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A Suitability Score to Optimize CNNs on an FPGA Accelerator

by Serkan Saglam

This thesis presents a structured optimisation methodology for deploying convolu-
tional neural networks (CNNs) on field-programmable gate arrays (FPGAs), target-
ing high-throughput operation under constraints of computational resources and la-
tency. The proposed approach integrates model-level restructuring, hardware-aware
scheduling, and hardware-software co-design and deployment on FPGAs to deliver
high-throughput performance while preserving CNN model accuracy. Oesophageal
cancer detection is used as a representative case study, providing a computationally

intensive and accuracy-critical scenario for evaluating the proposed methods.

The proposed methodology introduces the Suitability Score, a metric identifying which
convolutional layers benefit most from hardware-aware optimisation. This analysis en-
ables selective adjustments that reduce computational cost without sacrificing model
accuracy. Based on these insights, a layer-specific pipelining strategy improves the
hardware resource efficiency and inference latency of the deployed CNN accelerator.
The optimised model is deployed on an FPGA using a co-design framework, demon-
strating high throughput and competitive accuracy while consuming fewer hardware
resources than FPGA-based CNN accelerators reported in the literature.

The proposed accelerator is deployed on an AMD Kintex UltraScale+ FPGA and eval-
uated against graphics processing units (GPU)-based inference and existing FPGA im-
plementations. Compared to a GPU baseline, the accelerator achieves at least 47.6%
higher throughput and more than twice the energy efficiency. In FPGA-based com-
parisons, it processes up to 7.8 x more images per second while using fewer hardware
resources. Moreover, the results demonstrate that the proposed accelerator achieves a
throughput of 76.19 images/s with 97.45% accuracy, while maintaining low resource
and power consumption. These results demonstrate that the proposed FPGA-based
approach supports real-time CNN inference with high accuracy, high throughput, and
efficient hardware usage, making it suitable for broader use in embedded, latency-

sensitive image analysis applications.
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Chapter 1

Introduction

Recent advancements in machine learning and image processing have profoundly im-
pacted a wide range of fields, notably healthcare [1-4]. In particular, medical imag-
ing has become a cornerstone for the early detection and diagnosis of diseases such
as cancer [5, 6]. Early diagnosis is crucial for improving treatment outcomes and sur-
vival rates, as evidenced by numerous studies highlighting the importance of timely
intervention for various cancer types [7-9]. Consequently, the development of efficient
and accurate image processing techniques holds the potential to reduce cancer-related
mortality[7, 9].

Convolutional Neural Networks (CNNs) have emerged as an approach in image analy-
sis due to their ability to automatically extract hierarchical feature representations from
raw data [10-12]. However, the computational demands associated with CNN infer-
ence are substantial, necessitating the use of high-performance computing platforms
such as central processing units (CPUs), graphics processing units (GPUs), application-
specific integrated circuits (ASICs), and field-programmable gate arrays (FPGAs) [13-
15]. While CPUs often struggle with the high degree of parallelism required by deep
neural networks [16], GPUs, despite offering excellent parallel throughput, are typi-
cally constrained by high power consumption [17]. ASICs provide tailored efficiency
but lack flexibility [18]. In contrast, FPGAs offer a compelling balance of reconfigurabil-
ity, short development cycles, energy efficiency, and high computational throughput,
making them particularly attractive for real-time, resource-constrained image process-

ing applications [19-21].

FPGAs consist of a reconfigurable fabric composed of look-up tables (LUTs), digital
signal processing (DSP) elements, and on-chip memory blocks such as block RAMs
(BRAMs) [22]. These components can be customized to implement highly parallel
computational pipelines [23]. This fine-grained parallelism enables the concurrent ex-
ecution of multiple operations and allows the hardware to be efficiently tailored to
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application-specific workloads, which results in superior performance per watt com-
pared to traditional processors [24-26]. The architectural flexibility and parallelism of
FPGAs align well with the computational characteristics of CNNs, which rely on ex-
tensive multiply-accumulate operations and structured reuse of input data and filter
weights [27]. As a result, FPGAs have become a well-suited platform for accelerat-
ing machine learning applications, particularly in scenarios where low latency, high
throughput, and energy efficiency are key [28, 29].

The demand for efficient CNN acceleration is particularly critical in edge and embed-
ded scenarios, where devices must operate under strict power, memory, and latency
constraints [30, 31]. This need is evident in autonomous drones for real-time naviga-
tion, portable medical devices delivering rapid diagnostics, and surveillance systems
processing continuous high-resolution video streams without cloud support [32, 33].
Deploying CNNs on FPGAs remains challenging due to the need to coordinate highly
parallel computations while efficiently mapping them onto heterogeneous hardware
resources such as LUTs, DSP blocks, and on-chip memory [34-36]. These constraints
necessitate careful hardware—software co-design to fully exploit the FPGA’s potential
while avoiding excessive consumption of its limited resources [37, 38]. This under-
scores the critical need for FPGA-based CNN acceleration strategies to bridge the gap
between state-of-the-art deep learning models and their deployment in real-world,

resource-constrained applications.

Addressing the computational challenges posed by modern CNN-based image pro-
cessing [39-41], this thesis proposes an FPGA-based deployment strategy, using oe-
sophageal cancer detection as a representative case study. Although the case study
centres around cancer detection, the primary objective is to develop a real-time FPGA-
based CNN acceleration approach for RGB-domain image processing tasks. Oesophageal
cancer is selected due to its clinical importance as a highly lethal disease where early
diagnosis improves patient outcomes [42]. The availability of full-resolution RGB en-
doscopic datasets and the widespread adoption of CNNs in medical imaging further
motivated this choice. Nevertheless, the methods and architectural strategies proposed
herein are adaptable to a broader class of image processing applications requiring effi-

cient, low-latency inference beyond healthcare.

In summary, this thesis proposes a systematic approach for optimising CNN architec-
tures and their deployment on FPGA hardware, aiming to enable scalable, accurate,
and resource-efficient real-time image processing systems. By combining structured
model optimisations with hardware-aware deployment strategies, the proposed ap-
proach contributes towards bridging the gap between algorithmic advancements in

deep learning and practical, power-efficient real-world applications.
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1.1 Aim and Objectives

The aim of this thesis is to develop an FPGA-based acceleration methodology for CNNs
that enables real-time, resource-efficient inference while maintaining model accuracy.
To achieve this aim, the thesis pursues several objectives, each of which addresses chal-
lenges in deploying CNNs on FPGA hardware.

¢ Chapter 3 focuses on optimising CNN structures to reduce computational cost
and improve FPGA deployment efficiency without sacrificing accuracy. To achieve
this, it introduces the Suitability Score, a metric that evaluates each convolutional
layer’s compatibility with Winograd transformations. Based on this score, se-
lective modifications are applied to kernel size and output channel count, en-
abling targeted reductions in complexity while preserving inference accuracy.
This hardware-conscious optimisation forms the foundation for the subsequent

acceleration strategies developed in later chapters.

¢ Chapter 4 introduces an adaptive pipelining strategy to improve hardware-aware
parallelism in FPGA-based CNN accelerators. It dynamically assigns pipeline
initiation intervals according to each layer’s computational load and structural
complexity. The objective is to reduce idle cycles and balance FPGA resource
utilization while sustaining throughput. In this way, computationally intensive
layers achieve lower latency through deeper pipelining, whereas less demanding
layers conserve hardware by avoiding unnecessary parallel computation. This
chapter demonstrates a measurable balance between latency reduction and re-

source efficiency, forming the basis for the system-level deployment in Chapter 5.

¢ Chapter 5 aims to demonstrate the practical effectiveness of deploying the opti-
mized CNN accelerator on FPGA hardware, thereby validating the architectural
and optimization strategies developed in the preceding chapters. To this end, oe-
sophageal cancer detection is adopted as a representative use case due to its strin-
gent accuracy, latency, and resource requirements. The chapter presents a com-
plete FPGA implementation that enables high-throughput, low-latency inference
on RGB endoscopic images. The design follows a hardware-software co-design
methodology, integrating key components such as PCle-based host-device com-
munication, external DDR memory management, and fixed-point quantization
to balance computational efficiency with predictive accuracy. Furthermore, the
chapter provides a comparative evaluation against GPU-based inference and prior
FPGA implementations, focusing on throughput, latency, resource utilization,

and deployment suitability in demanding real-world image analysis scenarios.
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1.2 Academic Contributions

* Saglam, S., Zwolinski, M., (2025, March). Using a Suitability Score to Optimize
CNN Implementation on FPGAs. In 2025 IEEE Symposium Series on Computa-
tional Intelligence (SSCI) (poster).

* A research article based on this thesis has been submitted and is currently under
review for publication in the IEEE Access.



Chapter 2

Background

2.1 Introduction

As deep learning continues to revolutionise computer vision and image analysis, CNNs
have emerged as indispensable tools across a wide range of domains [43-45]. The in-
creasing complexity and depth of modern CNN architectures, driven by the pursuit of
higher accuracy, have led to a significant surge in their computational demands [46].
This escalating computational burden poses a considerable challenge for real-time de-
ployment, particularly in resource-constrained environments such as embedded sys-
tems and edge devices [29]. The intensive multiply-accumulate (MAC) operations in-
herent in CNNs necessitate substantial processing power, often exceeding the capabili-
ties of CPUs to meet the latency requirements of many applications [29, 46].

Hardware acceleration has emerged as a critical approach to addressing the computa-
tional bottlenecks associated with CNNs and achieving the desired performance and ef-
ficiency [25, 47, 48]. Various hardware platforms, including GPUs, ASICs, and FPGAs,
have been explored for their potential to accelerate CNN workloads [44, 49]. While
GPUs offer high throughput for parallel computations, their power consumption can
be prohibitive for edge deployments. ASICs can provide the highest performance and
energy efficiency but lack the flexibility to adapt to evolving CNN architectures [21].

FPGAs have attracted considerable attention as a promising hardware platform for ac-
celerating CNNs, primarily due to their distinctive combination of high parallelism,
reconfigurability, and energy efficiency [43, 50]. FPGAs enable the implementation of
custom hardware architectures that can be precisely tailored to the specific compu-
tational demands of CNNSs, facilitating fine-grained parallelism and deep pipelining
[16]. Their inherent reconfigurability provides the crucial flexibility to adapt to the di-
verse and rapidly changing CNN models and optimisation techniques, rendering them
highly suitable for the dynamic field of deep learning [51, 52]. Furthermore, FPGAs
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often demonstrate a superior performance-per-watt ratio compared to GPUs for many
CNN inference tasks, making them particularly appealing for applications with strin-
gent power constraints [50, 53]. Since convolution operations are the most computa-
tionally intensive part of CNNs, optimising these operations on FPGAs is crucial for

maximising performance and efficiency on this platform [25].

Convolution operations account for the majority of computational workload in CNNSs,
and consequently, optimising their execution is paramount for achieving high overall
performance [54]. The Winograd algorithm stands out as a fast convolution technique
that effectively reduces the number of multiplications required for computing convo-
lutions, especially for the small kernel sizes that are prevalent in contemporary CNN
architectures [46]. By transforming the convolution operation into a sequence of matrix
multiplications within a transformed domain, the Winograd algorithm achieves a re-
duction in arithmetic complexity, specifically in the number of multiplications, albeit at
the expense of an increased number of additions [46]. This decrease in multiplications
can lead to substantial performance gains and a reduction in resource utilisation, par-
ticularly in FPGA implementations where Digital Signal Processors (DSPs) are a finite

resource.

Although the methods discussed in this thesis are intended to support CNN applica-
tions, cancer detection is referenced as a motivating scenario due to its computational
demands. These include the need for real-time inference, high-resolution image pro-
cessing, and hardware-efficient deployment [55]. Additionally, the availability of pub-
licly accessible and well-annotated datasets makes it a practical context for evaluation
[56].

Despite extensive research on optimising CNN inference for FPGAs, challenges persist
in systematically aligning model structures with hardware-specific acceleration tech-
niques such as Winograd convolution. Moreover, achieving a balanced trade-off be-
tween computational efficiency, resource utilisation, and inference accuracy remains
an open research problem. To address these limitations, this thesis presents a cohe-
sive optimisation framework that systematically unifies model-level restructuring and
hardware-aware deployment techniques, with the objective of enabling efficient, scal-
able, and high-accuracy CNN inference on FPGA platforms.

2.2 FPGA-based Acceleration of Convolutional Neural Networks

This section provides a foundational overview of employing FPGAs for the accelera-
tion of CNN inference. It begins by delineating the inherent advantages FPGAs offer
for these computationally intensive workloads, followed by examining the significant

challenges encountered during implementation. Subsequently, prominent architectural
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paradigms developed to address these challenges and maximise performance are dis-
cussed. Finally, the key metrics used to evaluate and compare the efficacy of FPGA-
based CNN accelerators are defined and contextualised.

2.21 Advantages of FPGAs for CNN Acceleration

FPGAs present a compelling alternative to traditional processing platforms like CPUs
and GPUs for accelerating CNNSs, particularly for inference tasks. Their unique archi-
tectural characteristics, including inherent parallelism, reconfigurability, and potential
for high energy efficiency, offer several distinct advantages for mapping the computa-
tionally intensive operations found in CNNSs [25, 44]. These advantages make FPGAs
particularly well-suited for accelerating the inference phase of CNNs, which involves

deploying trained models for tasks like image classification or object detection.

2.21.1 Parallelism and Pipelining Capabilities

A principal advantage of FPGAs lies in their capacity for massive parallelism and deep
pipelining, which can be customised to match the computational structure of CNNs.
The underlying fabric of configurable logic blocks (CLBs), interconnects, and dedicated
resources like DSP blocks allows designers to instantiate numerous custom processing
units (PUs) or processing elements (PEs) that execute concurrently [23]. This hardware-
level parallelism can be tailored to exploit the data-level parallelism inherent in CNNSs,
such as performing convolutions across different input or output channels or spatial

dimensions of feature maps.

Additionally, FPGAs support fine-grained pipelining, allowing complex CNN opera-
tions to be decomposed into smaller stages that operate in a streaming fashion. Data
flows directly between these pipeline stages using dedicated on-chip routing resources,
reducing the need for shared memory and lowering control overhead. This dataflow-
oriented execution aligns well with CNN layer sequencing, where the output of one
layer serves as input to the next. Systolic arrays, a regular grid of locally connected
PEs, are particularly effective for CNN convolution and matrix multiplication, provid-

ing high throughput and efficient hardware utilisation [57].

The synergy between FPGA architecture and CNN workloads is most evident in im-
plementing convolutional layers, which involve repetitive MAC operations over large
feature maps. FPGAs can instantiate parallel MAC units using resource-efficient DSP
blocks arranged in spatial or systolic configurations [21]. Their reconfigurability further
allows designers to tune the hardware to the specific parallelism profile of each net-

work—whether across channels, filters, or spatial dimensions. Combined with pipelined
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execution across CNN layers or sub-operations, this flexibility enables high-throughput,
low-latency inference, particularly in power- and resource-constrained scenarios [58].
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FIGURE 2.1: FPGA-based CNN accelerator architecture [59]

Figure 2.1 illustrates the architecture of a typical FPGA-based CNN accelerator, high-
lighting both parallelism and pipelined execution. On the left, the system-level design
showcases a parallel array of PEs instantiated within the programmable logic. These
PEs execute concurrently, enabling convolution operations across multiple channels or

feature maps.

Data is transferred via direct memory access (DMA) into input buffers, processed by
the PE array, and results are stored in output buffers. On the right, a zoomed-in view
of a single PE reveals pipelined stages, including data and weight registers, MAC com-
putation via an adder tree, activation (ReLU), and optional pooling. This architecture
demonstrates how spatial parallelism and sequential pipelining effectively combine to
accelerate CNN inference on FPGAs [60]. This foundational parallelism capability sets
the stage for customising FPGA architectures, which is further explored in the next sec-

tion on reconfigurability and architectural flexibility [60].

2.2.1.2 Reconfigurability and Flexibility for Custom Architectures

A key advantage of FPGAs in CNN acceleration is their reconfigurability, which en-
ables hardware designs to be updated or modified after deployment. Unlike fixed ar-
chitectures such as CPUs, GPUs, or ASICs, the logic fabric and interconnects in FPGAs
can be reprogrammed to support evolving neural network models, algorithmic up-
dates, or new optimisation techniques—without requiring hardware redesign or fab-
rication [61]. This flexibility is particularly beneficial in deep learning, where models
and methods change frequently.

Reconfigurability also allows designers to build custom accelerator architectures tai-

lored to the computational structure of specific CNNs or even individual layers. This
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includes optimising PEs, data paths, and memory hierarchies—capabilities not avail-
able in fixed-hardware platforms [23]. Beyond flexibility, another hallmark of FPGA-
based CNN acceleration is their ability to deliver low-latency responses and high sus-
tained throughput, which is especially critical for real-time applications.

2.2.1.3 Potential for Low Latency and High Throughput

FPGAs offer unique architectural advantages—such as massive parallelism, deep pipelin-
ing, and efficient on-chip data movement—that enable both low inference latency and
high throughput in CNN accelerators [62]. This dual capability makes FPGAs partic-
ularly suitable for real-time applications requiring rapid and continuous processing of

input samples, such as autonomous vehicles, robotic control, and live video analytics.

Unlike GPUs, which typically optimise for high throughput via large batch sizes, FP-
GAs can be tailored for single-sample inference, minimising the time required to pro-

cess each input. In pipelined hardware architectures, latency is often modelled as:

Latency = L+ (N —1) x II (2.1)

where L is the pipeline depth, N is the batch size, and II is the initiation interval. In
many real-time scenarios where N is small (even equal to 1), the latency is dominated
by L, and reducing II directly improves throughput.

Indeed, throughput is inversely proportional to the initiation interval, i.e., Throughput «
%, where I denotes the initiation interval. In the context of CNNs, throughput is also
quantified in terms of MACs, expressed as Giga Operations Per Second (GOPS). This

can be computed as:

MAC:s per input x FPS

Throughput (GOPS) = 10

(2.2)

where FPS is the number of inferences per second. Maximising MAC utilisation and
reducing II enables FPGAs to achieve high throughput even at low batch sizes.

2.2.1.4 Energy Efficiency Compared to GPUs and CPUs

FPGAs are often preferred over GPUs and CPUs for CNN inference in edge and power-
constrained scenarios due to their superior energy efficiency. This is typically measured
in operations per watt, such as GOPS/W or TOPS/W. While GPUs can achieve high
peak throughput, FPGAs can offer competitive performance with lower power con-

sumption by eliminating general-purpose processing overhead [63].
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This efficiency is enabled by several architectural features. First, FPGAs allow cus-
tom logic tailored to the network, activating only necessary components. Second,
their abundant on-chip memory (e.g., BRAMs) enables efficient data reuse and re-
duces costly off-chip DRAM accesses, which dominate energy use in CNN accelera-
tors. Third, FPGAs support low-precision arithmetic—such as INT8, INT4, or binary
formats—which drastically reduce both computation and data transfer energy.

For example, using INT8 instead of FP32 can yield up to 4x energy savings in MAC
operations alone [25]. Some studies report FPGA-based accelerators achieving up to
10-40x better energy efficiency than GPUs, depending on the network size and optimi-
sation level.

Throughput (OPS)
Power (W)

Energy Efficiency = (2.3)

Compared to ASICs, FPGAs offer slightly lower energy efficiency, but gain the advan-
tage of reconfigurability and lower development cost. However, their energy efficiency
is highly context-dependent, influenced by model type, hardware generation, and op-
timisation effort. In some cases, the faster development workflows of GPU ecosystems
may outweigh FPGA efficiency gains [21]. Although FPGAs offer many advantages for
accelerating CNN inference, their practical implementation still involves several chal-

lenges related to limited hardware resources and hardware design complexity.

2.2.2 Comparative Analysis of CNN Deployments on CPU, GPU, and FPGA
Platforms

Table 2.1 provides a comparative evaluation of CNN model deployments across CPU,
GPU, and FPGA platforms, focusing on key metrics such as latency, throughput, power
consumption, and energy efficiency. Several critical observations emerge from the anal-

ysis:

¢ Throughput: FPGAs consistently outperform CPUs in throughput across multi-
ple models. For instance, the Xilinx VC709 FPGA achieves 424.7 GOPS on LeNet-
5, offering approximately 14.8 x higher throughput compared to the CPU base-
line. Although GPUs provide high throughput, FPGAs often achieve comparable
or superior throughput with substantially lower power consumption.

¢ Latency: For deeper networks such as ResNet-18, FPGAs demonstrate lower la-
tency. Specifically, ResNet-18 achieves a latency of 1.5 ms on FPGA versus 4.0 ms
on GPU, a substantial reduction critical for real-time applications.
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¢ Power Consumption: FPGAs exhibit markedly lower power consumption rela-
tive to GPUs. For MobileNet-v2, the ZCU102 FPGA consumes 10.7 W compared
to 11.1 W for the NVIDIA Jetson TX2 GPU, despite achieving higher throughput.

* Energy Efficiency: FPGAs consistently demonstrate superior energy efficiency.
In the case of MobileNet-v2, the FPGA achieves 83.4 FPS/W, compared to 27.6
FPS/W for the GPU, indicating that the FPGA is approximately three times more
energy-efficient.

¢ Efficiency Gains Relative to Baseline: The Comparison column shows that FPGAs
deliver considerable improvements relative to both CPU and GPU baselines, par-
ticularly in terms of energy-delay product (EDP), thereby achieving a balanced
trade-off between speed and energy usage.

Based on these observations, FPGAs offer several decisive advantages over CPUs and
GPUs:

Substantially higher throughput compared to CPUs.

Lower latency compared to GPUs, essential for real-time inference.

Reduced power consumption.

Better throughput-per-watt performance.

Reconfigurability and adaptability to evolving CNN architectures.

Therefore, for applications requiring efficient, real-time, and low-power CNN inference—
such as autonomous driving, medical imaging, and edge computing—FPGAs represent
a highly suitable deployment platform.



TABLE 2.1: Comparative Performance of CNN Models on FPGA, CPU, and GPU Platforms

Model Platform Hardware Prec. Lat. Throughput Power (W) Eff. Comparison® Study
CPU Intel Core (unspec.) FP32 - 28.61 GOPS - - Baseline (for throughput) [64]
FPGA Xilinx VC709 FP32 - 4247 GOPS - - 14.8x throughput vs CPU
LeNet-5 CPU Intel Core i5-4590 Float ~  3831GFLOPS 3215  0.119 GFLOPS/W Baseline (for efficiency)
GPU NVIDIA GTX 1080ti Float - 27.14 GFLOPS 52 0.522 GFLOPS/W  4.38x vs CPU [65]
FPGA GENESYS2 (Artix-7) Fixed-pt - 19.61 GFLOPS 4.15 4.72 GFLOPS/W  39.66x vs CPU, 9.06x vs GPU
AlexNet CPU Intel Core (unspec.) FP32 - 64.05 GOPS - - Baseline (for throughput) [64]
e FPGA  Xilinx VC709 FP32 - 445.6 GOPS - - 6.96x vs CPU
VGG-S CPU Intel Core (unspec.) FP32 - 98.85 GOPS - - Baseline (for throughput) [64]
FPGA Xilinx VC709 FP32 - 473.4 GOPS - - 4.79x throughput vs CPU
ResNet-18 GPU NVIDIA Jetson TX2 FP16 4.0 ms 253 FPS 122W 20.7 FPS/W Baseline (for efficiency) 6]
esNe FPGA  Xilinx ZCU102 INTS 15ms 674 FPS 11w 60.7FPS/W  2.6x faster, |1.4x FPGA vs
GPU
MobileNet-v2 GPU NVIDIA Jetson TX2 FP16 3.3ms 306 FPS 11.1W 27.6 FPS/W Baseline (for efficiency) [66]
obrieetv FPGA  Xilinx ZCU102 INTS 11ms 892 FPS 107 W 834FPS/W  2.9x faster, |2.4x EDP vs GPU
S zeNet GPU NVIDIA Jetson TX2 FP16 3.1ms 323 FPS 11.0W 29.4 FPS/W Baseline (for efficiency) [66]
queezee FPGA  Xilinx ZCU102 INTS 12ms 806 FPS 107 W 753FPS/W  2.5x faster, |1.7x EDP vs GPU
Inception-v2 GPU NVIDIA Jetson TX2 FP16 6.1 ms 164 FPS 114 W 14.4 FPS/W Baseline (for efficiency) 6]
ceprionv FPGA  Xilinx ZCU102 INTS 24ms  413FPS 109 W 379FPS/W  2.5x faster, |1.5x EDP vs GPU
ResNet-50 GPU NVIDIA Jetson TX2 FP16 9.1 ms 110 FPS 114 W 9.6 FPS/W Baseline (for efficiency) 6]
esiNe FPGA Xilinx ZCU102 INTS 4.3 ms 235 FPS 11.3W 20.8 FPS/W 2.1x faster, |1.1x EDP vs GPU
CPU Intel SkyLake Gold 6130  FP32 - - ~230 W - Baseline (for eff. + spd.)
ResNet-50 (Sparse) FPGA Intel Stratix 10 MX FP16 - - ~70 W - 3.3x more efficient vs CPU; [23]
2x vs V100
GPU NVIDIA V100 FP32 - - ~140 W - 1.3x faster vs FPGA
CPU Intel SkyLake Gold 6130  FP32 - - ~245 W - Baseline
MobileNet (Sparse) FPGA Intel Stratix 10 MX FP16 - - ~70 W - 3.5x more efficient vs CPU; [23]
1.7x vs V100
GPU NVIDIA V100 FP32 - - ~120 W - 1.2x throughput vs FPGA

Note': Lat. = latency, Thrpt. = throughput, Pwr. = power, Eff. = energy efficiency, imp. = implied, pt = point, unspec. = unspecified

cl
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2.2.3 Challenges in Implementing CNNs on FPGAs

Despite the compelling advantages, the practical implementation of high-performance
CNN accelerators on FPGAs presents considerable challenges. These stem primarily
from the finite nature of FPGA resources, the complexities of hardware design, and the
demanding computational and memory requirements of modern deep learning mod-

els.

