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Abstract

The article introduces two modalities representing knowledge about the subjective and
objective current moment of time. It provides formal semantics of these modalities,
shows that the modalities are not definable through each other, and gives a sound and
complete axiomatisation of their interplay. The axiomatisation contains an unusual
Insertion inference rule generalising the Necessitation rule. The article proves that the
Insertion rule is not derivable from the other axioms and inference rules.
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1 Introduction

In this article, we study two different concepts of time. As an example, consider the
following story:

A young girl, Ann, is running to catch a train. It’s 8am, but Ann does not know
the current time, and she does not remember the train’s timetable. As Ann enters
the station’s platform, she can see the train starting to leave the station. She can
hear the conductor whistling. She can see the last passengers jumping on the
train. She can feel the old platform shaking...

In epistemic logic, the satisfaction I is usually defined as a relation between a
possible world and a formula. However, when discussing the statements whose truth
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value depends on the moment of time, it is natural to define satisfaction as a relation
between a world-moment combination and a formula. In our example,

u, 8:00 IF “train is leaving”,

where u refers to the current world. Note that Ann (agent a) can see that the train is
leaving, thus she must know this:

u, 8:00 I K, “train is leaving”. @))

Let us now get back to the story.

As she watches the train depart, Ann suddenly realises she forgot to turn off her
alarm, which is set to ring at 8:00 every morning.

Since it is 8am at the moment, the alarm must be ringing:
u, 8:00 IF “alarm is ringing”.
Because Ann remembers her oversight, she knows that the alarm is ringing at 8:00:
u, 8:00 IF K, “alarm is ringing”. )

Note, however, that the modality K has two different meanings in Eqgs. 1 and 2.
To understand the difference, let us consider a simple epistemic model of the story
depicted in Fig. 1. It has possible worlds w and v, in addition to the current world «. In
epistemic logic, the indistinguishibility is usually defined as an equivalence relation
between possible worlds.

However, in a situation like ours, where an agent does not know the current time,
she might not be able to distinguish one moment in one world from another moment
in another world. Hence, it is sensible to consider indistinguishibility as a relation on
world-moment combinations. In our model, see Fig. 1, Ann cannot distinguish the
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Subjective and Objective Time

moment 8:00 in the current world « from the moment 8:05 in world w, as well as from
the moment 7:55 in world v.

The modality K in Eq. 1 refers to Ann’s knowledge derived from what she can see
and hear. She knows that the train is leaving in the sense that the train is leaving at
each world-moment combination that she cannot distinguish from the current one. We
show this in Fig. 1 by placing an image of a train at the moment 8:05 in world w, at
the moment 8:00 in world «, and at the moment 7:55 in world v.

The modality K in Eq. 2 refers to Ann’s knowledge about the time moment 8:00
itself. She is confused if her current world-moment combination is the moment 8:05
in the world w, the moment 8:00 in world u, or the moment 7:55 in world v. But she
is sure that, whichever world it is, the alarm is set to ring at 8:00 in that world! We
show this in Fig. 1 by placing a picture of an alarm at the moment 8:00 in each of the
worlds w, u, and v.

To say it in another way, in Eq. 1, the modality K, refers to Ann’s subjective current
moment (as she feels it) and in Eq. 2 the modality K, refers to Ann’s objective current
moment (as defined by her alarm clock). To differentiate these two forms of knowledge,
from now on, we will use two different modalities:

u, 8:00 IF S, “train is leaving”,

u, 8:00 IF O, “alarm is ringing”.

It is time to return to our story.

As the train slowly pulls away, Ann finds herself thinking of what comes next.
In five minutes, the platform will be empty—except for her, the unlucky one.
She knows that she will still be standing there, unsure what to do next, watching
the last carriage until it disappears into the distance.

The last carriage will disappear in the distance in five minutes from Ann’s subjective
current moment. What time it will be, objectively, depends on what world we are in:

w, 8:10 IF “carriage is in the distance”,
u, 8:05 IF “carriage is in the distance”,

v, 8:00 I “carriage is in the distance”.

In Fig. 1, we show this by placing a “carriage in the distance” image at those
moments. In this article, we use the temporal modality N¢ (“next”) to express the
fact that a formula ¢ will be true at the next moment of time. For our example, let us
assume that the time is advancing in 5-minute increments. Thus,

w, 8:05 IF N*“carriage is in the distance”,
u, 8:00 IF N“carriage is in the distance”,
v, 7:55 I N*carriage is in the distance”.
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Recall that the moment 8:05 in world w and the moment 7:55 in world v are the
only two world-moment combinations that Ann cannot distinguish from the current
moment 8:00 in the current world u. Since the formula N*carriage is in the distance”
is satisfied at all three of these combinations,

u, 8:00 IF S,N“carriage is in the distance”. 3)

In other words, as Ann watches the train leave the station, she knows that her
subjective current moment has the property “the last carriage will be on the horizon
at the next moment”.

Suddenly, Ann’s thoughts flash back to the alarm clock. She starts to think about
her old, sick grandma, probably cooking breakfast shortly before 8:00. Once the
grandma hears the alarm and realises Ann is not there, she will climb the stairs
to Ann’s room to turn it off. Ann imagines her grandma, tired from the steep
stairs, entering Ann’s room at 8:05. Ann feels bad about forgetting to turn off
the alarm this morning.

Although Ann does not know which of the three possible worlds she is in, she
knows that in 5 minutes after 8:00 her grandma will be in her room:

w, 8:00 IF N“grandma is in Ann’s room”,
u, 8:00 IF N“grandma is in Ann’s room”,

v, 8:00 IF N*“grandma is in Ann’s room”.

Thus, Ann knows that the objective moment 8:00 has the property of
N“grandma is in Ann’s room”:

u, 8:00 IF O,N*“grandma is in Ann’s room”. )

Note that Eq. 3 expresses Ann’s knowledge about her subjective next moment, while
Eq. 4 expresses Ann’s knowledge about her objective next moment. More generally,
nested modalities Sy;N...N and O,;N...N can be used to express knowledge about
subjective and objective future.

The concepts of subjective and objective time have been studied in cognitive sci-
ence [1], neuroscience [2], and the philosophy of time [3-5] literature. In his The
Phenomenology of the Internal Time-Consciousness [6], Husserl refers to subjective
time as immanent. He defines the immanent past as the collection of the agent’s mem-
ories, the immanent present through “immanent temporal objects” (Zeitobjekte), and
the immanent future as the agent’s expectations of what will come. In our case, the
leaving train, the whistling conductor, the jumping passengers, and the shaking plat-
form are examples of Zeitobjekte. The empty platform and the carriage in the distance
are Ann’s expectations that form her immanent (subjective) future.

In this article, we study the interplay between modalities S, O, and N. As we dis-
cuss in Section 2, modality S has been proposed and studied before. The modality O
is original to this article. We establish several technical results. First, we prove that
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modalities S and O are not definable through each other even if the modality N is
used. Second, we give a sound and complete logical system describing the interplay
between the modalities. One of the inference rules in this system is called the Inser-
tion inference rule. This somewhat unusually looking rule is a generalisation of the
standard Necessitation rule for modality O. Naturally, one might ask if the standard
Necessitation suffices for the completeness of our logical system. We partially answer
this question by showing that the Insertion rule is not derivable in the logical system
in which this rule is replaced by the standard Necessitation rule for modality O. The
admissibility of the Insertion rule in this setting remains an open question.

Of course, in addition to the “next” modality N, one might consider other temporal
modalities (such as “past”, “future”, and “until””). We restrict consideration to temporal
modality N because the proposed proof of completeness cannot be easily generalised
to other temporal modalities.

The rest of the article is organised as follows. In the next section, we give the
formal syntax and semantics of our logical system. We also compare our semantics
and modalities with other epistemic temporal logics in the literature. In Section 3,
we show that modalities S and O are not definable through each other even in the
presence of the modality N. Section 4 lists the axioms and the inference rules of our
logical system. Section 5 proves some technical results needed in the proof of the
completeness. Section 6 establishes the completeness of our logical system using the
“matrix” technique. Section 7 proves that the Insertion inference rule of our system is
not derivable. We conclude with Section 8 that contains a discussion of another setting
where there is a distinction between subjective and objective time.

2 Syntax and Semantics

Throughout the rest of the article, we fix a set of agents .A and a nonempty set of
propositional variables. As usual, we use the symbol w to represent the smallest infinite
ordinal, also known as the set of all non-negative integer numbers. The definition below
formally specifies epistemic temporal models that have been informally discussed in
the introduction. Note that, as common in the literature on temporal logic, we assume
that the time is discrete and use w to represent the set of all possible “moments”.

Definition 1 An epistemic temporal model is a triple (W, ~, &), where

1. W is a set of “possible worlds”,

2. ~, is an “indistinguishability” equivalence relation on the set W x o for each
agenta € A,

3. 7(p) S W X w.

In the above definition, the value of the valuation function 7 (p) is a set of world-
moment combinations. Intuitively, this is because atomic propositions in our setting
express properties of such combinations, not just of possible worlds. The language ®
of our system is defined by the following grammar:

p:=pl=o|leVel|Np|S.p|O,p,
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where p is a propositional variable and a € A is an agent. We read Ng as “formula
@ is true at the next moment”, S,¢ as “agent a knows ¢ about the subjective current
moment”, and O, ¢ as “agent a knows ¢ about the objective current moment”. We
assume that conjunction A, implication —, biconditional <>, and constants false L
and true T are defined in the standard way.

Definition 2 For any epistemic temporal model (W, ~, &), any world w € W, any
moment ¢ € w, and any formula ¢ € &, the satisfaction relation w, ¢ I ¢ is defined
as follows:

w,t - pif(w,t) € m(p),

w,t - —pif w,t ¥ e,

w, t Ik @ Vv ifeither w, t IF @ or w, t I- 1,

w,tIFNpifw,t+11F ¢,

w, t - Sqp if u, s I+ ¢ for each world u € W and each moment s € w such that
(w, 1) ~q (u,s),

6. w,tIFOup ifu,t I ¢ for each world u € W and each moment s € w such that

(w, t) ~4 (u,s).

Nk e =

Temporal logics [7] have been studied in philosophy and computer science for
several decades. Prior [8] and Kamp [9] considered temporal logical systems for
modality “now”, outside of an epistemic setting. Multiple logical systems that capture
the interplay between knowledge and time have been introduced before. They can be
divided into four groups based on how such systems specify their semantics.

The logical systems from the first group define semantics in terms of a binary
relation w I+ ¢ between a state w of a transition system and a formula ¢. Such a
system can contain a knowledge modality K, and the “next” modality N. In such
a setting, the statement w |- K,¢ means that, each time the transition system is in
state w, agent a knows that ¢ is true. Note that this type of semantics does not use
any absolute time at all. Intuitively, the formula K, ¢ refers to knowledge of agent a
about her subjective current moment. Similarly, the formula K,N¢ refers to agent a’s
knowledge about her subjective next moment (state of the system). An example of
such a logical system is Epistemic Coalition Logic [10]. Although this system does
not explicitly contain modality N, it can be defined in the system as the coalition power
modality [@] for the empty coalition &. A similar setting and modalities also appear
in [11] and [12]. The latter work describes a logical system whose language can also
be used to define “past” modality through [@]~!.

