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22 Abstract

23 Consensus has been reached that the sequential loss of biodiversity leads to a non-linear and accelerating 

24 decline in ecosystem properties. The form of this relationship, however, is based on theory and empirically 

25 derived observations that do not include species co-extinctions. Here, we use data from marine benthic 

26 invertebrate communities to parameterise trait-based extinction models that adjust the probability of 

27 species extirpation and compensation by including the dependencies between different species across a 

28 gradient of climate-driven environmental change. Our simulations reveal that the inclusion of static co-

29 extinctions leads to more pronounced declines in the trajectories of sediment bioturbation - a process of 

30 great importance to the functioning of marine ecosystems - than those observed with sequential losses of 

31 single species. Compensatory mechanisms and allowance of the formation of new interactions derived from 

32 local and regional species pools moderate the compounding influence of co-extinction, but introduce 

33 additional variability in community response depending on the composition and functional role of incoming 

34 and outgoing species. Our observations emphasise the importance of accounting for local and regional 

35 community dynamics, especially in highly connected systems that are prone to extinction cascades, when 

36 projecting the ecosystem consequences of altered biodiversity.
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37 Introduction

38 Localised species loss is generally expected to reduce ecosystem functioning (Cardinale et al. 2012). Evidence 

39 consistently indicates that the magnitude and trajectory of species loss will reflect the relative vulnerabilities 

40 of species to extinction (Payne et al. 2016), the covariance between extinction risk and the functional traits 

41 of individual species (Solan et al. 2004), and the influence of post-extinction community dynamics (McIntyre 

42 et al. 2007; Thomsen et al. 2017; Thomsen et al. 2019). Whilst the inclusion of these sources of variation can 

43 lead to more relevant and realistic ecological projections (Naeem, 2008), they remain insufficient to explain 

44 observed patterns in the biodiversity-function relationship. This is because the ecological consequences of 

45 biodiversity adjustments are also expressed through longer-term changes in species interactions (Hughes, 

46 2012), including those related to niche emergence (Cazzolla et al. 2018), that are disconnected from the 

47 initial cause of extinction (Brook et al. 2008). Co-extinctions of obligate species, likely the most common (Koh 

48 et al. 2004) but under-appreciated (Stork & Lyal, 1993) form of extinction, can arise during and after the 

49 initial wave of primary extinctions (Koh et al. 2004; Dunne & Williams, 2009; Brodie et al. 2014) and have 

50 additional functional consequences (Luza et al. 2024). Yet, the ecosystem implications of these secondary 

51 extinctions (Sanders et al. 2015; Valiente-Banuet et al. 2014; Strona & Bradshaw, 2018; Strona & Bradshaw, 

52 2022) have not been measured directly (Kehoe et al. 2020; Raine et al. 2018; Blanchard & Munoz, 2022), 

53 compared to those of singular extinctions (Ives et al. 2004) or been incorporated into projections of the 

54 ecosystem consequences of biodiversity loss (Cardinale et al. 2012). Theory suggests that the ecosystem 

55 effects of co-extinctions are a reflection of network connectivity and community structure (Thébault et al. 

56 2007; Dallas & Cornelius, 2015; Morton et al. 2022), but conflicting conclusions exist regarding how co-

57 extinctions affect functional diversity (Vieira et al. 2013; Petchey et al. 2008) and redundancy (Sanders et al. 

58 2018; Biggs et al. 2020), making it challenging to determine the most likely ecosystem consequences of 

59 biodiversity loss.

60

61 Failure to adopt a full community perspective and consider processes, such as co-extinction and co-

62 compensation, means that the generalised biodiversity–function curve is unlikely to generate robust 

63 estimates of future ecosystem properties (Thomsen et al. 2017; Naeem, 2008; Garcia et al. 2021). Post-

64 extinction performance of a surviving community will depend not only on the absolute loss of species, but 

65 on how associated adjustments to network connectivity and structure alter species interactions (Morton et 

66 al. 2022) and the likelihood and/or expression of compensatory mechanisms (Thomsen et al. 2017; Thomsen 

67 et al. 2019; Gonzalez & Loreau, 2009; Pan et al. 2016) across different contexts (Garcia et al. 2021). Species 

68 with a low population density, slow life history, high trophic level and small geographical range size tend to 

69 be associated with a high extinction risk (Purvis et al. 2000) and low compensatory capacity because the 

70 species’ range and niche are out of equilibrium (Sheth & Angert, 2018). In contrast, the number and 

71 probability of extinction cascades are minimised in regions exhibiting high levels of geographic isolation 

72 (Albouy et al. 2019) and maximised when species are most connected (Eklöf & Ebenman, 2006; Curtsdotter 
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73 et al. 2011; Baumgartner et al. 2020). The ecosystem consequences of species loss, compensation and 

74 secondary extinctions, however, do not necessarily reflect modifications to community structure (Thomsen 

75 et al. 2019; Brodie et al. 2014). Rather they reflect the extent to which alterations to functional roles (Fetzer 

76 et al. 2015), trait expression (Wohlgemuth et al. 2017; Cassidy et al. 2020; Sanders et al. 2024), and adjusted 

77 interactions with the environment (Dolbeth et al. 2019) and other species (Bimler et al. 2018) are presented 

78 over time (months to years; (Godbold & Solan, 2013; Touchton & Smith, 2011)). Hence, a species with a low 

