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Abstract

Consensus has been reached that the sequential loss of biodiversity leads to a non-linear and accelerating
decline in ecosystem properties. The form of this relationship, however, is based on theory and empirically
derived observations that do not include species co-extinctions. Here, we use data from marine benthic
invertebrate communities to parameterise trait-based extinction models that adjust the probability of
species extirpation and compensation by including the dependencies between different species across a
gradient of climate-driven environmental change. Our simulations reveal that the inclusion of static co-
extinctions leads to more pronounced declines in the trajectories of sediment bioturbation - a process of
great importance to the functioning of marine ecosystems - than those observed with sequential losses of
single species. Compensatory mechanisms and allowance of the formation of new interactions derived from
local and regional species pools moderate the compounding influence of co-extinction, but introduce
additional variability in community response depending on the composition and functional role of incoming
and outgoing species. Our observations emphasise the importance of accounting for local and regional
community dynamics, especially in highly connected systems that are prone to extinction cascades, when

projecting the ecosystem consequences of altered biodiversity.
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Introduction

Localised species loss is generally expected to reduce ecosystem functioning (Cardinale et al. 2012). Evidence
consistently indicates that the magnitude and trajectory of species loss will reflect the relative vulnerabilities
of species to extinction (Payne et al. 2016), the covariance between extinction risk and the functional traits
of individual species (Solan et al. 2004), and the influence of post-extinction community dynamics (Mclntyre
et al. 2007; Thomsen et al. 2017; Thomsen et al. 2019). Whilst the inclusion of these sources of variation can
lead to more relevant and realistic ecological projections (Naeem, 2008), they remain insufficient to explain
observed patterns in the biodiversity-function relationship. This is because the ecological consequences of
biodiversity adjustments are also expressed through longer-term changes in species interactions (Hughes,
2012), including those related to niche emergence (Cazzolla et al. 2018), that are disconnected from the
initial cause of extinction (Brook et al. 2008). Co-extinctions of obligate species, likely the most common (Koh
et al. 2004) but under-appreciated (Stork & Lyal, 1993) form of extinction, can arise during and after the
initial wave of primary extinctions (Koh et al. 2004; Dunne & Williams, 2009; Brodie et al. 2014) and have
additional functional consequences (Luza et al. 2024). Yet, the ecosystem implications of these secondary
extinctions (Sanders et al. 2015; Valiente-Banuet et al. 2014; Strona & Bradshaw, 2018; Strona & Bradshaw,
2022) have not been measured directly (Kehoe et al. 2020; Raine et al. 2018; Blanchard & Munoz, 2022),
compared to those of singular extinctions (lves et al. 2004) or been incorporated into projections of the
ecosystem consequences of biodiversity loss (Cardinale et al. 2012). Theory suggests that the ecosystem
effects of co-extinctions are a reflection of network connectivity and community structure (Thébault et al.
2007; Dallas & Cornelius, 2015; Morton et al. 2022), but conflicting conclusions exist regarding how co-
extinctions affect functional diversity (Vieira et al. 2013; Petchey et al. 2008) and redundancy (Sanders et al.
2018; Biggs et al. 2020), making it challenging to determine the most likely ecosystem consequences of

biodiversity loss.

Failure to adopt a full community perspective and consider processes, such as co-extinction and co-
compensation, means that the generalised biodiversity—function curve is unlikely to generate robust
estimates of future ecosystem properties (Thomsen et al. 2017; Naeem, 2008; Garcia et al. 2021). Post-
extinction performance of a surviving community will depend not only on the absolute loss of species, but
on how associated adjustments to network connectivity and structure alter species interactions (Morton et
al. 2022) and the likelihood and/or expression of compensatory mechanisms (Thomsen et al. 2017; Thomsen
et al. 2019; Gonzalez & Loreau, 2009; Pan et al. 2016) across different contexts (Garcia et al. 2021). Species
with a low population density, slow life history, high trophic level and small geographical range size tend to
be associated with a high extinction risk (Purvis et al. 2000) and low compensatory capacity because the
species’ range and niche are out of equilibrium (Sheth & Angert, 2018). In contrast, the number and
probability of extinction cascades are minimised in regions exhibiting high levels of geographic isolation

