓmn)|). In Schwarzschild, these two
frequencies are in fact related by complex conjugation.

The QNM frequencies in Kerr share an important
symmetry, that relate the frequencies with positive and
negative m (at a fixed ℓ) by complex conjugation. More
precisely, we have drawn the first four frequencies with
the smallest decay rate as square, triangle, diamond and
inverted triangle shapes. The frequencies between m > 0
and m < 0 with the matching shapes are related by
complex conjugation. As a result of the above choice of
labelling the overtones n, this symmetry can be simply
expressed by

s
(1)
ℓ−mn =

(
s

(1)
ℓmn

)⋆

. (56)

Some care needs to be taken when working with an
expression like Eq. (56), since n refers to two frequencies.
This is particularly evident when setting m = 0 in
Eq. (56), which seemingly implies that the QNMs there
are real. One way to clarify this ambiguity is to denote

−4 −3 −2 −1

Re(s)

−2

−1

0

1

Im
(s

)

q = 0
n = 0

q = 2
n = 1

q = 1
n = 0q = 3

n = 1

m > 0

−4 −3 −2 −1

Re(s)

−1

0

1

2

Im
(s

)

q = 0
n = 0

q = 2
n = 1

q = 1
n = 0

q = 3
n = 1

m < 0

−3 −2 −1

Re(s)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Im
(s

)

q = 0
n = 0

q = 2
n = 1

q = 1
n = 0

q = 3
n = 1

m = 0

FIG. 3. The first few QNM frequencies of a Kerr BH in the
complex s-plane for spin a/M = 0.6 with l = 2, m = ±2 and
m = 0. The frequencies for m < 0 and m > 0 are related
by complex conjugation, indicated in the figure by matching
shapes. The mode numbers for n and q have been labelled
next to relevant shapes to clarify our notation.
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by s(1)
ℓmn,+ and s(1)

ℓmn,− the QNMs with Im(s(1)
ℓmn) > 0 and

Im(s(1)
ℓmn) < 0 respectively. In particular, instead of the

relation (56), one would have the more accurate statement

s
(1)
ℓ−mn,+ =

(
s

(1)
ℓmn,−

)⋆

(57)

The case m = 0 now simply reveals that the two
frequencies s(1)

ℓ0n,± are related by complex conjugation.
As a result of this notational ambiguity, certain

summations over n can be rather confusing. Consider, for
example, the sum over the full QNM spectrum for spin
s = ±2:

∞∑
ℓ=|s|

ℓ∑
m=−ℓ

∞∑
n=0

A
(1)
ℓmn ψ̃

(1)
ℓmn(σ) es

(1)
ℓmn

τ
sYℓm(θ, φ). (58)

The sum over n might be misleading and cause confusion
since the contribution from a single index n is implicitly
understood as the contribution from the associated
regular and mirror modes. The above sum, therefore
is understood to mean more explicitly

∞∑
ℓ=|s|

ℓ∑
m=−ℓ

∞∑
n=0

[
A

(1)
ℓmn,+ ψ̃

(1)
ℓmn,+(σ) es

(1)
ℓmn,+τ

+A
(1)
ℓmn,− ψ̃

(1)
ℓmn,−(σ) es

(1)
ℓmn,−τ

]
sYℓm(θ, φ),

(59)

The amplitudes A(1)
ℓmn,± are, in general, independent and

associated with the excitation of the regular and mirror
modes s(1)

ℓmn,±. In the above, the label n can now be
interpreted as referring to a unique QNM frequency. In
Schwarzschild, the degeneracy of the m-mode occurs at
all values of m.

In the interest of clarity, we will, from now on, refrain
from using the index n and the associated relation (56) (or
(57)). Instead, we will use a new overtone label q, which
will always uniquely be associated to one single eigenvalue
of D̃ℓm. In order to distinguish this new notation, we
resort to a semicolon between each mode indices (ℓ, m)
and q to distinguish it from the (ℓmn) notation. For
instance s(1)

220 is understood as (ℓ,m, n) = (2, 2, 0), whereas
s

(1)
2;2;0 has labels (ℓ,m, q) = (2, 2, 0).
In order for q to always correspond to a unique QNM

frequency, the q-labelling follows the convention that for
all m, s(1)

ℓ;m;2n = s
(1)
ℓmn,−, and s

(1)
ℓ;m;2n+1 = s

(1)
ℓmn,+; see

Fig. 3. With this choice of labelling, the relation (57) now
reads

s
(1)
ℓ;m;2n =

(
s

(1)
ℓ;−m;2n+1

)⋆

. (60)

In this q notation a sum such as Eq. (59) is then
unambiguously expressed as

∞∑
ℓ=|s|

ℓ∑
m=−ℓ

∞∑
q=0

A
(1)
ℓ;m;q ψ̃

(1)
ℓ;m;q(σ) es

(1)
ℓ;m;qτ

sYℓm(θ, φ). (61)

In the following, the above relation (60) can be written
more succinctly as

s
(1)
ℓ;m;q =

(
s

(1)
ℓ;−m;Q

)⋆

, (62)

where Q ≡ Q(q) = q+1 if q is even, and Q ≡ Q(q) = q−1
if q is odd. In particular, note the useful identity

Q(Q(q)) = q. (63)

Note that we also get an additional relation in
Schwarzschild, s(1)

ℓ;m;q =
(
s

(1)
ℓ;m;Q

)⋆

; that is s(1)
ℓmn,± are

related by complex conjugation.
As a result of our choice of normalisation (42), the

associated eigenfunctions also follow a similar relation as
in Eq. (62),

ψ̃
(1)
ℓ;m;q =

(
ψ̃

(1)
ℓ;−m;Q

)⋆

. (64)

The sum over q in Eq. (61) can be re-expressed as a
sum over n as

∞∑
ℓ=|s|

ℓ∑
m=−ℓ

∞∑
n=0

[
A

(1)
ℓ;m;2n ψ̃

(1)
ℓ;m;2n(σ) es

(1)
ℓ;m;2n

τ

+A
(1)
ℓ;m;2n+1 ψ̃

(1)
ℓ;m;2n+1(σ) es

(1)
ℓ;m;2n+1τ

]
sYℓm(θ, φ).

(65)

V. QUASINORMAL MODES AT SECOND
ORDER

A. Quadratic QNMs: source-driven dynamics with
pure quadratic quasinormal modes

The Teukolsky equation at second order in the Laplace
domain is given by Eq. (35). As we wish to later study
the impact of second-order effects on the gravitational
strain at null infinity, we will consider the case s = −2.
We recall the source term depends on two contributions:
the initial data at that order and the Laplace transform
of the time-domain second-order source, which is driven
by a quadratic combination of first-order dynamics. To
ensure that the second-order dynamics is driven purely
by the source term, we require the second-order initial
data to vanish; that is,

Ψ̃(2)
o ℓm(σ) = 0, ˙̃Ψ(2)

o ℓm(σ) = 0, (66)

for all (ℓ,m). This choice implies that Ĩ(2)
ℓm = 0; see

Eq. (37).
In Eq. (41), we have taken our first-order solution to

be a sum of QNM solutions. We now consider any two
of those modes, I = (ℓ;m; q) and I ′ = (ℓ′;m′; q′). The
construction of the second-order source term will involve
the quadratic combinations I × I, I ′ × I ′, and I × I ′,
subject to selection rules when these combinations are
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projected back into a specific second-order mode, which
we label with mode numbers (L,M).

Utilizing the compact notation (I × I ′)LM to
encapsulate these quadratic combinations, subject to the
underlying (L,M) selection rules, we can write the second-
order source (11) with an explicit time dependence of the
following form:

S̃(2)
LM (τ, σ) =

∑
(I×I′)LM

S̃(2)
(I×I′)LM

(σ) eτs
(2)
(I×I′)LM , (67)

s
(2)
(I×I′)LM

= s
(1)
I + s

(1)
I′ . (68)

Applying the Laplace transform (38) to Eq. (67) yields

s̃
(2)
LM (σ; s) =

∑
(I×I′)LM

S̃(2)
(I×I′)LM

(σ)

s− s(2)
(I×I′)LM

, (69)

where one identifies the QQNMs as poles in the source
term, s = s

(2)
(I×I′)LM

, in contrast to the first-order QNMs
that arise as poles of the Green’s function associated with
the operator in Eq. (35).

B. Spectral representation of the second-order
solution

As we did at first order, we can use the residue theorem
to write the inverse Laplace transform (39) as a sum of
contributions from the region Re(s) < 0.

In particular, the integral along the path Γ in Eq. (39)
can also be written as a sum of contributions from (i)
residues at the discrete poles in the half-plane Re(s) < 0.
This will include the same poles at first order that gives
rise to QNM dynamics, the new QQNM poles that appear
only at second order, and finally, the special poles that
lie on the branch cut Im(s) = 0, which contribute to
gravitational memory [44]; (ii) a branch cut contribution
along the negative real axis (in the s-plane); and (iii) a
contribution from the high-frequency arc that closes the
contour.

In the following, we will only focus on the QNM poles,
as well as the QQNM poles, excluding those lying on the
branch cut. With this in mind, the dynamical evolution
can be written as

Ψ̃(2)
LM (τ, σ) = χ̃

(2)
LM (τ, σ) + Υ̃(2)

LM (τ, σ), (70)

χ̃
(2)
LM (τ, σ) ≈

∑
q

A
(2)
L;M ;q ψ̃

(1)
L;M ;q(σ) eτs

(1)
L;M;q , (71)

Υ̃(2)
LM (τ, σ) =

∑
(I×I′)LM

Ã(2)
(I×I′)LM

(σ) eτs
(2)
(I×I′)LM . (72)

Υ̃(2)
LM (τ, σ) represents a particular solution to the

inhomogeneous equation (27), with Ã(2)
(I×I′)LM

(σ) the
corresponding particular solution to the frequency-domain
equation (35). This contribution to the second-order

solution arises from the poles in the source (69) and can
therefore be seen as a purely second-order effect. The
associated amplitude will be referred to as the QQNM
amplitude.

The function χ̃
(2)
LM (τ, σ) shares the same form as

the first-order solution (41); it is a solution to the
homogeneous equation

ÕLM [χ̃(2)
LM ] = 0, (73)

together with initial conditions that can be inferred from
(66) and (70). In the decomposition (71), ψ̃(1)

L;M ;q(σ) and
s

(1)
L;M ;q are associated with the first-order QNMs resulting

from the QNM eigenvalue problem (54). Therefore, they
do not incorporate any property from the frequency
domain source term. Instead, the effects of the initial
data and source dynamics are captured by the coefficients
A

(2)
L;M ;q, which measure the excitation of linear QNMs.

In the following, these amplitudes will be referred to as
second-order QNM amplitudes. Note that in particular,
this shows that even if the initial data at first order is
comprised of a single QNM, the full spectrum of QNM (as
well as branch-cut and high-frequency arc) will be excited
at second-order. This is inline with a more traditional
Green’s-function representation of the solution, whereby
linear QNMs will always arise from any source that is
nonvanishing at the complex poles of the Green’s function.

In the next sections, we lay out the methods to calculate
the second-order QNM amplitudes A(2)

L;M ;q and the QQNM
amplitude Ã(2)

(I×I′)LM
(σ).

1. Second-order QNM amplitudes

To calculate the second-order QNM amplitudes A(2)
L;M ;q,

we re-express some of the methods introduced by Ref. [59]
in terms of the differential operator D̃LM (see also [60]).
We first concentrate on the behaviour of ψ̃(2)

LM (σ; s) around
a fixed pole s(1)

L;M ;q; i.e., around a given first-order QNM
that is excited by the second-order source s̃

(2)
LM (σ; s). For

that purpose, we assume the ansatz

ψ̃
(2)
LM (σ; s) =

A
(2)
L;M ;q ψ̃

(1)
L;M ;q(σ)

s− s(1)
L;M ;q

+ W̃
(2)
LM (σ; s). (74)

Akin to Eqs. (43) and (46), the first term will contribute
to the specific QNM dynamics with frequency s

(1)
L;M ;q,

whereas the auxiliary function W̃
(2)
LM (σ; s), which is

regular at the pole s
(1)
L;M ;q, accounts for the rest of

the solution ψ̃
(2)
LM (σ; s) in the neighborhood of the pole.

Indeed, via the inverse Laplace transform (39) and use of
the residue theorem as in Fig. 2, it is straightforward to
see that the first term in Eq. (74) recovers the discrete
contribution in Eq. (71).
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The ansatz (74) introduces two unknowns into the
problem: the excitation amplitude A

(2)
L;M ;q and the

auxiliary function W̃
(2)
LM (σ; s). In principle, both of

these quantities are unique. To see this, observe that
for all s with Re(s) > 0, there is a unique solution
to Eq. (35) satisfying regular boundary conditions. By
analytical continuation, the solution ψ̃(2)

LM (σ, s) is uniquely
determined for Re(s) < 0, except for the ambiguity in
choosing the branch cut emanating from the branch point
at s = 0; we consistently place this cut along the negative
real axis. This suffices to make A(2)

L;M ;q and W̃
(2)
LM (σ; s)

unique.
To obtain an equation relating both of them to the

source term R̃(2)
LM , it is convenient to re-express the

frequency operator as in Eqs. (48)–(50). When Eq. (74) is
combined with (48), the inhomogeneous Eq. (35) assumes
the form

A
(2)
L;M ;q D̃L;M ;q

[
ψ̃

(1)
L;M ;q(σ)

]
s− s(1)

L;M ;q

+ D̃L;M ;q

[
W̃

(2)
LM (σ; s)

]
+A

(2)
L;M ;q ∂̃DLM

[
ψ̃

(1)
L;M ;q(σ)

]
+ (s− s(1)

L;M ;q) ∂̃DLM

[
W̃

(2)
LM (σ; s)

]
= R̃(2)

LM (σ; s). (75)

Since the QNM eigenfunction ψ̃
(1)
L;M ;q(σ) satisfies the

homogeneous Eq. (52), the term proportional to(
s− s(1)

L;M ;q

)−1
vanishes, and the limit s→ s

(1)
L;M ;q yields

D̃L;M ;q

[
W̃

(2)
L;M ;q(σ)

]
+A(2)

L;M ;q ∂̃DL;M ;q

[
ψ̃

(1)
L;M ;q(σ)

]
= R̃(2)

L;M ;q(σ), (76)

with

W̃
(2)
L;M ;q(σ) = W̃

(2)
LM (σ; s(1)

L;M ;q), (77)

∂̃DL;M ;q = ∂̃DLM

∣∣
s=s

(1)
L;M;q

, (78)

R̃(2)
L;M ;q(σ) = R̃(2)

LM (σ; s(1)
L;M ;q). (79)

We are ultimately interested in determining A
(2)
L;M ;q.

