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Abstract

Heart failure with preserved ejection fraction (HFpEF) is a growing health problem worldwide, accounting for half of all
heart failure cases. HFpEF patients present with diverse underlying causes and symptoms, making diagnosis and treatment
challenging. Current pharmacological therapies are inadequate, while approved device-based therapies have shown limited
success due to patient heterogeneity. This underscores the need for improved pre-clinical models, critical for guiding the
design and development of effective therapeutic devices. This paper presents an overview of current pre-clinical HFpEF
models, including in-silico, in-vitro, ex-vivo, and in-vivo approaches, aimed at advancing the understanding of HFpEF
physiology and the development of device-based therapies. We examined each model's ability to replicate key HFpEF char-
acteristics, discuss their respective strengths and limitations, and highlight their role in supporting the creation of clinically

relevant solutions. Additionally, the potential of emerging advancements is explored.
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Introduction

Heart failure, affecting 64 million people worldwide [1], is
the leading cause of death globally. Approximately half of
all cases are heart failure with preserved ejection fraction
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(HFpEF), a condition characterized by stiff ventricles and
normal ejection fraction. HFpEF contrasts with heart fail-
ure with reduced ejection fraction (HFrEF), which involves
weakened myocardium and dilated ventricles [2, 3]. The
prevalence of HFpEF is rising, placing an increasing burden
on healthcare systems [4, 5]. Despite a five-year mortal-
ity rate of 47% and poorer long-term outcomes compared
to many cancers [6, 7], HFpEF remains poorly understood
and inconsistently defined [8]-[10]. Current classifications
vary, using underlying mechanisms, hypertension status, or
comprehensive clinical characteristics [11]-[13].
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While HFrEF has well-established pharmaceutical and
device-based treatments, HFpEF treatment options are still
evolving [14, 15]. Sodium-glucose co-transporter 2 (SGLT2)
inhibitors have emerged as the primary pharmaceutical
treatment shown to provide benefits across most HFpEF
populations and are widely recommended as initial therapy
[16]. However, despite these advancements, many HFpEF
patients remain symptomatic, highlighting the critical need
for alternative treatment strategies, particularly device-based
interventions [17]. Emerging devices target specific patho-
physiological changes in HFpEF: inter-atrial and atrium to
coronary sinus shunts aim to reduce left atrial pressure; left
ventricular expanders enhance filling capacity and stroke
volume; and mechanical circulatory support devices decom-
press the left atrium and may increase cardiac output. These
devices, ranging from early development to clinical trials,
represent a critical frontier in HFpEF treatment [15].

Certain device-based approaches may be effective for
specific patient populations but not for others, as demon-
strated by the REDUCE LAP-HF II trial for the Interatrial
Shunt Device (IASD) [18]. Additionally, clinical trials are
expensive, making thorough preclinical evaluation essential
for ensuring success. As a result, preclinical HFpEF models
are crucial in refining and advancing these therapies before
clinical implementation. By replicating HFpEF's distinct
anatomical and hemodynamic features, they facilitate the
development, evaluation, optimization and personaliza-
tion of device-based treatments. Pre-clinical models sup-
port understanding of HFpEF pathophysiology [19]-[21],
improving device safety and efficacy [11, 22]-[24], and
informing personalized clinical decision-making like place-
ment strategies and intervention timing [25, 26]. .

A variety of HFpEF models have been developed, but
there is little synergy between them, and no comprehensive
clear guidance on their appropriate use, timing, or applica-
tions. Furthermore, there is no comprehensive summary out-
lining their benefits and limitations to highlight their current
capabilities for device development and the gaps that remain.
This paper aims to bridge that gap by providing a review and
analysis of existing HFpEF preclinical models while outlin-
ing the necessary steps to establish a comprehensive suite
of evaluation tools.

Scope

This review examines pre-clinical HFpEF models, evalu-
ating their ability to replicate disease characteristics, their
limitations, and their potential to advance personalized and
device-based therapies for this underserved patient popula-
tion. By analyzing the strengths and weaknesses of these
models, we highlight their critical role in driving innovative
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HFpEF treatment strategies and discuss potential future
enhancements to improve their clinical relevance.

A systematic review of pre-clinical HFpEF models was
conducted, focusing on studies published between 1996 and
2024. Literature searches in PubMed, Google Scholar, and
Scopus identified studies using keywords such as “HFpEF
preclinical model”, “HFpEF pre-clinical model,” “HFpEF
computational model”, “HFpEF mock circulation loop”,
“HFpEF animal model” and “HFpEF device testing” com-
bined lead to 1346 results. After excluding duplicates, and
initial screening of titles and abstracts, only studies rele-
vant to device testing and hemodynamic evaluation were
included, excluding those focused solely on drug develop-
ment narrowing the selection to 32 publications. For mod-
els utilized in multiple studies, the earliest publication was
prioritized. By focusing on models tailored for device evalu-
ation, this work aims to inform and inspire future advance-
ments in device-based HFpEF research.