2.2.3.1 Limited On-Chip Memory Resources

A key limitation of FPGAs in CNN acceleration is the limited capacity of on-chip mem-
ory, typically implemented using Block RAMs (BRAMs) or UltraRAMs (URAMs) [67].
Although modern FPGAs provide tens of megabits of on-chip storage, this is often
insufficient for the full set of CNN weights, biases, and intermediate activations, espe-
cially in large models. For instance, AlexNet requires around 250MB just to store its
parameters—far exceeding typical on-chip capacities. Deeper networks like VGG or
ResNet further exacerbate this challenge [25].

As a result, designers must often rely on off-chip memory (e.g., DRAM) to store parts
of the model and intermediate results. However, accessing off-chip memory introduces
additional latency and power overheads, potentially negating the efficiency advantages
of FPGA acceleration [68]. This disparity is commonly referred to as the memory wall.

Efficient usage of on-chip BRAMs is itself a non-trivial task. These memories are typi-
cally fixed in size and port configuration, which complicates the mapping of irregularly
shaped CNN buffers. Fragmentation and underutilisation are common, meaning the
effective usable capacity may be lower than the raw specification.

To address these constraints, various optimisation techniques are used. These include
quantisation (using fewer bits per value), pruning (removing redundant parameters),
and advanced buffering/caching strategies (e.g., ping-pong buffers or line buffers) [67].
Dataflow-based architectures, especially fused-layer approaches, are also employed to
reduce intermediate storage demands and off-chip memory accesses.

2.2.3.2 Design Complexity and Optimisation Efforts in FPGA-based CNN Acceler-
ation

Developing efficient CNN accelerators on FPGAs inherently involves complexity and
optimisation challenges compared to CPU or GPU implementations. FPGA design tra-
ditionally employs hardware description languages (HDLs) like Verilog or VHDL, de-

manding detailed register-transfer level (RTL) coding, manual resource optimisation,
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and rigorous verification. Although HDL provides unparalleled control and perfor-
mance potential, it increases development complexity and requires extensive hardware
expertise.

Alternative methods, particularly framework-based tools, have gained popularity due
to their ability to rapidly convert CNN models developed in popular software libraries
(e.g., TensorFlow, PyTorch, Keras) into FPGA-optimised implementations [69]. These
frameworks leverage pre-built libraries and abstraction layers, simplifying the FPGA
deployment process. However, while facilitating ease of use and rapid deployment,
they inherently introduce constraints on customisation and optimisation capabilities.

Prominent examples include:

* Vitis AI (DPU-based): Utilises predefined Deep Processing Units, providing rapid
deployment for standard CNN architectures. However, it substantially restricts
layer-level customisation, limiting detailed optimisations needed for highly spe-

cialised or optimised CNN architectures [70].

¢ hls4ml: Designed primarily for small-scale, latency-critical applications and in-
tegrates seamlessly with high-level frameworks like Keras. Nonetheless, its sup-
port for complex CNN architectures and detailed layer-level optimisations is lim-
ited, restricting its effectiveness for larger models [71].

¢ FINN: Specialises in Binarised Neural Networks (BNNs), offering high resource
efficiency and low latency through aggressive quantisation and streamlined dataflow
architectures. Its applicability, however, is limited strictly to binarised or heavily
quantised models, reducing its suitability for general-purpose CNN implementa-
tions [72].

In contrast, High-Level Synthesis (HLS) tools such as Xilinx Vitis HLS address these
complexities by enabling hardware design through higher-level languages like C/C++
or OpenCL. HLS shortens development cycles, lowers the barrier to entry for hard-
ware design, and supports rapid prototyping and iterative exploration of design spaces
[73]. Importantly, HLS tools allow designers to exercise granular control through prag-
mas, facilitating optimised hardware implementation via loop unrolling, pipelining,
and dataflow techniques [69]. This balance of abstraction and detailed customisation
enables efficient performance tuning without the extensive manual coding efforts re-

quired by HDL, offering greater flexibility than framework-specific solutions.

Compared to the aforementioned frameworks, Vitis HLS provides an effective combi-
nation of flexibility and performance efficiency. Unlike the predefined architectures of-
tfered by DPU-based solutions, Vitis HLS supports extensive layer-level optimisations,
including fine-grained control over memory access patterns, parallelism, and resource
allocation. Unlike specialised tools such as hls4ml or FINN, HLS is not constrained by
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specific quantisation or architectural requirements, thus supporting a wider array of

CNN architectures and optimisation strategies.

However, this flexibility comes at the cost of increased design effort and longer devel-
opment cycles. When models are initially trained using high-level Python-based frame-
works such as TensorFlow or PyTorch, translating these models into C/C++ for use
with HLS requires additional effort, including interface adaptation and data prepro-
cessing. This conversion step can be particularly time-consuming and may introduce
discrepancies if not carefully managed [71]. As such, while Vitis HLS offers significant
potential for customisation and performance, it also necessitates a deeper involvement

in low-level design decisions compared to automated, framework-based alternatives.

In conclusion, while HDL provides maximal optimisation capability, its inherent com-
plexity renders it less practical for rapid development and iterative refinement. Framework-
based tools simplify the implementation process but severely restrict customisation
opportunities. Conversely, HLS tools like Vitis HLS offer an optimal balance, facili-
tating detailed layer-level optimisations alongside faster, more accessible development
processes, thereby presenting a compelling solution for efficient FPGA-based CNN ac-
celeration. Apart from the challenges posed by hardware and development tools, the
need to balance limited resources with performance goals makes the design of CNN
accelerators even more complex. Apart from the challenges posed by hardware and de-
velopment tools, the need to balance limited resources with performance goals makes

the design of CNN accelerators even more complex.

2.2.3.3 Balancing Resource Utilisation and Performance

FPGA-based CNN accelerator design requires carefully balancing computational per-
formance with the limited hardware resources available on the device. These resources
include logic elements (LUTs, flip-flops), digital signal processing (DSP) blocks—primarily
used for MAC operations—and on-chip memory (BRAMs or URAMs). Maximising
throughput often entails replicating processing elements (PEs) and unrolling loops, in-
creasing resource usage and power consumption [74]. Similarly, larger on-chip buffers

that reduce off-chip DRAM access demand more memory blocks.

However, excessive parallelism can lead to routing congestion, increased power usage,
and timing closure challenges, potentially limiting achievable clock frequency. More-
over, memory bandwidth can become a bottleneck, constraining the benefits of added
compute parallelism. These limitations and trade-offs are evident across various CNN

implementations on different hardware platforms, as summarised in Table 2.1

Another key trade-off involves accuracy versus efficiency. Aggressive quantisation and

pruning can substantially reduce hardware demands and power usage but may also
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degrade model accuracy. Maintaining an acceptable balance requires iterative tun-
ing and verification. Since FPGAs typically operate at lower clock frequencies (e.g.,
100-300 MHz), high throughput must be achieved primarily through spatial paral-
lelism [63]. Therefore, careful resource allocation becomes essential to achieve optimal

performance within platform constraints.

Designing an efficient CNN accelerator on FPGA ultimately involves navigating a com-
plex multi-objective optimisation space. Dataflow strategy, quantisation level, memory
hierarchy, and the specific CNN architecture must be co-optimised to meet application-
specific performance goals. This highlights the need for systematic design space explo-
ration to effectively balance key metrics such as throughput, latency, power, and area
within the constraints of available FPGA resources.

2.24 Comparative Perspective and Platform Suitability

Section 2.2.1 and 2.2.3 highlight that while FPGAS offer compelling advantages for ac-
celerating CNN inference, such as high energy efficiency, low latency, and architectural
customisability, they also introduce substantial design and implementation complexity.
Key challenges include limited on-chip memory capacity, increased development time,

and a more demanding development process than CPUs and GPUs.

To contextualise these trade-offs, Table 2.2 compares FPGA-based acceleration with
CPU and GPU implementations across key criteria, including throughput, latency, power
consumption, energy efficiency, and development complexity.

TABLE 2.2: Qualitative Comparison of CNN Deployment Platforms [75]

Metric CPU GPU FPGA
Throughput Lowest  Highest High
Latency Highest ~Medium Lowest
Power Medium  Highest Lowest
Energy Efficiency Worst Medium Best
Device Size Small Large Small
Development Effort  Easiest Easy Hard
Library Support Sufficient ~Sufficient Limited
Flexibility Limited  Limited Flexible

The table shows that GPUs typically offer the highest raw performance in throughput,
making them suitable for high-throughput data centre applications. While it is easy
to program and deploy, CPUs perform poorly in both latency and energy efficiency,

making them unsuitable for real-time or power-sensitive tasks.
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FPGAs, by contrast, strike a compelling balance—they provide better energy efficiency
and latency than GPUs while offering customizability for domain-specific workloads.
However, this comes at the cost of increased design complexity and longer develop-
ment cycles.

Therefore, the choice of processing platform should be guided by application-specific
constraints. For instance, real-time edge applications that demand low power and la-
tency may favour FPGAs. In contrast, data-intensive training or inference tasks with
high throughput requirements and less stringent power budgets may benefit more
from GPUs. CPUs are useful for general-purpose control and integration tasks but
less suitable as standalone CNN accelerators.

In summary, FPGAs represent a powerful yet complex alternative for deploying CNNSs,
particularly in environments where energy efficiency, low latency, and hardware-level
flexibility are paramount. Their suitability is maximised when energy efficiency, la-
tency, and architectural control outweigh the need for rapid development or broad
framework support. Understanding these trade-offs is critical for making informed
platform selection decisions in modern deep-learning pipelines.

2.3 Algorithmic Strategies for Convolutional Layer Optimisa-
tion on FPGAs

Convolutional layers are the most computationally demanding components of CNNSs,
typically dominating processing time and hardware resource usage during inference.
Their optimisation is critical for efficient CNN deployment on hardware platforms, par-
ticularly FPGAs [54]. This section investigates algorithmic strategies for accelerating
convolution operations, focusing on FPGA implementation. It provides a comparative
overview of existing approaches—including direct convolution, im2col with matrix
multiplication, FFI-based methods, and the Winograd algorithm—highlighting their
computational characteristics and hardware implications. Particular attention is given
to the Winograd minimal filtering algorithm, which offers significant arithmetic reduc-
tion, especially in MACs. The review explores Winograd'’s potential and discusses its
practical limitations and implementation challenges specific to FPGA architectures.

2.3.1 Computational Landscape of Convolutional Neural Networks

A thorough understanding of the computational demands of CNNs is essential for
designing efficient hardware accelerators. CNNs comprise multiple layer types, con-
tributing differently to the overall inference workload regarding computational inten-

sity and memory access patterns. Below is an overview of the primary layer types



18 Chapter 2. Background

commonly found in CNNs, highlighting their respective roles and relative computa-
tional burdens:

¢ Convolutional (CONV) Layers: These foundational layers are responsible for
feature extraction. They operate by sliding learnable filters (kernels) across the
input volume. Each position computes a dot product between filter weights and

the receptive field, involving a large number of MAC operations [41].

¢ Activation Layers (e.g., ReLU): Introduce non-linearity after convolutional or
fully connected layers, enabling the network to model complex relationships.
ReLU is widely used due to its simplicity and effectiveness in avoiding vanish-
ing gradients. These are computationally less intensive than convolutional layers
[25].

¢ Pooling Layers (e.g., Max, Average): Perform down-sampling by reducing the
spatial dimensions. Pooling helps maintain spatial invariance and reduces the
computational load of subsequent layers. These operations are also less demand-
ing than convolutions [25].

¢ Fully Connected (FC) Layers: Connect every neuron in one layer to every neuron
in the next, typically for classification. Despite their high parameter count, FC
layers contribute less to the overall computational load than convolutional layers
in modern CNNs [25].

2.3.2 Workload Analysis of CNN Layers

Convolutional layers are key parts of CNN models that extract essential features from
input data through structured computations. Since convolutional layers demand nu-
merous arithmetic operations [40], analysing convolutional layers in detail is necessary
when designing efficient CNN architectures. The significance of a convolutional layer
can differ based on the number of output channels and its role in feature extraction.
Consequently, high-importance layers should be carefully assessed, as they consider-
ably affect the model’s accuracy and the computational resources needed for training
and inference. This section aims to demonstrate why convolutional layers dominate
the computational workload in CNNs and to motivate the need for their targeted opti-
misation, particularly on hardware platforms such as FPGAs.

MAC operations measure the computational complexity of convolutional layers in CNNs
[39]. These operations measure the total number of multiplications and additions needed
to produce the output feature map. Analysing and optimising MACs is crucial to im-
proving the computational efficiency of CNNSs. The parameter definitions required for
MAC computation are in Table 2.3.
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Symbol Definition
Cin Number of input channels
Cout Number of output channels
Ky Height of the convolutional filter
Kw Width of the convolutional filter
Iy Height of the input matrix
Iy Width of the input matrix

p Amount of padding applied to the input matrix

Stride Step size of the convolution operation

TABLE 2.3: Parameter definitions for M ACcony calculation [76]

_ Ig — Ky + 2P
On = { Stride J +1 @4
Iw — Kw + 2P
EE (A S A S — 1 2.
Ow L Stride J + (25)
MACeony = Cin X Cout X Ky X Kyy X O x Ow (2.6)

For a standard convolution operation, the number of MACs can be calculated by con-
sidering the dimensions of the input feature map, the convolutional filter, and the out-
put feature map. Given an input feature map of size Iy x Iy with Ci, input channels,
and a convolutional filter of size Ky x Ky with Coyt output channels, the dimensions
of the output feature map Oy x Oy are determined by the padding (P) and stride pa-
rameters as in (2.4) and (2.5). These equations calculate the spatial dimensions of the

output feature map, which is essential for accurately estimating the MACs.

MACEc = Njy X Noyt (2'7)

In contrast to convolutional layers, the computational complexity of FC layers can be
described by the following Equation, where each output neuron connects to all input
neurons, as shown in Equation (2.7). Here, Nj, represents the number of input neurons
(from the previous layer), and Ny, denotes the number of output neurons (in the cur-
rent layer). Although FC layers may involve a large number of parameters, especially
in earlier CNN architectures, their contribution to the total MAC count is often consid-
erably smaller than that of convolutional layers in modern deep networks, where most

of the computational burden is concentrated in convolution operations.
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In addition to MAC operations, the number of parameters is a fundamental metric
that reflects the memory footprint and learning capacity of a CNN model. Parameters
primarily consist of learnable weights and biases in both convolutional and fully con-
nected layers.

Unlike MACs, which represent the computational workload during inference, param-
eters determine the memory required to store the model. They directly impact train-
ing duration, risk of overfitting, and deployment feasibility—particularly on resource-
constrained hardware platforms such as FPGAs. For convolutional and fully connected
layers, the total number of parameters can be calculated as follows:

Paramscony = Cout X (Cin X Ky X Ky + 1) (2.8)

Params¢. = Nin X Nout + Nout (2.9)

Although FC layers can contain a large number of parameters, particularly in earlier
CNN architectures, their contribution to the total MAC count—and hence inference

time—is typically much lower than that of convolutional layers.

(2.6) directly gives the total number of MAC operations and parameters performed by
the convolutional layer, providing a comprehensive measure of the computational load.
The data in the Table 2.4 reveals the relationship between the CNN computational load
and convolution layers of convolutional neural networks in detail. In general, increas-
ing the number of convolution layers also causes the computational cost to increase.
However, different architectural approaches directly affect this increase. For example,
AlexNet has only five convolution layers and requires 666M MACs computation, while
GoogleNet uses 57 convolution layers and 1.58B MACs. Although VGG16 and VGG19
models have 13 and 16 convolution layers, the MAC value of VGG19 shows a signifi-
cant jump of 19.5B. This example shows that the VGG architecture requires larger fil-
ters and intensive computations. However, the accuracy rate of VGG19 (72.7%) shows
a minimal increase compared to VGG16 (71.9%), suggesting that the contribution of the
computational load to the accuracy may be limited.

Table 2.4 shows that higher computational complexity does not always lead to better
accuracy. For instance, VGG19’s significant increase in MACs leads to only a slight
increase in accuracy over VGG16. This observation reinforces the importance of bal-
ancing computational efficiency and model performance. The main factors affecting
the MAC values among networks with similar layers are filter size, number of filters,
stride, padding, layer types and use of fully connected layers. Evaluating the computa-
tional load requires more than just counting layers; it must also consider architectural

design choices, filter dimensions, and convolution strategies. However, adjusting these
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factors is not the only way to reduce computational load. Various optimisation algo-
rithms have been developed to improve the efficiency of convolution layers. These
techniques are examined in terms of computational complexity reduction, pipeline ef-
ficiency, and memory savings. The following section will discuss various algorithmic
approaches to these optimisation processes.

While fully connected layers can dominate the parameter count in some CNN architec-
tures, particularly in earlier models like AlexNet or VGG, their computational contribu-
tion—measured in MACs—is often minor compared to convolutional layers in modern
networks. This is especially relevant for inference efficiency, where convolutional op-
erations typically constitute the majority of hardware workload. Moreover, optimising
convolutional stages can indirectly reduce the parameter size of fully connected lay-
ers, as the dimensionality of FC inputs depends on the feature map size produced by
prior layers. Given this disproportionate computational burden, the subsequent sec-
tions will focus on algorithmic strategies aimed explicitly at optimising convolutional
layers, which offer the most promising avenue for improving performance and effi-

ciency on hardware-constrained platforms such as FPGAs.



TABLE 2.4: Popular CNN models with their computational workload. Accuracy measured on single-crops of ImageNet test-set.Image size is

224x224 [76]

CNN Models AlexNet [77] GoogleNet[78] VGG16[79] VGG19[79] ResNet50 [80] ResNet101[80] ResNet152 [80]
Top-1 Accuracy 57.10% 68.70% 71.90% 72.70% 75.30% 76.40% 77.30%
Conv Layers 5 57 13 16 53 104 155
Conv Workload 666 M 1.58 B 1.53B 19.5B 3.86 B 7.57 B 11.3B

(MACs)

Conv Parameters 233 M 597M 147 M 20M 235 M 424 M 58 M
Activation Layers ReLU ReLU ReLU RelLU ReLU ReLU ReLU
Pool Layers 3 14 5 5 2 2 2
FC Layers 3 1 3 3 1 1 1

FC Parametrs 58.6 M 1.02M 124 M 124 M 205M 2.05M 205M
Total Workload 724 M 1.58 B 155B 19.6 B 3.86B 7.57B 11.3B
(MACGs)
Total Parameters 61 M 6.99 M 138 M 144 M 255 M 444 M 60 M

[44
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2.3.3 Algorithms for Accelerating Convolution Operations

Convolutional operations constitute the most computationally intensive part of CNNs,
and optimising these operations is essential for efficient deployment on hardware-
constrained platforms such as FPGAs. Due to the large number of MACs, the high
arithmetic complexity often makes convolution layers the main bottleneck in terms of
latency, power consumption, and resource utilisation. As CNN models grow deeper
and more complex, the need for algorithmic strategies that reduce this computational
burden becomes increasingly important [81, 82].

Several algorithmic strategies have been proposed to accelerate convolution operations
by reducing computational load and improving memory efficiency [39, 83, 84]. Promi-
nent approaches include direct convolution, the im2col transformation combined with
General Matrix Multiplication (GEMM), frequency-domain methods based on the Fast
Fourier Transform (FFT), and the Winograd minimal filtering algorithm. Each tech-
nique introduces distinct trade-offs in terms of computational efficiency, implementa-
tion complexity, and hardware compatibility. This section compares these methods,
focusing on their strengths, limitations, and practical applicability within FPGA-based
CNN accelerators.

2.3.3.1 Direct Convolution

Direct convolution implements the standard mathematical definition of 2D convolu-
tion. For an input feature map I with dimensions (H;,, x W;, x C;;) and a set of filters
W with dimensions (Kj x Ky X Ciy X Cout), the convolution operation produces an
output feature map O with dimensions (Hyyt X Wout X Cout). The computation for each

output pixel at position (y, x) for output channel k is given by [85]:

zn —1K,—1Ky—1

O(y, x, k) = B(k) + Z Z Z I(y-S+j,x-S+ic) W(kec,ji) (2.10)

where S denotes the stride and B(k) is the bias term for the k-th output channel. The
spatial dimensions of the output are adjusted based on padding strategy.

Computational Complexity: The total number of multiplications (and similarly ad-
ditions) for direct convolution is:

O(Hout : Wout ' Cout . Cin : Kh : Kw) (2~11)
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This complexity grows linearly with the number of channels and quadratically with
the kernel size. For typical CNN layers with large input sizes and multiple filters, this
quickly becomes computationally intensive [85].

Suitability for FPGA: Direct convolution maps naturally to hardware design frame-
works such as HDL or HLS. Its structure aligns well with nested loops and pipelined
execution models, which are commonly used to implement high-throughput architec-
tures. However, to achieve optimal performance, careful scheduling is needed to en-
sure high DSP and LUT utilization. Line buffers and loop unrolling are often applied

to exploit data reuse and reduce memory access latency.

2.3.3.2 im2col Transformation with GEMM

The im2col technique restructures the convolution operation into a matrix multiplica-
tion problem, allowing efficient use of optimized General Matrix Multiply (GEMM)
routines such as BLAS or systolic array implementations. The process unfolds in two

main stages [83]:

¢ im2col (Image to Column): Patches from the input feature map are flattened and
stored as columns in an intermediate matrix M;,.,. If the receptive field size is
K}, x Ky x Cj,, and the output feature map has size Hyyr X Woyt, then M., has
dimensions (K}, - Ky - Cipy) X (Hout - Wout)-

* GEMM: The filter weights are reshaped into a matrix Myeignts Of size Cour X (K, -
Kz - Cin). The matrix multiplication Moutput = Mueights * Mimacor yields the final
output feature map as a flattened matrix of dimensions Coy¢ X (Hout - Wout)-

Computational Complexity: The arithmetic complexity remains the same as direct

convolution:

O(Hout . Wout . Cout : Cin : Kh : Kw) (2-12)

However, practical performance depends heavily on the efficiency of the GEMM back-

end and memory bandwidth.

Memory and FPGA Considerations: The main drawback of the im2col method is the

substantial memory overhead introduced by duplicating overlapping receptive fields
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in the expanded matrix Mimaco1- This increases the memory footprint, posing a chal-
lenge for FPGAs with limited on-chip memory. While GEMM operations can be effi-
ciently mapped to systolic arrays or DSP blocks, the im2col step often creates resource
bottlenecks, requiring additional strategies such as loop tiling or on-the-fly buffering
[86].

2.3.3.3 FFT-Based Convolution

An alternative to spatial-domain convolution is to perform the operation in the fre-
quency domain using the Fast Fourier Transform (FFT). This method leverages the
Convolution Theorem, which states that convolution in the spatial domain corresponds
to element-wise multiplication in the frequency domain [84]. Mathematically, the op-

eration can be expressed as:

O =F Y (F() o F(K)) (2.13)

Here, F and F ~! represent the forward and inverse FFT operations, I denotes the input
feature map, K is the convolution kernel, and ® indicates element-wise (Hadamard)
multiplication in the frequency domain.

