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We develop a nonperturbative definition of RMT,: a generalization of random matrix theory that is
compatible with the symmetries of two-dimensional conformal field theory. Given any random matrix
ensemble, its n-point spectral correlations admit a prescribed modular-invariant lift to RMT,, which
moreover reduce to the original random matrix correlators in a near-extremal limit. Central to the
prescription is a presentation of random matrix theory in Mellin space, which lifts to two dimensions via the
SL(2, Z) spectral decomposition employed in previous work. As a demonstration we perform the explicit
RMT, lift of two-point correlations of the GUE Airy model. We propose that in AdS; pure gravity,
semiclassical amplitudes for off-shell n-boundary torus wormholes with topology X, x S! are given by
the RMT, lift of JT gravity wormhole amplitudes. For the three-boundary case, we identify a gravity

calculation which matches the RMT, result.

DOI: 10.1103/4hhn-c6mp

Introduction—Holographic duality for theories of two-
dimensional gravity provides strong evidence that random
matrix universality constrains the spectrum of holographic
quantum systems [ [—4]. The importance of two-dimensional
conformal field theories (CFTs), dual to quantum gravity in
AdS;, for constructing a more robust holographic dictionary
for high-energy states motivates the search for an inherently
two-dimensional CFT definition of random matrix univer-
sality. Conversely, one seeks a framework to uplift any given
random matrix theory (RMT) to 2D CFT in a manner that
respects modular and conformal invariance. Following [5],
we shall refer to such a framework as RMT,.

Just as RMT universally quantifies the spectral
statistics of chaotic many-body systems in view of the
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Bohigas—Giannoni—Schmit conjecture [6,7], RMT, should
likewise describe the spectra of irrational 2D CFTs in suffi-
ciently high-energy regimes. From a holographic perspec-
tive, RMT, is expected to quantify the spectral statistics of
primary operators dual to black hole states above extrem-
ality, generalizing arguments given in [4,8] and built upon
in [9,10].

The construction of RMT, was initiated in [5,11-13],
which focused on the 2D CFT avatar of a central hallmark
of random matrix universality, namely, the “linear ramp” of
the spectral form factor (SFF). In this Letter, we provide a
more complete definition of RMT,: a prescription to uplift
n-point RMT correlators to modular-invariant objects,
without restricting to any regime of times or energies,
which moreover reduce to the original RMT correlators in
an appropriate near-extremal limit. The two-point case
furnishes a modular-invariant SFF preserving a linear ramp
and plateau structure. Further details and elaboration will
be given in [14].

RMT,—We now describe a two-step procedure, which
starts with a given RMT and constructs a corresponding

Published by the American Physical Society
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modular-invariant RMT,. Consider the n-point spectral
form factor of a given matrix Hamiltonian,

Kigur (i) = (Tr(e ) Te(e ) (1)
where (), = Z7! [dH(-)e™™™ ") is the connected matrix
integral and y; are inverse temperatures. The first step

consists of computing the Mellin transform:

frar{o}) = MK (D] (=i ..o —iw,). (2)
where M[K(y)|(—iw) = [§°dyy~'"K(y). This quantity
defines RMT in Mellin space.

The second step, the conceptual core of the prescription,
is to regard the Mellin transform (2) as a spectral overlap in
a modular-invariant eigenbasis. The RMT, spectral n-point
function on n tori with modular parameters z; := x; + iy; is
defined as follows:

T doi . ) o
RMTZ({T } = A" (H (27) E%-H‘wi( t))symfRMT({ i})
+ [zero modes] + [cusp forms], (3)

where “sym” denotes symmetrization over {z;}, and

Ey(r) =Y (2= 8;0)a}" cos(2jx) /K, 4 (2xjy)  (4)

j>0

are nonholomorphic Eisenstein series with spin-j Fourier

coefficients a; ) Jeft implicit. On the critical line s = 5 +

iw € Cyt w1th w€R, the Fisenstein series span the
continuous part (“scattering states”) of the spectrum
of the Laplacian on the fundamental domain F =
H/PSL(2,Z) with eigenvalues s(1 —s).