State-of-the-Art Models in HFpEF Research
Model Overview

State-of-the-art HFpEF models can be divided into in-silico,
in-vitro, ex-vivo and in-vivo models. Each of those catego-
ries provides inherent benefits and shortcomings. Figure 1
shows a radar graph comparing in-silico, in-vitro, ex-vivo
and in-vivo models regarding complexity, fidelity, cost, scal-
ability and set-up time.

In-silico studies provide high adaptability, scalability, and
control to assess surgical fit [27, 28] and device interaction
with the cardiovascular system [11, 20, 23, 24, 29], aiding
refinement of device design, performance, and placement.
Hemodynamic responses to device-based treatments can be
simulated using lower-dimension models or more detailed
higher-dimensional approaches for local flow, hemocompat-
ibility, and structural analysis. However, lower-dimension
models involve many simplifications, and both approaches
still face limitations in predicting biological responses such
as cardiac remodeling.

In-vitro models physically model the biomechanics and
hemodynamics of HFpEF patients [24, 27, 30]-[33]. How-
ever, to comprehensively model the cardiovascular system
including hemodynamic interactions and adaptations, a
number of components including autoregulatory responses
are required, resulting in a complex set-up [28, 30, 34, 35].
Further, remodeling is typically not replicated as most of the
materials used are non-biological and non-adaptive.

Ex-vivo models enable realistic biological responses
and direct observation of tissue changes, supporting analy-
sis of cardiac mechanics and hemodynamics [34]. They
are especially useful for studying device interaction with a
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Fig. 1 Radar graph comparing in-silico, in-vitro, ex-vivo and in-vivo
models regarding complexity, fidelity, cost efficiency, scalability and
set-up time (left) and tabular comparison (right). The complexity of
in-silico and in-vitro models can vary from a simple set-up for ini-
tial evaluation, to highly complex assemblies with numerous compo-

beating heart, offering insight into mechano-energetics and
biocompatibility. However, biocompatibility and hemo-
compatibility are often poorly assessed, as setups using
blood typically use simplified, non-physiological condi-
tions. These models also face limitations: they are hard to
tailor to specific phenotypes, may not reflect the intended
disease state, and mainly capture acute effects, missing
longer-term adaptive responses like neural or hormonal
regulation.

In-vivo animal models are commonly used in drug and
device development, offering insight into pressures and
flows in major vessels under realistic physiological condi-
tions [36]-[38]. They are effective for evaluating structural
changes and blood compatibility. However, replicating
HFpEF conditions remains challenging, and measuring in
less accessible anatomical regions is difficult. Additionally,
these studies are resource-intensive and costly.

The following section will discuss existing HFpEF mod-
els within each category, and highlight the HFpEF character-
istics each model can replicate in addition to the applications
of the models.

In-Silico Models

In-silico HFpEF models include lower- and higher-dimen-
sional computational frameworks, that can be combined into
multiscale models to leverage their complementary strengths
(Figure 2). These models are instrumental in unravelling
HFpEF pathophysiology and informing device-based
interventions.

nents and increased fidelity. For visual simplicity, the graph in Fig-
ure 1 refers to the simplest method of each. This figure is the author’s
own work, and does not comprehensively cover all models, nor do
all models always fit within their category. Contains graphics created
with AL

Lower-Dimensional Models

Lumped parameter models (LPMs) have been essential tools
for replicating HFpEF-specific hemodynamic characteris-
tics, such as elevated left atrial pressure and reduced ven-
tricular compliance. These models provide valuable insights
into systemic hemodynamics and have been widely applied
to evaluate device-based therapies for HFpEF. By simpli-
fying cardiovascular dynamics through electrical analogs,
LPMs have enabled researchers to analyze the interactions
between arterial, venous, and ventricular systems efficiently.