Another approach is to define the satisfaction as arelation /2 I ¢ between a “history”
(computational path through a transition system) / and a formula ¢. In particular, this
allows the same formula to be satisfied during one visit of the transition system to a
state and to be not satisfied during another visit. Just like the first type of semantics,
the second type can be used to define knowledge about the subjective current moment.
Additionally, it can potentially be used to define knowledge about a variation of the
current objective moment. Indeed, note that the length of history can serve as a version
of an absolute time counter from the beginning of the computation. This can potentially
be used to define modality “agent a knows about the current moment from the start of
the computation”:

@ Springer



Subjective and Objective Time

hI- Ogu¢ if (W'|p) I+ @ for each history A’ such that & ~, I,
where 4’|, is the prefix of sequence A’ that has the same size as h. For example,
(w1, w2, w3)|@w,us) = (w1, wz). Note that this type of semantics treats “time since
start of computation” as a substitute for the absolute time. The semantics does not
have any computation-independent notion of absolute time. In addition, the above
definition has a technical issue: the meaning of 4’|, is not defined when history A’ is
shorter than history . We are not aware of any works that use the above modality O,.
Parikh and Ramanujam [13] used the second type of semantics to define an equivalent
of our subjective modality S. Logical systems that add knowledge to STIT also usually
use this approach [14].

The third approach is used in the epistemic version of Alternating Temporal
Logic [15]. Because this logical system contains state formulae as well as path formu-
lae, it essentially combines the first two approaches. [15] only considers the knowledge
about subjective time modality S.

In order to be able to capture the true “objective current moment” (as opposed to the
moment from the start of the computation), one needs to explicitly add the absolute
clock to the semantics of the system. The natural way to do this is to consider the ternary
satisfaction relation w, ¢ I ¢ as we do in the current article. This fourth approach was
first suggested in [17]. They proposed a semantics for modality S very similar to the
one in our Definition 2. However, they did not consider an equivalent of our modality
O. The journal version of the same paper gives a proof of completeness [16]. The
S-like modalities have also been used in [18-21]. Formal definition of the knowledge
about the objective current moment modality O is original to the current work.

We conclude this section with Theorem 1. Intuitively, it states that there is no
difference between subjective and objective time for any agent who knows the current
time. To state the theorem precisely, in the definition below, we introduce the notion
of “time-awareness”. Informally, an agent is time-aware at (w, t) if she knows the
current time at moment ¢ in world w.

Definition 3 For any moment r € w and any world t € W of an epistemic temporal
model (W, ~, ), anagenta € Ais time-aware at (w, t) when for each worldw’ € W
and each moment ¢’ € w, if (w, 1) ~, (w',t'), thent =1'.

Theorem 1 [fagenta € Ais time-aware at (w, t) in epistemic temporal model (W, ~
,70), then w, t IF Sy iff w, t IF Oy for each formula ¢ € ©.

Proof Consider any world u € W and any moment s € w such that (w, t) ~, (u, s).
By items 5 and 6 of Definition 2, it suffices to show that u,t I+ ¢ iff u,s I+ ¢.
Towards this proof, note that, by Definition 3, the assumption (w, ) ~, (u, s) and
the assumption of the theorem that agent a is time-aware at moment ¢ implies ¢ = s.
Therefore, u, t I- ¢ iff u, s IF ¢. O

3 Undefinability
In this section, we show that modalities S and O are not definable through each other
even in the presence of modality N. Our results are captured in Theorem 2 and Theo-

rem 3. Statements of these theorems use the definition below.
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Definition 4 For any given epistemic temporal model M and any formula ¢ € &, the
truth set [o] s is the set {(w, 1) € W x o | w, t IF ¢}.

Without loss of generality, in this section, we assume that set .4 consists of a single
agent a and that the set of propositional variables contains a single variable p. When
the temporal epistemic model M is clear from the context, we use the notation [¢]
instead of [¢]um.

3.1 Undefinability of Modality O via Modalities S and N

In this and the next section, we use a recently proposed “truth set algebra” technique for
proving the undefinability of logical connectives [22]. It is not clear to us how a more
traditional “bisimulation” method [23] could be used here because of the complexity
introduced by having a possible world and a moment of time on the left-hand side of
relation It-. Unlike the bisimulation, the “truth set algebra” method uses only a single
model. In our case, the model is an epistemic temporal model M. Model M has only
two worlds, w and u. Figure 2 contains 10 table-like diagrams. The rows of these
diagrams represent worlds, and the columns represent moments of time. To keep the
figure clean, we only labelled rows and columns on the left-most diagram. The cells
of each diagram correspond to world-moment combinations (pairs). For example, the
upper-left cell in each diagram corresponds to the pair (w, 0).

The left-most diagram in Fig. 2 captures the equivalence relation ~, in model M.
Recall, from Definition 1, that ~, is a relation on the world-moment combinations.
Note that each cell in the left-most diagram in Fig. 2 contains either a dot or nothing.
For any v, v' € w, u and any moments ¢, t’, let (v, 1) ~, (v/, ¢') if the content of the
cells (v, 1) and (v’, t’) is the same on the diagram. For example, (w, 1) ~, (u, 0) and
(w, 0) ~4 (u, 1).

Next, we define the valuation function 7 for model M. Because of our earlier
assumption that the language contains a single propositional variable p, it suffices to
define the set 7w (p) = [p]. In this work, we visualise truth sets of various formulae
@ by shading cells (v, t) such that (v, #) € [¢]. The diagram labelled with [p] in the
second (out of four) column of Fig. 2 specifies the set 7 (p) = [p].

This concludes the definition of the epistemic temporal model M that we use in
this section to prove the undefinability of modality O through modalities S and N.

Figure 2 is divided into three parts. The middle part contains 8 diagrams. By the
above definition of valuation function 7, the diagram labelled with [p] represents
the truth set of propositional variable p. Next, let us show that the remaining seven
diagrams in the middle part of Fig. 2 correctly represent the truth sets with which these
diagrams are labelled.

By Definition 4 and Definition 2, we have [ L] = @ and [T] = {w, u} X . This
matches how the cells are shaded in the diagrams labelled with [_L] and [T].

By Definition 4 and item 4 of Definition 2, the diagram for the truth set [Np] is
obtained from the diagram for the truth set [p] by removing the first column and
“shifting” the diagram to the left. This matches the relation between the diagrams
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Fig.2 Towards the proof of Theorem 2: relation ~, and truth sets

labelled with [ p] and [Np] in Fig. 2. Hence, the diagram labelled with [N p] correctly
represents the truth set [Np].

By Definition 4 and item 2 of Definition 2, the truth set [—¢] is the complement
of the truth set [¢]. Note that the diagram labelled with [—p] shades exactly the
complement of the cells shaded in the diagram labelled with [p]. Hence, the diagram
labelled with [—p] correctly represents the truth set [—p]. Similarly, the diagram
labelled with [=Np] correctly represents the truth set [N p].

By Definition 4 and Definition 2, we have [p A Np] = [p] N [Np] and [—-p Vv
=Np] = [-p] U [-Np]. Observe that the diagram labelled with [p A Np] shades
the only cell which is shaded in both the diagram labelled with [p] and the diagram
labelled with [N p]. Similarly, the diagram labelled with [—p v =N p] shades all cells
which are shaded in at least one of the diagrams labelled with [—p] and [-Np].
Therefore, the diagrams labelled with [p A Np] and [—p v —=Np] correctly represents
the truth sets [p A Np] and [—p Vv =Np] respectively.

As we have just observed, the truth sets of formulae Np, =Np, p,—p, L, T, pANp,
and —p v —=Np are depicted in the middle part of Fig. 2. Surprisingly, a much stronger
result holds. Namely, the truth set [¢] of any formula ¢ in language @ that does
not use modality O is depicted in the middle part of Fig. 2. This observation, proven
in Lemma 4, is the key to our proof of undefinability. Before proving Lemma 4, let us
make the following three auxiliary observations:

Lemma 1 Forany ¢, ¥ € @, if sets [¢] and [y] are represented by the diagrams in
the middle part of Fig. 2, then the same is true about the sets [—¢] and [¢ V ¥].
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Proof Observe that the family of sets represented by the diagrams in the middle part
of Fig. 2 is closed with respect to the complement and the union. Thus, the statement
of the lemma follows from Definition 4 as well as item 2 and item 3 of Definition 2. O

Lemma 2 For any formula ¢ € @, if the set [¢] is represented by a diagram in the
middle part of Fig. 2, then the same is true about the set [Ny].

Proof By Definition 4 and item 4 of Definition 2, the diagram for the set [Ng] is
obtained by shifting the diagram for the set [¢] to the left and removing the left-most
column. Observe that the family of sets represented by the diagrams in the middle
part of Fig. 2 is closed with respect to this operation. For example, the result of such
a transformation of the diagram [p A Np] is the diagram [.L]. For the benefit of the
reader, we have shown the result of each such transformation in the middle part of
Fig. 2 by a directed edge labelled with modality N. O

Lemma 3 For any formula ¢ € , if the set [¢] is represented by a diagram in the
middle part of Fig. 2, then the same is true about the set [Sq¢].

Proof Recall that the diagram in the left part of Fig. 2 specifies the equivalence relation
~4 on pairs (v, t). Any two such pairs are equivalent if the content of the correspond-
ing cells is the same. Thus, the equivalence relation ~, divides the pairs into two
equivalence classes. All cells corresponding to the pairs in one class are empty, and
all cells corresponding to the cells in the other class contain a dot. By Definition 4 and
item 5 of Definition 2, in order for a pair (v, t) to belong to the set [S,¢], all pairs in
its class must belong to the set [¢].

First, let us consider the case when the set [¢] is represented by the diagram
labelled with [p]. In this case, the set [¢] contains all pairs whose corresponding
cells are empty and not all pairs whose corresponding cells contain dots, see Fig. 2.
Thus, by the observation from the previous paragraph, the set [S,¢] contains all pairs
whose corresponding cells are empty and none of the pairs whose corresponding cells
contain dots. Thus, the set [S,¢] is represented by the diagram labelled with [=Np],
see Fig. 2.

The other cases corresponding to the seven remaining diagrams in the middle part
of Fig. 2 are similar. In the middle part of Fig. 2, for each such case, we show a
directed edge labelled with modality S, from the diagram representing the set [¢] to
the diagram representing the set [S,¢]. o

Lemma4 For any formula ¢ € ® that does not contain modality O, the set [¢] is
represented by one of the diagrams in the middle part of Fig. 2.

Proof We prove the statement of the lemma by induction on the structural complexity
of the formula ¢. If ¢ is a propositional variable, then, as we have observed above, the
set [¢] is specified by the diagram labelled with [p].

If formula ¢ has the form —1/, then, by the induction hypothesis, the set [/] is
represented by one of the diagrams in the middle part of Fig. 2. In this case, the
statement of the lemma follows from Lemma 1.

The cases when formula ¢ has one of the forms v V ¥2, Ny, or S, ¢ are similar,
using Lemma 1, Lemma 2, and Lemma 3, respectively. O
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Finally, in the next lemma, we show that the set [O, p] is not represented in the
middle part of Fig. 2.

Lemma5 The set [O, p] is represented by the diagram in the right part of Fig. 2.
Proof The statement of the lemma follows from the following two claims:
Claim1 (v, 0) € [O,p] for each world v € {w, u}.

Proof-of-claim By Definition 4, it suffices to show that v,0 I O, p. Consider any
world-moment pair (v’, t'). By item 6 of Definition 2, it suffices to prove thatv’, 0 IF p.