Computational Complexity: = The computational cost of FFT-based convolution is
primarily dominated by the FFT and inverse FFT operations. Using efficient imple-

mentations such as the Cooley-Tukey algorithm, the complexity becomes:

O(N?*logN) (2.14)

where N is the spatial dimension of the input feature map (i.e., the input sizeis N x N).
This complexity is independent of the kernel size K, making FFT particularly advanta-
geous for convolutions involving large filters.

Advantages:

¢ Efficient for Large Kernels: FFT reduces the number of arithmetic operations
when K is large relative to the input, offering computational benefits for wide
kernels.

¢ Parallelisable Structure: FFT operations can be parallelised across input tiles and

channels, which allows high-throughput implementations on parallel hardware
such as FPGAs.
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FPGA Implementation Challenges:

® Pre/Post-Processing Overhead: For small kernel sizes, the overhead of perform-
ing forward and inverse FFT operations may outweigh the benefits of reduced

multiplication cost.

* Resource Usage: FFT/IFFT modules can require significant logic, DSP, and mem-
ory resources, making them less attractive for resource-constrained FPGA de-

ployments.

* Latency Sensitivity: The pipeline depth introduced by FFT stages can lead to
increased latency, which may conflict with the low-latency requirements of real-

time applications.

2.3.4 Winograd Minimal Filtering Algorithm

The Winograd minimal filtering algorithm reduces the number of multiplications re-
quired for small convolutions by transforming the computation into a so-called Wino-
grad domain. Based on polynomial interpolation and the Chinese Remainder Theorem,
the algorithm transforms input tiles and kernels, performs element-wise multiplica-
tions, and transforms the result back to the spatial domain.

The 2D Winograd convolution is typically denoted as F(m, ), where m is the size of the
output tile and r is the kernel size. For example, F(2,3) computes a 2 x 2 output tile
using a 3 x 3 kernel. The output Y is computed using the following equation [39]:

Y = AT [(GgGT) © (BTdB)} A (2.15)

Here, d is the input tile, g is the filter kernel, and A, B, and G are the Winograd trans-
formation matrices defined for each F(m,r) configuration. The operator ® denotes

element-wise multiplication.

Transformation Matrices: The matrices A, B, and G are predefined for common con-
figurations and consist of small integers or simple fractions (e.g., 0, 1, £1, 3), allow-
ing the transformations to be implemented using only additions, subtractions, and bit-
shifts. This eliminates the need for general-purpose multipliers and reduces hardware

complexity.

For instance, in the F(2 x 2,3 x 3) case, the number of multiplications is reduced from
36 (direct convolution) to 16 using Winograd, yielding a 2.25x reduction [39] A similar
reduction is observed for F(4 x 4,3 x 3), where the number of multiplications drops
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from 144 to 36. However, this reduction comes at the cost of increased additions and

transformation overhead.

Complexity Analysis: The number of multiplications in Winograd is reduced from
m? - r? (in direct convolution) to approximately (m + r — 1)2. This makes Winograd par-
ticularly beneficial for small kernels, where the multiplication cost dominates. How-
ever, the increase in additions and memory usage due to transformations must be taken

into account.

FPGA Implications: Winograd’s reduction in multiplications is well-suited for FP-
GAs where DSP blocks are limited. However, the increased control logic complexity,
transformation overhead, and potential numerical instability may require careful bal-

ancing when implementing Winograd on resource-constrained platforms [46].

Each convolution acceleration method reflects a unique trade-off among arithmetic
complexity, memory usage, and hardware suitability. While direct convolution is straight-
forward and FPGA-friendly, it lacks computational efficiency. im2col enables high
reuse of optimised matrix multipliers but suffers from memory duplication. FFT meth-
ods are advantageous for large kernels but introduce transform overhead and precision
concerns. Winograd offers a significant reduction in multiplications for small kernels
but complicates control logic and memory usage. Selecting the optimal method de-
pends on kernel size, network architecture, and the specific resource constraints of the
FPGA platform.

2.3.5 Discussion on FPGA Suitability of Convolution Techniques

Table 2.5 presents a qualitative comparison of four widely-used convolution acceler-
ation techniques in terms of their suitability for FPGA implementation. This section
expands upon that comparison by evaluating each technique based on several key cri-
teria, highlighting the rationale behind the selection of the Winograd algorithm for this
study.

FPGA Resource Fit:  Direct convolution relies heavily on DSP blocks for performing
MAC operations. While this mapping is straightforward and efficient for small net-
works, DSPs are typically limited in number on FPGAs, making scalability difficult.
The im2col+GEMM approach performs matrix multiplication efficiently using systolic
arrays or DSPs, but its excessive reliance on large BRAM buffers restricts its scalability
due to memory bandwidth bottlenecks. FFT-based approaches, although promising in
theory, require complex arithmetic and consume both DSPs and LUTs, putting stress on

both resources. In contrast, the Winograd algorithm strategically reduces the number
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TABLE 2.5: Qualitative Comparison of Convolution Algorithms for FPGA Suitability

Metric Direct Conv.[87] im2col+GEMM [88]  FFT-Based [89] Winograd [46]
. Medium Low Low (Complex High
FPGA Resource Fit (DSP-heavy) (BRAM-limited) Arith.) (LUT-efficient)
Memory Requirement Low Very High Moderate/High Moderate
. s . . Precision Challenging
Numerical Stability High High Sensitive (Low Prec.)
Best Suited Kernels Small All (if memory Large kernels Small (3x3, 5x5)
allows)
. High . . Medium
Implementation Cost Low (transforms+buffer) High (FFT logic) (transform logic)
Overall FPGA Suitability Medium Low Conditional High

of multiplications and instead employs additions and shifts—operations well-suited to
LUTs, which are abundant on FPGAs. This makes Winograd the most resource-efficient

option.

Memory Requirement:  The memory footprint of im2col+GEMM is substantially
high due to the need to store flattened and duplicated input patches. FFI-based con-
volution also suffers from moderate to high memory demand, primarily for storing
frequency-domain data and precomputed twiddle factors. Direct convolution requires
only modest memory resources for line buffering. Winograd presents a moderate mem-
ory footprint by using small buffers for intermediate tiles and transformation matrices,
balancing efficiency and feasibility for FPGA-based deployment.

Numerical Stability:  Direct convolution and im2col+GEMM are numerically sta-
ble due to the use of real-valued arithmetic. FFT-based methods are highly sensitive
to quantization and numerical precision, often requiring floating-point arithmetic to
avoid instability. Winograd also presents stability challenges, particularly for larger
tiles and low-precision applications. However, its use with small tile sizes (e.g., F(2 x
2,3 x 3)) mitigates these concerns and enables reliable deployment using fixed-point

representations.

Best Suited Kernels: Direct convolution and im2col+GEMM can support arbitrary
kernel sizes. FFT-based methods are primarily beneficial for large kernels, which are
uncommon in contemporary CNNs. Winograd is highly optimized for small kernels,
particularly 3 x 3 and 5 x 5, which are prevalent in many modern architectures such
as VGG, ResNet, and MobileNet. This alighment with common kernel dimensions

strengthens its applicability.
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Implementation Cost:  Direct convolution has a low implementation cost due to its
straightforward nested-loop structure, though its performance is limited by DSP avail-
ability. im2col+GEMM and FFT-based methods incur significant implementation com-
plexity due to memory management and transformation logic. Winograd has a mod-
erate cost associated with implementing transformation matrices but compensates for
this with reduced arithmetic complexity and better mapping to parallel hardware struc-

tures.

Overall FPGA Suitability: ~ When all factors are considered—resource fit, memory
usage, numerical behavior, kernel alignment, and implementation overhead—Winograd
emerges as the most suitable algorithm for FPGA-based CNN acceleration. It offers
high throughput potential, efficient utilization of FPGA resources, and is well-aligned
with the architectural characteristics and kernel structures found in modern convolu-

tional networks.

While each convolution technique exhibits its own merits, the Winograd algorithm
offers the most favourable trade-off between computational efficiency and FPGA re-
source utilization. Its key strength lies in reducing the number of costly multiplica-
tions—an operation bound to the limited DSP blocks—by leveraging additions and
shifts that are efficiently handled by abundant LUTs. This alignment with FPGA ar-
chitecture not only alleviates pressure on scarce computational units but also enables
better scalability and energy efficiency. Furthermore, the algorithm’s suitability for
small kernel sizes, which dominate contemporary CNN models, makes it practically
aligned with real-world deployment scenarios. Although Winograd introduces trans-
formation overhead and poses numerical precision challenges for certain configura-
tions, these drawbacks are manageable with appropriate tiling strategies and fixed-
point quantisation. Overall, Winograd’s balance of low arithmetic cost, hardware com-
patibility, and practical relevance positions it as a compelling and strategic choice for
high-performance CNN acceleration on resource-constrained FPGA platforms.

Given its potential to reduce arithmetic complexity, the Winograd minimal filtering al-
gorithm offers an opportunity to accelerate CNN inference on FPGAs. However, its
practical realisation is fraught with critical implementation challenges that must be
carefully addressed. Translating this theoretical advantage into practical and efficient
hardware implementations presents several substantial challenges.

Numerical instability is a critical concern, particularly in low-precision environments
commonly used in FPGA-based inference engines (e.g., INT8). The structure of Wino-
grad transformations can amplify quantization and rounding errors, especially when
larger tile configurations such as F(4 x 3,3 x 3) are employed. Addressing these issues
requires co-design strategies, including careful tile size selection, tuning of transforma-

tion polynomials, and the use of Winograd-aware quantization techniques.
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Hardware resource constraints also represent a significant challenge. While the algo-
rithm reduces reliance on DSP slices for multiplication, it increases demand on the logic
fabric, particularly Look-Up Tables (LUTs) and flip-flops (FFs), due to the complex-
ity of the transformation stages and associated control logic. This resource shift can
limit achievable clock frequencies and overall throughput, requiring careful balancing
of computational workload and resource allocation tailored to the characteristics of the
target FPGA architecture.

Furthermore, Winograd’s multi-stage computation pipeline imposes substantial data
buffering requirements, exacerbating pressure on the memory subsystem. Limited
off-chip bandwidth and constrained on-chip BRAM capacity can become bottlenecks.
Effective implementations necessitate advanced memory management techniques, in-
cluding line buffering, optimised tiling flows such as double buffering, and BRAM

partitioning to maximise data reuse and hide latency.

Although the transformation logic is computationally lightweight, it still introduces
latency and control complexity that must be offset by the reduction in arithmetic oper-
ations during the element-wise multiplication phase. Additionally, designing a flexible
and reusable Winograd hardware accelerator capable of supporting various CNN pa-
rameters—such as kernel sizes, stride lengths, and tile configurations—poses consider-
able challenges. Approaches such as kernel decomposition can extend the applicability
of Winograd to non-unit strides and larger kernels, but these often result in significant

control overhead and data orchestration complexity at the system level.

2.3.6 FPGA-Based Acceleration of CNNs

FPGAs are programmable hardware platforms consisting of configurable logic blocks,
known as look-up tables (LUTs), complemented by specialised resources such as digital
signal processing (DSP) elements and block RAMs (BRAMs) [22]. Their highly parallel
architecture enables concurrent execution of multiple operations, thus delivering supe-
rior performance-per-watt compared to traditional processors [25]. As a result, FPGAs
have gained considerable attention for accelerating machine learning workloads, par-
ticularly in applications where low latency, high throughput, and energy efficiency are

paramount [28].

Numerous studies have explored deploying CNNs on FPGAs to meet the increasing
demand for efficient deep learning inference. These implementations vary widely re-
garding numerical precision, model architecture, and parallelisation strategy. For in-
stance, Liang et al. [46] conducted a comprehensive evaluation of fast convolution al-
gorithms on FPGAs by deploying multiple CNN models, including AlexNet, VGG,
ResNet, and YOLO, using both standard and accelerated methods. They compared di-
rect convolution, Winograd minimal filtering, FFT-based methods, and im2col + GEMM
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in terms of throughput, energy efficiency, and hardware utilisation. On a ZCU102
FPGA with 16-bit precision, their Winograd-based implementation of AlexNet achieved
854.6 GOP/s and 36.2 GOP/s/W, outperforming the conventional version (202.8 GOP/s,
21.4 GOP/s/W). Similar improvements were observed for VGG, which reached 2601.3
GOP/s and 105.4 GOP/s/W. However, the study employed a uniform optimisation
strategy across all layers and did not explore the differential suitability of Winograd
for layers with varying computational profiles, limiting insights into its effectiveness in
deeper and more heterogeneous network architectures.

Zhang et al. [90] proposed an 8-bit quantized CNN accelerator tailored to low-power
embedded FPGA platforms. The parameterizable design integrates convolutional and
fully connected layers, and uses loop unrolling and pipelining to enhance parallelism.
Implemented on an Xilinx ZCU104 board, the architecture demonstrated notable en-
ergy efficiency and preserved high classification accuracy on LeNet-5, with only a
0.75% drop compared to the original 32-bit model (99.06% vs 98.31%). However, its
performance on more complex architectures such as AlexNet was limited, as INT8
quantization achieved only 55.99% accuracy, which highlights challenges in general-
ization and scalability across deeper models.

Li et al. [91] proposed a real-time, ultra-low-power CNN accelerator targeting em-
bedded vision applications. Their design employs a multi-level pipeline architecture
combining a line buffer-based convolution engine with a global memory access opti-
mization strategy to minimize bandwidth usage. Implemented on an Intel Arria 10
FPGA, their system achieved 27.2 W power consumption while delivering competitive
throughput for models such as AlexNet. Although the accelerator demonstrated strong
efficiency, its optimization was primarily focused on memory reuse and pipelining
within a fixed kernel architecture, without exploring dynamic or layer-specific strate-
gies. Furthermore, the study does not provide explicit accuracy figures, leaving the
model’s predictive performance and generalisation ability unassessed.

Vestias et al. [92] proposed a configurable CNN accelerator architecture specifically tai-
lored for low-density FPGAs, focusing on efficient resource utilisation in constrained
environments. Their design partitions CNN layers into convolutional and non-convolutional
groups, allowing different execution paths and optimisations based on the layer type.
The implementation targets a Xilinx Zynq-7020 device, using fixed 8-bit precision to re-
duce power and resource usage. The accelerator achieves a throughput of 229 images
per second while maintaining minimal hardware footprint, consuming only 212 DSPs
and 46,914 LUTs. However, the accelerator achieves a relatively low classification accu-
racy of 54.7%, indicating that the design prioritises hardware efficiency over predictive
performance, and highlighting a potential trade-off that may limit its applicability in
accuracy-critical tasks.
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Wang et al. [93] proposed a design flow for deploying extremely low bit-width neu-
ral networks (ELB-NNs) on embedded FPGAs. Their method enabled layer-specific
quantisation using binary, ternary, and low-precision representations to optimise the
balance between resource utilisation and model performance. The implementation de-
livered high throughput and energy efficiency across multiple benchmarks, demon-
strating the hardware benefits of aggressive quantisation strategies. However, these
improvements were accompanied by a noticeable reduction in classification accuracy.
For instance, Top-1 accuracy in AlexNet decreased from 55.9% to 49.3%, raising con-
cerns about the suitability of such designs in applications where predictive reliability
is essential. This underscores the need to jointly consider efficiency and accuracy when

designing hardware-aware neural networks.

Neelam and Prince [94] introduced VConv, a CNN accelerator designed for FPGA
deployment with an emphasis on energy efficiency and parallelism. Their architec-
ture was implemented using a Xilinx Artix-7 FPGA (5xXC7A200T), employing 32-bit
floating-point precision and optimising convolution layers through dedicated hard-
ware modules. The accelerator achieved a throughput of 15 images per second and
reported a peak performance of 56 GOPS. However, the study did not provide compre-
hensive details regarding classification accuracy, leaving uncertainties about the bal-
ance between speed and predictive performance. This omission is particularly notable
for applications where inference accuracy is critical, indicating that while VConv shows
efficiency in hardware utilisation, its effectiveness in real-world scenarios remains par-

tially unverified.

Existing FPGA-based CNN accelerators demonstrate impressive improvements in en-
ergy efficiency and inference throughput. However, many approaches apply uniform
scheduling or aggressive quantisation without adequately considering the computa-
tional variability across layers. As a result, they often overlook the impact of these
choices on model generalisation and predictive accuracy. This highlights the need
for adaptive, layer-aware design strategies that balance efficiency with reliable perfor-
mance across diverse CNN architectures.

2.4 Motivation and Computational Requirements in Cancer De-

tection

While the proposed techniques in this thesis are not limited to any specific medical con-
dition, cancer detection is selected as a representative application domain due to its par-
ticularly demanding computational characteristics. The clinical requirements for high
accuracy, low latency, real-time inference, and privacy-aware processing make cancer
detection an ideal use case for evaluating performance-critical hardware-software co-

design strategies.
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2.4.1 High Accuracy Expectations and Low Error Tolerance

Early-stage cancer detection is a high-stakes task that demands high accuracy [95]. For
instance, early-stage diagnosis of oesophageal cancer is associated with improved five-
year survival rates and increased eligibility for curative interventions such as surgery

[96, 97]. Therefore, even small diagnostic errors may have serious clinical consequences.

False negatives can delay treatment and allow disease progression, while false posi-
tives, though less severe, may lead to unnecessary procedures, increased healthcare
costs, and patient anxiety [98, 99]. This highlights the need for high sensitivity and
specificity in Al-assisted diagnostics.

Even modest reductions in model performance can undermine clinical confidence and
impede real-world adoption. This concern is amplified by studies reporting that Al sys-
tems, while accurate in controlled settings, often exhibit degraded performance when
evaluated in real-world clinical environments [100]. Consequently, optimisation tech-
niques must be applied with caution, ensuring that diagnostic accuracy is preserved
throughout deployment.

2.4.2 Real-Time Inference Requirements: Latency and Throughput Constraints

Real-time cancer detection systems are subject to stringent computational constraints
involving both inference latency and throughput [101]. Latency refers to the time re-
quired to generate a prediction for a single input, while throughput denotes the num-
ber of inputs processed per unit time. These performance metrics become especially
critical in applications involving continuous or high-frequency data acquisition—such
as video-based medical imaging—where system responsiveness directly influences the

timeliness and reliability of diagnostic support [102].

For example, endoscopic cancer screening provides a representative scenario in which
strict latency and throughput requirements are essential. Clinical endoscopy systems
typically operate at 25-30 frames per second (fps), requiring inference times below 33—
40 milliseconds per frame to keep pace with incoming video [103]. Studies have shown
that failure to meet these constraints can delay diagnostic feedback, with real-time sys-
tems often defined by a minimum of 24 fps [104]. Systems unable to meet this thresh-
old—for example, those operating at only 4 fps due to 240 ms frame processing—are
considered inadequate for real-time use [103].

2.4.3 Privacy and On-Device Inference Considerations

In the context of cancer detection and other sensitive medical imaging applications,

on-device inference—where data is processed locally on embedded hardware such as
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FPGAs or edge Al devices—offers substantial advantages in terms of privacy, latency,
and regulatory compliance. By keeping all patient data within the local device or hospi-
tal network, on-device processing minimises the risk of data breaches associated with
network transmission and aligns with legal frameworks such as GDPR and HIPAA
[105, 106]. Several studies highlight that edge-based Al systems eliminate the need to
transfer protected health information (PHI) to external servers, thereby reducing expo-

sure and simplifying data governance [105, 107].

2.4.4 Case Study Selection: Oesophageal Cancer

Optimisation techniques are intended to be generally applicable to CNN-based im-
age analysis tasks, oesophageal cancer detection is presented as a representative case
study because it embodies both clinically significant challenges and demanding com-
putational characteristics. According to World Health Organization (WHO) data in
2020, there were approximately 604,000 new cases of oesophageal cancer and around
544,000 related deaths worldwide [108]. Morgan et al. project that by 2040, the global
burden will increase to 957,000 new cases and 806,000 deaths [108]. Given this high
mortality rate and the need for early and accurate diagnosis, oesophageal cancer offers
a meaningful and data-supported context for examining the computational demands
of hardware-accelerated diagnostic pipelines [42].

Esophagoscopy

SO

Endoscope

FIGURE 2.2: Oesophageal endoscopy [109]

From a computational perspective, oesophageal cancer screening is typically performed
using high-resolution RGB video captured during endoscopic procedures. Unlike vol-
umetric imaging modalities such as computed tomography (CT) or magnetic reso-
nance imaging (MRI), endoscopic imaging involves 2D, frame-based input, which can
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be efficiently processed by convolutional neural networks optimised for spatial infer-
ence. This makes the domain particularly suitable for FPGA-based acceleration, where
frame-wise latency and throughput can be tightly controlled. Furthermore, publicly
available, annotated endoscopic datasets allow for reproducible experiments and quan-
titative evaluation, strengthening the viability of this application as a benchmark sce-
nario. Figure 2.2 shows the cancer detection method with endoscopy.

Accordingly, oesophageal cancer serves as a clinically grounded and computationally
illustrative use case, helping to justify the broader focus of this thesis on real-time,

accuracy-critical image processing scenarios.

2.5 Summary

Deploying CNNs on FPGAs presents a promising yet challenging avenue for achieving
high-performance inference in power—and latency-constrained environments. This
chapter has established that FPGAS’ inherent reconfigurability, parallelism, and energy
efficiency make them highly suitable for accelerating convolution-heavy workloads,
particularly when conventional platforms like CPUs and GPUs fall short in adaptability
and efficiency.

A key insight from the chapter is the disproportionate computational burden imposed
by convolutional layers in modern CNNs. As such, optimising these layers is critical
for unlocking the full performance potential of FPGA-based accelerators. Among the
algorithmic strategies explored, the Winograd minimal filtering algorithm stands out
due to its ability to drastically reduce multiplication operations—offering a distinct
advantage in DSP-limited FPGA architectures.

To support this selective deployment strategy, the chapter introduced a structured com-
parative analysis framework that systematically evaluated the FPGA suitability of var-
ious convolution algorithms. By examining factors such as arithmetic complexity, re-
source utilisation, and memory requirements, this framework contextualised Wino-
grad’s strengths while illuminating its limitations in comparison to alternatives like
direct convolution, im2col+GEMM, and FFT-based methods.

The computational challenges discussed in this chapter are highly relevant to applica-
tion domains such as cancer detection, which often involve real-time inference, high-
resolution image processing, and strict performance constraints. In such scenarios,
convolution operations must be carefully optimised to balance latency, accuracy, and
resource usage. These demands make cancer detection a representative and technically
challenging use case for assessing the trade-offs and potential benefits of advanced con-
volution acceleration techniques on FPGA platforms.
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Ultimately, this chapter laid the theoretical and practical foundation necessary for guid-
ing Winograd’s selective application in hardware-accelerated CNN inference. It set
the stage for the next chapter, introducing a structured optimisation methodology tai-
lored to maximise performance while preserving accuracy and respecting resource con-

straints.
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Chapter 3

Layer-Level CNN Optimization for
FPGA Implementation

3.1 Introduction

CNN s have revolutionised image classification and object detection tasks by automat-
ically learning hierarchical feature representations from raw input data [110]. Since
early architectures like LeNet [111], the field has advanced towards deeper and more
complex models such as AlexNet [77], VGG [79], and ResNet [80]. However, this
growth in architectural complexity has substantially elevated computational demands,
making efficient deployment on resource-constrained platforms such as FPGAs in-

creasingly challenging.

CNN s are composed of multiple types of layers—including convolutional, activation,
pooling, and fully connected layers—that collectively contribute to their computational
burden. Among these, convolutional layers dominate the computation, primarily due
to the large MAC operations they require. This computational bottleneck necessitates
the development of optimisation strategies to reduce the complexity of CNNs while
maintaining predictive performance, particularly for real-time and embedded applica-

tions.

Several algorithmic approaches have been explored to alleviate this burden, including
Winograd convolution [39], FFT-based methods [112], and GEMM-based optimisations
[113]. Among these, the Winograd algorithm stands out due to its ability to reduce the
number of MAC operations, especially for small convolutional kernels such as 3 x 3. Its
suitability for FPGAs stems from its lower arithmetic complexity and ability to exploit
fine-grained parallelism, making it highly effective for resource-limited environments
[114].
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Building on this motivation, Chapter 3 presents a systematic framework for optimising
CNN architectures through layer-wise analysis and Winograd-based restructuring. A
Suitability Score is introduced to quantitatively assess the compatibility of each convo-
lutional layer with Winograd transformations, enabling targeted structural-level opti-
misations. Unlike traditional global model compression techniques, the proposed ap-
proach adapts the network architecture layer by layer, selectively modifying kernel
sizes and output channel counts to enhance Winograd compatibility without sacrific-

ing overall model accuracy.