Studies utilizing LPMs have significantly contributed
to understanding how HFpEF patients respond to different
therapeutic devices. For instance, inter-atrial shunt devices
were shown to reduce left atrial pressure for HFpEF patients
[27], offering a potential intervention to alleviate HFpEF
symptoms [11, 20]. Similarly, the use of LPMs has clari-
fied the conditions under which mechanical circulatory
support (MCS) devices seem most effective. A model
developed by Colacino et al. [40] was adapted by Moscato
et al. [29] to represent HFpEF conditions and utilized to
assess the hemodynamic effects of continuous flow LVADs
on HFpEF patients during rest and exercise. These modi-
fications included adapting ventricular end-diastolic, end-
systolic, and relaxation properties, as well as incorporating
the hemodynamic response to exercise. The resulting model
demonstrated potential benefits such as unloading of the left
ventricular and pulmonary venous circulation, and increased
cardiac output. Burkhoff et al. [11] evaluated the suitability
of a left atrial assist device across four distinct HFpEF phe-
notypes, demonstrating the importance of patient-specific
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Fig.2 Overview of in-silico models. Lumped parameter models use
electrical analogues to model the cardiovascular system, where com-
pliance (C) and resistance (R) elements represent its hydraulic prop-
erties (left). Finite element models solve equations governing spa-
tially and temporally resolved behavior, enabling detailed analysis of
cardiac tissue mechanics and hemodynamics: Cross-sectional view of
a left atrium during systole (a) and diastole (b) showing myocardial

considerations in optimizing device deployment strategies.
Granegger et al. [23] extended this work by simulating the
impact of four device-based therapies under rest and exercise
conditions, highlighting the dynamic nature of HFpEF and
its implications for therapy development. Arduini et al. [24]
illustrated how a soft robotic extra-aortic counter pulsation
device could enhance diastolic filling, showcasing a LPMs'
utility in assessing novel therapeutic concepts.

Beyond device evaluation, LPMs have also been used to
simulate HFpEF progression and refine our understanding of
its pathophysiology. Basu et al. [41] amended a cardiorenal
model presented by Yu et al. [42] to better understand the
heterogeneity of HFpEF by modelling combinations of vari-
ous mechanisms, including myocardial, arterial, and venous
stiffness, impaired relaxation, reduced contractility, hyper-
tension, and venous capacitance, contributing to HFpEF and
their effects on remodeling. Kadry et al. [19] presented fur-
ther models, providing insights into how left ventricular and
left atrial properties evolve with disease severity and impact
therapeutic outcomes by combining a 1D arterial network
and a OD four-chamber heart simulating three HFpEF phe-
notypes based on myocardial relaxation delay and passive
left ventricular stiffness. Kaye et al. [20] identified the role
of stressed blood volume at rest and during exercise as a key
factor in HFpEF pathophysiology, using a LPM informed
by patient data from both HFpEF and control groups. Cir-
cAdapt and Harvi, interactive cardiovascular simulators
based on LPM frameworks, have demonstrated the value
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wall stress in a HFpEF model, which impacts the biomechanics of
the heart (right). Ra - Arterial resistance; Rv - Venous resistance; Lc
- Characteristic inductance; Ca - Arterial compliance; Cv - Venous
compliance; LV - Left ventricle; LA - Left atrium; RA - Right
atrium; RV - Right ventricle. Left panel based on Kaye et al. [22].
Right panel adapted from Ozturk et al. [39]. © 2022 Ozturk, Rosalia
and Roche (CC BY 4.0).

of patient-specific modelling by enabling real-time simula-
tions of HFpEF dynamics and facilitating phenotype-specific
stratification for device testing [21].

However, LPMs are inherently limited in their ability to
provide spatially resolved insights such as localized flow
dynamics, mechanical stresses, or tissue-device interac-
tions. For example, while these models can simulate global
hemodynamics, they cannot evaluate thrombogenesis risks
or predict how devices affect local tissue structures. Further-
more, LPMs rely on assumptions and simplifications that
may not fully capture the complexity of HFpEF, such as its
remodeling processes or interactions between the heart and
other organs.

Higher-Dimensional Models

Higher-dimensional models, like finite element models
(FEMs) and finite volume models (FVMs), offer spatial res-
olution, enabling detailed analyses of HFpEF-related phe-
nomena like myocardial stress distribution, ventricular wall
strain, and blood flow patterns. Accordingly, these models
are essential for studying the structural and hemodynamic
changes that define HFpEF, particularly its remodeling pro-
cesses and responses to device support to aid device devel-
opment and evaluation.

One key contribution of FEM models is their abil-
ity to simulate long-term cardiac remodeling in HFpEF.
Genet et al. [25] introduced a growth model that connects
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sarcomere-level processes, parallel and serial sarcomere
deposition during transverse and longitudinal growth,
respectively, with macroscopic ventricular remodeling.
The model, based on human MRI data, uses stretch-driven
growth kinetics with a normalized time variable to represent
remodeling over months to years, and activates growth only
above physiological fiber stretch. While this approach sim-
plifies molecular-to-organ time scale translation, it captures
the cumulative impact of chronic loading and provides a
framework currently being calibrated using porcine mod-
els of concentric and eccentric hypertrophy. Such models
enable prediction of long-term changes in chamber size, wall
thickness, and geometry, offering insights into remodeling
mechanisms and could be advanced to inform device devel-
opment to counteract adverse remodeling.