(Albouy et al. 2019) and maximised when species are most connected (Ekl6f & Ebenman, 2006; Curtsdotter
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et al. 2011; Baumgartner et al. 2020). The ecosystem consequences of species loss, compensation and
secondary extinctions, however, do not necessarily reflect modifications to community structure (Thomsen
et al. 2019; Brodie et al. 2014). Rather they reflect the extent to which alterations to functional roles (Fetzer
et al. 2015), trait expression (Wohlgemuth et al. 2017; Cassidy et al. 2020; Sanders et al. 2024), and adjusted
interactions with the environment (Dolbeth et al. 2019) and other species (Bimler et al. 2018) are presented
over time (months to years; (Godbold & Solan, 2013; Touchton & Smith, 2011)). Hence, a species with a low
(or high) probability of co-extinction may have a high (or low) potential to compensate through interactions
with other surviving species (Vieira et al. 2014) but, in terms of ecosystem functioning, may deliver no
compensation (Davies et al. 2012), partial, complete, or overcompensation (Pan et al. 2016). Should a species
survive primary and secondary bouts of extinction, emergent compensatory responses (e.g. competitive
release, alterations to resource partitioning, assemblage reorganisation (Thomsen et al. 2017; Thomsen et
al. 2019)) increase the likelihood of alternative ecosystem outcomes (Thomsen et al. 2017) both within, and
across, a range of spatio-temporal contexts (Thomsen et al. 2017; Albouy et al. 2019; Cassidy et al. 2020;
Wardle & Zackrisson, 2005).

Here, we use data from marine benthic invertebrate communities from a region of the Barents Sea currently
facing amplified climatic forcing (Lind et al. 2018) to parameterise trait-based extinction models that adjust
the probability of species extirpation and compensation by including the dependencies between different
species across an environmental gradient (Solan et al. 2020). In doing so, we explicitly recognise that the
sequential loss of species is ordered, first, by extinction risk associated with the transition to increasingly
boreal environmental conditions (Wang et al. 2020), and second, by the likelihood that the modified diversity
and structure of the community associated with primary extinctions will lead to interaction-driven co-
extinctions followed by numeric compensation from multiple taxa. We also assume, should compensation
from the local species pool not be realised, that immigration of boreal-adapted species from the regional
pool will introduce new interactions that revise extinction probabilities and modify local community
dynamics (Albouy et al. 2019; Grebmeier, 2012; Kortsch et al. 2015) and associated ecosystem properties
(Csapé et al. 2021; Ingvaldsen et al. 2021). In line with expectation, we find that including co-extinctions in
our simulations hastens the decline in sediment bioturbation - a process crucial to the functioning of marine
communities - regardless of extinction scenario. However, we show that the influence of co-extinction
depends on location-specific interdependencies (Garcia et al. 2021; Albouy et al. 2019) between species
interactions (Bimler et al. 2018), their vulnerability to change (McLean et al. 2019) and the degree of
functional redundancy in the community (Thomsen et al. 2017; Naeem & Wright, 2003). We had anticipated
that the influence of co-extinction on bioturbation would be maximised at the polar front, an area where
boreal and polar communities converge, but the form of the biodiversity-function relationship varies along
the length of the environmental gradient, reflecting differences in species turnover and community structure.

Our models also reveal that the greatest declines in sediment bioturbation occur at low levels of
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109 environmental forcing, despite elevated numbers of compensating species, presumably because species are
110 close to, or at, the limit of their range distribution (Boakes et al. 2017). These findings emphasise the
111 importance of including the full suite of species responses to perturbations when attempting to project the
112 most likely ecosystem consequences of environmental forcing.

113
114 Methods

115  Study location and environmental gradient

116  We use macroinvertebrate data (Data Records S1, (Solan et al. 2020)) collected as part of a benthic survey of
117 6 stations (B17, B16, B15, Xs, B14, B13) each sampled four times using 0.1 m? USNL (Unites States Naval
118 Laboratory) box cores in the North-western part of the Barents Sea shelf (Supplementary Data S1, Fig. S1),
119  to parametrise models that predict how alterations to biodiversity associated with climate-driven change in
120 environmental conditions affect seabed function. To minimize the effect of non-climatic drivers of change,
121 stations were selected with comparable water depths (228-360m), sediment type and bottom fishing activity
122 along the 30° E meridian. The transect of stations —from B13 in the south to B17 in the north, and with station
123  Xs located between B14 and B15 at the location of the average southernmost extent of sea ice
124  (Supplementary Fig. S1) intersects an established polar front (Jgrgensen et al. 2015; Loeng, 1991) and exhibits
125  a clear North-South separation in faunal assemblage structure (Solan et al. 2020). Although the precise
126 physical location of the front is contested (Oziel et al. 2016; Oziel et al. 2017), the zone exhibits a relatively
127  stationary behaviour (Onarheim & Teigen, 2018) and is becoming more persistent (Barton et al. 2018). We
128  argue that this transect serves as a present-day gradient of climate-driven change, and use it to parameterise
129 models that predict how associated stepped changes in biodiversity affect seabed function. We investigate
130 differences in the magnitude and extent of forcing by parameterising our models with sequential station-to-
131  station species vulnerabilities (based on inter-station transitions from: B17-B16 | B16-B15 | B15-Xs | Xs-B14
132 | B14-B13) and compared these simulations to equivalent extinctions based on change across the entire
133  gradient (B17-B13). Hence, the most northerly (B17) and most southerly (B13) stations in our transect
134 represent the most polar and most boreal community, respectively. In stepped scenarios between
135 neighbouring stations, we assume a northward advance of climate change forcing such that the
136 northernmost station represents the pre-extinction community (closest to pole), and the southernmost
137  station represents the post-extinction community (closest to boreal).

