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We develop a nonperturbative definition of RMT2: a generalization of random matrix theory that is
compatible with the symmetries of two-dimensional conformal field theory. Given any random matrix
ensemble, its n-point spectral correlations admit a prescribed modular-invariant lift to RMT2, which
moreover reduce to the original random matrix correlators in a near-extremal limit. Central to the
prescription is a presentation of randommatrix theory in Mellin space, which lifts to two dimensions via the
SLð2;ZÞ spectral decomposition employed in previous work. As a demonstration we perform the explicit
RMT2 lift of two-point correlations of the GUE Airy model. We propose that in AdS3 pure gravity,
semiclassical amplitudes for off-shell n-boundary torus wormholes with topology Σ0;n × S1 are given by
the RMT2 lift of JT gravity wormhole amplitudes. For the three-boundary case, we identify a gravity
calculation which matches the RMT2 result.
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Introduction—Holographic duality for theories of two-
dimensional gravity provides strong evidence that random
matrix universality constrains the spectrum of holographic
quantumsystems [1–4]. The importance of two-dimensional
conformal field theories (CFTs), dual to quantum gravity in
AdS3, for constructing amore robust holographic dictionary
for high-energy states motivates the search for an inherently
two-dimensional CFT definition of random matrix univer-
sality. Conversely, one seeks a framework to uplift any given
random matrix theory (RMT) to 2D CFT in a manner that
respects modular and conformal invariance. Following [5],
we shall refer to such a framework as RMT2.
Just as RMT universally quantifies the spectral

statistics of chaotic many-body systems in view of the

Bohigas–Giannoni–Schmit conjecture [6,7], RMT2 should
likewise describe the spectra of irrational 2D CFTs in suffi-
ciently high-energy regimes. From a holographic perspec-
tive, RMT2 is expected to quantify the spectral statistics of
primary operators dual to black hole states above extrem-
ality, generalizing arguments given in [4,8] and built upon
in [9,10].
The construction of RMT2 was initiated in [5,11–13],

which focused on the 2D CFT avatar of a central hallmark
of random matrix universality, namely, the “linear ramp” of
the spectral form factor (SFF). In this Letter, we provide a
more complete definition of RMT2: a prescription to uplift
n-point RMT correlators to modular-invariant objects,
without restricting to any regime of times or energies,
which moreover reduce to the original RMT correlators in
an appropriate near-extremal limit. The two-point case
furnishes a modular-invariant SFF preserving a linear ramp
and plateau structure. Further details and elaboration will
be given in [14].
RMT2—We now describe a two-step procedure, which

starts with a given RMT and constructs a corresponding
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modular-invariant RMT2. Consider the n-point spectral
form factor of a given matrix Hamiltonian,

KðnÞ
RMTðfyigÞ ¼ hTrðe−y1HÞ � � �Trðe−ynHÞic ð1Þ

where h·ic ≡ Z−1 R dHð·Þe−NTrðHÞ is the connected matrix
integral and yi are inverse temperatures. The first step
consists of computing the Mellin transform:

fðnÞRMTðfωigÞ≡M
�
KðnÞ

RMTðfyigÞ
�ð−iω1;…;−iωnÞ; ð2Þ

where M½KðyÞ�ð−iωÞ ¼ R∞0 dy y−1−iωKðyÞ. This quantity
defines RMT in Mellin space.
The second step, the conceptual core of the prescription,

is to regard the Mellin transform (2) as a spectral overlap in
a modular-invariant eigenbasis. The RMT2 spectral n-point
function on n tori with modular parameters τi ≔ xi þ iyi is
defined as follows:

ZðnÞ
RMT2

ðfτigÞ≡
Z
Rn

 Yn
i¼1

dωi

ð2πÞE1
2
þiωi

ðτiÞ
!

sym

fðnÞRMTðfωigÞ

þ ½zero modes� þ ½cusp forms�; ð3Þ

where “sym” denotes symmetrization over fτig, and

EsðτÞ ¼
X
j≥0

ð2 − δj;0ÞaðsÞ
j cosð2πjxÞ ffiffiffi

y
p

Ks−1
2
ð2πjyÞ ð4Þ

are nonholomorphic Eisenstein series with spin-j Fourier

coefficients aðsÞ
j left implicit. On the critical line s≡ 1

2
þ

iω∈ Ccrit with ω∈R, the Eisenstein series span the
continuous part (“scattering states”) of the spectrum
of the Laplacian on the fundamental domain F ¼
H=PSLð2;ZÞ with eigenvalues sð1 − sÞ.
The terms in (3) denoted as ½cuspforms� refer to the