However, it will be useful to first think of Eq. (76) as
an equation for W̃ (2)

L;M ;q(σ). Even if we take A(2)
L;M ;q as

known, Eq. (76) does not uniquely determine W̃ (2)
L;M ;q(σ).

Indeed, the operator D̃L;M ;q has a non-vanishing kernel
spanned by the QNM eigenfunction ψ̃

(1)
L;M ;q satisfying

the homogeneous equation (52). Thus, if W̃ (2)
L;M ;q is a

solution to Eq. (76), then W̃
(2)
L;M ;q → W̃

(2)
L;M ;q + α ψ̃

(1)
L;M ;q

also satisfies Eq. (76) for an arbitrary complex constant
α. This freedom can be removed by setting W̃

(2)
L;M ;q at

some point σo ∈ [0, 1] to a fixed value

W̃
(2)
L;M ;q(σo) = Wo

(2)
L;M ;q. (80)

As discussed above, W̃ (2)
L;M ;q is unique, implying Wo

(2)
L;M ;q

is as well. However, as we will discuss below, Wo
(2)
L;M ;q

can be freely specified for the purposes of finding A(2)
L;M ;q.

Condition (80), together with Eq. (76) completely
fixes a unique solution for the pair

(
W̃

(2)
L;M ;q(σ), A(2)

L;M ;q

)
.

Indeed, Eqs. (80) and (76) form the linear system(
D̃L;M ;q ∂̃DL;M ;q

[
ψ̃

(1)
L;M ;q(σ)

]
δ(σ − σo) 0

)(
W̃

(2)
L;M ;q

A
(2)
L;M ;q

)

=
(

R̃(2)
L;M ;q

δ(σ − σo)Wo
(2)
L;M ;q

)
. (81)

This matrix is invertible, yielding a unique solution. To
make this more transparent, we can expand W̃

(2)
L;M ;q and

ψ̃
(1)
L;M ;q in a spectral basis and convert the operators to

spectral ones, making the linear system algebraic. We
have empirically found that the resulting value of A(2)

L;M ;q,
which is later used in Sec. VII D to compare the time-
domain and frequency-domain results, is independent of
both the normalisation Wo

(2)
L;M ;q and σo, although we

have not yet established a rigorous proof that this holds
universally.

The only possible remaining freedom on the value
A

(2)
L;M ;q comes from re-scaling the QNM eigenfunction

ψ̃
(1)
L;M ;q. If we change the normalisation (42) into

ψ̃L;M ;q → η ψ̃L;M ;q, then the amplitude A
(2)
L;M ;q →

η−1 A
(2)
L;M ;q still yields a solution to Eq. (76). Therefore,

similarly to the first-order amplitude (55), we introduce
the uniquely defined second-order QNM excitation factor

Ã(2)
L;M ;q(σ) = A

(2)
L;M ;q ψ̃

(1)
L;M ;q(σ). (82)

2. Quadratic QNM amplitudes

We now turn our attention to the calculation
of the QQNM excitation factor Ã(2)

(I×I′)LM
(σ). By

applying the Laplace transform (33) to the time-domain
solution (72), we find the frequency-domain solution
to the inhomogeneous equation must have a pole at
s = s

(2)
(I×I′)LM

. Consequently, we consider the ansatz

ψ̃
(2)
LM (σ; s) =

Ã(2)
(I×I′)LM

(σ)

s− s(2)
(I×I′)LM

+ Θ̃(2)
LM (σ; s). (83)

As in Eq. (74), application of the inverse Laplace
transform (39) and use of the residue theorem shows
the first term in Eq. (83) contributes to the specific
QQNM dynamics with frequency s(2)

(I×I′)LM
. The function

Θ̃(2)
LM (σ; s) accounts for all other contributions to the

solution ψ̃
(2)
LM (σ; s), which are necessarily regular at

s
(2)
(I×I′)LM

.
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However, contrary to Eq. (74), the unknowns
Ã(2)

(I×I′)LM
(σ) and Θ̃(2)

LM (σ; s) in Eq. (83) do not couple
at s = s

(2)
(I×I′)LM

: we can find Ã(2)
(I×I′)LM

(σ) without
requiring any information from Θ̃(2)

LM (σ; s). Indeed, if we
identify the pole in the source term R̃(2)

LM by combining
Eqs. (36) and (69) into

R̃(2)
LM = Ĩ(2)

LM (σ; s) +
∑

(J×J′)LM

S̃(2)
(J×J′)LM

(σ)

s− s(2)
(J×J′)LM

, (84)

a short manipulation of Eq. (35) considering Eqs. (83)
and (84) yields

D̃LM

[
Ã(2)

(I×I′)LM
(σ)
]

+
(
s− s(2)

(I×I′)LM

)
D̃LM

[
Θ̃(2)

LM (σ; s)
]

=
(
s− s(2)

(I×I′)LM

)
Ĩ(2)
LM (σ; s)

+
∑

(J×J′)LM

S̃(2)
(J×J′)LM

(σ)
s− s(2)

(I×I′)LM

s− s(2)
(J×J′)LM

. (85)

In the limit s → s
(2)
(I×I′)LM

, the only surviving term on
the right-hand side of the above expression is that with
(J × J ′)LM = (I × I ′)LM . Thus, the equation for the
QQNM excitation factor is

D̃LM

[
Ã(2)

(I×I′)LM
(σ)
]

= S̃(2)
(I×I′)LM

(σ). (86)

Note that while we set the initial-data source Ĩ(2)
LM to

zero in our general discussion of the second-order solution,
we leave it unspecified in the equations above to make
clear that the QQNM amplitudes are independent of it.

3. Summary

In Fig. 4, we present a flow chart summarizing the
calculation of the QQNM/QNM amplitude ratio.

Our approach begins by selectively exciting a single
first-order QNM (or a finite set of such QNMs) through
carefully tuned initial conditions, as detailed in Sec. IV A.
We solve Eq. (52) for both +2ψ̃

(1)
ℓ;m;q and −2ψ̃

(1)
ℓ;m;q,

ensuring that they represent the same physical metric
perturbation by enforcing the relationship (B10) between
their amplitudes. We use the amplitude of −2ψ̃

(1)
ℓ;m;q to

calculate the QQNM/QNM ratio, while we use +2ψ̃
(1)
ℓ;m;q

as a helper function to calculate the second-order Weyl
scalar.

The second-order source requires the complete first-
order metric perturbation h

(1)
ab . We reconstruct h

(1)
ab

from +2ψ̃
(1)
ℓ;m;q in the outgoing radiation gauge following

the standard Chrzanowski-Cohen-Kegeles procedure;

interested readers may consult Appendix B for a
more comprehensive discussion. This choice of gauge
ensures that h(1)

ab , and therefore the second-order source
constructed from it, is well-behaved at the boundaries.

Next, from the reconstructed metric perturbation, we
construct the second-order source term in Eq. (86). This
calculation is outlined in Appendix B 3. Finally, we
solve Eq. (86) to extract the QQNM amplitude and the
QQNM/QNM ratio.

In the next section, we introduce the numerical methods
to solve all equations needed in this process: the QNM
eigenvalue problem (53), and the QQNM amplitude
equation (86). We also present our method of solving
the time-domain equation (27) at first and second order.
The comparison between time- and frequency-domain
results, in Sec. VII, also requires solving Eq. (81) for the
second-order linear QNM amplitudes.

VI. TEUKOLSKY CODE IN FREQUENCY AND
TIME DOMAIN

A. Laplace domain code

In the preceding sections, the equations governing
the QNMs at first and second order were formulated
in a frequency-domain approach through three different
ordinary differential equations. First, we have the first-
order QNMs, which were formulated as an eigenvalue
problem; see Eq. (53). At second order, we used two
similar but distinct ansatze to construct the second
order (81), and quadratic (86), QNMs. These three
equations are solved via a spectral collocation method.
Specifically, all three equations can be cast into the general
linear system,

AU(x) = b(x), (87)

where U(x) are the unknowns and A is a linear differential
operator. In the above, we defined the coordinate

x = 1− 2σ (88)

with domain x ∈ [−1, 1], which will be useful when
decomposing the unknown variable U into a sum of
Chebyshev polynomials. Equations (81) and (86) are
already in the above form, where, respectively, the
operator A is simply the operator on the left-hand
side of Eqs. (81) and (86), U denotes the unknowns
(W̃ (2)

L;M ;q, A
(2)
L;M ;q) and Ã(2)

(I×I′)LM
, and b is the right-

hand side of these equations. For the first-order QNM
eigenvalue problem (53), the unknown U(x) is the QNM
amplitude u⃗ℓm, while the operator A = Lℓm− s(1)

ℓm1, with
1 the identity operator, and b = 0.

For a fixed numerical truncation N , the numerical
scheme approximates the function U(x) via the expansion

U(x) ≈ UN (x) :=
N∑

k=0
ckTk(x), (89)
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sD̃ℓ;m;q

[
sψ̃

(1)
ℓ;m;q

]
= 0

+2ψ̃
(1)
ℓ;m;q −2ψ̃

(1)
ℓ;m;q

h
(1)
ab,ℓm

[
+2ψ̃

(1)
ℓ;m;q

]

−2S̃
(2),LM
(I×I′)

[
h
(1)
ab, ℓ1,m1

, h
(1)
ab, ℓ2,m2

]

:= S̃LM
(I×I′)

[
+2ψ

(1)
ℓ1;m1; q1

, +2ψ
(1)
ℓ1;m1; q1

]

−2D̃ℓ;m;q

[
−2Ã(2)

LM

]
= −2S̃(2),LM

(I×I′)

−2ψ̃
(2)
LM

Ratio of QNM Amplitudes

First-order Eq.

First-order QNM

Metric reconstruction

Second-order source

Second-order Eq.

QQNM solution

FIG. 4. Flowchart illustrating our workflow for calculating the
QQNM/QNM amplitude ratio. Our method for computing
first-order QNMs – specifically, exciting a single QNM using
finely tuned initial data – is described in Sec. IV A. For the
purpose of calculating the waveform strain, we calculate the
Weyl scalar of spin-weight −2. However, for the purpose of
calculating the second-order quadratic source, we calculate
the first-order Weyl scalar of spin-weight +2, +2ψ̃

(1)
ℓ;m;q. Of

course, both first-order Weyl scalars are compatible with
each other and satisfy the Teukolsky-Starobinsky identities
(as indicated by the horizontal arrow). The first-order
metric perturbation is calculated from +2ψ̃

(1)
ℓ;m;q following

the standard metric reconstruction procedure, as reviewed in
Appendix B. The second-order source (69) is then calculated
from the reconstructed metric perturbation, as also outlined
in Appendix B. Finally, the QQNM amplitudes are calculated
from the second-order Teukolsky equation following the
procedure explained in Sec. V.

where Tk(x) := cos(k arccos(x)) are the Chebyshev
polynomials of the first kind. The constant coefficients
ck are fixed via collocation points. Specifically, let us
consider the Chebyshev-Lobatto grid {xi}N

i=0, along the
x direction

xi = cos
(
πi

N

)
, i = 0, . . . , N. (90)

An important property of the Chebyshev-Lobatto grid
is that it includes the boundaries x = ±1 as grid points
with labels i = 0 and i = N . Therefore, it is ideal to solve
boundary-value problems.

The Chebyshev coefficients ck are fixed by imposing
that the above approximate representation of U(x),
UN (x), is exact at the collocation points,

U(xi) = UN (xi). (91)

By differentiating Eq. (89) with respect to x and
evaluating at the collocation points, the derivative of
U(x) at xi is computed as a simple matrix multiplication
applied to the discrete values UN (xi):

(∂xU)(xi) =
N∑

j=0
DijUN (xj). (92)

The matrix Dij is explicitly given by

Dij =



ki(−1)i−j

kj(xi − xj) i ̸= j

− xj

2(1− x2
j ) 0 < i = j < N

2N2 + 1
6 i = j = 0

−2N2 + 1
6 i = j = N

, (93)

where

ki =
{

2 i = 0, N
1 i ̸= 0, N

. (94)

Therefore, the spectral collocation method allows us to
recast the differential equation (87) into a system of linear
algebraic equations for the unknowns UN (xi) = U(xi),

N∑
j=0

AijUN (xj) = b(xi), (95)

where Aij denotes the matrix corresponding to the
discretization of the operator A.

A point worth emphasizing here is that thanks to the
hyperboloidal formulation, the system (87) does not need
to be supplemented with external boundary conditions,
such as, for example, the usual ingoing/outgoing boundary
conditions for the first-order QNM problem (53). Indeed,
such a prescription occurs when using a timelike
coordinate t, for which the limits r → rh and r → ∞
connect the bifurcation sphere to spacelike infinity, where
the QNM solutions (and any other object constructed from
them, such as the second-order source) become singular.
The usual outgoing boundary conditions at large r and
ingoing boundary conditions near rh on constant-t slices
are equivalent to the condition that the perturbed metric
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is regular at the future horizon and future null infinity.
Thanks to the hyperboloidal formulation, a constant-τ
slice instead connects the (future) black-hole horizon to
(future) null infinity, avoiding the points where QNM
solutions become singular. Together with the fact that we
are working with regularized quantities everywhere [see
Eq. (22)], this means that we can simply seek globally
regular solutions in our (compact) domain [62].