By applying this methodology to different CNN architectures, including AlexNet and
VGG16, the chapter demonstrates that substantial reductions in computational com-
plexity and training time can be achieved while preserving high inference accuracy.
These findings establish the foundation for hardware-level optimisations explored in
later chapters, ultimately enabling scalable, efficient, and accurate CNN deployment
on FPGA platforms.

3.2 Proposed Suitability Score For Convolution Layer Optimiza-
tion using Winograd Algorithm

The Winograd algorithm reduces the computational load of convolutional layers by re-
ducing the number of MAC operations. However, this algorithm’s benefits may not be
the same across all layers in a neural network. To address this, a Suitability Score (Sscore)
is introduced to identify the convolutional layers most compatible with the Winograd
algorithm. The primary purpose of this approach is to maximise the benefits of the
Winograd Method by optimising the CNN structure in a way that is compatible with
the Winograd method.

K MACs C
S — . ref) +B. <) 4+ - <OUt> 3.1
score ( K 5 MACSref T COUtref ( )

Sscore is designed to quantify how well a convolutional layer in a neural network aligns

with the strengths of the Winograd algorithm. This score is computed by evaluat-
ing three key factors: kernel size, computational load, and feature complexity, as in
(3.1). Where K represents the kernel size of the convolutional layer under considera-
tion; MACs denotes the total number of multiply-accumulate operations required by
the layer, which reflects its computational load; and Coy is the number of output chan-
nels, indicating the feature complexity of the layer. Determining reference values for
kernel size, computational complexity, and output channel count is essential to effec-

tively applying the suitability score. Kief, MACs,ef, and Cout,, represent the reference

ref

values for Sgcore. These values may vary during the optimization phase of the CNN
model. Therefore, these values must be determined dynamically.
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3.2.1 Selection Criteria for Suitability Score Parameters

In constructing the Suitability Score, three key architectural factors are considered: ker-
nel size, computational load in terms of MAC operations, and the number of out-
put channels. Each parameter captures a distinct aspect of a layer’s suitability for
Winograd-based acceleration. The kernel size term reflects the algorithmic compatibil-
ity of a layer, as smaller kernels (e.g., 3 x 3) are more amenable to Winograd transfor-
mations [115]. The MAC term quantifies the computational complexity associated with
each layer, which is critical for identifying potential bottlenecks in FPGA deployments
[21, 116]. Since each MAC operation corresponds to a multiplication and accumula-
tion, the total MAC count directly reflects the underlying DSP workload and thus the
intensity of the required computations. The output channel count term represents the
memory and DSP resource demands, as layers with a large number of filters consume
proportionally more LUTs, DSP slices, and BRAM, which in turn constrains scalability
[117]. Taken together, these factors provide a comprehensive view of both the algorith-

mic and hardware-related characteristics of each layer.

To integrate these aspects into a single interpretable metric, the three factors are linearly
combined, as shown in Equation (3.1). A linear formulation strikes a practical bal-
ance between expressiveness and computational simplicity. It enables flexible weight-
ing of the individual components through the coefficients «, B, and -y, which sum to
one. This structure allows for rapid evaluation of CNN layers during the optimisation
process without introducing the complexity of non-linear functions or additional hy-
perparameters. Moreover, the linear combination reflects the additive nature of these
factors: a layer with a favourable kernel size but a large number of filters, for exam-
ple, would receive a moderate score, as both algorithmic compatibility and resource
demands are proportionally represented. This ensures that the score remains both the-

oretically grounded and practically efficient for iterative optimisation strategies.

3.2.2 Determining the Reference Values of Sgcore

When determining the K, value, it is necessary first to examine the relationship be-
tween the working principle of the Winograd algorithm and the kernel size. Unlike
the large-sized kernel size of the Winograd method, it is more effective in small sizes.
Therefore, the K.t value should be selected as 3, the size where Winograd is most ef-
fective. However, depending on design purposes, this value can be selected over other
kernel values. In order to establish the ideal kernel size for K., the generalized for-

mula can be used as in (3.2).
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argmin(f(K)), if the goal is to minimize f(K)
Ke f = K (3.2)
argmax(f(K)), if the goal is to maximize f(K)
K

f (K) represents a chosen optimization metric, which could vary depending on the spe-
cific design objectives, such as minimizing MAC operations for computational effi-
ciency or maximizing DSP efficiency for optimal hardware resource utilization. This
general formulation provides flexibility to optimize performance metrics based on the
specific FPGA implementation goals.

MACsref = r?eaLx(MACs(l)) (3.3)

Furthermore, when selecting a value for MACs,t from among different convolutional
layers in a CNN, the formulation can be expressed as in (3.3). MACs, is chosen dy-
namically by evaluating all convolutional layers (L) within the CNN model, where
MACs(!) indicates the MAC operations required for each convolutional layer I € L.
This formulation indicates that the reference MAC count is selected based on the layer

with the maximum computational demand within the neural network layers.

= max(Cour(1)) (34)
leL

Although the Winograd algorithm reduces the number of MACs, this algorithm ini-
tially performs some transformation operations on the input data and the kernel. The
cost of these transformation operations is fixed and independent of the number of out-
put channels. In other words, these transformations are performed once under all con-
ditions, and their results can be used jointly for all output channels. In this case, as the
number of C,,; increases, this fixed cost is shared by more channels, and the computa-
tional load per channel decreases. Thus, in layers with high output channels, the total
processing cost is reduced due to the transformation cost sharing and the computa-
tional cost reduction per channel. However, increasing the number of output channels
is not a reason to directly apply the Winograd algorithm. High output channel numbers
increase the computational load of standard convolution operations, making the Wino-
grad algorithm’s advantage more obvious. Therefore, layers with high output channel
numbers can benefit more from the advantage provided by the Winograd algorithm.

Accordingly, Coyt, . is selected dynamically by choosing the maximum number of out-

ref
put channels among all convolutional layers within the CNN model as in (3.4).
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3.2.3 Experimental Evaluation of Coefficient Configurations
3.2.3.1 Coefficient Definition and Role

(3.1) has three coefficients, «, B, and <, which play a crucial role in determining the
relative importance of each factor in assessing the suitability of a convolutional layer
for Winograd optimisation. These coefficients represent filter compatibility, computa-
tional efficiency, and feature complexity. The coefficients enable the customisation of
the Suitability Score to align with specific neural network architectures and application
needs. One key condition in this adjustment process is that the sum of the coefficients
must always equal 1, as shown in (3.5), which enables a balanced trade-off among filter

compatibility, computational efficiency, and feature complexity.

x+p+y=1 (3.5)

Filter Compatibility Factor (a) reflects the significance of the kernel size (K) in determin-
ing the layer’s compatibility with the Winograd algorithm. Smaller kernel sizes, such
as 3x3, are more compatible with Winograd, making this factor highly influential in the

score.

Computational Efficiency Factor (B) represents the computational load of the layer and is
usually related to the total MAC value. Since layers with higher MAC values require
more computation, they benefit more from Winograd optimization. Therefore, it is ap-

propriate to increase the value of § in cases where the computational load is prioritized.

Feature Complexity Factor (vy) represents the complexity of the features extracted by the
layer, indicated by the number of output channels. The fixed conversion cost of the
Winograd algorithm is shared among more channels as the number of output channels
increases, allowing the algorithm to operate more efficiently at large Coy:. However,
considering that the effect of Coy is generally not as critical as « and S, it is recom-

mended to keep the coefficient y lower.

A set of experiments is conducted to apply and evaluate the effect of different coeffi-
cient configurations on the Suitability Score. Each configuration targets a specific opti-
misation priority, such as kernel size, computational load, or output channel complex-
ity, enabling comparative analysis of how these priorities influence layer selection.

3.2.3.2 Experimental Setup

A series of experiments using CNN models is conducted to apply and evaluate the
effect of different coefficient configurations on the Suitability Score. All experiments

are implemented in Python using the Keras library with a TensorFlow backend.
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The analysis begins with AlexNet, which offers structural diversity with varying kernel
sizes and a relatively shallow architecture. This makes it suitable for clearly observing
the influence of different coefficient configurations on the Suitability Score.

VGG16 is also included in the analysis to improve the generalisability and robustness
of the findings. With its deeper structure and consistent 3x3 kernels, VGG16 provides a
contrasting case that helps determine whether the observed effects are consistent across
networks with different architectural properties.

CNN Model Conv. Layer Kernel Size Filters Stride MACs (10%)
1 11x11 96 4x4 1.02
2 5x5 256 1x1 4.48
AlexNet 3 3x3 384 1x1 1.49
4 3x3 384 1x1 2.24
5 3x3 256 1x1 1.49
1 3x3 64 1x1 0.89
2 3x3 64 1x1 18.5
3 3x3 128 1x1 9.26
4 3x3 128 1x1 18.5
5 3x3 256 1x1 9.26
6 3x3 256 1x1 18.5
VGG16 7 3x3 256 1x1 18.5
8 3x3 512 1x1 9.25
9 3x3 512 1x1 18.5
10 3x3 512 1x1 18.5
11 3x3 512 1x1 4.63
12 3x3 512 1x1 4.63
13 3x3 512 1x1 4.63

TABLE 3.1: Architectural details of AlexNet and VGG16 models, including kernel size,
number of filters, stride, and MACs per convolutional layer

Table 3.1 presents the architectural features of the AlexNet and VGG16 models used
in the experiments, including kernel sizes, number of filters, stride values, and MAC
operations, highlighting the structural differences between the two models.

3.2.3.3 Results and Observations

Table 3.2 presents the coefficient configurations used to define different optimisation
scenarios, which are designed to analyse their impact on the Suitability Score. Accord-
ing to the experimental results, it is observed that the Se.ore value of layers with small
kernel sizes increases in the Kernel-focused scenario, which prioritises only kernel
size. This result shows that the Winograd algorithm is more effective in small kernel
sizes. Similarly, in the MACs-focused scenario, which focuses only on computational
load, it is determined that the Sscore increases in layers with high MAC values, and such
layers benefit more from the Winograd algorithm.
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Scenario x B

Layer Secore

Priority

Kernel-focused 1 0

1

0.27
0.6
1.00
1.00
1.00

Emphasizes small kernel sizes

MACs-focused 0 1

0.22
1.00
0.33
0.50
0.33

Prioritizes layers with
high computational load

Output Channel
focused

0.25
0.66
1.00
1.00
0.66

Emphasizes large
output channel counts

Balanced

Combination 04 04

0.2

0.24
0.77
0.73
0.80
0.66

Balanced approach prioritizing
both kernel size and MACs

Kernel-weighted

Combination 0.6 0.2

0.2

0.26
0.69
0.86
0.90
0.80

Strong emphasis on small

kernel sizes with some MACs
and Cout effect

MACs-weighted

Combination 02 06

0.2

0.25
0.85
0.60
0.70
0.53

Prioritizes high
computational load
while considering other factors

Cout-weighted

Combination 0.2

0.6

Ol WINRFR U WODNRROO KR WONR O WONRFRIUU PR ODNRO PR WODNRO RN

0.25
0.72
0.86
0.90
0.67

Focuses on layers with
large output channel counts

TABLE 3.2: Suitability Score Coefficient Configurations for Different Optimization Sce-

narios
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In the output channel-focused scenario, which focuses only on the output channel, it
is observed that the Sg.ore Of layers with a high number of output channels is higher.
However, it is found that this approach provides advantages only in certain types of
layers and is generally not as decisive as kernel size and computational load.

When more complex scenarios are examined, the balanced combination scenario gives
equal weight to kernel size and MAC factors and provides more stable results for large-
scale models. This combination provides reasonable Sscore for layers with small kernel

sizes and layers with high computational load.

Conversely, in the kernel-weighted combination scenario, which prioritises small ker-
nel sizes but also partially considers the number of MACs and output channels, it is
seen that the Sgeore Of layers with small kernel sizes increases, but other factors con-
tribute to a limited extent.

In the MACs-weighted Combination scenario, which prioritises layers with more com-
putational load, it was found that the suitability score increased in layers that required
intensive computation. This structure reveals the advantage of the Winograd algorithm
in that it is more effective in layers with high computational load.

Finally, in the Cout-weighted Combination scenario, it was seen that the suitability
score increased in layers with a high number of output channels. However, the general
evaluation found that the effect of combinations focusing only on the number of output

channels on the suitability score was not as decisive as other factors.

The analysis results generally show that small kernel sizes and layers with high MACs
benefit more from the Winograd algorithm. It is observed that mixed coefficient com-
binations, such as balanced combinations, provide more stable and balanced results in
large-scale models. However, depending on the design goals, combinations that priori-
tise only one factor may be more efficient for specific layers. These findings emphasise
the importance of carefully selecting coefficient combinations to increase the applica-

bility of the Winograd algorithm.

3.2.3.4 Impact of Filter Compatibility Factor (x) on Suitability Score

The impact of & on Sgeore is evaluated for both the AlexNet and VGG16 architectures,
as depicted in Figures 3.1 and 3.2.

AlexNet Analysis For AlexNet, it is observed that increasing the a coefficient results
in a notable rise in the Suitability Score, particularly from the second convolutional
layer (Conv2) onwards. The initial layer (Conv1) exhibits only a modest increase in
Sscore @s & increases, indicating that kernel size is not the dominant factor at the input
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stage, where the kernel size is relatively large (11x11). A more pronounced improve-
ment is evident in Conv2 to Conv4, where kernel sizes reduce to 5x5 and 3x3. This
behaviour confirms that smaller kernel sizes are more compatible with the strengths
of the Winograd algorithm and that a plays a critical role in quantifying this align-
ment. As a approaches higher values (e.g., 0.7-0.8), the Suitability Scores for Conv3
and Conv4 approach 0.9, suggesting highly favourable conditions for Winograd-based

optimisation.
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FIGURE 3.1: Impact of the filter compatibility factor («) on Suitability Score (Sscore)
across the convolutional layers of AlexNet.
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VGG16 Analysis  In the case of VGG16, the effect of « is even more significant and
consistent across all convolutional layers. Due to the uniform use of 3 x3 kernels through-
out the architecture, the Suitability Score steadily increases with rising « values. When
« is set to 1.0, nearly all layers achieve Suitability Scores close to 1.0, indicating opti-
mal compatibility with the Winograd algorithm. The sharp increase in Sscore, particu-
larly between « values of 0.5 and 1.0, highlights the dominant influence of kernel size
compatibility in architectures where kernel dimensions are homogeneous and small.
Compared to AlexNet, VGG16 exhibits a more uniform and stable Suitability Score
progression, indicating that its architectural design is inherently more favourable for

Winograd-based optimisation when « is prioritised.
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FIGURE 3.2: Impact of the filter compatibility factor (¢) on Suitability Score (Sscore)
across the convolutional layers of VGG16.

Comparative Insights  Although both AlexNet and VGG16 demonstrate a positive
correlation between a and the Suitability Score, the effect is notably stronger and more
consistent in VGG16 due to its uniform small kernel sizes. In AlexNet, the variability
in kernel sizes across different layers results in a more heterogeneous increase in Sscore
as « increases. These findings suggest that networks featuring consistent and smaller
kernel configurations can benefit more predictably from Winograd-based optimisation

strategies when filter compatibility is emphasised.
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3.2.3.5 Impact of Computational Efficiency Factor () on Suitability Score

The impact of S on Sgcore is evaluated for both the AlexNet and VGG16 architectures,
as shown in Figures 3.3 and 3.4.

AlexNet Analysis
nificant rise in the Suitability Score for layers with a higher computational load. This

In the case of AlexNet, increasing the f coefficient leads to a sig-

effect is particularly evident at Conv2, where a large number of MAC operations is re-
quired. As f increases towards 1.0, the Suitability Score for Conv2 reaches values close
to 1.0, indicating a strong alignment with the benefits offered by the Winograd algo-
rithm. In contrast, layers with lower computational loads, such as Convl and Conv5,
exhibit more modest improvements in their Suitability Scores. This trend suggests that
prioritising computational efficiency heavily influences layers with higher MAC val-

ues, enhancing their compatibility with the Winograd transformation.
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(Sscore) across the convolutional layers of AlexNet.
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VGG16 Analysis  For VGG16, the effect of  is even more pronounced across deeper
layers. Layers such as Conv2_1, Conv3_1, and Conv4_1, which require higher com-
putational effort, show substantial increases in Suitability Score as  rises. When B ap-
proaches 1.0, these layers achieve Suitability Scores nearing 1.0, whereas layers with rel-
atively lower computational demands maintain moderate scores. Compared to AlexNet,
VGG16 exhibits a more dynamic response to B variations due to its deeper and more
complex architecture. The analysis highlights that layers demanding greater computa-
tional resources are more amenable to optimisation via the Winograd method when B
is emphasised.
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FIGURE 3.4: Impact of the computational efficiency factor (8) on Suitability Score
(Sscore) across the convolutional layers of VGG16.

Comparative Insights Both AlexNet and VGG16 confirm the critical role of 8 in op-
timising layers with high computational loads. However, the response in VGG16 is
more differentiated across layers due to its deeper structure. AlexNet exhibits a dom-
inant peak around Conv2, whereas VGG16 displays multiple peaks across its deeper
stages, reflecting the broader distribution of computational intensity.



3.2.  Proposed Suitability Score For Convolution Layer Optimization using Winograd
Algorithm 49

3.2.3.6 Impact of Feature Complexity Factor () on Suitability Score

The impact of ¥ on Secore is analysed for both the AlexNet and VGG16 architectures, as
presented in Figures 3.5 and 3.6.

AlexNet Analysis For AlexNet, increasing the <y coefficient results in a slight but con-
sistent rise in the Suitability Score for layers with a higher number of output channels.
However, the overall impact of <y is less pronounced compared to the effects observed
with « and B. The changes in Sscore are more evident in Conv3 and Conv4, where the
output channel counts are relatively higher. Nonetheless, the variation in Sscore across
the layers remains limited, suggesting that feature complexity, although a relevant fac-

tor, plays a secondary role in determining Winograd applicability in this architecture.
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FIGURE 3.5: Impact of the feature complexity factor () on Suitability Score (Sscore)
across the convolutional layers of AlexNet.

VGG16 Analysis In the VGG16 model, a similar trend is observed. As <y increases,
layers with higher output channel counts show a moderate increase in Suitability Scores.
Layers such as Conv2_1, Conv3_1, and Conv4_1, which have higher numbers of output
channels, display the most noticeable improvements. However, compared to the in-
fluences of a and B, the effect of 7y remains relatively modest. The Suitability Scores
increase gradually but do not reach the high levels observed when « or 8 are priori-
tised.



50 Chapter 3. Layer-Level CNN Optimization for FPGA Implementation

1.0

o
o

R

Suitability Score (S)

\'\i

0.2 1

[SRURSEVR-RERSRVRSE'N

OCOOO0O000O0O0O <
eErNWwhoNRLOO®
o000 000000R
UhpWWNNRRoOl
o

o o7 R K24 el \\0, @ R &7 &7 e e Rl
& s <& s s s s s <&
Convolutional Layers (VGG16)

FIGURE 3.6: Impact of the feature complexity factor () on Suitability Score (Sscore)
across the convolutional layers of VGG16.

Comparative Insights While both architectures demonstrate an increase in Suitabil-
ity Score with rising <y, the degree of improvement is limited. Compared to a and S,
7 exerts a weaker influence on the Winograd compatibility of the layers. Moreover,
the effect of v appears to be more consistent in AlexNet than in VGG16, where deeper

layers exhibit more diverse responses due to complex feature hierarchies.

3.2.3.7 Conclusion on the Impact of Coefficient Factors

The comprehensive analysis of the three key coefficient factors—filter compatibility («),
computational efficiency (B), and feature complexity (y)—reveals distinct influences on
the Suitability Score (Sscore) across different convolutional architectures.

The filter compatibility factor («) is identified as the most decisive parameter, enhanc-
ing the Suitability Score for layers with smaller kernel sizes. This effect is particularly
pronounced in architectures such as VGG16, where consistent 3 x3 kernel configura-
tions allow for near-optimal Winograd applicability as « increases.

The computational efficiency factor (8) also demonstrates a strong influence, especially
in layers characterised by high computational loads. In both AlexNet and VGG16,
increasing p leads to substantial improvements in the Suitability Scores of deeper or
more computationally intensive layers, underlining the importance of targeting com-
putational demands for Winograd optimisation.

Conversely, the feature complexity factor (7y) exhibits a more limited impact. Although
increasing -y results in slight improvements in Suitability Scores for layers with higher
output channel counts, its influence remains secondary relative to « and . The findings
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suggest that while output feature complexity contributes to the optimisation landscape,
it should not be prioritised at the expense of kernel size and computational considera-

tions.

Overall, the results demonstrate that careful and context-specific adjustment of «, j3,
and v is essential for maximising the effectiveness of the Winograd algorithm across
diverse convolutional neural network architectures. Strategic weighting of these factors
can enhance computational efficiency and model performance during the optimisation

process.

3.3 Optimization Steps Using Suitability Score

The overall optimization procedure guided by the suitability score is illustrated in Fig.
3.7. This flowchart provides a high-level overview of the iterative process, where con-
volutional layers are categorized, adjusted, and evaluated until the defined constraints
on accuracy, computational load, and training time are satisfied. The subsequent sub-
sections present each stage of this procedure in detail.

Calculate
Sscm‘c ~
For All Layers /

A 4

Categorize Layers & Select
Lowest Sg.ore Layer No No No

A 4

Accuracy
Constraint
Satisfied?

Training Time
Constraint
Satisfied?

Computational
Load Constraint
Met?

Adjusting Kernel Size

v

Lo . Yes
Adjusting Filter Count

Optimization
Complete

FIGURE 3.7: Optimization steps using Sscore for convolutional layers

3.3.1 Categorizing Convolutional Layers Based on Suitability Score

The Suitability Score provides a systematic method for evaluating and optimising con-
volutional layers for computational efficiency. Therefore, it can be considered an in-
dicator of which layers require potential optimisation or which can maximise compu-

tational efficiency. Sscore can take values between 0 and 1, as shown in Secore € [0, 1].
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Different score ranges reflect varying degrees of compatibility with the Winograd algo-
rithm, directly influencing the layer’s computational efficiency and optimisation poten-
tial. Therefore, understanding what each score range signifies is essential for effectively
applying the Winograd algorithm.

In the following subsections, the suitability score thresholds are categorized into low,
medium, and high ranges, each explained through mathematical justification. In de-
termining the threshold values for Sgcore, balanced combination coefficiencies (v =
04,8 = 04,7 = 0.2) are preferred. This approach gives equal weight to kernel size
and computational load while also considering the number of output channels to a
limited extent. Thus, a more consistent and generally valid fitness score is obtained,
especially in large-scale models.

3.3.1.1 Low Suitability Score

A Low Suitability Score, defined as a value between 0 and 0.4, indicates that the layer is
less compatible with the Winograd algorithm compared to other layers. In such cases,
unless substantial modifications are made to the structure or parameters of the layer,
the application of the Winograd algorithm is likely to have only a minimal impact.

The upper bound of this range, Sscore = 0.4, is derived from the balanced coefficient
configuration. This value corresponds to scenarios where only a single factor con-
tributes fully to the suitability score while the others have no influence. For example,
if only the kernel size is favorable (i.e., Kf/K = 1) and the other factors are not (i.e.,

both ratios are zero), the score is calculated as:

Secore =a-1+pB-0+7-0=04 (3.6)

Similarly, if only the computational cost is favorable (i.e., MACs/MACs,s = 1), and

the other factors contribute nothing, the result remains:

Sscore =a-0+B-1+9-0=04 (3.7)

Considering equal contribution from the kernel size and MAC operations, and disre-

garding the effect of output channels, the threshold value is computed as:

Sscore =a-05+p-05+7-0=04 (3.8)
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This exclusion of the <y in specific threshold calculations stems from its relatively lower
influence on the applicability of the Winograd algorithm when compared to kernel size
(x) and computational cost (B).

3.3.1.2 Medium Suitability Score

A Medium Suitability Score, defined as a value greater than 0.4 and less than 0.7, in-
dicates that the layer demonstrates moderate compatibility with the Winograd algo-
rithm. Nevertheless, further optimisation of the layer’s structure or parameters may be
required in order to leverage the potential benefits offered by the algorithm fully.

