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The dynamic modelling of one-dimensional jointed structures is relevant to many
engineering applications, such as pipe systems and beam networks in constructions.
Currently available techniques are undermined by inadequate ability to model the joints
and other discontinuities due to uncertainty in their properties. Measured modal data can
be used to update joint models, but often with limited success. In this thesis a wave
approach is employed to investigate the reflection and transmission coefficients of
various joint models in structural waveguides. The reflection and transmission
coefficients are potentially more sensitive to the parameters of the joint models.
Numerical simulations and experiments have been performed on three types of jointed
waveguides. Appropriate models have been identified for these cases and sensitivities of
the scattering coefficients to joint parameters have been investigated.

Accurate measurement of the reflection and transmission coefficients is desired in order
to estimate joint parameters. A noise model is developed and a perturbation method is
used to study the influence of measurement noise on the estimated reflection and
transmission coefficients.

An iterative method is examined to solve the non-linear problem of estimating the
parameters of a joint from measured reflection and transmission coefficients, in a least-
squares sense. Issues concerning the iteration process, such as the selection of objective
functions and frequency ranges, are examined in accordance with the sensitivity of the
objective function to unknown parameters. The parameter identification method is
validated by numerical simulation case studies and then verified by using measured data
for mass discontinuities on beams, a supported straight pipe and a right-angled pipe
bend. The case studies demonstrate that parameter identification of discontinuities in
waveguides by using the wave approach is a success where modal methods are
inappropriate.



Acknowledgements

I would like to express my gratitude to Dr. Tim Waters and Prof. Brian Mace, whose

advice and encouragement were invaluable throughout this project.

Many suggestions from Prof. David Thompson and Dr. Neil Ferguson to improve the

quality of my work are gratefully acknowledged.

I would like to thank my family and new married wife for their support and tolerance to

me whilst I have been engaged in this endeavour.

I would also like to express my gratitude to Dr. Jen Muggleton for her encouragement
and friends Yuyou Liu, Yan Gaon, Jian Cheng, Tianshu Zhao, Lin Ji, Jianguo Han,
Shan Lin, Xiaolin Zhang, Zhenyu Huang, Jin Wang, Lili Zhao, Jun Sun, Bo Yan,
Tingting Wu, Yan Hou, Jing Lv, Yoshiyuki Waki, Simon Shone, David Herron, and

others for their support and care during the time | spent in the university.



Declaration of Authorship

I, Bing ZHANG, declare that the thesis entitled Joint Identification in Structural

Waveguides Using Wave Reflection and Transmission Coefficients and the work

presented in it are my own. I confirm that :

this work was done wholly or mainly while in candidature for a research degree at
this University;

no part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution;

where | have consulted the published work of others, this is always clearly
attributed,

where | have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

I have acknowledged all main sources of help;

where the thesis is based on work done by myself jointly with others, | have made
clear exactly what wad done by others and what I have contributed myself;

parts of this work have been published as:

« B. Zhang, T.P. Waters and B.R. Mace 2006 The influence of measurement
noise on the estimation of reflection and transmission coefficients in
waveguides. Proceedings of the 9th International Conference on Recent
Advances in Structural Dynamics, Southampton, UK

« J.M. Muggleton, T.P. Waters, B.R. Mace and B. Zhang 2007 Approaches to
estimating the reflection and transmission coefficients of discontinuities in
waveguides from measured data. Journal of Sound and Vibration 307 (1-2):
280-294.

N 1 1 T

) D E Y N

-iv-



Table of Contents

ADSTTACT. .. ot et bbbt ii
ACKNOWIEAGEMENTS ...ttt iii
Declaration of AUtNOISNIP........oiieiic e iv
LISE OF FIQUIES.. ..ottt bbbttt nre e sbe s e IX
LISt OF TADIES.. .ottt xiii
GloSSary Of SYMDOIS ......ooiie e Xiv
Chapter 1 INTrOQUCTION ......eoiiiieie ettt neeas 1
1.1 BACKOIOUNG ..ottt sttt e esteenaeenaene e 1
1.2 Modelling MethodoIOgIES .......cc.eoiiiiiiiee e 2
1.3 Wave Propagation APProach .........ccccvieiieieiiese s 3
1.4 Uncertainties of Joints and DiSCONTINUITIES ..........cccvviiiriiiiiiniiie e 4
1.5 Brief Introduction to Joint Identification ...........cc.ccoovvieiinene e 5
1.6 ODJECLIVES. ...ttt bbbttt e e r e ne e 9
1.7 Contributions 0Of the TNESIS .......ccoviiiiiie s 9
1.8 OVErvIeW OF the TRESIS ....c.eiiiiieiieie e 10
Chapter 2 Wave Propagation, Reflection and Transmission in Waveguides.................. 12
2.1 INTFOUUCTION ...ttt bbbt 12
2.2 Longitudinal Wave Propagation in ROUS ..........ccceveiirnieiciie e 13
2.3 Flexural Wave Propagation in BEAMS.........ccceivivieiverieeiesieese e see e 14
2.4 Damping Effects of WaveguIdes ..........ccocvieiiiiiiieneee e 16
2.5 Reflection and Transmission COETFICIENTS ..........cceviriiiiiiiiie 17
2.6 A General Wave APProach .........ooveeiieiieieiie e 19
2.6.1 Wave Amplitude, Displacement and Internal Force Vectors................. 19
2.6.2 Displacement and Internal Force Matrices ..........ccooovevereenvniiesieenennns 20
2.6.3 Wave Propagation, Reflection and Transmission Matrices.................. 20
2.7 Reflection and Transmission Coefficients in Terms of Parameters of
DISCONTINUITIES ...ttt bbb 22
2.7.1 Reflection at BOUNGAITES ..........civeiiiieiieceee e 22
2.7.2 Reflection and Transmission at Discontinuities in Waveguides............ 23
2.8 Case Study: Reflection and Transmission Coefficients of Two ldentical
Semi-infinite Beams Connected by a DiSCONtiNUItY ...........ccccocevivereiieieeciene 25
2.9 SUMIMIAIY ...ttt bttt ettt e e hb e et e esae e e be e ebn e e beesaneenbeeanneas 30
Chapter 3 Measurement of Reflection and Transmission Coefficients .............ccccco...e. 31
S L INTrOAUCTION ..ottt 31
3.2 A Wave Amplitude Decomposition APProach ...........ccecveverieeneencsieesiennennens 32
3.3 Estimating Reflection and Transmission Coefficients by Wave Amplitude
D =Tol] T o Lo XS] LA o] o ISR UPR PR 34
3.4 Analysis of Influence of Measurement NOISE..........ccccvvvereeiieiiiene e 37
341 NOISE MOGEL ...t 37
3.4.2 Statistical Estimates of the Noisy Power Reflection Coefficient........... 38



