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Antimicrobial resistance (AMR) poses a global healthcare challenge, where overprescription of
antibiotics contributes to its prevalence. We have developed a rapid multi-excitation Raman

spectroscopy methodology (MX-Raman) that outperforms conventional Raman spectroscopy and
enhances specificity. A support vector machine (SVM) model was used to identify 20 clinical isolates of
Pseudomonas aeruginosa with an accuracy of 93% using MX-Raman. Antibiotic sensitivity profiles for

tobramycin, ceftazidime, ciprofloxacin, and imipenem were generated for the bacterial strains and
compared with their Raman spectral signatures using MX-Raman. The 20 clinical strains were
distinguished according to AMR profiles. Nine models were assessed for AMR classification
performance, and SVM performed best, classifying AMR profiles of each strain with 91-96%
accuracy. These data provide the basis for a new rapid clinical diagnostic platform that could screen
for bacterial infection and recommend effective antibiotic treatment ahead of confirmation by
conventional techniques, improving clinical outcomes and reducing the spread of AMR.

Antimicrobial resistance (AMR) is among the most significant global
health threats to humanity, where an estimated 4.95 million deaths were
associated with AMR in 2019, and by 2050 AMR is expected to cause 10
million deaths annually'’. Slow, inefficient antimicrobial sensitivity tests
exacerbate this problem. Antibiotic sensitivity tests (AST) continue to rely
on culture techniques that require 48 h to determine an AMR profile,
leading to the use of presumptive antibiotic therapies. It has been esti-
mated that at least 20% of antibiotic prescriptions in primary care are
inappropriate’, further driving the development of AMR. One study
determined that 32.4% of children visiting one UK hospital were pre-
scribed antibiotics, however, only 7.1% were diagnosed with bacterial
infection. The costs associated with unnecessary antibiotic treatments

were calculated at an additional £1352.10, primarily in inpatient-care costs
per child while awaiting AST results®.

Multiple existing and emerging technologies for pathogen identifica-
tion and AMR profiling aim to reduce time to diagnosis and improve
treatment efficacy. Examples include nucleic acid amplification, genomic
and metagenomic sequencing approaches, immunodiagnostic arrays and
mass spectrometry-based methods™. Microfluidic-based diagnostics are
also increasingly considered as future infection diagnostic technologies, as
they are often cost-effective and provide single-cell analysis'*"”. Despite an
increasing number of molecular and point-of-care diagnostic technologies,
the identification of pathogens and AMR within large and complex
microbial communities present at an infection site remains challenging.
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Raman spectroscopy is currently being investigated as an alternative
diagnostic technology that includes the potential for real-time, in situ
identification of pathogens within complex samples such as chronic
wounds, persistent or recurrent respiratory or device-related infections'*"”.
By measuring changes in the vibrational modes of bacterial samples
according to taxonomic and phenotypic differences''*'*"”, Raman spec-
troscopy offers rapidity and requires minimal sample preparation. While
commonly cited drawbacks to the technology include limits to sensitivity,
several approaches have been studied to overcome this. Surface-enhanced
Raman spectroscopy (SERS) improves the sensitivity of the Raman signal
but increases sample preparation. SERS has successfully distinguished
14 strains of Arthrobacter strains with 97% accuracy'®. Label-based SERS
further improves sensitivity by binding specific aptamers to the bacterial cell
surface. Li et al."” combined gold nanorod-based SERS tags with antibody-
modified magnetic nanoparticles for the detection of pathogens in food
samples. This process facilitated the identification of prominent bacterial
foodborne pathogens from food samples at low cell concentrations, e.g. 5
CFU/ml for E. coli O157:H7. SERS methodologies have been applied to
AST*™'; 89 E. coli strains were separated according to their sensitivity to
carbapenems via subtle differences in the Raman spectral signatures of the
bacteria, amplified by SERS processing™.

Previously, we have developed a Raman-based methodology, multi-
excitation Raman spectroscopy (MX-Raman), which utilises multiple laser
wavelengths to improve the specificity of Raman spectroscopy and
demonstrated that this was possible within a complex artificial sputum
medium"”. We have also demonstrated the utility of Raman spectroscopy in
AMR detection when coupled with genome sequencing’.

The aim of this study was to demonstrate the utility of MX-Raman,
combined with robust and optimised computational analyses, to accurately
identify and profile AMR among a panel of 20 clinical Pseudomonas aer-
uginosa respiratory infection isolates. AMR profiles across a range of anti-
biotic classes were compared against MX-Raman spectral signatures using
nine machine learning models to identify the best method for AMR clas-
sification. Our study demonstrated accurate (93%) classification of clinical
isolates and their associated AMR profile suggesting the potential future
utility of this technique for novel in situ diagnostic approaches.

Results
A Raman spectral library was collected for 20P. aeruginosa
clinical isolate strains
Raman spectra were collected for each P. aeruginosa strain, using lasers at
both 532 nm (Fig. 1a) and 785 nm (Fig. 1b) excitations. The spectral differ-
ences between strains are apparent and are increased by the multi-excitation
approach—where we combine the data obtained with each of the excitation
wavelengths of 532 nm and 785 nm. While a 785 nm excitation generates a
consistent peak at 1003cm ' (indicating phenylalanine), excitation at
532 nm at the same wavenumber, results in variability between the 20 strains
(Fig. 1). The Raman shift at 1128 cm™ (attributed to C-C and C=C
stretching modes of carotenoids and polyenes in bacterial biofilms) is present
via excitation at 532 nm with varying intensity for each of the P. aeruginosa
strains. Visible variation between the strains’ spectra is also present at 1312
and 1337 cm™, indicating variation in nucleic acid content™*. Variation is
similarly visible in spectra acquired using 785 nm excitation, such as the peak
at 782 cm ™" indicating differences in nucleic acid content across strains™*.
Peaks at 1521 cm ™' and 1624 cm™ using 785 nm excitation are particularly
prominent for PA26, and to a lesser extent in PA68 and PA57. These are also
the strains with the most intra-strain variability in their spectra, and produce
the pigment pyocyanin®. Pyocyanin could be responsible for these peaks due
to its C=C bonds in its tricyclic rings, and the fluorescence generated by
these compounds could cause the measured intra-strain variability”” (Fig. 1b).
Peaks present in PAO5 and PA10 at 800 cm ™ are consistent with glass (Fig.
la)®.

To further investigate the variation between the P. aeruginosa strains,
PCA was conducted on the Raman spectral datasets acquired using the
532 nm and 785 nm excitations on their own (single-excitation), and in

combination via the MX-Raman dataset (i.e. the data acquired from exci-
tation at both 532 nm and 785 nm) (Supplementary Fig. 1). Using the first
three principal components (PCs), a cluster analysis was performed to
observe the separation between spectra of the same strain. Overall, each
strains’ spectra were found to cluster together, with some smaller subclusters
present within each strain correlating to biological repeats of the bacterial
strains. The presence of peaks attributed to pyocyanin in PA26 and PA68,
and to glass in PAO5 and PA10, is reflected in the PCA (Supplementary
Fig. 2).