contribution of Maass cusp forms ϕnðτÞ, an infinite set of
eigenfunctions which spans the discrete part of the eigen-
spectrum (“bound states”). Maass cusp forms are crucial for
describing RMT statistics of the spinning spectrum [12] but
have no scalar Fourier mode. In this Letter we focus on the
Eisenstein sector of RMT2, which in turn fully determines
the scalar sector.
The terms in (3) denoted as ½zeromodes� contain the

part of the spectral decomposition that involves the trivial
eigenfunction ϕ0 ¼ constant. Because the Eisenstein series
has a pole at s ¼ 1 with constant residue volðF Þ−1, spectral
overlaps with the constant function may be obtained by
taking iterated residues of the first line of (3) at ωi ¼ 1=2i:
for the n-point correlator, taking m such residues generates
terms with n −m Eisenstein factors. For example, the case
n ¼ 2 is

Zð2Þ
RMT2

ðτ1; τ2Þ

¼ 1

volðF Þ2 f
ð2Þ
RMT

�
1

2i
;
1

2i

�

þ 1

volðF Þ
Z
R

dω1

2π
fð2ÞRMT

�
ω1;

1

2i

�
½Es1ðτ1Þ þ Es1ðτ2Þ�

þ
Z
R2

dω1dω2

ð2πÞ2 fð2ÞRMTðω1;ω2Þ½Es1ðτ1ÞEs2ðτ2Þ�sym

þ
�
cusp
forms

�
: ð5Þ

As we will see below, following other CFT contexts for the
“standard” case n ¼ 1 [15], these zero mode terms will in
fact be canceled in the genus expansion of RMT2.
The two-step procedure that defines RMT2 yields a

modular-invariant “lift” of RMT. Conversely, a crucial
property of RMT2 is that the near-extremal limit effectively
reduces EsiðτÞ →

ffiffiffiffi
yi

p
yiωi
i in the integral (3): this turns (3)

into an inverse Mellin transform, and ZðnÞ
RMT2

ðfτigÞ reduces
to the original KRMTðfyigÞ,

ZðnÞ
RMT2

ðfτigÞ ⟶
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1…yn

p
KðnÞ

RMTðfyigÞ; ð6Þ

where the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1 � � � ynp

arises because we consider
modular-invariant CFT partition functions counting pri-
mary states only [16]. The near-extremal limit (for any
topology) turns out to be the same as in [17], where one
rescales uniformly yi → γyi and takes γ → ∞. Modular
corrections being subleading near extremality are a non-
trivial property of RMT2, necessary for the self-consistency
of the uplift.
Note that we can equivalently write the Eisenstein sector

of (3) as

ZðnÞ
RMT2

ðfτigÞ ⊃ hTrðe−HjEðτ1ÞÞ � � �Trðe−HjEðτnÞÞic
e−HjEðτÞ ≡

Z
R

dω
2π

Γð−iωÞHiωEsðτÞ: ð7Þ

This is mathematically equivalent since M½e−yλ�ð−iωÞ ¼
Γð−iωÞλiω for every eigenvalue λ∈ specðHÞ, but this
formulation makes it manifest that the Eisenstein part of
RMT2 is in fact still a matrix integral.
Warmup: AdS3 wormhole and linear ramp: The sim-

plest prediction of RMT is the leading approximation to the
two-point function:

Kð0;2Þ
RMTðy1; y2Þ ¼

CRMT

2π

ffiffiffiffiffiffiffiffiffi
y1y2

p
y1 þ y2

; ð8Þ

where the constant CRMT encodes the RMT universality
class (e.g., CGUE ¼ 1, CGOE ¼ 2). This contains the linear
ramp of the SFF at late Lorentzian times, plus an infinite set
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of corrections that resum to the full double-scaled RMT
result [2].
In Mellin space,

fð0;2ÞRMTðω1;ω2Þ ¼
CRMT

2 coshðπω1Þ
× πδðω1 þ ω2Þ: ð9Þ

Via (5), this defines the simplest universal contribution to
RMT2, a modular-invariant completion of (8). To make this
more explicit, we recall the result of [4], where the T2 × I
wormhole amplitude in AdS3 pure gravity was found to be