3.4.3 Statistical Estimates of the Noisy Power Transmission Coefficient......40

3.5 Effects Of NEArTIelds ........cocooviiiiiiiiiice e 41
3.6 Numerical SIMUIALIONS..........ccuiiiiiiiie e 42
3.6.1 Parametric Model for the DiSCONtINUItY.........cccovviveerieereiie e 43
3.6.2 Simulation Results for the Power Reflection Coefficient..................... 43
3.6.3 Statistical Distribution of the Simulated Noisy Power Reflection
COBTTICIENT ... e 46
3.7 Wavenumber MEaSUIEIMENTS...........civiiiiiiiieieieie et 49
3.8 Experiments on Mass DiSCONTINUITIES .........ccviiiiieiiiii e 51
3.8.1 Experimental SELUD ......c.cceeiiee e 51
3.8.2 Wavenumber MeasUremMeNtS.........ccvuueieeieeienee e 53
3.8.3 Reflection and Transmission COeffiCIENTS ..........ccevvrvveriiieneseseneee 54
3.9 SUMIMBNY ..ttt ettt e e st e e e ee e sneeanes 60
Chapter 4 Wave Reflection and Transmission at Pipe SUPPOITS........cccoovveervrinneeieenne 62
A1 INEOTUCTION ...t 62
4.2 Wave Modes in In-vacuo Piping SYSEMS ........ccoocereriieninie e 63
4.3 Dependence of Reflection and Transmission Coefficients on Parametric
MOCE] OF & SUPPOIT ..o 64
4.3.1 Model 0f @ SUPPOIT .....ocveeiece e 65
4.3.2 Parametric Reflection and Transmission Coefficients.............cc.cceeueenee. 65
4.3.3 Numerical EXAMPIES .......ccveiieiieie e 67
4.4 EXPeriments 0N PIPe SUPPOITS .....eoiiiiiiieiieie ettt 71
4.4.1 EXperimental SETUP .....cccveviie e 71
4.4.2 Wavenumber Measurement and n=2 Cut-on Frequency .............ccocu..... 72
4.4.3 Direct Measurements of the Translational Dynamic Stiffness of the
YU o] 00 £ TR RPRTIN 73
4.4.4 Direct Measurement of the Rotational Dynamic Stiffness of the
YU o] 00 £ TR RPRTIN 76
4.4.5 Parameter Fitting of the Directly Measured Rotational Dynamic
Stiffness of the SUPPOIS ......c.ccveiiiiiieeece e 78
4.4.6 Reflection and Transmission CoeffiCients ..........ccccovvevviievieeiesiesnenn, 81
4.5 SUMIMAIY ..oveieitiitesieeesiee e ste ettt e et e e st e e st e e s e e s st e e ssbe e e bt e e e nbb e e e bbeeabneennnns 85
Chapter 5 Wave Reflection and Transmission at Angled Bends...........c.cccceevvvvvevvennenne. 87
TR0 A Lo oo [0 Tod o] o PSS 87
5.2 Wave Fields in Some JOINt NetWOrKS ........cccoveiiiriniieninseee e 88
5.3 Reflection and Transmission Coefficients in terms of the Parameters of an
F N g 1o =T I =TT oo ST 89
5.3.1 Reflection and Transmission Coefficient Matrices...........cc.ccoevvevernenee. 89
5.3.2 Parametrical Model of the Angled Bend.............cccovevieiiiie e, 90
5.3.3 Reflection and Transmission CoeffiCients ..........ccccovvvevevieneniesiieneenn, 92
5.3.4 Power Reflection and Transmission Coefficients.........ccccocvrvrenvrenne. 95
5.3.5 Rigid Massless Right-angled Connection ..........cccccoecvvvevenieenieenesinnens 96
5.3.6 MaSS-1IKE JOINT .......cciiiiiiieieiesie e 97
5.3.7 SPring-liKe JOINT........ooiiiiiiieec e 102
5.3.8 Damping of the JOINt..........cccooeiiiiee e, 104
5.4 Reflection and Transmission Coefficients in terms of Wave Amplitudes......105
5.5 Experiments on a Right-angled Pipe Bend ............cccccoevveve e 107
5.5.1 EXPerimental SETUD .......ccooveiiiiiiiiiieeeee e 107

-Vi-



5.5.2 Cut-on Frequency for n =2 wave mode .........cccccoeevveeveevieciee e, 108

5.5.3 Wavenumber MeasuremMentS..........cocuviiirieniene e 109
5.5.4 Measured Reflection and Transmission Coefficients ...........c.ccoceenuee. 111
5.6 SUMMIBIY ..ottt ettt e et e e bb e e e e e ennnas 117
Chapter 6 Parameter IdentifiCation ............ccccveiiiiiiie e 119
6.1 INErOTUCTION ...ttt nreas 119
6.2 GENEIIC PrOBIBIM ... 120
6.3 Parameter EStimation Methods ...........ccoiiiiiiieniiieee e 122
6.3.1 DireCt MEthOd .....c.eoeiiiieiiiec e 122
6.3.2 Iterative Method...........ccoouiiiiiiic e 123
6.3.2.1 Nonlinear Least-squares Problem ...........ccccooveveiiniveiesnennenn 123
6.3.2.2 Gauss-Newton Method...........cccovieiiiiniieiie e 123
6.4 Application of Parameter Estimation Methods to JOINtS ..........ccccceevveiviiennn, 125
6.4.1 Direct Method for a Mass-like DisCONtiNUItY ..........ccocereeriniiiiieninnne 127
6.4.2 Iterative Method for a Mass-like Discontinuity ...........ccccceevvvveriennnnne. 128
6.4.3 Iterative Method for a Right-angled Joint...........ccccooeviiiiniiiici 130
6.5 Some Issues Concerning the Iteration ProCess...........cccvvveverieerverieseeseerinnnen, 132
6.5.1 Choice of Objective FUNCLION .........cccoviiiieiiiie e 132
6.5.2 Selection of Frequency RaNQE .......cccccveveieerieiie e 133
6.5.3 Initial Estimate of Parameters..........ccooeveeiinii i 133
6.5.4 Termination of Ieration ...........cccevviriiieneis e 134
6.5.5 Evaluating the Goodness of the Estimates...........c.cccccvvevieevieiieeinenn, 135
6.6 Numerical Simulations on a Mass-like Discontinuity ...........cc.cccoevevviiierinennn. 136
6.6.1 Effect of Selected Frequency Range.........ccoovveriiniienienene e 137
6.6.2 Sensitivity of the Objective Function to Parameters...........ccccceeuvrnnene. 139
6.6.3 Effect of Initial Parameter Values...........ccccoooevieiiiinininieiene e 141
0.7 SUMIMAEIY ...ttt ettt b e b b n e nnees 142
Chapter 7 Experimental Validation of the Parameter Identification Method ............... 144
7. L INEFOUUCTION ..ottt 144
7.2 Parameter Identification of the Mass/Moment of Inertia Discontinuity on a
BBAM .. 144
7.2.1 Results over Different Frequency RanNges ........c.ccoovvvvieveneneneneninnn 145
7.2.2 Results from Measured Transmission Coefficients .........ccccecevviennnnn 147
7.2.3 Results from Normalised Reflection or Transmission Coefficient......149
7.2.4 Accuracy of the ldentified RESUILS...........cccoevieieiie e 150
7.2.5 Results for BIOCKS 2 and 3 ........cc.ooieiieiiiierie e 151
7.3 Parameter Identification of Pipe SUPPOITS ........ccceeveiieieeie i 152
7.4 Parameter ldentification of a Right-angled Pipe Bend ..o 155
7.5 SUMMATY ittt b e s bb e br e e e beeennses 158
Chapter 8 CONCIUSIONS .......ccviiiieieiie et re e reesreenee s 160
S T80 1o oo [0 Tod 1 To] o SRS 160
8.2 Modelling of Joints and DiSCONtINUILIES ..........cccvevieiieiieiecie e 160
8.3 Measurement CONSIAEIAtIONS ........cveverieiieieiiere e 161
8.4 Parameter 1dentifiCation ...........ccoeveieiiieiiiicese e 161
8.5 Validation of Parameter Identification Approach..........ccccccevevenneninnnnnn. 162
8.6 FULUIE WOTK ...t 163