Model performance was analysed for optimal clinical isolate
strain classification

To determine the highest performing model in discriminating between the
20 clinical isolates, nine classifiers were trained on both single-excitation
(532 and 785 nm) and the combined multi-excitation spectral datasets (Fig.
2). For each investigated classifier, the MX-Raman dataset was found to
outperform both single-excitation Raman approaches with respect to the
adjusted F1 score. The highest performing of these was the SVM classifier
which achieved a macro mean F1 of 0.87 and standard deviation of 0.15, for
an adjusted F1 score of 0.72 for the MX-Raman dataset (Fig. 2a, Table 1).

As the best algorithm for all spectral datasets, the SVM models were
further examined with respect to the other recorded metrics (accuracy,
precision, and recall) as well as the precise label assignments made in
classifying the P. aeruginosa strains. The MX-Raman dataset performed
consistently better than single-excitation datasets using SVM, with respect
to model accuracy (0.86), precision (0.88), recall (0.86), and F1 score (0.87)
(Table 1). The MX-Raman approach also gave the highest overall perfor-
mance across individual strains, with F1 scores either greater than or equal
to 55% of the single-wavelength equivalents (Fig. 2e). The F1 macro score
was used as the key determinant of model viability due to it balancing model
precision and recall. For strains where a single-excitation score exceeded the
MX-Raman score, the difference is marginal. The exception is PA30, where
the MX-Raman F1 score is 0.39, compared to 0.4 and 0.52 for analysis with
the single-excitation of 532 nm and 785 nm, respectively (Table 1). The
SVM confusion matrices show that there are significant and distinct mis-
classifications for PA30 for both single-excitation data analyses, which are
not compensated for in the MX-Raman analysis and even leads to an
increased misclassification with PA58 spectra (Fig. 2).

The confusion matrices exhibit variation between the classification
accuracy of strains; the MX-Raman matrix ranges in classification accuracy
from 42.9% (PA30) to 100%, with 87.9% as the median. There is a high
degree of misclassification of PA31 in the single-excitation analyses at
532 nm and 785 nm, where it has been misclassified as PA15 at 40.7% and
22.5%, respectively. The misclassification remains at 37.9% in the MX-
Raman analysis (Fig. 2d). PA55 has significant misclassifications in both
single-excitation analyses with accuracies of 56.1% and 47.9%, however,
these are resolved in the MX-Raman analysis with a classification accu-
racy of 76.8%.

Bacterial identification at the strain level is not typically conducted in
the clinic; however, we considered this an important aspect of our study as it
demonstrates that there are perceivable differences in Raman spectra
between the clinical isolates ahead of their categorisation according to their
AMR profiles. Strain level categorisation will also be more important as this
methodology is applied to other bacterial species in future work, where the
definition of strains within pathogen species groups will ensure the estab-
lishment of appropriate classification boundaries in computational models.

To compare the discriminative capabilities of MX-Raman to tradi-
tional single-excitation approaches, two single-excitation spectral datasets
(acquired using a 532 and 785 nm laser excitation) and one multi-excitation
dataset (combining the 532 and 785 nm spectra) were used to discriminate
between 20 clinical isolates of P. aeruginosa. Nine classifiers were trained on
each of the three spectral datasets and, amongst these, the classifier with the
greatest adjusted F1 score across all datasets was selected to balance both
high average performance and low variability in scores across strains. By this
procedure, the multi-excitation approach was found to outperform (or
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Fig. 1 | Raman spectral library of 20 Pseudomonas aeruginosa clinical isolates and
their associated sensitivities to four antibiotics. A Raman spectral library of 20
Pseudomonas aeruginosa strains was acquired using both (a) 532 nm and (b) 785 nm
laser excitations. ¢ Minimum inhibitory concentration testing was conducted to
assign a binary sensitivity label (sensitive or resistant) to each strain following
exposure to four antibiotics: ceftazidime, ciprofloxacin, imipenem, and tobramycin.
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The mean spectrum and standard deviation of each strain and excitation wavelength
following spectral pre-processing are displayed alongside their strain and sensitivity
labels. The resistance of each strain to each antibiotic: ciprofloxacin, ceftazidime,
imipenem, and tobramycin, are indicated by the colours: blue, teal, red, and yellow,
respectively.

equal in the case of the LogReg classifier) all equivalent single-excitation
approaches across all investigated classifiers—save for the GradBoost
algorithm where the multi-excitation dataset matched the 532 nm dataset in
terms of the macro F1 score (both 0.67), but was marginally beaten by the
single-excitation approach due to a 0.01 difference in standard deviation
(Supplementary Table 1). The highest performing of all trained classifiers
was the SVM algorithm, which achieved an adjusted F1 score of 0.63, 0.64,
and 0.72 when using the 532 nm, 785 nm, and multi-excitation Raman
dataset, respectively (Supplementary Table 1). As the best algorithm of the
nine classifiers, the three SVM models were further investigated to compare
all other recorded metrics (i.e. accuracy, precision, and recall), per strain
performances, and the precise class label assignments selected by
each of the models. SVM models were further investigated to com-
pare all other recorded metrics (i.e. accuracy, precision, and recall),
per strain performances, and the precise class label assignments
selected by each of the models. Models were further investigated to
compare all other recorded metrics (i.e. accuracy, precision and
recall), per strain performances, and the precise class label assign-
ments selected by each of the models.

Throughout all macro-averaged scores, the MX-Raman SVM model
consistently exceeded those achieved by the 532 nm and 785 nm spectral
datasets alone. The combined approach was found to not only increase the
macro-averaged F1 score and reduce its variability across strains (achieving
a score of 0.80 £0.17, 0.81 £ 0.17, and 0.87 + 0.15, for the 532 nm, 785 nm,
and multi-excitation datasets, respectively), but also increase the overall
accuracy (0.80, 0.81, and 0.86), precision (0.81, 0.81, and 0.88), and recall
(0.80, 0.81, and 0.86) (Supplementary Table 1, Table 1, Fig. 2a). Beyond
averaged performance metrics, the multi-excitation dataset was also found
to have an improved F1 score, over the 532 nm and 785 nm datasets, for 11
out of the 20 strains (Table 1 Fig. 2). In all other cases, where a single-
excitation approach achieved the best F1 score for a particular strain, the
multi-modal technique accomplished an often-marginal reduction in per-
formance in comparison to the best dataset (Fig. 2e). The exception to this
was the strain PA30, where the multi-excitation Raman approach scored the
lowest F1 score of the three methods, achieving a value of 0.39 compared to
the values 0.40, and 0.52 scored by the 532 nm, and 785nm dataset,
respectively (Table 1, Fig. 2e). PA30 was also identified as the one of the
lowest performing of the 20 strains for all spectral datasets.
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Fig. 2 | Classification performances for strain identification of 20 Pseudomonas  The confusion matrices for the (b) 532 nm, (c) 785 nm, and (d) multi-excitation

aeruginosa clinical isolates using single-excitation and multi-excitation raman
spectroscopy. a Nine machine learning classifiers (GradBoost, LogReg, SVM, RF,
PLS-DA, PCA-LDA, PCA-GradBoost, PCA- LogReg, PCA-SVM) were applied to
each of the three Raman spectral datasets (532 nm, 785 nm, and multi-excitation) for
strain identification of 20 Pseudomonas aeruginosa clinical isolates. Across all
classifiers, the multi-excitation approach was found to outperform both single-
excitation approaches with respect to the macro-averaged F1 score (indicated by an
‘X’). The highest performing of these, SVM, achieved a macro-averaged F1 score of
0.80, 0.81, and 0.87 for the 532 nm, 785 nm, and multi-excitation Raman excitations,
respectively, and was selected among the nine classifiers for further investigation.