Observe, see the diagram labelled with [ p] in the middle part of Fig. 2, that (v/, 0) €
[p] (no matter if v/ = w or v’ = u). Therefore, v’, 0 I+ p by item 6 of Definition 2.0

Claim2 (v, 1) ¢ [O,p] for each world v € {w, u} and each moment 7 > 0.

Proof-of-claim Consider the diagram labelled with [p] in the middle part of Fig. 2.
Observe that, because ¢ > 0, there must exists world v" € {w, u} such that (v', 1) ¢
[p]- Indeed, choose v' = u if 7 is even and v' = w if ¢ is odd. Hence, by Definition 4,

vt p. (&)

Next, consider the left-most diagram in Fig. 2. No matter what v’ is, there must be
a cell in the v'-th row of that diagram that has the same content as cell (v, ). Let such
a cell be the cell (v/, ¢'). Thus, (v, t) ~, (v/, ") by the definition of the relation ~,.
Hence, v, t ¥ O, p by item 6 of Definition 2 and Eq. 5. Therefore, (v, ¢) ¢ [O, p] by
Definition 4. O
This concludes the proof of the lemma. O

The next theorem follows from Lemma 4 and Lemma 5.

Theorem 2 [undefinability] [O,p]m # [@]m for each formula ¢ € ® that does not
contain modality O.

3.2 Undefinability of Modality S via Modalities O and N

In this subsection, we use the same technique as in the previous one to prove the
undefinability of S through N and O. The epistemic temporal model M that we consider
in this subsection consists of four possible worlds: w, u, v, and y. We show the
indistinguishability relation ~, on the world-moment pairs in the left part of Fig. 3.
Just like before, we define two pairs to be indistinguishable if the corresponding cells
have the same content. Note that instead of two classes in the previous subsection, in
this subsection the equivalence relation has four classes. Finally, the value of 7 (p) is
specified by the diagram labelled with [[p] in the middle part of Fig. 3.

The proof of the next two lemmas is similar to the proofs of Lemma 1 and Lemma 2
in the previous subsection.
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Lemma6 Forany ¢, ¥ € @, if sets [¢] and [y] are represented by the diagrams in
the middle part of Fig. 3, then the same is true about the sets [—¢] and [¢ V ¥r].

Lemma7 For any formula ¢ € ®, if the set [¢] is represented by a diagram in the
middle part of Fig. 3, then the same is true about the set [Ng].

Lemma 8 For any formula ¢ € @, if the set [¢] is represented by a diagram in the
middle part of Fig. 3, then the same is true about the set [O4¢].

Proof First, let us suppose that the set [¢] is represented by a diagram in the middle
part of Fig. 3 labelled with [p], [—p], or [-L]. It suffices to show that the set [O,¢]
is represented by the diagram labelled with [_L]. Consider any world z € {w, u, v, y}
and any moment ¢. By Definition 4, it suffices to show that z, ¥ O, .

By analysing the diagram in the left part of Fig. 3 and the diagram labelled with [ p]
in the middle part of the same figure, it is easy to see that no matter what the values of
z and ¢ are, there must exist a world z’ € {w, u, v, y} and a moment " such that cells
(z,1) and (7/, ') have the same content in the diagram in the left part and cell (z/, 1)
is shaded grey in the diagram labelled with [p] in the middle part. In other words,
(z,1) ~4 (Z/,t') and 7/, t ¥ p. Therefore, z, t ¥ O, by item 6 of Definition 2.

Let us now assume that the set [¢] is represented by a diagram in the middle part
of Fig. 3 labelled with [T]. By Definition 4, this implies that z, ¢ I+ ¢ for any world
z € {w, u, v, y} and any moment ¢. Therefore, z, t I ¢ for any world z € {w, u, v, y}
and any moment ¢ by item 6 of Definition 2. Therefore, by Definition 4, the set [O,¢]
is also represented by the diagram labelled with [ T]. a

The proof of the next lemma is similar to the proof of Lemma 4 in the previous
subsection, but instead of Lemma 1, Lemma 2, and Lemma 3, it uses Lemma 6,
Lemma 7, and Lemma 8, respectively.

Lemma9 For any formula ¢ € ® that does not contain modality S, the set [¢] is
represented by one of the diagrams in the middle part of Fig. 3.

D

\J

i

~ Z

1 T
ST IOl [© f[[]]\ [Tl
Sl 0] 10
e Lo [+][H] D, D,
oo|+]+[e]e \ \
012345

<<cs

[R.p]

3 \N/' [-pl

Fig.3 Towards the proof of Theorem 3: relation ~, and truth sets

@ Springer



Subjective and Objective Time

Lemma 10 The set [S, p] is represented by the diagram in the right part of Fig. 3.

Proof By item 5 of Definition 2 and the definition of the equivalence relation in our
model, for any world z’ € {w, u, v, y} and any moment 7, statement z, t |- S, p is true
if z/, ¢ I+ p for any 7/, ¢’ such that the cells (z, ¢) and (z’, t') have the same content
in the diagram in the middle part of Fig. 3 labelled with [p]. Observe in Fig. 3 that
the latter is true only when cells (z, ¢) in the left part of Fig. 3 is empty. Therefore, by
Definition 4, the set [S, p] is represented by the diagram in the right part of Fig. 3. O

The next theorem follows from Lemma 9 and Lemma 10.

Theorem 3 (undefinability) [Sqaplm # [@]m for each formula ¢ € ® that does not
contain modality S.

4 Axioms

In this section, we present a complete logical system describing the properties of
modalities S, O, and N. Recall that the semantics of our knowledge modalities, just
like in the case of the standard epistemic logic [24], is defined through a transitive,
symmetric, and reflexive reachability relation ~. In the case of traditional epistemic
logic, transitivity, symmetry, and reflexivity of the reachability relation lead to S5
axioms that include the positive and the negative introspection. The situation is differ-
ent in our case, where only S modality has the properties of positive (S, — S;S4¢)
and negative (—S,¢ — S;—S,¢) introspection.

To see why modality O does not satisfy the positive introspection property, let us
consider a slightly modified version of our introductory example depicted in Fig. 4.
Suppose that Ann cannot distinguish moment 8:00 in world w from moment 7:55 in
world u. In addition, she cannot distinguish the moment 8:00 in world # from the
moment 7:55 in world v.

To construct a counterexample for the positive introspection, observe that

w, 8:00 I “The train is leaving now”,

u, 8:00 I “The train is leaving now”.

Fig.4 An example that shows I N T N O NN NN LA AT TN
that modality O does not satisfy w a
positive introspection principle

IO N O L LT
7:50 7:55 /800 8:05 810

Ann

Y a

IO T O O T Y
7:50 7:55 /800 8:05 8:10

Ann

v a

IO O N O RN Y
7:50 7:55 8:00 8:05 8:10
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Then, by item 6 of Definition 2,

w, 8:00 IF O, “The train is leaving now”. (6)
At the same time,

v, 8:00 ¥ “The train is leaving now”.

Then, again by item 6 of Definition 2,

u, 8:00 ¥ O,“The train is leaving now”.
Hence, again by item 6 of Definition 2,

w, 8:00 ¥ O,0,“The train is leaving now”.

The last statement, considered together with Eq. 6, provides a counterexample for the
positive introspection principle for modality O.

In addition to the “pure” positive introspection principle O,¢ — O,0,¢ for modal-
ity O, one can also consider various versions of the positive introspection principle that
mix the two knowledge modalities: O,¢ — S;0,¢, Oy — O;S,¢, Sqap — 0S40,
etc. By modifying the above example, one can show that none of these “mixed” prin-
ciples is valid under our semantics of modalities S and O.

Itis well known that the positive introspection principle is derivable in logic S5 from
the Truth, the Negative Introspection, and the Distributivity axioms using the Modus
Ponens and the Necessitation inference rules. We also prove this in Lemma 14. This
fact has two important consequences. First, in our axioms below, we include the neg-
ative introspection but not the positive introspection principle for modality S. Second,
since modality O satisfies the Truth axiom, the Distributivity axiom, and the Necessita-
tion inference rule, our above counterexample for the positive introspection principle
for modality O is also a counterexample for the negative introspection principle for
modality O.

In addition to the propositional tautologies in language ®, the axioms of our system
include

1. Truth: Op — ¢, where J € {S,;, O},

2. Distributivity: (¢ — ) — (¢ — Oyr), where J € {N, S,, O,},
3. Negative Introspection: =S, — S,—S,¢,

4. Functionality: =N¢ <> N—¢.

We write - ¢ and say that formula ¢ is a theorem of our logical system if it is deriv-
able from the above axioms using the Modus Ponens, the two forms of Necessitation,

v, ¢—>Y @ @

¥ Sa N¢

@ Springer



Subjective and Objective Time

and the Insertion
N¥ 1)
NkO, ¢
inference rules. In the last rule, by Nk ¢ we mean the formulaN...N ¢ for any £ > 0.
~———

k times
Intuitively, the last rule states that if a formula ¢ is universally valid (satisfied in each

world of each model) starting from moment k, then it is universally known to each
agent starting from moment k. Lemma 11 formally proves the soundness of this rule.
Observe that the Necessitation rule for modality O:

@
Oup

@)

is a special case of the Insertion rule for k = 0. One might naturally wonder if the
Insertion rule is essential. Let us denote by L™ the above axiomatisation in which the
Insertion rule is replaced by the rule specified in Eq. 7. In Section 7, we prove that
the Insertion rule is not derivable in system L~. Whether it is admissible is an open
question.

In addition to the unary relation I ¢, we also consider a binary relation X + ¢. For
any set of formulae X and any formula ¢, let X ¢ if formula ¢ is derivable from
the set of theorems of our logical system and the additional set of formulae X using
only the Modus Ponens inference rule. Note that the statements & - ¢ and F ¢ are
equivalent. We say that a set X is consistent if X ¥ L.

Towards the proof of the soundness of our logical system, let us first show the
soundness of the Insertion inference rule.

Lemma 11 If w,t I NKg for each world w and each moment t of each epistemic
temporal model, then w, t |- N¥O,¢ for each world w and each moment t of each
epistemic temporal model.

Proof Suppose that w, t ¥ N¥O,¢ for some world w and moment ¢ of some epistemic
temporal model. Thus, w, t + k ¥ O,¢ by item 4 of Definition 2 applied k times.
Hence, by item 6 of Definition 2, there is a world w’ and a moment ' such that
(w,t + k) ~, (w',t") and w', 1 + k ¥ . Therefore, w’,t ¥ N¥¢ by item 4 of
Definition 2 applied k times, which contradicts the assumption of the lemma. O

The soundness of the Modus Ponens inference rule and the two forms of the Neces-
sitation inference rule, as well as of the four axioms, is straightforward. Thus, the
above lemma implies the soundness of our logical system stated as a theorem below.

Theorem 4 [soundness] If & ¢, then w,t |- ¢ for each world and each moment of
each epistemic temporal model.

5 Auxiliary Properties

This section contains several technical results that will be used in the proof of com-
pleteness.

@ Springer



P.Naumov, A. Prajapati and J. Tao

Lemma 12 [Lindenbaum] Any consistent set of formulae can be extended to a maximal
consistent set of formulae.

Proof The standard proof of Lindenbaum’s lemma [25, Proposition 2.14] applies. O
The proofs of the next three lemmas are standard.
Lemma 13 [deduction] If X, ¢ =, then X ¢ — .
Lemma14 S, 0 — S,S.¢.
Lemma15 If oy, ..., on B, then Ooy, ..., Op, = Oy, where O € {N, S, O}
Lemma 16 + (N¢ — Ny) — N(¢ — ).
Proof First, note that the following two formulae are propositional tautologies:
—p = (9= V) U= (o= V).