-Vii-



References...

Appendix 1
Appendix 2
Appendix 3

Appendix 4
Appendix 5

Appendix 6

Appendix 7

Appendix 8
Appendix 9

Appendix 10
Appendix 11

................................................................................................................ 164
Longitudinal Wave Propagation in ROAS ...........cccoeeveiiiiennciin e 168
Bending Wave Propagation in BEamsS............cccvevvevieereeiesieneeie e, 171
Simplification of the general equation for the reflection and

transmission coefficients of a mass and moment of inertia

ISCONTINUILY ..ot 176
Some definitions of SYmMbolS ..., 178
Mean Values and Variances of Noisy Reflection and Transmission
COBTTICIBNTS. ... 181
Conditions for Euler-Bernoulli beam theory and cut-on frequency for

n=2 wave mode in terms of non-dimensional frequency &° ................ 187
Direct Measurements of the Translational Dynamic Stiffnesses of Pipe
SUPPOITS . ettt nen e 189
Mass-loading Effect of the Force Transducer ...........cccceveveviieiveriecnnnne, 191
Direct Measurements of the Rotational Dynamic Stiffnesses of Pipe
SUPPOITS ..ttt 193
Derivative of a Matrix to a Variable ............ccooc i 195
Stiffnesses of Several Pipe Support Models .........cccevvveveiieiieieciennn, 196

-viii-



List of Figures

Figure 2.1 A rod Iying aloNg X-aXIS .....cccveiieieeiieie e 13
Figure 2.2 Wave field of an infinite beam ..........ccoceove i 15
Figure 2.3 Wave field at @ diSCONTINUILY .......ccoveiieiieeieiiese e 18
Figure 2.4 Wave vectors at two points of a waveguide lying along x-axis .................. 21
Figure 2.5 Waves at a disCONtinuity @t X = X; ..o, 22
Figure 2.6 Wave reflection at a boundary ..o 23
Figure 2.7 Element j with input and output forces and displacements....................... 24
Figure 2.8 A beam with a mass discontinuity at X =0 ........ccoceveiriineininiiiineeene, 26
Figure 2.9 Magnitudes (squared) and phases of the flexural reflection and

transmission coefficients for the mass discontinuity ..........cccccceeevveevvernenne. 29
Figure 2.10 Regions of p =0 and 7 =0 for the mass discontinuity...........c...cccceeuvenn.. 29
Figure 3.1 Local coordinate of tranSAUCENS.........c.coeeieieereeie e 34
Figure 3.2 Waves in two semi-infinite waveguides connected by a joint..................... 34
Figure 3.4 Monte Carlo simulations of the power reflection coefficient...................... 44
Figure 3.5 First order approximations and MC simulations of (a) the mean value and

(b) the varianCe Of P ..o 45
Figure 3.6 Closed form solutions for the upper bound normalised standard deviation

(o) 75 OO 46
Figure 3.7 Normalised probability density of p with zero mean and unit variance

for various values Of KyA ..., 48
Figure 3.8 Skew and Kurtosis of the MC simulations on p .......ccccceeveeviieecicicncienne, 48
Figure 3.9 Transducer array for wavenumber measurements..........c.cccceevvevveeenenennnns 50
Figure 3.10 Experimental setup for measurements on a beam with a mass and

moment of inertia diSCONTINUITY .........cceviiiiiiiiiceee e 52
Figure 3.11 Steel blocks attached to the beam as discontinuities ..........c.ccccoccvvvvevvenenne. 52
Figure 3.12 Algebraic average of the acceleration ratios for wavenumber

MeasuremMents Of @ DEAM ..o 53
Figure 3.13 Wavenumber of the Deam ............cooiiiiiiiii e 54
Figure 3.14 Magnitudes of the measured accelerances for block 1 ..........c.ccccceviiernnenee. 56
Figure 3.15 Decomposed wave amplitudes of at the centres of the transducer pairs for

DIOCK L.ttt 56
Figure 3.16 Decomposed power reflection and transmission coefficients of block 1....57
Figure 3.17 Sum of measured power reflection and transmission coefficients .............. 57
Figure 3.18 Power reflection coefficients of BIOCK 1..........c.coovviiiiiiniieiee 58
Figure 3.19 Power transmission coefficients of bIOCK 1.........cccccoeviiiiviciiiiccecc e, 59
Figure 3.20 Sum of the estimated power reflection and transmission coefficients ........ 59
Figure 3.21 Power reflection and transmission coefficients for blocks 2and 3.............. 60
Figure 4.1 Cylindrical shell coordinates and wavenumbers ............ccccccvvericnencnnn, 63
Figure 4.2 Cross-sectional mode shapes of a cylindrical shell ...............c.ccoeoviinnn. 64
Figure 4.3 The model of a support of an infinite one-dimensional waveguide ............ 65

Figure 4.4 Model of a support featured with mass, moment of inertia and stiffnesses 67

-iX-



Figure 4.5 Magnitudes (squared) and phases of the propagating wave reflection and

transmission coefficients for the SUPPOIT ... 68
Figure 4.6 Power reflection and transmission coefficients of a support.............ccc....... 69
Figure 4.7 The influence of damping on the power reflection coefficient p ............... 70
Figure 4.8 Experimental rig for measuring the reflection and transmission

coefficients Of & PIPE SUPPOIT ......eeveeieieeie e 72
Figure 4.9 Wavenumber of the PIPe.......coo i 73
Figure 4.10 Experimental rig for direct measurements of the translational dynamic

stiffness of the PIPE SUPPOITS.......eeverieiieii e 74
Figure 4.11 Translational dynamic stiffness of the long aluminium pipe support.......... 75
Figure 4.12 Experimental rig for direct measurements of the rotational dynamic

stiffness of the PIPE SUPPOITS.......ecivveieiieicie e 76
Figure 4.13 Measured accelerances of the long aluminium support..........cccceeevvereenne. 77
Figure 4.15 Free body diagram of the experimental rig for directly measuring the

rotational dynamic SUTFNESS .........coviiiiiiii e, 78
Figure 4.16 Directly measured rotational dynamic stiffness of the long aluminium