Raman datasets using the SVM algorithm were used to compare strain label
assignments across the three approaches. Strains uniquely mislabelled by the single-
excitation approaches were found to be corrected using the combined multi-
excitation dataset. e The per class F1 score for each dataset was also compared, to
evaluate performance and stability for both strains and excitation wavelengths.
Overall, the multi-excitation approach was found to outperform or match the
highest performing single-excitation approach with respect to per strain accuracy
and F1 score for 11 out of the 20 investigated strains. In all other cases, the multi-
excitation approach achieved the second-best performance, out of the three datasets,
save for PA30 which classified poorly across all approaches.

To further evaluate the differences between models, the exact label
assignments made by the SVM algorithm for each approach were investi-
gated using the associated confusion matrices (Fig. 2b-d). As the confusion
matrix provides a detailed account of how each spectrum of a given strain
was labelled by the SVM classifier, examining these heatmaps provides a
graphical method for identifying common misclassifications made within
and across each model. Figure 2b-d shows the confusion matrix obtained
using the SVM classifier trained on the 532 nm, 785 nm, and MX-Raman
spectral datasets, respectively. Each row of the confusion matrix describes
the distribution of predicted labels across a given strain. The confusion
matrix of an ideal model—able to discriminate perfectly between all strains
without misclassification—will display values of 100.0% on every diagonal
entry and zeros elsewhere. As an example, the first row of each confusion
matrix shows the proportion of spectra truly labelled as PAO1 that were
labelled as each of the 20 strains (given as a percentage) by the SVM algo-
rithm. In the case of the 532 nm model, 99.3% of all PAO1 spectra were
labelled correctly as PAO1, whilst the remaining 0.7% of spectra were
incorrectly predicted to be the strain PA26 (Fig. 2b). In contrast, the multi-
excitation Raman approach can be seen to have categorised all 100% of the
PAOL1 spectra correctly (Fig. 2d).

The confusion matrix is particularly useful as it emphasises common
misclassifications made by each model. Here, we defined a common mis-
classification to be any event for which over 5% of the spectra of a given
strain class were predicted to be anything other than their true strain

(indicated by a coloured off-diagonal element). Using this description, the
532 nm, 785 nm, and MX-Raman models were each found to have made a
total of 21, 28, and 13 common misclassifications, respectively (Fig. 2b-d).
As the multi-excitation dataset was constructed using the single-excitation
spectra, the 13 misclassifications made by the combined approach were
identified to be a subset of the 21, and 28 errors made by the 532 nm, and
785nm datasets—with the exception of one minor common mis-
classification unique to the MX-Raman approach in which 5.4% of the
PA68 spectra were mislabelled as PA37 (Fig. 2d). Many of the common
misclassifications made by the single-excitation models were found to be
greatly reduced when using the multi-excitation approach. One example of
this can be seen for the strain PA55, where 25.0% of all PA55 spectra were
mislabelled as PA44 in the 532 nm model, and only 0.4% of PA55 spectra
were mislabelled as such in the MX-Raman model (Fig. 2b, d). A similar
improvement was also seen for the 785nm model, where 21.8% of
PA55 spectra were misassigned the label PA56 in the 785 nm model, and
only 2.5% of PA55 spectra were predicted as PA56 when using the multi-
excitation approach (Fig. 2b, d).

The largest misclassifications in the combined approach were found to
involve the strains PA30 and PA31—either through mislabelling PA30, and
PA31 as other strains or vice versa (Fig. 2d). The single-excitation
approaches were also found to struggle most with distinguishing these
strains from all others (Fig. 2b, c). As both the 532 nm and 785 nm models
mislabelled a high proportion of PA31 and PA30 strains as PA15,and PA58,
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Table 1 | Strain Identification SVM Classification Performances using Single-Excitation and Multi-Excitation Raman

Spectroscopy

Accuracy Precision Recall F1 Score

532 785 Multi- 532 785 Multi- 532 785 Multi- 532 785 Multi- No. of

nm nm Excitation | nm nm Excitation | nm nm Excitation | nm nm Excitation | Spectra
PAO1 280
PAOS 280
PAO8 280
PA10 0.90 0.88 0.90 0.88 0.85 280
PA15 0.89 0.81 0.89 0.381 0.84 0.73 280
PA20 0.81 0.85 0.87 280
PA21 0.74 0.80 0.74 0.80 0.65 0.87 280
PA26 0.80 0.80 0.80 0.80 0.79 0.87 279
PA30 280
PA31 280
PA37 280
PA39 280
PA44 280
PA49 0.63 280
PAS5 0.66 0.59 280
PA56 0.87 0.78 280
PA57 280
PA58 0.71 0.60 280
PA66 0.82 0.86 0.85 0.88 280
PAG68 280
Micro 0.80 0.81 0.86 0.80 0.81 0.86 0.80 0.81 0.86 0.80 0.81 0.86
Macro 0.80 0.81 0.86 0.81 0.81 0.88 0.80 0.81 0.86 0.80 0.81 0.87
Weighted | 0.80 0.81 0.86 0.81 0.81 0.88 0.80 0.81 0.86 0.80 0.81 0.87

SVM was selected as the highest performing classification model (with respect to the adjusted F1 score) for strain identification using single- (532 nm, and 785 nm) and multi-excitation Raman spectroscopy. The
per strain classification performances (Accuracy, Precision, Recall, and F1 score) and their averages (Micro, Macro, and Weighted) across the three approaches were compared for granular assessment. The
number of spectra used in the Leave-One-Biological-Replicate-Out cross-validation for each strain (No. of Spectra) are also reported for cases of class imbalance.

respectively, these errors were found to persist in the combined MX-Raman
approach and identified as the highest misclassifications in the model
(Fig. 2d).

Overall, MX-Raman was found to improve the discriminative cap-
ability of Raman spectroscopy for strain-level characterisation of 20 clinical
isolates of P. aeruginosa. Models were scrutinised with an appropriate
metric to balance both high average performance and low variability in
characterizability across strains. The MX-Raman approach was found to
improve the per strain accuracy for the majority of strains over the single-
excitation counterparts, and many common misclassifications were found
to be reduced when combining information from both 532 nm and 785 nm
excitation spectra. Although bacterial identification at the strain level is not
typically conducted in the clinic, we considered this an important aspect of
our study as it demonstrates that there are perceivable differences in Raman
spectra between the clinical isolates ahead of their categorisation according
to their AMR profiles. Strain level categorisation will also be more important
as this methodology is applied to other bacterial species in future work,
where the definition of strains within pathogen species groups will ensure
the establishment of appropriate classification boundaries in computational
models.

Clinical Isolates were classified according to their antibiotic
sensitivity profiles using MX-Raman

MIC:s for each P. aeruginosa strain were raised for tobramycin, ceftazidime,
ciprofloxacin, and imipenem (Table 2, Supplementary Table 2), repre-
senting different antibiotic classes. For tobramycin and imipenem, 50% of
the strains were categorised as resistant in accordance with EUCAST
guidelines. For ceftazidime and ciprofloxacin, 65%, and 25% of strains were
categorised resistant, and sensitive, respectively. PA49, PA56, PA57, PA58

and PA66 were resistant to each antibiotic tested, and PA05 and PA10 were
sensitive to each antibiotic tested. These similarities were not reflected in
misclassifications in the SVM strain classification model (Fig. 2b-d).