B. Time domain code

We also employ a time-domain approach to benchmark
the predictions and results from the theoretical and
numerical infrastructure in the frequency domain. For
that purpose, a first-order reduction in time, with Φ̃(i)

ℓm =
Ψ̃(i)

ℓm,τ , allows the representation of Eqs. (27) and (28) as

(∂τ −Lℓm) U⃗ (i)
ℓmn = B⃗

(i)
ℓmn, (96)

with Lℓm as in Eq. (54), U⃗ (i)
ℓm =

(
Ψ̃(i)

ℓm Φ̃(i)
ℓm

)T

, and

B⃗
(i)
ℓm =

(
0 S̃(i)

ℓm

)T

. Equation (96) is to be solved with

prescribed initial conditions U⃗ (i)
0 ℓm = U⃗

(i)
ℓm

∣∣∣
τ=τ0

at an
initial hyperboloidal slice τ = τ0, and it has the formal
solution

U⃗
(i)
ℓm(τ, σ) = eLℓm τ

(
U⃗

(i)
0 ℓm(σ)

+
ˆ τ

0
e−Lℓm τ ′

B⃗
(i)
ℓm(τ ′, σ)dτ ′

)
. (97)

We employ a fully spectral code [58] to solve Eq. (96).
Within this strategy, we divide the time interval τ ∈
[τ0, τfinal] into nmax

τ strips with size δτ = τfinal − τ0

nmax
τ

.
Within each time strip nτ = 0, . . . , nmax

τ −1, we introduce
an auxiliary field V⃗

(i)
nτ ℓm via

U⃗
(i)
ℓm(τ, σ) = U⃗ (i)

nτ ℓm(σ) + (τ − τn) V⃗ (i)
nτ ℓm(τ, σ). (98)

In the above expression U⃗
(i)
nτ ℓm(σ) is the field’s value at

the time step τn = τ0 + nτδτ . In particular, for nτ = 0 it
corresponds to the prescribed initial data U⃗ (i)

0 ℓm(σ). Once
the solution is known in the strip nτ = 0, the information
at the surface τ1 = τ0 + δτ serves as the initial data for
the next time strip with nτ = 1. This process is then
repeated recursively for all time strips.

With the ansatz (98), the wave equation (96) becomes

(τ − τnτ
) (∂τ −Lℓm) V⃗ (i)

nτ ℓm

+ V⃗ (i)
nτ ℓm = B⃗

(i)
ℓm + LℓmU⃗

(i)
nτ ℓm; (99)

i.e., information about initial data enters as a source of
the singular wave equation for the auxiliary field V⃗

(i)
nτ ℓm.

In particular, V⃗ (i)
nτ ℓm

∣∣∣
τ=τnτ

is fully fixed by Eq. (99).

Equation (99) is in a form akin to Eq. (87), with the
operator identified as A ↔ (τ − τnτ

) (∂τ −Lℓm) + 1,
the unknown variable as U ↔ V⃗

(i)
nτ ℓm, and the source

term given by b ↔ B⃗
(i)
ℓm + LℓmU⃗

(i)
nτ ℓm. A fundamental

difference, though, is that the functions’ domain now is
(x0, x1) ∈ [−1, 1]2, with x1 as in Eq. (88) and x0 mapping
the time coordinate τ ∈ [τnτ , τnτ +1] in a given strip nτ

into [−1, 1] via

x0 = 2τ − τnτ +1 − τnτ

δτ
. (100)

Expanding the spectral decomposition (89) to the
domain (x0, x1), the numerical discretisation is now given
by

UN0,N1(x0, x1) =
N0∑

k0=0

N1∑
k1=0

ck0k1Tk0(x0)Tk1(x1). (101)

As before, the coefficients ck0k1 are fixed by imposing
that the approximated solution UN0,N1(x0, x1) coincides
with the exact field U(x0, x1) at a given set of grid points
{xi0}

N0
i0=0 and {xi1}

N1
i1=0.

The spatial grid x1
i1

is still given by the Chebyshev-
Lobatto points (90), implying the same differentiation
matrix (93) for derivatives along the σ-direction. For the
time grid xi0 we employ the Chebyshev-Radau nodes

x0
i0

= cos
(

2π i0
2N0 + 1

)
, i0 = 0, . . . , N0. (102)

At a given time strip nτ , this choice makes the grid point
with label i0 = N0 to be slightly above the initial data
surface x0 = −1 ↔ τ = τnτ

. In other words, the initial
data surface is not within the grid as this information is
contained in the right-hand side of Eq. (99)

However, the grid includes the final surface x0 = 1↔
τ = τnτ +1 precisely at the grid with i0 = 0. The solution
thereon determines the initial data for the next time strip
nτ +1. For the Chebyshev-Radau grid, the differentiation
matrix reads

Dij =



N(N + 1)
3 i = j = 0

(−1)j

√
2(1 + xj)
1− xj

i = 0, j ̸= 0

(−1)i+1√
2(1 + xi)(1− xi)

i ̸= 0, j = 0

− 1
2
(

1− (xi)2
) i = j ̸= 0

(−1)i−j

xi − xj

√
1 + xj

1 + xi
0 ̸= i ̸= j ̸= 0

. (103)

We then obtain a linear algebraic system of equations
similar to Eq. (95), but with a discrete square matrix AIJ

and vectors UI and BJ with size ntotal = (N0 +1)(N1 +1)
corresponding to the tensorial product of the discretisation
along τ and σ.
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FIG. 5. Time-domain evolution of fields at future null infinity.
For our choice of initial data, we obtain pure QNM dynamics
at first order in perturbation theory (purple). The error
E(1)

N (τ) around machine precision (green line) confirms that
the signal consists of a single QNM frequency, here s(1)

2;2;0 ≈
−0.356 − 1.495 i.

VII. RESULTS

We now present results from both our frequency- and
time-domain codes. Firstly, we benchmark in Sec. VII A
the first-order dynamics triggering a pure QNM evolution.
In Secs. VII B and VII C we focus on frequency-domain
calculations, where we are able to cleanly isolate QQNMs
sourced by a single or multiple first-order QNMs. In
Sec. VII D we compare the frequency-domain results to
a full time-domain solution, exploring how the QQNMs
and linear second-order QNMs contribute to the complete
time-domain signal.

Throughout this section, we set the spin s = −2, as
we are interested in the associated strain evaluated at
(future) null infinity.

We recall that the Laplace parameter s relates do the
commonly used frequency ω via

s = −iλω. (104)

All explicit results in tables and plots in this section are
restricted to Schwarzschild, and we have set λ = 4M and
M = 1.

A. First-order dynamics

To verify that the procedure outlined in Sec. IV A
does yield a pure QNM evolution at first perturbative
order, we study the time evolution beginning from the
initial data (44) and (45). Figure 5 compares the
numerical solution Ψ̃(1)

ℓmN (τ, σ) against the expected exact
solution (43). In particular, the purple line is the time-
domain solution, as generated from our time-domain code,

evaluated at future null infinity σ = 0 for the fundamental
quadrupole mode (ℓ,m, q) = (2, 2, 0) of the spin s = −2
field. One observes a consistent ringdown with the
expected QNM frequencies s(1)

2;2;0 ≈ −0.356 − 1.495 i up
to amplitudes ∼ 10−12. The green line shows the relative
error

E(1)
N (τ) =

∣∣∣∣∣1− Ψ̃(1)
ℓmN (τ, 0)

Ψ̃(1)
ℓm(τ, 0)

∣∣∣∣∣ , (105)

which remains at round-off level ∼ 10−12 along the entire
evolution. Moreover, we also observed that the QNM
amplitude predicted by Eq. (81) within the frequency
domain recovers A(1)

ℓ;m;q = 1 if (ℓ,m, q) = (2, 2, 0), but it
vanishes otherwise. These results illustrate and confirm
that (i) the theoretical framework indeed allows for clean
QNM dynamics at first order, and (ii) the numerics are
robust and stable to recover the theoretical predictions
close to machine precision level for the time and frequency
domain approaches.

With the framework benchmarked to allow the exact
excitation of individual QNMs at first order, we now
proceed to investigate the effects on the wave signal at
second order.

B. Single first-order mode excitation

To calculate the QQNM solution (72), we solve the
second-order Teukolsky equation Eq. (86), which yields
the amplitude of the QQNM at the frequencies s(2)

(I×I′)LM
.

Since the QQNM amplitude Ã(2)
(I×I′)LM

directly depends
on the second-order source S̃(2)

(I×I′)LM
, we need to first

specify which linear QNM modes are excited. In this
section, we consider the source term generated by a single
regular mode excitation (ℓ1,m1, q1) at first order, together
with its associated mirror mode (ℓ1,−m1, Q1),

Ψ̃(1)(τ, σ, θ, φ)

= A
(1)
ℓ1;m1;q1

ψ̃
(1)
ℓ1;m1;q1

(σ)es
(1)
ℓ1;m1;q1

τ
−2Yℓ1m1(θ, φ)

+A
(1)
ℓ1;−m1;Q1

ψ̃
(1)
ℓ1;−m1;Q1

(σ)es
(1)
ℓ1;−m1;Q1

τ
−2Yℓ1−m1(θ, φ).

(106)

According to the decomposition (67), the full, four-
dimensional second-order source takes the form

S̃(2)(τ, σ, θ, φ) =
∑
L,M

∑
(I×I′)LM

S̃(2)
(I×I′)LM

(σ)×

e
τs

(2)
(I×I′)LM −2YLM (θ, φ). (107)

Since we are considering here a single mode excitation,
the above can be written in a more explicit form. First,
due to the coupling of the spherical harmonics, the L
follows the usual “triangle inequality” rule, while M can
only take values −2m1, 0, or 2m1.
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Equation (107) can hence be written more explicitly
as3

S̃(2)(τ, σ, θ, φ)

=
∑

L

{
S̃

(2)
L,2m1

(σ)e2s
(1)
ℓ1;m1;q1

τ
−2YL,2m1(θ, φ)

+ 2× S̃(2)
L0 (σ)e2Re(s

(1)
ℓ1;m1;q1

)τ
−2YL0(θ, φ)

+ S̃
(2)
L,−2m1

(σ)e2s
(1)
ℓ1;−m1;Q1

τ
−2YL,−2m1(θ, φ)

}
,

(108)

where we used Eq. (68) to write the QQNM frequencies
s

(2)
(I×I′)LM

in terms of the linear QNM frequencies,
and S̃(2)

LM (σ) contains all the individual contributions
S̃(2)

(I×I′)LM
(σ). We added a factor of two in the definition

of S̃(2)
L,0(σ) to reflect the fact that it is real (so that

for each mode contribution, its complex conjugate also
contributes).

The calculation of the source coefficients S̃(2)
LM (σ) is

described in Appendix B. In Fig. 6, we plot the source
term S̃

(2)
44 (σ), generated by (ℓ1,m1, q1) = (2, 2, 0) and

the mirror mode (ℓ1;−m1;Q1) = (2,−2, 1). Thanks to
the hyperboloidal formulation and the rescaling of the
source (23), S̃(2)

44 (σ) (and any other modes of the source)
is well behaved everywhere, including at both endpoints.
In particular, by inspecting the functional form of the
source in terms of the first-order metric perturbation, one
can show in general that for any (L,M),

lim
σ→0

(
σ−1S̃

(2)
LM (σ)

)
(109)

is a (non-zero) constant.
With the expression for the source term (108) at hand,

we can now solve Eq. (86). The QQNM solution inherits
the same structure as the second-order source (108),

Ψ̃(2)(τ, σ, θ, φ)

=
∑

L

{
Ã(2)

L,2m1
(σ)e2s

(1)
ℓ1;m1;q1

τ
−2YL,2m1(θ, φ)

+ 2× Ã(2)
L0 (σ)e2Re(s

(1)
ℓ1;m1;q1

)τ
−2YL0(θ, φ)

+ Ã(2)
L,−2m1

(σ)e2s
(1)
ℓ1;−m1;Q1

τ
−2YL,−2m1(θ, φ)

}
.

(110)

By solving Eq. (86), one finds that the QQNM amplitudes
Ã(2)

L,2m1
(σ), Ã(2)

L,0(σ), and Ã(2)
L,−2m1

(σ) depend on the first-
order excitation coefficients, A(1)

ℓ1;m1;q1
and A(1)

ℓ1;−m1;Q1
, in

3 We added a comma between the mode indices in some variables
for clarity
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)

44
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)

FIG. 6. Radial part of the second-order source S̃(2)
44 (σ). Note

that the full expression of S̃(2)
44 (σ) depends on the two linear

amplitudes A(1)
2;2;0 and A

(1)
2;−2;1 in the same way as displayed

in Eq. (111). For this plot, we chose A(1)
2;2;0 =

(
A

(1)
2;−2;1

)⋆

= 1,
although other choices give the same qualitative features.

the following way:

Ã(2)
L,2m1

(σ) = aL,2m1(σ)
(
A

(1)
ℓ1;m1;q1

)2

+ bL,2m1(σ)A(1)
ℓ1;m1;q1

(
A

(1)
ℓ1;−m1;Q1

)⋆

, (111)

Ã(2)
L0 (σ) = cL0(σ)A(1)

ℓ1;m1;q1
A

(1)
ℓ1;−m1;Q1

+ dL0(σ)A(1)
ℓ1;m1;q1

(
A

(1)
ℓ1;m1;q1

)⋆

+ (dL0(σ))⋆
A

(1)
ℓ1;−m1;Q1

(
A

(1)
ℓ1;−m1;Q1

)⋆

,

(112)

Ã(2)
L,−2m1

(σ) = (−1)L

[
(aL,2m1(σ))⋆

(
A

(1)
ℓ1;−m1;Q1

)2

+ (bL,2m1(σ))⋆
A

(1)
ℓ1;−m1;Q1

(
A

(1)
ℓ1;m1;q1

)⋆
]
.

(113)

We note that the factor (−1)L appearing in the expression
of Ã(2)

L,−2m1
(σ) follows from the symmetries of 3j symbols,

which appear when expanding products of spherical
harmonics into a sum of single harmonics; see Eq. (94)
in [51].

We provide the coefficients a, b, c, d, evaluated at I +,
in Table I.