PIPE SUPPOIT ...ttt sttt sttt sttt sttt e st e et e s st e sbeebesreenbeenee e 80
Figure 4.17 Power reflection coefficient of the long aluminium support.........c...c.c....... 82
Figure 4.18 Power transmission coefficient of the long aluminium support.................. 83
Figure 4.19 Sum of power reflection and transmission coefficients of the long

AlUMINTUM SUPPOIT. ...t 83
Figure 4.20 Power reflection and transmission coefficients of the short aluminium

1] o] o [0 & S TP 84

Figure 4.21 Power reflection and transmission coefficients of the long steel support ...84
Figure 4.22 Power reflection and transmission coefficients of the short steel support...85

Figure 5.1 Typical structures in Pipe NEtWOIKS.........cceieeieeieiie e 88
Figure 5.2 Wave fields in a right angled StruCture ............ccoooveveieiieie s 89
Figure 5.3 Wave amplitudes at an arbitrary-angled bend ............c.cccoovveieiiiie i, 90
Figure 5.4 Model of an angled Dend ..o 91
Figure 5.5 Free body diagram of the angled bend and each waveguide....................... 92

Figure 5.6 Power reflection and transmission coefficients of the rigid massless joint.97
Figure 5.7 Power reflection and transmission coefficients of the mass-like joint......100
Figure 5.8 Power reflection and transmission coefficients of the mass-like joint......100
Figure 5.9 First order approximations for the power reflection and transmission

coefficients of the mass-like JoiNt ............ccoovveviiii i 101
Figure 5.10 First order approximations for the power reflection and transmission
coefficients of the mass-like JOINt ..o, 101

Figure 5.11 Power reflection and transmission coefficients of the spring-like joint....103
Figure 5.12 Power reflection and transmission coefficients of the spring-like joint....104
Figure 5.13 Power reflection and transmission coefficients of the right-angled bend..105

Figure 5.14 Wave field in the right-angled pipes........ccccooeviieiiiieiiieiccc e 106
Figure 5.15 Experimental rig for measurements of the reflection and transmission
coefficients of a right-angled pipe bend..........cccoov e, 108
Figure 5.16 Placement of the accelerometers to measure the cut-on frequency for the
N=2 WAVE MOAE ....oeeiiieiiiriesieeie e esiesee e see e steente e sneesteeneesreenseaneens 109
Figure 5.17 Measured transmissibility, a,/a, between the two accelerometers
SNOWN 1N FIGUIE 5. 16 .ot e 109
Figure 5.18 Magnitude of (W, +W,)/2W, for wavenumber measurements of the
FIght-angled PIPE ..ocvveveeee s 110



Figure 5.19 cosk, A for the PIPes ........coiviiiiii 110

Figure 5.20 Measurement method of the axial wave motion...........c.cccocevcviieiiniennns 111
Figure 5.21 Flexural wave amplitudes in €ach pipe.......ccccovveviieiiiie i 112
Figure 5.22 Axial wave amplitudes in €ach PIPe .......ccccovieririeiiienenie e 112
Figure 5.23 Power reflection and transmission coefficients of the pipe bend .............. 113
Figure 5.24 Power reflection coefficient p,, of the pipe bend.............c.cccoovniniinn, 115
Figure 5.25 Power transmission coefficient 7, of the pipe bend............c..cccceiiis 115
Figure 5.26 Power reflection coefficient p, of the pipe bend.............c.cccooviiiinn, 116
Figure 5.27 Power transmission coefficient 7, of the pipe bend............c..cccceiiis 116
Figure 5.28 Sum of the power reflection and transmission coefficients of the pipe

DENG .. 117
Figure 6.1 Joint with three coplanar WaveguUIdes...........cooveeereerenieniene e 120
Figure 6.2 A mass-like discontinuity attached to a uniform beam .............c.cccceevenee 126
Figure 6.3 Flow chart of joint parameter identification based on simulated response

DAL ..t 126
Figure 6.4 Flow chart of Gauss-Newton solution procedure on a simple mass-like

ISCONTINUILY ..o e e e 130
Figure 6.5 Grid of the range of estimated x and 4 for the simple mass-like

ISCONTINUILY ...t esre e 134
Figure 6.6 Numerical simulations of noisy power reflection coefficient.................... 137
Figure 6.7 Identified power reflection coefficient in the frequency range ................. 139
Figure 6.8 Objective function in the four frequency ranges .........cccccevvreereeieeneeene 140
Figure 6.9 Contour plot of the objective function in the frequency range of case 4

With Starting Parameters ........cocueieeriiie e 141
Figure 6.10 Contour plot of the objective function in the frequency range of case 4

With Starting Parameters .........ccoieeieiie e e 142
Figure 7.1 Power reflection coefficient of block 1 ........cccoovevviiiiiiiiii e 146
Figure 7.2 Objective function based on power reflection coefficient for block 1 ......146
Figure 7.3 Power transmission coefficient of block 1..........cccocovviviieiiicieccccie, 148
Figure 7.4 Normalised power reflection and transmission coefficients of block 1 ....149
Figure 7.5 Power reflection and transmission coefficients for blocks 2 and 3............ 151
Figure 7.6 Power reflection and transmission coefficients of the long aluminium

1] o] o [0 £ SO TSU PR OTRRPP 153
Figure 7.7 Power reflection and transmission coefficients of the short aluminium

R 1] o] o [0 SO OTPRPP 153

Figure 7.8 Power reflection and transmission coefficients of the long steel support .. 154
Figure 7.9 Power reflection and transmission coefficients of the short steel support..154
Figure 7.10 Results for the power reflection and transmission coefficients of the

right-angled bend when iterating on the rotational stiffness using ............ 157
Figure 7.11 Results for the power reflection and transmission coefficients of the

right-angled bend when iterating on the rotational stiffness using ............ 158
Figure A7.1 Translational dynamic stiffness of the short aluminium support.............. 189
Figure A7.2 Translational dynamic stiffness of the long steel support ...........cccceeeee. 190
Figure A7.3 Translational dynamic stiffness of the short steel support........................ 190
Figure A8.1 Experimental Setup for measuring the mass-loading effect of the force

EFANSAUCET ...t sae bbb 191
Figure A8.2 Measured dynamic mass of the transducer for the two positions............. 192
Figure A9.1 Rotational dynamic stiffness of the short aluminium support.................. 193