New analyses were conducted to separate the clinical isolates according
to their sensitivity to each of the antibiotics tested. Both the single-excitation
and MX-Raman approaches were tested against nine different machine
learning classifiers. The highest performing classification algorithm was
selected based on the adjusted F1 score to assess model performance for the
unbalanced class size problems. In cases where the difference between the
best performing models was found to be marginal, the final model was
selected based on the highest macro-averaged F1 score across the three
wavelengths.

The SVM classifier was identified to have the highest adjusted F1 score
for determining a strains’ resistance to each of the four antibiotics, with a
value range of 0.81-0.88, 0.84-0.94, 0.86-0.92, and 0.87-0.93 across the
three spectral datasets for the drugs, ceftazidime, ciprofloxacin, imipenem,
and tobramycin, respectively (Fig. 3, Supplementary Table 3). Across all
three spectral datasets, the multi-excitation approach was found to out-
perform both the 532 nm, and 785 nm models with respect to this metric,
achieving an adjusted F1 score of 0.88, 0.94, 0.92, and 0.93 for the ceftazi-
dime, ciprofloxacin, imipenem, and tobramycin-sensitivity tasks, respec-
tively (Supplementary Table 3).

For each antibiotic-sensitivity characterisation task, the per strain
classification accuracy was evaluated for a more granular assessment of
model performances. Figure 3 displays the classification accuracies obtained
for each antibiotic-sensitivity characterisation task using both single-
excitation (532 nm, and 785 nm) and multi-excitation Raman approaches
via a heatmap. Each entry displays the accuracy in determining a strains
sensitivity to the given antibiotic using each of the three spectral datasets.
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Table 2 | Minimum inhibitory concentration tests were conducted to identify the sensitivities of 20 clinical isolates of
Pseudomonas aeruginosa to the antibiotics: ceftazidime, ciprofloxacin, imipenem, and tobramycin

Tobramycin Ceftazidime Ciprofloxacin Imipenem
MiC S/R MIiC S/R MIiC S/R MiC S/R
PAO1 0.33 S 3.33 S 0.67 R 2.67 S
PAO5 0.25 S 1.00 S 0.42 S 1.33 S
PA08 0.83 S 64.00 R 0.25 S 0.83 S
PA10 0.42 S 2.33 S 0.33 S 0.67 S
PA15 2.67 R 0.83 S 0.50 S 1.00 S
PA20 0.42 S 0.67 S 0.58 R 1.17 S
PA21 0.58 S 42.67 R 0.25 S 21.33 R
PA26 0.67 S 256.00 R 0.67 R 26.67 R
PA30 0.25 S 7.50 S 0.67 R 9.33 R
PA31 2.33 R 60.00 R 0.33 S 7.50 R
PA37 0.50 S 85.33 R 1.00 R 3.75 S
PA39 0.58 S 4.00 S 0.58 R 4.67 R
PA44 85.33 R 22.67 R 0.83 R 3.33 S
PA49 42.67 R 64.00 R 0.67 R 18.67 R
PA55 213.33 R 27.00 R 0.83 R 1.33 S
PA56 64.00 R 74.00 R 1.17 R 6.67 R
PA57 26.67 R 53.33 R 0.58 R 5.33 R
PA58 32.00 R 64.00 R 0.58 R 10.67 R
PA66 64.00 R 64.00 R 1.12 R 10.67 R
PAG8 26.67 R 64.00 R 0.42 S 1.67 S

MICs of P. aeruginosa isolates (units mg/l). Presented MIC values were averaged across at least 3 repeats.

Strains are grouped by their (true) sensitivity to each antibiotic to visualise
imbalanced class sizes. A green-yellow-red colour bar was applied to
visualise the overall predicted sensitivity for each strain, with green repre-
senting an overall sensitive and red representing an overall resistant
classification.

As seen in Fig. 3, when using the MX-Raman approach, classification of
a strains’ resistance to ciprofloxacin scored particularly well, with an overall
macro F1 score of 0.96 and no isolate classifying particularly poorly—seen as
all strains achieving an overall sensitivity colouring matching their true
sensitivity (i.e. all truly resistant strains coloured red, and all truly sensitive
strains coloured green). The PA30 and PA31 isolates classify relatively
poorly to ceftazidime and imipenem, and ceftazidime and tobramycin,
respectively. The ceftazidime MIC of PA30 was also the closest to the 8 mg/l
resistance boundary, at 7.5 mg/1, however in other cases a poor AMR clas-
sification score does not correlate to proximity to the MIC boundary (Fig. 3,
Table 2). Instead, they show a stronger correlation to a poor classification
accuracy in the strain identification analyses (Fig. 2).

Analysis with the MX-Raman approach performed better than either
of the two single-excitation analyses. It performed the best out of the three
approaches in 68.75% of the classifications across the four antibiotics tested,
and was the poorest in 5% classifications (PA21 for ciprofloxacin resistance,
PA30 for tobramycin resistance, PA44 for imipenem resistance, and PA57
for ceftazidime resistance) (Fig. 3). The macro F1 scores of the MX-Raman
analyses scored highest for each antibiotic. This is reflected in the scores for
separated sensitive and resistant classifications, the MX-Raman analysis
performed best for both categories for all antibiotics, aside from spectra
classified sensitive to ciprofloxacin where the scores at 532 nm and using
MX-Raman were both 0.97 (Table 3).

Discussion

Using MX-Raman, we were able to accurately classify bacteria to the strain
level and predict their antimicrobial resistance profiles, with minimal
sample processing. A range of classification models were used to objectively

evaluate the discriminative capabilities of the single- and multi-excitation
approaches and determine which yields the highest classification perfor-
mance. An SVM model was used to classify 20 P. aeruginosa clinical isolate
strains with a 87% success rate (Table 1). Higher success rates were achieved
when classifying the strains by their antimicrobial resistance profiles. Using
an MX-Raman SVM model, successful classification of the strains’ resis-
tance to four antibiotics was achieved with a macro-averaged F1 score
ranging from 91% (ceftazidime) to 96% (ciprofloxacin) (Table 3).

The MX-Raman analysis consistently outperformed both analyses
with either of the single excitations (Figs. 2, 3). Where misclassifications
occur in one of the analyses with either single-excitation, the MX-Raman
approach compensated and decreased them. For example, PA55 is mis-
classified as PA30 and PA44 in the analysis with the single-excitation of
532 nm, and PA21 and PA56 in the analysis with the single-excitation of
785 nm, but this is corrected for in the MX-Raman analysis with a total
classification accuracy of 76.8% (Fig. 2d). PA30 is misclassified as PA55, and
PA58 in both single-excitation approaches, with classification accuracies of
42.1% and 52.5%. In this case, the error remained in the MX-Raman clas-
sification closer to the lower of the two values, 42.9%. There were no
instances where MX-Raman analysis performed worse at strain identifica-
tion than the analyses with either of the single-excitations (Fig. 2b—d, Table
1), and there were only four instances of MX-Raman performing worse in
the AMR profiling analyses (Fig. 3). We envision that in practice, a resulting
diagnostic software tool will take each of the analyses with each of three
approaches into account, with appropriate and distinct weightings, as the
single-excitation measurements need to be taken for the MX-Raman
approach. This would ensure that a diagnosis could be reached with max-
imum confidence.