The terms in (3) denoted as [cusp forms] refer to the
contribution of Maass cusp forms ¢, (7), an infinite set of
eigenfunctions which spans the discrete part of the eigen-
spectrum (“bound states”). Maass cusp forms are crucial for
describing RMT statistics of the spinning spectrum [12] but
have no scalar Fourier mode. In this Letter we focus on the
Eisenstein sector of RMT,, which in turn fully determines
the scalar sector.

The terms in (3) denoted as [zeromodes] contain the
part of the spectral decomposition that involves the trivial
eigenfunction ¢b, = constant. Because the Eisenstein series
has a pole at s = 1 with constant residue vol(F)~!, spectral
overlaps with the constant function may be obtained by
taking iterated residues of the first line of (3) at w; = 1/2i:
for the n-point correlator, taking m such residues generates
terms with n — m Eisenstein factors. For example, the case
n=21is

Zl(izl\)/ITz(TlvTZ)
1 e 11
"~ vol(F)? o 2i°2i

L [fdoy o (1
oot ot (15, B o)+ 4 )]

dwd
+ /l; ?;;)C;)szMT<a)1?w2)[Esl(TI)ESZ(TZ)]Sym

+ [ cueR } . (5)

forms

As we will see below, following other CFT contexts for the
“standard” case n = 1 [15], these zero mode terms will in
fact be canceled in the genus expansion of RMT,.

The two-step procedure that defines RMT, yields a
modular-invariant “lift” of RMT. Conversely, a crucial
property of RMT, is that the near-extremal limit effectively

reduces E, (1) = \/y; y””’ in the integral (3): this turns (3)

into an inverse Mellin transform, and Zgll\)/sz ({z;}) reduces
to the Original KRMT({yi})’

2o, (7)) — VK (vih). (6)

where the factor /y;---y, arises because we consider
modular-invariant CFT partition functions counting pri-
mary states only [16]. The near-extremal limit (for any
topology) turns out to be the same as in [17], where one
rescales uniformly y; — yy; and takes y — co. Modular
corrections being subleading near extremality are a non-
trivial property of RMT,, necessary for the self-consistency
of the uplift.

Note that we can equivalently write the Eisenstein sector
of (3) as

Zir,({z}) 2

dw ) .
ey = A S (i) HE, 7). (7)

(Tr(e™|gey) - Trle™ge,)),

This is mathematically equivalent since M [e™*](—iw) =
['(—iw)A® for every eigenvalue A€ spec(H), but this
formulation makes it manifest that the Eisenstein part of
RMT, is in fact still a matrix integral.

Warmup: AdS; wormhole and linear ramp: The sim-
plest prediction of RMT is the leading approximation to the
two-point function:

Crur V¥1Y2.

2 yi+y’

(8)

RMT(yl’y2)

where the constant Cryr encodes the RMT universality
class (e.g., Cgug = 1, Cgog = 2). This contains the linear
ramp of the SFF at late Lorentzian times, plus an infinite set
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of corrections that resum to the full double-scaled RMT
result [2].
In Mellin space,

CRMT

m X 71’5(601 + 602). (9)

fod (@), @) =

Via (5), this defines the simplest universal contribution to
RMT,, a modular-invariant completion of (8). To make this
more explicit, we recall the result of [4], where the T? x I
wormhole amplitude in AdS; pure gravity was found to be

0,2 C
203 () = SR S

y€SL(2.2)

Im(z, ) Im(y7,) '

10
lt) +y7af? (10)

In SL(2, Z) spectral space [5],

da)l da)2
Ads (71.72) / fRMT (w1,@,)E; (71)Ey, (15)

2n 271
Dy, ¢n| (Tl)¢)12 (72) (1 1)

+ Zf R (@

ny,ny

where in the cusp form sector one replaces 76(w; + w,) —
Op, n,- This takes precisely the form of an RMT, amplitude.
This example illustrates how the RMT, formalism reveals
essential features of the gravity amplitude [5,13], such as
the encoding of the linear ramp in the simple condition

f%ﬂ(w,,wz) ~8(w; + wy)e™ for large |w,;|, and the
amplitude being the diagonal approximation (a la Berry
[18]) to a CFT trace formula. In what follows we go “beyond
the ramp” by performing the RMT, lift of full RMT
correlators.