-Xi-



Figure A9.2 Rotational dynamic stiffness of the long steel support..........cccccevvrvennns 194

Figure A9.3 Rotational dynamic stiffness of the short steel support........c...ccceverrveneen. 194
Figure A11.1 Translational stiffness of two clamped parallel bars ............cccoereenee. 196
Figure A11.2 Translational stiffness at the middle point of a bar with simply-

0 o] 10T (=0 =] [0 SRRSO 197

Figure A11.3 Translational stiffness at the middle point of a bar with clamped ends..197
Figure A11.4 Torsional stiffness at the middle point of a bar with clamped ends ....... 198

-Xii-



List of Tables

Table 2.1 Wave amplitude reduction due to damping of waveguide for bending

WAVES ...tttk e e e et e e e s aan 17
Table 3.1 Amplitude reduction of nearfield waves with distance...............cccccevverennnnne 42
Table 3.2 Properties of the beam and diSCONTINUILY ..........cccceiiiiiiiniiiiiiie e 43
Table 3.3 Dimension of the beam and steel bIOCKS............ccccooiiiiiiiiiis 54
Table 4.1 Properties Of the PIPE .....oceiiiiie e 72
Table 4.2 Estimated translational parameters of the SUPPOItS.........c.ccccevvevveieiiieieennne 75
Table 4.3 Rotational parameter fit of the SUPPOIS........ceveriiiiieiiiiiee e 80
Table 4.4 Modified values of the directly measured parameters of the supports .......... 82
Table 6.1 The estimated values of x# and ¢ in different frequency ranges................ 138
Table 6.2 Step changes of x and 9 relative to true values and the condition number

Of S iNthe 1aSt ITeratioN.........cooviiiiiiiee s 140
Table 7.1 Estimates of the parameters of block 1 from measured power reflection

COBTTICIBNT ...t e 147
Table 7.2 Estimation of the parameters of block 1 from measured power

transMisSioN COBTFICIENT.........coviiiiiiiiie e 148
Table 7.3 Estimates of the parameters of block 1 from normalised power reflection

Or transmission COBTFICIENT.........cccoviiiiicieiee s 150
Table 7.4 Goodness of the estimation for block 1 interms of R* .........ccccoevvvvevennnn. 150
Table 7.5 Estimates of the parameters of blocks 2 and 3 from normalised measured

reflection and transmission COETfICIENTS ........cccvvvviiiieieieie s 152
Table 7.6 Estimates of the parameters of the pipe supports from o/ (p+7) ... 155
Table 7.7 Relative change of parameters and condition number of the Jacobean

L4 LU D RS URSTRPRR 155
Table A11.1 Stiffnesses of pipe supports based on several boundary condition

ASSUMPTIONS. ..ottt ettt e s et et e r e beebe e sre et 198

-Xiii-



Glossary of Symbols

Abbreviations

FEM Finite Element Method

FRF Frequency Response Function
MC Monte Carlo

RMSE Root Mean Square Error

SEA Statistical Energy Analysis

SVvD Singular Value Decomposition
SSE the sum of squares due to errors
SSR the total sum of squares

SST the sum of squares about the mean

TMM Transfer Matrix Method

Symbols

|| ||2 p, (Euclidean) norm

[ ] Matrix

[T pseudo-inverse of a matrix
{} Vector

A

noisy or measured reflection coefficient or transmission coefficient

Roman Letters
A cross-section area
wave amplitude vector; vector
, C vector or matrix
dynamic stiffness
dynamic stiffness matrix; mass matrix

Young’s modulus; expectation of a variable

mT m g O ® B

force; objective function

-Xiv-



SDN»-<><><2§<CHVJ'JUO'UZ§L'_X'1

s O &

~

internal force vector

stiffness

second moment of area

moment of inertia

moment

noise in the measured displacement
power; axial force; probability density function
transverse force

reflection coefficient matrix; residual
propagation matrix; Jacobean matrix
transmission coefficient matrix
amplitude of longitudinal displacement
velocity

amplitude of transverse displacement
displacement vector; weighting matrix
displacement

vector of unknown parameters
measured or predicted response
impedance

wave amplitude; acceleration

wave amplitude vector

wave amplitude; width

wave amplitude vector; vector

wave speed

wave amplitude vector

wave amplitude vector

eccentricity

frequency; force

thickness

wavenumber

length

mass

circumferential mode number

_XV_



wave amplitude reflection coefficient

t time; wave amplitude transmission coefficient

u longitudinal displacement

W transverse displacement

X Cartesian coordinate x variable

y Cartesian coordinate y variable

z vector

Greek Letters

Jij wavenumber constant of proportionality

5, kurtosis

4 dimensionless translational stiffness

o norm of difference between the parameter vector
£ perturbation on a noise free value of wave amplitude; small values
¥ distance of exciting point to the central axis; impedance ratio
2 skew

n damping loss factor

K radius of gyration

A wavelength

7 dimensionless mass; mean value

1% wavenumber ratio

0 angle in the polar system

9 dimensionless moment of inertia

o, density; power reflection coefficient

o standard deviation; impedance ratio

o’ variance

T power transmission coefficient

@ angular frequency

£ dimensionless frequency

74 dimensionless rotational stiffness

A transducer spacing

-XVi-



(0} vector with elements given by \/?,

o vector with elements given by ar cos| (W, +W, )/2W, |
D internal force matrix

A matrix

Q element of transfer matrix

b 4 displacement matrix

Subscript/superscript

+ positive-going

negative-going

location of discontinuity
dynamic stiffness
complex conjugate
rotational

transverse of a matrix
transverse direction
nearfield wave
propagating flexural wave

waveguide a

o » =z 4 4 un I g ©

flexural wave; waveguide b

(@]

complex

cs helical wave

g group velocity

[ incident

J number

I longitudinal wave

m measured

q dimension of a vector

r reflected; ring frequency

S circumferential wave; segment

t transmitted

-XVili-



Chapter 1 Introduction

Chapter 1 Introduction

1.1 Background

Beams, bars and pipes are widely used in many fields of engineering such as
construction of buildings, power generation facilities, oil refineries, ships and exhaust
systems for internal combustion engines. Unintentionally, they also act as waveguides,
conveying vibrational energy away from the source of excitation via wave propagation
through the structure [1-4]. The transmission of structure-borne sound from built-up
structures and, more generally, to the infrastructure to which the waveguides are
connected is an annoyance and can become a health and safety issue, or compromise
stealth of military vehicles. Dynamic modelling of these structures is often required to
determine typical in-operation stress cycles for fatigue predictions, to assess structural
integrity and to monitor the condition of the systems by comparison with vibration
measurements. Currently available prediction techniques for vibration involve
compromises between the conflicting demands of accuracy and complexity. Improved
techniques are required to model built-up structures while retaining a physical insight

into vibration behaviour.