The best performing model selected for strain classification and AMR
profiling was SVM, despite each model being tested independently for each
antibiotic (Figs. 2, 3, Supplementary Table 1, Supplementary Table 3). The
differences between the best performing models were marginal in some
cases, e.g. SVM and PCA-GradBoost both performed at 0.85 for analysis
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Fig. 3 | Classification accuracies for antibiotic-sensitivity profiling of 20 Pseu-
domonas aeruginosa clinical isolates using single-excitation and multi-excitation
Raman spectroscopy. Nine machine learning classifiers were applied to predict the
sensitivities of 20 Pseudomonas aeruginosa strains to four antibiotics: (a) ceftazi-
dime, (b) ciprofloxacin, (¢) imipenem, and (d) tobramycin, using both single-
excitation (532 nm, and 785 nm), and multi-excitation Raman approaches. The
highest performing classifier, with respect to the adjusted F1 score, was identified for
each antibiotic-sensitivity classification task and selected for further investigation.
Of the applied classifiers, SVM was found to be the highest performing model for all
four antibiotics, with an adjusted F1 score of (a) 0.85, 0.81, and 0.88, (b) 0.94, 0.86,
and 0.94, (c) 0.88,0.86,and 0.92,and (d) 0.89, 0.87, and 0.93, for the 532 nm, 785 nm,
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and multi-excitation datasets, respectively. In all cases, the multi-excitation
approach was found to outperform or match both single-excitation approaches. To
further compare the difference in performances across the three excitation
approaches, the per strain accuracies of each SVM model was evaluated. The
heatmap displays the accuracy of the SVM model in correctly predicting the sen-
sitivity of each strain using the three spectral datasets. Strains are grouped by their
true sensitivity to the respective antibiotic to visualise class imbalance for each
antibiotic-sensitivity characterisation task. A red-yellow-green colourmap is used
to display overall classification where red represents an overall resistant classifica-
tion, and green an overall sensitive classification.

with excitation at 532 nm (Supplementary Table 3) but SVM was selected
for optimal performance across the three wavelength analyses. We expect
that the growing capacity for computational modelling in aiding diagnosis
in the healthcare sector will facilitate the operation of multiple analytical
models within a single diagnostic tool, so that in the future AMR can be
thoroughly characterised for any given isolate.

The models performed better when classifying strains’ resistance to
ciprofloxacin than to other antibiotics (Table 3). We hypothesise that this is
due to ciprofloxacin resistance being typically mediated by high expression
of efflux pumps®, and the effect of these protein structures on the P. aer-
uginosa cell wall is large enough to affect the Raman spectral signatures of
these strains. Conversely, imipenem resistance is mediated by carbapene-
mases present inside the cell”” where their expression may in some cases be

too dilute to result in detectable changes in the Raman spectra of those
strains, leading to a higher incidence of misclassification. Ceftazidime
resistance can be mediated by both efflux pumps and 3-lactamases’', which
may contribute to its lower F1 score of 91%. While these data are
encouraging, further work is required to definitively link Raman spectral
features to molecular components of bacteria.

An important consideration of this study was that bacterial replicates
were cultured under uniform conditions to limit intra-strain variability in
resulting Raman spectra. Despite this, a subset of strains display variation in
their spectra, e.g. PA26, PA57, and PA68 (Fig. 1b). In the current work, this
variation in spectra was related to sample fluorescence, which in turn could
be caused by the production of pigments. In a diagnostic setting using direct
analysis of patient samples, phenotypic variation in the pathogen is likely to
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Table 3 | Antibiotic-Sensitivity SVM Classification Performances using Single-Excitation and Multi-Excitation Raman

Spectroscopy

Accuracy Precision Recall F1 Score

532 785 Multi- 532 785 Multi- 532 785 Multi- 532 785 Multi- No. of

nm nm Excitation | nm nm Excitation | nm nm Excitation [ nm nm Excitation | Spectra
Ceftazidime | Sensitive | 0.90 0.88 0.93 0.94 0.92 0.95 0.90 0.88 0.93 0.92 0.90 0.94 3639
Ceftazidime | Resistant | 0.89 0.86 0.91 0.83 0.80 0.87 0.89 0.86 0.91 0.86 0.83 0.89 1960
Ceftazidime | Micro 0.90 0.87 0.92 0.90 0.87 0.92 0.90 0.87 0.92 0.90 0.87 0.92
Ceftazidime | Macro 0.90 0.87 0.92 0.89 0.86 0.91 0.90 0.87 0.92 0.89 0.86 0.91
Ceftazidime | Weighted | 0.90 0.87 0.92 0.90 0.88 0.92 090 0.87 0.92 0.90 0.87 0.92
Ciprofloxacin | Sensitive | 0.96 0.89 0.98 0.98 0.94 0.96 0.96 0.89 0.98 0.97 0.92 0.97 3639
Ciprofloxacin | Resistant |0.96 0.89 0.93 0.93 0.82 0.97 0.96 0.89 0.93 0.94 0.85 0.95 1960
Ciprofloxacin | Micro 0.96 0.89 0.96 0.96 0.89 0.96 0.96 0.89 0.96 0.96 0.89 0.96
Ciprofloxacin | Macro 0.96 0.89 0.96 0.95 0.88 0.96 0.96 0.89 0.96 0.95 0.89 0.96
Ciprofloxacin | Weighted | 0.96 0.89 0.96 0.96 0.90 0.96 0.96 0.89 0.96 0.96 0.89 0.96
Imipenem Sensitive | 0.88 0.88 0.93 0.87 0.85 0.91 0.88 0.88 0.93 0.88 0.86 0.92 2799
Imipenem Resistant | 0.87 0.84 0.91 0.88 0.88 0.93 0.87 0.84 0.91 0.88 0.86 0.92 2800
Imipenem Micro 0.88 0.86 0.92 0.88 0.86 0.92 0.88 0.86 0.92 0.88 0.86 0.92
Imipenem Macro 0.88 0.86 0.92 0.88 0.86 0.92 0.88 0.86 0.92 0.88 0.86 0.92
Imipenem Weighted | 0.88 0.86 0.92 0.88 0.86 0.92 0.88 0.86 0.92 0.88 0.86 0.92
Tobramycin | Sensitive | 0.90 0.85 0.94 0.88 0.89 0.93 0.90 0.85 0.94 0.89 0.87 0.93 2800
Tobramycin | Resistant | 0.87 0.90 0.92 0.90 0.86 0.94 0.87 0.90 0.92 0.89 0.88 0.93 2799
Tobramycin | Micro 0.89 0.87 0.93 0.89 0.87 0.93 0.89 0.87 0.93 0.89 0.87 0.93
Tobramycin | Macro 0.89 0.87 0.93 0.89 0.87 0.93 0.89 0.87 0.93 0.89 0.87 0.93
Tobramycin | Weighted | 0.89 0.87 0.93 0.89 0.87 0.93 0.89 0.87 0.93 0.89 0.87 0.93

be greatly amplified in response to a range of ongoing antimicrobial
therapies, microbiomes, and variation in the patients’ mucus itself***.