Weissman et al. [26] used FEM to assess structural
remodeling in a porcine model of HFpEF. Cardiac MRI and
pressure data were collected before and after HFpEF induc-
tion via pressure overload, and FEMs were generated via
mesh morphing of the living heart porcine model. Material
properties were calibrated to match passive and active myo-
cardial behavior. The study found predominantly isotropic
changes in passive properties, with myocardial thickening
preserving tissue incompressibility. This method demon-
strated how structural remodeling, such as alterations in left
ventricular geometry, correlates with functional impair-
ments, highlighting the importance of tailoring therapies to
individual patients.

While higher-dimensional models excel in capturing
localized structural and flow dynamics, they also face limi-
tations. Their computational intensity can restrict scalability
and real-time simulation capabilities. These models often
lack integration with systemic hemodynamics, limiting their
ability to assess how localized changes impact global cardio-
vascular function. These shortcomings highlight the need for
coupling higher-dimensional models with LPMs to bridge
the gap between local and systemic analyses.

Lower- and Higher-Dimensional Model Coupling

Multiscale models, combining LPMs, FEMs, and FVMs
provide a comprehensive understanding of HFpEF by inte-
grating systemic hemodynamics with localized flow dynam-
ics and structural remodeling. These models leverage the
strengths of both approaches, offering a detailed and sys-
temic perspective on cardiovascular function [43].

Rosalia et al. [43] demonstrated the potential of multi-
scale modelling by coupling an LPM with a three-dimen-
sional FEM to simulate HFpEF under conditions of aortic
stenosis-induced pressure overload. This model incorporated
variable-compliance chamber elements, dynamically adjust-
ing left ventricular diastolic compliance to replicate HFpEF-
specific contractility. By illustrating differences in von-Mises

stress distribution in the left ventricular wall during systole
and diastole for healthy and HFpEF hearts (Figure 2, right),
the model highlighted the mechanical stresses contributing
to disease progression. Building upon this, Ozturk et al. [39]
expanded the model’s application to the design of a pulsatile
MCS device. By integrating LPMs, FEMs, and FVMs, the
study optimized the device for left atrial pressure reduc-
tion, a key characteristic of HFpEF. The findings suggest
that pulsatile flow support not only reduces left atrial and
ventricular pressures and wall stresses more effectively than
continuous flow but also achieves more physiological arte-
rial hemodynamics.

Weissman et al. [44] extended the capabilities of mul-
tiscale models by integrating MRI-derived cardiac geom-
etries into a combined LPM-FEM framework. This approach
enabled simulation of phenotype-specific HFpEF character-
istics, including left ventricular hypertrophy and reduced
chamber volume. By linking structural remodeling with
functional capacity, the study demonstrated the importance
of understanding the heterogeneity across different HFpEF
phenotypes for device development and performance evalua-
tion and may aid for device assessment under patient specific
conditions in future studies.

While multiscale computational models improve upon
standalone in-silico models by integrating global and
local phenomena, they remain limited by their reliance on
assumptions about biological systems and their inability to
directly assess physical device performance. These assump-
tions include simplified or idealized representations of blood
properties, cardiac wall motion, valve and chamber geom-
etry, and boundary conditions, as well as numerical simpli-
fications for computational efficiency. Additionally, while
these models can simulate device-tissue interactions under
controlled conditions, they cannot fully capture the complex-
ity and variability of real-world device behavior in biological
systems. To address these gaps, in-vitro models provide a
physical platform to experimentally evaluate HFpEF hemo-
dynamics and device interactions, complementing insights
from computational simulations. All presented in-silico
models are summarized in the Appendix, Table 1.

In-Vitro Models

In-vitro HFpEF models, particularly MCLs, (Figure 3 (a)),
provide valuable insights into the hemodynamics of HFpEF,
enabling researchers to replicate and study flow rates, pres-
sures, and volumes under controlled conditions. These mod-
els address limitations of in-silico approaches by physically
representing cardiovascular dynamics and offering platforms
for device testing. They are particularly useful in evaluating
how physical devices influence HFpEF-specific hemody-
namic characteristics, such as elevated left atrial pressures,
reduced ventricular compliance, and systemic resistance.