Zð0;2Þ
AdS3

ðτ1; τ2Þ ¼
CRMT

4π2
X

γ ∈SLð2;ZÞ

Imðτ1Þ Imðγτ2Þ
jτ1 þ γτ2j2

: ð10Þ

In SLð2;ZÞ spectral space [5],

Zð0;2Þ
AdS3

ðτ1;τ2Þ¼
Z
R

dω1

2π

dω2

2π
fð0;2ÞRMTðω1;ω2ÞEs1ðτ1ÞEs2ðτ2Þ

þ
X
n1;n2

fð0;2ÞRMTðωn1 ;ωn2Þϕn1ðτ1Þϕn2ðτ2Þ; ð11Þ

where in the cusp form sector one replaces πδðω1 þ ω2Þ →
δn1;n2 . This takes precisely the form of an RMT2 amplitude.
This example illustrates how the RMT2 formalism reveals
essential features of the gravity amplitude [5,13], such as
the encoding of the linear ramp in the simple condition

fð0;2ÞRMTðω1;ω2Þ ∼ δðω1 þ ω2Þe−πω1 for large jωij, and the
amplitude being the diagonal approximation (à la Berry
[18]) to a CFT trace formula. In what follows we go “beyond
the ramp” by performing the RMT2 lift of full RMT
correlators.
Paradigmatic example: Airy RMT2—As a natural start-

ing point for demonstration, we study the topological
expansion for the simplest instance of RMT2: the lift of
the Airy model in the gaussian unitary ensemble (GUE)
universality class. The RMT is defined by the spectral
density

ρðEÞ¼ ρ0ðEÞe−S0 ; ρ0ðEÞ¼
1

2π

ffiffiffiffi
E

p
; ð12Þ

where S0 is a large parameter. The associated two-point
SFF is known exactly [19,20]:

Kð2Þ
Airyðy1;y2Þ¼

eS0þ
β3

3
e−2S0

4
ffiffiffi
π

p ð2βÞ3=2Erf
�
e−S0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βðβ2þT2Þ

q �
; ð13Þ

where we analytically continued y1;2 ¼ β � iT. The pre-
factor of the error function is the asymptotic “plateau”
hZAiryð2βÞi at T → ∞ (with β and S0 fixed).
For the purposes of this Letter we simplify matters by

performing the lift of a “simplified” model in which we
drop the doubly exponential prefactor (the full GUE Airy

model will be discussed in [14]). This is equivalent to
lifting the Airy model in the τ-scaling limit [19,21] which
captures the ramp-plateau transition,

T → ∞ with τ ≡ Te−S0 fixed: ð14Þ

To take this limit, we rescale (13) by e−S0 and
observe β2 þ T2 ∼ e2S0τ2.
The RMT2 lift of the τ-scaled GUE Airy model is

performed in the two steps prescribed above. First, the
Mellin space formulation of the τ-scaled Airy model is

fð2Þτ-Airyðω1;ω2Þ ¼
e−2iωþS0

6πðωþ þ iϵÞð2ωþ − iÞ

× Γ
�
1

2
−
iωþ
2

þ 3iω−

2

�

× Γ
�
1

2
−
iωþ
2

−
3iω−

2

�
; ð15Þ

where we use the convenient basis of ω� ¼ 1
3
ðω1 � ω2Þ,

and ϵ → 0 is a regulator of the pole ωþ ¼ 0. This then
defines the (Eisenstein sector of the) RMT2 lift, written
using ω�:

Zð2Þ
τ-AiryðfτigÞ

¼ 9

8π2

Z
dω�f

ð2Þ
τ-AiryðfωigÞ½Es1ðτ1ÞEs2ðτ2Þ�sym

þ
�
zero
modes

�
: ð16Þ

We suppress the cusp forms, discussed further in [14].
The topological expansion of the Airy model is encoded

in the analytic structure of the overlaps (15): in particular,
poles correspond to fixed-genus contributions. To illustrate
this, we imagine performing the inverse Mellin transform

to retrieve the SFF Kð2Þ
τ-Airy, i.e., the integrals (16) with

EsiðτiÞ →
ffiffiffiffi
yi

p
yiωi
i . One can start with the ω− integral by

closing the contour in either the upper or lower half
complex plane. This picks up an infinite series of residues
from the Γ functions, which resum into

e−S0Kð2Þ
τ-Airyðy1;y2Þ

¼ 1

4π2

Z
Rþiϵ

dωþ
ðy1y2Þ12þiωþðy1þy2Þiωþ−1

eð1þ2iωþÞS0
Γð−iωþÞ
ð1þ2iωþÞ

:

ð17Þ

The exponential factor implies convergence of the integral
as ImðωþÞ → −∞; we can therefore perform the ωþ
integral via residues in the lower half complex plane.