This work also demonstrated the extent to which sample presentation
for measurement can affect the data output, where a glass artefact present at
800 cm ' for PAO5 and PA10 spectra resulted in their partial mis-
classification under analysis with 532 nm excitation, which was then
resolved by MX-Raman analysis (Figs. 1, 2b—d). This artefact was a result of
a thin bacterial sample spread across the substrate, so the glass signal was
detected beneath a compromised aluminium sputter coating. Further
development of the technique for clinical samples will require either a
minimum thickness of sample, a processing step to remove the 800 cm ™"
glass artefact from the data output or use an aluminium support instead of
an aluminium-coated glass slide for sample presentation.

Raman spectroscopy is an emerging technique as a microbial diag-
nostic and has been the subject of several recent reviews that hypothesise its
use in the characterisation of AMR*"***>, Work towards this application to
date has focused on SERS, which improves sensitivity of Raman at the cost of
additional sample preparation. In the clinic, this preparation is likely to
include bacterial isolation and incubation, drastically increasing sample
preparation time and negating the advantage of rapidity of Raman analysis.
Raman spectroscopy techniques have been investigated as an alternative
strategy for AST, measuring the differences between Raman signatures or
pathogens that are sensitive and resistant to antibiotic treatments™ . Thrift
etal.”’ used SERS to collect spectra of P. aeruginosa and E. coli subjected to a
range of concentrations of gentamycin, from which a deep neural network
could be trained. The deep learning analyses determined that the sensitivity
of the bacteria to gentamycin could be predicted from SERS spectra taken
after 10 mins exposure. Deuterium labelling is also used to measure changes
to bacterial metabolism in response to antibiotic treatment, via Raman
spectroscopy’*. Both of these approaches reduce the time required to
reach an accurate diagnosis and treatment decision; however, separation
from the sample matrix and pathogen isolation is still required to achieve
useful spectra from clinical samples. AMR characterisation has been studied
by directly comparing the spectra of bacterial strains with different AMR
profiles'**, similar to the present study. In such cases, the AMR profiling is
predicated on assigning test spectra to one of a defined library of bacterial
strains, where the AMR profiles have been determined for those specific

strains. These models are not necessarily able to predict the antimicrobial
profiles of unknown bacterial species and strains, which are a critical avenue
of future work. In this study, AMR profiling was correlated to 20 clinical
isolates of the same bacterial species. With a substantially larger dataset of
characterised P. aeruginosa isolates, an adaptive model capable of classifying
the AMR profiles of unseen P. aeruginosa strains based on its Raman
spectral profile may be possible.

Raman spectroscopy as a potential diagnostic tool for infection offers
some advantages against other emerging rapid AST technologies. New
microfluidics-based approaches offer rapid diagnostic outputs at the single
cell level, that like Raman can be integrated into machine learning models'>*.
Kandavalli et al developed a methodology that measures growth of mixed
microbial populations in microfluidic chambers in the presence and absence
of antibiotics, followed by identification by fluorescence in situ hybridisation
(FISH)*. This provides a level of sensitivity that Raman spectroscopy is
unable to reach, at a similar speed. However, this technology is currently
limited by the need for specific FISH probe combinations for each species
tested and may be limited in its ability to identify pathogens at the strain level.
While Raman requires a database of spectra for each pathogen, it does not
require the use of additional reagents. Microfluidic technologies and others
such as MALDI-TOF also require sample preparation steps which are in
principle not necessary for analysis by Raman spectroscopy, although this
direct analysis aspect has not been investigated in this study.

This study used planktonic bacteria to generate the Raman library (Fig.
1), which allows for greater resolution of spectral features between strains at
the cost of some verisimilitude for sputum samples of patients with
respiratory infections. Bacterial respiratory infections such as in the cystic
fibrosis lung or ventilator associated pneumonia typically grow as biofilms
suspended within mucus**, so future work will require libraries of Raman
data derived from P. aeruginosa biofilms, tested against clinical samples for
rapid and direct identification. Additionally, this proof-of-concept study
focuses solely on P. aeruginosa, where additional datasets must be raised in
future to test the profiling capability of the MX-Raman methodology on
other bacterial pathogens. This will likely include further optimisation of the
data processing and analysis techniques to account for physiological dif-
ferences in different bacterial species. different bacterial species. The chal-
lenges associated with retrieving bacterial Raman signal from complex
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clinical samples have previously been considered by Rusciano et al.”, who
utilised photobleaching steps to reduce fluorescence of sputum samples,
achieving classification of samples containing either P. aeruginosa or S.
aureus. We hypothesise that MX-Raman will provide enhanced spectral
‘fingerprinting’ capability for microbial characterisation in complex samples
such as these". Additional optimisation will also be required to apply this
methodology to direct clinical samples, as Raman signal arising from host
factors may influence or interfere with pathogen identification and sample
preparation procedures to concentrate the bacterial component of the
sample will undermine the benefit of its rapidity.

This study provides a proof-of-concept for the use of MX-Raman as a
tool to characterise the AMR profiles of P. aeruginosa. The methodology
described uses direct analysis of bacterial samples, requiring minimal
sample processing. Our approach has resulted in the use of multiple ana-
lytical models to classify bacteria, dependent on classification criteria (e.g.
strain or resistance to a specific drug). We envision that this work could form
the basis of a direct diagnostic tool for bacterial infection, acting as a rapid
pre-screen ahead of confirmation of pathogen presence by conventional
techniques. Several challenges must be addressed in future work ahead of the
translation of this methodology, including its expansion to other bacterial
species, integration with automated machine learning models, and opti-
misation for in situ analysis of sputum samples.

Methods

Bacteria and culture

We isolated twenty Pseudomonas aeruginosa clinical strains (Fig. 1) from
expectorated sputum derived from people with cystic fibrosis, as previously
described”. Briefly, sputum was treated with Mucolyse™ Sputum Digestant
(Pro-Lab Diagnostics, UK) for 15 min at 37 °C. Confirmation of P. aerugi-
nosa was carried out by growth of the isolates on cetrimide agar (Sigma-
Aldrich, UK), and validated with multiplex PCR*. Sputum samples were
collected for a previous study and all sampling protocols and procedures
were approved by the UK NHS Research Ethics Committee (REC No: 08/
H0502/126)*". Bacterial isolates were stored in 25% glycerol stocks at —80 °C.
Bacterial cultures were grown in Mueller-Hinton broth (MHB) (Sigma-
Aldrich, USA) for AST and in Lysogeny broth Miller (Formedium, UK) for
Raman spectroscopy, both for 18 h at 37 °C, with shaking at 180 rpm.