Paradigmatic example: Airy RMT,—As a natural start-
ing point for demonstration, we study the topological
expansion for the simplest instance of RMT,: the lift of
the Airy model in the gaussian unitary ensemble (GUE)
universality class. The RMT is defined by the spectral
density

_LVE (12)

= E _SO’
po(E)e o

p(E) po(E)
where S, is a large parameter. The associated two-point

SFF is known exactly [19,20]:

eSotire £
o

where we analytically continued y,, = £ iT. The pre-
factor of the error function is the asymptotic “plateau”
(Zairy(2P)) at T — oo (with f and S fixed).

For the purposes of this Letter we simplify matters by
performing the lift of a “simplified” model in which we
drop the doubly exponential prefactor (the full GUE Airy

K, (51.32) = {w mW+ﬂﬁ<m

model will be discussed in [14]). This is equivalent to
lifting the Airy model in the z-scaling limit [19,21] which
captures the ramp-plateau transition,

T— oo with 7=Te™ fixed. (14)

_SO

To take this limit, we rescale (13) by e and

observe % + T? ~ e>5072.

The RMT, lift of the z-scaled GUE Airy model is
performed in the two steps prescribed above. First, the
Mellin space formulation of the z-scaled Airy model is

—2iw+So

Galo, + i) (2, =)
XFG‘f‘3f>
)

2

2
f‘i’—l)kiry (a)l’ a)Z) =

X
—
A
N | —
I
|
2

(15)

where we use the convenient basis of w. = %(wl + m,),
and € — 0 is a regulator of the pole w, = 0. This then
defines the (Eisenstein sector of the) RMT, lift, written
using @, :

Zg\iry({ﬁ})

— o [ donfohn (@ DIE, (E (22,
N [ } (16)

modes

We suppress the cusp forms, discussed further in [14].
The topological expansion of the Airy model is encoded
in the analytic structure of the overlaps (15): in particular,
poles correspond to fixed-genus contributions. To illustrate
this, we imagine performing the inverse Mellin transform

to retrieve the SFF Ki quy’ i.e., the integrals (16) with

E (z;) = \/yi y'”". One can start with the w_ integral by
closmg the contour in either the upper or lower half
complex plane. This picks up an infinite series of residues
from the I" functions, which resum into

_ 2
€ SOK‘E’—)Airy (yl 7}’2)

_ (y1y2 )52 (31 4 )@+~ T(=iw.,)

d . .
2 Joie "t e(1+2i0.)Sy (14+2iw,)
(17)

The exponential factor implies convergence of the integral
as Im(w,) - —oo0; we can therefore perform the w,

integral via residues in the lower half complex plane.

(9)

Relevant poles are located at 0}’ = —igforg=0,1,2,...,
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and the gth pole is suppressed by e~(2971)%: one can check
that its residue indeed produces the genus ¢ term in the
topological expansion of the z-scaled Airy model, scaling
as ﬁg—l,tZg-H'

We stress a noteworthy aspect of this expansion: the
higher-genus terms are increasingly “off-diagonal”, local-
ized at w; + w, = —3ig. Note that the g = 0 pole, on the
diagonal, precisely yields the double-scaled RMT result
(8), whose diagonality in Mellin space was previously
understood as a CFT, avatar of Berry’s approximation in
periodic orbit theory [5,18].

Having defined the RMT, lift (16) of the z-scaled Airy
model, we can leverage our understanding of its analytic
structure to develop the modular-invariant genus expan-
sion, thus revealing its inherently two-dimensional nature
via modular corrections. This expansion takes the form

Zf/)xiry(fl, ) = Z0V(7y.1,)

© (—1)9¢295%
M
2mg(2g+1)

g=1

LBy (1) Egia (7))

X Z Mg - bk . (18)
k=0 9= k)k!

where the genus ¢ = 0 contribution Z(*? is universal, i.e.,
identical to (the Eisenstein part of) (11).