Thus, by the Necessitation inference rule,

FN(=¢ — (¢ — ¥)) EN@ — (@ — ¥)).
Hence, by the Distributivity axiom and the Modus Ponens inference rule,

FN=-¢ — N(p — ) F Ny — N(p — ¢).
Then, by propositional reasoning using the Functionality axiom,

F=N¢g — N(¢ — ¥)) E Ny — N(g — ¥)).
Thus, again by propositional reasoning,

F (=N¢ v Ny) — N(p — ).
Therefore, = (N¢p — Nv) — N(¢ — ) by more propositional reasoning. O
Lemma17 - N"'O, (¢ — ¥) — (N"Ou¢p — N'O, ).
Proof Note that the formula
Oulp = ¥) = (Oap — Oa¥)
is an instance of the Distributivity axiom. Then, by the Necessitation inference rule
F Ny (¢ = ¥) = (Oap — Oa¥)).

Thus, by the Distributivity axiom and the Modus Ponens inference rule,

FNOu (¢ — ¥) = N(Oup — Ou¥).
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Hence, by the Distributivity axiom and propositional reasoning,
FNOu (¢ — ¥) = (NOs9 — NO. V).
Therefore, by repeating the previous steps n — 1 more times,

FN'O,u(p — ¥) — (N*Ozp — N"O, ).

Lemma 18 IfN*¢, ..., Nfg, - N5y, then N¥O ¢, ..., NkO ¢, - NFO, .

Proof By Lemma 13, the assumption Nfgy, ..., N¥p,_1, N¥g, - N*y implies
N¥or, ..., N, | - NEg, — NEy.
Hence, by Lemma 16 and the Modus Ponens inference rule,
Nor, ... Nt B N Gy — ).
Then, again by Lemma 13,
N1, ... Nz = Nogu_t — NE(gu — ).
Thus, again by Lemma 16 and the Modus Ponens inference rule,
N1, .. N B N (gt = (00 = ¥)).
By repeating the previous two steps n — 2 more times,
NS (o1 = (92 = - (@2 = (@t = (0 — ) ..)).
Hence, by the Insertion inference rule,
F N Ou(p1 = (92 = ... (n—2 = @1 = (n = ¥)))...)).
Then, by Lemma 17,
=N 091 — NCOu (92 = .. (@a—2 = (@u—1 = (@u = ¥)))..).
Thus, by the Modus Ponens inference rule,
N a1 F NCOu (92 = .. (@u—2 = (@a—1 = (@0 = ¥)))...).

Therefore, NO, ¢, . .., NO,¢, - N¥O, v by repeating the previous two steps n — 1
more times. O
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Lemma 19 + =N"¢ — N"'—¢ for any integer n > 0.

Proof We prove the lemma by induction on n. In the base case, the formula —¢ — —¢
is a propositional tautology.

Suppose that H =N"¢ — N"—¢. Then, by the Necessitation inference rule,
F N(=N"¢ — N"'—=¢). Hence, by the Distributivity axiom and the Modus Ponens
inference rule, = N—=N"¢ — NN"—¢. Therefore, by propositional reasoning using
the Functionality axiom, = =NN"¢ — NN"—¢. O

Lemma20 + —N"_L foralln > 0.

Proof We prove the lemma by induction on n. The statement is true for n = 0 because
—_ is a tautology. For the induction step, suppose that = —=N" L. Then, = N=N"_L
by the Necessitation inference rule. Therefore, = —=NN”" L by the Functionality axiom
and propositional reasoning. O

6 Completeness

In this section, we prove the completeness of our logical system. The proof of com-
pleteness is using the recently introduced matrix construction [26]. In Section 6.1, we
explain the idea behind this method. In Section 6.2, we discuss the modifications that
we have made to the method to prove the completeness in our case. In the rest of this
section, we present the formal proof.

6.1 The Matrix Method

As usual, the proof of completeness consists of the construction of a canonical model.
The matrix method defines the canonical method as a limit of an infinite chain of matri-
ces. Each matrix in the chain represents a partially built canonical model. Intuitively,
matrices are formal equivalents of the type of diagrams that can be seen in Fig. 1
and 4. The rows of the matrix represent possible worlds, and the columns represent
moments of time. The content of a cell (w, #) of the matrix represents the state of
the world w at moment ¢. In Figs. 1 and 4, the state of the world in each moment is
visualised by a picture (a frame of a movie). In the formal setting, the cell (w, ¢) of
the matrix stores a maximal consistent set X ,,; of formulae that will be satisfied in the
world w at moment ¢ of the canonical model when it is completely built. Formally,
this connection between set X,,; and the satisfaction relation in the completely built
canonical model is captured in Claim 17, which is our version of what is usually called
the “truth lemma”.

In Figs. 1 and 4, some of the pictures are indistinguishable by agents. Accordingly,
we also introduce the indistinguishability relation ~, on the cells of matrices. A frame'
is a combination of a matrix and a family of indistinguishability relations on cells of
the matrix indexed by agents. The formal definition of a frame, given in Definition 6,

1A “frame” is not the same as a “movie frame” in Figs. 1 and 4. The latter corresponds to a single cell of
a matrix.

@ Springer



Subjective and Objective Time

requires certain connections between the maximal consistent sets that form the matrix
and the indistinguishability relations. For example, item 3(c) of Definition 6 states that
if cells (wq, t1) and (w2, t2) are indistinguishable by an agent a, then the sets Xy,
and X,,;, contain the same S,-formulae.

Claim 17, our “truth lemma", states that a formula ¥ belongs to the set X, iff this
formula is satisfied in world w of the canonical model at moment ¢. Given item 5 of
Definition 2, in order to prove Claim 17 by induction in the case when formula i has
the form S, ¢, we need to guarantee that

Sa@ € Xy iff ¢ € X,y for each w’, ¢’ such that (w, 1) ~, (W', t). 8)

The (=) part of this statement is already guaranteed by the aforementioned item 3(c)
of Definition 6. Indeed, by that item, statements S,¢ € Xy and (w, 1) ~, (W', ")
imply that S,¢ € X,p. Then, ¢ € X, by the Truth axiom because X,/ is a
maximal consistent set.

The situation is not so simple for the (<) part of Eq. 8. Definition 6 does not guar-
antee that it is true. To make it true, if S, ¢ Xy, then we might need to extend the
frame with a new world w’ and a new moment ¢’, see Fig. 5. Formally, the extension
consists of adding a new row and a new column to the matrix, defining the maximal
consistent sets for the newly added cells of the matrix and extending the indistin-
guishability relation appropriately. The construction of such an extension is described
in Lemma 24. We might need to do such an extension for each w, each ¢, and each
formula S, ¢ such that S,¢ ¢ X,,;. Note that once a new row and a new column are
added to the matrix, the newly added cells might not contain formula S, ¢ and thus the
construction will have to be repeated for them too, and so on ad infinitum. Modality
O requires similar extensions that can be carried out independently or, as we do in
Lemma 24, combined with the extensions for modality S. As described so far, the
construction is similar to the one in [26], where it was applied to a different pair of
modalities, both of which are not related to time.

i new moment

S i G G N 3

Fig.5 Frame extension
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6.2 Current Contribution

In this article, in addition to modalities S and O, we consider the temporal modality N.
The frame extension construction as described above cannot be carried out if all three
modalities (S, O, and N) are present in the language. To see what the problem is, let us
first note that in order to be able to prove Claim 17 by induction, in addition to Eq. 8
for modality S we also should guarantee similar statements for modalities O and N:

0,9 € Xy iff ¢ € Xy, for each w’, ¢’ such that (w, 1) ~, (W', ), 9)
NQD € Xur 1ff<.0 € Xw,H—l- (10)

The two statements above match items 6 and 4 of Definition 2 in the same way
as Eq. 8 matches item 5 of the same definition. To guarantee (=) parts of these two
statements, we added items 3(a) and 3(c) to Definition 6. This is similar to how we
added item 3(b) to Definition 6 in order to guarantee (=) part of Eq. 8.

Let us now consider the situation depicted in Fig. 6. Here, set X,,, ;, contains for-
mula—=S,—0,¢. Insuch asituation, as explained in Section 6.1, the matrix construction
might need to add a new world wy and new moment #, such that (wy, t1) ~, (w2, t2)
and O,¢ € Xy, r,- Then, ¢ € Xy, 1, by item 3(c) of Definition 6, see Fig. 6. Finally,
let us suppose that the original frame is such that N—¢ € X, ;,—1. By item 3(a) of
Definition 6, this would require that —=¢ € Xy, ;,—1 in the extended frame. Since the
same maximal consistent set X,,, ;,, cannot contain both formulae ¢ and —¢, there is
no consistent way to add the new column #, to the frame. Thus, the original matrix
method from [26] does not work in language ® which contains all three modalities:
S, O, and N.

Fig.6 Towards the explanation why the countdown timer is introduced in the construction when the language
contains modalities S, O, and N
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In this article, we solve the problem described above by limiting the applicability
of item 3(a) of Definition 6. Informally, we assume that the model is equipped with a
countdown timer. At the moment ¢ = 0, the timer is set to some initial non-negative
integer value and this value is decremented by 1 at each moment of time. Once the
timer reaches value 0, the timer is reset to some new non-negative integer value, and
so on. The timer is specific to the model, not to a world. In other words, at any given
moment, the value of time is the same in all possible worlds. The values to which the
time is reset might change from reset to reset and from model to model.

We use the timer to state Claim 17, our “truth lemma”, in a slightly weaker form.
Namely, we only require the statement “w, ¢ |- i iff ¢ € X,,;” to be true for formulae
Y whose complexity ||y is no more than the value of the timer at moment ¢. The
complexity [N is defined as the number of times modality N occurs in formula
Y. A similar constraint also applies to formula ¢ in Egs. 8, 9, and 10. Item 3(a) of
Definition 6 has a related adjustment expressed in the words “belongs to the same
block”. To see why these changes solve the problem, recall that the issue with Fig. 6 is
that formula N—¢ forces —¢ to be added to the set Xy, ;,, which should have formula
¢. To avoid this conflict, the type of extension shown in Fig. 5 is done only when the
value of the countdown timer reaches zero. In other words, in Fig. 6, the value of the
timer at moment ¢, — 1 is guaranteed to be zero. In this case, because the complexity of
formula N—¢ is more than zero, given the formula complexity constraint in Claim 17,
we do not have to guarantee that this formula is true in world w; of the canonical
model at moment f,. As a result, we do not have to add —¢ to the set X, ;,. One
might wonder what to do if the value of the counter in the right-most column is above
zero. In this case, we use Lemma 23 to add additional columns to the matrix until the
counter reaches zero, and only after that, apply the type of extension shown in Fig. 5.

6.3 Augmented Matrices

In the rest of this section, we give the formal proof of completeness for our logical
system. This proof blends the original matrix technique described in Section 6.1 with
the countdown timer introduced in Section 6.2. At the core of this blend is the notion
of an augmented matrix. An example of an augmented matrix is depicted in Fig. 7.
Informally, an augmented matrix consists of a matrix (X,,;) in which each column
is labelled with a nonnegative integer number, representing the value of a “timer” at
the current column. It is assumed that if a column is labelled with a positive number
r, then the next column is labelled with r — 1. In other words, the timer counts down
until zero. Upon reaching zero, the timer is reset to an arbitrary nonnegative number.