Relevant poles are located at ωðgÞ
þ ¼ −ig for g ¼ 0; 1; 2;…,

PHYSICAL REVIEW LETTERS 135, 121602 (2025)

121602-3



and the gth pole is suppressed by e−ð2gþ1ÞS0 : one can check
that its residue indeed produces the genus g term in the
topological expansion of the τ-scaled Airy model, scaling
as βg−1τ2gþ1.
We stress a noteworthy aspect of this expansion: the

higher-genus terms are increasingly “off-diagonal”, local-
ized at ω1 þ ω2 ¼ −3ig. Note that the g ¼ 0 pole, on the
diagonal, precisely yields the double-scaled RMT result
(8), whose diagonality in Mellin space was previously
understood as a CFT2 avatar of Berry’s approximation in
periodic orbit theory [5,18].
Having defined the RMT2 lift (16) of the τ-scaled Airy

model, we can leverage our understanding of its analytic
structure to develop the modular-invariant genus expan-
sion, thus revealing its inherently two-dimensional nature
via modular corrections. This expansion takes the form

Zð2Þ
τ-Airyðτ1; τ2Þ ¼ Zð0;2Þðτ1; τ2Þ

þ
X∞
g¼1

ð−1Þge−2gS0
2πgð2gþ 1Þ

×
Xg−1

k¼0

½E2g−kðτ1ÞEgþkþ1ðτ2Þ�sym
Γðg − kÞk! ; ð18Þ

where the genus g ¼ 0 contribution Zð0;2Þ is universal, i.e.,
identical to (the Eisenstein part of) (11).
This modular-invariant topological expansion has sev-

eral interesting features. One of them is the appearance of
integer-index Eisenstein series with index bounded above
by the genus; in this context, note that replacing EnðτiÞ →
yn−1=2i in the second line of (18) reproduces exactly the
topological expansion of the τ-scaled Airy RMT (13).
Another feature is the asymptotic character of the sums (18)
at late time: a nontrivial resummation ensures that the late-
time plateau in the τ-scaling limit of RMT is preserved in
RMT2 despite the modular corrections at every genus g
being larger than the original RMT terms at genus gþ 1.
The τ-scaled limit of the Airy RMT (13) is thus recovered,

lim
T→∞
τ fixed

e−S0Zð2Þ
τ-Airyðτ1; τ2Þ ¼ hZAiryð2βÞiErf

	
τ
ffiffiffiffiffi
2β

p 

; ð19Þ

using the analytic continuation τ1;2 ¼ x1;2 þ iðβ � iTÞ.
Finally, we note that the τ-scaled Airy correlator (15) is

paradigmatic for a much larger class of models. In [14] we
show that for any spectral density ρ0ðEÞ with a square root
edge the τ-scaled SFF in the GUE ensemble is encoded in

fð2Þτ-RMTðρÞðω1;ω2Þ ¼ fð2Þτ-Airyðω1;ω2Þ × hρðωþÞ: ð20Þ

In particular, the dependence on ω− is universal and the
way in which the poles encode the genus expansion is
structurally identical to the Airy case above.

Application: Off-shell wormholes in AdS3 pure gravity—
By applying this machinery to RMT correlators dual to
wormhole amplitudes in two-dimensional gravity, RMT2

makes predictions for fully connected Euclidean wormhole
amplitudes with multiple torus boundaries in AdS3 gravity.
These are off-shell amplitudes, generalizing [4], for three-
manifolds M3 of topology Σ0;n × S1 with trivial fibration
and boundary topology ∂M3 ¼ T 2 ∪ � � � ∪ T 2, the union of
n disjoint tori. So far there are no explicit computations or
predictions, from either boundary or bulk, for these worm-
holes with n > 2, either for AdS3 pure gravity or with
matter.
Proposal: Our proposal for computing AdS3 gravity

amplitudes for Σ0;n × S1 is simply to plug the appro-
priate RMT correlators into (2) and compute (3). Let us
henceforth focus on AdS3 pure gravity. To leading
order in the semiclassical limit, the proposal is to uplift
Jackiw-Teitelboim (JT) gravity amplitudes, i.e. double-
scaled RMT correlators with spectral curve ρ0ðEÞ ¼
ðγ=2π2Þ sinhð2π ffiffiffiffiffiffiffiffi