This modular-invariant topological expansion has sev-
eral interesting features. One of them is the appearance of
integer-index Eisenstein series with index bounded above

by the genus; in this context, note that replacing E,(z;) —

v 2 in the second line of (18) reproduces exactly the

topological expansion of the z-scaled Airy RMT (13).
Another feature is the asymptotic character of the sums (18)
at late time: a nontrivial resummation ensures that the late-
time plateau in the z-scaling limit of RMT is preserved in
RMT, despite the modular corrections at every genus g
being larger than the original RMT terms at genus g + 1.
The z-scaled limit of the Airy RMT (13) is thus recovered,
(Zaiy (28))Exf (z/26),  (19)

-8, z(2) _
711_];206 OZrAlry(Tl’T2) -
7 fixed

using the analytic continuation 7, = x, + i(f £ iT).
Finally, we note that the z-scaled Airy correlator (15) is
paradigmatic for a much larger class of models. In [14] we
show that for any spectral density po(E) with a square root
edge the 7-scaled SFF in the GUE ensemble is encoded in
F ot (@1 02) = fy (@1.02) X By (). (20)

7-RMT(p) \W“1> 42 7-Airy \W1» P2 p\Y+-

In particular, the dependence on w_ is universal and the

way in which the poles encode the genus expansion is
structurally identical to the Airy case above.

Application: Off-shell wormholes in AdS5 pure gravity—
By applying this machinery to RMT correlators dual to
wormhole amplitudes in two-dimensional gravity, RMT,
makes predictions for fully connected Euclidean wormhole
amplitudes with multiple torus boundaries in AdS; gravity.
These are off-shell amplitudes, generalizing [4], for three-
manifolds M3 of topology %, x S' with trivial fibration
and boundary topology 0M; = T2 U - - - U T2, the union of
n disjoint tori. So far there are no explicit computations or
predictions, from either boundary or bulk, for these worm-
holes with n > 2, either for AdS; pure gravity or with
matter.

Proposal: Our proposal for computing AdS; gravity
amplitudes for X;, x S' is simply to plug the appro-
priate RMT correlators into (2) and compute (3). Let us
henceforth focus on AdS; pure gravity. To leading
order in the semiclassical limit, the proposal is to uplift
Jackiw-Teitelboim (JT) gravity amplitudes, i.e. double-
scaled RMT correlators with spectral curve po(E) =

(y/2x%) sinh(27/2yE), on topology X, ,:
Zis () o 23R, ({7:)). (21)

where we denote ZESC’I';Z ({z;}) as the pure gravity amplitude

on X, x S'. Moreover, the explicit form of the uplifted JT
correlators can be obtained through a simple replacement
rule, where monomials in the {y;} are replaced by
Eisenstein series of appropriate index:

JTRMTZ({ }) KJT ({)’z})

cusp
YirEy (=) forms

(22)

with suitable regularization of the a = 1/2 case. We derive
(22) in the End Matter. The proportionality symbol in (21)
signals an unspecified overall z;-independent normalization
of the gravitational path integral.

This prescription, an n-point instantiation of the
MaxRMT proposal [5], is supported by the known emer-
gence of Schwarzian dynamics in the near-extremal limit of
2D CFTs [17,22], the dual emergence of JT dynamics in the
dimensional reduction of AdS; gravity [8], and the general
mechanism of RMT, presented in this Letter. As noted
earlier, RMT, amplitudes contain the RMT seed ampli-
tudes, via the near-extremal limit of y «x y and y — o0; in
the dimensional reduction of pure AdS; gravity to JT
gravity, y ~ (¢/24) at large ¢ [8,17,22]. Note that while
AdS; gravity also contains off-shell wormholes of fixed
boundary topology but with “interior” bulk topology,
expected to be suppressed by factors exponentially small
in Gy, the RMT, prescription above gives the leading-order
AdS; amplitude for a given boundary topology by uplifting
the leading-order JT amplitude.
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We now demonstrate the RMT, prescription for the
three-boundary torus wormhole in AdS; pure gravity.
Because of a special universality of the n = 3 case, we
are able to perform a heuristic gravity calculation, which is
found to match the RMT, result. We then describe the
RMT, lift of JT gravity amplitudes for arbitrary n. We
record the explicit results for n = 4, 5 in the End Matter.