Fig.7 An example of an 2 1 0 ‘ 0 ‘ 1 0 4 3 2
augmented matrix

Xoo Xo1 Xo2 | Xos | Xoa Xos | Xos Xor Xos
Xio Xu X2 | Xaz | X1a X5 | X1 Xir Xas
Xoo Xo1 Xoo | Xoz | Xoa Xos | Xog Xor Xog
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We have chosen to use variables w and ¢ to represent the coordinates of a position
in the matrix because later, in the construction of the canonical model, the rows of the
matrix will correspond to possible worlds and columns to moments in time.

The augmented matrix in Fig. 7 has the size of 3 by 9 (not counting the row with
integer labels). In this article, we consider augmented matrices of finite and infinite
sizes. Thus, formally, we define such matrices using ordinals.

Definition 5 For any two ordinals «, 8 < w, an augmented matrix of size o by g is a
pair (X, r), such that

1. X is an arbitrary function on a Cartesian product o x £,
2. r is a “timer” function from ordinal B to nonnegative integer numbers such that,
foreacht < B,ifr(t) > 0andt+ 1 < B, thenr(t + 1) =r(t) — 1.

Note that « = 3 and f = 9 for the augmented matrix depicted in Fig. 7. To be
consistent with our matrix intuition, we write X, instead of X (w, t) and r, instead
of r(t).

We use the timer to divide columns (“time”) into blocks. A new block starts with
each reset of the timer. We denote the timer by r because it shows how many moments
remain before the beginning of the next block. In Fig. 7, blocks are separated by
vertical lines. Note that all blocks, with the possible exception of the last one, end
with the timer being equal to 0, and all other values of the time inside the block are
positive. We capture the second part of the last statement in the following lemma.

Lemma 21 If f and € are the first and the last column of a block, then r; > 0 for all
columns t such that f <t < £.

6.4 Frames

In this subsection, we define frames and prove their basic properties. Informally, a
frame combines an augmented matrix with a set of equivalence relations.

Definition 6 For any two ordinals «, 8 < w, a frame is triple (X, r, ~) where

1. (X, r) is an augmented matrix of size « by S,
2. ~, is an equivalence relation on o x B for each agent a € A such that

(@) if (w, 1) ~q (u,s), thenr; =rs,
(b) if (w, t) ~4 (u, s) and columns ¢, s belong to the same block, then (w, t) =

(u,s),
3. X is a maximal consistent set of formulae such that

(a) if Ny € X,,; and columns r and 141 belong to the same block, then¢ € Xy, 141,
(b) if (w, 1) ~4 (u,s),then S, € Xy iff Sy € Xy,
(c) if Oy € Xy and (w, t) ~, (u, s), then ¢ € X,;.

Informally, item 2(b) above says that two different cells in the same block cannot be
equivalent. If o, B < w, then we say that the frame is finite.
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Lemma 22 For any frame (X, r,~) of size a by B, any u < o and any t1,tr» < B if
11 < ta, ¢ € Xy, and columns 1y, tp belong to the same block, then N2~ ¢ € X,y,.

Proof We prove the statement of the lemma by induction on #, — 1. In the base case,
ry = t;. Then, statement N2~"1¢ € X,;, follows from the assumption ¢ € X, of
the lemma.

In the induction case, t» > 1. Thus, columns #; and #; + 1 must belong to the same
block due to the assumption of the lemma that columns #; and #; belong to the same
block.

Towards the proof by contradiction, suppose that N2~"1¢ ¢ X,,,,. Thus, =N2""1¢ €
X, because Xy, is a maximal consistent set. Hence, by Lemma 19 and the Modus
Ponens rule, Xy, = N27"1=¢. Then, N27"1=¢ € X,,, again because X, is a max-
imal consistent set. Note that, as we have observed earlier, columns #; and #; + 1 must
belong to the same block. Thus, N2~1=1=¢ € X,, , | by item 3(a) of Definition 6.
Hence, —¢ € X,,;, by the induction hypothesis. Therefore, ¢ ¢ X,,;, because X, is
a maximal consistent set. O

Recall from our informal discussion in Section 6.1 that the matrix method consists
of extending the frame infinitely many times. At the limit, this method produces what
we call a “complete” frame:

Definition 7 A frame (X, r, ~) of size o by 8 is complete when

1. B is the ordinal w,
2. if Sy ¢ Xy, then there are u, s such that (w, t) ~, (u, s) and ¢ ¢ X5,
3. if O ¢ ¢ Xy, then there are u, s such that (w, 1) ~, (4, s) and ¢ ¢ X,;.

6.5 Frame Extension

In this subsection, we formally define frame extensions informally captured by Fig. 5.

Definition 8 For any frames F = (X, r,~) and F' = (X', r/, ~) of sizes « by B and
a’ by ', respectively, let F C F' if

1. o <o,

2. B4,

3. (w, 1) ~4 (u,s) iff (w, 1) ~; (u, s) for each w,u < «, each ¢, s < B, and each
a €A,

4. r; =r/foreacht < S,

5. Xy =X, foreachw <o and s < B.

We read F T F’ as frame F’ is an extension of frame F. The next lemma can be
used multiple times to eventually bring the value of the countdown timer rg_ to zero.
As we discussed in Section 6.2, we need to bring this value to zero before doing an
extension shown in Fig. 5.

Lemma 23 Any finite frame (X, r,~) of size o by B such that rg_y > 0, can be
extended to a frame (X', r', ~") of size a by B + 1.
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Proof For each integer w < «, consider the set of formulae

Y, ={p | Np e Xy g1} (11)

Claim 3 Set Y, is consistent for each w < «.

Proof-of-claim Suppose that the set Y, is not consistent. Then there are formulae

Net, ..., Ng, € Xy g1 (12)
such that ¢1,...,¢, F L. Thus, Ng,...,Ngp, = NL by Lemma 15. Hence, by
Eq. 12,

Xw g1 NL. (13)

At the same time, the formula —_L is a tautology. Thus, - N—_L by the Necessitation
inference rule. Then, - —N_L by the Functionality axiom and propositional reasoning.

Thus, set X, g1 is inconsistent due to Eq. 13. O
By Lemma 12, consistentsets Y, ..., ¥,,_; can be extended to maximal consistent
sets Yo, ..., Yo—1, respectively.

Let (X', ') be the augmented matrix

ro ... rg—1 rg_1—1
Xoo .. Xo,p-1 Yo

X0 ... Xip-1 Y
Xo—1,0 -+ Xa—1,8-1 Ya—1

In other words, let

if 1
rl{ — I't, 1 < ﬂa (14)
rﬂ_l—l, lfl‘:,B,
foreacht < 8+ 1. And let
Xy, ift ,
T (15)
Yo, ift =2,

foreachw < aandr < B+1.Note that (X', r’) is an augmented matrix by Definition 5
and the assumption of the lemma that rg_; > 0.

To finish the definition of the frame (X', r’, ~), we define the relation ~/, on the
seta X (B + 1) as follows:

(w, 1) ~, (u, s) iff either (w, 1) ~4 (u, s) or (w, 1) = (u, s) (16)

for each a € A, each w,u < «, and each ¢, s < B + 1. In other words, the relation
~! is a reflexive closure of relation ~, on the set & x (8 + 1). Note that ~/ is an

equivalence relation on the set o x (8 + 1).
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This ends the definition of the triple (X', r’, ~'). Next, we use Definition 6 to show
that this triple is a frame of size « by 5+ 1. We start with condition 2(a) of Definition 6.

Claim4 If (w, 1) ~), (u,s), then r] = r{.

Proof-of-claim By Eq. 16, the assumption (w,?) ~/ (u,s) implies that either
(w, t) ~4 (u,s)or (w, t) = (u, s). We consider the following two cases separately:

Case I: (w,t) ~4 (u,s). Then, r; = rg by item 2(a) of Definition 6 and the
assumption of the lemma that (X, r, ~) is a frame. Thus, rt/ =r =r, = ré by
Eq. 14.

Case 2: (w, t) = (u, s). Thus, t = 5. Therefore, r| = r;.

Next, let us make the following observation that follows from Eq. 14:

Claim5 For any s,t < f8, columns s and  belong to the same block of the augmented
matrix (X, r) iff they belong to the same block of the augmented matrix (X', r’).

We are now ready to verify condition 2(b) of Definition 6.

Claim6 If (w,t) ~| (u,s) and columns ¢ and s belong to the same block of the
augmented matrix (X', r’), then (w, 1) = (u, s).

Proof-of-claim By Eq. 16, the assumption (w,?) ~/ (u,s) implies that either

(w,t) ~4 (u,s) or (w,t) = (u,s). To finish the proof of the claim, it suffices to
consider the case (w, t) ~, (u,s). Then, t,s < B. Thus, by Claim 5, the assump-
tion of the claim that columns ¢ and s belong to the same block of the augmented
matrix (X', r’) implies that these columns belong to the same block of the augmented
matrix (X, r). Thus, (w, t) = (u, s) by item 2(b) of Definition 6 and the assumption
(w, t) ~4 (u,s). |

Next, we verify condition 3(a) of Definition 6.

Claim7 Ifr; > 0,1 +1 < B+ 1,and Ny € X|,,, thenp € X/

wt? w,t+1°
Proof-of-claim We consider the following two cases separately:

Case I:t+1 < B.Then, the assumptions r; > 0 and N¢ € X/, of the claim imply
that r, > 0 and N¢ € X,,; by Egs. 14 and 15, respectively. Thus, ¢ € X, 41 by
item 3(a) of Definition 6 and the assumption ¢ + 1 < B of the case. Therefore,
@€ X:u,t+1 by Eq. 15 and the assumption t + 1 < B.

Case 2: t + 1 = B. Then, the assumption N¢ € X/, implies that Np € X, by
Eq. 15. Then, N¢ € X, g1 by the assumption # + 1 = B of the case. Hence,
¢ €Y, byEq. 11. Thus, ¢ € Yy, because ¥, C Y,,. Then, ¢ € X,’w by Eq. 15.

Therefore, ¢ € X;u,t+1 by the assumption ¢ + 1 = § of the case. O
Then, we verify condition 3(b) of Definition 6.

Claim8 1f S,¢ € X, and (w, 1) ~, (u, s), then ¢ € X,.
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/

Proof-of-claim By Eq. 16, the assumption (w,t) ~/ (u,s) implies that either
(w, t) ~4 (u,s)or (w,t) = (u, s). We consider these two cases separately:

Case I: (w, t) ~4 (u, s). Thus, since relation ~, is only defined on @ x 8,
t,s < B. a7

Hence, X, = X, by Eq. 15. Then, S,¢ € X, by the assumption S,¢ € X,
of the claim. Thus, ¢ € X, by item 3(b) of Definition 6 and the assumption
(w, 1) ~4 (u, s) of the case. Note that X,,; = X/ ; by Eq. 15 and Eq. 17. Therefore,
pEX,.

Case2: (w,t) = (u, s). Then, X/, - ¢ by the assumption S,¢ € X/, of the claim,
the Truth axiom, and by the Modus Ponens inference rule. Therefore, ¢ € X/, as

X}, is a maximal consistent set. a

The proof of the next claim is similar to the proof of the previous claim except that
it uses item 3(c) of Definition 6 instead of item 3(b).

Claim9 If O,¢ € X, and (w, t) ~, (u, s), then ¢ € X/,.

By Definition 8, frame (X', r’/, ~') is an extension of frame (X, r, ~). This con-
cludes the proof of the lemma. O

The next lemma captures the frame extension illustrated in Fig. 5. Note that the
same lemma handles modalities S and O simultaneously.