We would like to bring to the attention of the reader
that the three amplitudes, Ã(2)

L,−2m1
(σ), Ã(2)

L,−2m1
(σ),

and Ã(2)
L,−2m1

(σ) are distinct, even for the case
m1 = 0, as they are each associated with different
frequencies; see Eq. (110). This notational ambiguity
can be removed by re-writing these amplitudes using
the “full” notation, as in Eq. (107). In particular,
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(ℓ1,m1, q1) L at I + (σ = 0)

(2, 0, 0) 2

a20 0.790153 − 2.66674 i
b20 −0.127560 − 0.211491 i
c20 0.139479
d20 −0.0275200 + 0.239190 i

(2, 2, 0) 2

a22 0
b22 0
c20 −0.139479
d20 0.0275200 − 0.239190 i

(2, 0, 0) 4

a40 9.88388 + 3.99254 i
b40 1.11259 + 0.648263 i
c40 0.00361875
d40 0.000131353 − 0.00843725 i

(2, 2, 0) 4

a44 13.7824 + 5.56733 i
b44 1.55143 + 0.90396 i
c40 0.000603125
d40 0.0000218922 − 0.00140621 i

(2, 2, 2) 4

a44 3.93713 + 11.0992 i
b44 0.112633 + 1.32345 i
c40 −0.602210 ∗ 106

d40 (−0.490123 − 2.36369 i) ∗ 107

TABLE I. Values of the coefficients at I + appearing in
Eqs. (111)–(113), for a selection of mode numbers (ℓ,m, q).

the shorthand notation Ã(2)
L,2m1

(σ), Ã(2)
L,0(σ), and

Ã(2)
L,−2m1

(σ) instead read: Ã(2)
((ℓ1;m1;q1)×(ℓ1;m1;q1))L,2m1

(σ),

Ã(2)
((ℓ1;m1;q1)×(ℓ1;−m1;Q1))L0

(σ), and
Ã(2)

((ℓ1;−m1;Q1)×(ℓ1;−m1;Q1))L,−2m1
(σ), respectively.

Typically, one is not directly interested in the quadratic
amplitude Ã(2)

LM (σ). Instead, one is interested in Ã(2)
LM (σ)

relative to the first-order amplitude that generated it. We
define the following ratio,

RΨ̃
L,2m1

(σ) :=

(
Ψ̃(2))

L,2m1(
Ψ̃(1)

)2
ℓ1m1

=
Ã(2)

L,2m1
(σ)(

Ã(1)
ℓ1;m1;q1

(σ)
)2 , (114)

where for the second equality, we used Eqs. (110), (106),
and (55).

We highlighted in Sec. V that the QQNM amplitudes
are independent of the initial-data source term in the
Laplace-domain field equation. However, the QQNM
amplitudes do depend on the progenitor system through a
dependence on the ratio between mirror and regular mode
amplitudes,

(
A

(1)
ℓ1;−m1;Q1

)⋆

/A
(1)
ℓ1;m1;q1

. As we discuss
below, this ratio is associated with the degree to which the
system is up-down asymmetric. The QQNM amplitudes’
dependence on this ratio is their only dependence on what
created the ringing BH. We write this dependence as

RΨ̃
L,2m1

(σ) = aL,2m1(σ) + bL,2m1(σ)zℓ1;m1;q1 , (115)

where we define

zℓ1;m1;q1 :=

(
A

(1)
ℓ1;−m1;Q1

)⋆

A
(1)
ℓ1;m1;q1

. (116)

The ratio between regular and mirror modes is equivalent
to the ratio between even- and odd-parity components of
the GW strain; see Appendix E. Therefore, using Eqs. (E7)
and (E8), we can alternatively express RΨ̃

L,2m1
(σ) in

terms of the ratio of odd- to even-parity amplitudes,
C−

ℓ1;m1;q1
/C+

ℓ1;m1;q1
. For a system that is up-down

symmetric (i.e., symmetric under reflection through the
equatorial plane), the ratio C−

ℓ1;m1;q1
/C+

ℓ1;m1;q1
vanishes

for even values of ℓ1+m1, while it becomes infinite for odd
values of ℓ1 +m1. For up-down antisymmetric systems,
the opposite is true: C−

ℓ1;m1;q1
/C+

ℓ1;m1;q1
vanishes for odd

values of ℓ1 +m1, while it becomes infinite for even values
of ℓ1 +m1. We review these properties in Appendix E.

We remark that this construction also follows through
in Kerr spacetime, where RΨ̃

L,2m1
(σ) is also a function of

the BH parameters and C−
ℓ1;m1;q1

/C+
ℓ1;m1;q1

. This can be
derived, for example, by expressing the source in Kerr,
S̃, available in Ref. [86] in terms of the Weyl scalar (see
Appendix B). It still consists of a sum of terms ∝ Ψ2

and ∝ ΨΨ̄. Hence, using Eqs. (106) and (62), similar
relations as Eqs. (111)–(113) hold in Kerr (up to angular
mode mixing). As a result, the ratio RΨ̃

L,2m1
(σ) will still

depend on the progenitor’s up-down (a)symmetry via the
ratio C−

ℓ1;m1;q1
/C+

ℓ1;m1;q1
.

Note that the ratio RΨ̃
L,2m1

(σ) is defined in terms
of the normalized field Ψ̃(i). It is useful to relate this
ratio to the analogous ratio from the gravitational strain
h evaluated at I +. As detailed in Appendix D, the
analogous expression for the gravitational strain evaluated
at null infinity is given by

MRh
L,2m1

= −M
4

λ4

(
s

(1)
ℓ1;m1;q1

)2
RΨ̃

L,2m1

∣∣∣
σ=0

. (117)

In Fig. 7, we show a surface plot of the absolute value
of Rh

L,2m1
, as a function of the amplitude and phase of

the complex number zℓ1;m1;q1 for the case (ℓ1,m1, q1) =
(2, 2, 0) and L = 4. At zℓ1;m1;q1 = 0, corresponding
to Aℓ1;−m1;Q1 = 0, Rh

L,2m1
is a constant, proportional

to aL,2m1(0) in Eq. (115), that depends only on the
background parameters. From Eq. (117) and the value of
aL,2m1(0) in Table I, we find Rh

44 ≈ 0.137 exp(−0.0835 i),
in exact agreement with the frequency-domain BHPT
calculation performed by Ma et al. [42], who considered
only a single regular mode excitation at first order, which
corresponds in our case to setting Aℓ1;−m1;Q1 = 0.

In Fig. 8, we show contour plots of Rh
L,2m1

as a function
of the ratio C−

ℓ1;m1;q1
/C+

ℓ1;m1;q1
for the case (ℓ1;m1; q1) =

(2, 2, 0) (left plot) and (ℓ1,m1, q1) = (2, 0, 0) (right plot).
For comparison, in these plots we include values from
Refs. [37, 38, 40–42, 46, 48, 50, 87], in which the QQNM
ratio was computed either using BHPT or by fitting NR
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FIG. 7. Surface plot of ||M Rh
L,2m1 ||, given in Eqs. (115) and

(117), in terms of the amplitude and phase of the complex
number, zℓ1;m1;q1 ; see Eq. (116). We used (ℓ1,m1, q1) =
(2, 2, 0), and L = 4.

data. We place these data on the plots in Fig. 8 using
our formulae (115) and (117). For each reported value of
the complex ratio Rh

L,2m1
, Eqs. (115) and (117) allow us

to compute the (unique) corresponding value of zℓ1;m1;q1 ,
and thus from Eqs. (E7) and (E8), the corresponding ratio
C−

ℓ1;m1;q1
/C+

ℓ1;m1;q1
, which we then plot in the figure [49].

We first highlight the frequency-domain BHPT
calculations by Ma et al. [42] (pink cross) and Bucciotti
et al. [50] (light red plus), which should be perfectly
consistent with our results (up to numerical error). As
mentioned above, Ma et al. report a ratio ≈ 0.137e−0.083i.
Their computation of this result assumed that Ψ(1)

4 is
composed of a single regular frequency, s(1)

2;2;0, so that
A

(1)
2;−2;1 = 0. Equivalently, they assume C−

2;2;0 = iC+
2;2;0.

Starting from their result for Rh
44 and inverting Eqs. (115)

and (117) to obtain C−
2;2;0/C

+
2;2;0, we exactly recover their

input C−
2;2;0/C

+
2;2;0 = i. Similarly, Bucciotti et al. report

a ratio ≈ 0.154e−0.068 i. Their computation instead
enforced even-parity modes only, C−

2;2;0 = 0, which is

equivalent to setting A
(1)
2;2;0 =

(
A

(1)
2;−2;1

)⋆

. Again, we
consistently recover C−

2;2;0 = 0 from their reported ratio.
Now turning our attention to the NR data, we note the

reported values of ||Rh
L,2m1

|| are typically in the range
≈ 0.15–0.20. For the NR data we show in the figure,
the simulated binary systems possess up-down symmetry;
hence, the odd-parity modes should identically vanish for
even values of ℓ1 +m1. Therefore, data for these systems
should lie precisely at C−

2;2;q1
= C−

2;0;q1
= 0. For the case

(2; 2; 0)× (2; 2; 0)→ (4, 4), the reported NR values might
appear relatively far away from this point. However, it
is essential to realise that the NR simulations of these
binary inspirals yield spinning remnant BHs, while we use
a Schwarzchild BH in computing the coefficient appearing
in the relationship (111). One may therefore expect that
this explains at least part of the deviation of the NR data

away from the origin in the left panel of the figure.
To eliminate this uncertainty due to spin, in the right

panel of Fig. 8, we show results for the mode coupling
(2; 0; 0) × (2; 0; 0) → (4, 0). Unlike the NR data in the
left panel, the NR data we display in the right panel
comes from simulations of head-on collisions [37], for
which the remnant BHs are non-spinning. Nonetheless,
the systems remain up-down symmetric, implying the NR
data should precisely lie at C−

2;0;q1
= 0 if we neglect any

numerical errors or systematic biases. This prediction
is nearly within the lower bound for the error bars
reported by the authors. Since these error bars mainly
estimate contributions from the fitting, we expect the
theoretical prediction C−

2;0;q1
= 0 to lie within the true

error, which would also account for any other systematic
errors. Importantly, the mean deviation from the origin is
comparable to the deviation of the NR data shown in the
left panel, suggesting that the spin of the remnant BH
might not be the dominant cause of the deviation there.

C. Two first-order mode excitations

We now generalize the results of the previous section by
considering first-order perturbations generated by two
regular modes, (ℓ1,m1, q1) and (ℓ2,m2, q2), and their
associated mirror modes, (ℓ1,−m1, Q1) and (ℓ2,−m2, Q2).
In particular, the first-order Weyl scalar now takes the
form

Ψ̃(1)(τ, σ, θ, φ)

= A
(1)
ℓ1;m1;q1

ψ̃
(1)
ℓ1;m1;q1

(σ)es
(1)
ℓ1;m1;q1

τ
−2Yℓ1m1

+A
(1)
ℓ1;−m1;Q1

ψ̃
(1)
ℓ1;−m1;Q1

(σ)es
(1)
ℓ1;−m1;Q1

τ
−2Yℓ1−m1 ,

+A
(1)
ℓ2;m2;q2

ψ̃
(1)
ℓ2;m2;q2

(σ)es
(1)
ℓ2;m2;q2

τ
−2Yℓ2m2

+A
(1)
ℓ2;−m2;Q2

ψ̃
(1)
ℓ2;−m2;Q2

(σ)es
(1)
ℓ2;−m2;Q2

τ
−2Yℓ2−m2 ,

(118)

where A
(1)
ℓ1;m1;q1

, A(1)
ℓ1;−m1;Q1

, A(1)
ℓ2;m2;q2

, and A
(1)
ℓ2;−m2;Q2

are arbitrary complex amplitudes.
The second-order source again takes the generic

form (107). As before, this sum over all the combinations
I, I ′ that contribute to a given (L,M) mode at second
order can be made more explicit. Specifically, since
the second-order source depends on the first-order fields
quadratically, a first class of contributions only involves
products of one of the regular modes and its associated
mirror mode. For the (ℓ1,m1, q1) for example, there are
altogether four such products, which can be schematically
written as

(ℓ1,m1, q1)× (ℓ1,m1, q1), (119)
(ℓ1,m1, q1)× (ℓ1,−m1, Q1), (120)
(ℓ1,−m1, Q1)× (ℓ1,m1, q1), (121)
(ℓ1,−m1, Q1)× (ℓ1,−m1, Q1), (122)
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FIG. 8. Contour plot of the quadratic-to-linear strain ratio Rh
L,2m1 as a function of the odd-to-even complex amplitude ratio

C−
ℓ1;m1;q1

/C+
ℓ1;m1;q1

. Solid lines indicate values of constant amplitude of Rh
L,2m1 . Left Panel: Quadratic mode (L,M) = (4, 4)

from parent linear mode (ℓ1,m1, q1) = (2, 2, 0). Also shown are prior results employing second-order BHPT: Redondo-Yuste et
al. [40]; Ma et al. [42]; Bucciotti et al. [50]; Zhu et al. [46], as well as results from NR: Cheung et al. [37]; Cheung et al. [41];
Mitman et al [38]. Note that the NR results are for spinning BHs, while our method of placing them on this plot assumes a
non-spinning BH. Right Panel: Quadratic mode (L,M) = (4, 0) from parent linear mode (ℓ1,m1, q1) = (2, 0, 0). We added prior
NR results for head-on collisions yielding a final non-spinning BH. Figure reproduced from our letter [49].

and similarly for terms only involving (ℓ2,m2, q2) and
its mirror mode. Since no mixing between the two
mode excitations is involved, they will contribute to the
second-order Weyl scalar as described in the previous
section VII B. Specifically, this part of the second-order
source, and thus the corresponding QQNM solution,
takes the same form as in Eqs. (108) and (110). In
particular, the amplitudes of the QQNM solution are
precisely described by Eqs. (111)–(113). These no-mixing
contributions will, therefore, not be discussed here any
further. More interestingly, the second-order source is also
composed of terms involving the mixing of the (ℓ1,m1, q1)
and (ℓ2,m2, q2) mode. Altogether, there are four different
such contributions:

(ℓ1,m1, q1)× (ℓ2,m2, q2), (123)
(ℓ1,m1, q1)× (ℓ2,−m2, Q2), (124)
(ℓ1,−m1, Q1)× (ℓ2,m2, q2), (125)
(ℓ1,−m1, Q1)× (ℓ2,−m2, Q2). (126)

In particular, M takes four possible values, namely, M =
m1 + m2, m1 − m2, −m1 + m2, and −m1 − m2. The

second-order source (107) now takes the form

S̃(2)(τ, σ, θ, φ) =
∑

L{
S̃

(2)
L,m1+m2

(σ)e(s
(1)
ℓ1;m1;q1

+s
(1)
ℓ2;m2;q2

)τ
−2YL,m1+m2

+ S̃
(2)
L,m1−m2

(σ)e(s
(1)
ℓ1;m1;q1

+s
(1)
ℓ2;−m2;Q2

)τ
−2YL,m1−m2

+ S̃
(2)
L,−m1+m2

(σ)e(s
(1)
ℓ1;−m1;Q1

+s
(1)
ℓ2;m2;q2

)τ
−2YL,−m1+m2

+ S̃
(2)
L,−m1−m2

(σ)e(s
(1)
ℓ1;−m1;Q1

+s
(1)
ℓ2;−m2;Q2

)τ
−2YL,−m1−m2

}
,

(127)

where in the above, we ignored the single-mode-
contributions of the form (119)–(122). Note that the
above reduces to the decomposition (108) by taking
(ℓ1,m1, q1) = (ℓ2,m2, q2). The corresponding QQNM
solution then inherits the same structure,

Ψ̃(2)(τ, σ, θ, φ) =
∑

L{
Ã(2)

L,m1+m2
(σ)e(s

(1)
ℓ1;m1;q1

+s
(1)
ℓ2;m2;q2

)τ
−2YL,m1+m2

+ Ã(2)
L,m1−m2

(σ)e(s
(1)
ℓ1;m1;q1

+s
(1)
ℓ2;−m2;Q2

)τ
−2YL,m1−m2

+ Ã(2)
L,−m1+m2

(σ)e(s
(1)
ℓ1;−m1;Q1

+s
(1)
ℓ2;m2;q2

)τ
−2YL,−m1+m2

+ Ã(2)
L,−m1−m2

(σ)e(s
(1)
ℓ1;−m1;Q1

+s
(1)
ℓ2;−m2;Q2

)τ
−2YL,−m1−m2

}
,

(128)

and the QQNM amplitudes depend on the first-order
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amplitude according to

Ã(2)
L,m1+m2

(σ) = ãL,m1+m2(σ)A(1)
ℓ1;m1;q1

A
(1)
ℓ2;m2;q2

+ b̃L,m1+m2(σ)A(1)
ℓ1;m1;q1

(
A

(1)
ℓ2;−m2;Q2

)⋆

,

+ c̃L,m1+m2(σ)
(
A

(1)
ℓ1;−m1;Q1

)⋆

A
(1)
ℓ2;m2;q2

,

(129)

Ã(2)
L,m1−m2

(σ) = d̃L,m1−m2(σ)A(1)
ℓ1;m1;q1

A
(1)
ℓ2;−m2;Q2

+ ẽL,m1−m2(σ)A(1)
ℓ1;m1;q1

(
A

(1)
ℓ2;m2;q2

)⋆

+ f̃L,m1−m2(σ)
(
A

(1)
ℓ1;−m1;Q1

)⋆

A
(1)
ℓ2;−m2;Q2

,

(130)

Ã(2)
L,−m1+m2

(σ) = (−1)ℓ1+ℓ2+L
[

d̃⋆
L,m1−m2

(σ)A(1)
ℓ1;−m1;Q1

A
(1)
ℓ2;m2;q2

+ ẽ⋆
L,m1−m2

(σ)A(1)
ℓ1;−m1;Q1

(
A

(1)
ℓ2;−m2;Q2

)⋆

+ f̃⋆
L,m1−m2

(σ)
(
A

(1)
ℓ1;m1;q1

)⋆

A
(1)
ℓ2;m2;q2

]
,

(131)

Ã(2)
L,−m1−m2

(σ) = (−1)ℓ1+ℓ2+L
[

ã⋆
L,m1+m2

(σ)A(1)
ℓ1;−m1;Q1

A
(1)
ℓ2;−m2;Q2

+ b̃⋆
L,m1+m2

(σ)A(1)
ℓ1;−m1;Q1

(
A

(1)
ℓ2;m2;q2

)⋆

+ c̃⋆
L,m1+m2

(σ)
(
A

(1)
ℓ1;m1;q1

)⋆

A
(1)
ℓ2;−m2;Q2

]
.

(132)

The factor (−1)ℓ1+ℓ2+L generalises the factor (−1)L

appearing in Eq. (113). Note that the above formulae
reduce to those appearing in Eqs. (111)–(113) when
setting (ℓ1,m1, q1) = (ℓ2,m2, q2). In particular, aL,2m1 =
ãL,2m1 , bL,2m1 = b̃L,2m1 + c̃L,2m1 , dL0 = f̃⋆

L0 = ẽL0, and
cL0 = d̃L0. We provide the above coefficients ã, b̃, c̃, d̃, ẽ, f̃
evaluated at I + in Table II, for a selection of first-order
mode excitations (ℓ1,m1, q1) and (ℓ2,m2, q2).

We can then define the ratio

RΨ̃
L,m1+m2

(σ) :=

(
Ψ̃(2))

L,m1+m2(
Ψ̃(1)

)
ℓ1;m1;q1

×
(
Ψ̃(1)

)
ℓ2;m2;q2

=
Ã(2)

L,m1+m2
(σ)

Ã(1)
ℓ1;m1;q1

(σ)× Ã(1)
ℓ2;m2;q2

(σ)
. (133)

This ratio depends on the progenitor system’s up-down
(a)symmetry via two complex amplitudes, constructed
from the ratio of even-to-odd mode parity of the two-mode
excitation at first order,

RΨ̃
L,m1+m2

(σ) = ãL,m1+m2(σ)
+ b̃L,m1+m2(σ)zℓ1;m1;q1

+ c̃L,m1+m2(σ)zℓ2;m2;q2 , (134)

(ℓ1,m1, q1)
×(ℓ2,m2, q2) L at I + (σ = 0)

(2, 0, 0)
×(2, 0, 2) 2

ã20 2.38635 − 4.44036 i
b̃20 −0.0129848 − 0.0958113 i
c̃20 −0.294480 − 0.182355 i
d̃20 (−3.39753 − 0.715685 i) ∗ 105

ẽ20 (−0.755970 + 10.9458 i) ∗ 103

f̃20 (−3.23480 − 0.967544 i) ∗ 105

(2, 0, 0)
×(4, 0, 0) 4

ã40 0.634554 − 1.51403 i
b̃40 −0.0121117 − 0.0205308 i
c̃40 −0.0137579 + 0.499035 i
d̃40 0.0464563 − 0.000954264 i
ẽ40 0.00595266 + 0.0143701 i
f̃40 −0.309025 + 0.201908 i

(2, 2, 0)
×(2, 2, 2) 4

ã44 17.6382 + 15.8957 i
b̃44 1.0879 + 1.19354 i
c̃44 0.723966 + 0.99525 i
d̃40 455.669 + 638.857 i
ẽ40 17.7772 − 18.2189 i
f̃40 427.197 + 657.056 i

(2, 2, 0)
×(3, 2, 0) 4

ã44 0.516926 − 1.68240 i
b̃44 0.177091 + 0.19585 i
c̃44 −0.731825 − 0.458078 i
d̃40 0.00139546 − 0.000780128 i
ẽ40 −0.00204365 − 0.00678924 i
f̃40 −0.0909477 − 0.0168087 i

(2, 2, 0)
×(3, 3, 0) 5

ã55 24.9740 + 7.42180 i
b̃55 −0.569561 − 0.342118 i
c̃55 3.11586 + 1.86907 i
d̃5,−1 −0.000164949 + 0.000973865 i
ẽ5,−1 0.0000891774 + 0.000267646 i
f̃5,−1 0.00375721 − 0.00126218 i

TABLE II. Values of the coefficients at I + appearing
in Eqs. (129)–(132) for a selection of mode numbers
((ℓ1,m1, q1) × (ℓ2,m2, q2))LM . The values for ã55, b̃55, c̃55 are
consistent with those in [88, Table I and II].

where we define

zℓ1;m1;q1 :=

(
A

(1)
ℓ1;−m1;Q1

)⋆

A
(1)
ℓ1;m1;q1

, (135)

zℓ2;m2;q2 :=

(
A

(1)
ℓ2;−m2;Q2

)⋆

A
(1)
ℓ2;m2;q2

. (136)

In Fig. 9, we show a contour plot of the ratio
Rh

ℓ1+ℓ2,m1+m2
as a function of C−

ℓ;m;q/C
+
ℓ;m;q for different

values of (ℓ1,m1, q1)×(ℓ2,m2, q2). As the ratioRh
L,m1+m2

depends in general on two complex numbers (134), we
have chosen to set zℓ1;m1;q1 = zℓ2;m2;q2 , or equivalently,
C−

ℓ1;m1;q1
/C+

ℓ1;m1;q1
= C−

ℓ2;m2;q2
/C+

ℓ2;m2;q2
.
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FIG. 9. Contour plot of the ratio Rh
ℓ1+ℓ2,m1+m2 as a function of the odd-to-even complex amplitude ratio C−

ℓ;m;q/C
+
ℓ;m;q,

with the solid lines indicating values of constant amplitude of the QQNM ratio. Since the ratio Rh
L,m1+m2 depends on two

complex numbers, zℓ1;m1;q1 and zℓ2;m2;q2 , we have chosen to set zℓ;m;q := zℓ1;m1;q1 = zℓ2;m2;q2 . Left Panel: Quadratic mode
(L,M) = (4, 4) from linear modes (ℓ1,m1, q1) = (2, 2, 0) and (ℓ2,m2, q2) = (3, 2, 0). Right Panel: Quadratic mode (L,M) = (5, 5)
from linear modes (ℓ1,m1, q1) = (2, 2, 0) and (ℓ2,m2, q2) = (3, 3, 0).
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FIG. 10. Left Panel: Dynamics at second order in perturbation theory driven by a source quadratic in the singly excited QNMs.
The signal is dominated by the slowest decaying mode s(1)

4;4;0, and s
(1)
4;4;1 (s(1)

440 -purple line) until late times, when the power-law
tail dominates. Subdominant residual dynamics require filtering the signal via Eq. (139). With second-order QNM amplitudes
and QQNM amplitudes predicted by the frequency-domain infrastructure, the residuals unveil the QQNM decay with frequency
s

(2)
(2;2;0)×(2;2;0) (green line), as well as higher overtones s(1)

4;4;2, s(1)
4;4;3 (s(1)

441-blue line), s(1)
4;4;4, s(1)

4;4;5 (s(1)
442-orange line) and s(1)

4;4;6, s(1)
4;4;7

(s(1)
443-dark yellow). The filtered signal also unveils the contribution from the tail decay at earlier times. The inset shows the early

time dynamics. Right Panel: Spectral analysis of the second-order field at future null infinity arising from a first-order dynamics
containing only the regular QQM (purple), or regular and mirror modes (green). The QQNM is the most excited mode at second
order, though its time-domain contribution diminishes rapidly due to faster decay compared to the fundamental QNM, cf. left
panel. The contribution from the regular QNM (q = 0, 2, 4, 6) consistently dominates across overtone orders (n = 0, 1, 2, 3), but
accounting for mirror modes (q = 1, 3, 5, 7) is critical for accurate filtering of the time-domain signal via Eq. (139).

D. Frequency versus time-domain codes comparison

Having isolated and analyzed individual pieces of
the second-order waveform using our frequency-domain

infrastructure, we now examine the complete second-order
time-domain signal using our time-domain code. This
serves to establish confidence in both methods. More
importantly, it allows us to directly explore the relative
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contributions of various QQNMs and linear second-order
QNMs in a complete time-domain signal.

We consider a second-order time evolution driven by
a source term resulting from the quadratic coupling
of the regular linear QNM s

(1)
2;2;0, i.e. Eq. (106) with

(ℓ1,m1, q1) = (2, 2, 0) and
(
A

(1)
2;2;0, A

(1)
2;−2;1

)
= (1, 0). In

this particular case, the first-order data yields a second-
order dynamics with L = 4 and we concentrate on the
dynamics in the sector M = +4.

The right panel of Fig. 10 shows the numerical time-
domain evolution Ψ̃(2)

ℓmN (τ, 0) at I + driven purely by the
quadratic second-order source resulting from this pure
QNM solution at first order. As discussed in Sec. V B, the
full second-order signal consists of contributions from both
the QNMs and tail decay, as well as QQNMs, resulting,
respectively, from the homogenous and the particular
solution to the wave equation. Therefore, in this particular
case, the time evolution contains oscillations with QNM
frequencies s

(1)
4;4;q and s

(1)
4;4;Q, as well as the QQNM

frequency s(2)
(2;2;0)×(2;2;0), and an eventual power law decay.

The purple line displays the full signal with all the
aforementioned contributions, as obtained from our time-
domain code. Because the fundamental modes (n = 0)

s
(1)
4;4;0 ≈ −0.377 + 3.237 i, s

(1)
4;4;1 ≈ −0.377− 3.237 i,

(137)
decay more slowly than the QQNM

s
(2)
(2;2;0)×(2;2;0) ≈ −0.712 + 2.989 i, (138)

the second-order contribution is not directly identified
in the time evolution, without a careful control of the
subdominant signatures.