79 (or high) probability of co-extinction may have a high (or low) potential to compensate through interactions 

80 with other surviving species (Vieira et al. 2014) but, in terms of ecosystem functioning, may deliver no 

81 compensation (Davies et al. 2012), partial, complete, or overcompensation (Pan et al. 2016). Should a species 

82 survive primary and secondary bouts of extinction, emergent compensatory responses (e.g. competitive 

83 release, alterations to resource partitioning, assemblage reorganisation (Thomsen et al. 2017; Thomsen et 

84 al. 2019)) increase the likelihood of alternative ecosystem outcomes (Thomsen et al. 2017) both within, and 

85 across, a range of spatio-temporal contexts (Thomsen et al. 2017; Albouy et al. 2019; Cassidy et al. 2020; 

86 Wardle & Zackrisson, 2005).

87

88 Here, we use data from marine benthic invertebrate communities from a region of the Barents Sea currently 

89 facing amplified climatic forcing (Lind et al. 2018) to parameterise trait-based extinction models that adjust 

90 the probability of species extirpation and compensation by including the dependencies between different 

91 species across an environmental gradient (Solan et al. 2020). In doing so, we explicitly recognise that the 

92 sequential loss of species is ordered, first, by extinction risk associated with the transition to increasingly 

93 boreal environmental conditions (Wang et al. 2020), and second, by the likelihood that the modified diversity 

94 and structure of the community associated with primary extinctions will lead to interaction-driven co-

95 extinctions followed by numeric compensation from multiple taxa. We also assume, should compensation 

96 from the local species pool not be realised, that immigration of boreal-adapted species from the regional 

97 pool will introduce new interactions that revise extinction probabilities and modify local community 

98 dynamics (Albouy et al. 2019; Grebmeier, 2012; Kortsch et al. 2015) and associated ecosystem properties 

99 (Csapó et al. 2021; Ingvaldsen et al. 2021). In line with expectation, we find that including co-extinctions in 

100 our simulations hastens the decline in sediment bioturbation - a process crucial to the functioning of marine 

101 communities - regardless of extinction scenario. However, we show that the influence of co-extinction 

102 depends on location-specific interdependencies (Garcia et al. 2021; Albouy et al. 2019) between species 

103 interactions (Bimler et al. 2018), their vulnerability to change (McLean et al. 2019) and the degree of 

104 functional redundancy in the community (Thomsen et al. 2017; Naeem & Wright, 2003). We had anticipated 

105 that the influence of co-extinction on bioturbation would be maximised at the polar front, an area where 

106 boreal and polar communities converge, but the form of the biodiversity-function relationship varies along 

107 the length of the environmental gradient, reflecting differences in species turnover and community structure. 

108 Our models also reveal that the greatest declines in sediment bioturbation occur at low levels of 
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109 environmental forcing, despite elevated numbers of compensating species, presumably because species are 

110 close to, or at, the limit of their range distribution (Boakes et al. 2017). These findings emphasise the 

111 importance of including the full suite of species responses to perturbations when attempting to project the 

112 most likely ecosystem consequences of environmental forcing.

113

114 Methods

115 Study location and environmental gradient

116 We use macroinvertebrate data (Data Records S1, (Solan et al. 2020)) collected as part of a benthic survey of 

117 6 stations (B17, B16, B15, Xs, B14, B13) each sampled four times using 0.1 m2 USNL (Unites States Naval 

118 Laboratory) box cores in the North-western part of the Barents Sea shelf (Supplementary Data S1, Fig. S1), 

119 to parametrise models that predict how alterations to biodiversity associated with climate-driven change in 

120 environmental conditions affect seabed function. To minimize the effect of non-climatic drivers of change, 

121 stations were selected with comparable water depths (228–360m), sediment type and bottom fishing activity 

122 along the 30˚ E meridian. The transect of stations – from B13 in the south to B17 in the north, and with station 

123 Xs located between B14 and B15 at the location of the average southernmost extent of sea ice 

124 (Supplementary Fig. S1) intersects an established polar front (Jørgensen et al. 2015; Loeng, 1991) and exhibits 

125 a clear North-South separation in faunal assemblage structure (Solan et al. 2020). Although the precise 

126 physical location of the front is contested (Oziel et al. 2016; Oziel et al. 2017), the zone exhibits a relatively 

127 stationary behaviour (Onarheim & Teigen, 2018) and is becoming more persistent (Barton et al. 2018). We 

128 argue that this transect serves as a present-day gradient of climate-driven change, and use it to parameterise 

129 models that predict how associated stepped changes in biodiversity affect seabed function. We investigate 

130 differences in the magnitude and extent of forcing by parameterising our models with sequential station-to-

131 station species vulnerabilities (based on inter-station transitions from: B17-B16 | B16-B15 | B15-Xs | Xs-B14 

132 | B14-B13) and compared these simulations to equivalent extinctions based on change across the entire 

133 gradient (B17-B13). Hence, the most northerly (B17) and most southerly (B13) stations in our transect 

134 represent the most polar and most boreal community, respectively. In stepped scenarios between 

135 neighbouring stations, we assume a northward advance of climate change forcing such that the 

136 northernmost station represents the pre-extinction community (closest to pole), and the southernmost 

137 station represents the post-extinction community (closest to boreal).