138

139  Probabilistic modelling

140  We developed a probabilistic trait-based model to explore the effects of local extinction scenarios and the
141 associated compensatory response of natural communities (Solan et al. 2004), and to predict how altered
142 diversity associated with climatic-driven environmental change may affect seabed functioning in the Arctic.

143 We establish the relationships between an index of community-level bioturbation potential (BP, Solan et
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al. 2004), estimated from per capita contributions of sediment-dwelling invertebrates to sediment reworking
(Supplementary Fig. S2) based on root-transformed mean body-size (across the entire transect; B?'S, range:
0.008 — 1.225), abundance (4;, range: 6 — 1350), predefined mobility (M;, range: 1 — 4) and sediment
reworking mode (R;, range: 1 —4):
BP; = BY> X M; X R;
BP, = BP; X A;
BP, = XBP,
where BP; is the bioturbation potential of an individual, BP,, is the bioturbation potential of a population of
individuals and BP, is the bioturbation potential of the community (Solan et al. 2004). Following Solan et al.
(Solan et al. 2004), we use BP. as a means to generate benthic ecosystem processes under novel scenarios.

A summary table of species-specific B?'S, A;, M; and R; is provided in Supplementary Table S1.

As climate-driven changes across the Arctic will transform benthic communities through the selective
removal of vulnerable taxa (Jgrgensen et al. 2019), subsequently triggering compensatory responses, co-
extinctions and increasing dominance of boreal-adapted taxa (Csapd et al. 2021), we selectively eliminate
taxa from the pre-extinction species pool before calculating the response of the surviving community through
compensatory mechanisms established for the regional species pool. As specific tolerances of Arctic
invertebrates to climatic drivers are scarce (Degen & Faulwetter, 2019), we derive probability-based orders
of species extinction and, reciprocally, their likelihood to compensate, from ranked vulnerabilities calculated
across each pair of neighbouring stations based on the percentage difference in biomass between the pre-
and post-extinction community for all taxa in the regional species pool (Supplementary Table S2, Code S1).
Hence, a taxon with a high vulnerability score (i.e. highest biomass at the pre-extinction station and lowest
biomass or absence at the post-extinction station) would have both a high probability of going extinct and a
low probability to compensate. In adopting this approach, we explicitly recognise realistic, non-random
changes in biodiversity that emerge as forcing progresses through multiple stages to avoid having to
prescribe a single directional species-specific vulnerability that spans the entirety of the forcing (Bracken et

al. 2008).

As taxa are sequentially extirpated and the surviving community numerically compensates to replenish
biomass, a revised BP, is calculated and taxa-specific contributions to BP. are modified when they increase
or decrease in abundance. At each iteration we calculate per capita contributions (BP,) for all taxa in the
regional community and run our simulations (n = 500 per scenario) until all taxa become locally extinct.
However, each simulation is only valid to the level of biodiversity typically observed at the respective post-
extinction station. That is, we assume the median species richness of each station reflects the existing local
community which, in turn, is regulated within their temporal fluctuations (Gotelli et al. 2017). Similarly, we

only allow for species to compensate up to the median abundance observed within the regional cluster of
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180 northern versus southern stations (Northern cluster: B17, B16; Southern cluster: B15, Xs, B14, B13;
181 Supplementary Fig. S3; Solan et al. 2020) to prevent any taxa increasing in abundance to improbable levels
182 (Supplementary Code S2). As any alteration in local communities associated with climate change may be
183  offset by more resilient taxa from a wider area (Ingvaldsen et al. 2021), we allow for taxa present in regional
184  cluster species pools that were not present in the pre-extinction assemblage to be introduced and
185  compensate (Garcia et al. 2021). This allows for the possibility that taxa from the regional pool can arrive and
186  increase species richness, as would occur in a natural system.

187

188 Correlations, Co-extinctions and Co-compensations

189  As biotic interactions build up complex ecological networks through which the loss of one species can alter
190 the vulnerability of other species (co-extinction, Sanders et al. 2015; Valiente-Banuet et al. 2014; Strona &
191 Bradshaw, 2018; Strona & Bradshaw, 2022), we estimated interactions between taxa from positive and
192 negative correlations in biomass across all station replicates (n = 24) and for each species (abundance > 1, n
193 = 69, Supplementary Fig. S4a). Whilst it has been argued that species correlations carry limited information
194  on network interactions (Pinto et al. 2022; Loreau & de Mazancourt, 2013), they nevertheless provide a
195 conservative starting point in the absence of such information. Hence, as correlation does not necessarily
196 indicate co-dependency, we adopted a prudent approach by only selecting correlations that were 1.5
197 standard deviations outside the mean correlation score (0.0397; Supplementary Fig. S4b Table S3; 466
198 correlations, Supplementary Code S3). This reasonably assumes that the strongest correlations are more
199 likely to indicate a genuine biotic interaction, as opposed to spurious and/or environmentally-driven taxa co-
200 occurrences. Within each extinction iteration, we used these positive correlations to calculate the co-
201  extinction risk of other taxa (multiple taxa can be simultaneously selected, Supplementary Code S4) or, in the
202  absence of co-extinction, to reduce their probability of compensating. This approach ensures only the highest
203  correlations are selected whilst allowing for indirect effects, such as competitive and/or predator release. To
204  account for the greater chance of surviving taxa contributing to compensation following co-dependent
205 release, we recalculate the probability of compensation within the community using the negative
206 correlations of the extirpated co-dependent taxa (Supplementary Code S5). Following local extinction, we
207 assume conditions are no longer supportive (Supplementary Code S5) to avoid compensation through re-
208 introduction. The model is constrained to secondary extinction and compensatory mechanisms to avoid an
209 uncontrollable cascade from the primary cause of extinction.