@ Springer
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Fig.3 Overview of experimental HFpEF models. (a): Schematic of
an in-vitro mock circulation loop (MCL) (b): Ex-vivo MCL incor-
porating an animal heart presented by Escher et al. [34]. (c): In-
vivo models illustrating acute and chronic set-ups using mechanical
devices, drugs, aging, or dietary interventions: SVC/PVC - Systemic/
Pulmonary Venous Compliance; SVR/PVR - Systemic/Pulmonary
Venous Resistance; SQ/PQ - Systemic/Pulmonary Flow Sensor;
LA/RA - Left/Right Atrium; MV/TV - Mitral/Tricuspid Valve; LV/
RV - Left/Right Ventricle; AoV/PV - Aortic/Pulmonary Valve; AoC/

Many MCL designs focus on the left ventricle [30, 31] or
both the left ventricle and atrium [32, 33], using compliance
chambers and vascular resistances to mimic cardiac and arte-
rial dynamics. Some setups, like Langer et al. [27], include
arterial and venous elements to simulate a wider range of
HFpEF conditions. These models offer control over vascu-
lar resistance to reproduce different pressure states. While
some use rigid PVC chambers [27, 32], others adopt patient-
specific geometries from CT or MRI for greater anatomical
accuracy [31, 33]. Ventricular contraction is typically driven
pneumatically, via compliance chambers [27, 32, 33] or soft
actuators [31], and most use blood-mimicking fluids to simu-
late realistic hemodynamics [27, 30]-[33].

MCLs have been used to evaluate devices such as the left
atrial assist device [32], transcatheter aortic valves (Evolut
R, Medtronic, Minneapolis, MN and SAPIEN 3, Edwards
Lifesciences, Irvine, CA) [31], and the HeartMate 3 [27],
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PAC - Aortic/ Pulmonary Artery Compliance; AoR - Aortic Reser-
voir; PR - Preload Reservoir; AdjRes - Adjustable Resistance clamp;
Oxy - Oxygenator; VR - Venous Reservoir; AT2 Vac - Air Tank 2 for
vacuum pressure; AT1 Pos - Air Tank 1 for positive pressure; RegV
- Regulator Valve; SoV - Solenoid Valve; LA - Left Atrium; LV -
Left Ventricle; RA - Right Atrium; RV - Right Ventricle. (a): based
on Gregory et al. [45], (b): adapted from Escher et al. [34]. © 2022
Escher et al. (CC BY 4.0).

providing critical data on their effects on HFpEF-specific
hemodynamics. These set-ups have enabled studies across
varying HFpEF severity levels, including mild, moderate,
and severe phenotypes [32], as well as specific conditions
like hypertension [30] and exercise [27], helping to identify
the patient subgroups most likely to benefit from specific
interventions.

Hybrid models, which combine MCLs with LPMs, fur-
ther expand the utility of in-vitro systems. These models
introduce time-varying boundary conditions and mimic
autoregulatory responses, enabling the exploration of param-
eters typically not physically modelled in the MCL. For
instance, Broda et al. [30] tested the HeartWare ventricular
assist device (HVAD) System (Medtronic, Dublin, Ireland)
in simulated patients with and without pulmonary hyperten-
sion in two configurations: from the left ventricle to the aorta
and from the left atrium to the aorta. Both configurations
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increased cardiac output and reduced left atrial pressure;
however, only left ventricular support effectively unloaded
the ventricle, while left atrial decompression did not reduce
left ventricular volume.

Escher et al. [34] examined the CoPulse system, a valve-
less pulsatile pump connected to the left ventricle designed
to increase left ventricular capacity of HFpEF patients.
Device support resulted in reductions in left atrial pressure
and increases in cardiac output.

He et al. [28] studied the HeartMate 3, a left ventricu-
lar assist device for HFrEF patients (Abbott Laboratories,
Abbott Park, Illinios, USA) in left atrial to aorta configura-
tion. This study evaluated left atrial decompression at rest
and exercise in a simulated HFpEF patient with low cardiac
output, suggesting a minimum pump speed to avoid back-
flow and achieve left atrial decompression.

Rocchi et al. [35] advanced hybrid modelling by devel-
oping a simulator with a soft robotic patient-specific left
ventricle modelling intracardiac pressure and volume wave-
forms, which can be applied to capture systemic responses
to HFpEF therapies.

While MCLs have advanced our understanding of HFpEF
hemodynamics and facilitated device testing, they have limi-
tations. They cannot replicate biological processes, such as
myocardial remodeling, or assess blood-device interactions
and hemocompatibility under fully realistic conditions. Fur-
thermore, these models lack biological tissues, limiting their
utility for studying tissue-device interactions or long-term
adaptive responses. All presented in-vitro models are sum-
marized in the Appendix, Table 2.

These gaps highlight the need for models incorporating
biological components, such as ex-vivo set-ups, to address
tissue-specific questions and complement the insights gained
from MCL studies.

Ex-Vivo Models

Ex-vivo models (Figure 3 (b)) provide a valuable interme-
diary step between in-vitro systems and in-vivo studies by
integrating biological components into mechanical set-ups.
These models are particularly effective for studying device-
tissue interactions and hemocompatibility of devices, ena-
bling researchers to assess how cardiovascular devices
influence cardiac mechanics and energetics under controlled
experimental conditions. By incorporating excised biologi-
cal tissues, ex-vivo set-ups allow for realistic evaluations of
device performance in HFpEF-relevant scenarios.