2γE
p Þ, on topology Σ0;n:

Zð0;nÞ
AdS3

ðfτigÞ ∝ Zð0;nÞ
JT-RMT2

ðfτigÞ; ð21Þ

where we denote Zð0;nÞ
AdS3

ðfτigÞ as the pure gravity amplitude

on Σ0;n × S1. Moreover, the explicit form of the uplifted JT
correlators can be obtained through a simple replacement
rule, where monomials in the fyig are replaced by
Eisenstein series of appropriate index:

Zð0;nÞ
JT-RMT2

ðfτigÞ¼Kð0;nÞ
JT ðfyigÞ

��
yai ↦E1

2
þaðτiÞ

þ
�
cusp
forms

�

ð22Þ

with suitable regularization of the a ¼ 1=2 case. We derive
(22) in the End Matter. The proportionality symbol in (21)
signals an unspecified overall τi-independent normalization
of the gravitational path integral.
This prescription, an n-point instantiation of the

MaxRMT proposal [5], is supported by the known emer-
gence of Schwarzian dynamics in the near-extremal limit of
2D CFTs [17,22], the dual emergence of JT dynamics in the
dimensional reduction of AdS3 gravity [8], and the general
mechanism of RMT2 presented in this Letter. As noted
earlier, RMT2 amplitudes contain the RMT seed ampli-
tudes, via the near-extremal limit of y ∝ γ and γ → ∞; in
the dimensional reduction of pure AdS3 gravity to JT
gravity, γ ≈ ðc=24Þ at large c [8,17,22]. Note that while
AdS3 gravity also contains off-shell wormholes of fixed
boundary topology but with “interior” bulk topology,
expected to be suppressed by factors exponentially small
inGN , the RMT2 prescription above gives the leading-order
AdS3 amplitude for a given boundary topology by uplifting
the leading-order JT amplitude.
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We now demonstrate the RMT2 prescription for the
three-boundary torus wormhole in AdS3 pure gravity.
Because of a special universality of the n ¼ 3 case, we
are able to perform a heuristic gravity calculation, which is
found to match the RMT2 result. We then describe the
RMT2 lift of JT gravity amplitudes for arbitrary n. We
record the explicit results for n ¼ 4, 5 in the End Matter.
Three-boundary wormhole from RMT2: We start from

the three-point RMT correlator, which is universal for any
spectral curve ρ0ðEÞ with a square root edge [23]:

Kð0;3Þ
RMTðy1; y2; y3Þ ¼

e−S0

ð2πγÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y1y2y3

p
; ð23Þ

where the inverse temperatures yi are measured in units of
γ. The Mellin transform of a monomial naively vanishes
(e.g. [24]) but admits an ϵ prescription (e.g. Appendix B
of [25]). This leads to the spectral overlap

fð0;3ÞRMTðω1;ω2;ω3Þ¼
e−S0

ð2πγÞ3=2
Y3
i¼1

8ϵ

4ϵ2− ð1−2iωiÞ2
; ð24Þ

where fωig are constrained to lie on the contours
ImðωiÞ ¼ −1=2. Note that the overlap manifestly factor-

izes. We now compute the amplitude Zð0;3Þ
RMT2

ðτ1; τ2; τ3Þ by
plugging this overlap into the spectral integral with the
contour specified above. On each boundary we must
evaluate the integral (A3), which must be regularized, as
the Eisenstein series has a pole at s ¼ 1. Using the principal
value prescription PV

R
dω̃=½ðϵ2 þ ω̃2Þω̃� ¼ 0 leads to the

final result:

Zð0;3Þ
RMT2

ðτ1; τ2; τ3Þ ¼
e−S0

ð2πγÞ3=2 Ê1ðτ1ÞÊ1ðτ2ÞÊ1ðτ3Þ

þ
�
cusp
forms

�
ð25Þ

where Ê1ðτÞ is the regular part of the Eisenstein series at
s ¼ 1,

Ê1ðτÞ≡ lim
s→1

�
EsðτÞ −

3

πðs − 1Þ
�
: ð26Þ

We posit that (up to overall normalization) (25) is the
AdS3 pure gravity amplitude for the off-shell three-boun-
dary wormhole Σ0;3 × S1. Let us make a few remarks.
First, one should view the principal value prescription

as a choice of regularization. While this is a natural choice,
more generally there is a possibility of adding a τi-
independent constant on each boundary component;
consistently with our holographic claim, this feature is
represented on the gravity side as well (see below).