210

211 We acknowledge that multiple species can contribute to compensation, particularly when lost biomass is not
212 entirely replaced by the initial responding species (Supplementary Code S6; Fig. S5). To improve the realism
213 of our simulations of biodiversity change (Naeem, 2008), we limit the amount of compensation of each taxon
214  tothe median abundance observed in the regional species pool to allow several compensators to respond to

215  an extirpation. In doing so, we avoid overinflation of the total biomass following compensation whilst
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allowing biomass to vary with the removal and addition of species. When the median abundance of all taxa
is reached during a simulation, biomass is lost from the system and a sequence of uncompensated extinction
events is initiated until the next taxon from the regional species pool is introduced into the system. This
follows the expectation that climate change will have negative consequences for seafloor biomass (Jones et

al. 2013).

Statistical analyses

To examine the effect of extinctions on ecosystem functioning, we ran Generalised Additive Models (GAMs)
with BP, as the response variable given the non-linear nature of biodiversity-function relationships (Gross &
Cardinale, 2005). A smooth term of species richness within each extinction scenario (by = scenario), and a
smooth term of species richness in isolation were the main explanatory variables of interest. The extinction
scenario was also included as a factorial covariate and the model was estimated using the fast Restricted
Maximum Likelihood (REML) method, which is designed for fitting Generalised Additive Models (GAMs) on
large datasets (Wood et al. 2015). The interaction was included to investigate whether the effect of
extinctions differs with each spatially explicit extinction scenario (Supplementary Code S7). To deduce the
best GAM fit, we conducted a backward stepwise selection on models estimated with the Maximum
Likelihood (ML) method, informed by the Akaike Information Criteria (AIC), the deviance explained, and
inspection of model residual patterns using the visreg 2.7.0 and Imtest 0.9-40 packages (Breheny & Burchett,
2017; Zeileis & Hthorn, 2002; Supplementary Table S4). To improve result standardisation and comparability,
we ran linear models with the same structure of the best GAM estimated with fREML, and visually compared
the partial estimated slopes of BP. as a response to species richness using the /m function in base R

(Supplementary Fig. S6).

To investigate differences in emergent adjustments to extinction probabilities as species are lost from the
community within each extinction scenario, we used a series of linear models to examine changes in the
climate vulnerability of all species going extinct (), species still present within the community (present),
species going extinct as a result of climate vulnerabilities (cumate) @and species going extinct as a result of
species co-dependencies (co.exr) as species richness declined (Supplementary Table S5). All statistical
analyses, data exploration and plotting were performed using the R statistical and programming environment
(R Core Team, 2023) and the R packages ‘qgraph’ (visual correlation networks; Epskamp et al. 2012),
‘MetBrewer’ (formatting graphical outputs; Mills, 2022), ‘mgcv’ (Generalised Additive Models; Wood et al.
2015; Wood, 2011; Wood, 2017), ‘parallel’ (cluster computing of GAMs; R Core Team, 2023), ‘stats’
(correlation calculations and matrices; R Core Team, 2023) and ‘tidyverse’ (data exploration and plotting;
Wickham et al. 2019). Code for creating model output figures can be found at the end of the supplementary

information (Supplementary Code S8).
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252  Results

253  Simulated ecosystem futures

254  In the absence of co-extinction and compensatory dynamics (Fig. 1a-f), we find that the form of the
255 biodiversity-function curve approximates expectations (accelerating reductions in functioning with declining
256  species richness) with notable climate-dependent differences in the form of the curve. Our simulations also
257  commonly feature (except B15 to Xs, Fig. 1c) step changes within the species-function trajectory that reflect
258  the loss or gain of species that disproportionately contribute to function. These become more pronounced
259  when extinctions, ordered by climate vulnerability, incorporate co-extinctions (Fig. 1g-1). Co-compensatory
260 mechanisms, however, temper the functional consequences associated with species loss (Fig. 1m-r), even
261 when the proportion and number of compensating species increases with species loss (station Xs to B14,
262 station B14 to B13; Fig. 2d and 3e). We also find that the taxa contributing most to community-level
263 ecosystem functioning (% BP_) transition from an Annelid dominated pre-extinction community (solid green
264 line Fig. 3a-e) to a more diverse post-extinction community (dashed red line Fig. 3a-e), and that there is higher
265  functional redundancy across the polar front (station B15 to Xs and Xs to B14; Fig. 2c).