138

139 Probabilistic modelling

140 We developed a probabilistic trait-based model to explore the effects of local extinction scenarios and the 

141 associated compensatory response of natural communities (Solan et al. 2004), and to predict how altered 

142 diversity associated with climatic-driven environmental change may affect seabed functioning in the Arctic. 

143 We establish the relationships between an index of community-level bioturbation potential (𝐵𝑃𝑐, Solan et 
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144 al. 2004), estimated from per capita contributions of sediment-dwelling invertebrates to sediment reworking 

145 (Supplementary Fig. S2) based on root-transformed mean body-size (across the entire transect; 𝐵0.5
𝑖 , range: 

146 0.008 – 1.225), abundance (𝐴𝑖, range: 6 – 1350), predefined mobility (𝑀𝑖, range: 1 – 4) and sediment 

147 reworking mode (𝑅𝑖, range: 1 – 4):

148 𝐵𝑃𝑖 =  𝐵0.5
𝑖 × 𝑀𝑖 × 𝑅𝑖

149 𝐵𝑃𝑝 =  𝐵𝑃𝑖 × 𝐴𝑖

150 𝐵𝑃𝑐 =  𝛴𝐵𝑃𝑝

151 where 𝐵𝑃𝑖 is the bioturbation potential of an individual, 𝐵𝑃𝑝 is the bioturbation potential of a population of 

152 individuals and 𝐵𝑃𝑐 is the bioturbation potential of the community (Solan et al. 2004). Following Solan et al. 

153 (Solan et al. 2004), we use 𝐵𝑃𝑐 as a means to generate benthic ecosystem processes under novel scenarios. 

154 A summary table of species-specific 𝐵0.5
𝑖 , 𝐴𝑖, 𝑀𝑖 and 𝑅𝑖 is provided in Supplementary Table S1.

155

156 As climate-driven changes across the Arctic will transform benthic communities through the selective 

157 removal of vulnerable taxa (Jørgensen et al. 2019), subsequently triggering compensatory responses, co-

158 extinctions and increasing dominance of boreal-adapted taxa (Csapó et al. 2021), we selectively eliminate 

159 taxa from the pre-extinction species pool before calculating the response of the surviving community through 

160 compensatory mechanisms established for the regional species pool. As specific tolerances of Arctic 

161 invertebrates to climatic drivers are scarce (Degen & Faulwetter, 2019), we derive probability-based orders 

162 of species extinction and, reciprocally, their likelihood to compensate, from ranked vulnerabilities calculated 

163 across each pair of neighbouring stations based on the percentage difference in biomass between the pre- 

164 and post-extinction community for all taxa in the regional species pool (Supplementary Table S2, Code S1). 

165 Hence, a taxon with a high vulnerability score (i.e. highest biomass at the pre-extinction station and lowest 

166 biomass or absence at the post-extinction station) would have both a high probability of going extinct and a 

167 low probability to compensate. In adopting this approach, we explicitly recognise realistic, non-random 

168 changes in biodiversity that emerge as forcing progresses through multiple stages to avoid having to 

169 prescribe a single directional species-specific vulnerability that spans the entirety of the forcing (Bracken et 

170 al. 2008).

171

172 As taxa are sequentially extirpated and the surviving community numerically compensates to replenish 

173 biomass, a revised 𝐵𝑃𝑐 is calculated and taxa-specific contributions to 𝐵𝑃𝑐 are modified when they increase 

174 or decrease in abundance. At each iteration we calculate per capita contributions (𝐵𝑃𝑝) for all taxa in the 

175 regional community and run our simulations (n = 500 per scenario) until all taxa become locally extinct. 

176 However, each simulation is only valid to the level of biodiversity typically observed at the respective post-

177 extinction station. That is, we assume the median species richness of each station reflects the existing local 

178 community which, in turn, is regulated within their temporal fluctuations (Gotelli et al. 2017). Similarly, we 

179 only allow for species to compensate up to the median abundance observed within the regional cluster of 
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180 northern versus southern stations (Northern cluster: B17, B16; Southern cluster: B15, Xs, B14, B13; 

181 Supplementary Fig. S3; Solan et al. 2020) to prevent any taxa increasing in abundance to improbable levels 

182 (Supplementary Code S2). As any alteration in local communities associated with climate change may be 

183 offset by more resilient taxa from a wider area (Ingvaldsen et al. 2021), we allow for taxa present in regional 

184 cluster species pools that were not present in the pre-extinction assemblage to be introduced and 

185 compensate (Garcia et al. 2021). This allows for the possibility that taxa from the regional pool can arrive and 

186 increase species richness, as would occur in a natural system.