Second, note that the result does not admit an expansion
into a discrete sum over Virasoro characters on each
boundary torus, consistent with a coarse-grained interpre-
tation of semiclassical AdS3 pure gravity in which such
amplitudes capture higher moments of dual CFT spectral
densities.
Three-boundary wormhole from gravity: We now per-

form a heuristic gravitational computation of the amplitude
for the three-boundary wormhole with topology Σ0;3 × S1,
utilizing certain simplifications that occur for n ¼ 3. We
reiterate that this is not a first principles bulk computation,
which we understand is being pursued elsewhere [26]. See
also the Supplemental Material [27] for more details.
Let us first illustrate the calculation by analogy with the

two-boundary wormhole. After summing the seed ampli-
tude in (10) over T transformations τ → τ þ n, the resulting

seed gð0;2ÞAdS3
ðτ1; τ2Þ can be written as

gð0;2ÞAdS3
ðτ1;τ2Þffiffiffiffiffiffiffiffiffi
y1y2

p ¼ 2

ffiffiffiffiffiffiffiffiffi
y1y2

p
jτ1τ2j

X
j∈Z

Z
∞

0

dP2
1dP

2
2dP̄

2
1dP̄

2
2

× jZTrðτ1;P1ÞZTrðτ2;P2Þj2VðjÞ
0;2ðfPigÞ; ð27Þ

where ZTrðτ; PÞ is the “chiral trumpet” (Sτ≡ −1=τ)

ZTrðτ;PÞ≡ηðτÞχPðSτÞ; χPðτÞ¼
e2πiτP

2

ηðτÞ ; ð28Þ

which reduces to the well-known two-dimensional trumpet
by setting τ ¼ iβ [4,28–33]. The trumpets are glued
together along geodesic lengths P1, P2 by a spin-quantized
generalization of the Weil-Petersson volumes:

VðjÞ
0;2 ¼ δðP2

1 − P2
2ÞδðP̄2

1 − P̄2
2ÞδðP2

1 − P̄2
1 − jÞ: ð29Þ

The Eisenstein part of the two-boundary wormhole is
obtained by considering only the j ¼ 0 term and summing
over SLð2;ZÞ. The overall factor is the symplectic volume
form on the wormhole moduli space [4]:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΩðSτ1; Sτ2Þj

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ImðSτ1Þ ImðSτ2Þ

p
¼

ffiffiffiffiffiffiffiffiffi
y1y2

p
jτ1τ2j

: ð30Þ

This motivates the following gravitational ansatz for the
Eisenstein sector of the three-boundary wormhole:

gð0;3ÞAdS3
ðfτigÞffiffiffiffiffiffiffiffiffiffiffiffiffi

y1y2y3
p ⊃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΩðSτ1; Sτ2; Sτ3Þj

p

×

����
Z

∞

0

dP2
1dP

2
2dP

2
3ZTrðτ1; P1Þ

× ZTrðτ2; P2ÞZTrðτ3; P3ÞV0;3ðfPigÞ
����
2

: ð31Þ
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The object gð0;3ÞAdS3
ðfτigÞ is defined as the seed of a triple

Poincare sum over SLð2;ZÞ=Γ∞, one on each boundary.
The prefactor is taken to be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijΩðτ1; τ2; τ3Þj
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

y1y2y3
p

in
analogy with the two-boundary case. The volume
V0;3ðfPigÞ is taken to be the Weil-Petersson volume of a
three-holed sphere, namely, V0;3 ¼ 1. In the Supplemental
Material [27] we discuss this choice further; we only
mention here that V0;3 ¼ 1 was obtained explicitly in
[34] as a regularized volume within Virasoro topological
QFT (TQFT), using a special property of the three-
punctured case.
Combining these ingredients, the above expression yields

the simple result gð0;3ÞAdS3
ðfτigÞ ⊃ y1y2y3=ð2πÞ6. Summing

over modular images on each boundary gives the gravity
amplitude:

Zð0;3Þ
AdS3

ðτ1; τ2; τ3Þ ⊃
Y3
i¼1

 X
γ ∈SLð2;ZÞ=Γ∞

ImðγτiÞ
!
; ð32Þ

where we have dropped the overall constant normalization.
Each sum is the Poincaré series representation of the
Eisenstein series EsðτiÞ at s ¼ 1. As this is singular, it must
be regularized; this is precisely the same freedom of
regularization scheme that appears on the RMT2 side. A
minimal scheme is to subtract off the pole. This yields a
match with (25).
n-boundary wormholes from RMT2: One can perform

the RMT2 lift of JT gravity amplitudes for arbitrary n. For

all n > 3, the amplitude Zð0;nÞ
JT-RMT2

is a polynomial in
Eisenstein series, as governed by the replacement rule
(22). As in the n ¼ 3 case, it does not admit an expansion
into a discrete sum over Virasoro characters on the n

boundary tori, and reduces to Kð0;nÞ
JT in the near-extremal

limit y ∝ γ and γ → ∞. The microcanonical spectral
statistics of the dual CFT2 follow from these results via
inverse Laplace transform.
We note that for n > 3, the most naive extension of the

heuristic gravity calculation above does not match the
RMT2 result. This is as expected, from considerations of
the n > 3 bulk moduli space. A bona fide AdS3 pure
gravity calculation of the n-point amplitudes would be of
clear value in learning about random statistics of AdS3
black hole microstates: either AdS3 pure gravity does
indeed furnish the minimal completion of random matrix
statistics, ratifying the proposal (21)–(22); or, perhaps pure
gravity is richer than that, containing additional structure
that appears only in higher-point correlations.
Outlook—In this Letter we presented a prescription that

lifts correlation functions in arbitrary randommatrix theories
to two-dimensional modular-invariant form factors. We
presented the GUE Airy model as the simplest example,
and used the formalism to predict multiboundary off-shell
wormhole amplitudes in AdS3 pure gravity. In [14] we will

discuss more involved examples as well as general spectral
curves, topological recursion, other universality classes such
as the GOE ensemble, and late-time dynamics. We will
discuss the cusp form part of RMT2 and RMT statistics at
fixed spin. We will also elaborate on the embedding of
RMT2 into CFT2, and on the novel constraints imposed by
RMT2 on the spectra of chaotic CFT2.
We recall a different approach toward random matrix

universality in CFTs: the matrix-tensor model of [9,10],
which describes an ensemble of CFT data which approx-
imately solves the CFT bootstrap constraints up to some
tolerance. One awaits fully explicit calculations of correla-
tors in that model; these would enable quantitative com-
parison to both RMT2 and semiclassical gravity calculations
of off-shell wormhole amplitudes. Our perspective suggests
that, upon integrating out the tensor degrees of freedom
(which encode the operator product expansion (OPE)
dynamics of the CFT), the resulting spectral matrix model
lies within an RMT2 universality class after taking a suitable
limit of vanishing tolerance. This would be very interesting
to pursue.
We end with a comment on the broader point of our

proposal. Lacking explicit examples of irrational chaotic
CFTs, as well as a first-principles gravity calculation for
multiboundary wormholes, we wish to emphasize that
RMT2 predictions should be independently viewed as a
way to benchmark chaos in any modular-invariant theory.
This rationale is similar to the bootstrap program: RMT2

encapsulates the constraints that anymodular-invariant form
factor needs to satisfy if it is to be consistent with random
matrix universality. This follows from the construction of
RMT2 using a complete basis of modular-invariant func-
tions and minimal universal input near extremality.
Holographically, we envision RMT2 predictions as a base-
line against which to compare future gravity calculations;
such a comparisonwould quantify the degree towhichAdS3
gravity is richer than perhaps expected, containing infor-
mation that goes beyond a reduction to JT gravity near
extremality combined with symmetry constraints.
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End Matter

Wormholes with n > 3 boundaries—For wormholes
of topology Σ0;n × S1 with n > 3 boundaries, the RMT2

result is sensitive to the choice of spectral curve of
the RMT being lifted. As motivated earlier, the pure
gravity amplitudes on Σ0;n × S1 to leading order in the
semiclassical limit should be given by the RMT2 lift of
the JT gravity amplitudes on Σ0;n. We emphasize that
the procedure can be repeated for any given n, using the
genus-0, n-boundary JT correlators in [8,35].
In general, the n-boundary JTwormhole amplitudes take

the form of a sum of monomials
Q

i y
ai
i . The tool that allows

us to find the relevant overlaps for each individual term is
the regularized Mellin transform introduced in [25]:

M½ya�ð−iωÞ≡
Z

∞

0

dy ya−1−iω ¼ 2ϵ

ϵ2 − ða − iωÞ2 ;