266

267  Our simulations reveal differences in the form of the biodiversity-function curve for each of our scenarios
268  (Table 1), and we observe non-linear changes in the rate and magnitude of function as species loss progresses
269  (Table 2) that decrease as species loss extends below the level of biodiversity typically observed at the post-
270  extinction station (dashed red vertical line, Fig. 2). Tube dwelling (Fig. 2m-r) and surficial modifying species
271  (Fig. 2s-x) are lost first, whilst epifauna, deeper burrowers and conveyer belt lifestyles are preserved (Fig.
272 2m-x). A transect-wide transition from B17 to B13 exhibits a shallow biodiversity-function trajectory with
273 minimal differences in uncertainty achieved between the pre-extinction and most likely post-extinction levels
274  of species richness (Fig. 2f). Note, however, that the distribution of uncertainty across the species richness
275  gradient does vary between each step of the extinction transition (compare panels Fig 2a-f). As compensation
276 establishes, biodiversity levels may rise above pre-extinction species richness (= solid green vertical line, Fig.
277 2), although the extent of such an increase and any associated effect on functioning is scenario dependent.
278 Within the most likely post-extinction levels of species richness window (area between the red and green
279  vertical lines, all figures), both the range of the proportion of compensating species (%) and the level of
280  species richness where compensating species is minimised or maximised varied between scenarios (Table 3,
281 Fig. 2g-1), as did the mean ( s.d.) number of compensating species (Table 3, Fig. 2g-l). Hence, the number,
282  composition and proportion of compensating species are dependent on local circumstance, with the greatest
283  capacity for compensation occurring in communities south of the polar front (Xs-B14 and B14-B13, Table 3,
284  Fig. 2g-2l).

285
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Co-extinction and climate vulnerability

Our simulations show that the incorporation of extinction probabilities related to climate vulnerabilities that
lead to primary extinctions, and species co-dependencies that lead to co-extinction, moderate ecosystem
outcomes based on differences in emergent adjustments to extinction probabilities. We find that, regardless
of whether species loss reflects bouts of primary or secondary extinctions, the taxa most vulnerable to
climate-driven change are preferentially removed (purple lines, Fig. 4a—f), although the rate of functional loss
does vary with scenario. As a result, the extinction probability of the surviving taxa adjusts and tends to be
lower than prior to extinction (compare purple to grey lines, Fig. 4a—f). Importantly our simulations reveal an
interplay between primary and secondary extinctions (compare blue to yellow lines, Fig. 4g—I) that can alter
the sequence of species loss, with synergistic, antagonistic or neutral ramifications for ecosystem functioning
(yellow lines, Fig. 4g—l). Indeed, the inclusion of co-extinction can either increase (B17-B16, Xs-B14, B14-B13
and B17-B13), decrease (B15-Xs) or have little effect on the preferential removal of the most vulnerable
species (compare blue to yellow line slopes, Fig. 4g—l). Thus, realised extinction risk is a product of both co-

dependency and climate driven forcing.

Discussion

Our simulations show that the ecological consequences of species loss associated with climate change reflect
the extent to which species traits covary with extinction risk (Solan et al. 2004), the compensatory response
of the surviving species (Thomsen et al. 2017; Thomsen et al. 2019) and the modifying role of environmental
context (Garcia et al. 2021; Albouy et al. 2019). However, they also emphasise the previously unaccounted
role of co-extinction in adjusting the number of species simultaneously being established and/or extirpated,
the realised level of extinction risk, and the order of sequential species loss, each having substantive
repercussions for ecosystem functioning (Luza et al. 2024). This is important because, when species co-
dependencies are acknowledged, they lead to different biodiversity-function trajectories to those that are
currently anticipated, lending support to the view that improved levels of ecological realism are necessary to
support the generation of robust environmental futures (Naeem, 2008; Garcia et al. 2021; Dolbeth et al.
2019; Gammal et al. 2020). Here, we embraced the modifying effects of biotic interactions on ecological
performance (Montoya & Raffaelli, 2010; Blois et al. 2013), where the rearrangement of species traits and
changes in dominance patterns (Wohlgemuth et al. 2017) within the post-extinction community are not

solely a function of specific extinctions and associated compensatory responses by the surviving community.