187

188 Correlations, Co-extinctions and Co-compensations

189 As biotic interactions build up complex ecological networks through which the loss of one species can alter 

190 the vulnerability of other species (co-extinction, Sanders et al. 2015; Valiente-Banuet et al. 2014; Strona & 

191 Bradshaw, 2018; Strona & Bradshaw, 2022), we estimated interactions between taxa from positive and 

192 negative correlations in biomass across all station replicates (n = 24) and for each species (abundance > 1, n 

193 = 69, Supplementary Fig. S4a). Whilst it has been argued that species correlations carry limited information 

194 on network interactions (Pinto et al. 2022; Loreau & de Mazancourt, 2013), they nevertheless provide a 

195 conservative starting point in the absence of such information. Hence, as correlation does not necessarily 

196 indicate co-dependency, we adopted a prudent approach by only selecting correlations that were 1.5 

197 standard deviations outside the mean correlation score (0.0397; Supplementary Fig. S4b Table S3; 466 

198 correlations, Supplementary Code S3). This reasonably assumes that the strongest correlations are more 

199 likely to indicate a genuine biotic interaction, as opposed to spurious and/or environmentally-driven taxa co-

200 occurrences. Within each extinction iteration, we used these positive correlations to calculate the co-

201 extinction risk of other taxa (multiple taxa can be simultaneously selected, Supplementary Code S4) or, in the 

202 absence of co-extinction, to reduce their probability of compensating. This approach ensures only the highest 

203 correlations are selected whilst allowing for indirect effects, such as competitive and/or predator release. To 

204 account for the greater chance of surviving taxa contributing to compensation following co-dependent 

205 release, we recalculate the probability of compensation within the community using the negative 

206 correlations of the extirpated co-dependent taxa (Supplementary Code S5). Following local extinction, we 

207 assume conditions are no longer supportive (Supplementary Code S5) to avoid compensation through re-

208 introduction. The model is constrained to secondary extinction and compensatory mechanisms to avoid an 

209 uncontrollable cascade from the primary cause of extinction.

210

211 We acknowledge that multiple species can contribute to compensation, particularly when lost biomass is not 

212 entirely replaced by the initial responding species (Supplementary Code S6; Fig. S5). To improve the realism 

213 of our simulations of biodiversity change (Naeem, 2008), we limit the amount of compensation of each taxon 

214 to the median abundance observed in the regional species pool to allow several compensators to respond to 

215 an extirpation. In doing so, we avoid overinflation of the total biomass following compensation whilst 
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216 allowing biomass to vary with the removal and addition of species. When the median abundance of all taxa 

217 is reached during a simulation, biomass is lost from the system and a sequence of uncompensated extinction 

218 events is initiated until the next taxon from the regional species pool is introduced into the system. This 

219 follows the expectation that climate change will have negative consequences for seafloor biomass (Jones et 

220 al. 2013).

221

222 Statistical analyses

223 To examine the effect of extinctions on ecosystem functioning, we ran Generalised Additive Models (GAMs) 

224 with 𝐵𝑃𝑐 as the response variable given the non-linear nature of biodiversity-function relationships (Gross & 

225 Cardinale, 2005). A smooth term of species richness within each extinction scenario (by = scenario), and a 

226 smooth term of species richness in isolation were the main explanatory variables of interest. The extinction 

227 scenario was also included as a factorial covariate and the model was estimated using the fast Restricted 

228 Maximum Likelihood (REML) method, which is designed for fitting Generalised Additive Models (GAMs) on 

229 large datasets (Wood et al. 2015). The interaction was included to investigate whether the effect of 

230 extinctions differs with each spatially explicit extinction scenario (Supplementary Code S7). To deduce the 

231 best GAM fit, we conducted a backward stepwise selection on models estimated with the Maximum 

232 Likelihood (ML) method, informed by the Akaike Information Criteria (AIC), the deviance explained, and 

233 inspection of model residual patterns using the visreg 2.7.0 and lmtest 0.9-40 packages (Breheny & Burchett, 

234 2017; Zeileis & Hthorn, 2002; Supplementary Table S4). To improve result standardisation and comparability, 

235 we ran linear models with the same structure of the best GAM estimated with fREML, and visually compared 

236 the partial estimated slopes of 𝐵𝑃𝑐 as a response to species richness using the lm function in base R 

237 (Supplementary Fig. S6). 

238

239 To investigate differences in emergent adjustments to extinction probabilities as species are lost from the 

240 community within each extinction scenario, we used a series of linear models to examine changes in the 

241 climate vulnerability of all species going extinct (ALL), species still present within the community (PRESENT), 

242 species going extinct as a result of climate vulnerabilities (CLIMATE) and species going extinct as a result of 

243 species co-dependencies (CO-EXT) as species richness declined (Supplementary Table S5). All statistical 

244 analyses, data exploration and plotting were performed using the R statistical and programming environment 

245 (R Core Team, 2023) and the R packages ‘qgraph’ (visual correlation networks; Epskamp et al. 2012), 

246 ‘MetBrewer’ (formatting graphical outputs; Mills, 2022), ‘mgcv’ (Generalised Additive Models; Wood et al. 

247 2015; Wood, 2011; Wood, 2017), ‘parallel’ (cluster computing of GAMs; R Core Team, 2023), ‘stats’ 

248 (correlation calculations and matrices; R Core Team, 2023) and ‘tidyverse’ (data exploration and plotting; 

249 Wickham et al. 2019). Code for creating model output figures can be found at the end of the supplementary 

250 information (Supplementary Code S8).