Lemma 24 For any finite frame (X, r, ~) of size a by B, whererg_1 = 0, any integers
w < ot < B, any agent b € A, and any formulae Spp ¢ Xy, Op & Xy, there
is an extension (X', r',~") of size o + 1 by B + 1 of frame (X, r,~) such that
(w, 1) ~) (o, B), ¢ ¢ Xt/%ﬁ’ and ¢ X,

Proof Consider the set of formulae
Y= ={-0}U{x | Spx € Xuw}- (18)
Claim 10 Set Y~ is consistent.

Proof-of-claim Suppose that Y~ is not consistent. Then, there are formulae

SeX1s -5 Shxn € Xux (19)

such that x1, ..., xo = ¢. Thus, Sp x1, ..., Spxn F Spe by Lemma 15. Hence, X,
Spe by Eq. 19. Therefore, Sy € X,,; because X, is a maximal consistent set, which
contradicts the assumption Sy ¢ X, of the lemma. O

By Lemma 12, the set Y ~ can be extended to a maximal consistentset Y. Let f < 8
and £ < f be the first and the last column of the block containing column #. Consider
the set

Zy =Ny} N/ x INTTOpx € Xuy). (20)
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Claim 11 Set Z,; is consistent.
Proof-of-claim Suppose the opposite. Thus, there are formulae
N/ Opx1, ..., NS Opxn € Xupy (21)

such that
N xr, o N b =N

Then, by Lemma 19 applied countrapositively,
Ny, N oy B ==N
Thus, by the laws of propositional reasoning,
N yr, o N oy E Ny
Hence, by Lemma 18,
N~ Opx1,....N“TOpxn - N~TOp.

Then, by Eq. 21, .
Xy =N/ Opy.

Thus, N'—/ Opy € Xy because X, is a maximal consistent set of formulae. Recall
that (X, r, ~) is a frame by the assumption of the lemma. Thus,

Opy € Xu, f+a-1)

by item 3(a) of Definition 6 (applied + — f times) and because columns f and ¢
belong to the same block. Therefore, O,y € X,,;, which contradicts the assumption
Opyr ¢ Xy of the lemma. O

By Lemma 12, set Z, can be extended to a maximal consistent set Zo.
For each k such that 0 < k < £ — f, consider the set of formulae

Zr = {x | NFx € Zo}. (22)

Claim 12 Z; is a maximal consistent set for each k, such that 0 < k < ¢ — f.

Proof-of-claim Let us first show that the set Zj is consistent. Suppose the opposite.

Thus, x1,..., xn F L for some NkX1, R Nan € Zo. Hence, Nk)(1, e, Nan H
N1 by Lemma 15 applied k times. Then, Zg ~ NFL by the assumption
Nk)(l, e, ka,, € Zo. Then, Zy ¥ —NF_L because set Zg is consistent, which con-

trudicts Lemma 20.
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To prove the maximality, consider any formula x such that x ¢ Zi. It suffices
to show that =y € Zi. The assumption x ¢ Z; implies that N*y ¢ Zy by Eq. 22.
Thus, —N* X € Zg because Zj is a maximal consistent set. Hence, Zg F Nk—-x by
Lemma 19 and the Modus Ponens inference rule. Then, Nk — X € Zp again because
Zy is a maximal consistent set. Thus, =y € Z; by Eq. 22. O

Let integers {r{}s<g+1 and matrix X be defined by the following augmented
matrix of the size (o + 1) by (8 + 1):

T FFooLo T Ty regl ... rg—i | ]
Xo1 ... Xo,r-1 Xofp oo ol Xor Xoer1 ... Xop-1 |Y
Xwt oo Xuw o1 | Xwr oo Xur oo Xue | Xuwegr -0 Xuyp-o1 | Y

Xo—1,1 - Xo—1, -1 Xa—1,f o vvn ons Xo—1,0|Xa—1,041 .- Xog—1,8-1| Y
| Xwt oo X fo Y/ R Zo—y5 | Xwiet1 - Xwp-1|Y |
In other words, let
9 'f 9
o= rg 1 s<p (23)
ry, ifs =8,

foreachs < 8+ 1. And

Xus, Hfu<aands < B,

Xz/mz Zs_y, %fu:aandf.fsfé, 24)
Xws, ifu=aandeithers < forf <s < g,

Y, if s = B,

foreachu < o + 1 and s < B + 1. This ends the definition of the pair (X', r’).
The following claim is true by Definition 5 and the assumptions of the lemma that
(X,r,~)isaframe and rg_1 = 0.

Claim 13 (X', r’) is an augmented matrix.

Next, we define relation ~/, on the set (¢ + 1) x (8 + 1) for an arbitrary agent
a € A If a # b, then the relation ~/, is a reflexive closure of relation ~, in set
(¢ +1) x (B4 1).If a = b, then the relation ~/, is a reflexive transitive symmetric
closure of relation ~, U{((w, ), (o, B))} in set (o + 1) x (B + 1). Note that relation
~! is an equivalence relation on the set (o + 1) x (8 + 1) for each agent a € A.

This ends the definition of the tuple (X', r’, ~'). Next, we use Definition 6 to show
that this tuple is a frame of size « 41 by g+ 1. By Claim 13, condition 1 of Definition 6
is satisfied. Note that conditions 2(a) and 2(b) of Definition 6 are satisfied by formula
Eq. 23, the definition of the relation ~" and the assumption of the lemma that (X, r, ~)
is a frame. Thus, it suffices to verify conditions 3(a), 3(b), and 3(c) of Definition 6.
Due to Egs. 23 and 24 and the assumption of the lemma that (X, r, ~) is a frame, to
prove condition 3(a), it is enough to establish the following claim.
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Claim14 If Ny € Zyandk < € — f,then x € Zyy.

Proof-of-claim Suppose that x ¢ Zi41. Then, N1y ¢ Z, by Eq. 22. Hence,
—Nk+1 X € Zobecause Zgis amaximal consistent set of formulae. Thus, Zy Nk=N X
by Lemma 19. Then, N¥=Ny € Z, again because Z is a maximal consistent set of
formulae. Hence, =Ny € Z; by Eq. 22. Therefore, Ny ¢ Z; because set Zj is
consistent. O

Due to the definition of the relation ~/, Eq. 24, and the assumption of the lemma
that (X, r, ~) is a frame, to prove condition 3(b), it is enough to establish the following
claim.

Claim 15 Spx € X, iff Spx € X5
Proof-of-claim First, observe that, by Eq. 24, it suffices to show that Spx € Xy iff
Spx €Y.

(=) : Suppose that Sp x € Xy. Thus, Xy - SpSpx by Lemma 14 and the Modus
Ponens inference rule. Hence, S,Sp x € X, because X, is a maximal consistent set.
Then, Spx € Y~ by Eq. 18. Thus, Spx € Y.

(<) : Assume that Spx ¢ Xyu:. Then, =Spx € X, because because X, is a
maximal consistent set. Thus, X,,; - Sp—Sp x by the Negative Introspection axiom
and the Modus Ponens inference rule. Hence, Sp—Sp x € X, again because X, is
a maximal consistent set. Then, =S x € Y~ by Eq. 18. Thus, =S, x € Y. Hence,
Spx ¢ Y because set Y is consistent. O

The next claim verifies condition 3(c) of Definition 6.

Claim16 If O, x € X|, ,, and (u1,s1) ~,, (u2,s2), then x € X|

uysy uzsy”

Proof-of-claim Due to the definition of the relation ~’, Eq. 24, and the assumption of
the lemma that (X, r, ~) is a frame, it is enough to only consider the following three
cases:

Case I: sy = B. Then, X}, =Y = X, . by Eq. 24. Thus, O, x € X, by the
assumption O, x € X, , of the claim. Hence, X, F x by the Truth axiom and
the Modus Ponens rule. Thus, x € X, . because X . is a maximal consistent
set.

uszsi

Case 2: uy = o and s; < B. Then, (u1,s1) = (u2,sy) by the assumption
(u1,s1) ~), (u2,s2) of the claim and the definition of the relation ~'. Hence,
uy = up. Thus, O, x € X, by the assumption O, x € X, ;, of the claim. Then,
X,,5, | x by the Truth axiom and the Modus Ponens inference rule. Therefore,
X € X,,,5, because X, is a maximal consistent set.

Case3:a = b, (uy, s1) ~p (w, t), and (uz, s2) = (o, B). We further split this case
into two subcases:

Case 3A:cells (u1, s1) and (w, t) belong to the same block. Thus, by the assumption

(uy, s1) ~p (w, t) of Case 3 and item 2(b) of Definition 6,
(ug, s1) = (w, 1). (25)
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Hence, O, x € X, by the assumption O, x € X, ;, of the claim.

Then, O, x € Xy by Eq. 24 and the assumptions w < « and r < § of the lemma.
Thus, N=/0,x € X wy by Lemma 22 and because f is the first column of the
block containing column ¢. Hence, N~/ x € Z; by Eq. 20. Then, N'=/ x € Z,.
Thus, x € Z,—y by Eq. 22. Hence, x € X, by Eq. 24. Then, the assumption
(u2, 52) = (a, B) of Case 3 implies x € X;,,. Therefore, x € X, by Eq. 25.

U sy

Case 3B: (u1, s1) and (w, t) are in different blocks. Thus, by Eq. 24,

X{m = Xy, - (26)
At the same time, the assumption (i1, s1) ~p (w, t) of Case 3 implies that u; < o
and s; < B. Then, O, x € X,,5, by the assumption O, x € X,’m,I of the claim and
Eq. 24. Hence, the assumption (u1, s1) ~p (w,t), by item 3(c) of Definition 6,
imply that x € Xyy,. Thus, x € X, by Eq. 26. Therefore, x € X, by the
assumption (2, s2) = («, B) of Case 3. O
To finish the proof of the lemma, first notice that (w, t) N;J (o, B) by the definition
of ~'. Second, —=¢ € Y~ by Eq. 18. Then, —¢ € Y. Hence, —¢ € X(’lﬁ by Eq. 24.
Thus, ¢ ¢ X,z because X, is a consistent set. Third, N'=/—=y e Z; by Eq. 20.
Thus, N~/ =y € Z,. Then, =y € Z,_s by Eq. 22. Hence, = € X, by Eq. 24.

Therefore, ¢ ¢ X/, because set X/, is consistent. o

6.6 Complete Frames

In this subsection, we use Lemma 23 and Lemma 24 to extend an arbitrary frame to
a complete frame.

Definition 9 For any frame (X, r, ~) of size @ by 8, any w < « and ¢t < B, and
any formula ¢ € ®, the frame is (w, ¢, ¢)-complete if the following conditions are
satisfied:

1. If formula ¢ has the form S;¥ and S, ¢ X, then there are u < o and s <
such that (w, t) ~, (u,s) and ¥ ¢ X5,

2. If formula ¢ has the form O,y and O,y ¢ X, then there are u < @ and s <
such that (w, t) ~; (u,s) and ¥ ¢ X,;.

The next lemma follows from Definition 7 and Definition 9.

Lemma 25 For any ordinal «, if frame (X, r, ~) of size @ by w is (w, t, ¢)-complete
foreach w < «, eacht < w, and each formula ¢ € ®, then the frame is complete.

The next lemma follows from Definition 8 and Definition 9.