Co-extinctions are expected to hasten species loss (Dunn et al. 2009; Memmott et al. 2004) and minimise
functional diversity (Sellman et al. 2016). Our model simulations reveal amplified, sharper losses of
biodiversity and, subsequently, ecosystem functioning, indicating an erosion of functional capacity. Though
this is in broad agreement with global simulations (Strona & Bradshaw, 2018; Strona & Bradshaw, 2022), we

recognise that the effects of secondary extinctions on ecosystem functioning are likely to vary between
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322 populations and environmental settings (Wohlgemuth et al. 2017). Nevertheless, species that are assumed
323 to be resilient based on single risk factors (Leonardsson et al. 2015; Ducatez & Shine, 2017; Di Marco et al.
324 2018), but are co-dependent on other species, may be compromised (Sanders et al. 2024) or lost earlier than
325  anticipated. Such resequencing may lead to divergent levels of ecosystem functioning depending on how
326  functionally pivotal the extirpated species are within the same context (Fetzer et al. 2015). In regions
327  experiencing amplified levels of climate change such as the Arctic, whether the functional architecture of
328 communities lead to the decline, maintenance or enhancement of ecosystem functioning will also be
329 dependent on the extent of species immigration, post-borealisation species interactions (and resulting
330 compensatory responses) are (Thomsen et al. 2017; Thomsen et al. 2019), and the level of functional
331 redundancy within replacement taxa (Garcia et al. 2021). Here, we find that incorporating multi-taxa
332 compensatory mechanisms sufficiently reduces the ecological consequences of species loss in each of our
333 scenarios and lessens the effect of losing dominant, highly productive species from local communities with
334 low functional redundancy. Further, we note that the rate of introduction of species from the wider species
335 pool can match or exceed the rate of extinction experienced within the same habitat (Ellis et al. 2012; Sax et
336 al. 2002), leading to stasis or an increase in local biodiversity, with concomitant effects on functioning. As
337 higher diversity is often assumed to have a positive effect on ecosystems, a naive evaluation might view the
338 latter as a positive, albeit unintuitive, ecosystem response to external forcing (Salo & Gustafsson, 2016; Arese
339 Lucini et al. 2020). Yet, our results indicate that the effect of increased biodiversity on ecosystem functioning,
340  particularly when above the currently observed species richness, can be highly variable and, likely, transitory,
341 as changing circumstances further moderate species co-dependencies and final carrying capacity
342  (Woodworth-Jefcoats et al. 2017). For example, species introductions can exacerbate native species
343  extinctions (Catford et al. 2018), especially when introduced species are predators or pathogens (Pysek et al.
344  2017) and/or cause competitive release (Castorani et al. 2005). The latter, however, is not expected to be
345  widespread (Davis, 2003) and will be influenced by the effects of environmental context (Melbourne et al.
346  2006).

347

348 While our simulations predict a decline in ecosystem functioning with increased "borealisation" across all our
349 scenarios, the weakest effect occurs at the polar front transition. One explanation might be that the mixing
350 of species and functional groups from the northern and southern species pools (Solan et al. 2020) delay a
351 reduction in functional diversity (Frainer et al. 2017; Frainer et al. 2021). Yet, it is also possible that
352  environmental variation associated with the juxtaposition of water masses will condition resilience (Keith et
353  al. 2008; Renes et al. 2020; Hillebrand et al. 2010). This finding is important because it argues that complex
354  relationships exist between temporal patterns of species turnover and extinction risk reinforcing the view
355  that species can endure climate change associated extinction by persisting in spatio-temporal refugia
356 (Maclean et al. 2015). As our study design allowed us to compare the response of northern and southern

357  species pools (Solan et al. 2020; Jgrgensen et al. 2015), we were able to establish that a subset of taxa
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dominates species contributions to functioning and that, despite high numbers of compensating species, the
greatest functional losses tend to occur at low levels of perturbation. Hence, the potential for compensatory
and co-dependent mechanisms to buffer the consequences of biodiversity loss will depend on the level and
extent of functional redundancy (Naeem & Wright, 2003) - here, maximised at the polar front - and the net
functional role of ingoing and outgoing taxa (Garcia et al. 2021). Interventions aimed at maintaining or
improving ecosystem functioning may, therefore, be best placed at the outermost edges of the species pool

and/or where environmental conditions are less stochastic (Gerber et al. 2003).

A contemporary focus in ecology is deciphering variations in the relationship between biodiversity and
ecosystem function across local and regional spatio-temporal scales (Gonzalez et al. 2020). Our findings
reveal that the shape, magnitude, and variability of post-extinction community functioning are moderated
by local environmental conditions (Ratcliffe et al. 2017) and acknowledge the significance of environmental
heterogeneity (Wohlgemuth et al. 2017; Bulling et al. 2008; Boyd et al. 2016; Gammal et al. 2020), species
arrangement (Wohlgemuth et al. 2016), vulnerability (Kortsch et al. 2015), and the differential expression of
response traits (Cassidy et al. 2020; Sanders et al. 2024; Williams et al. 2024). We contend that management
and conservation efforts will benefit from considering how and when species responses to external pressures
result in changes to extinction risk and alter functional outcomes. Progression in this area will require a
transition from conducting before-after extinction assessments to undertaking stepwise assessments that
consider the full and graduated extent of progressive forcing (Fukami & Wardle, 2005). It will also require
assembly of detailed information about multitrophic network interactions for communities of interest, and
empirical tests of model findings to refine model construction. As we demonstrate here, the functional
consequences of biodiversity loss appear to be gradual and cumulative, but the rate, direction and magnitude
of ecological change can be positively or negatively modified by species co-dependencies even as the

expression of pressures intensifies (Hillebrand et al. 2010).
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Tables