Three-boundary wormhole from RMT,: We start from
the three-point RMT correlator, which is universal for any
spectral curve po(E) with a square root edge [23]:

_SO

73 VY12)3s (23)

0,3 e
KO3 (v1.y2.y3) = 2P

where the inverse temperatures y; are measured in units of
y. The Mellin transform of a monomial naively vanishes
(e.g. [24]) but admits an e prescription (e.g. Appendix B
of [25]). This leads to the spectral overlap

)

(27y)

3
(0,3) . 0 8¢
Frarr(@1,02,03) =557 g4€2 —(1=2iw;)*’ 24)

where {w;} are constrained to lie on the contours
Im(w;) = —1/2. Note that the overlap manifestly factor-
izes. We now compute the amplitude Zg)l\’j%z (71,72, 73) by
plugging this overlap into the spectral integral with the
contour specified above. On each boundary we must
evaluate the integral (A3), which must be regularized, as
the Eisenstein series has a pole at s = 1. Using the principal
value prescription PV [da/[(€* + @*)@] = 0 leads to the
final result:

0.3) eSo . .
Zpur, (71,72, 73) = WEl(TI)EI(Tz)El (73)
cusp
25
+ [forms] ( )

where E,(z) is the regular part of the Eisenstein series at
s=1,

By (c) = lim (Es(f) - ﬁ) . (26)

s—1

We posit that (up to overall normalization) (25) is the
AdS; pure gravity amplitude for the off-shell three-boun-
dary wormhole £y 3 x S'. Let us make a few remarks.

First, one should view the principal value prescription
as a choice of regularization. While this is a natural choice,
more generally there is a possibility of adding a 7;-
independent constant on each boundary component;
consistently with our holographic claim, this feature is
represented on the gravity side as well (see below).

Second, note that the result does not admit an expansion
into a discrete sum over Virasoro characters on each
boundary torus, consistent with a coarse-grained interpre-
tation of semiclassical AdS; pure gravity in which such
amplitudes capture higher moments of dual CFT spectral
densities.

Three-boundary wormhole from gravity: We now per-
form a heuristic gravitational computation of the amplitude
for the three-boundary wormhole with topology X3 x S,
utilizing certain simplifications that occur for n = 3. We
reiterate that this is not a first principles bulk computation,
which we understand is being pursued elsewhere [26]. See
also the Supplemental Material [27] for more details.

Let us first illustrate the calculation by analogy with the
two-boundary wormhole. After summing the seed ampli-
tude in (10) over T transformations ¢ — 7 + n, the resulting

seed gg)ézsi (71,7,) can be written as

(0.2)

T1,T © =7 %

gAdS;( 1 2):2\/)’1)’22/ dP%dP%dP%dP%
VY1Y2 7172 iez/0

x| Z (01, P Zr (02, ) PVEL (P, (27)
where Zr(z, P) is the “chiral trumpet” (S = —1/7)
eZm'-th
n(z)

which reduces to the well-known two-dimensional trumpet
by setting v =if [4,28-33]. The trumpets are glued
together along geodesic lengths Py, P, by a spin-quantized
generalization of the Weil-Petersson volumes:

Zr(w.P)=n(2)yp(S7).  xp(7) = (28)

Vi) = 8(P2 = P3)8(P - PY)5(PT — P2 - j).  (29)

The Eisenstein part of the two-boundary wormhole is
obtained by considering only the j = 0 term and summing
over SL(2, Z). The overall factor is the symplectic volume
form on the wormhole moduli space [4]:

VIOt 55)] = V/Im(S7) Im(S7y) = Y2122 (30)

B |T172| .

This motivates the following gravitational ansatz for the
Eisenstein sector of the three-boundary wormbhole:

(0.3)
Ti
w > V/|Q(S7y. S1,. 573))

VY123

X / dP3dP3dP3Z (1, Py)

0

X Zuy(e2. Pa)Zas(e3. PAWVos (1P| - (31)
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The object gf&é{({q}) is defined as the seed of a triple
Poincare sum over SL(2,Z)/T,, one on each boundary.