To unveil the contribution of faster-decaying modes, we
exploit the frequency-domain framework that predicts the
corresponding second-order QNM and QQNM excitation
amplitudes, cf. Eqs. (81) and (86) respectively. This
approach allows us to introduce the residual

Resυ(τ) = Ψ̃(2)
ℓmN (τ, 0)−

υ∑
υ′=0

Aυ′ eτsυ′ , (139)

with υ an overall label associated with frequencies ordered
according to their exponential decaying rate; i.e.,

υ′ = 0←→ s
(1)
4;4;0 and s

(1)
4;4;1, (140)

υ′ = 1←→ s
(2)
(2;2;0)×(2;2;0), (141)

υ′ = 2←→ s
(1)
4;4;2 and s

(1)
4;4;3, (142)

etc. In this way, we can now filter the contribution from
the fundamental modes υ = 0, and observe the signal
decaying with the expected QQNM frequency (green line)
up to τ ∼ 45, when the tail phase takes over. Consistently,
the QQNM contribution υ = 1 can be also filtered, with

the blue line unveiling the contribution from the overtone
n = 1,

s
(1)
4;4;2 ≈ −1.137 + 3.186 i, s

(1)
4;4;3 ≈ −1.137− 3.186 i.

(143)
Systematically, the left panel of Fig. 10 shows the results
up to υ = 3, where we further observe the underlying
contribution from the linear overtone n = 2,

s
(1)
4;4;4 ≈ −1.920 + 3.091 i, s

(1)
4;4;5 ≈ −1.920− 3.091 i,

(144)
and the linear overtone n = 3,

s
(1)
4,4,6 ≈ −2.736 + 2.959 i, s

(1)
4,4,7 ≈ −2.736− 2.959 i,

(145)
for υ = 2 (orange line) and υ = 3 (dark yellow line),
respectively.

We recall that the results in the left panel of Fig. 10
correspond to a configuration (A2;2;0, A2;−2;1) = (1, 0), i.e.
a dynamic containing only the regular mode excited at
first order, and its effect on the second-order dynamics. A
similar analysis could be performed for the configuration
(A2;2;0, A2;−2;1) = (1, 1), with results being qualitatively
identical to the ones discussed so far.

To better quantify the difference between both
configurations, Fig. 10’s right panel presents a histogram
for the spectral analysis of the second-order field at I +.
The x axis is ordered according to the modes’ exponential
decaying rate; i.e., with υ = 0, . . . , 3. The y axis shows the
relative ratio between the second-order QNM or QQNM
amplitudes to the first-order QNM amplitude, with a
normalisation according to Eq. (117).

One observes that the QQNM s
(2)
(2;2;0)×(2;2;0) is indeed

the most excited mode. As explained, however, its
contribution is not straightforwardly observed in the
time-domain signal, as the QQNM contribution quickly
becomes subdominant because its decay rate is faster
than the fundamental modes s(1)

4;4;0 and s
(1)
4;4;1. In fact,

the contribution from the first overtones s(1)
4;4;2, s(1)

4;4;3 is
also bigger than the fundamental mode. Higher overtones
then show a smaller contribution to the signal.

Interestingly, the second-order source does not excite
the regular and mirror modes evenly. Even though we
observe a predominance of the regular mode q = 0, 2, 4 and
6 at all orders in the overtones n = 0, 1, 2 and 3, correctly
accounting for the contribution from the mirror modes
q = 1, 3, 5 and 7 is crucial for the correct and complete
filtering in the time-domain signal via Eq. (139).

VIII. CONCLUSION

In this paper, we have provided a complete description
of quadratic QNMs in Schwarzschild spacetime, fleshing
out the details of our letter [49] and complementing
broadly similar recent studies in Refs. [42, 44, 55].

Although BHPT calculations have only recently begun
to focus on second-order effects during ringdown, there
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are now several established methods of performing such
calculations. This is particularly the case for QQNMs in
the frequency domain. We now take the opportunity to
highlight the differences between these various methods
and the novel aspects of our treatment.

References [42, 55] present two methods in the frequency
domain, using ordinary (t, r, θ, ϕ) coordinates rather
than hyperboloidal slicing. Both begin from scalar field
equations that we may write generically as ÔΨ(2) = S(2)

– the Regge-Wheeler and Zerilli equations in Ref. [55],
and the Teukolsky equation in Ref. [42]. For two coupled
first-order QNMs, this becomes

ÔΨ(2) = S(2)
ω e−iωt, (146)

where ω = ωℓ1;m1;q1 +ωℓ2;m2;q2 is the sum of the two QNM
frequencies. By adopting an ansatz Ψ(2) = Ψ(2)

ω e−iωt and
factoring the exponential out of the equation, Refs. [42, 55]
reduce Eq. (146) to a frequency-domain equation of the
form

ÔωΨ(2)
ω = S(2)

ω . (147)

In the case of the Teukolsky equation, the source
S

(2)
ω is singular at the boundaries due to the fact that

every constant-t slice runs between the bifurcation sphere
and spatial infinity, where the first-order QNM solutions
are singular. Reference [42] overcomes this problem by
extending the radial coordinate into the complex plane
and integrating Eq. (147) over a complex radial contour
that picks out the QQNM amplitude, taking inspiration
from Refs. [65–67].

In the case of the Regge-Wheeler and Zerilli equations,
the blow-up of the QNM solutions at the boundaries
is subsidiary to the fact that the Regge-Wheeler and
Zerilli master variables are innately ill-behaved at second
order [89]. Reference [55] resolves these singularities,
following earlier work [87], using a subtraction method
(akin to a puncture method in self-force theory [90]).
They find a singular quadratic combination of first-order
fields, call it ΨS

ω, that cancels the divergences in the
source. Defining the residual field ΨR

ω := Ψ(2)
ω − ΨS

ω

and moving ΨS
ω to the right-hand side of Eq. (147), they

then solve for the well-behaved field ΨR
ω . When the metric

perturbation h(2)
ab is reconstructed from the master scalars,

the singularities cancel, and the physical GW is obtained
from the residual field.

Reference [44] follows an approach most similar to our
own, using hyperboloidal slicing and spectral methods.
In this instance, the coefficient S(2)

ω in S
(2)
ω e−iωτ is well

behaved at the boundaries. The ansatz Ψ(2) = Ψ(2)
ω e−iωτ

then leads to a well-behaved version of Eq. (147) that can
be solved with regular boundary conditions.

Our approach goes some distance beyond the above
by considering an initial-value problem, restricting our
analysis to the future domain of dependence of some
slice τ = 0. This is the physically relevant problem
following the formation of the ringing BH. By taking a

Laplace transform of ÔΨ(2) = S
(2)
ω e−iωτ , we are able, in

principle, to calculate the complete solution Ψ(2), not only
the QQNM contribution. This includes the contribution
from initial data and the second-order linear QNMs, for
example. In this setting, in Sec. V, we have shown how
to isolate and compute the linear QNMs and QQNMs
within the full solution.

Our use of a Laplace transform also allows us to directly
link our frequency-domain results to simulations in the
time domain that solve the same initial-value problem. In
Sec. VII, we have illustrated how access to frequency-
domain results allows us to cleanly deconstruct the
time-domain signal obtained from our independent time-
domain code. This synergy has significant advantages,
both in accuracy and in physical insight, over either time-
domain evolutions or frequency-domain calculations on
their own. Given only a time-domain evolution, the
various QNM, QQNM, and other contributions to the
GW can only be extracted through fitting [40, 46, 91];
given only frequency-domain calculations, one cannot
easily be sure of whether one has included all significant
contributions (e.g., tail effects, as we return to below, or
the contributions from the high-frequency arc).

Given the number of perturbative second-order
ringdown calculations now available in the literature,
our paper’s main new contribution is its overarching
formalism. Consequently, our presentation has focused
on the technical details of the formalism and its
implementation. However, we have also further fleshed
out the key result in our earlier letter [49]: the dependence
of the QQNM/QNM ratio on the ratio between even- and
odd-parity content in the first-order QNM.

There are several natural followups. One is the
extension of our calculations to a Kerr background. Our
methods apply almost without change in Kerr: the
separability of the Teukolsky equation, the method of
metric reconstruction to calculate the second-order source,
the hyperboloidal and Laplace-transform infrastructure,
and the pole structure of the Green’s function and of
the second-order source all carry over directly. The only
new aspect is the more complicated mode coupling in
the second-order source, which arises from the lack of
spherical symmetry and causes any single (spheroidal) ℓm
first-order mode to generate a formally infinite number
of second-order source modes. This can be dealt with by
(i) avoiding a full separation of variables at second order,
instead working with partial differential equations in r
and θ [92], or (ii) numerically (or semi-analytically [93])
projecting the source into individual spheroidal-harmonic
modes, relying on the decay of high-ℓ modes to neglect
them in the sum. Such calculations in Kerr spacetime
would provide a valuable independent verification of
Ref. [44]’s results.

Another natural follow-up would be to include the
contributions of branch cuts in the Green’s function.
These lead to late-time power-law tails in the solution and
can have nontrivial behaviour at intermediate times [94].
Their relevance in nonlinear ringdowns has been studied
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in Refs. [95–97] in the time domain, and our approach
would provide an important complement in the frequency
domain.

A third avenue of further study would be to explore
quadratic effects at the BH horizon. These are known to
exhibit the same behaviour as at future null infinity [88,
98]. Our hyperboloidal framework, which cleanly links
H+ to I +, would be a natural setting to examine these
relationships.
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Appendix A: The Newman-Penrose and
Geroch-Held-Penrose formalisms

The Teukolsky equations in Sec. II are derived within
the NP or GHP formalism, as is the metric reconstruction
method reviewed in Appendix B. In this appendix, we
briefly review the relevant elements of these formalisms.

1. The Newman–Penrose formalism

The NP formalism [75] is a tetrad formalism for
studying general relativistic spacetimes. A tetrad consists
of four orthonormal null vector fields, which form a basis
throughout a spacetime. The NP basis vectors are labelled

ea
[a] := {ea

[1], e
a
[2], e

a
[3], e

a
[4]} := {la, na,ma, m̄a}, (A1)

where indices in square brackets denote tetrad indices.
The vectors la and na are real, whereasma is complex, and
overbars denote complex conjugation. Conventionally, for
a positive metric signature, the orthonormal relationship
of the tetrad takes the form

lana = −1, mam̄a = 1; (A2)

all other contractions of tetrad vectors and co-vectors are
zero. Following Eq. (A2), the metric can be expressed

as [75],
gab = −2l(anb) + 2m(am̄b). (A3)

The NP formalism uses Ricci rotation coefficients to
express the connection [75, 99],

γ[c][a][b] = ek
[c]e[a]k;ie

i
[b]. (A4)

There are 24 independent Ricci rotation coefficients. In
the NP formalism, these are expressed as 12 independent
complex scalars, known as spin coefficients:

κ = −γ[3][1][1], τ = −γ[3][1][2], σ = −γ[3][1][3],

ρ = −γ[3][1][4], ϖ = −γ[2][4][1], ν = −γ[2][4][2],

µ = −γ[2][4][3], λ = −γ[2][4][4],

ϵ = −
γ[2][1][1] + γ[3][4][1]

2 , γ = −
γ[2][1][2] + γ[3][4][2]

2 ,

β = −
γ[2][1][3] + γ[3][4][3]

2 , α = −
γ[2][1][4] + γ[3][4][4]

2 .

(A5)
Curvature quantities are also represented using scalars

in the NP formalism. The vacuum curvature, contained in
the ten degrees of freedom of the Weyl tensor, is expressed
using five complex scalars, known as Weyl scalars:

Ψ0 = C[1][3][1][3], Ψ1 = C[1][3][1][2], Ψ2 = C[1][3][4][2],

Ψ3 = C[1][2][4][2], Ψ4 = C[2][4][2][4]. (A6)
The covariant derivative is also expressed using tetrad
components, as

D := la∇a, ∆ := na∇a

δ := ma∇a, δ := ma∇a. (A7)
One convenience of the NP formalism is that many

of the curvature scalars and spin coefficients can be set
to zero in Kerr spacetime. This is because the Kerr
spacetime admits two principal null vectors (two pairs
of principal null vectors which coincide) [100, 101]; that
is, Kerr is Petrov type D. A tetrad can be chosen such
that la and na are tangent to the principal null directions.
In such tetrads, four of the Weyl scalars and four spin
coefficients vanish [101]:

Ψ0 = 0, Ψ1 = 0, Ψ3 = 0, Ψ4 = 0, (A8)
κ = 0, λ = 0, ν = 0, σ = 0. (A9)

In this paper, we choose to work in the Kinnersley
tetrad [102]. Expressed in Schwarzschild coordinates
(t, r, θ, φ), the tetrad is

lα = 1
f

(
1, f, 0, 0

)
, (A10)

nα = 1
2

(
1,−f, 0, 0

)
, (A11)

mα = 1
r
√

2

(
0, 0, 1, i

sin θ

)
, (A12)

where f = 1 − 2M
r . The Kinnersley tetrad is principal-

null-direction aligned, obeying Eqs. (A8) and (A9), and
also satisfies ϵ = 0.
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2. Perturbative expansion

Similarly to Eq. (1), we expand Ψ4 as follows:

Ψ4 = Ψ(0)
4 + εΨ(1)

4 + ε2Ψ(2)
4 + . . .+ εnΨ(n)

4 + . . . (A13)

This is in contrast to other works on QQNMs [42, 44,
70, 91, 103], which define their perturbative expansion
similarly to Campanelli and Lousto [70], as

Ψ4 = Ψ(0)CL
4 + εΨ(1)CL

4 + ε2

2 Ψ(2)CL
4

+ . . .+ εn

n! Ψ(n)CL
4 + . . . (A14)

The background and first-order perturbations are identical
in both expansions. However, at second order and beyond,
they differ as Ψ(n)

4 = 1
n! Ψ

(n)CL
4 .

Conventionally, the (0) superscript on background
quantities is dropped for legibility. In the remainder of
this paper, we adopt such a notation; that is, Ψ4 := Ψ(0)

4 .