Antibiotic preparation and MIC testing

Minimum inhibitory concentration (MIC) tests were conducted in accor-
dance with EUCAST guidelines. P. aeruginosa cultures were prepared to a
concentration of 10° CFU/ml in MHB and added to a twofold dilution series
of ceftazidime, ciprofloxacin, imipenem, or tobramycin, ranging from
0.25 pg/ml to 256 pg/ml. Muller-Hinton broth 2 was used for tobramycin
MIC assays. A stock solution of ciprofloxacin was prepared in 0.1 M HCI
before suspension in MHB. Bacterial growth inhibition was measured using
absorbance at 600 nm with a FLUOstar optima plate reader (BMG Labtech).
At least three biological repeats were performed for each strain, and strains
were designated ‘sensitive’ or ‘resistant’ according to EUCAST clinical
breakpoints”’. The intermediate classification ‘T, representing strains sus-
ceptible to the antibiotic with increased exposure, was removed to simplify
the classification criteria of the model, and strains were instead classified as
‘sensitive’. MIC testing was conducted with three technical repeats per
antibiotic concentration, and at least three biological repeats per P. aeru-
ginosa strain (Table 2, Supplementary Table 2).

Raman microspectroscopy
Bacterial cultures were grown to a concentration of 10° CFU/ml. Bacteria
were washed twice by centrifugation (4000 g, 10 min) in ddH,0 (W4502,
Sigma-Aldrich). Concentrated bacteria were then resuspended in 250 ul
ddH,O0 and dried onto an aluminium sputter-coated microscope glass slide
(1 pm thickness, SSAL-01000-Q5, Angstrom Engineering, Canada) in air
with gentle heating (40 °C).

Raman microspectroscopy experiments were conducted using a
Renishaw InVia Raman microscope (Renishaw, UK), with a Leica DM

2500-M bright field microscope and an automated 100 nm-encoded XYZ
stage. The samples were excited using a 100 mW DPSS 532 nm laser and a
100 mW near infrared point source diode laser at 785 nm (Renishaw plc.)
directed through a Nikon 50x air objective (NA =0.5). This gives a dif-
fraction limited spot size of ~740 nm and 1.1 pum, respectively. The signal
was collected after a Rayleigh edge filter appropriate to each excitation
wavelength, and a diffraction grating (532 nm: 1800 L/mm, 785 nm: 1200 L/
mm) that dispersed the Raman-scattered light onto a Peltier-cooled CCD
(1024 pixels x 256 pixels). The peak at 520 cm™" from a silicon wafer was
used to calibrate the Raman wavenumber axis and was also used to calculate
the spectral resolution of the spectrometer using 532 nm and 785 nm
excitation wavelengths. The half-width half-maximum spectral resolution
using 532 nm excitation was measured to be 2.96 cm ™, and using 785 nm
excitation was measured to be 2.54 cm . For bacterial samples, spectra were
typically acquired over three accumulations of 5s each, using ~0.9 mW
power for acquisitions using the 532 nm laser, and ~6.3 mW power for
acquisitions using the 785 nm laser. Five biological repeats of each bacterial
strain were used, fifty-six spectra were acquired for each biological repeat for
each laser wavelength tested. The z-position was determined using a depth
series analysis on the dried sample and selecting the z-position that pro-
duced the strongest peak intensity per sample. Measurements made using
the two laser wavelengths were positioned at the same or similar x-y loca-
tions, e.g. at a position of similar sample thickness and distance from the
sample edge if not at the exact same location.

Data pre-processing and statistical analysis

Data preprocessing and statistical analysis were conducted in Renishaw
WiRe 5.5.0 and Python v3.12.0 using the packages SciPy v1.13.0%,
RamanSPy v0.2.7°, and scikit-learn v1.4.2”. In this study, raw spectra were
divided into two datasets according to their excitation wavelength and pre-
processed independently of each other. A third multi-excitation dataset was
then derived after pre-processing of the two single-excitation datasets.

Quality control screening

Prior to spectral pre-processing, all spectra showing effects of saturation,
burning, or defocusing were identified and excluded from further analysis.
To allow for direct comparison between all datasets, the number of spectra
per biological replicate was standardised, and screening was performed on
corresponding pairs of spectra. That is, exclusion of a 532 nm excitation
spectrum from one biological replicate resulted in the screening of the
corresponding 785 nm excitation spectrum acquired at the same position on
the same biological replicate, and vice versa. This resulted in a total of
20 strains, with 280 spectra per strain, except for PA26 with a total of
279 spectra, for each dataset.

Spectral pre-processing

Spectra remaining after quality screening were pre-processed to remove
spectral interferents and corrupting artefacts. Pre-processing is frequently
deemed a necessity for downstream analysis, as changes in experimental
conditions may cause unwanted spectral contributions. These in turn, may
mask the subtle but relevant underlying biological differences between
highly similar spectra, reducing the efficacy of the final statistical model.
Here spectral pre-processing was applied to correct for errors occurring due
to the measurement instrument (i.e. cosmic noise, Gaussian noise, and
intensity fluctuations) and the sample itself (i.e. fluorescence background).
The order of pre-processing methods applied followed the pipeline illu-
strated by Guo et al.”.

Firstly, cosmic ray removal was employed using the nearest neighbour
algorithm in Wire 5.5. Following this, spectra were smoothed using a
second-order Savitsky-Golay filter with a window length of 5 to reduce
Gaussian noise (via preprocessing.denoise.SavGol() function from
RamanSPy v0.2.726™°). The resultant spectra were then interpolated onto a
common wavenumber axis with a step-size of 1 cm™ using a radial basis
interpolation function (using interpolate.Rbf() from SciPy v1.13.025%).
Baseline subtraction via the asymmetric least squares algorithm

npj Antimicrobials & Resistance| (2025)3:74


www.nature.com/npjamar

https://doi.org/10.1038/s44259-025-00141-z

Article

(preprocessing.baseline.ALS() from RamanSPy v0.2.726’") with the para-
meters, lambda, and p set to 5000, and 0.01, respectively, was then applied to
reduce background fluorescence intensity. Next a minimum intensity shift
was applied to set the minimum intensity of each spectrum to zero and
ensure all intensity values were non-negative. Finally, spectra were truncated
to the fingerprint region, 600 to 1700cm ' (via pre-
processing.misc.Cropper() from RamanSPy v0.2.726"'), before intensity
normalisation via area under the curve scaling (using the pre-
processing.normalise. AUC() function from RamanSPy v0.2.726™).

To ensure correct implementation of each pre-processing operation,
spectra were visually inspected following each applied procedure for arti-
ficial artefacts arising due to misuse of correcting algorithms. Supplemen-
tary Fig. 3 illustrates an example plot following the pre-processing pipeline
of a spectral map obtained from a biological replicate of the strain PA08 with
a 532 nm excitation laser.

Multi-excitation dataset construction

Following spectral pre-processing, a third multi-excitation dataset was
obtained by concatenating each 532 nm excitation spectrum with the cor-
responding 785 nm excitation spectrum of the same position on the same
biological replicate. This resulted in a total of three spectral datasets—two
single-excitation (532 nm, and 785 nm) and one multi-excitation dataset—
that were each wused independently for the five bacterial
characterisation tasks.

Machine learning and statistical modelling

The applied machine learning modelling approach was developed identi-
cally for both the strain and the four antibiotic-sensitivity classification tasks.
For ease of notation, in what follows, let a class denote either the strain or
antibiotic-sensitivity, let a classifier denote a classification algorithm
(potentially combined with an internal dimension reduction algorithm),
and let a model denote a classifier trained on a specific dataset (i.e. either a
single- or multi-excitation dataset).