The prefactor is taken to be /|Q(7},7,,73)| = /Y1 y2y3 in

analogy with the two-boundary case. The volume
Vo3({P;}) is taken to be the Weil-Petersson volume of a
three-holed sphere, namely, V3 = 1. In the Supplemental
Material [27] we discuss this choice further; we only
mention here that V3 =1 was obtained explicitly in
[34] as a regularized volume within Virasoro topological
QFT (TQFT), using a special property of the three-
punctured case.

Combining these ingredients, the above expression yields

the simple result gg)(;a({ri}) D y1y2y3/(27)°. Summing

over modular images on each boundary gives the gravity
amplitude:

3
Zféi(rl,rz,ﬁ):)l_[( > Im(yr,-)), (32)
/T

i=1 \yeSL(2.Z

where we have dropped the overall constant normalization.
Each sum is the Poincaré series representation of the
Eisenstein series E,(z;) at s = 1. As this is singular, it must
be regularized; this is precisely the same freedom of
regularization scheme that appears on the RMT, side. A
minimal scheme is to subtract off the pole. This yields a
match with (25).

n-boundary wormholes from RMT,: One can perform
the RMT, lift of JT gravity amplitudes for arbitrary n. For

all n > 3, the amplitude Z}%_’QMTZ is a polynomial in
Eisenstein series, as governed by the replacement rule

(22). As in the n = 3 case, it does not admit an expansion
into a discrete sum over Virasoro characters on the n

boundary tori, and reduces to K}%") in the near-extremal
limit y xy and y — oo. The microcanonical spectral
statistics of the dual CFT, follow from these results via
inverse Laplace transform.

We note that for n > 3, the most naive extension of the
heuristic gravity calculation above does not match the
RMT, result. This is as expected, from considerations of
the n > 3 bulk moduli space. A bona fide AdS; pure
gravity calculation of the n-point amplitudes would be of
clear value in learning about random statistics of AdS;
black hole microstates: either AdS; pure gravity does
indeed furnish the minimal completion of random matrix
statistics, ratifying the proposal (21)—(22); or, perhaps pure
gravity is richer than that, containing additional structure
that appears only in higher-point correlations.

Outlook—In this Letter we presented a prescription that
lifts correlation functions in arbitrary random matrix theories
to two-dimensional modular-invariant form factors. We
presented the GUE Airy model as the simplest example,
and used the formalism to predict multiboundary oft-shell
wormhole amplitudes in AdS; pure gravity. In [14] we will

discuss more involved examples as well as general spectral
curves, topological recursion, other universality classes such
as the GOE ensemble, and late-time dynamics. We will
discuss the cusp form part of RMT, and RMT statistics at
fixed spin. We will also elaborate on the embedding of
RMT, into CFT,, and on the novel constraints imposed by
RMT, on the spectra of chaotic CFT,.

We recall a different approach toward random matrix
universality in CFTs: the matrix-tensor model of [9,10],
which describes an ensemble of CFT data which approx-
imately solves the CFT bootstrap constraints up to some
tolerance. One awaits fully explicit calculations of correla-
tors in that model; these would enable quantitative com-
parison to both RMT, and semiclassical gravity calculations
of off-shell wormhole amplitudes. Our perspective suggests
that, upon integrating out the tensor degrees of freedom
(which encode the operator product expansion (OPE)
dynamics of the CFT), the resulting spectral matrix model
lies within an RMT, universality class after taking a suitable
limit of vanishing tolerance. This would be very interesting
to pursue.