251
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252 Results

253 Simulated ecosystem futures

254 In the absence of co-extinction and compensatory dynamics (Fig. 1a-f), we find that the form of the 

255 biodiversity-function curve approximates expectations (accelerating reductions in functioning with declining 

256 species richness) with notable climate-dependent differences in the form of the curve. Our simulations also 

257 commonly feature (except B15 to Xs, Fig. 1c) step changes within the species-function trajectory that reflect 

258 the loss or gain of species that disproportionately contribute to function. These become more pronounced 

259 when extinctions, ordered by climate vulnerability, incorporate co-extinctions (Fig. 1g-l). Co-compensatory 

260 mechanisms, however, temper the functional consequences associated with species loss (Fig. 1m-r), even 

261 when the proportion and number of compensating species increases with species loss (station Xs to B14, 

262 station B14 to B13; Fig. 2d and 3e). We also find that the taxa contributing most to community-level 

263 ecosystem functioning (% 𝐵𝑃𝑐) transition from an Annelid dominated pre-extinction community (solid green 

264 line Fig. 3a-e) to a more diverse post-extinction community (dashed red line Fig. 3a-e), and that there is higher 

265 functional redundancy across the polar front (station B15 to Xs and Xs to B14; Fig. 2c).

266

267 Our simulations reveal differences in the form of the biodiversity-function curve for each of our scenarios 

268 (Table 1), and we observe non-linear changes in the rate and magnitude of function as species loss progresses 

269 (Table 2) that decrease as species loss extends below the level of biodiversity typically observed at the post-

270 extinction station (dashed red vertical line, Fig. 2). Tube dwelling (Fig. 2m-r) and surficial modifying species 

271 (Fig. 2s-x) are lost first, whilst epifauna, deeper burrowers and conveyer belt lifestyles are preserved (Fig. 

272 2m-x). A transect-wide transition from B17 to B13 exhibits a shallow biodiversity-function trajectory with 

273 minimal differences in uncertainty achieved between the pre-extinction and most likely post-extinction levels 

274 of species richness (Fig. 2f). Note, however, that the distribution of uncertainty across the species richness 

275 gradient does vary between each step of the extinction transition (compare panels Fig 2a-f). As compensation 

276 establishes, biodiversity levels may rise above pre-extinction species richness (= solid green vertical line, Fig. 

277 2), although the extent of such an increase and any associated effect on functioning is scenario dependent. 

278 Within the most likely post-extinction levels of species richness window (area between the red and green 

279 vertical lines, all figures), both the range of the proportion of compensating species (%) and the level of 

280 species richness where compensating species is minimised or maximised varied between scenarios (Table 3, 

281 Fig. 2g-l), as did the mean (± s.d.) number of compensating species (Table 3, Fig. 2g-l). Hence, the number, 

282 composition and proportion of compensating species are dependent on local circumstance, with the greatest 

283 capacity for compensation occurring in communities south of the polar front (Xs-B14 and B14-B13, Table 3, 

284 Fig. 2g-2l).

285
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286 Co-extinction and climate vulnerability

287 Our simulations show that the incorporation of extinction probabilities related to climate vulnerabilities that 

288 lead to primary extinctions, and species co-dependencies that lead to co-extinction, moderate ecosystem 

289 outcomes based on differences in emergent adjustments to extinction probabilities. We find that, regardless 

290 of whether species loss reflects bouts of primary or secondary extinctions, the taxa most vulnerable to 

291 climate-driven change are preferentially removed (purple lines, Fig. 4a–f), although the rate of functional loss 

292 does vary with scenario. As a result, the extinction probability of the surviving taxa adjusts and tends to be 

293 lower than prior to extinction (compare purple to grey lines, Fig. 4a–f). Importantly our simulations reveal an 

294 interplay between primary and secondary extinctions (compare blue to yellow lines, Fig. 4g–l) that can alter 

295 the sequence of species loss, with synergistic, antagonistic or neutral ramifications for ecosystem functioning 

296 (yellow lines, Fig. 4g–l). Indeed, the inclusion of co-extinction can either increase (B17-B16, Xs-B14, B14-B13 

297 and B17-B13), decrease (B15-Xs) or have little effect on the preferential removal of the most vulnerable 

298 species (compare blue to yellow line slopes, Fig. 4g–l). Thus, realised extinction risk is a product of both co-

299 dependency and climate driven forcing.

300  

301 Discussion

302 Our simulations show that the ecological consequences of species loss associated with climate change reflect 

303 the extent to which species traits covary with extinction risk (Solan et al. 2004), the compensatory response 

304 of the surviving species (Thomsen et al. 2017; Thomsen et al. 2019) and the modifying role of environmental 

305 context (Garcia et al. 2021; Albouy et al. 2019). However, they also emphasise the previously unaccounted 

306 role of co-extinction in adjusting the number of species simultaneously being established and/or extirpated, 

307 the realised level of extinction risk, and the order of sequential species loss, each having substantive 

308 repercussions for ecosystem functioning (Luza et al. 2024). This is important because, when species co-

309 dependencies are acknowledged, they lead to different biodiversity-function trajectories to those that are 

310 currently anticipated, lending support to the view that improved levels of ecological realism are necessary to 

311 support the generation of robust environmental futures (Naeem, 2008; Garcia et al. 2021; Dolbeth et al. 

312 2019; Gammal et al. 2020). Here, we embraced the modifying effects of biotic interactions on ecological 

313 performance (Montoya & Raffaelli, 2010; Blois et al. 2013), where the rearrangement of species traits and 

314 changes in dominance patterns (Wohlgemuth et al. 2017) within the post-extinction community are not 

315 solely a function of specific extinctions and associated compensatory responses by the surviving community.