To compare the discriminative capabilities of the single- and multi-
excitation techniques and determine the most effective analysis model for
each characterisation task, nine classifiers were trained on each of the three
datasets—for a total of 27 models. The classification algorithms: linear
discriminant analysis (LDA) with an internal principal components analysis
(PCA) dimension reduction (PCA-LDA), partial-least-squares discriminant
analysis (PLS-DA), random forest (RF), support vector machine (SVM), SVM
with an internal PCA dimension reduction (PCA-SVM), gradient boosting
(GradBoost), GradBoost with an internal PCA dimension reduction (PCA-
GradBoost), logistic regression (LogReg), and Log-Reg with an internal PCA
dimension reduction (PCA-LogReg) were selected to represent a range of
parametric and non-parametric, ensemble, regularised and latent variable
learners, and models with linear and non-linear decision boundaries. For a
few classification algorithms considered susceptible to highly correlated or
noisy features (i.e. LDA, SVM, GradBoost, and LogReg), PCA was applied
internally to reduce collinearity and size of the feature space. Due to the long
computational time and to avoid risk of over-fitting, an alternative
dimension reduction method was also applied to the classifiers LogReg,
GradBoost and RF, via the function feature_selection.SelectKBest() from
scikit-learn v1.4.2*. This method selects the top k features from the spectral
dataset by evaluating each feature independently with the target variable
using the ANOVA F-value test. Finally, where it was deemed appropriate,
features of the training sets were standardised to remove the mean (i.e. set to
zero) and scale to unit variance using the function pre-
processing.StandardScalar() from scikit-learn v1.4.2”. Details on the precise
pipeline and implementation used for each classifier are provided in Sup-

according to replicate information, each biological replicate was treated as
an independent sample. In this way, all spectra from a single biological
replicate were used either entirely for training or testing, thereby avoiding
data leakage within the model - which may otherwise occur due to high
correlation between spectra from the same replicate. The leave-one-biolo-
gical-replicate-out cross-validation was selected for model testing, over the
more common fold splitting method to maximise the available training data.

In addition to an outer cross-validation strategy to estimate model
generalisability, an internal stratified 5-biological-replicate-fold cross-
validation procedure was implemented to optimise the hyperparameters
of the algorithms in each analysis pipeline. The investigated hyperpara-
meters for each classifier are provided in Supplementary Table 4.

Unlike the model parameters which are tuned during training of a
machine learning model, hyperparameters are a set of configurations that
control the behaviour of the learning algorithm and are set before training.
As these variables can greatly influence the model’s performance, hyper-
parameters should be optimised using validation sets to improve the model’s
effectiveness on unseen data. Like testing, hyperparameter tuning can be
achieved using a cross-validation strategy that splits the training data (from
the train-test splitting) into an inner training and inner validation set. For
each combination of hyperparameters, a classifier is trained on the inner
training set, and its performance is measured on the validation set. The
combination of hyperparameters that yield the highest result on the vali-
dation set is then selected. Finally, a new machine is trained on the outer
training set (i.e. both the inner training and inner validation set) with the
selected hyperparameters, and the final testing score is evaluated on the
testing set.

As with the sampling strategy used for testing, the cross-validation
strategy for hyperparameter tuning was selected to respect spectral groups
regarding biological replicates (i.e. splitting did not occur between spectra
from the same sample/biological replicate). A stratified 5-biological-
replicate-fold operation was selected to act internally within the leave-
one-biological-replicate-out testing cross-validation to optimise the algo-
rithms’ hyperparameters. Through this procedure, the training data was
split into five subsets each consisting of exactly one biological replicate of
each of the 20 strains in the strain characterisation problem (save for a single
fold be missing the strain excluded for testing), and a proportional dis-
tribution of sensitive and resistant labelled samples in the antibiotic-
sensitivity characterisation tasks. This precise method was selected to best fit
the properties of the three datasets - that is, five biological replicates per
strain and an imbalanced class structure for the antibiotic-sensitivity tasks.

The selected performance metric for measuring the power of each
hyperparameter combination greatly influences which variables are used by
the final model. Commonly used metrics include accuracy, precision, recall,
and F1 score. While accuracy simply measures the proportion of correct
predictions, it can be misleading in cases of class imbalance (as in the case of
the antibiotic-sensitivity tasks), where the model may achieve a high
accuracy by mostly predicting the majority class. The accuracy for each class
in terms of the number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) is provided below (Equation 1).

Accuracy = P+ IN (1)
Y = TP{ TN + FP+ EN

In contrast, precision (Equation 2) and recall (Equation 3) provide more
nuanced insight into how well the model identifies positive instances, with
precision focusing on how many predicted positives are correct, and recall
on how many actual positives are captured.

plementary Table 4. Precision — TP @)
TP + FP

Cross-validation, performance metrics and hyperparameter

optimisation

To benchmark the performance of each model a leave-one-biological- Recall = TP 3)

replicate out cross-validation was conducted. By splitting spectral datasets TP + FN
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Finally, the F1 score (Equation 4) balances these two by taking their har-
monic mean, thus reflecting the trade-off between precision and recall. Here
F1 score was selected to be optimised to ensure that neither false positives
nor false negatives were disproportionately ignored, thereby leading to a
more robust model performance.

Precision x Recall 2x TP

Fl =2X — =
Precision + Recall 2x TP + FP + FN

(4)

In addition to selecting an appropriate metric, choosing a suitable
averaging method is also crucial in multi-class (i.e. strain identification) and
imbalanced classification (i.e. sensitivity detection) problems, as the preci-
sion, recall, and F1 are scored per class. The three main types of averaging are
macro, micro, and weighted. Micro-averaging aggregates the contributions
of all classes to compute a global metric, which can bias the score toward the
majority class. Weighted averaging, on the other hand, considers the
number of instances (i.e. spectra) per class, but similarly favours classes with
more instances. In contrast, macro-averaging calculates the metric (e.g.
F1 score) independently for each class then takes the average, giving equal
weight to all classes regardless of their frequency. By equally valuing per-
formances across all classes, macro-averaging helps select hyperparameters
that lead to a more balanced and fairer model. The macro-averaged F1 score
was, therefore, selected as the metric for hyperparameter tuning to aid in the
multi-class strain characterisation problem and the imbalanced antibiotic-
sensitivity tasks.

To summarise, a leave-one-biological-replicate out cross-
validation was applied to evaluate model performance, and a strati-
fied 5-biological-replicate-fold cross-validation was applied for
hyperparameter optimisation using the macro-averaged F1 score as the
validating metric.

For each characterisation task the highest performing classifier across
the three excitation approaches was selected and investigated for further
analysis. All previously described metrics (i.e. accuracy, precision, recall, and
F1) and their associated averages (i.e. micro, macro, weighted) were
recorded for each biological replicate in the testing set. The macro adjusted
F1 score (ie. the macro-averaged F1 minus the standard deviation of
F1 scores across classes), was chosen to evaluate the highest performing
model, and thereby select the model that balances both high overall per-
formance and low variability. The equation for the macro adjusted F1 score
for an N-class classification problem in terms of the F1 score for each class i,
F, (i) is provided below (Equation 5).

N

1 1 ?
— F@H-=) F()]2 ®
v (ro-55m0)

i=1

. Ry
Adjusted F1 = N;Fl(z) -
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