Built-up piping systems often comprise many joints or discontinuities in the form of
flanges, hangers, supports, valves, pumps and changes in section. Dynamically, these
joints contribute stiffness, inertia and damping and can dramatically alter the response
of the system. A robust technique for parametric joint identification would benefit many
areas of dynamic modelling, such as improved narrowband prediction of vibration
response, quantification of Statistical Energy Analysis (SEA) parameters (coupling and
damping loss factors), for energy flow predictions, condition monitoring of structures
and quantification of statistical variation in jointed structures due to manufacturing
processes and installation. In this thesis, an integrated, systematic procedure to estimate

joint parameters reliably from vibration measurements is presented which makes use of
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wave models of the systems.

1.2 Modelling Methodologies

Among currently available prediction techniques for vibration in built-up systems, the
Finite Element Method (FEM), SEA, the Transfer Matrix Method (TMM) and the wave

propagation approach are frequently used.

The FEM has become commonplace in recent decades and earned itself a good
reputation in structural dynamic modelling [5-7]. The fundamental principle of the FEM
is to discretise a complicated structure into many small elements (finite elements). The
local mass and stiffness matrices for each element are established by assuming that the
displacements over the element obey a known prescribed function. The dynamic
response characteristics of the structure, such as natural frequencies and mode shapes,
can be derived by relating the global mass and stiffness matrices to local ones via
continuity and equilibrium conditions. The damping properties of the structure are
usually modelled by introducing a proportional damping matrix. Numerical solutions to
even very complicated geometries can now be obtained routinely using the FEM. The
geometries of beams, bars and piping systems, however, are relatively simple and do
not call for the versatility of the FEM with its associated disadvantages. The underlying
premise of the FEM is that the response at any position in an element can be
approximated by a prescribed function of the responses at the nodes of the element. At
high frequencies, when wavelengths become short, to achieve an accurate result, the
mesh of the FEM must be further refined. FE models may become very large and the
program will be expensive to run. Consequently, it may fail to predict the dynamics of
structures with confidence and reasonable computational cost. Furthermore, the

numerical solution does not help to understand the physical essence of the problem.

SEA has been applied with some success to power flow in one-dimensional systems [8-
10]. The basic premise of SEA is that the energetic exchange can be modelled in a way
which is similar to heat diffusion between the hotter subsystem and the cooler one. SEA

is particularly suited to systems with a large modal density and modal overlap, i.e. for
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high frequencies, where a deterministic analysis of all the resonant modes of vibration is
not practical. The weakness of the SEA stems from its heuristic and constrained
hypothesis: the subsystems are weakly coupled and only an energy level for each
subsystem can be estimated. This can undermine the confidence in the results from the

conventional SEA models.

The TMM has been an attractive approach in recent years [11-13]. The coupled
response of individual elements that support axial, torsional, bending and fluid waves
can be predicted easily by applying appropriate continuity and equilibrium conditions.
Each typical element can be described by a transfer matrix and the system transfer
matrix can be assembled by successive multiplication of the transfer matrices of the
components. However, the transfer matrices can become ill conditioned or even singular

at some frequencies. The TMM is discussed in detail in Chapter 2.

1.3 Wave Propagation Approach

Beams, bars and piping systems can be considered as one-dimensional waveguides. The
wave propagation approach [1-4], therefore, has been widely used in the analysis of the
response of these systems. This approach deals with vibration of elastic structures such
as strings, beams, and plates in terms of waves propagating and attenuating in
waveguides. The wave amplitudes are chosen as the degrees of freedom by which the
displacements and internal forces of the waveguides can be fully expressed. This
method can accommaodate branches and can be used to analyse complex structures such
as multi-span beams and trusses. The physical characteristics associated with the
vibration of the structure can be revealed easily by the wave propagation approach. In
this thesis, this approach is employed to analyse wave propagation in one-dimensional
waveguides and wave reflection and transmission at discontinuities or joints. The
reflection and transmission coefficients of the discontinuities, which are introduced in
detail in Chapter 2, are derived for some typical structures and used to estimate the

parameters of the discontinuities.
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In this thesis, several chapters are concerned with wave propagation, reflection and
transmission in in-vacuo piping systems. The dynamic response of a pipe varies largely
according to the pipe length, diameter and wall thickness. At high frequencies, the
distortion of the cross section must be considered. However, it is negligible at low
frequencies for long, slender and thick-walled pipes. In general, only the axial, torsional
and transverse flexural (bending) wave modes are of practical interest at low
frequencies in these structures. In this thesis, only in-vacuo piping systems are of
concern and only the axial, torsional and transverse flexural waves are considered. The

wave modes associated with cylindrical shells are briefly discussed in Chapter 4.

1.4 Uncertainties of Joints and Discontinuities

The properties of discontinuities depend on the boundary conditions. Joints of built-up
systems are affected by the friction, elasticity and the relative dimensions of all
interacting parts. Each factor varies from joint to joint because of manufacturing
tolerances. As a result, all joints and jointed structures have parametric uncertainty.
Structural joints can be regarded as sources of energy dissipation due to contacting
surfaces undergoing relative motions. Energy dissipation through joints in built-up
structures has been studied [14-16] and it was found that the joint friction exhibited
viscous-like damping characteristics when the normal force was allowed to vary with
the relative slip amplitude. The energy dissipation in mechanical joints depends on the
clamping pressure. Beards and Williams [17] showed in their experiments on a frame
structure that a useful increase in damping could be achieved by fastening joints tightly
enough to prohibit translational slip, but not tightly enough to prevent rotational slip.
Dowell [18] and Tang and Dowell [19, 20] investigated the non-linear response of
beams and plates to sinusoidal and random excitations at a point close to one end, and
with dry friction damping due to slippage at the support boundaries. The response
statistics in terms of the normal load at the support joints by using a statistical
linearisation method, numerical solution and experimental tests revealed that the stick-
slip and stick phenomena take place as the normal load increases. Esteban and Rogers
[21] examined an analytical approach to determine the energy dissipation through joints

at high frequency and its relation to the localised actuation-sensing region surrounding
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an integrated piezoceramic actuator.

In real applications, most of the boundary conditions are not ideal, for example, infinite
stiffness for clamped ends can not be obtained. Wang and Chen [22] represented the
unknown boundaries of a slender beam by a boundary stiffness matrix in their FE model
and determined the stiffness matrix from measured structural modal parameters. Lee
and Kim [23] used frequency-dependent transverse and torsional springs to represent
the non-ideal boundary conditions on a beam. The effective boundary stiffness
constants were estimated from the measured Frequency Response Functions (FRFs) by
the spectral element method. The spectral element method relates the vector of forces
and moments at the boundaries to the vector of degrees of freedom at the boundaries

through the spectral element matrix.

Doyle and Kamle [24] studied the a parametric model of a T-joint experimentally and
found that the dynamic response was not sensitive to the particular values of the joint
model but depended mainly on the member arrangement and only secondarily on the

particular shape and mass of the joint.