To support this interval mathematically, two illustrative scenarios are considered. In
the first scenario, the kernel size is ideal (Kyf/K = 1), while the MAC and output
channel contributions are moderate (= 0.5). In the second case, the computational
complexity is ideal (MACs/MACs,s = 1), with the kernel and output channel values
being moderate. Assuming a balanced coefficient configuration (x = 0.4, = 04,y =
0.2), both cases yield a suitability score of:

Sscore =a-1+B-05+79-05=0.7 (3.9)

Secore =& -05+B-147-05=07 (3.10)

These examples support the idea that medium scores emerge when one parameter
strongly aligns with the Winograd characteristics, and the others offer partial support.
Such layers may benefit from further optimisation but already show a reasonable level
of compatibility.

3.3.1.3 High Suitability Score

A High Suitability Score, defined as a value between 0.7 and 1, implies that the layer
is already well aligned with the advantages offered by the Winograd transformation
and therefore requires minimal or no further optimisation. In such cases, the layer is
considered highly suitable for the direct application of the Winograd algorithm, thereby

enabling immediate performance improvements.

This score level typically emerges when multiple factors—kernel size, computational
load, and feature complexity—jointly contribute to the suitability. For instance, in a
balanced configuration with « = 0.4, B = 0.4, and v = 0.2, if all the ratios are optimal
(i.e., each equals 1), the score is calculated as:
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Sscoe =& 1+p-1+7-1=1 (3.11)

Such a result signifies that the layer meets all conditions for Winograd optimization and
can be directly utilized for acceleration without needing structural adjustments. These
layers are ideal targets for immediate algorithm application in performance-critical sys-

tems.

In summary, a high Suitability Score means that the layer can directly benefit from the
Winograd algorithm without requiring further modification. Conversely, a low score
indicates that the layer needs additional optimization to further benefit from the al-
gorithm. In addition, the value ranges defined for the Suitability Score are based on
the balanced coefficient combination scenario proposed in this study. These thresh-
olds aim to offer a general categorization framework for layer suitability. However, the
coefficient weights can be adjusted depending on the design priorities, such as mini-
mizing latency, reducing memory bandwidth, or maximizing speed-up. Therefore, the

classification ranges for Sscore can be redefined accordingly.

3.3.2 Adjusting Kernel Size

Low Sscore in convolutional layers is usually due to the kernel size not being configured
with a 3x3 kernel size, which is well compatible with the strengths of the Winograd
algorithm. Therefore, the first step to optimize layers with low Sscore is to adjust the

kernel size it is set according in (3.12). If the kernel size exceeds 5, it is set to 5 or 3.

5 ifK>5
K= (3.12)
3, otherwise

Since Winograd works more efficiently with a 3x3 kernel, a 3x3 kernel is recommended.
However, kernel size adjustment can be made according to the project’s purpose. The
purpose of adjusting kernel size is to increase the compatibility of the CNN structure
with the Winograd algorithm. However, decreasing kernel size causes Coyt to increase.
In this case, in the following layers, due to the change in Coyt, MACs may increase. In

this case, the number of kernels will be adjusted for the next steps.

Also, after adjusting the kernel size for the specified layers, the modified model needs
to be retrained and evaluated to measure its performance. This iterative process allows

us to evaluate kernel size’s impact on accuracy and computational efficiency.
y Y-



3.3. Optimization Steps Using Suitability Score 55

3.3.3 Adjusting Filter Count

After adjusting the kernel size for all convolutional layers, the next step focuses on in-
creasing the Sgeore Value of low-scoring layers. Since layers with high MACs and Coyt
influence the overall computational load, adjusting these layers becomes essential for
achieving balanced resource utilization in CNN architectures. Since these adjustments
impact multiple layers, careful evaluation is necessary to avoid unintended degrada-
tion in performance. In the filter count adjustment step, since Cy represents the maxi-
mum number of filters in a layer, the optimization first starts by reducing the number
of filters in layers with high C,.f values. The new reference filter count is assigned to the
second-highest filter count in the network. This adjustment is defined mathematically
as in (3.13).

Cnew,ref = max{x ‘ x € Cand x < Cref} (3'13)

Where:

Chew_ref represents the new reference filter count after adjustment.
¢ C denotes the set of all filter counts across convolutional layers.

* Cyr is the original reference filter count, representing the maximum filter count

in the set.
e max{-} selects the maximum value within the defined set.

* The condition x < C,.f ensures that only values smaller than the original refer-
ence filter count are considered.

For example, if the filter counts are {64,128,256,512,512} and C,, ¢ =512, the adjusted
reference filter count will be 256. Consequently, the layers that originally had 512 filters
will now be updated to have 256 filters. This update will change the MACs for these
layers. Therefore, the next step should focus on the layer with the highest MACs.

After calculating the MACs for each layer, the next step involves adjusting the filter
count of the layer with the highest MACs. Adjusting the number of filters impacts
the MACs calculation, thereby effectively decreasing the computational load. For this
purpose, the filter count of the layer with the highest MACs is adjusted to match the
second-highest MACs. Since MACs are proportional to the filter count, this adjustment
is performed by scaling the filter count accordingly, as in (3.14).

Target MACs

Initial MACs (3.14)

Cout_new = Cout,old X
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Where:

Cout_new represents the updated filter count for the layer with the highest MACs.

Cout_od is the original filter count for the same layer.

Target MACs corresponds to the second highest MACs value in the CNN model.

Initial MACs refers to the original MACs value of the layer with the highest
MAC:s.

By reducing the filter count in this manner, the MACs of the layer with the highest com-
putational demand are aligned with the second-highest MACs. This adjustment helps
balance the network’s overall computational load, preventing any single layer from
dominating the total MACs. However, this may cause the C,.f value to change again.
To prevent excessive accuracy loss, the adjustment process should adopt an iterative
approach with continuous evaluation Therefore, after each kernel amount changes, the
Sscore score is recalculated, and the kernel number is readjusted according to C,cf and
MACS,f.

It is important to note that reducing the filter count may impact the model’s learning
capacity and performance. Therefore, such adjustments should be carefully assessed to
ensure that computational gains are achieved without compromising model accuracy.
After each modification, the model must be retrained and reevaluated to ensure that the
adjustments improve both computational efficiency and overall accuracy. This iterative
approach ensures that all layers are progressively optimised while balancing computa-
tional demand and model performance. Finally, optimisation steps continue until the
model starts to fall below the expected accuracy percentage. This approach ensures
that computational gains are maximised while preserving model accuracy during the
entire optimisation process. When the optimization is completed, it will be observed
that the low Sscore in the layers increase compared to their initial values. Thus, the lay-

ers will become more compatible with the Winograd method.

3.4 Model Optimisation and Performance Evaluation

Experiments conducted on two structurally distinct CNN architectures, Alexnet and
VGG16, assess the effectiveness and generalisability of the proposed suitability score-
based optimisation approach. These models were selected due to their contrasting fea-
tures. AlexNet contains fewer convolutional layers with various kernel sizes (11x11,
5x5, and 3x3). Furthermore, VGG16 has a deeper architecture consisting of multiple
convolutional layers with uniform 3x3 kernels. This contrast allows us to evaluate the
adaptability of the optimisation strategy across different architectural patterns. The fol-

lowing sections present the experimental setup and detailed performance evaluations.
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3.4.1 Experimental Settings

The effectiveness of the proposed optimisation approach is evaluated using a publicly
available oesophageal endoscopy image dataset [118]. The dataset contains 11662 RGB
images; however, for computational feasibility and to facilitate the iterative optimisa-
tion procedure, a subset of 800 images was randomly selected. This subset comprises

400 oesophageal cancer images and 400 healthy images, ensuring class balance.

(C) Healthy (D) Healthy

FIGURE 3.8: Diseased and healthy endoscopy images

The images in the dataset have resolutions that vary between 1012 and 1221 pixels. All
images were resized and preprocessed before being fed into the CNN models. Fig-
ure 3.8 displays sample images from both diseased and healthy classes.

3.4.2 Performance Evaluation of Iterative Refinement in AlexNet

Table 3.3 illustrates the iterative optimisation process applied to the AlexNet architec-
ture using the proposed Suitability Score. Initially, the default AlexNet configuration
employs convolutional layers with varying kernel sizes (11x11, 5x5, and 3x3) and a
large stride of 4x4 in the first layer. This setup results in a total MAC count of approx-
imately 10.72 x 10%, an epoch time of 585.28 seconds, and a test accuracy of 84.40%.

In the first iteration, the kernel sizes of the first and second layers were reduced to en-
hance compatibility with the Winograd algorithm. However, the stride in the first layer
was retained as 4x4. This mismatch between kernel and stride negatively impacted
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model performance, reducing accuracy to 68.12% and F1 score to 63.18%, despite slight

improvements in computational cost.

To address this issue, the second iteration harmonised both kernel size and stride, set-
ting all kernels to 3x3 and all strides to 1x1. While this alignment improved Wino-
grad’s suitability, it introduced a substantial computational overhead. The MAC count
increased to 126.48 x 10%, and the epoch time rose to 3668.97 seconds representing in-
creases of more than 11.79x and 6.26 x, respectively, compared to the default model.
Furthermore, accuracy and F1 score dropped to 56.52% and 45.19%, indicating poor
performance despite increased complexity.

From iterations 3 through 6, the number of filters in high-complexity layers was gradu-
ally reduced. This led to a progressive recovery in model performance while reducing
MACs. For example, iteration 5 has an epoch time of 1476.86 seconds and improved
accuracy to 73.75%. Suitability scores across layers also increased, indicating better
alignment with the Winograd method.

Iterations 7 and 8 involved more aggressive compression. The number of filters was
reduced notably in later layers, leading to a compact network with total MACs as low
as 0.86 x 108 in iteration 8. Remarkably, despite this drastic reduction in computa-
tional load, iteration 8 achieved the highest recorded accuracy of 97.50% and F1 score of
97.50%, with an epoch time of only 350.47 seconds. Compared to the default AlexNet,
this reflects a ~12.46 x reduction in MACs and 1.67 x reduction in training time while

also enhancing predictive performance.
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CNN Conv. Kernel Filters Stride MACs Sgoore Accuracy F1 Score  Epoch
Model Layer Size (108) (%) (%) Time (s)

1 11x11 96 4x4 1.02 0.24
2 5x5 256 1x1 4.48 0.77
AlexNet 3 3x3 384 1x1 1.49 0.73 84.37 84.40 585.28
4 3x3 384 1x1 2.24 0.80
5 3x3 256 1x1 1.49 0.66
1 5x5 96 4x4 0.22 0.32
2 3x3 256 1x1 1.86 0.82
Iteration1 3 3x3 384 1x1 1.73 0.87 68.12 63.18 495.48
4 3x3 384 1x1 2.60 1.00
5 3x3 256 1x1 1.73 0.80
1 3x3 48 1x1 1.28 0.46
2 3x3 256 1x1 28.20  0.80
Iteration2 3 3x3 384 1x1 27.70  0.87 55.62 45.19 3668.97
4 3x3 384 1x1 41.60 1.00
5 3x3 256 1x1 27.70  0.80
1 3x3 48 1x1 1.28 0.47
2 3x3 256 1x1 28.20 0.93
Iteration 3 3 3x3 384 1x1 27.70  0.99 51.24 36.05 3049.09
4 3x3 96 1x1 1040  0.60
5 3x3 256 1x1 6.94 0.63
1 3x3 48 1x1 1.28 0.49
2 3x3 256 1x1 28.20 1.00
Iteration 4 3 3x3 256 Ix1 1850 0.86 60.00 52.70 2783.16
4 3x3 96 1x1 6.94 0.57
5 3x3 96 1x1 6.94 0.70
1 3x3 48 1x1 1.28 0.67
2 3x3 64 1x1 7.06 0.93
Iteration 5 3 3x3 64 1x1 1.16 0.60 73.75 68.12 1476.86
4 3x3 96 1x1 1.73 0.70
5 3x3 64 1x1 1.73 0.63
1 3x3 24 1x1 0.32 0.76
2 3x3 16 1x1 0.44 0.85
Iteration 6 3 3x3 64 1x1 0.29 0.86 94.99 94.98 465.49
4 3x3 24 1x1 0.43 0.87
5 3x3 64 1x1 0.43 0.99
1 3x3 12 1x1 0.16 0.66
2 3x3 16 1x1 0.22 0.76
Iteration7 3 3x3 64 1x1 0.29 1.00 97.25 94.66 398.63
4 3x3 12 1x1 0.22 0.74
5 3x3 64 1x1 0.22 0.90
1 3x3 10 1x1 0.13 0.67
2 3x3 12 1x1 0.22 0.90
Iteration 8 3 3x3 40 1x1 0.23 0.98 97.50 97.50 350.47
4 3x3 12 1x1 0.14 0.70
5 3x3 40 1x1 0.14 0.83

TABLE 3.3: Iterative improvement of AlexNet MACs, Sgcore, and Performance Metrics
(witha =04, =04,y =0.2)
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3.4.3 Performance Evaluation of Iterative Refinement in VGG16

Table 3.4 presents the effects of the optimisation steps applied to the VGG16 model in
detail. In the initial configuration, the suitability scores in many model layers remain
below 0.7, indicating limited compatibility with the Winograd algorithm. Moreover,
the initial model required approximately 153.5 x 108 MAC operations, with an epoch
time of 3240.89 seconds.

In Iteration 1, adjustments to kernel sizes led to improved suitability scores in sev-
eral layers. Both accuracy and the F1 score slightly increased, reaching 96.88%. From
Iteration 2 through Iteration 6, a progressive reduction in the number of filters in lay-
ers with high MAC values yielded higher suitability scores. Following retraining, the
model maintained its accuracy while achieving significant performance gains. For in-
stance, the epoch time dropped to 501.39 seconds in Iteration 5 and to 363.88 seconds in
Iteration 6, achieving speedups of 6.5x and 8.9 x, respectively, compared to the default
model.

Beyond Iteration 7, more aggressive compression continued to increase suitability scores,
but slight decreases in accuracy and F1 score were observed, indicating a limit in how
far compression could be applied without affecting performance.

In the final iteration, the total number of MAC operations was reduced from 153.5 x 108
to 1.90 x 108, corresponding to an approximate 80.91x reduction in computational
complexity. Similarly, the epoch duration decreased from 3240.89 seconds to 155.10
seconds, yielding a 20.89 x improvement in processing speed. Remarkably, this sub-
stantial reduction in computational cost was achieved without compromising accuracy;
on the contrary, model accuracy improved from 95.63% to 97.50%.

In conclusion, the proposed iterative optimization strategy enhanced computational ef-
ficiency and Winograd compatibility while maintaining or enhancing the model’s pre-

dictive performance.
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Model Conv Filters MACs Secore Accuracy F1Score Epoch

Layer (108) (%) (%) Time (s)
1 64 0.86 0.44
2 64 18.5 0.83
3 128 9.25 0.65
4 128 18.5 0.85
5 256 9.25 0.70
6 256 18.5 0.90
VGG16 7 256 18.5 0.90 95.63 95.63 3240.89
8 512 9.25 0.80
9 512 18.5 1.00
10 512 18.5 1.00
11 512 4.62 0.70
12 512 4.62 0.70
13 512 4.62 0.70
1 64 0.86 0.47
2 64 18.5 0.85
3 128 9.25 0.70
4 128 18.5 0.90
5 256 9.25 0.80
6 256 18.5 1.00
Iteration 1 7 256 18.5 1.00 96.88 6.88 2622.53
8 256 4.62 0.70
9 256 4.62 0.70
10 256 4.62 0.70
11 256 1.16 0.63
12 256 1.16 0.63
13 256 1.16 0.63
1 64 0.86 0.49
2 32 9.25 0.83
3 128 4.62 0.70
4 64 9.25 0.85
5 256 4.62 0.80
6 128 9.25 0.90
Iteration 2 7 128 4.62 0.70 96.25 96.25 1432.31
8 256 231 0.70
9 256 4.62 0.80
10 256 4.62 0.80
11 256 1.16 0.65
12 256 1.16 0.65

—_
[68)

256 1.16 0.65
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1 64 0.86 0.54
2 32 9.25 0.85
3 128 4.62 0.80
4 64 9.25 0.90
5 64 2.31 0.70
6 128 4.62 0.80

Iteration 3 7 128 4.62 1.00 94.38 94.37 1013.92
8 128 1.16 0.65
9 128 1.16 0.65
10 128 1.16 0.65
11 128 0.29 0.61

12 128 0.29 0.61
13 128 0.29 0.61
1 64 0.86 0.58
2 16 0.46 0.83
3 128 231 0.80
4 32 0.46 0.85
5 128 1.16 0.70
6 128 4.62 1.00

Iteration 4 7 128 4.62 1.00 98.12 98.12 808.28
8 128 1.16 0.70
9 128 1.16 0.70

10 128 1.16 0.70
11 128 0.28 0.62
12 128 0.28 0.62
13 128 0.28 0.62
1 32 0.43 0.53
2 16 2.31 0.82
3 128 2.31 1.00
4 16 2.31 0.82
5 128 0.57 0.70
6 64 231 0.90

Iteration 5 7 64 1.16 0.70 98.12 98.13 501.39
8 64 0.57 0.70
9 128 1.16 0.80

10 128 1.16 0.65
11 128 0.28 0.65
12 128 0.28 0.65
13 128 0.28 0.65
1 32 0.43 0.57
2 16 2.31 0.85
3 64 1.16 0.80
4 16 1.16 0.65
5 64 0.28 0.65
6 64 1.16 0.80

Iteration6 7 64 1.16 0.80 98.75 98.75 363.88
8 64 0.28 0.65
9 64 0.28 0.65

10 64 0.28 0.65
11 64 0.07 0.61
12 64 0.07 0.61
13 64 0.07 0.61
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1 16 0.21 0.60
2 8 0.57 0.82
3 32 0.28 0.70
4 8 0.28 0.62
5 64 0.14 0.70
6 32 0.57 0.90
Iteration 7 7 32 0.28 0.70 97.50 97.50 206.26
8 64 0.14 0.70
9 64 0.28 0.80
10 64 0.28 0.80
11 64 0.07 0.65
12 64 0.07 0.65
13 64 0.07 0.65
1 16 0.217 0.65
2 8 0.578 0.85
3 32 0.289 0.80
4 8 0.289 0.80
5 32 0.072 0.65
6 32 0.289 0.80
Iteration 8 7 32 0.289 0.80 96.88 96.87 173.78
8 32 0.072 0.65
9 32 0.072 0.65
10 32 0.072 0.65
11 32 0.018 0.61
12 32 0.018 0.61
13 32 0.018 0.61
1 8 0.108 0.60
2 8 0.289 0.85
3 32 0.289 1.00
4 8 0.289 0.85
5 32 0.072 0.70
6 32 0.289 1.00
Iteration 9 7 32 0.289 1.00 97.50 97.50 155.10
8 32 0.072 0.70
9 32 0.072 0.70
10 32 0.072 0.70
11 32 0.018 0.62
12 32 0.018 0.62
13 32 0.018 0.62

TABLE 3.4: Comparison of VGG16 and its Iterations on MACs, Suitability Score, Test
Accuracy, F1-Score, and Epoch Time.
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3.5 Summary

This chapter presented an iterative optimisation framework guided by a Suitability
Score, aiming to align CNN architectures more effectively with Winograd convolution-
based accelerators. By evaluating kernel size, computational complexity, and output
channels, the score enabled targeted modifications to individual layers, enhancing com-
putational efficiency and hardware compatibility without compromising model accu-

racy.

The methodology demonstrated substantial reductions in total MAC operations and
training time through systematic refinements applied to benchmark architectures such
as AlexNet and VGG16. Importantly, these improvements were achieved while main-
taining — and in some cases even improving — inference accuracy, highlighting the
effectiveness of selective, layer-wise optimisation over uniform network compression

strategies.

Although the MAC counts presented in Section 3.4 were calculated based on conven-
tional convolution operations (2.6), the optimised models remain fully deployable on
standard platforms. Furthermore, when deployed with Winograd convolution, an ad-
ditional MAC reduction of approximately 2.25x can be realised in compatible layers,
offering further acceleration potential.

Critically, the proposed Suitability Score-based framework addresses key limitations
that hinder the practical adoption of Winograd-based acceleration—specifically, filter
size constraints and inefficiencies arising from uniform application. By guiding archi-
tectural modifications tailored to each layer, the approach improves the practical feasi-
bility of deploying Winograd-optimised CNNs on resource-constrained platforms such
as FPGAs.

Overall, this chapter established a hardware-aware, structure-specific optimisation method-
ology that strengthens CNN models’ computational and practical deployability as-
pects. These advances form the foundation for the next chapter, which builds upon
the optimised models by introducing adaptive hardware pipelining strategies to en-

hance inference throughput and resource efficiency in FPGA deployments.
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Chapter 4

Adaptive Hardware Parallelism for
Efficient CNN Acceleration on
FPGAs

4.1 Introduction

Building upon the previous chapter’s analysis of convolutional layer characteristics
using Suitability Scores, this chapter presents a hardware-level optimisation method-
ology to enhance CNN acceleration efficiency on FPGAs. The Suitability Score frame-
work, originally developed to quantify convolutional layers’ computational intensity
and structural complexity, is adapted in this chapter to guide layer-specific hardware
parallelism. By aligning pipelining strategies with the computational profile of each
layer, the proposed approach enables more effective balancing of performance and re-

source usage in hardware deployment.

Conventional FPGA-based CNN implementations typically apply uniform hardware
parameters, such as fixed pipeline depth and loop unrolling factors, across all layers
[119]. However, this layer-agnostic approach overlooks the diverse computational de-
mands and structural complexity of different CNN layers, often leading to inefficient
hardware utilisation and poor scalability when targeting larger or more complex mod-
els [81].

This chapter proposes a simulation-guided hardware optimisation strategy that dy-
namically assigns customised pipeline initiation intervals ( Ij) for each convolutional
layer. By analysing the computational intensity and structural complexity of each layer,
the method adaptively tunes parallelism settings at the HLS stage. This results in im-
proved performance and resource efficiency compared to static, uniform pipelining

strategies.
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The proposed methodology achieves a balanced trade-off between latency and resource
utilisation, particularly with respect to DSP, LUT, and FF usage. This approach ad-
dresses key limitations identified in traditional fixed-parameter designs.

Overall, this chapter establishes a structured hardware design methodology that en-
hances resource-aware CNN deployment, setting the stage for the system-level optimi-
sations that will be explored in Chapter 5.

4.2 Software-to-Hardware Optimization Workflow for CNN-to-
FPGA Deployment

As illustrated in Figure 4.1, the proposed design flow for CNN-to-FPGA deployment

is organised into three main stages:

* Model Training and Hardware-Level Translation: The process begins with train-
ing and optimising a CNN model using the Suitability Score framework within
Python-based environments such as TensorFlow or PyTorch. Once the model is
optimised, its structural attributes and learned parameters are systematically ex-
tracted. These are translated into an HLS-compatible C++ representation through

a custom Python-based automation process, ensuring that the network’s parametrised

structure is preserved.

¢ Hardware-Oriented Optimisation and RTL Generation: The generated C++ code
is then refined through HLS tools to optimise the design for FPGA implementa-
tion. During this stage, hardware-specific optimisations such as pipelining, par-
allelism, and resource sharing are applied. Simulation and design space explo-
ration are carried out to balance latency, throughput, and resource utilisation.

* FPGA Integration and Bitstream Generation: After optimisation, the C++ de-
sign is synthesised into Register-Transfer Level (RTL) descriptions. The synthe-
sised IP cores are integrated into a larger FPGA system, placed and routed based
on the target architecture, and programmed onto the FPGA device as a bitstream.
Final verification and validation are performed on the physical hardware.

This structured process streamlines the transition from a trained CNN model to FPGA
deployment by systematically handling model export, hardware-oriented optimisa-
tion, and physical implementation. Although the design flow automates significant
portions of the translation, broader system-level synthesis and integration still follow
standard FPGA design methodologies.

The subsequent subsections provide a detailed explanation of each stage of the pro-
posed workflow. First, the model training and preparation phase is described, with a
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FIGURE 4.1: Automated CNN Model Translation from Python to HLS-Compatible
C++ for FPGA Deployment

focus on extracting structural and parametric information for HLS translation. Then,
the hardware-oriented optimisation techniques applied during the HLS process are
outlined. Finally, the deployment of the optimised CNN model onto the FPGA device
is presented, covering the generation of the RTL, IP integration, and bitstream creation.
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4.2.1 Model Training and Hardware-Level Translation

The CNN model is trained under a structural optimisation regime guided by the pro-
posed S Score methodology, as detailed in Chapter 3. In this approach, the model archi-
tecture is dynamically adapted during the training process to maximise hardware effi-
ciency metrics while preserving inference accuracy. As a result, the final trained model
is inherently optimised for hardware deployment without requiring post-training struc-
tural modifications.