For instance, Escher et al. [34] employed an ex-vivo
model using healthy, isolated beating porcine hearts. Despite
the animals being preoperatively healthy, post-experimental
assessments revealed reduced diastolic compliance, con-
sistent with pathophysiological characteristics of HFpEF.
The hearts were connected to a MCL to evaluate a pump

intended for HFpEF treatment (Figure 3 (b)). This approach
offered critical insights into the mechano-energetic effects of
the device on the left ventricle, revealing how pump support
influenced cardiac function in real-time. The set-up included
a dedicated blood circulation loop, with components such as
a pressure-controlled preload reservoir, an aortic reservoir,
a venous reservoir, an oxygenator, and a controllable roller
pump. This configuration replicated physiological pressures
and flows, allowing precise assessments of pump hemody-
namics and its mechanical interaction with the heart. Pump
support increased total cardiac output at constant left atrial
pressure and resulted in higher end-systolic volumes. When
cardiac output was held constant, the pump reduced left
atrial pressure. Efficiency was assessed based on the pump’s
ability to improve hemodynamics relevant to HFpEF, par-
ticularly by increasing cardiac output and lowering left atrial
pressure. Flick et al. (2023) [46] assessed the hemocompat-
ibility of the left atrial assist device through benchtop hemol-
ysis testing, using bovine blood in a temperature-controlled
loop. By comparing the results with those of existing blood
pumps on the market, the tests confirmed that the device's
normalized index of hemolysis remained within an accept-
able range.

Ex-vivo models have contributed significantly to advanc-
ing our understanding of HFpEF-specific device perfor-
mance by offering direct observation of acute changes in
the heart to mechanical support. However, these set-ups are
limited to short-term studies and cannot replicate chronic
disease progression or long-term adaptive responses, such as
fibrosis or ventricular remodeling, which are critical aspects
of HFpEF pathophysiology. Furthermore, hemocompatibil-
ity studies in MCLs are often simplified, with static or ide-
alized flow conditions that fail to capture the complexity
of HFpEF-specific blood trauma. Moreover, the reliance on
excised tissue or blood restricts the scope of phenotypes that
can be studied and complicates efforts to model the systemic
effects of device interventions. All presented ex-vivo models
are summarized in the Appendix, Table 3.

While ex-vivo models provide unique advantages in
studying device-organ interactions and hemocompatibility,
their limitations highlight the importance of complementing
these findings with in-vivo studies, which can address the
dynamic, systemic, and long-term responses that ex-vivo
set-ups cannot replicate.

In-Vivo Models

In-vivo HFpEF models (Figure 3 (c)) are essential for
exploring the disease's pathophysiology and validating
device-based therapies in realistic physiological settings.
They play a critical role in replicating hallmark features
of HFpEF, including increased atrial pressure, diminished
ventricular compliance, and progressive cardiac remodeling.
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They also meet essential regulatory requirements by provid-
ing critical data on safety, efficacy, and long-term impacts,
bridging the gap between preclinical studies and clinical
trials.

Acute in-vivo models have provided insights into the
immediate hemodynamic and mechanical impacts of HFpEF
interventions. For instance, Miyagi et al. [47] developed a
balloon inflation model in calves to reduce left ventricular
compliance and volume, effectively simulating the stiffness
characteristic of HFpEF. This model quantified how left
ventricular stiffness alters pressure-volume relationships
and impacts ventricular filling dynamics, which are key con-
siderations for device design. Similarly, Rosalia et al. [36]
demonstrated the feasibility of using soft robotic sleeves on
the aorta and the epicardium to replicate HFpEF-like pres-
sure overload. This set-up revealed the efficacy of intera-
trial shunts in reducing left atrial pressure, emphasizing
their potential to address elevated atrial pressures in HFpEF
patients. However, acute models are limited by their short
duration, failing to capture long-term adaptive mechanisms
or remodeling processes. Furthermore, the risk of prema-
ture mortality and physiological instability in these set-ups
underline the challenges of maintaining reproducibility and
reliability.

Some chronic in-vivo models, by contrast, offer valuable
insights into the progressive nature of HFpEF and its struc-
tural remodeling. Techniques like aortic banding [48]-[50]
and aortic stents [51] have been instrumental in mimicking
diastolic dysfunction through sustained increases in mean
arterial pressure, left ventricular hypertrophy, and fibrosis.
These studies have deepened our understanding of how pro-
longed pressure overload induces ventricular stiffness and
remodeling, key pathological drivers of HFpEF. Pharmaco-
logical models, such as those utilizing deoxycorticosterone
acetate, have also been used to replicate HFpEF character-
istics including left ventricular hypertrophy, atrial enlarge-
ment, and tissue stiffening [52, 53]. These models have
provided valuable insights on long-term structural changes,
informing the design of device-based treatments targeting

Device evaluation path

In-silico In-vitro

Ex-vivo

diastolic dysfunction and providing a platform for long-term
device evaluation. However, chronic models face challenges
in accurately reproducing the heterogeneous phenotypes of
HFpEF, which can limit their translational applicability.
Issues such as variable disease progression and premature
mortality further complicate their use in preclinical research.