316

317 Co-extinctions are expected to hasten species loss (Dunn et al. 2009; Memmott et al. 2004) and minimise 

318 functional diversity (Sellman et al. 2016). Our model simulations reveal amplified, sharper losses of 

319 biodiversity and, subsequently, ecosystem functioning, indicating an erosion of functional capacity. Though 

320 this is in broad agreement with global simulations (Strona & Bradshaw, 2018; Strona & Bradshaw, 2022), we 

321 recognise that the effects of secondary extinctions on ecosystem functioning are likely to vary between 
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322 populations and environmental settings (Wohlgemuth et al. 2017). Nevertheless, species that are assumed 

323 to be resilient based on single risk factors (Leonardsson et al. 2015; Ducatez & Shine, 2017; Di Marco et al. 

324 2018), but are co-dependent on other species, may be compromised (Sanders et al. 2024) or lost earlier than 

325 anticipated. Such resequencing may lead to divergent levels of ecosystem functioning depending on how 

326 functionally pivotal the extirpated species are within the same context (Fetzer et al. 2015). In regions 

327 experiencing amplified levels of climate change such as the Arctic, whether the functional architecture of 

328 communities lead to the decline, maintenance or enhancement of ecosystem functioning will also be 

329 dependent on the extent of species immigration, post-borealisation species interactions (and resulting 

330 compensatory responses) are (Thomsen et al. 2017; Thomsen et al. 2019), and the level of functional 

331 redundancy within replacement taxa (Garcia et al. 2021). Here, we find that incorporating multi-taxa 

332 compensatory mechanisms sufficiently reduces the ecological consequences of species loss in each of our 

333 scenarios and lessens the effect of losing dominant, highly productive species from local communities with 

334 low functional redundancy. Further, we note that the rate of introduction of species from the wider species 

335 pool can match or exceed the rate of extinction experienced within the same habitat (Ellis et al. 2012; Sax et 

336 al. 2002), leading to stasis or an increase in local biodiversity, with concomitant effects on functioning. As 

337 higher diversity is often assumed to have a positive effect on ecosystems, a naïve evaluation might view the 

338 latter as a positive, albeit unintuitive, ecosystem response to external forcing (Salo & Gustafsson, 2016; Arese 

339 Lucini et al. 2020). Yet, our results indicate that the effect of increased biodiversity on ecosystem functioning, 

340 particularly when above the currently observed species richness, can be highly variable and, likely, transitory, 

341 as changing circumstances further moderate species co-dependencies and final carrying capacity 

342 (Woodworth-Jefcoats et al. 2017). For example, species introductions can exacerbate native species 

343 extinctions (Catford et al. 2018), especially when introduced species are predators or pathogens (Pyšek et al. 

344 2017) and/or cause competitive release (Castorani et al. 2005). The latter, however, is not expected to be 

345 widespread (Davis, 2003) and will be influenced by the effects of environmental context (Melbourne et al. 

346 2006).

347

348 While our simulations predict a decline in ecosystem functioning with increased "borealisation" across all our 

349 scenarios, the weakest effect occurs at the polar front transition. One explanation might be that the mixing 

350 of species and functional groups from the northern and southern species pools (Solan et al. 2020) delay a 

351 reduction in functional diversity (Frainer et al. 2017; Frainer et al. 2021). Yet, it is also possible that 

352 environmental variation associated with the juxtaposition of water masses will condition resilience (Keith et 

353 al. 2008; Renes et al. 2020; Hillebrand et al. 2010). This finding is important because it argues that complex 

354 relationships exist between temporal patterns of species turnover and extinction risk reinforcing the view 

355 that species can endure climate change associated extinction by persisting in spatio-temporal refugia 

356 (Maclean et al. 2015). As our study design allowed us to compare the response of northern and southern 

357 species pools (Solan et al. 2020; Jørgensen et al. 2015), we were able to establish that a subset of taxa 
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358 dominates species contributions to functioning and that, despite high numbers of compensating species, the 

359 greatest functional losses tend to occur at low levels of perturbation. Hence, the potential for compensatory 

360 and co-dependent mechanisms to buffer the consequences of biodiversity loss will depend on the level and 

361 extent of functional redundancy (Naeem & Wright, 2003) - here, maximised at the polar front - and the net 

362 functional role of ingoing and outgoing taxa (Garcia et al. 2021). Interventions aimed at maintaining or 

363 improving ecosystem functioning may, therefore, be best placed at the outermost edges of the species pool 

364 and/or where environmental conditions are less stochastic (Gerber et al. 2003).

365

366 A contemporary focus in ecology is deciphering variations in the relationship between biodiversity and 

367 ecosystem function across local and regional spatio-temporal scales (Gonzalez et al. 2020). Our findings 

368 reveal that the shape, magnitude, and variability of post-extinction community functioning are moderated 

369 by local environmental conditions (Ratcliffe et al. 2017) and acknowledge the significance of environmental 

370 heterogeneity (Wohlgemuth et al. 2017; Bulling et al. 2008; Boyd et al. 2016; Gammal et al. 2020), species 

371 arrangement (Wohlgemuth et al. 2016), vulnerability (Kortsch et al. 2015), and the differential expression of 

372 response traits (Cassidy et al. 2020; Sanders et al. 2024; Williams et al. 2024). We contend that management 

373 and conservation efforts will benefit from considering how and when species responses to external pressures 

374 result in changes to extinction risk and alter functional outcomes. Progression in this area will require a 