Table 1| Analysis of variance (ANOVA, two tailed) parametric coefficients generated from the generalised
additive model (GAM) of bioturbation potential loss. Except for one scenario (station B16 to station B15),
each local extinction event results in a biodiversity-ecosystem functioning curve that is significantly (***)

different to the regional extinction scenario (baseline, station B17 to station B13).

Pairwise comparison | Mean difference Std. error t value Significance
B17-B13 to B17-B16 68.172 1.244 54.781 <0.0001
B17-B13 to B16-B15 16.439 17.998 0.913 0.361
B17-B13 to B15-Xs -329.480 5.864 -56.189 < 0.0001
B17-B13 to Xs-B14 185.129 0.888 208.460 < 0.0001
B17-B13 to B14-B13 -35.871 2.486 -14.427 <0.0001
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Table 2| Approximate significance of smooth term “species richness” in each extinction scenario used in
the generalised additive model (GAM) of bioturbation potential loss. The edf (effective degrees of freedom
of smooth terms) represents the complexity of the smoother, with an edf of 1 equivalent to a straight line
between x (species richness) and y (BP_). The Ref.df and F columns are test statistics used in an ANOVA
(two-tailed) to determine overall significance (Sig.) of the smoother (unable to draw a horizontal line

through the 95% confidence interval of the GAM).

Extinction Scenario edf Ref.df F Sig.
B17-B13 8.813 8.987 45603 <0.0001
B17-B16 8.022 8.253 29309 <0.0001
B16-B15 8.486 8.738 27652 < 0.0001

B15-Xs 5.981 6.309 1567 < 0.0001
Xs-B14 8.699 8.932 24758 < 0.0001
B14-B13 7.092 7.364 9942 <0.0001

Table 3 | The range in the proportion of compensating species (%), the absolute number (mean + s.d.) of
compensating species and the level of species richness where compensating species is minimised or
maximised (indicated by SR in subscript) between the most likely post-extinction levels of species richness

window (area between the red and green vertical lines, all figures).
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Extinction Compensating species
Scenario Proportion of total species (%) Absolute number (mean + s.d.)
min, g max, sg min, g max, s

B17-B13 |5 .. s 15,2501, sket2 1.46 + 0.91, 165, sp-11 | 3.76 * 3.64,-3086, sk-s1
B17-B16 |7 . 4, SR=51 12,554, sr-18 1.52 + 0.54,.443 sp-17 | 4.67 £ 2.51,_1516 sp=52
B16-B15 | 5 101 speaz 14,417, sr=15 1.78 £ 0.61 .47 sp=17 | 2.54 * 1.08,-5159, sp=a1
B15-Xs 712060, SR=27 9n-1313, sR-16 1.45 £ 0.44,_1313, sp-16 | 3.50 = 1.70,-1580, sr-40
Xs-B14 1608, SR=40 781293, sr-11 3.69 + 2.40,,-1608, sr-40 | 8-57 * 3.81,.293 sp-11
B14-B13 5.95 * 3.38,-444, sr-16

15n=4348, SR=26

37 n-444, sr=16

2.18 £ 0.96,,-79, sr-13
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Figure legends

Fig. 1 | Changes in community bioturbation potential (log(BP,)) following climate-driven extinctions (upper
panels), combined with interaction-derived co-extinctions (middle panels) and post-extinction
compensations (bottom panels) associated with step-wise environmental transitions from stations (a,g,m)
B17-B16, (b,h,n) B16 -B15 (c,i,0) B15 -Xs (d,j,p) Xs-B14 (e,k,q) B14-B13 and the transect-wide transition from
stations (f,I,r) B17- B13 in the Barents Sea. Colour intensity (grey—blue) reflects an increasing density (low
to high) of data points with the pre-extinction species richness (vertical green solid line) and predicted post-
extinction species richness (vertical red dashed line) represented. Co-extinctions lead to an increase in colour
intensity along the main species-function trajectory, whilst compensations increase the spread of data

points. Simulations, n = 500 per panel.