Following the S Score-based training, the optimised CNN model is systematically anal-
ysed in the Python environment to extract the necessary information for hardware

translation. This information is categorised into two groups:

¢ Structural attributes: These include the type of each layer (such as convolutional,
pooling, or fully connected), the number of filters, kernel dimensions (height
and width), stride values (vertical and horizontal), padding schemes ('valid” or
‘same’), the number of input and output channels, and the activation function
type (if applicable).

* Learned parameters: These are the trained weight tensors and bias vectors asso-

ciated with each layer.

To facilitate hardware integration, the structural attributes are directly recorded into
C/C++ header files (.h), where each attribute is defined as a compile-time constant or
macro. Meanwhile, the learned parameters are initially saved in structured . json files.
These . json files are subsequently processed by custom Python scripts to generate C
header and source files containing parameter arrays. A user-defined data type, data_t,
is employed for these arrays, which can be configured to represent either floating-point
or fixed-point formats depending on hardware requirements. This flexible type system
allows hardware implementations to balance precision and resource usage. An illus-
trative example of the generated header file for the kernel weights of a convolutional
layer is shown in Listing 4.1.

#ifndef CONV1_WEIGHTS_3D
#define CONV1_WEIGHTS_3D

data_t convl_weights [KERNEL_HEIGHT] [KERNEL_WIDTH] [IN_CHANNELS][
OUT_CHANNELS] = {
{ { {0.234, -0.128, 0.567, ...}, {...}, ...}, {...}, ...},
.
#endif // CONV1_WEIGHTS_3D

LISTING 4.1: Example of generated kernel weights header file with parametric
dimensions
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Once the HLS-compatible C++ code for the CNN model is developed, the hardware
structural design becomes fixed and requires no modification unless the high-level net-
work topology itself changes. The parametrised layer templates, which encapsulate all
operational logic and dataflow structures, remain unchanged across different training

instances.

After each training, the updated structural attributes and the learned parameters (weights
and biases) are automatically extracted and exported into C-compatible formats. The
structural attributes update the compile-time configuration constants, while the learned
parameters are integrated as const arrays within the existing HLS C++ design. This
process enables the hardware implementation to adapt to the newly trained model

without requiring any manual modification to the functional code structure.

As a result, the hardware translation workflow becomes highly efficient: the structural
design is created once, and only the parameter arrays need to be updated for different
trained models. This method reduces development time, eliminates code redundancy,

and ensures consistent hardware behaviour across retrained networks.

4.2.2 Hardware-Oriented Optimisation and RTL Generation

In this phase, the HLS-compatible C++ code—generated from the trained and opti-
mised CNN model—is synthesised into RTL representations using Xilinx Vivado HLS
2023.2. Each C++ function corresponds to a specific CNN layer, such as a convolu-
tional, pooling, or fully connected layer, and is individually analysed and translated
into a dedicated hardware module.

Several hardware optimisation directives were systematically applied during the high-
level synthesis process to enhance performance and resource efficiency. These optimi-

sations included:

* Loop Pipelining: Key computational loops were pipelined to reduce I; and im-
prove overall throughput.

* Loop Unrolling: Selective unrolling of inner loops was applied to increase paral-

lelism, subject to resource availability constraints.

¢ Array Partitioning: Arrays representing weights, activations, and intermediate

buffers were partitioned to enable concurrent memory accesses.

* Resource Binding: Specific operations, particularly multipliers and adders, were

explicitly bound to DSP blocks to maximise performance efficiency.

¢ Dataflow Optimisation: Load, compute, and store operations were task-pipelined

to achieve higher system-level concurrency.
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* Interface Specification: AXI4-Stream and AXI4-Lite interfaces were defined for
external memory and control signal integration, facilitating seamless system-level

integration.

In addition to performance-oriented optimisations, careful monitoring of FPGA re-
source utilisation was conducted throughout the synthesis process. HLS-generated re-
ports detailing LUT, FF, DSP, and BRAM usage were systematically reviewed. Based
on these reports, iterative refinements were applied to balance latency, throughput, and
hardware area, ensuring that the final design would meet the constraints of the target
FPGA device.

It is important to note that if the synthesised design fails to meet the FPGA resource
constraints after high-level synthesis, an additional optimisation step is performed. In
such cases, the model structure is revisited at the Python level, and layer-level modifi-

cations are applied to adjust computational complexity.

To facilitate this process, the proposed workflow integrates an adaptive Suitability
Score strategy that dynamically adjusts the parallelism and resource demands of in-
dividual CNN layers according to the available FPGA resources. The adaptive S Score
is also utilised during the HLS stage to guide layer-level parallelism decisions, ensur-
ing that the generated hardware modules balance performance and resource utilisation
effectively. This adaptive approach enables the model to be systematically re-optimised
and re-synthesised as necessary to meet design constraints. Further details regarding
the adaptive S Score methodology are presented in Section 4.3 of this chapter.

This stage resulted in a complete set of synthesisable RTL descriptions, including Ver-
ilog files and associated synthesis reports. These RTL modules formed the foundation
for subsequent FPGA integration and bitstream generation phases.

4.2.3 FPGA Integration and Bitstream Generation

After the high-level synthesis phase, the generated RTL modules were integrated into
a complete hardware system using Xilinx Vivado. During this stage, the synthesised
components were mapped onto the physical resources of the target FPGA, including
logic blocks, DSP slices, and BRAMs. Placement and routing processes were conducted

to optimise the timing and resource utilisation of the design.

Following successful placement and routing, the hardware system was compiled into
a configuration bitstream file, enabling the programming of the FPGA device. Fun-
damental timing analysis and functional verification steps were performed to ensure
the integrated system met initial design specifications and operated reliably under ex-
pected conditions.
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A PCle interface was employed during the system integration to facilitate high-speed
data transfer between the host machine and the FPGA. Input data for the CNN infer-
ence operations was transmitted over the PCle connection, and the resulting output
predictions were likewise retrieved via the same interface, ensuring efficient commu-

nication for real-time hardware validation.

Chapter 5 presents the full experimental validation of the optimised CNN models on
FPGA hardware, including performance metrics such as inference latency, throughput,
and resource utilisation. This subsequent analysis provides a comprehensive evalua-
tion of the hardware deployment results.

4.3 Optimising CNN Deployment on FPGA with Layer-Specific
Design Strategies

This section introduces a layer-specific optimisation methodology to enhance the over-
all effectiveness of CNN deployment on FPGA platforms. Specifically, the approach
aims to improve performance—measured in terms of inference latency, throughput, and
model accuracy—and efficiency, referring to the optimised use of FPGA hardware re-
sources such as BRAMs, DSPs, and logic slices. Instead of applying a uniform hardware
configuration across the entire model, this approach dynamically tunes hardware-level
optimisation parameters such as pipelining depth, loop unrolling, and memory parti-

tioning based on the computational characteristics of each convolutional layer.

This methodology considers layer-wise computational requirements and previously
defined Suitability Scores (introduced in Chapter 3), enabling differentiated hardware
configurations. Layers with intensive arithmetic operations are assigned more opti-
misation directives to boost parallelism, while less demanding layers are configured

conservatively to save area and power.

This layer-aware design strategy improves the balance between performance and re-
source utilisation and provides a flexible framework applicable to diverse CNN archi-
tectures and FPGA platforms. It also facilitates scalable deployment under varying
hardware constraints without compromising model fidelity.

This section also discusses hardware-level optimisation of convolutional layers, focus-
ing on implementations based on the Winograd minimal filtering algorithm. The de-
sign emphasises architectural decisions such as pipelining, loop unrolling, and memory
partitioning, all tailored per layer based on computational demand and resource avail-
ability. These strategies aim to enhance latency and throughput performance in FPGA
deployments.
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4.3.1 Architectural Design of Winograd-Based Convolutional Layers on FPGA

This section presents the architectural design of the Winograd-based convolutional pro-
cessing unit implemented on the FPGA. To enhance computational efficiency, a tiled
processing strategy is adopted, where the convolution operation is divided into m x m
output tiles, computed using the Winograd transformation F(m,r) for an r x r kernel.

In this design, the convolution between a given filter ¢ and an input tile d is performed
using the transformation: Y = AT ((GgGT) o (BTdB)) A. Where G, B, and A are pre-
computed transformation matrices corresponding to the filter, input, and output do-
mains, respectively, and Y denotes the resulting output tile.

The computation proceeds through three sequential stages. Firstly, the input and filter
data are transformed into the Winograd domain. Specifically, the input tiles are trans-
formed as V = BTdB, while the filters are transformed as U = GgGT, reducing the
computational complexity compared to standard convolution. Secondly, the core com-
putation is carried out via element-wise multiplication of the transformed input and
filter data, producing the intermediate matrix M = U o V. Finally, in the output trans-
formation stage, the matrix M is mapped back to the spatial domain using Y = ATMA,
yielding the final output tile.

The hardware realisation of this flow is depicted in Figure 4.2. The architecture is
designed in a modular fashion to maximise resource reuse, pipeline efficiency, and
throughput. The Winograd PE consists of the following principal components:

¢ Input Tile Buffer: Temporarily stores input tiles fetched from external memory.
This buffering ensures that input data is continuously supplied to the transfor-
mation units without stalling the pipeline. By decoupling memory access from
computation, it maintains high throughput and prevents pipeline stalls due to

memory latency.

¢ Filter Buffer: Holds the 3 x 3 convolution kernels for each input channel. Stor-
ing filters locally minimises repeated memory accesses, reduces external mem-
ory bandwidth requirements, and allows fast reconfiguration when switching be-
tween different convolutional layers during inference.

e Transform Units: Execute the BTdB, GgGT, and ATMA transformations. These
units are heavily pipelined to maximise concurrency and minimise the overall
computation time. By decomposing convolution into structured matrix opera-
tions, they exploit arithmetic regularity and reduce the number of multiplications

compared to direct convolution.
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* ROM Blocks: Store the constant matrices A, B, and G, eliminating the need to
recompute or reload them during operation. This greatly reduces computational
overhead, saves logic resources, and simplifies the control path design.

¢ Intermediate Buffers: Temporarily store the intermediate matrices U, V, and M
between transformation stages. These buffers ensure seamless data handoff be-
tween pipeline stages, avoiding data hazards and supporting continuous high-

throughput pipelined execution.
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FIGURE 4.2: Winograd Processing Element (PE) Architecture with Input/Output
Transform Buffers and Dataflow

This design’s modularity enables flexible scaling across different CNN architectures
and supports parallel instantiation of multiple PEs, further enhancing computational
throughput on FPGA platforms. Overall, the modular Winograd PE architecture is de-
signed to efficiently map convolution operations onto FPGA hardware by leveraging
pipelined matrix transformations and localised data storage. This organisation reduces
the arithmetic complexity of convolutions and improves dataflow efficiency, contribut-
ing to better utilisation of FPGA resources. Moreover, the modular structure facilitates
scalable deployment, making it adaptable to different CNN architectures and perfor-

mance requirements.

However, while the modular design enhances scalability and resource reuse, achiev-
ing high computational throughput and low inference latency necessitates further fine-
grained optimisations at the operation level. In particular, pipelining techniques are
critical to maximising concurrency within the processing elements and minimising ex-

ecution bottlenecks.
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Building upon this foundation, the following section explores how pipelining tech-
niques are systematically employed to optimise computational throughput and min-
imise latency in FPGA-based CNN acceleration.

4.3.2 Pipelining of FPGA-based CNN Acceleration

In high-level synthesis for FPGA-based deep learning acceleration, performance bottle-
necks often stem from sequential loop execution and inefficient hardware scheduling.
Pipelining and loop unrolling are commonly employed as key optimisation strategies
to overcome these limitations. These techniques enable the parallel execution of opera-
tions, improving throughput and reducing latency.

While pipelining overlaps the execution stages of consecutive loop iterations, loop un-
rolling replicates hardware resources to perform multiple iterations simultaneously.
However, the benefits of these strategies are tightly coupled with the structure and
computational characteristics of the specific CNN layers. Without careful tuning, appli-
cation of pipelining and unrolling may lead to excessive utilisation of FPGA resources,
such as DSP blocks and BRAMs, potentially violating timing or area constraints.

Instead of applying uniform optimisation settings across all convolutional layers, it is
crucial to adopt a layer-specific strategy to avoid these issues. This section explores the
effectiveness of pipelining and loop unrolling by conducting systematic experiments
with varying parameter configurations. In particular, when applied to Winograd-based
convolutional layers, the effects of varying pipeline initiation intervals and unrolling
factors on performance, latency, and resource utilisation are investigated. These in-
sights support a more adaptive optimisation approach tailored to each layer’s compu-
tational characteristics.

To analytically characterise these techniques, consider a loop with N iterations and a
latency of L clock cycles per iteration. Without pipelining, the total latency is N x L.
Applying pipelining with an I of k reduces the latency to approximately (N —1) x k +
L, as anew iteration begins every k cycles. When k approaches 1, throughput improves,
although this may come at the cost of increased resource usage.

Similarly, unrolling a loop with a factor of U allows U iterations to execute in parallel,
reducing the total latency to ¥ x L. While pipelining and unrolling are effective meth-
ods for accelerating loop execution, they must be carefully calibrated in FPGA imple-
mentations to maintain resource efficiency. In CNN accelerators—where computations
often consist of deeply nested loops—layer-aware optimization of these techniques is

critical for achieving a balanced trade-off between performance and hardware cost.

| for (int £ = 0; f < num_filters; f++) {
2 for (int ¢ = 0; c < input_channels; c++) {
// Load 3x3 filter from Filter Buffer
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ExtractFilter (weights, Filter_Buffer, f, c);
// Transform filter using Filter Transform Unit (G)
Filter_Transform_Unit (Filter_Buffer, U_Buffer);
for (int i = 0; i < num_tiles; i++) {
for (int j = 0; j < num_tiles; j++) {
#pragma HLS PIPELINE II=PIPELINE_FACTOR
// Load 4x4 tile from Input Tile Buffer
LoadInputBlock (input_image, Input_Tile_Buffer, i, j, c);
// Transform input using Input Transform Unit (B)
Input_Transform_Unit (Input_Tile_Buffer, V_Buffer);
// Element-wise multiplication in PE
ComputeHadamardProduct (V_Buffer, U_Buffer, M_Buffer);
// Output transform (A)
Output_Transform_Unit (M_Buffer, Output_Tile);
// Store results
StoreOutput (output_feature_map, Output_Tile, i, j, £);
}rr}

LISTING 4.2: Winograd Convolution with Hardware-Aligned Terminology

To maximise throughput and reduce latency in FPGA-based CNN implementations,
loop pipelining is applied to the core structure of convolutional layers. A simplified
view of the pipelined loop structure used in the first convolutional layer is shown in
Listing 4.2. The #pragma HLS PIPELINE directive is inserted into the inner loops to

enable concurrent execution of loading, transformation, and output operations.

4.3.3 Impact of Pipeline Depth on Latency and Resource Efficiency

To analyse the effect of pipelining depth on latency across convolutional layers, the
Suitability Score-based AlexNet architecture was applied on the Vitis HLS tool. The
experiments were conducted using HLS via Vitis HLS, without performing RTL im-
plementation, physical place-and-route, or FPGA bitstream generation. Instead, per-
formance metrics such as latency and resource usage were extracted from the post-
synthesis reports generated by Vitis HLS for the target AMD Xilinx Kintex UltraScale+
FPGA (XCKUS5P). The design was modelled in C++ and utilised 32-bit single-precision
floating-point arithmetic to maintain consistency with standard Python-based infer-

ence behaviour.

This experiment focuses on understanding resource limitations and pipelining effi-
ciency under full-precision conditions, isolating the effects of hardware-level schedul-
ing (e.g., pipelining, loop unrolling) without applying quantisation or bitwidth reduc-
tion. Each convolutional layer was synthesised individually using different #pragma
HLS PIPELINE Ijvalues: I; =1, 2, 3, 4, 8, 16. TheIjin HLS refers to the num-
ber of clock cycles between the start of consecutive loop iterations. A lower I; indicates
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higher concurrency, resulting in reduced latency, while a higher I; may lower resource
utilisation but increase latency.

TABLE 4.1: Classification of pipelining configurations based on I; and design trade-

offs.
Configuration I; Range Description
Low Latency 10 Prioritises speed'through aggressive pipelining,
with higher resource usage.
Moderate 34 Offers a trade-off between latency and hardware

utilisation.
Minimises resource usage at the expense of

Resource-Efficient 8 or more .
increased latency.

To support consistent analysis of the experimental results, pipelining configurations are
grouped into three categories based on I values and their associated design trade-offs,
as shown in Table 4.1. The Low Latency configuration ( Iy = 1-2) emphasises minimal
execution delay by enabling deeper pipelining, which typically increases hardware re-
source usage. The Moderate configuration ( I} = 3—4) represents a compromise between
latency and resource utilisation. Lastly, the Resource-Efficient configuration ( Iy > 8) re-
duces logic and memory overhead by limiting concurrency, resulting in higher latency
but improved hardware efficiency.
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FIGURE 4.3: Latency comparison across different pipeline Iy for convolutional layers
in the Suitability Score-based AlexNet architecture.

The effect of different pipeline I; was evaluated across all convolutional layers to as-
sess their influence on performance. As shown in Figure 4.3, lower Ij values (e.g., I1=1)
provide the lowest latency due to maximum parallelism enabled by the pipeline archi-
tecture. Conversely, increasing the I; value reduces the concurrency of the operations,
resulting in higher latency across all layers.

Convl and Conv2, which operate on high-resolution feature maps (e.g., 224 x224 x3),
exhibit the most dramatic latency degradation as the I; value increases. This is at-

tributed to the large volume of data that needs to be processed per cycle, making them
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highly sensitive to pipeline depth. Conv3 demonstrates a plateau in latency at I;=3-4,
indicating the existence of possible pipeline stalls or memory access bottlenecks that

limit performance scaling.

Conv4, positioned deeper in the network, processes reduced feature map sizes while
still maintaining a substantial filter count. Interestingly, it demonstrates a moderate
latency increase pattern compared to the earlier layers. Although the latency differ-
ence between I1=1 and ;=16 remains significant, it is not as dramatic as observed in
Convl or Conv2. This is likely due to a trade-off between reduced input volume and
increasing filter complexity. From a hardware standpoint, Conv4 benefits from pipelin-
ing but also appears to reach diminishing returns in latency improvement beyond I;=4,
suggesting that compute-bound factors (such as DSP saturation or limited unroll effi-
ciency) become more dominant than memory-bound limitations. Conv5, which oper-
ates on smaller spatial dimensions, maintains relatively low latency, but still exhibits
sensitivity to Ij values, confirming that even smaller layers benefit from pipelining to a

certain extent.
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FIGURE 4.4: DSP consumption across different pipeline Ij for convolutional layers in
the Suitability Score-based AlexNet architecture.

As shown in Figure 4.4, lower initiation intervals (e.g., I1=1) demand substantially
higher DSP resources across all layers. This is expected, as low-latency pipelining intro-
duces multiple simultaneous operations requiring parallel multiply-accumulate units.
Conv1 stands out with the highest DSP usage under full pipelining due to its high-
resolution input and large computation volume. Conversely, increasing the Iy value
reduces parallel operations, which consequently lowers DSP demand. By I;=16, all
layers exhibit reduced DSP usage demonstrating a trade-off between parallelism and

resource efficiency.

Similarly, Figure 4.5 reveals that LUT usage inversely correlates with I; depth. Pipeline
control logic, intermediate registers, and operator replication at lower I values con-
tribute to elevated LUT usage. Conv1l and Conv2, operating on the largest data sizes,

again require the most LUTs, particularly under I;=1 and I;=2. However, hardware
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FIGURE 4.5: LUT usage across different pipeline I for convolutional layers.

replication is minimized as I; increases, yielding substantial reductions in LUT con-
sumption. Conv4 and Conv5, although processing smaller feature maps, still show
visible drops in LUT use when moving from I;=1 to I;=16.
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FIGURE 4.6: Flip-Flop (FF) usage across different pipeline I for convolutional layers
in the Suitability Score-based AlexNet architecture.

As outlined in Table 4.1, the experimental results demonstrate distinct trade-offs be-
tween the three pipelining configurations. The Low Latency configuration ( I} = 1-2)
achieves the shortest execution times but leads to the highest usage of DSPs, LUTs, and
flip-flops. Conversely, the Resource-Efficient configuration ( Iy > 8) reduces hardware
resource utilisation but incurs a notable increase in latency. The Moderate configuration
(I} = 3-4) offers a compromise by reducing resource consumption relative to the Low
Latency configuration, while maintaining acceptable latency levels.

These findings confirm that uniform pipelining across layers leads to unbalanced re-
source usage. Instead, a layer-specific pipelining strategy, informed by workload charac-
teristics, provides a more effective trade-off between performance and hardware util-
isation. This approach aligns with the Suitability Score-guided methodology, which
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recommends deeper pipelining for compute-intensive layers and more relaxed config-
urations for lighter stages.

4.3.4 Adaptive Pipeline Scheduling using Suitability Score Per Layer

The previous section examined latency and resource utilisation trends under various
static pipelining configurations applied uniformly across convolutional layers. The re-
sults indicated that such uniform strategies may not effectively balance performance
and hardware efficiency, particularly under constrained resource budgets. While low-
latency pipelining improves the latency of compute-intensive layers, it can lead to ex-
cessive DSP and flip-flop allocation in computationally lightweight layers. These ob-
servations highlight the need for a more adaptive approach that considers the varying

computational characteristics of each layer.

To address this challenge, an adaptive pipelining strategy is proposed, in which I values
are assigned on a per-layer basis, guided by a simplified formulation of the Suitability
Score introduced in Chapter 3. Given that the CNN model has already been restruc-
tured into a Winograd-compatible format featuring uniform 3 x 3 convolution kernels,

the filter compatibility component («) becomes constant and thus negligible in the scor-

/

cores 18 redefined as

ing calculation. Accordingly, a layer-specific score, denoted as S
follows:

S;core =p- <1\1/\I/[AACéayer> +7- <CCOUt> (4.1)
ref out,ref

MAC1ayer represents the number of multiply-accumulate operations in the layer, and

Cout denotes the number of output channels. Reference values (MAC,¢f and Cyyt ref) are

selected as the maximum observed values across all layers to ensure proper normal-

isation. B and < are weighting factors assigned to the computational complexity and

output feature dimensions, respectively. These weights satisfy the constraint f + v =1

to ensure balanced contribution between the two factors.

In the experiments, the parameters were set as B = 7 = 0.5, assigning equal weight

/

score val-

to computational intensity and feature complexity. Based on the computed S
ues, pipeline Iy levels are adaptively mapped according to a tiered assignment strategy

outlined in Table 4.2. Layers with higher S._.,. values are allocated lower Ij settings to

maximise parallelism, while layers with lower S/ . values adopt more relaxed pipelin-

ing configurations to improve resource efficiency.
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TABLE 4.2: Adaptive pipeline assignment strategy based on layer-wise S/ ,... Lower
pipeline I values correspond to higher parallelism and throughput, whereas higher I;
values favour reduced resource usage.

St .ore Range Assigned Pipeline I;
Sl e > 0.70 12

040 < S o < 0.70 2-4

S . <040 4-8 or more

score

4.3.4.1 Validation of Adaptive Pipelining on CNN Deployment

The method was applied to the optimised AlexNet model using the previously com-
puted Suitability Scores to validate the effectiveness of the adaptive pipelining strategy.
Specifically, S..... was employed to determine appropriate pipeline I; for each convo-
lutional layer, thereby tailoring the pipelining depth to the unique computational de-
mands of each layer.

Based on the S’

«core Scores, pipeline I} were assigned to the five convolutional layers

in AlexNet. As shown in Table 4.3, Conv1 and Conv4 were allocated an Ij of 3, Conv2
was assigned Iy = 2, while Conv3 and Conv5—identified as the most compute-intensive
layers—received the lowest I setting of 1.

TABLE 4.3: Assigned pipeline I for each convolutional layer in the AlexNet model,
based on S, .-

Layer Filter Count S . Assigned];

Convl 10 0.60 3
Conv2 12 0.65 2
Conv3 40 0.99 1
Conv4 12 0.64 3
Conv5 40 0.99 1

To evaluate the effectiveness of the proposed adaptive pipelining strategy, the CNN
model was synthesised and analysed under both fixed- I; and adaptive- I; configura-
tions. Table 4.4 summarises the total latency and resource utilisation metrics (DSP, LUT,
and FF usage) for each approach.