375 transition from conducting before-after extinction assessments to undertaking stepwise assessments that 

376 consider the full and graduated extent of progressive forcing (Fukami & Wardle, 2005). It will also require 

377 assembly of detailed information about multitrophic network interactions for communities of interest, and 

378 empirical tests of model findings to refine model construction. As we demonstrate here, the functional 

379 consequences of biodiversity loss appear to be gradual and cumulative, but the rate, direction and magnitude 

380 of ecological change can be positively or negatively modified by species co-dependencies even as the 

381 expression of pressures intensifies (Hillebrand et al. 2010).
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715 Tables

716 Table 1| Analysis of variance (ANOVA, two tailed) parametric coefficients generated from the generalised 

717 additive model (GAM) of bioturbation potential loss. Except for one scenario (station B16 to station B15), 

718 each local extinction event results in a biodiversity-ecosystem functioning curve that is significantly (***) 

719 different to the regional extinction scenario (baseline, station B17 to station B13).

Pairwise comparison Mean difference Std. error t value Significance

B17-B13 to B17-B16 68.172 1.244 54.781 < 0.0001 

B17-B13 to B16-B15 16.439 17.998 0.913 0.361

B17-B13 to B15-Xs -329.480 5.864 -56.189 < 0.0001

B17-B13 to Xs-B14 185.129 0.888 208.460 < 0.0001

B17-B13 to B14-B13 -35.871 2.486 -14.427 < 0.0001

720

721

722 Table 2| Approximate significance of smooth term “species richness” in each extinction scenario used in 

723 the generalised additive model (GAM) of bioturbation potential loss. The edf (effective degrees of freedom 

724 of smooth terms) represents the complexity of the smoother, with an edf of 1 equivalent to a straight line 

725 between x (species richness) and y (𝑩𝑷𝒄). The Ref.df and F columns are test statistics used in an ANOVA 

726 (two-tailed) to determine overall significance (Sig.) of the smoother (unable to draw a horizontal line 

727 through the 95% confidence interval of the GAM).

Extinction Scenario edf Ref.df F Sig.

B17-B13 8.813 8.987 45603 < 0.0001

B17-B16 8.022 8.253 29309 < 0.0001

B16-B15 8.486 8.738 27652 < 0.0001

B15-Xs 5.981 6.309 1567 < 0.0001

Xs-B14 8.699 8.932 24758 < 0.0001

B14-B13 7.092 7.364 9942 < 0.0001

728

729

730 Table 3 | The range in the proportion of compensating species (%), the absolute number (mean ± s.d.) of 

731 compensating species and the level of species richness where compensating species is minimised or 

732 maximised (indicated by SR in subscript) between the most likely post-extinction levels of species richness 

733 window (area between the red and green vertical lines, all figures). 

Page 19 of 26 Global Change Biology



Compensating species
Proportion of total species (%) Absolute number (mean ± s.d.)

Extinction 
Scenario

minn,SR maxn,SR minn,SR maxn,SR

B17-B13 5n=395, SR=39 15n=201, SR=12 1.46 ± 0.91n=169, SR=11 3.76 ± 3.64n=3086, SR=51

B17-B16 7n=474, SR=51 12n=554, SR=18 1.52 ± 0.54n=443, SR=17 4.67 ± 2.51n=1816, SR=52

B16-B15 5n=2391, SR=42 14n=417, SR=15 1.78 ± 0.61n=427, SR=17 2.54 ± 1.08n=2159, SR=41

B15-Xs 7n=2060, SR=27 9n=1313, SR=16 1.45 ± 0.44n=1313, SR=16 3.50 ± 1.70n=1580, SR=40

Xs-B14 9n=1608, SR=40 78n=293, SR=11 3.69 ± 2.40n=1608, SR=40 8.57 ± 3.81n=293, SR=11

B14-B13 15n=4348, SR=26 37n=444, SR=16 2.18 ± 0.96n=79, SR=13 5.95 ± 3.38n=444, SR=16
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735 Figure legends

736 Fig. 1 | Changes in community bioturbation potential (log(𝐵𝑃𝑐)) following climate-driven extinctions (upper 

737 panels), combined with interaction-derived co-extinctions (middle panels) and post-extinction 

738 compensations (bottom panels) associated with step-wise environmental transitions from stations (a,g,m) 

739 B17- B16, (b,h,n) B16 -B15 (c,i,o) B15 -Xs (d,j,p) Xs-B14 (e,k,q) B14-B13 and the transect-wide transition from 

740 stations (f,l,r) B17- B13 in the Barents Sea. Colour intensity (grey—blue) reflects an increasing density (low 

741 to high) of data points with the pre-extinction species richness (vertical green solid line) and predicted post-

742 extinction species richness (vertical red dashed line) represented. Co-extinctions lead to an increase in colour 

743 intensity along the main species-function trajectory, whilst compensations increase the spread of data 

744 points. Simulations, n = 500 per panel.

745

746 Fig. 2 | Predicted biodiversity-ecosystem function relation curves (mean ± s.e., first row) represented with 

747 a generalised additive model (GAM, solid lines) and the standard error (shaded areas). In the second row,  

748 post-extinction compensations (mean ± s.e., number, in yellow) and the proportion of species (purple, >1 

749 when the number of compensating taxa relies on greater influx from the regional species pool) are shown. 