3. The Geroch-Held-Penrose formalism

The GHP formalism refines the NP formalism by
specialising to tetrads that are aligned with principal
null directions and then working with expressions that
are covariant under the transformations within that
class. In a Petrov type D spacetime, la and na are
chosen to point along the two principal null directions.
The remaining freedoms are associated with spin and
boost transformations, which are isomorphic to the group
of multiplications by a complex number, ϑ [71]. To
represent the conserved quantities corresponding to the
spin and boost transformations, GHP weights p and q
are introduced. A quantity f with weights f ⊜ {p, q},
transforms under a spin and boost transformation as

f −→ ϑpϑ̄qf. (A15)

GHP weights p and q can be equated to the spin weight
s = 1

2 (p − q) and boost weight b = 1
2 (p + q). The [b, s]

weights of the tetrad vectors are, [1, 0], [−1, 0], [0, 1], and
[0,−1] for la, na, ma, and m̄a respectively. Similarly, the
{p, q} weights of the tetrad vectors are {1, 1}, {−1,−1},
{1,−1}, and {−1, 1} respectively.

Additionally, there is a further freedom to interchange
la and na, denoted by a prime operation. The prime
operation affects the GHP weights according to f ′ ⊜
{−p,−q}. Complex conjugation affects the weights as
f̄ ⊜ {q, p}. Half of the NP spin coefficients are relabelled
using the prime notation:

κ′ := −ν, σ′ := −λ, ρ′ := −µ,
τ ′ := −π, β′ := −α, ϵ′ := −γ. (A16)

The GHP weights of the spin coefficients (and their primes)
follow directly from the weights of the tetrad vectors

(using Eqs. (A5)); e.g.,

κ ⊜ {3, 1}, σ ⊜ {3,−1}, ρ ⊜ {1, 1}, τ ⊜ {1,−1}.
(A17)

The spin coefficients ϵ, ϵ′, β, and β′ do not have well-
defined weights. Similarly, the NP derivative operators do
not have well-defined weights. GHP found by combining
these poorly defined weighted quantities, one can produce
derivative operators with well-defined weights,

Þ = (D − pϵ− qϵ̄), (A18)
Þ′ = (∆ + pϵ′ + qϵ̄′), (A19)
ð = (δ − pβ + qβ̄′), (A20)
ð′ = (δ̄ + pβ′ − qβ̄). (A21)

Two clear advantages of the GHP formalism are that
the equations are more condensed than in NP form, and
they offer a straightforward consistency check by checking
that the weights of an equation are consistent.

Appendix B: Metric reconstruction and quadratic
source

The bulk of the paper deals with solving the second-
order Teukolsky equation (8) (with i = 2 and s = −2),
with the quadratic source term (12). Constructing that
source term requires the complete first-order metric
perturbation h

(1)
ab . In this appendix, we summarize how

h
(1)
ab is reconstructed from a first-order Weyl scalar and

the resulting structure of the quadratic source.
In vacuum, h(1)

ab can be obtained from Ψ(1)
0 or Ψ(1)

4
using the Chrzanowski-Cohen-Kegeles (CCK) metric
reconstruction procedure [68, 104–106]. There are two
forms of CCK metric reconstruction associated with
different gauge choices for h(1)

ab : the ingoing radiation
gauge (IRG), for which a CCK metric perturbation is
regular at the BH future horizon, and the outgoing
radiation gauge (ORG), for which a CCK metric
perturbation is regular at future null infinity. We are
motivated to use the ORG CCK metric reconstruction as,
unlike the IRG CCK metric reconstruction4, it ensures
the second-order source (12) is regular in hyperboloidal
coordinates; see Fig. 6.

1. Weyl scalar to Hertz potential

In CCK metric reconstruction, the first-order metric
perturbation is computed from the Hertz potential Φ(1).

4 The metric perturbations in the IRG can produce a regular second-
order source if it is produced using an alternative method to CCK
metric reconstruction [91, 103, 107].
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The Hertz potential in ORG is a solution to the vacuum
Teukolsky equation (4),

Ô′[Φ(1)] = 0 . (B1)

As a result, it is related to Ψ(1)
0 or Ψ(1)

4 via so-called radial
and angular inversion relations, respectively. The angular
inversion is the simplest of the two as it only involves
angular and time derivatives, which become algebraic at
the level of spherical-harmonic modes in the frequency
domain. In Schwarzschild, it is given by

Ψ(1)
0 = 1

4ð
4(Φ(1))⋆ + 3

4Mr−4LξΦ(1), (B2)

where the Lξ is the differential operator

Lξ = −r(−ρ′þ + ρþ′)− p+ q

2 rΨ(1)
2 . (B3)

In hyperboloidal coordinates, this simply reduces to a
time derivative,

Lξ = 1
λ
∂τ . (B4)

Following the discussion in Sec. IV B, we decompose
the Weyl scalar 2Ψ(1) = Ψ(1)

0 as

2Ψ(1) = 2Z
∑

ℓ,m,q

2A
(1)
ℓ;m;q 2ψ̃

(1)
ℓ;m;qe

s
(1)
ℓ;m;qτ . (B5)

From the angular inversion (B2), the Hertz potential Φ(1)

will have a similar decomposition, namely,

Φ(1) = r4
2Z

∑
ℓ,m,q

2ϕ̃
(1)
ℓ;m;qe

s
(1)
ℓ;m;qτ . (B6)

Plugging these decompositions into the angular
inversion (B2), we obtain algebraic equations,

16 2A
(1)
ℓ;m;q2ψ̃

(1)
ℓ;m;q = (−1)m(ℓ− 1)4

(
2ϕ̃

(1)
ℓ;−m;Q

)⋆

+ 12Mλ−1s
(1)
ℓ;m;q 2ϕ̃

(1)
ℓ;m;q, (B7)

where (ℓ − 1)4 = (ℓ − 1)ℓ(ℓ + 1)(ℓ + 2) denotes the
Pochhammer symbol. Solving for ϕ̃(1)

ℓ;m;q, we find

2ϕ̃
(1)
ℓ;m;q =

16 2ψ̃
(1)
ℓ;m;q

(ℓ− 1)2
4 −

(
12Mλ−1s

(1)
ℓ;m;q

)2

×
[
(−1)m(ℓ− 1)4

(
2A

(1)
ℓ;−m;Q

)⋆

− 12Mλ−1s
(1)
ℓ;m;q 2A

(1)
ℓ;m;q

]
, (B8)

where we made use of relations (62) and (63).
The above relation relates the modes of the Hertz

potential to the modes of Ψ(1)
0 , which depend in particular

on the amplitudes 2A
(1)
ℓ;m;q. They are themselves related

to the amplitudes for Ψ(1)
4 . Specifically, consider the

decomposition of the Weyl scalar Ψ(1) = r4Ψ(1)
4 ,

−2Ψ(1) = −2Z
∑

ℓ,m,q

−2A
(1)
ℓ;m;q −2ψ̃

(1)
ℓ;m;qe

s
(1)
ℓ;m;qτ . (B9)

Via the Teukolsky-Starobinsky relation [54], and making
use of our choice of normalisation of the QNM
eigenfunctions (cf. Eq. (42)), we find the following
algebraic relation between the excitation amplitudes
±2A

(1)
ℓ;m;q:

1024M
8

λ8

(
s

(1)
ℓ;m;q

)4
2A

(1)
ℓ;m;q = (ℓ− 1)4−2A

(1)
ℓ;m;q

+ 12(−1)ms
(1)
ℓ;m;q

M

λ

(
−2A

(1)
ℓ;−m;Q

)⋆

.

(B10)

This relation implies that solving for −2Ψ(1) or 2Ψ(1) is
effectively equivalent: given the amplitudes of one, we
can obtain the amplitudes of the other.

2. Hertz potential to metric perturbation

The first-order metric perturbation in the ORG is
expressed in terms of the Hertz potential via the formula

h
(1)
ab = 2Re(S†

4Φ(1))ab, (B11)

where

(S†
4Φ(1))ab = −1

2nanbð′2Φ(1)

− 1
2m̄am̄b(þ′ − ρ′)(þ′ + 3ρ′)Φ(1)

+ 1
4(nam̄b + nbm̄a)[þ′ð′ + ð′(þ′ + 3ρ′)]Φ(1).

(B12)

Hence, there are three independent, non-zero components
in the metric perturbation:

h
(1)
ll = (S†

4Φ(1))ll + (S†
4Φ(1))⋆

ll, (B13)

h
(1)
lm = (S†

4Φ(1))lm, (B14)
h(1)

mm = (S†
4Φ(1))mm, (B15)

and their complex conjugations. This perturbation
satisfies the traceless ORG gauge conditions

h
(1)
ab n

b = 0 = h
(1)
ab g

ab. (B16)

In Schwarzschild, one can easily relate the modes
of the metric perturbation to the modes of the Hertz
potential. We decompose the tetrad components of the
metric perturbation as

h
(1)
[a][b] =

∑
ℓ,m,q

(h(1)
[a][b])ℓ;m;qe

s
(1)
ℓ;m;qτ

sYℓm(θ, φ), (B17)
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where s is the spin weight of the tetrad component h(1)
[a][b].

Similarly, as was done for the Weyl scalars and source
term in Eqs. (22) and (23), we define the regularized
version of the tetrad components h(1)

[a][b],

(h(1)
ll )ℓ;m;q = M2

2Z
σ2 (h̃(1)

ll )ℓ;m;q, (B18)

(h(1)
lm)ℓ;m;q = M2

2Z(1− σ)
σ3 (h̃(1)

lm)ℓ;m;q, (B19)

(h(1)
mm)ℓ;m;q = M2

2Z(1− σ)2

σ4 (h̃(1)
mm)ℓ;m;q, (B20)

where we recall that the tetrad components h(1)
[a][b] are in

Kinnersley.
By construction, the dimensionless quantities

(h̃(1)
[a][b])ℓ;m;q are regular quantities everywhere (for our

asymptotically flat, horizon-regular metric perturbations
in the ORG), including at the endpoints σ = 0 and σ = 1.
They are related to ϕ̃(1)

ℓ;m;q by

(h̃(1)
ll )ℓ;m;q = −µ1

ℓµ
2
ℓ

(
ϕ̃

(1)
ℓ;m;q + (−1)m

(
ϕ̃

(1)
ℓ;−m;Q

)⋆)
,

(B21a)

(h̃(1)
lm)ℓ;m;q = − µ

2
ℓ√
2

[(
3σ + 4M

λ
(1 + σ)s(1)

ℓ;m;q

)

+ σ2∂σ

]
ϕ̃

(1)
ℓ;m;q, (B21b)

(h̃(1)
mm)ℓ;m;q = −1

2

[
4
(
σ2 + M

λ
σ(4 + 5σ)s(1)

ℓ;m;q

+ 4M
2

λ2 (1 + σ)2
(
s

(1)
ℓ;m;q

)2)
+ σ2

(
6σ + 8M

λ
(1 + σ)s(1)

ℓ;m;q

)
∂σ

+ σ4∂2
σ

]
ϕ̃

(1)
ℓ;m;q, (B21c)

(h̃(1)
lm̄)ℓ;m;q = (−1)m+1

[
(h̃(1)

lm)ℓ;−m;Q

]⋆

, (B21d)

(h̃(1)
m̄m̄)ℓ;m;q = (−1)m

[
(h̃(1)

mm)ℓ;−m;Q

]⋆

, (B21e)

where µs
ℓ :=

√
(ℓ+ s)(ℓ− s + 1).

We can express the metric perturbation modes (B21)
directly in terms of the modes of Ψ(1)

0 using the
relationship (B8).

3. Quadratic source

The quadratic source for −2Ψ(2) (12), has the schematic
form

−2S
(2) ∼ ∇∇

(
h(1)∇∇h(1) +∇h(1)∇h(1)

)
. (B22)

Each ℓm mode of the source, as appearing in Eq. (27),
then takes the form

−2S̃
(2)
ℓm =

∑
s1ℓ1m1
s2ℓ2m2

−2S̃
s1ℓ1m1s2ℓ2m2
ℓm

[
s1h

(1)
ℓ1m1

, s2h
(1)
ℓ2m2

]
,

(B23)
where we have restricted to the ORG and defined

0h
(1)
ℓm = (h(1)

ll )ℓm,

1h
(1)
ℓm = (h(1)

lm)ℓm, −1h
(1)
ℓm = (h(1)

lm̄)ℓm,

2h
(1)
ℓm = (h(1)

mm)ℓm, −2h
(1)
ℓm = (h(1)

m̄m̄)ℓm. (B24)

−2S̃
s1ℓ1m1s2ℓ2m2
ℓm is a bilinear differential operator

involving τ and σ derivatives, satisfying the
standard properties for coupling of angular momenta:
−2S̃

s1ℓ1m1s2ℓ2m2
ℓm vanishes unless

|ℓ1 − ℓ2| ≤ ℓ ≤ ℓ1 + ℓ2 and m1 +m2 = m. (B25)

Note we do not have s1 + s2 = s because the operator S4
in Eq. (12) involves spin-raising and -lowering operations
that ensure each term has net spin weight −2.

Equation (B23) is given explicitly in the
PerturbationEquations package [73], up to the rescaling in
Eq. (23). In our case, with h

(1)
ℓ,m =

∑
ℓ,m,q h

(1)
ℓ;m;qe

s
(1)
ℓ;m;qτ ,

each term in Eq. (B23) becomes proportional to
exp

[
τ
(
s

(1)
ℓ1;m1;q1

+ s
(1)
ℓ2;m2;q2

)]
. This, then, is the source

as it appears in Eq. (67). Each term in the source is
expressed directly in terms of QNM modes of Ψ(1)

0 using
Eqs. (B21) and (B8).

Appendix C: Choice of second-order field variable:
ψ

(2)
4 versus ψ(2)

4L

At second order, there are two common forms of
the Teukolsky equation for each spin weight ±2. As
explained in Sec. II, we follow Refs. [52, 53] in using the
reduced second-order Teukolsky variable Ψ(2)

4L , satisfying
the reduced second-order Teukolsky equation (4). A
common alternative [42, 46, 70, 91, 103] is to use the
complete second-order Weyl scalar,

Ψ(2)
4 = T4[h(2)

ab ] + δ2Ψ4[h(1)
ab , e

(1)a
[a] ] = Ψ(2)

4L + Ψ(2)
4Q, (C1)

where Ψ(2)
4Q := δ2Ψ4[h(1)

ab , e
(1)a
[a] ] is quadratic in h

(1)
ab and

involves products of h(1)
ab and the tetrad perturbations

e
(1)a
[a] . Reference [52] compares the two choices of field

variable, Ψ(2)
4L and Ψ(2)

4 . Here, we provide additional
details.