Lemma 26 For any frame (X, r,~) of sizea by B, any w < «, any t < 8, and any
formula ¢ € @, if frame (X, r,~) is (w, t, p)-complete, then any extension of this
frame is (w, t, @)-complete.

Lemma 27 Any finite frame (X, r, ~) of size o by B can be extended to a finite frame
(X', r", ~) of size &’ by B’ such that r//3’—1 =0.
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Proof By item 2 of Definition 5, the value of rg_; is a nonnegative integer number.
We prove the statement of the lemma by induction on rg_j.

Base Case: rg—1 = 0. Then, let (X', r’, ~) be the frame (X, r, ~). Note that
(X,r,~) E (X, r,~) by Definition 8.

Induction Step: letrg_; > 0.Then, by Lemma 23, frame (X, r, ~) can be extended
to a finite frame (X', r’, ~') of size @ by g + 1. Note that rg_; = r}g_l by
item 4 of Definition 8. At the same time, r/’3 = 1*/’371 -1 < r;}fl by item 2 of
Definition 5. Thus, r/; < rg—1. Hence, by the induction hypothesis, finite frame
(X', ¥, ~) can be extended to a finite frame (X", r”, ~") of size «” by B” such
that r/’g’,,_1 = 0. Note that (X,r,~) C (X',r’,~) T (X", r", ~"). Therefore,
(X,r,~) C (X", r”,~") by Definition 8. O
For any two frames F and F’ of sizes o by 8 and «’ by 8/, respectively, we write

FCF if FC F'and B8 < B

Lemma 28 [f a finite frame F of size a by B is not (w, t, ¢)-complete for some w < o
andt < B, then frame F can be extended to a (w, t, ¢)-complete finite frame F’ such
that F T F'.

Proof Let F = (X, r,~). By Lemma 26 and Lemma 27, it suffices to consider the
case whenrg_; = 0.

The assumption of the lemma that frame F is not (w, t, ¢)-complete, by Defini-
tion 9, implies that formula ¢ must either have the form S, or the form O, 1. We
consider these two cases separately.

First, suppose that ¢ has the form S;. Then, the assumption of the lemma that
frame F is not (w, ¢, ¢)-complete, by Definition 9, implies S, ¢ X,,;. At the same
time, - O, 1 — L by the Truth axiom. Hence, O, L ¢ X,, because set X, is
consistent. The statements S,¢ ¢ X, and O, L ¢ X,,, by Lemma 24, imply that
there is an extension F' = (X', r’,~') of size « + 1 by B + 1 of frame F such
that (w, 1) ~} (a,B) and ¢ ¢ X&ﬂ. Note that frame F’ is (w, f, ¢)-complete by
Definition 9 and the assumption of the case that formula ¢ has the form S, .

The case when formula ¢ has the form O, is similar except that it uses the Truth
axiom S, 1 — 1 instead of O, L — _L. The proof is still based on Lemma 24. ]

Lemma 29 Any finite frame F of size o > 0 by B > 0 can be extended to finite frame
F' such that F C F'.

Proof Suppose that frame F = (X, r, ~) has the size « by 8. We consider the fol-
lowing two cases separately:

Case I: rg—1 # 0. Then, by Lemma 27 there exists a finite frame F' = (X', r/, ~)
of a size &’ by B’ such that F C F’ and

ry_y =0. Q7

Note that "}3—1 = rg_1 by item 4 of Definition 8 and the statement F £ F’.
Hence, r};_l # 0 by the assumption rg_; # 0 of the case. Thus, B # B’ by
Eq. 27. Therefore, F  F’ by statement F C F’ and the definition of relation .
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Case II: rg_1 = 0. Recall that the set of agents .A is nonempty. Let a € A be any
element of this set. Then, the formulae S, 1. — 1 and O, — _L are instances
of the Truth axiom. Note that 0 < o and 0 < 8 by the assumption of the lemma.
Hence, S, L ¢ Xgp and OpL ¢ X because set Xoo is consistent. Thus, by
Lemma 24, there is a frame F’ of size @ + 1 by B8 + 1 such that F = F’. Then,
F C F’ because frame F has size « by . ]

For any family of triples of set 7; = (X;,Y;, Z;), let Ui T; be the triple
(Ui X;, Ui Y;, U; Z;). Note that any frame F = (X, r, ~) is a triple consisting of a
function X from a Cartesian product of two ordinals into maximal consistent sets, a
function r from an ordinal into nonnegative integer numbers, and a relation ~. Func-
tions are formally defined as sets of pairs (binary relations). Although we previously
discussed ~ as a family of binary relations {~,},c.4 on set W x o, we can also think
about ~ as a fernary relation. In this case, ~ is a subset of the set (W x w) x Ax (W X w).
Then, any frame F is a triple of sets. Thus, one can consider a union Ui F; of a family
of frames.

Lemma 30 For any infinite chain of finite frames Fy C F| T ..., triple | J; F; is a
frame of size o by w for some ordinal @ < w and Fy C |J; F;.

Lemma 31 Any finite frame F can be extended to a complete frame.

Proof Let (wy,t1, ¢1), ..., (Wy, t,, ¢,) be any enumeration of all triples (w;, ;, ¢;)
such that w; and ¢; are finite ordinals and ¢; is a formula in language ®. We define a
chain of finite frames Fo C F| C . ... The chain is defined as follows:

1. Fp=F,

2. Suppose that finite chain Fop C F; C --- T F, is already defined and the size
of frame F), is @ by B. To define frame F, | consider the following two cases
separately:

(a) Ifthereisatleastonei suchthatw; < «,t; < B andframe F;, is not (w;, t;, ¢;)-
complete, then let ir,j, be the minimal such i. By Lemma 28, frame F,, can be
extended t0 a (Wi, » Linin > Pimin)-cOMplete frame F,, 1 such that Fy, T Fy1,

(b) If there is no i such that w; < «, t; < B and frame F, is not (w;, t;, ¢;)-
complete, then, by Lemma 29, frame F;, can be extended to frame F,; such
that F,, C Foi.

Let F' = |, F;. Note that frame F” is an extension of frame Fy = F by Lemma 30.
Also, by the same lemma, the size of frame F’ is o by  for some ordinal @ < .
Hence, by Lemma 25, to show that frame F’ is complete, it suffices to prove that F” is
(w, t, p)-complete for each w < «, each ¢ < w, and each formula ¢ € ®. The latter
is guaranteed by the construction of the chain Fo C F; C .. .. O

6.7 Final Steps

In this section, we finish the proof of the completeness theorem. As we discussed
earlier, Claim 17 below is our version of the “truth lemma”.
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For any formula ¢ € ®, by |¢|ny we denote the maximal depth of nestedness of
modality N in formula ¢. For example, |p vV NS, p|n = 1 and [N(Np vV NNp)|n = 3.

Theorem 5 [completeness] If ¥ ¢, then there is a world w € W of an epistemic
temporal model (W, ~, i) such that w, 0} ¢.

Proof Let X be any maximal consistent set containing formula —¢. Such a set exists
by Lemma 12 and the assumption ¥ ¢ of the theorem. Consider the augmented matrix

(X—,r) = |: l;"\l ] of size 1 by 1. That is, the only cell of this matrix contains the
00
maximal consistent set X, and the timer function r~ is such that »~(0) = |¢|n. The
pair (X, r™) is an augmented matrix under Definition 5. Define equivalence relation
~7 onset 1 x 1 to be such that (0, 0) ~; (0, 0) for each agenta € A. By Definition 6,
to show that the triple (X ~, r—, ~7) is a frame of size 1 by 1, it suffices to prove that if
O, € Xoo, then ¥ € X for each formula v € ® and each agent a € A. The latter
is true by the Truth axiom and because X is a maximal consistent set. By Lemma 31,
this frame can be extended to a complete frame (X, r, ~) of size « by w.
Let W = o and

n(p) ={(w,n) eaxwl|pe Xy} (28)

for any propositional variable p. By Definition 1, the triple (W, ~, 77) is an epistemic
temporal model. O

Claim 17 [truth lemma] w, ¢ I+ ¢ iff ¥ € X, for each formula ¢ € ®, each w < «,
and each t < w such that [{|y < r(2).

Proof-of-claim We prove the statement of the lemma by induction on the structural
complexity of formula . If formula v is a propositional variable, then the statement
of the lemma follows from Eq. 28 and item 1 of Definition 2. If formula v is a negation
or a disjunction, then the statement follows from items 2 and 3 of Definition 2, the
maximality and consistency of the set X ,;, and the induction hypothesis in the standard
way.

Suppose that formula ¥ has the form N . Note that [{/|y = [Nx|In = [xIN+1 > 1.
Thus, r(¢) > 1 by the assumption |r|N < r(f) of the claim. Thus, columns ¢ and ¢ + 1
belong to the same block of the frame (X, r, ~).

(=) : AssumethatNy ¢ X,;. Thus, =Ny € X, because X,,; is amaximal consistent
set. Then, X,,; = N—x by the Functionality axiom and propositional reasoning. Hence,
N—x e X, because X,,, is amaximal consistent set. Then, = € X, ;41 byitem 3(a)
of Definition 6 because columns ¢ and ¢ + 1 belong to the same block of the frame
(X,r,~).Hence, x ¢ Xy.1+1 because set Xy, ;41 is consistent. Thus, w, ¢ + 1§ x
by the induction hypothesis. Therefore, w, t ¥ Nx by item 4 of Definition 2.

(<) : Assume that Ny € X,,;. Then, x € X, ;41 by item 3(a) of Definition 6 because
columns ¢ and 7 + 1 belong to the same block. Thus, w, r + 1 I- x by the induction
hypothesis. Therefore, w, ¢ IF Nx by item 4 of Definition 2.

Suppose that formula i has the form S, x .

(=) : Assume that S, x ¢ X,. Thus, by item 2 of Definition 7, there are # < « and
s < w such that
(w, 1) ~q (u,s) (29)
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and
X ¢ Xus. (30)

Hence, r(t) = r(s) by item 2(a) of Definition 6. Then, |x|n = [SaxIN = YN <
r(t) = r(s) by the assumption ||y < r(¢) of the claim. Thus, u,s ¥ x by the
induction hypothesis and Eq. 30. Therefore, w,t ¥ S,x by Eq. 29 and item 5 of
Definition 2.

(«<) : Assume that S, x € X,,;. Consider any # < « and s < o such that

(w, 1) ~4 (u,s). 31

By item 5 of Definition 2, it suffices to prove that u, s I+ x.

By item 3(b) of Definition 6, the assumption S, x € X, and Eq. 31 imply that
Sax € Xys. Then, X5 - x by the Truth axiom and the Modus Ponens inference rule.
Hence, because set X, is maximal consistent,

X € Xus. (32)

Note that r(#) = r(s) by Eq. 31 and item 2(a) of Definition 6. Then, |x|n =
[SaxIN = |¥IN < r(t) = r(s) by the assumption |/ |y < r(¢) of the claim. Therefore,
u, s - x by Eq. 32 and the induction hypothesis.

Suppose that formula 1 has the form O, x.

(=) : Assume that O, x ¢ X,;. Thus, by item 3 of Definition 7, there are u < « and
s < w such that
(w, 1) ~q (u,s) (33)

and
X ¢ Xur (34)

At the same time, |x|N = |OsxIN = |¥IN < r(¢) by the assumption ||y < r(¢)
of the claim. Thus, u,t ¥ x by Eq. 34 and the induction hypothesis. Therefore,
w, t ¥ O, x by item 6 of Definition 2 and Eq. 33.