750 The  reorganisation of functional groups characterised by their mobility (third row) and sediment reworking 

751 (fourth row) associated with step-wise environmental transitions are shown between  stations (B17-B16, 

752 panels a,g,m,s; B16-B15, panels b,h,n,t; B15-Xs, panels c,i,o,u; Xs-B14, panels d,j,p,v; B14-B13, panels 

753 e,k,q,w)  and the transect-wide transition from stations B17-B13 (panels f,l,r,x) in the Barents Sea. The pre-

754 extinction species richness (vertical green solid line) and predicted (median of observed data) post-extinction 

755 species richness (vertical red dashed line) define the upper and lower boundaries of the most ecologically 

756 realistic output. 

757

758 Fig. 3 | Taxonomic reorganisation during simulated extinction events following step-wise environmental 

759 transitions from station (a) B17-B16, (b) B16-B15 (c) B15-Xs (d) Xs-B14 (e) B14-B13 and the transect-wide 

760 transition from stations (f) B17-B13 in the Barents Sea. Colour shading (white, low⏤dark blue, high) 

761 represents the relative contributions of individual taxa to 𝐵𝑃𝑐 at each sequential level of local extinction. The 

762 pre-extinction species richness (vertical green solid line), predicted post-extinction species richness (vertical 

763 red dashed line) and subset of twenty taxa that contribute most to functioning pre-extinctions are 

764 represented. Contributions above 20% greyed.

765

766 Fig. 4 | Changes in mean extinction probability (log) of species following step-wise environmental transitions 

767 from station (a-g) B17-B16, (b-h) B16-B15 (c-i) B15-Xs (d-j) Xs-B14 (e-k) B14 B13 and the transect-wide 

768 transition from stations (f-l) B17-B13 in the Barents Sea. Colours represent the extinction risk for all species 

769 (purple), species still present within the community (grey), species going extinct because of climate 
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770 vulnerabilities (blue), and species going extinct as a result of species co-dependencies (yellow). The pre-

771 extinction species richness (vertical green solid line) and post-extinction species richness (vertical red dashed 

772 line) are also shown.
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Fig. 1 | Changes in community bioturbation potential (log(BPc)) following climate-driven extinctions (upper 
panels), combined with interaction-derived co-extinctions (middle panels) and post-extinction 

compensations (bottom panels) associated with step-wise environmental transitions from stations (a,g,m) 
B17- B16, (b,h,n) B16 -B15 (c,i,o) B15 -Xs (d,j,p) Xs-B14 (e,k,q) B14-B13 and the transect-wide transition 
from stations (f,l,r) B17- B13 in the Barents Sea. Colour intensity (grey—blue) reflects an increasing density 
(low to high) of data points with the pre-extinction species richness (vertical green solid line) and predicted 
post-extinction species richness (vertical red dashed line) represented. Co-extinctions lead to an increase in 
colour intensity along the main species-function trajectory, whilst compensations increase the spread of data 

points. Simulations, n = 500 per panel. 
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Fig. 2 | Predicted biodiversity-ecosystem function relation curves (mean ± s.e., first row) represented with a 
generalised additive model (GAM, solid lines) and the standard error (shaded areas). In the second 

row,  post-extinction compensations (mean ± s.e., number, in yellow) and the proportion of species (purple, 
>1 when the number of compensating taxa relies on greater influx from the regional species pool) are 

shown. The  reorganisation of functional groups characterised by their mobility (third row) and sediment 
reworking (fourth row) associated with step-wise environmental transitions are shown between  stations 
(B17-B16, panels a,g,m,s; B16-B15, panels b,h,n,t; B15-Xs, panels c,i,o,u; Xs-B14, panels d,j,p,v; B14-

B13, panels e,k,q,w)  and the transect-wide transition from stations B17-B13 (panels f,l,r,x) in the Barents 
Sea. The pre-extinction species richness (vertical green solid line) and predicted (median of observed data) 

post-extinction species richness (vertical red dashed line) define the upper and lower boundaries of the most 
ecologically realistic output. 
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Fig. 3 | Taxonomic reorganisation during simulated extinction events following step-wise environmental 
transitions from station (a) B17-B16, (b) B16-B15 (c) B15-Xs (d) Xs-B14 (e) B14-B13 and the transect-wide 

transition from stations (f) B17-B13 in the Barents Sea. Colour shading (white, low⏤dark blue, high) 
represents the relative contributions of individual taxa to BPc at each sequential level of local extinction. The 
pre-extinction species richness (vertical green solid line), predicted post-extinction species richness (vertical 

red dashed line) and subset of twenty taxa that contribute most to functioning pre-extinctions are 
represented. Contributions above 20% greyed. 
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Fig. 4 | Changes in mean extinction probability (log) of species following step-wise environmental transitions 
from station (a-g) B17-B16, (b-h) B16-B15 (c-i) B15-Xs (d-j) Xs-B14 (e-k) B14 B13 and the transect-wide 

transition from stations (f-l) B17-B13 in the Barents Sea. Colours represent the extinction risk for all species 
(purple), species still present within the community (grey), species going extinct because of climate 

vulnerabilities (blue), and species going extinct as a result of species co-dependencies (yellow). The pre-
extinction species richness (vertical green solid line) and post-extinction species richness (vertical red 

dashed line) are also shown. 
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