In-vivo models have advanced our understanding of
HFpEF’s systemic impacts, including neurohormonal
responses, multi-organ interactions, and autoregulatory
mechanisms. Unlike in-vitro or ex-vivo set-ups, they offer
the unique advantage of studying chronic device effects on
remodeling processes and overall cardiovascular function.
However, their inherent complexity, high cost, and ethical
considerations restrict their use to later stages of the device
development pipeline. Dedicated reviews [37, 38] provide a
broader analysis of these models and their limitations, sug-
gesting the need for further refinement to better replicate
HFpEF heterogeneity. All presented in-vivo models are sum-
marized in the Appendix, Table 4.

Emerging Developments in HFpEF Modelling

The suite of available HFpEF models has substantially
advanced our understanding of HFpEF physiology, and
assisted in the early development of device-based therapies
to support HFpEF patients. To date, the design and evalua-
tion of device-based interventions for HFpEF follows a clas-
sic medical device development pipeline starting with low-
cost and rapid in-silico models to inform device design and
expedite initial examinations, followed by device manufac-
turing and evaluation using in-vitro models, before moving
to time and cost intense ex-vivo and in-vivo examinations
(Figure 4).

Building on this pipeline, recent technological advance-
ments offer opportunities to overcome the limitations of
current HFpEF models, paving the way for more accurate,
scalable, and efficient approaches to device development.
In the following section, we explore recent technological

Clinical translation

In-vivo

$$$$$
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Fig.4 Schematic illustration of HFpEF model types used throughout
the progressive device evaluation pathway. Contains graphics cre-
ated with Al In-silico are based on Kaye et al. [22] and adapted from
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advancements that offer promising avenues to address the
gaps in current HFpEF models identified in the previous
section. These innovations aim to enhance the fidelity,
scalability, and predictive power of in-silico, in-vitro, ex-
vivo, and in-vivo models, thereby accelerating the devel-
opment of device-based therapies for HFpEF.

Emerging tools emphasize the importance of tailoring
interventions to individual patients, reflecting the het-
erogeneity of HFpEF. Integration of Al and digital twin
technologies promise virtual trials that could reduce reli-
ance on experimental models and animal studies, offering
unmatched controllability and inclusivity for underrep-
resented groups, as well as personalized treatment [54,
55]. While virtual clinical trials for imaging [56] and drug
testing [57]-[59] have been explored over the past years,
the use of virtual patients for device testing is an emerging
field with significant potential for growth and advance-
ment. Al-driven virtual trials could allow researchers to
conduct in silico trials that improve the design, develop-
ment, testing, and monitoring of new medical devices, for
example by optimizing anatomical fit [60] and evaluating
hemodynamic responses in a virtual environment [61].
These simulations could also be used to investigate the
potential benefits of device-based interventions in a care-
fully selected HFpEF population, accounting for the con-
dition’s wide range of phenotypes. This approach could
help determine whether a single device can serve all phe-
notypes or if different solutions are required for different
subgroups. In addition, virtual trials may allow research-
ers to explore optimal timing for device implantation or
explantation and to refine clinical protocols ahead of first
in human studies.

In-vitro set-ups, such as MCLs, remain essential for
physical testing of manufactured devices. Innovations like
hardware-in-the-loop systems not only allow for real-time
computational simulations of complex biological responses
while replicating realistic, patient-specific hemodynamic
conditions on the benchtop, but also facilitated device hemo-
compatibility testing under realistic dynamic boundary con-
ditions [62]. This is particularly valuable for evaluating how
devices behave across a range of HFpEF phenotypes, where
subtle differences in preload, afterload, and ventricular
stiffness can greatly impact performance. Advanced mate-
rials and additive manufacturing enable realistic environ-
ments with tunable material properties for testing device
interaction with anatomically accurate geometries as well
as cardiac tissue [63]-[65]. Soft robotic actuators replicate
biomimetic cardiac motions, like torsion and localized wall
motion abnormalities, also contributing to enhanced fidelity
of in vitro models and device assessment. These enhance-
ments increase the fidelity of device—patient interaction stud-
ies enhancing the investigation of device fitting, obstruction
and efficacy under realistic and time-varying conditions.