Damping in joints and fasteners is mainly generated by friction in the screw thread, gas
pumping, asperities of contact surfaces and plastic deformation. The stiffness is affected
by the hardness and roughness of contact surfaces. The mass and inertia depend mostly
on the dimensions and material of the structure. In most cases, these parameters cannot
be accurately modelled due to uncertainties in the manufacture and assembly, variability
of material properties and dimensions. Parameter uncertainties of joints have been
qualified by fuzzy parameters [25, 26], which uses fuzzy logic to investigate the
possible distribution of the parameters. However, for a practical structure, this method
can not help to predict the response precisely, which undermines its superiority in

practical engineering applications.

1.5 Brief Introduction to Joint Identification

Identification of joint parameters is required in predicting the dynamic characteristics of
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mechanical systems. The main purpose of joint identification is to estimate the joint
parameters that minimise the difference between the measured assembly response, such
as FRFs and that predicted analytically or numerically [27-31]. There is no doubt that
due to the problems of inaccuracy in theoretical models and limitations in
measurements, significant discrepancies are often found to exist between analytical
predictions and experimental results [32]. In this situation, system identification
techniques have been popular in the structural dynamics area. They aim to develop a
model of a system based on experimental measurements. The model to be identified
may be parametric or non-parametric (black-box problem), and sometimes may be
nonlinear. The problem of identifying the parameters of a structure involves two main
steps: the first is to establish an appropriate parametric model for the structure; the

second is to estimate the corresponding parameters by experimental observation.

Over recent decades, modal testing has developed quickly for the experimental
evaluation of the dynamic properties [33]. This method extracts the modal data (natural
frequencies, damping loss factors and mode shapes) from measurement data first and
then uses these data to obtain the mass, stiffness and damping properties of the model. It
is supposed to identify the ‘true’ vibration characteristics of a structure from the

‘correct’ assumptions regarding mass, stiffness and damping properties.

In structural dynamics, modal testing may be considered as a special area of system
identification. It became an extremely active research topic with the rapid development
of digital computers since the 1960s [33]. However, the number of coordinates is
limited and number of modes is incomplete due to various practical restrictions in
measurements, such as a limited number of measurement locations, limited frequency
range, measurement noise, and so on. The consequence is that the information acquired
is primarily available as modal parameters, rather than spatial properties [28]. In order
to correct the inaccurate spatial properties of the structure, a new technique, model
updating was proposed [6, 27, 29, 30, 34-36]. It aims at adjusting the mass, stiffness and
damping parameters of an existing FE model in the light of a measured vibration test.
After adjustment, the updated model is expected to represent the dynamic behaviour of
the structure more accurately. More mathematical and comprehensive surveys about
model updating method were presented by Natke [34], Natke et al [36] and Imregun and
Visser [35]. Natke [37] seems to be the first to use direct system identification for the
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identification of a system without updating a reference model. He referred to model
updating as indirect system identification. Berman [38, 39] made strong contributions to
structural system identification. He pointed out that it is usually the result of improper
actuator or sensor location or limited frequency range involved in the experimental tests.
Coordinate incompleteness (too few sensor locations) can give rise to problems of ill-
conditioning and non-uniqueness. This can be overcome by extracting the information

from an a priori model rather than purely from the experimental records.

Model updating involves data post-processing, which may introduce processing errors.
Accurate modal parameters are not easily obtained for structures containing closely
spaced modes or large modal damping [40] and sometimes it is impossible to measure
all possible modes of interest. In order to overcome these shortcomings, rather than
convert the measurement data into modal data, researchers try to use them directly. The
data can be FRFs [41-45] or time responses [46]. The substructure synthesis method has
been widely applied to joint identification from direct use of measured data. Tsai and
Chou [41] extracted the properties of a single bolt joint directly from the measured
FRFs of the substructures and the assembled structure. Then the results were checked
by a synthesis method based on the receptance method. Wang and Liou [42] synthesised
the FRFs of a two-beam structure by using diagonal matrices for the linear joint springs
and dampers. They introduced a simple method based on statistical criteria to reduce the
effect of measurement noise. Ren and Beards [43, 47-49] generalised the FRF joint
identification technique for systems involving rigid and flexible joints. Mottershead and
Stanway [44] proposed an algorithm for obtaining structural parameters from FRF
measurements. However, the algorithm may not be practical for cases where
measurements are not possible for certain locations. Hong and Lee [45] proposed a
method to identify the linearised joint parameters of a structure using the measured
FRFs of a structure and the computed FRFs of an auxiliary model. Thus inverting the
measured FRF matrices is avoided. Hwang [50] determined the damping and spring
constants of a joint by measuring the FRFs of a structure with and without connections.
Yang and Park [40] treated the joint model as a coupled stiffness matrix, and identified
the translational and rotational stiffness of the joint by the substructure synthesis
method. The damping properties were not considered. Rong and Tzou [51] developed a
theoretical model of elastic joints considering the joint friction and clearance effects. A
time-domain system identification method was presented to estimate the dynamic

-7-
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contact parameters of elastic joints and the eigenvalues of jointed structures. Ma et al.
[46] constructed a non-parametric model for a joint from the comparison of the overall
dynamics of two bolted beams to that of a similar but unbolted beam. Then a numerical
algorithm was developed to identify the joint force. The approach is not expected to be
applied to more complex models. Frikha et al. [52] developed a method to estimate in a
least squares sense the physical joint parameters that most closely replicate measured
response. However, this approach is ineffective in “bands of critical frequencies”, which

makes robust implementation tenuous.

This thesis develops a similar parameter identification approach to reference [52] but
applied to wave-based models. Modal analysis is good at solving systems with single-
degree-of-freedom and multi-degree-of-freedom. But wave approach is good at
analysing continuous systems, especially at high frequency. Wave models can be
written in a well-conditioned way at all frequencies, which is superior to methods based
on modal analysis, such as FEM and SEA. In fact, models have been developed for a
change in section of a two-rod system with longitudinal waves [53]. But the theory has
not been verified by practical measurement. Frequently, inertia is modelled explicitly
but the joint is assumed to be perfectly rigid [24, 54, 55]. Stiffness can be introduced by
using discrete elements [56, 57]. Damping can be incorporated for reasons of
convenience by complex Young’s moduli [58], the use of discrete elements [59, 60], or
omitted altogether [56]. Reflection and transmission coefficients have been derived in
terms of the parameters of the discontinuities [54, 61] and measured in a single
discontinuity [24, 62, 63]. However, the related problem of estimating the parameters
from measured output has not been considered. This thesis discusses the parameter
identification of discontinuities from reflection and transmission coefficient
measurements and in particular the estimation of joint properties in structural
waveguides such as beams. ldentifying physical parameters in this way can yield a
better conditioned inverse problem and also greatly facilitate simultaneous identification
of more than one joint of a piping system in situ.