Fig. 2 | Predicted biodiversity-ecosystem function relation curves (mean = s.e., first row) represented with
a generalised additive model (GAM, solid lines) and the standard error (shaded areas). In the second row,
post-extinction compensations (mean * s.e., number, in yellow) and the proportion of species (purple, >1
when the number of compensating taxa relies on greater influx from the regional species pool) are shown.
The reorganisation of functional groups characterised by their mobility (third row) and sediment reworking
(fourth row) associated with step-wise environmental transitions are shown between stations (B17-B16,
panels a,g,m,s; B16-B15, panels b,h,n,t; B15-Xs, panels c,i,o,u; Xs-B14, panels d,j,p,v; B14-B13, panels
e,k,q,w) and the transect-wide transition from stations B17-B13 (panels f,l,r,x) in the Barents Sea. The pre-
extinction species richness (vertical green solid line) and predicted (median of observed data) post-extinction
species richness (vertical red dashed line) define the upper and lower boundaries of the most ecologically

realistic output.

Fig. 3 | Taxonomic reorganisation during simulated extinction events following step-wise environmental
transitions from station (a) B17-B16, (b) B16-B15 (c) B15-Xs (d) Xs-B14 (e) B14-B13 and the transect-wide
transition from stations (f) B17-B13 in the Barents Sea. Colour shading (white, lowRdark blue, high)
represents the relative contributions of individual taxa to BP. at each sequential level of local extinction. The
pre-extinction species richness (vertical green solid line), predicted post-extinction species richness (vertical
red dashed line) and subset of twenty taxa that contribute most to functioning pre-extinctions are

represented. Contributions above 20% greyed.

Fig. 4 | Changes in mean extinction probability (log) of species following step-wise environmental transitions
from station (a-g) B17-B16, (b-h) B16-B15 (c-i) B15-Xs (d-j) Xs-B14 (e-k) B14 B13 and the transect-wide
transition from stations (f-1) B17-B13 in the Barents Sea. Colours represent the extinction risk for all species

(purple), species still present within the community (grey), species going extinct because of climate
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770  wvulnerabilities (blue), and species going extinct as a result of species co-dependencies (yellow). The pre-
771 extinction species richness (vertical green solid line) and post-extinction species richness (vertical red dashed

772 line) are also shown.
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Fig. 1 | Changes in community bioturbation potential (log(BP.)) following climate-driven extinctions (upper
panels), combined with interaction-derived co-extinctions (middle panels) and post-extinction
compensations (bottom panels) associated with step-wise environmental transitions from stations (a,g,m)
B17- B16, (b,h,n) B16 -B15 (c,i,0) B15 -Xs (d,j,p) Xs-B14 (e,k,q) B14-B13 and the transect-wide transition
from stations (f,l,r) B17- B13 in the Barents Sea. Colour intensity (grey—blue) reflects an increasing density
(low to high) of data points with the pre-extinction species richness (vertical green solid line) and predicted
post-extinction species richness (vertical red dashed line) represented. Co-extinctions lead to an increase in
colour intensity along the main species-function trajectory, whilst compensations increase the spread of data
points. Simulations, n = 500 per panel.
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Fig. 2 | Predicted biodiversity-ecosystem function relation curves (mean % s.e., first row) represented with a
generalised additive model (GAM, solid lines) and the standard error (shaded areas). In the second
row, post-extinction compensations (mean % s.e., number, in yellow) and the proportion of species (purple,
>1 when the number of compensating taxa relies on greater influx from the regional species pool) are
shown. The reorganisation of functional groups characterised by their mobility (third row) and sediment
reworking (fourth row) associated with step-wise environmental transitions are shown between stations
(B17-B16, panels a,g,m,s; B16-B15, panels b,h,n,t; B15-Xs, panels c,i,o,u; Xs-B14, panels d,j,p,v; B14-
B13, panels e, k,q,w) and the transect-wide transition from stations B17-B13 (panels f,l,r,x) in the Barents
Sea. The pre-extinction species richness (vertical green solid line) and predicted (median of observed data)
post-extinction species richness (vertical red dashed line) define the upper and lower boundaries of the most

ecologically realistic output.
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Fig. 3 | Taxonomic reorganisation during simulated extinction events following step-wise environmental
transitions from station (a) B17-B16, (b) B16-B15 (c) B15-Xs (d) Xs-B14 (e) B14-B13 and the transect-wide
transition from stations (f) B17-B13 in the Barents Sea. Colour shading (white, lowddark blue, high)
represents the relative contributions of individual taxa to BP. at each sequential level of local extinction. The
pre-extinction species richness (vertical green solid line), predicted post-extinction species richness (vertical
red dashed line) and subset of twenty taxa that contribute most to functioning pre-extinctions are
represented. Contributions above 20% greyed.
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Fig. 4 | Changes in mean extinction probability (log) of species following step-wise environmental transitions
from station (a-g) B17-B16, (b-h) B16-B15 (c-i) B15-Xs (d-j) Xs-B14 (e-k) B14 B13 and the transect-wide
transition from stations (f-I) B17-B13 in the Barents Sea. Colours represent the extinction risk for all species
(purple), species still present within the community (grey), species going extinct because of climate
vulnerabilities (blue), and species going extinct as a result of species co-dependencies (yellow). The pre-
extinction species richness (vertical green solid line) and post-extinction species richness (vertical red
dashed line) are also shown.
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