Unlike Ψ(2)
4L , the field Ψ(2)

4 depends on the choice
of perturbed tetrad ea

[a] + εe
(1)a
[a] through the operator

δ2Ψ4. The second-order Weyl scalar, Ψ(2)
4 , satisfies the
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Campanelli-Lousto form of the second-order Teukolsky
equation [70], which, in vacuum, is

Ô′[Ψ(2)
4 ] = S

(2)
CL

[
h

(1)
ab , e

(1)a
[a]

]
, (C2)

where

S
(2)
CL

[
h

(1)
ab , e

(1)a
[a]

]
=
[
d̄

(0)
3 (ð− τ)(1) − d̄(0)

4 (þ − ρ)(1)
]
Ψ(1)

4

−
[
d̄

(0)
3 (þ′ + 4µ)(1) − d̄(0)

4 (ð′ + 4π)(1)
]
Ψ(1)

3

+ 3
[
d̄

(0)
3 ν(1) − d̄(0)

4 λ(1)
]
Ψ(1)

2

+ 3
[
(d̄3 − 3π)(1)ν(1) − (d̄4 − 3µ)(1)λ(1)

]
Ψ(0)

2 ,

(C3)

with d̄3 := ð′ − τ̄ + 4π and d̄4 := þ′ + 4µ+ µ̄. The source
here depends on the tetrad perturbations through the
dependence on Ψ(1)

2 and Ψ(1)
3 , perturbations to the spin

coefficients, and perturbations to the GHP derivatives þ,
þ′, ð, and ð′.

1. Specialization to the Chrzanowski tetrad and
outgoing radiation gauge

Reference [42] solves the Campanelli-Lousto
equation (C2) with two specializations: the Chrzanowski
perturbed tetrad [105] and the ORG.

If we restrict to the Chrzanowski tetrad, then the tetrad
perturbations become explicit functions of the metric
perturbations:

l(1)a = 1
2hlln

a, (C4)

n(1)a = 1
2hnnl

a + hnln
a, (C5)

m(1)a = −1
2hmmm̄

a − 1
2hmm̄m

a + hmln
a + hmnl

a,

(C6)

m̄(1)a = −1
2hm̄m̄m

a − 1
2hmm̄m̄

a + hm̄ln
a + hm̄nl

a.

(C7)

The operator δ2Ψ4 is given in Ref. [86] for this choice of
tetrad.

If we further restrict to the ORG (satisfying h(1)
ab n

b = 0),
then we find Ψ(2)

4Q = 0. This can be shown by enforcing
Eq. (B16) in the expression for δ2Ψ4 in the Mathematica
notebook [86] associated with Ref. [52]. That is, Ψ(2)

4 =
Ψ(2)

4L when in the Chrzanowski perturbed tetrad and ORG.
It follows that with these choices, the two variants

of the second-order Teukolsky equation in the ORG
and Chrzanowski perturbed tetrad, Eqs. (4) and (C2),
should be identical, though their equivalence has not been
explicitly shown algebraically.

2. General case

Even if we do not specialize the perturbed tetrad or
gauge, Ψ(2)

4L and Ψ(2)
4 contain identical GW content [52, 70].

We infer this from the fact that, in a good gauge, Ψ(2)
4Q

decays at least as 1/r2 because it is quadratic in first-order
perturbations. It should then follow that the coefficients
of 1/r are the same in Ψ(2)

4L as in Ψ(2)
4 .

However, there is some subtlety in this conclusion,
related to the choice of initial data. Suppose we solve
Eq. (C2) for Ψ(2)

4 , with some choice of initial data, and
Eq. (4) for Ψ(2)

4L , also with some choice of initial data. The
difference between the two fields, ∆Ψ(2)

4 := Ψ(2)
4 −Ψ(2)

4L ,
is then a solution to

Ô′[∆Ψ(2)
4 ] = SCL − S4[δ2Gab]. (C8)

A generic solution to this equation will contain nonzero
GW content, suggesting that the GWs in Ψ(2)

4 differ from
those in Ψ(2)

4L . However, as alluded to above, the quadratic
field Ψ(2)

4Q, which decays as 1/r2 and therefore contains no
GWs, is also a particular solution to the same equation:

Ô′[Ψ(2)
4Q] = SCL − S4[δ2Gab], (C9)

as can be confirmed by direct computation. Therefore,
we are guaranteed that ∆Ψ(2)

4 = Ψ(2)
4Q, and that ∆Ψ(2)

4

contains no GW content, if ∆Ψ(2)
4 has the same initial

data as Ψ(2)
4Q.

Hence, we can say that Ψ(2)
4 and Ψ(2)

4L will contain the
same GW content if their initial data are related by{

Ψ(2)
4 , Ψ̇(2)

4

}∣∣∣
Σ0

=
{

Ψ(2)
4L , Ψ̇

(2)
4L

}∣∣∣
Σ0

+
{

Ψ(2)
4Q, Ψ̇

(2)
4Q

}∣∣∣
Σ0
, (C10)

where Σ0 is the initial-data surface, and an overdot
denotes a derivative orthogonal to this surface. Since
Ψ(2)

4Q is a specified function of first-order quantities, one
can always enforce this relationship in principle when
comparing between two calculations.

Appendix D: Relation between the QQNM ratio of
Ψ4 and gravitational wave strain

Our results in Sec. VII are for the (conformally rescaled)
Weyl scalar perturbations Ψ(1)

4 and Ψ(2)
4L , yielding a

QQNM ratio in terms of the amplitudes of these
perturbations at I +. For comparison with calculations
in the literature, we convert to the QQNM ratio defined
from the GW strain using Eq. (117). Here, we derive that
relationship.

As given in Eq. (133), for arbitrary QNM modes I1 =
(ℓ1,m1, q1) and I2 = (ℓ2,m2, q2) at first order, and an
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arbitrary QQNM mode excitation (L,M) at second order,
the quadratic coupling coefficient Rv

(I1×I2)LM

5 relates the
QQNM mode amplitude A(I1×I2)LM

to its parent first-
order amplitudes AI1 and AI2 via the formula

A(2),v
(I1×I2)LM

= Rv
(I1×I2)LM

A(1),v
I1
A(1),v

I2
. (D1)

In the above, the superscript v can refer to several different
quantities evaluated at null infinity, such as rΨ4, the
regularised Weyl scalar (22) with spin s = −2, −2Ψ̃ as
is the case in Eqs. (114) and (133), or the gravitational
wave strain h.

In our work, we use the Kinnersley tetrad, which has the
following asymptotic form in the usual Boyer-Lindquist
coordinates:

lµK
r→∞−→ ∂t + ∂r, (D2)

nµ
K

r→∞−→ 1
2 (∂t − ∂r) , (D3)

mµ
K

r→∞−→ 1√
2r

(
∂θ + i

sin θ∂φ

)
. (D4)

In most NR simulations (such as in the SpEC code [108]),
a rescaled tetrad is used instead,

lµSpEC
r→∞−→ 1√

2
(∂t + ∂r) , (D5)

nµ
SpEC

r→∞−→ 1√
2

(∂t − ∂r) , (D6)

mµ
SpEC

r→∞−→ mµ
K . (D7)

As a result, the Weyl scalar in the Kinnersley and SpEC
tetrads differ by an overall factor,

ΨSpEC
4 = 2ΨK

4 . (D8)

It then follows that the corresponding QQNM ratios are
related by

RrΨSpEC
4

(I1×I2)LM
= 1

2R
rΨK

4
(I1×I2)LM

. (D9)

On the other hand, from Eq. (22), the modes of rΨK
4

are related to the modes of Ψ̃ by

(rΨK
4 )ℓ;m;q = λ2

8M3

(
1− 2M

r

)2
ψ̃ℓ;m;q. (D10)

Therefore, at null infinity, we have

(rΨK
4 )ℓ;m;q

r→∞−→ λ2

8M3 ψ̃ℓ;m;q. (D11)

5 again, we suppress the spin-−2 index

So,

RrΨK
4

(I1×I2)LM
=

A(2),rΨK
4

(I1×I2)LM

A(1),rΨK
4

I1
A(1),rΨK

4
I2

(D12)

= 8M3

λ2

A(2),Ψ̃
(I1×I2)LM

A(1),Ψ̃
I1
A(1),Ψ̃

I2

(D13)

= 8M3

λ2 R
Ψ̃
(I1×I2)LM

. (D14)

Finally, we can relate the QQNM ratio of the amplitudes
of the Weyl scalar against those for the gravitational
strain. From the SpEC conventions, ΨSpEC

4 and the strain
h = h+ − ih× are related by

ΨSpEC
4 = −∂2

uh = ω2h = − s
2

λ2h. (D15)

It then follows that

Rh
(I1×I2)LM

=

1(
ω

(2)
(I1×I2)LM

)2

1(
ω

(1)
I1

)2
1(

ω
(1)
I2

)2
RrΨSpEC

4
(I1×I2)LM

. (D16)

This implies, from Eq. (D9),

Rh
(I1×I2)LM

= 1
2

(
ω

(2)
I1

)2 (
ω

(2)
I2

)2

(
ω

(2)
(I1×I2)LM

)2 R
rΨK

4
(I1×I2)LM

, (D17)

and so, from Eq. (D14), we have the following relation
for the QQNM ratio of the regularised Weyl scalar Ψ̃ and
strain h:

Rh
(I1×I2)LM

= −4M3

λ4

 s
(1)
I1
s

(1)
I2

s
(2)
(I1×I2)LM

2

RΨ̃
(I1×I2)LM

.

(D18)
For the case where I1 = I2, this immediately simplifies to
Eq. (117).

Appendix E: Relation between Ψ4 amplitudes and
even- and odd-parity contributions to the waveform

In the body of the paper, we perform expansions in
spin-weighted spherical harmonics, leading to Teukolsky
amplitudes and GW strain decomposed in that form.
However, some properties of the GW-emitting system
are more easily understood by decomposing the GW
in even- and odd-parity tensor harmonics. In this
appendix we relate the Teukolsky QNM amplitudes in
terms of the corresponding even- and odd-parity GW
mode amplitudes.

As given in Eq. (61) with Eqs. (8) and (22), the most
general time-domain solution to the first-order Teukolsky
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equation, containing only QNMs, is given by

Ψ(1)
4 = −2Z(σ)

r4

∑
ℓ,m,q

−2A
(1)
ℓ;m;q −2ψ̃

(1)
ℓ;m;q(σ) es

(1)
ℓ;m;qτ

−2Yℓm,

(E1)

where −2A
(1)
ℓ;m;q are arbitrary coefficients, and we note

that Eq. (22) implies

−2Z(σ)
r4 = λ2

8M3r
+O

(
1
r2

)
. (E2)

This mode expansion can be immediately translated
to the GW strain using the fact that lim

r→∞
(rΨ(1)

4 ) =

− 1
2 lim

r→∞
(r∂2

uh
(1)
m̄m̄), where m̄a = 1√

2r
(0, 0, 1, i csc θ):

h
(1)
m̄m̄

r→∞= − λ4

4M3r

∑
ℓ,m,q

−2A
(1)
ℓ;m;q

(s(1)
ℓ;m;q)2

es
(1)
ℓ;m;qτ

−2Yℓm. (E3)

For simplicity, we have assumed the normalization (42)
−2ψ̃

(1)
ℓ;m;q(0) = 1.

Alternatively, at I +, the GW (or more strictly, the
shear [109]) can be naturally decomposed into even-parity
(YAB) and odd-parity (XAB) tensor harmonics [51, 110],

h
(1)
AB = λ4r

8M3

∑
ℓ,m,q

(
C+

ℓ;m;qY
ℓm

AB + C−
ℓ;m;qX

ℓm
AB

)
es

(1)
ℓ;m;qτ ,

(E4)
where it is understood that this applies over the sphere
with coordinates θA = (θ, φ), in the limit r →∞ (σ → 0).
The factor of r, rather than 1/r, is due to the scaling of
angular components, and C±

ℓ;m;q are constant (complex)
amplitudes. We have introduced the factor λ4/(8M3) for
ease of comparison with Eq. (E3).

The balance of even- and odd-parity content in the
waveform is directly related to the system’s degree of up-
down symmetry. Under reflection through the equatorial
plane, θ → π − θ, the harmonics transform as

Y ℓm
AB → (−1)ℓ+mY ℓm

AB , (E5)
Xℓm

AB → −(−1)ℓ+mXℓm
AB . (E6)

It follows that for an up-down symmetric system, C+
ℓ;m;q

must vanish for odd values of ℓ + m, and C−
ℓ;m;q must

vanish for even values of ℓ + m. In contrast, for an up-
down antisymmetric system, C+

ℓ;m;q must vanish for even
values of ℓ+m, and C−

ℓ;m;q must vanish for odd values of
ℓ+m.

In order to relate the amplitudes −2A
(1)
ℓ;m;q to C±

ℓ;m;q, we
contract Eq. (E4) with m̄Am̄B , use the relations between
harmonics in Ref. [51], and compare to Eq. (E3). A short
calculation reveals

−2A
(1)
ℓ;m;q = −

(
s

(1)
ℓ;m;q

)2

4 λℓ,2

(
C+

ℓ;m;q − iC
−
ℓ;m;q

)
,

(E7)

(
−2A

(1)
ℓ;−m;Q

)⋆

= −(−1)m

(
s

(1)
ℓ;m;q

)2

4
× λℓ,2

(
C+

ℓ;m;q + iC−
ℓ;m;q

)
, (E8)

where λℓ,2 =
√

(ℓ+ 2)!/(ℓ− 2)!. To derive Eq. (E8), we
have also made use of the mirror relation (62) and the
fact that h(1)

AB is real, which together imply C±
ℓ;−m;Q =

(−1)m(C±
ℓ;m;q)⋆.
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