To assess the effectiveness of the proposed adaptive pipelining strategy, its performance
is compared against fixed- I; configurations ( I;=1, I;=2, I;=3, I;=4) across all key hard-
ware metrics. In terms of latency, the adaptive S, method achieves a total execution
time of 3.77 x 107 cycles. This represents only a modest 7.1% increase compared to the
low-latency I;=1 setting, while outperforming the moderate I;=2, I;=3, and I;=4 strate-
gies by approximately 30.9%, 30.4%, and 46.8% respectively. These results confirm that
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TABLE 4.4: Total latency and resource utilisation for different pipeline strategies.

Pipeline Strategy Total Latency (cycles) DSP Usage LUT Usage FF Usage

=1 3.52 x 107 1393 160683 196589
[=2 5.46 x 107 845 119187 139234
[=3 5.42 x 107 722 104588 125556
[ =4 7.09 x 107 812 108520 138152
Adaptive S . 3.77 x 107 929 136193 148416

the adaptive scheduling maintains near-optimal latency without the excessive paral-

lelism costs associated with the I;=1 configuration.

Regarding DSP utilisation, the adaptive method achieves a significant 33.3% reduction
compared to I;=1 (929 vs. 1393 DSPs). While DSP usage increases slightly relative
to I1=2 and I;=4 (by 9.9% and 14.4% respectively), and more notably relative to I;=3
(by 28.7%), these increases are offset by the substantial latency improvements. Such
reductions in DSP utilisation directly enable the deployment of larger CNN models
or allow fitting multiple CNN instances on a single FPGA device, enhancing system

scalability.

For LUT and FF usage, the adaptive strategy consumes moderately higher resources
compared to the [;=2, I;=3, and I;=4 strategies. Specifically, LUT usage increases by ap-
proximately 14.3%, 30.2%, and 25.5% respectively, while FF usage rises by 6.6%, 18.2%,
and 7.4%. These increases are attributed to the additional control and buffering logic

introduced by deeper pipelining in computationally intensive layers.

Overall, the adaptive S, .-guided pipelining strategy strikes a balanced trade-off: it
achieves significant reductions in latency compared to moderate fixed- I; configura-
tions, while maintaining DSP, LUT, and FF usage at acceptable levels. By dynamically
tailoring the pipeline depth to each layer’s computational intensity and structural com-
plexity, the strategy ensures that compute-heavy layers receive low-latency pipelining,
while lightweight layers are conservatively scheduled, leading to optimal orchestration

of FPGA resources without overprovisioning.

These results validate the practical advantages of layer-specific adaptive scheduling for
the efficient deployment of FPGA-based CNNs. Moreover, by improving the scalability
and hardware portability of CNN deployments, the proposed approach paves the way

for broader adoption of FPGAs in resource-constrained CNN applications.
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4.4 Summary

This chapter presented a simulation-guided hardware optimisation methodology to en-
hance the efficiency of CNN deployment on FPGAs. The primary focus was on adap-
tively configuring pipeline parallelism by analysing the unique computational charac-
teristics of each convolutional layer. Rather than applying static, uniform hardware pa-
rameters across the network, leveraged layer-wise synthesis insights to assign pipeline
I; based on a simplified Suitability Score formulation. This score captured both compu-
tational intensity and structural complexity, enabling more informed hardware design
decisions at the HLS level.

The resulting FPGA configurations are optimised by integrating the adaptive strategy
into the pre-deployment design flow to balance performance and resource constraints.
This early-stage optimisation reduces the reliance on costly trial-and-error iterations
during physical place-and-route and accelerates the overall deployment timeline. Ad-
ditionally, by systematically identifying layer-specific bottlenecks, the approach facili-

tates finer-grained resource management across CNN layers.

Experimental results demonstrated that conventional static pipelining strategies, while
straightforward to implement, often fail to offer a balanced trade-off between latency
and hardware utilisation. Low Latency fixed- I; settings ( I; = 1) minimised latency
but incurred excessive DSP and logic resource usage, making them impractical for
resource-constrained FPGA deployments. Moderate fixed- I; configurations improved
resource efficiency but suffered from significant latency penalties.

In contrast, the proposed adaptive pipelining strategy achieved a near-optimal balance.
Compared to the aggressive I;=1 configuration, it reduced DSP consumption by over
33%, LUT usage by approximately 15%, and FF usage by around 25%, while incurring
only a 7% latency overhead. These improvements reflect the effectiveness of balancing
computational throughput and resource efficiency through workload-aware pipelin-

ing.

Importantly, while the methodology was evaluated in the context of CNN-based ar-
chitectures using Winograd-optimised convolution layers, the underlying principles of
layer-aware hardware scheduling hold broader applicability. Future work could inves-
tigate extending this strategy to alternative deep learning models with different com-
putational patterns, such as transformer-based networks.

Overall, these findings validate the practical advantages of simulation-guided, layer-
specific adaptive scheduling for improving the scalability, efficiency, and deployabil-
ity of FPGA-accelerated CNN inference systems, particularly under stringent resource
constraints.
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Building upon the findings of this chapter, the next chapter transitions from simulation-
guided hardware optimisation to the full-scale hardware deployment of CNN models
on FPGA platforms. It details the hardware-software co-design methodology, PCle-
based communication strategies, and real-world evaluation of the implemented accel-
erator, further demonstrating the practical viability and scalability of the proposed ap-

proaches.
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Chapter 5

Hardware-Software Co-Design and
Deployment of Layer-Optimised
CNNs on FPGAs

5.1 Introduction

This chapter presents the full hardware deployment of the optimised CNN model on
an FPGA platform, building upon the architectural and hardware-aware optimisation
techniques introduced in previous chapters. The deployment targets oesophageal can-
cer detection using RGB endoscopic images, which involves strict latency constraints
and high accuracy requirements, while also operating under limited hardware resources.
This application scenario offers a practical setting for evaluating the effectiveness of the

proposed optimisation techniques under realistic deployment conditions.

A hardware-software co-design approach is proposed to enable the deployment of the
adaptively optimised CNN model onto FPGA hardware. The objective is to achieve
both resource and performance-efficient implementation, facilitating seamless integra-
tion between a host CPU and the FPGA accelerator via a high-throughput PCle in-
terface. In this architecture, the host is responsible for preparing input data, man-
aging memory transactions, and orchestrating inference tasks. At the same time, the
FPGA implements a highly parallel, layer-specific pipelined CNN processing engine
optimised according to the techniques developed in Chapter 4.

A critical aspect of this deployment is the quantisation of data representations from
floating-point to fixed-point formats. Specifically, 16-bit and 8-bit fixed-point preci-
sions are examined to strike a balance between computational efficiency and classifi-

cation accuracy. The system adopts a modular architecture, where each CNN layer,
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implemented as an independent IP core, communicates through a shared DDR4 mem-
ory space managed by internal memory controllers and accessed via the PCle interface.

Unlike conventional CNN deployments on FPGAs, the proposed approach dynami-
cally adapts hardware configurations based on per-layer computational profiling and
resource-aware scheduling strategies. This enables a systematic balance between la-

tency, resource efficiency, and inference accuracy in real-world FPGA deployments.

Throughout this chapter, practical challenges associated with deploying a full CNN
model on FPGA hardware are addressed, including PCle-based communication man-
agement, DDR4 memory integration, IP core synthesis, and system-level timing clo-
sure. Experimental evaluations are conducted to measure latency, resource utilisation,

throughput, and power efficiency across different precision settings.

Finally, the implemented FPGA accelerator is benchmarked against conventional GPU-
based executions and recent FPGA-based solutions reported in the literature. These
comparisons highlight the strengths of the proposed hardware-software co-design ap-
proach in achieving high performance and efficient resource utilisation in realistic de-

ployment scenarios.

5.2 Hardware-Software Co-Design for CNN Deployment on FPGA

Figure 5.1 illustrates the complete system architecture for FPGA-based CNN acceler-
ation for cancer detection. The design is organised into three hierarchical layers: the
host PC interface, the data transfer pipeline, and the FPGA-resident CNN processing
engine. Each component optimises high-throughput, low-latency inference under con-
strained hardware resources.

5.2.1 Host PC with PCle Communication

In this deployment setup, a general-purpose desktop PC running Windows functions
as the central control unit for managing CNN inference tasks targeting oesophageal
cancer detection from RGB endoscopic images. The host system orchestrates data flow,
handles user-level control logic, and prepares input images for FPGA-side process-
ing. Images are preprocessed in C++ environments. They are resized, normalised,
and converted into 16-bit fixed-point format to match the quantisation requirements of
the FPGA accelerator.
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FPGA
4 CNN )

FIGURE 5.1: Overview of the hardware-software co-design for FPGA-based CNN de-
ployment for cancer detection.

5.2.2 DMA and On-Board DRAM Buffers

At the boundary between the host and the FPGA, a DMA (Direct Memory Access)
controller is instantiated using Xilinx XDMA IP. This module orchestrates the memory-
mapped data exchange between the PCle endpoint and the FPGA’s on-chip DRAM.
The incoming data is first buffered into external DRAM blocks, where it awaits process-
ing by the CNN pipeline. Using a dual-port DRAM structure, the system achieves con-
current read/write operations, enabling continuous streaming between the host and
the FPGA compute core.

5.2.3 CNN Processing Pipeline on FPGA

The CNN accelerator is implemented as a single HLS-based Intellectual Property (IP)
core that encapsulates the entire network. Within this core, individual convolutional
and activation layers are described as modular processing stages and synthesised using
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Vitis HLS. These stages are integrated into a deeply pipelined architecture to maximise

concurrency and throughput. The main computational stages include:

* CONYV Blocks: Each convolution block receives input feature maps, applies filter
weights and produces intermediate activations. The pipeline I; of each block is
carefully tuned using the Suitability Score framework, allowing compute-heavy
layers to operate with minimal Iy values (e.g., I; = 1) and lighter layers with larger
I; values (e.g., I1 = 3). This enables balanced parallelism across the architecture.

* POOL Blocks: These modules reduce the spatial resolution of feature maps and
act as intermediaries between convolutional layers. Implemented using max-
pooling or average-pooling strategies, they perform streaming-friendly reduction
operations without introducing pipeline stalls.

¢ Fully Connected (FC) Block: Placed at the end of the CNN, this module aggre-
gates the final features and produces classification scores. It is also synthesised

with loop pipelining to support high-throughput inference.

As shown in the Figure 5.1, the outputs of one module feed directly into the next with-
out requiring external memory access, establishing an actual dataflow execution pat-

tern.

5.2.4 Pipeline-Based Dataflow Execution

The visual layout in Figure 5.1 reflects the pipelined dataflow execution model of the
architecture. Data enters from the left through the DRAM, flows sequentially across a
series of layer blocks (CONV — POOL — CONV — ... POOL — FC), and exits through the
output path to the host.

Each layer begins processing when sufficient input becomes available, enabling over-
lapped execution across stages. Intermediate values are streamed directly between
layers with minimal buffering, avoiding the need for global memory access between
stages. This pipeline allows multiple tiles or frames to be processed concurrently,
increasing hardware utilisation and system throughput. Layers with high computa-
tional load (e.g., Conv3 with 40 filters) are assigned tighter pipeline initiation intervals,

whereas less demanding layers use more relaxed configurations to conserve resources.

5.2.5 Summary of Key Design Principles

This design demonstrates a robust and scalable deployment framework. Leveraging
a modular HLS-based architecture, the system facilitates the seamless integration of
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entire CNN models as monolithic IP blocks, eliminating the need for extensive struc-
tural modifications. Since the CNN is synthesised via HLS tools, the architecture al-
lows rapid adaptation to different network topologies or updated models by simply
regenerating the HLS code. This reconfigurability accelerates the development cycle
and supports maintainability across evolving application domains. Moreover, its com-
patibility with a wide range of FPGA platforms enhances portability. As a result, the
proposed architecture provides a reusable and flexible deployment template for high-
performance CNN inference under diverse operational and resource-constrained con-
ditions. The key principles that underpin this design are summarised as follows:

Efficient 64-bit PCle communication using packed 16-bit fixed-point data.

Modular IP structure for layer-wise synthesis and optimisation.

Suitability Score-guided pipelining for resource-performance trade-offs.

Streaming architecture with AXI interfaces for continuous layer-to-layer dataflow.

Fully synchronised control logic for DMA coordination and pipeline execution.

5.3 Hardware Integration of the CNN Accelerator

This section presents the low-level hardware implementation of the proposed CNN
accelerator. The design is deployed and tested on the AMD Kintex™ UltraScale+™
KCU116 FPGA platform in the context of oesophageal cancer detection from RGB en-
doscopic images. This application provides a realistic environment to evaluate the per-

formance and feasibility of the previously introduced optimisation strategies.

Following the architectural principles established in Section 5.2, this chapter transitions
from design abstraction to concrete FPGA implementation. Key design aspects include
HLS-based synthesis, RTL-level IP core generation, Vivado block-level integration, and

PCle-based host communication.

The focus is on bridging the gap between simulation-level design and physical de-
ployment by demonstrating how the proposed techniques, including adaptive pipelin-
ing, modular interfacing, and quantisation-aware scheduling, can be realised on actual

FPGA hardware for a practical and resource-constrained task.
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5.3.1 FPGA Platform Integration and Accelerator Interfacing

Figure 5.2 illustrates the Vivado block design, created using the Vivado IP Integra-
tor, for deploying the CNN accelerator onto the AMD Kintex™ UltraScale+™ KCU116
FPGA platform. The architecture integrates key IP blocks and memory subsystems to
support high-throughput inference and low-latency communication between the host
and the FPGA.

At the core of the communication infrastructure lies the XDMA IP core, which facil-
itates high-throughput PCle-based data transfer between the host and the FPGA fab-
ric. The XDMA module is configured for 64-bit memory-mapped access, supporting
streaming and burst transactions. System-level timing and synchronisation are man-

aged by utility buffer (util_ds_buf) and clock/reset generation modules.

Memory access is managed by a DDR4 Memory Interface Generator (MIG), connected
through a high-performance AXI interconnect. This enables off-chip buffering of input
data, intermediate feature maps, and output values, thus decoupling computation from

data movement delays and host bandwidth limitations.

The CNN model (CNN_model), which encapsulates the HLS-generated CNN accelera-
tor, is interfaced with the rest of the platform using AXI protocols. Specifically, AXI4-
Stream is used for high-speed data paths, while AXI4-Lite enables register-level control
and status monitoring. This separation between data and control channels ensures ef-

ficient pipelined execution and minimal contention.

In summary, the Vivado block design reflects a scalable and modular hardware-software
co-design. It allows the CNN accelerator to be integrated into a heterogeneous com-
puting environment with minimal reconfiguration while preserving performance and
ensuring compatibility with diverse CNN topologies. Building on this system-level
hardware foundation, the following section details how individual modules interact

via standardized AXI protocols to ensure cohesive operation.

5.3.2 Memory Access Coordination

Efficient memory access is critical for sustaining high-throughput inference on FPGA
platforms. The proposed architecture adopts a structured memory access strategy in
which input images and intermediate feature maps are transferred through AXI mas-
ter ports over the DDR interface, orchestrated by a DMA engine. This design choice
ensures systematic memory coordination across all pipeline stages, which is vital for

predictable and sustained throughput.

Due to the large input data size and intermediate activations in convolutional neural

networks, DDR memory is used instead of streaming interfaces. While AXI-Stream
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can offer lower latency for small, sequential data flows, it becomes impractical for bulk
data movement in high-resolution medical images or deep CNNs with multiple lay-
ers. Thus, DDR enables batch-wise access to large datasets, ensuring the accelerator’s
scalability for complex inference tasks. Furthermore, DDR usage enables layer-wise
decoupling, allowing greater flexibility in managing multi-stage processing pipelines

Packed into 64-bit word (4 x 16-bit)

vals valy valy valg

Y

64-bit PCIe Word

FIGURE 5.3: Packing four 16-bit values into one 64-bit word enables full PCle bus
utilisation and minimises data transfer cycles

However, DDR-based access introduces two key challenges: increased memory latency
due to external access cycles, and potential bandwidth contention when multiple mod-
ules simultaneously interact with the DDR interface. In the case of memory latency,
each DDR transaction involves a fixed access latency, often in the range of several clock
cycles, which can accumulate when accessing large volumes of feature map data. Band-
width contention occurs when multiple AXI master ports—such as those from parallel
CNN layers or DMA engines—attempt concurrent access to the shared DDR mem-
ory, resulting in arbitration delays and reduced effective throughput. The architec-
ture aligns all memory transfers to 64-bit word boundaries to address these limitations.
Since the internal data format uses a 16-bit fixed-point representation, four values are
packed into each 64-bit PCle word, as illustrated in Figure 5.3. This alignment min-
imises the number of required memory transactions, reduces overhead, and maximises

throughput.

Packed into 64-bit word (8 x 8-bit)

valy | valg | vals | valy | valz | val, | val; | valy

\
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FIGURE 5.4: Packing eight 8-bit values improves bandwidth efficiency and supports
quantised inference with minimal changes to the memory structure.



5.3. Hardware Integration of the CNN Accelerator 93

To support multiple precision configurations, Figure 5.4 illustrates a similar strategy
for 8-bit, where eight values are packed into a single 64-bit PCle word. This approach
increases data packing density and reduces memory bandwidth requirements, making
it ideal for resource-constrained or high-throughput systems. Accordingly, the pro-
posed architecture is designed to support 16-bit and 8-bit fixed-point representations
with minimal structural modifications, offering flexibility across deployment scenarios.

Although transitioning to 8-bit precision improves memory efficiency and bandwidth
utilisation, it may lead to reduced numerical accuracy depending on the model’s sensi-
tivity to quantisation. While 8-bit quantisation can deliver considerable gains in mem-
ory usage and throughput, it should be applied cautiously, particularly in applications
where classification accuracy is critical. This makes 8-bit inference particularly attrac-
tive for edge deployment scenarios where computational resources, power consump-
tion, and memory footprint are highly constrained. Therefore, a careful evaluation of
model performance under both 8-bit and 16-bit configurations is recommended, allow-
ing designers to make informed trade-offs between accuracy and efficiency based on

the target application’s requirements.

All intermediate feature maps are stored in external DDR memory between consec-
utive layers. This memory-based decoupling simplifies the overall system design by
allowing each CNN layer to operate independently without requiring tightly coupled
inter-layer handshaking. It also promotes modularity and resource reuse, as the same

memory space can be repurposed across different stages of computation.

While using DDR for intermediate buffering introduces additional latency due to read-
/write cycles, it offers advantages in control synchronisation and design scalability.
Specifically, external buffering enables clear separation between the compute and mem-
ory phases, simplifying the scheduling logic and supporting multi-stage pipeline de-

signs with minimal interdependence.

Loop pipelining is applied within each CNN layer to minimise the latency overhead
associated with DDR access, ensuring that computational throughput remains high.
Furthermore, memory access patterns are carefully optimised to reduce stalls and im-
prove bandwidth utilisation, preserving the system’s overall inference efficiency even
under bandwidth-limited conditions. In parallel with efficient memory access, control
synchronization ensures that data movement and computation are correctly aligned
across processing stages.

5.3.3 Control Synchronization and Address Mapping

In the proposed FPGA-based CNN accelerator, control coordination between the host
system and the hardware modules is implemented via AXI4-Lite interfaces, enabling
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low-latency synchronization without excessive resource overhead. The proposed de-
sign encapsulates the entire CNN inference process within a single IP core and employs
a centralized control scheme managed by the host CPU.

The control interface exposes key signals—ap_start, ap_done, ap_idle, and ap_ready—which
govern the execution of the accelerator. These signals are mapped to memory-mapped
control registers, allowing software to initiate the computation pipeline, poll status

flags, and retrieve outputs. To enhance responsiveness, an interrupt mechanism is also
supported, whereby the accelerator notifies the host via an interrupt flag upon comple-

tion of the inference task, eliminating the need for constant polling.

Table 5.1 summarizes the key control registers used in this architecture. It includes
tields for execution control, interrupt handling, address specification, and output vali-

dation. These registers are accessed via AXI4-Lite transactions initiated by the host.

TABLE 5.1: AXI4-Lite register map and memory-mapped control interface for the
CNN accelerator.

Address Offset Register / Description

0x00 Control Signals (ap_start, ap_done, ap_idle, ap_ready)
0x04 Global Interrupt Enable Register

0x08 IP Interrupt Enable Register

0x0C IP Interrupt Status Register

0x10 Output_Value

0x14 Output_Value_ap_vld (valid signal)

0x00010010 Input_Image[31:0]

0x00010014 Input_Image [64:32]

0x80000000 DDR Memory Base Address (AXI full interface)

A dedicated 64-bit input address pointer indicates the base memory location of the
input image in DDR. As AXI4-Lite operates with a 32-bit width, this pointer is split
across two separate registers for the lower and upper halves. This mechanism allows
flexible support for large image sizes and deep feature maps stored externally in DDR
memory.

Control synchronization is tightly coupled with the internal pipelining logic of the ac-
celerator. Each layer processes its input independently, but control signals ensure that
data dependencies across layers are respected. By synchronising control signals with
the pipelined stages, the design achieves deterministic timing and real-time respon-
siveness, which are essential for edge-oriented CNN deployment.
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5.3.4 Host-FPGA Communication via PCIe and DMA

The communication between the host system and the FPGA accelerator is established
over a PCle Gen3 x8 interface using Xilinx’s XDMA IP core. Three types of interface

endpoints are utilized to enable efficient data exchange and control:

e H2C (Host-to-Card): Used for writing input image data from the host to the
FPGA’s external DDR memory. This transfer is performed via burst DMA op-

erations aligned to 64-bit boundaries to ensure optimal PCle throughput.

¢ C2H (Card-to-Host): Reserved for reading data from the FPGA back to the host,
such as classification results or debug output. While not required for all applica-
tions, this channel enables result verification or feedback in closed-loop systems.

¢ User (MMIO): A memory-mapped I/O interface used for lightweight control sig-
naling. Through this interface, the host can configure registers—such as writing
64-bit input base addresses, asserting the ap_start signal to initiate computation,
and polling flags like ap_done and ap_idle to monitor execution status.

During execution, the host transfers the input data via the H2C interface into a reserved
DDR memory address. Using the user interface, it then writes this base address to the
control registers. Once the computation is triggered, the FPGA processes the data, and
the result is read from a predefined register via the same user path or optionally via
C2H if large data retrieval is necessary.

This hybrid communication model enables high-throughput data ingestion while re-
taining low-latency control signalling. It also supports real-time deployment scenarios
where deterministic behaviour is critical.

5.3.5 Precision Configuration in FPGA-Based CNN Accelerators

This design utilises a 16-bit fixed-point representation to strike a balance between nu-
merical accuracy and hardware efficiency. Compared to 32-bit floating-point arith-
metic, fixed-point formats drastically reduce DSP utilisation and allow for deeper pipelin-
ing within computational layers. Moreover, the 16-bit format aligns naturally with the
64-bit PCle interface, enabling four values to be packed into each transfer word—thereby

maximising throughput during memory operations.

The fixed-point data type used in this work follows the ap_fixed<16,8> format, where
the total word length is 16 bits, and 8 bits are allocated to the integer part, including
the sign bit. This configuration leaves 8 bits for the fractional part, offering a practical
trade-off between dynamic range and precision. It supports efficient arithmetic opera-

tions while ensuring sufficient accuracy for typical CNN inference workloads.
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Although 8-bit quantisation further improves memory efficiency and throughput, al-
lowing up to eight values per PCle word, it may introduce notable accuracy degrada-
tion. The accelerator was synthesised and tested using an 8-bit configuration in prelim-
inary experiments. While resource consumption and data transfer rates improved, in-
ference accuracy decreased, particularly in early convolutional layers, which are more

sensitive to quantisation noise.

All input images were normalised to the [0, 1] range during training and testing, using
a 32-bit floating-point representation. This preprocessing step improves the model’s
resilience to quantisation effects. Confining the input dynamic range to a well-bounded
interval mitigates the risk of numerical saturation, overflow, or rounding errors during
fixed-point computation. Consequently, even when weights and biases are quantised
to 16 or 8 bits, the classification accuracy remains relatively stable compared to the full-

precision baseline.

In proposed design, convolution weights and biases are quantised with three decimal
digits of precision (e.g., 0.123), ensuring sufficient dynamic range for network expres-
siveness. This choice strikes a balance between arithmetic resolution and hardware
simplicity, as more fractional digits would require additional bits and increase DSP re-
source usage. Empirical evaluations showed that this level of quantisation preserves
inference accuracy while minimising hardware overhead. Nonetheless, the trade-off
between quantisation depth and representational accuracy remains an open parame-
ter, and deeper precision may be explored in future optimisation stages.

5.4 Evaluation and Results

This section evaluates the proposed FPGA-based CNN accelerator, emphasising key
metrics for real-time deployment scenarios. The analysis focuses on inference latency,
classification accuracy, throughput, power consumption, and hardware resource utili-

sation under varying numerical precision settings.