(«<) : Assume that O, x € X,,;. Consider any # < « and s < w such that

(w, 1) ~4 (u,s). 35)

By item 6 of Definition 2, it suffices to prove that u, # IF x.
By item 3(c) of Definition 6, the assumption O, x € X,,; and Eq. 35 imply that

X € Xus. (36)
Note that |x|n = |OgxIN = |¥IN < r(¢) by the assumption ||y < r(¢) of the
claim. Therefore, u, t I x by Eq. 36 and the induction hypothesis.

This completes the proof of the claim. O

To finish the proof of the completeness theorem, recall that —¢ € X, and r~(0) =
|@In- Thus, =@ € Xgp and r(0) = |@|n because the frame (X, r, ~) is an extension
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of the frame (X, r~, ~7). Then, ¢ ¢ X because X is a maximal consistent set.
Therefore, 0, 0 ¥ ¢ by Claim 17 and because r(0) = |¢|n. O

Note that Theorem 5 does not claim a strong completeness of our logical system.
To prove strong completeness, one would need to guarantee that Claim 17 holds for
all formulae ¢, not only those for which ||y < r(¢). However, as we discuss in
Section 6.2, this restriction on the size of ¢ is fundamental for the frame extension
procedure. The question of the strong completeness of our logical system, as well as
arelated question of its compactness, remains open.

7 Non-derivability of Insertion Rule

In proof theory, there is a distinction between admissible and derivable rules of a
logical system. A rule is admissible if an extension of the logical system by this rule
does not yield any new theorems. For example, if Taut is the set of all tautologies in
propositional language, then the inference rule

¢ € Taut
2

(37)

is admissible in any complete axiomatisation of propositional logic. A rule is derivable
if it can be expressed as a fixed combination of the logical system’s existing axioms and

inference rules. For instance, inference rule ON(p is derivable in the logical system

L™ defined in Section 4. Indeed, here is how this inference rule can be expressed
through a combination of the Truth axiom, the Modus Ponens inference rule, and the
Necessitation inference rules for modalities N and O:

Ogp Op — ¢
4
Ne_
ONg

At the same time, it is not clear how the inference rule specified by Eq. 37 can be
expressed through a single fixed combination of inference rules in any of the standard
axiomatisations of propositional logic. Thus, the inference rule from Eq. 37 is likely
to be non-derivable in most logical systems for propositional logic. In general, any
derivable rule of a logical system is admissible, but an admissible rule is not necessarily
derivable.

In this section, we prove that the Insertion inference rule is not derivable in the
logical system L~. We do not know if it is admissible in L~. To prove the non-
derivability, we use a new technique introduced in [27]. At the core of the technique
is the notion of a theory of an arbitrary epistemic temporal model M. By a theory of
this model, we mean the set of all formulae that are satisfied at each moment in each
world of the model. In addition, following the terminology pattern of Section 4, by a
theorem of system L~ we mean any formula provable in L.
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Fig.8 Towards the proof of 2
non-derivability of the Insertion D Ra® o oy
inference rule

NDp

theorems of L

Figure 8 illustrates the application of the technique from [27] to our setting. The
two ovals in the figure represent the set of all theorems of L™ and the theory of a
model M. Because the logical system L™ is sound, the former set is a subset of the
latter. By the definition of a theorem, the set of theorems of L~ is closed with respect
to the Necessitation inference rules for modalities N, O, and S as well as the Modus
Ponens inference rule. We visualise this in Fig. 8 by a directed loop (labelled with
these four inference rules) at the oval representing the set of theorems of L™ . Note
that if the same set is also closed with respect to the Insertion inference rule, then this
rule is not just derivable, but also admissible in system L~. We do not know if the set
of theorems of L™ is closed with respect to the Insertion rule.

Fortunately, to prove the non-derivability of the Insertion rule in L™, we do not
need to use the set of theorems of L™ . Instead, we can use the theory of a model M. It
is easy to see that the set of theorems of an arbitrary model M is closed with respect
to the Necessitation inference rules for modalities N, O, and S as well as the Modus
Ponens inference rule. We visualise this in Fig. 8 by a directed loop (labelled with
these four inference rules) at the oval representing the theory of an arbitrary model M.

Note that to prove the non-derivability of the Insertion inference rule, it suffices to
find a single model M such that the theory of model M is not closed with respect to
the Insertion inference rule. In this case, because all axioms of L™ also belong to the
theory of M, the Insertion rule cannot be represented as a fixed combination of the
axioms and rules of L™. Hence, this would prove that the Insertion rule is not derivable
inL™.

There is, however, a problem: we do not know how to construct such a model M.
The solution that we found is, instead of the epistemic temporal models specified in
Definition 1, to consider a larger class of models that we call generalised epistemic
temporal models. The logical system L~ is still sound with respect to this new class
of models, and the non-derivability argument sketched above still works. Note that the
consideration of a more general class of models does not undermine our completeness
result in Section 6. The non-standard “generalised” class of models is only used as a
technical tool to prove the non-derivability of the Insertion inference rule in the logical
system L. The intuitive idea behind generalised models goes back to Albert Einstein’s
works on relativity theory, where he abandoned Newton’s concept of absolute time. In
the context of our work, it means abandoning the assumption that the time advances
with the same speed in all possible worlds. We formally capture this idea in the
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definition below. Compared to Definition 1, this new definition adds “time increment”
Ay, that, intuitively, specifies how fast the clock ticks in world w. The idea to build a
non-standard model M goes back to [27], which considers non-rigid agent designators
instead of non-absolute time.

Definition 10 A generalised epistemic temporal model is a tuple (W, A, ~, ), where

1. W is a set of “possible worlds”,

2. Ay is a “time increment” non-negative integer for each world w € W,

3. ~, is an “indistinguishability” equivalence relation on the set W x w for each
agenta € A,

4. m(p) €W x w.

The satisfaction relation w, ¢ |- ¢ for the generalised models is defined exactly the
same way as Definition 2, except that item 4 of that definition is replaced with:

w, tIF N ifw, 1 + Ay IF @. (38)

As a result, if under the standard semantics the modality N at moment ¢ refers to
“the next moment” ¢ 4+ 1, under the generalised semantics, intuitively, the clock is
running faster and “the next moment” means moment # + A,.

The next lemma establishes the soundness of the logical system L~ with respect
to the class of generalised models. Informally, this lemma shows that the “theorems
of L™ oval in Fig. 8 is inside the “theory of M” oval for any generalised model M.
The proof of this lemma is straightforward (recall that system L~ does not include the
Insertion inference rule).

Lemma 32 w,t I+ ¢ for any world w of any generalised epistemic temporal model,
any moment t € w and any formula ¢ € ® provable in logical system L~.

Earlier in this section, we informally discussed the meaning of the word “theory” in
the context of the class of the original (non-generalised) models. The next definition
formally specifies this term in the context of the generalised models.

Definition 11 The theory of a generalised epistemic temporal model (W, A, ~, )
is the set of all formulae ¢ € ® such that w, ¢ |- ¢ for any world w € W and any
moment 7 € w.

The next lemma is one of two major pieces in our proof of the non-derivability.
Note that it is stated for all possible generalised models. Later, we introduce a specific
model M used in our proof.

Lemma 33 The theory of any generalised epistemic temporal model contains all
axioms of L™ and is closed with respect to the inference rules of L™.

Proof Consider any generalised epistemic temporal model M = (W, A, ~, ). Note
that w, 7 I ¢ for any world w € W, any moment ¢ € w, and any axiom ¢ € ® of
the logical system L~ by Lemma 32. Thus, by Definition 11, the theory of model M
contains all axioms of L™.
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Next, let us show that the theory of model M is closed with respect to the Necessi-
tation rule L for modality O,. Indeed, let formula ¢ belong to the theory of model

ap
M. Thus, by Definition 11,
w, t |- ¢ for any world w € W and any moment ¢ € w. 39)

By the same Definition 11, it suffices to prove that w’, ¢’ IF O, ¢ for any world w’ € W
and any moment ¢’ € w. Consider any world w” € W and any moment ” € w such
that (w’, t") ~, (w”, t”). By item 6 of Definition 2, it suffices to show that w”, ¢’ I ¢,
which is true by Eq. 39.

The proofs for the other inference rules of system L~ are similar. O

To finish the proof of the non-derivability, it suffices to construct a generalised
model M whose theory is not closed with respect to the Insertion inference rule.
Without loss of generality, we assume that the language ® contains a single agent a
and a single propositional variable p.

The generalised model M that we use is depicted in Fig. 9. It contains two possible
worlds, w and u. Let A, = 1 and A, = 2. The indistinguishability relation ~, is
defined as follows: see Fig. 9,

(v1, 1) ~q (02, ) iff 1] = 1. (40)

Intuitively, it means that agent a always knows the moment, but does not know which
of the two possible worlds is the current world. Finally,

n(p) ={w,0) [t =1} U{(u,1) |1 =2}, (41)

see Fig. 9. Together, the next two lemmas form the second major piece in our proof of
non-derivability: they show that the theory of the generalised model M is not closed
with respect to the Insertion inference model.

Lemma 34 Formula Np belongs to the theory of model M.

Proof By item 1 of Definition 2 (also valid for the semantics of generalised models),
Eq. 41 implies that w, ¢ I p for each moment #+ > 1 and u, ¢ I p for each moment
t > 2. Thus, v, t + A, IF p for each world v € {w, u} of model M and each moment
t € w. Hence, v, t IF Np by Eq. 38. Therefore, formula Np belongs to the theory of

model M by Definition 11. O
Fig.9 Generalised epistemic G I T T TTTTT
temporal model M w o p p p
O AN R T RN
a a a a a
TERETEEY ...mm... IITETETEEEEETEY
u P P P
0 1 2 3 4
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Lemma 35 Formula NO, p does not belong to the theory of model M.

Proof Equation 41 implies that (u, 1) ¢ 7 (p). Thus, (u, 1) ¥ p by item 1 of Def-
inition 2. Observe also that (u, 1) ~, (w, 1) by Eq. 40. Hence, (w, 1) ¥ O,p by
item 6 of Definition 2 (also valid for the semantics of generalised models). Thus,
(w, 0) ¥ NO, p by Eq. 38. Therefore, the formula NO, p does not belong to the theory
of model M by Definition 11. O

Together, Lemma 33, Lemma 34, and Lemma 35 imply our main non-derivability
result stated below.

Theorem 6 The Insertion inference rule is not derivable in the logical system L™.

As mentioned earlier, the admissibility of the Insertion rule in L~ remains an open
question.

8 Conclusion

In this article, we propose to formalise the distinction between subjective and objective
time. We captured these notions using two modalities, proved their mutual undefin-
ability, and gave the complete axiomatisation of their interplay.

The distinction between subjective and objective time appears in other settings,
not considered in this article. For instance, imagine that Ann is a farmer who lives
near a train station and never leaves her farm. Although the trains might have a very
complicated timetable that Ann does not know, she knows when the train is coming
because she can hear it each time the train is approaching the station. Another person,
Brittany, on the other hand, lives far away from the station. She cannot hear the train
approaching the station, but she has a timetable hanging above her desk. Brittany
also knows when the train is coming, but in a very different sense. Ann knows when a
train is coming subjectively, and Brittany knows it objectively. Note that this distinction
exists even if Ann and Brittany always have a clock that shows the correct current time.
However, the subjective/objective distinction from the example in the introduction to
this article disappears if Ann has access to a clock. Thus, what we just described is
indeed a different form of the subjective/objective distinction that we leave for future
exploration.
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