ImðωÞ ¼ −a: ðA1Þ

The overlaps fð0;nÞJT ðfωigÞ are the sum of products of the
above expression. Because of this factorized structure, the
modular uplift acts individually on each monomial and

reduces to integrals of the form

lim
ϵ→0

�Z
R−ia

dω
2π

2ϵ

ϵ2 − ða − iωÞ2 E1
2
þiωðτÞ

�
¼ E1

2
þaðτÞ;

�
a ≠

1

2

�
: ðA2Þ

The case a ¼ 1=2 is slightly more subtle because of the
Eisenstein pole at s ¼ 1: the right-hand side of (A2) should
be understood as the pole-subtracted Eisenstein series
Ê1ðτÞ, defined in (26). To arrive at this result, we expand
the integrand near ω ¼ 0 and use the integral representation
of the Dirac delta function to obtain

lim
ϵ→0

Z
R

dω
2π

2ϵ

ϵ2 þ ω2
E1þiωðτÞ

¼ Ê1ðτÞ þ lim
ϵ→0

Z
R

dω
2π

2ϵ

ϵ2 þ ω2

3

πiω
: ðA3Þ

The second term, a τ-independent constant, must be
regularized: a canonical choice is the principal value
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prescription,

PV

�Z
R

dω
ðϵ2 þ ω2Þω

�
¼ 0: ðA4Þ

Adopting this choice henceforth allows us to immediately
write down the modular uplift of JT gravity amplitudes—
indeed, of any polynomial RMT amplitude—by using the
replacement rule

ya ↦ E1
2
þaðτÞ −

3

πða − 1
2
Þ δ1

2
;a: ðA5Þ

This proves (22) and also applies to the all-genus expansion
of the τ-scaled Airy model, see (18).
For further illustration, we now present the RMT2 pre-

diction for n ¼ 4 and n ¼ 5 wormhole amplitudes in AdS3
pure gravity by lifting corresponding JT gravity expressions.
n ¼ 4 boundaries: The JT gravity amplitude with four

boundaries is

Kð0;4Þ
JT ðfyigÞ ¼

e−2S0

4π2γ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1y2y3y4

p �
2π2γ þ

X4
i¼1

yi

�
; ðA6Þ

where γ ¼ c=24 when JT gravity is embedded as a near-
extremal sector of AdS3 pure gravity. Using the replace-
ment rule (A5) leads to the following Eisenstein sector for
the four-boundary RMT2 amplitude:

Zð0;4Þ
JT-RMT2

ðfτigÞ⊃
e−2S0

4π2γ3

�Y4
i¼1

Ê1ðτiÞ
��

2π2γþ
X4
i¼1

E2ðτiÞ
Ê1ðτiÞ

�

þ
�
cusp
forms

�
: ðA7Þ

Importantly for the consistency of our proposal, in the near-
extremal limit yi ∝ γ and γ → ∞, one recovers the JT
gravity n ¼ 4 wormhole (A6). Note that using instead the
Virasoro minimal string (VMS) spectral curve for n ¼ 4
amounts simply to having γVMS ¼ ½ðc − 13Þ=24� in the
above expressions, with the same near-extremal limit

reproducing Kð0;4Þ
VMSðfyigÞ.

n ¼ 5 boundaries: The JT gravity amplitude for a
wormhole with n ¼ 5 boundaries and trivial interior top-
ology is given by

Kð0;5Þ
JT ðfyigÞ ¼

e−3S0

4
ffiffiffi
2

p
π5=2γ9=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1y2y3y4y5

p

×

�
10π4γ2 þ 6π2γ

�X5
i¼1

yi

�
þ
�X5

i¼1

yi

�2�
:

ðA8Þ

The RMT2 prediction for the five-boundary amplitude
follows by expanding (A8) and applying (A5) term by term:

Zð0;5Þ
JT-RMT2

ðfτigÞ⊃
e−3S0

4
ffiffiffi
2

p
π5=2γ9=2

�Y5
i¼1

Ê1ðτiÞ
�

×

�
10π4γ2þ

X5
i¼1

�
6π2γ

E2ðτiÞ
Ê1ðτiÞ

þE3ðτiÞ
Ê1ðτiÞ

�

þ2
X
i<j

E2ðτiÞE2ðτjÞ
Ê1ðτiÞÊ1ðτjÞ

�
þ
�
cusp
forms

�
: ðA9Þ

For arbitrary n, Kð0;nÞ
JT ðfyigÞ is only known as a generating

function, but one may proceed in the above fashion for any
given n.
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