Specifically, 16-bit and 8-bit fixed-point implementations are compared to assess the
trade-offs between numerical precision and system-level efficiency. The evaluation ex-
plores how quantisation levels, data representations, and architectural choices affect

performance—including processing speed, resource utilisation, and energy efficiency.

Furthermore, the accelerator’s power efficiency is assessed using Xilinx Vivado’s post-
implementation power analysis tools. Power estimates were obtained for idle and ac-
tive inference conditions to offer insight into the viability of different configurations

under resource-constrained environments.
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5.4.1 Dataset Description and Selection Criteria

The optimised AlexNet architecture, trained using the TensorFlow framework with the
Keras APIin Python, was evaluated on a dataset of 1,000 randomly selected test images.
These images were selected from the dataset described in Section 3.4.1, specifically from
a held-out validation set not used during training to ensure unbiased evaluation. The
subset was balanced, comprising 500 disease-positive and 500 healthy control samples.
All images were resized to 224x224 pixels and normalised according to the CNN'’s pre-

processing pipeline.

The trained model was deployed on an FPGA using fixed-point quantisation and adap-
tive pipelining strategies. 16-bit and 8-bit fixed-point implementations were derived di-
rectly from the pre-trained 32-bit floating-point model without retraining or fine-tuning
after quantisation. Static quantisation was applied to reduce bitwidths while preserv-
ing the original trained weights. This setup accurately evaluates inference performance

and resource usage under realistic deployment conditions.

5.4.2 Experimental Setup

All experiments were conducted on a workstation equipped with an 11" Gen Intel Core
i7-11700K CPU running at 3.60 GHz, featuring eight cores and 16 threads, supported
by 32 GB of RAM and an NVIDIA GeForce RTX 2070 GPU. The host application was
developed in C++ using Microsoft Visual Studio 2022.

The FPGA implementation was deployed and tested on an AMD Kintex UltraScale+
KCU116 evaluation board. The accelerator was synthesised using Xilinx Vivado and
Vitis HLS version 2023.2. Communication between the host and the FPGA was estab-
lished via a PCle Gen3 x8 interface using the XDMA IP core.

5.4.3 Classification Accuracy Evaluation

This section evaluates the impact of numerical precision on the classification accuracy
of the proposed CNN accelerator deployed on FPGA. To quantify any potential loss
in inference quality, both 16-bit and 8-bit fixed-point configurations were tested and
compared to the original floating-point model.

Classification accuracy was assessed as the percentage of correctly predicted labels
from the total test samples. The model was evaluated under three numerical preci-
sion configurations: 32-bit floating-point, 16-bit fixed-point, and 8-bit fixed-point. Each
version was tested using the same validation dataset, which was excluded from the

training phase to ensure unbiased evaluation.
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Table 5.2 presents the classification accuracy achieved under each precision setting.
The results show that the 16-bit fixed-point implementation achieves 97.45% accuracy,
closely matching the 32-bit floating-point baseline of 97.50%. This negligible 0.05%
drop confirms that 16-bit quantisation preserves model performance while reducing
hardware complexity.

TABLE 5.2: Classification accuracy comparison across different numerical precisions.

Precision Accuracy (%) Relative Drop (%)
32-bit Floating-point 97.50 -

16-bit Fixed-point 97.45 0.05

8-bit Fixed-point 58.12 39.38

In contrast, the 8-bit fixed-point configuration results in a notable accuracy reduction,
achieving only 58.12%. This degradation is primarily attributed to quantisation errors,
particularly affecting earlier convolutional layers which are more sensitive to reduced
numerical resolution. While 8-bit quantisation is beneficial for resource-constrained
applications due to its lower memory and computational demands, it may not be suit-
able for tasks requiring high classification reliability.

Beyond overall classification accuracy, sensitivity and specificity are required evalua-
tion metrics for medical image analysis, particularly in cancer detection tasks. For the
16-bit fixed-point implementation, the model achieved a sensitivity of 98.75% and a
specificity of 96.50%. These results indicate the model’s strong ability to correctly iden-
tify cancerous samples while minimising false negatives. This level of performance af-
firms the suitability of 16-bit quantisation not only in terms of hardware efficiency, but

also in maintaining diagnostic reliability.

This evaluation highlights the effectiveness of 16-bit fixed-point arithmetic for FPGA-
based CNN deployment, offering a compelling trade-off between accuracy and hard-
ware efficiency. Subsequent sections provide further details on latency and resource
utilisation.

5.4.4 Resource Utilisation Analysis

To assess the hardware efficiency of the proposed FPGA-based CNN accelerator, the
utilisation of essential resources—including LUTs, FFs, BRAMs, and DSP slices—was
analysed using Xilinx Vivado’s post-synthesis reports. Table 5.3 presents the resource
utilisation breakdown for key hardware modules: the CNN model IP, the DDR4 mem-
ory interface (MIG), and the XDMA PCle communication core.

While earlier synthesis via Vitis HLS provided an initial estimate of resource consump-
tion for the CNN module in isolation, this Vivado-level synthesis reflects the actual
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usage after full system integration. The Vivado design encompasses not only the CNN
model core but also memory controllers, communication infrastructure, and support-
ing IP blocks, offering a more complete and accurate assessment of resource require-

ments.

TABLE 5.3: Resource utilisation summary of core IP modules and Accelerator

Module LUTs FFs BRAMs DSPs
CNN Model 40,337 8,276 125.5 85
DDR4 Controller (MIG) 10,962 12,360 255 3
XDMA PCle Core 41,366 43,182 74 0
CNN Accelerator 95,788 80,648 225 88

CNN Accelerator Utilisation (%) 44.15 18.59 46.88 4.82

Auxiliary components, such as AXI interconnects, clocking wizards, and reset modules,
are not listed individually in the Table 5.3; however, their contributions are accounted
for in the “CNN Accelerator” entry. This row represents the overall synthesis of the
complete system.

As anticipated based on the computational structure of the CNN, DSP slices are pri-
marily utilised by the convolutional layers, which dominate arithmetic operations. In
contrast, the MIG and XDMA cores contribute more to logic and BRAM usage due to
memory buffering and data-handling requirements. This differentiated usage pattern
highlights a well-partitioned architecture that leverages domain-specific strengths of
FPGA resources.

The reported utilisation percentages are calculated relative to the total available re-
sources on the AMD Xilinx KCU116 FPGA, which provides 216,960 LUTs, 433,920 FFs,
480 BRAMs, and 1,824 DSP slices. The Table 5.3 shows that the proposed design con-
sumes less than 50% of any single resource category, demonstrating a well-optimised

and compact architecture suitable for resource-constrained environments.

Overall, the results affirm the viability of deploying the proposed accelerator on a mid-
range FPGA platform such as the AMD Xilinx KCU116. The analysis also provides a
critical baseline for exploring scalability in future designs.

5.4.5 Performance Comparison Across Platforms and Configurations

This section presents a comparative evaluation of inference performance across multi-
ple hardware configurations and execution paradigms to comprehensively assess the
effectiveness of the proposed FPGA-based CNN accelerator. The analysis spans GPU
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and FPGA platforms, considering variations in model structure, parallelisation strat-
egy, and deployment context. The objective is to elucidate the performance trade-offs
between conventional GPU-based processing and custom FPGA implementations, par-

ticularly under edge-oriented constraints.

The following four configurations were evaluated:

* GPU (NVIDIA GeForce RTX 2070, S-score Optimised): An optimised version of
AlexNet was used, incorporating structural pruning and quantisation guided by
S-score analysis. This model was executed using TensorFlow in an optimised con-
figuration, representing a software-level deployment approach commonly adopted

in GPU-based inference setups.

¢ FPGA (Inter-Layer Pipeline Execution): In this configuration, the optimised model
was deployed on the FPGA, explicitly enabling inter-layer pipelining. This strat-
egy overlaps the execution of consecutive CNN layers by allowing one layer
to start processing as soon as partial results become available from the previ-
ous layer. This configuration enhances throughput and more effectively utilises
FPGA resources by leveraging fine-grained parallelism across layers and min-

imising idle cycles.

The performance comparison focuses on three key metrics: throughput (images pro-
cessed per second), power and hardware efficiency. All FPGA-based results were ob-
tained through real hardware deployment on the AMD Xilinx KCU116 board. How-
ever, tower consumption was estimated using post-implementation static power anal-
ysis provided by Xilinx Vivado 2023.2. For GPU-based results, inference times were
recorded using TensorFlow with batch size set to 1, and power measurements were
taken using NVIDIA System Management Interface (nvidia-smi) while isolating GPU
activity to minimise background interference. Each configuration was tested over 10
independent runs (N=10), and the reported metrics represent the average values across

these runs to ensure statistical robustness.

TABLE 5.4: Performance and energy efficiency comparison between GPU and FPGA
implementations of AlexNet.

Throughput Power Efficiency
Platform (images/sec) W) (images/sec/W)
NVIDIA GeForce RTX 2070 51.62 11.82 4.36
Xilinx KCU116 76.19 8.18 9.38

Table 5.4 highlights the performance and energy efficiency differences between the pro-
posed FPGA-based accelerator and a conventional GPU-based deployment of the same
optimised AlexNet model. While the GPU (NVIDIA GeForce RTX 2070) achieved a

throughput of 51.62 images per second, the FPGA implementation outperformed it by
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achieving 76.19 images per second—representing an improvement of approximately
47.6% in processing speed. This gain is particularly notable considering that the FPGA
operates at a lower clock frequency and under tighter resource constraints compared
to the GPU.

In terms of power consumption, the FPGA consumes only 8.18 W, compared to the
GPU’s 11.82 W, resulting in a substantially better energy efficiency. The proposed
FPGA design achieved an energy efficiency of 9.38 images/sec/W, more than 2.15 times
higher than the GPU’s 4.36 images/sec/W.

These results demonstrate the advantages of the proposed hardware-software co-design
approach in targeting energy-constrained environments. By combining structured model
optimisations with layer-specific hardware parallelism strategies, the FPGA accelerator
achieves superior throughput and energy efficiency without sacrificing inference accu-
racy. This makes it a highly viable candidate for real-time CNN applications, where
power budgets and form factor constraints are critical.

5.5 Comparison with Existing Works

This section analyses the proposed FPGA-based CNN accelerator in comparison with
existing FPGA implementations of the AlexNet architecture. The comparison covers
several key metrics: inference latency, throughput (images processed per second), re-
source utilisation, power consumption, and classification accuracy. While hardware
efficiency is essential for deployment under real-time and resource-constrained condi-
tions, maintaining high inference accuracy remains equally critical, especially in medi-

cal image analysis tasks such as cancer detection.

The evaluation of the proposed accelerator is based on real hardware deployment us-
ing the AMD Kintex™ UltraScale+™ KCU116 FPGA platform with PCle-based com-
munication to a host system. The experimental setup described in Section 5.4 is also
applicable to this comparison.

Table 5.5 provides a comparative overview of FPGA-based implementations of the
AlexNet architecture, examining performance across key dimensions including infer-
ence throughput, accuracy, power consumption, and resource utilisation. A critical
insight from this comparison is the superior balance achieved by the proposed design
between classification accuracy and inference speed, particularly in realistic deploy-
ment conditions with RGB inputs (224 x 224 x 3).



TABLE 5.5: Comparison with AlexNet FPGA Implementations

Metric Liang et al. [46] Zhangetal. [90] Lietal. [91] Vestias etal. [92] Wangetal. [93] Neelam etal.[94] Zayed et al. [120] };;0;(::311
Device Xilinx ZCU102 Xilinx ZCU104 Intel Arria 10 Zynq-7020 Zynq-7045 5xXC7A200T PYNQ-Z2 Xilinx KCU116
Precision 16-bit fixed 8-bit 8-16-bit 8-bit fixed 8-bit fixed 32-bit floating - 16-bit fixed
Freq (MHz) 200 300 200 200 200 100 - 137
Tl}gﬁgiﬁ“t - 9.73 - 229 1369.6 15 2.16 76.19
Th(rcogg;;};ut 1006.4 14.11 1.46 332 493 56 - 5.16
Power (W) 23.6 17.67 27.2 - 4.2 - - 8.12
(;Erflff;/izr/‘% - 0.55 - - 325.3 - - 9.38
LUT Usage 600,000 101,953 360,000 46,914 105,673 490,200 - 95,788
DSP Usage 2520 696 410 212 880 11,820 - 88
FF Usage - 127,577 523,700 - 94,149 - - 80,648
BRAM Usage 1824.8 198.5 1,366 126 463 1.64 Mb - 225
Accuracy (%) - 99.1 - 54.7 49.3 - 98.33 97.45
Input Size 224 x224 28 %28 - 224 x224x3 224 %2243 224 x224 92x112 224 x224x3

Note: “=” indicates that the corresponding information was not explicitly reported in the original study.
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It is important to note that the reported accuracy values across existing studies may
not be directly comparable due to differences in datasets. However, the comparison
considers top-1 classification accuracy as a reference point to provide an indicative un-
derstanding of inference reliability. This is motivated by the overarching design goal
of achieving high inference speed and robust predictive performance, particularly in
applications where classification fidelity is critical.

Among the listed implementations, only a limited number report both high classifi-
cation accuracy and utilise full-resolution inputs. For instance, Zayed et al. report
the classification accuracy of 98.33%, but their system achieves a throughput of only
2.16 images/s, limiting its applicability in real-time scenarios. In contrast, the proposed
accelerator delivers a comparable accuracy of 97.45% while sustaining a throughput of
76.19 images/s, amounting to a 35.3x increase in processing speed with minimal re-
duction in prediction quality.

While Zhang et al. report the highest classification accuracy of 99.1%, this result is
obtained using an input resolution of 28 x 28, which is lower than typical input sizes
used in contemporary CNN deployments. Smaller input dimensions reduce the com-
putational workload and may simplify the classification task. In contrast, the proposed
accelerator is evaluated on full-resolution 224 x 224 x 3 images, consistent with the
original AlexNet configuration and more representative of practical use cases such as

medical image analysis.

Among the listed implementations, Vestias et al. and Wang et al. employ the same
input resolution (224 x 224 x 3) as the proposed design, enabling a fair comparison in
terms of practical deployment settings. Although these works report higher through-
put values—229 images/s and 1369.6 images/s, respectively—their classification ac-
curacies are notably low, at only 54.7% and 49.3%. This substantial drop in accuracy
may stem from aggressive quantisation strategies, as both designs utilise 8-bit fixed-
point arithmetic. In contrast, the proposed accelerator was initially tested using 8-bit
precision but exhibited degraded accuracy. Therefore, it was implemented with 16-bit
fixed-point precision to preserve inference reliability. As a result, the proposed design
achieves a throughput of 76.19 images/s while maintaining a 97.45% accuracy, offering
a more balanced trade-off suitable for medical image analysis tasks, where predictive

performance is as critical as execution speed.

Liang et al., Li et al., and Neelam et al. do not report classification accuracy, which
limits a comprehensive evaluation of their applicability in tasks requiring reliable in-
ference. Nevertheless, throughput values provide a basis for assessing computational
speed. Liang et al. report an impressive arithmetic throughput of 1006.4 GOPS but
do not include image-level throughput, making practical comparisons difficult. Li et
al. achieve only 1.46 images/s, reflecting limited real-time viability. Neelam et al. use
32-bit floating-point precision and an exceptionally high number of DSPs (11,820), yet
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achieves only 15 images/s, indicating low resource efficiency. By contrast, the proposed
approach delivers 76.19 images/s using 16-bit fixed-point arithmetic and just 88 DSPs,
offering higher throughput with substantially fewer hardware resources, highlighting
improved efficiency in resource utilisation. These comparisons further highlight the
effectiveness of the proposed accelerator in balancing computational throughput with
hardware efficiency, even when classification accuracy is unavailable for baseline refer-

ences.

The proposed accelerator achieves high efficiency with modest requirements regard-
ing hardware resource usage. It delivers a throughput of 76.19 images/s using only 88
DSPs, 95,788 LUTs, 80,648 FFs, and 225 BRAMs. In comparison, Liang et al. use 2520
DSPs and 600,000 LUTs, but do not report image-level throughput, making it hard to
assess practical performance. Neelam et al. use an extremely high number of 11,820
DSPs and 1.64 Mb of BRAM, yet reach only 15 images/s, showing low resource effi-
ciency. Li et al. achieve just 1.46 images/s while consuming 523,700 FFs, which is more
than six times the FFs used in proposed design. Zhang et al. process 9.73 images/s, but
with a low input resolution of 28 x 28 pixels. These results show that the proposed de-
sign achieves better performance regarding hardware consumption, making it suitable
for efficient FPGA-based deployment.

Cancer detection requires high inference accuracy, support for full-resolution input im-
ages, and low-latency operation to be viable in real-time clinical settings. The proposed
accelerator meets these criteria by achieving 97.45% classification accuracy on 224 x
224 x 3 inputs, while delivering an inference rate of 76.19 images per second. Com-
pared to prior works that report similar accuracy levels—such as Zayed et al. (98.33%)
and Zhang et al. (99.1%)—the proposed design processes images 35.3 x and 7.8 x faster,
respectively. This demonstrates a strong balance between inference speed and predic-
tive quality. Unlike designs that trade accuracy or resolution for high throughput, this
work offers a robust and efficient solution tailored to real-world medical image analy-

sis demands.

5.6 Summary

The primary objective of this chapter was to demonstrate the practical deployment
of the optimised CNN accelerator on real FPGA hardware, validating the architec-
tural and optimisation techniques developed in earlier chapters. The proposed sys-
tem achieved high inference accuracy, low latency, and efficient resource usage on the
AMD Kintex™ UltraScale+™ KCU116 FPGA platform. Specifically, the accelerator per-
formed a classification accuracy of 97.45% on RGB endoscopic images, closely aligning
with clinical deployment requirements for tasks such as cancer detection.
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Experimental results confirmed the system’s ability to deliver 76.19 images/sec through-
put while consuming only 8.18 W of power, yielding an energy efficiency of 9.38 im-
ages/sec/W. Compared to a GPU-based baseline (NVIDIA RTX 2070), this represents a
47.6% improvement in processing speed and more than 2.15x higher energy efficiency.
Furthermore, the design achieved these results using only 88 DSPs and 95,788 LUTs,

demonstrating strong performance even under tight hardware constraints.

Comparison with previous FPGA-based implementations of AlexNet shows that the
proposed design achieves high throughput while maintaining high classification ac-
curacy. It processes up to 35.3 times more images per second than other designs that
report similar accuracy levels. It achieves up to 7.8 times higher throughput than mod-
els using reduced input sizes. These results indicate that the proposed accelerator offers
a strong balance between inference speed, predictive reliability, and efficient hardware

usage, making it suitable for real-time image analysis tasks such as cancer detection.

In summary, the experimental evidence presented in this chapter confirms that the pro-
posed FPGA-based CNN accelerator is well-suited for medical image analysis applica-
tions that demand high accuracy, low latency, and efficient hardware utilisation. The
system demonstrates reliable inference on high-resolution input data while maintain-
ing resource and power efficiency. These results validate the practical viability of the
proposed optimisation techniques and highlight their relevance for real-world deploy-

ment in critical scenarios such as cancer detection.
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Chapter 6

Conclusions and Future Work

This chapter summarises the research conducted throughout the thesis, drawing to-
gether the key findings, methodological contributions, and experimental outcomes from
each stage. It revisits the primary research objectives and evaluates the extent to which
they have been achieved. In addition to consolidating the results, the chapter outlines
potential future work directions, providing insights into how the proposed approaches

can be further developed or extended to new application domains.

6.1 Conclusions

This chapter concludes the thesis by highlighting the three main stages of the work.
These stages tackle the core challenges of achieving high-throughput, low-latency, and
resource-efficient inference on FPGA platforms. The chapter reflects on how the meth-
ods developed throughout the thesis address the demands of real-time, accuracy-critical
image analysis, with a particular focus on cancer detection as a representative applica-

tion.

Chapter 3 introduces a novel structural optimisation approach for convolutional neu-
ral networks, aimed at reducing computational cost while preserving model accuracy
on FPGA platforms. This is achieved by introducing the Suitability Score, a metric
that quantifies each convolutional layer’s alignment with the computational character-
istics of Winograd-based accelerators. By applying selective structural modifications
based on this score, the chapter demonstrates reductions in MAC operations and train-
ing time, while preserving—and in some cases improving—inference accuracy. The

proposed optimisation strategy is validated on two structurally distinct CNN models,
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confirming its adaptability across different CNN architectures. These results demon-
strate that the chapter successfully meets its objective of enabling efficient, hardware-
conscious model design and establishes a solid foundation for the hardware-level strate-
gies developed in Chapter 4.

Chapter 4 presents a simulation-guided hardware optimisation strategy that enhances
CNN deployment efficiency on FPGA platforms by enabling adaptive, layer-specific
pipelining. Instead of applying static, uniform pipeline configurations, the proposed
method dynamically adjusts initiation intervals based on each layer’s computational
demands and structural complexity. This workload-aware scheduling improves re-
source utilisation and computational throughput compared to fixed-II designs, as con-
firmed through experimental results on Winograd-optimised CNNs. The demonstrated
reductions in DSP, LUT, and FF usage, with minimal latency overhead, validate the
practical advantages of this approach. These results show that Chapter 4 effectively
meets its objective of enabling scalable, resource-efficient inference through structured
hardware-level optimisation, and lays a solid foundation for the system-level deploy-

ment strategies explored in Chapter 5.

In Chapter 5, the thesis moves from architectural and simulation-level optimisations to
a complete hardware implementation, evaluating the practical application of the pro-
posed CNN accelerator on an FPGA platform. Oesophageal cancer detection is used
as a representative use case, due to its combination of accuracy, latency, and resource
constraints. The implementation includes PCle-based host communication, external
DDR memory management, fixed-point quantisation, and modular control structures,
forming an integrated system for real-time image inference. The evaluation results in-
dicate that the accelerator supports high-throughput and low-latency operation while
maintaining acceptable power and resource usage. Comparisons with GPU and FPGA-
based implementations demonstrate that the design achieves a balanced trade-off be-
tween performance and efficiency. These results show that Chapter 5 meets its objective
of assessing the practical deployment of the proposed optimisation techniques in real-

istic, resource-constrained image analysis tasks.

The cancer detection task provided a high-stakes, computation-intensive scenario that
effectively evaluated the robustness, throughput capability, and overall performance
of the proposed system. Although this thesis focused on oesophageal cancer detection
as a representative case study, the architectural and optimisation techniques developed
are not limited to the medical domain. They are designed to address common compu-
tational requirements in real-time image classification tasks, including high-resolution
inputs, low inference latency, high throughput, and limited hardware resources. The
design principles introduced in this work can be adapted to other domains with similar
constraints. Potential application areas include industrial inspection, autonomous nav-
igation, surveillance, and embedded vision systems, where accuracy, high-throughput,

and energy efficiency are critical.
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6.2 Future Work

This section outlines potential directions for future work inspired by the findings and
limitations identified throughout this thesis. While the proposed framework demon-
strates strong performance in real-time CNN deployment on FPGA platforms, several
areas remain open for exploration. The suggestions presented here aim to enhance the
scalability, flexibility, and generalisability of the current approach for wider adoption

in real-world embedded vision systems.

* Optimisation of Data Transfer and I/O Bottlenecks: Although the current sys-
tem utilises PCle-based communication between the host CPU and the FPGA ac-
celerator, further improvements in data transfer efficiency could improve through-
put, reduce end-to-end inference latency, and minimise host-device communi-
cation overhead. Future work could explore the adoption of higher-bandwidth
PCle standards (e.g., PCle Gen4 or Genb5) or investigate the integration of DMA
engines with optimised transaction schemes. Such enhancements could reduce
transfer-induced latency, minimise host-device synchronisation overheads, and
further improve the throughput and responsiveness of real-time inference sys-

tems.

¢ Extension to Real-Time Video Processing: The present study focuses on static
image inference tasks. A natural progression would involve extending the pro-
posed framework to real-time video stream processing, where consecutive frames
must be processed with stringent latency constraints. This would require ad-
dressing challenges such as frame buffering, temporal coherence, and maintain-
ing inference throughput at video frame rates (e.g., 30 or 60 FPS). Successfully
adapting the accelerator for video-based applications would broaden its applica-
bility to fields such as endoscopic video analysis, surveillance, autonomous driv-

ing, and robotics.

These future directions would further enhance the scalability, and real-world applica-
bility of the proposed FPGA-based CNN acceleration framework, supporting broader

deployment across diverse, latency-critical embedded vision tasks.
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