Such systems aid bridging the gap between computational
predictions and physical testing, expediting design iterations.

Ex-vivo models are uniquely suited for investigating
device-tissue interactions, yet they often lack the specificity
required to replicate HFpEF remodeling. Emerging tech-
nologies, such as 3D bioprinting [66], enable the fabrica-
tion of engineered cardiac tissues with spatially controlled
cell distribution and specific mechanical properties, mim-
icking disease-specific alterations such as regional fibrosis
or hypertrophy. Organ-on-a-chip systems [67] can integrate
human-derived cardiomyocytes and endothelial cells under
controlled flow and mechanical loading conditions, facilitat-
ing the study of tissue-level responses to device implantation
in phenotype-specific environments. These methods enable
more precise assessments of device performance. Addition-
ally, high-resolution imaging techniques like micro-CT and
MRI [68, 69] could improve characterization of structural
and functional changes in these set-ups and facilitate moni-
toring disease progression, device integration, and therapy
response.

In-vivo models, while resource-intensive, remain critical
for capturing systemic responses and long-term remodeling.
Advances in genetic engineering, such as CRISPR/Cas9,
could enable the creation of HFpEF-specific mutations [70,
71], allowing for more accurate replication of disease phe-
notypes. Similarly, imaging technologies like 4D flow MRI
could provide real-time monitoring of blood flow dynamics,
ventricular motion, and structural changes. This allows for
detailed tracking of disease progression and device impact
over time, including subtle improvements in diastolic func-
tion or flow redistribution that might be missed with tra-
ditional echocardiography. When combined with genetic
models, such imaging tools can uncover how specific patho-
physiological traits influence response to intervention, guid-
ing both device optimization and patient selection strategies.

Collectively, these innovations are transforming the land-
scape of HFpEF research and device development (Figure 5).
By addressing the gaps in current modelling strategies, they
hold the potential to accelerate the regulatory approval pro-
cesses and the time-to-market for innovative therapies, ulti-
mately improving outcomes for HFpEF patients.

Conclusion

Pre-clinical HFpEF models are indispensable for advancing
device-based treatment options, offering valuable insights
into HFpEF physiology and guiding device design, valida-
tion, and testing. Each modelling strategy, whether in-silico,
in-vitro, ex-vivo, or in-vivo, presents unique strengths and
limitations. Emerging tools, such as advanced computa-
tional techniques, biomimetic technologies, and imaging
innovations, show promise in addressing current limitations
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Fig.5 Diagram illustrating cur-
rent limitations in HFpEF mod-
els (center box) and proposed
tools to address these gaps (top
box). Solutions are color-coded
to indicate which gaps they tar-
get, and pattern-coded to show
the specific models they could
improve. Contains graphics cre-
ated with AL
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and enhancing model fidelity. Despite these advances, 1o the complementary strengths of diverse models to ensure
single model or combination fully replicates the intricate  thorough and accurate device evaluation.

physiology and hemodynamics of HFpEF. A comprehensive
approach that integrates multiple models across different
stages of development provides the most robust framework

for optimizing and validating HFpEF therapies, leveraging Appendix

See Tables 1, 2, 3, and 4.
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Table 3 Ex-vivo HFpEF models mentioned in this review sorted by method, listed with type, title, author, year, methods and results

Type Title Author Year Methods Results
Ex-Vivo A Valveless Pulsatile Pump for Escher 2020 Anisolated beating porcine heart ~ CoPulse support increased aortic
Heart Failure with Preserved et al. [34] setup was used to evaluate the pressure and cardiac output

Ejection Fraction: Hemo- and
Fluid Dynamic Feasibility

Hemolysis Using Left Atrial Assist Flick et al. [46]
Device with Constant Flow: Pre-
liminary Testing of Initial Design

interaction between a func-

tional left ventricle and a pump
prototype (CoPulse). The ex vivo
model included preload and after-
load control, flow and pressure
sensors, and a pressure-volume
catheter to assess hemodynamic
response during pump support.

2023 Hemolysis tests were conducted to

evaluate the blood compatibility
of the left atrial assist device
(LAAD) in a temperature-con-
trolled in vitro loop using bovine
blood. The setup measured pump
flow, inlet/outlet pressures, and
hemolysis at two pump speeds.
Hematocrit and plasma-free
hemoglobin levels were used to
calculate the normalized index of
hemolysis.

while reducing stroke work and
raising potential energy. It effec-
tively lowered left atrial pres-
sure, with support conditions
leading to increased end-systolic
volume.

The LAAD maintained consist-
ent flow during testing and
showed low levels of hemolysis
across all test conditions. Its
performance was comparable
to previously evaluated devices
and remained within acceptable
limits for blood compatibility.

LAAD left atrial assist device.

@ Springer
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