We end with a comment on the broader point of our
proposal. Lacking explicit examples of irrational chaotic
CFTs, as well as a first-principles gravity calculation for
multiboundary wormholes, we wish to emphasize that
RMT, predictions should be independently viewed as a
way to benchmark chaos in any modular-invariant theory.
This rationale is similar to the bootstrap program: RMT,
encapsulates the constraints that any modular-invariant form
factor needs to satisfy if it is to be consistent with random
matrix universality. This follows from the construction of
RMT, using a complete basis of modular-invariant func-
tions and minimal universal input near extremality.
Holographically, we envision RMT, predictions as a base-
line against which to compare future gravity calculations;
such a comparison would quantify the degree to which AdS;
gravity is richer than perhaps expected, containing infor-
mation that goes beyond a reduction to JT gravity near
extremality combined with symmetry constraints.
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Wormholes with n > 3 boundaries—For wormholes
of topology %, x S! with n > 3 boundaries, the RMT,
result is sensitive to the choice of spectral curve of
the RMT being lifted. As motivated earlier, the pure
gravity amplitudes on X, x S! to leading order in the
semiclassical limit should be given by the RMT, lift of
the JT gravity amplitudes on X,,. We emphasize that
the procedure can be repeated for any given n, using the
genus-0, n-boundary JT correlators in [8,35].

In general, the n-boundary JT wormhole amplitudes take
the form of a sum of monomials [ ]; y{’. The tool that allows
us to find the relevant overlaps for each individual term is
the regularized Mellin transform introduced in [25]:

M(~iw) = /)00 dy y*~17io = ﬁ,
Im(w) = —a. (A1)

The overlaps f}%”)({wi}) are the sum of products of the
above expression. Because of this factorized structure, the
modular uplift acts individually on each monomial and

reduces to integrals of the form

lim dw 2e £ o) = B (o)
€0 R—ia 2n €2 - (a — ZCO)Z %-Ha) T - %-&-a 7)

1
The case a = 1/2 is slightly more subtle because of the
Eisenstein pole at s = 1: the right-hand side of (A2) should
be understood as the pole-subtracted Eisenstein series
E\ (), defined in (26). To arrive at this result, we expand

the integrand near @ = 0 and use the integral representation
of the Dirac delta function to obtain

(A2)

I dow 2¢
m/| —————
=0 Jr 2r (:‘2 + (1)2

. do 2¢ 3
=FE(z)+lim [ ———.
1(7) e—>0[§2ﬂ€2—|—a}2ﬂl(ﬂ
The second term, a r-independent constant, must be
regularized: a canonical choice is the principal value

1+iow (T)

(A3)
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prescription,

"VM@zfﬁﬂyJ -

Adopting this choice henceforth allows us to immediately
write down the modular uplift of JT gravity amplitudes—
indeed, of any polynomial RMT amplitude—by using the
replacement rule

(A4)

3

a S
y = E%+a(T) - 71'(61 _ %) 5%,51‘

(AS)

This proves (22) and also applies to the all-genus expansion
of the 7-scaled Airy model, see (18).

For further illustration, we now present the RMT, pre-
diction for n = 4 and n = 5 wormhole amplitudes in AdS;
pure gravity by lifting corresponding JT gravity expressions.

n = 4 boundaries: The JT gravity amplitude with four
boundaries is

—2SO

4
Y0 = s VI (277 301 (A6)

where y = ¢/24 when JT gravity is embedded as a near-
extremal sector of AdS; pure gravity. Using the replace-
ment rule (AS5) leads to the following Eisenstein sector for
the four-boundary RMT, amplitude:

20, ()2 <HE()) (ZHHZ%)

i=1

+ { cusp } . (A7)
forms

Importantly for the consistency of our proposal, in the near-
extremal limit y; xy and y — oo, one recovers the JT
gravity n = 4 wormhole (A6). Note that using instead the
Virasoro minimal string (VMS) spectral curve for n = 4
amounts simply to having yyms = [(¢ — 13)/24] in the
above expressions, with the same near-extremal limit
reproducing K ({3:}).

n =35 boundaries: The JT gravity amplitude for a
wormhole with n = 5 boundaries and trivial interior top-
ology is given by

o35

KJT ({Yz}) W\/h)’z)@ﬂ%
5 5 2
X {107:4}/2 + 67y (Zy,) + (Z y,») }
i=1 i=1

(A8)

The RMT, prediction for the five-boundary amplitude
follows by expanding (A8) and applying (A5) term by term:

e=35%
2o ) > (HEI )
<[iomr 3 (o i)

i B P O

+2» = =
Z;El(fi)El(Tj) forms

For arbitrary n, K\ ({y;}) is only known as a generating

function, but one may proceed in the above fashion for any
given n.
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