Chapter 1 Introduction

1.6 Objectives

The aim of this research is to develop a systematic procedure for accurate modelling of
joints in structural waveguides and parameter identification of the joint models. The
specific objectives are to:

1) develop a theoretical and computational framework for the assembly of wave
models for joints in structural waveguides using continuous elements supporting
flexural, longitudinal etc. wave modes;

2) adapt model updating techniques to joint identification of wave models;

3) investigate the robustness of wave model joint identification to wave amplitude
measurement techniques;

4) examine the applicability of joint identification techniques to the developed wave

models with measured wave response.

1.7 Contributions of the Thesis

The research has demonstrated that parameters of joints can be successfully identified
from measured reflection and transmission coefficients. The reflection and transmission
coefficients are used since they have several advantages over modal information. First,
these coefficients characterise the joint and adjacent waveguides but are independent of
the rest of the built-up system; second, they are potentially more sensitive to the joint

parameters in question. The main contributions of the thesis are summarised as follows:

1) Depending on the contribution of the properties of the discontinuities, such as
mass/inertia, stiffness and damping, appropriate dynamic models are selected for
three types of joints, mass discontinuities on beams, a supported straight pipe and a
right-angled pipe bend. The effect of joint parameters on wave reflection and
transmission coefficients has been investigated through closed form solutions and
numerical simulations.

2) A measurement noise model of individual transducers is developed to simulate the
influence of measurement noise on the estimated reflection and transmission

coefficients. Closed form solutions are derived for the mean values and variances of
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the noisy reflection and transmission coefficients. Monte Carlo simulation results
agree well with the derived statistical results.

3) The Gauss-Newton method is first applied to the parameter identification of
discontinuities through iteration on reflection and transmission coefficients. Issues
concerning the iteration process, such as the selection of frequency range, objective
function and initial parameter values and assessment of goodness of identification
are examined. Numerical case studies indicate the sensitivity of the objective
function to the unknown parameters is significant to the identification accuracy.

4) Applicability of the Gauss-Newton method to the parameter identification of
discontinuities in waveguides is demonstrated using experimentally measured data
on various structures. The parameters of the discontinuity models are successfully

estimated.

1.8 Overview of the Thesis

Owing to the uncertainties of the joints and discontinuities in built-up systems, there is
no ideal technique and there is a strong case to develop continuous models to
accommodate more complex configurations. Parameter identification of joints and
discontinuities in built-up structures has been widely discussed by using modal updating
or direct FRF measurements. In this thesis, a novel approach is developed through
which the parameters of joint and discontinuity models can be estimated from measured

reflection and transmission coefficients.

Chapter 2 reviews a general approach for analysing wave propagation, reflection and
transmission in waveguides carrying various wave modes. A technique is described to
derive the reflection and transmission coefficients of the discontinuities when only one
particular wave mode is of interest. As an example, this method is applied to a

mass/inertia discontinuity in a straight beam.
Chapter 3 investigates the influence of the measurement noise on the estimated

reflection and transmission coefficients from FRF measurements. A Gaussian-like noise

model is introduced to the transducer array measurements as a perturbation and the
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statistics of the estimated reflection and transmission coefficients by a wave amplitude
decomposition method are discussed. Measurements on the reflection and transmission

coefficients of a mass/inertia discontinuity in a steel beam are performed.

The general approach given in Chapter 2 is applied to other typical discontinuities,
namely one-dimensional waveguide supports and angled bends in waveguides in
Chapters 4 and 5 respectively. Experiments are performed to obtain the reflection and
transmission coefficients from FRF measurements. The parameters of the pipe supports

are also measured directly.

Chapter 6 examines an iterative method to solve the non-linear problem of parameter
identification of the discontinuities from the measured reflection and transmission
coefficients. This method is then successfully applied to the three typical discontinuities
in Chapter 7 to estimate the parameters. Finally Chapter 8 summarises the results of this
research in the parameter identification of discontinuities in waveguides and

recommends key issues for further research.
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Chapter 2 Wave Propagation, Reflection and

Transmission in Waveguides

2.1 Introduction

The wave propagation approach has been widely used to analyse the dynamic response
of waveguides [1-4]. When there are discontinuities in the waveguides, it is very
convenient to use the reflection and transmission coefficients to describe the
characteristics of the discontinuities. The basic intention of this thesis is to identify the
parameters of a discontinuity in a waveguide from measured reflection and transmission
coefficients. This chapter reviews a general approach [64] which aims to relate the
reflection and transmission coefficients of discontinuities to the parameters of the
waveguides and discontinuities. The reflection and transmission coefficients of all the

structures considered in this thesis can be easily derived by this approach.

The next two sections introduce the equations of longitudinal and flexural waves briefly.
The torsional wave equation is omitted here since it is similar to the longitudinal one.
The damping of the waveguide can be considered by adopting the complex Young’s
modulus. Its effect is also discussed briefly. The concepts of reflection and transmission
coefficients are given subsequently. Then a general wave approach is reviewed.
Together with the dynamic stiffness and transfer matrix methods, this approach can be
used to analyse the dynamic response of waveguides in which various wave modes are
accommaodated. Most usefully, the reflection and transmission coefficients can be easily
related to the parameters of the waveguides and discontinuities by this approach. As an
example, numerical results are presented for the reflection and transmission coefficients
of a beam with a mass discontinuity. Then the sensitivity of the reflection and
transmission coefficients to the parameters of the discontinuity is discussed. The general
approach will also be used in Chapters 4 and 5 to obtain the reflection and transmission

coefficients of joint models for pipe supports and a pipe bend.
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2.2 Longitudinal Wave Propagation in Rods

Longitudinal waves in rods are compressional/extensional waves, in which the primary
motion of the rod and the wave propagation both occur in the longitudinal direction [1-
3]. There is also transverse motion perpendicular to the wave propagation direction.
However, this motion is negligible if the wavelength in the rod is large compared to the
rod's radial dimension. This thesis only considers longitudinal waves under this
condition. This section briefly introduces the equation of longitudinal waves in

homogeneous, slender rods and its solutions.

The longitudinal wave equation of a slender rod can be derived directly based on the
fundamental relationship between stress and strain for a differential mass element. The
detailed derivation procedure is omitted here for brevity and only the equation of
motion is given. For a homogeneous, slender rod lying along the x-axis as shown in
Figure 2.1, it can be obtained that [1-3]
2 2
c,z%:gt—l: (2.1)

where u is the longitudinal displacement and c, =/E/p is the longitudinal wave

speed. E and o are the Young’s modulus and density of the material respectively. The

subscript | indicates the longitudinal character of this wave mode. The wave speed
increases with increasing stiffness and decreases with increasing density. Since it is
independent of frequency, this kind of wave propagates without dispersion. This is not
the case for bending waves, which will be discussed later. The wave equation (2.1) is

valid for slender rods of arbitrary cross-section.

Figure 2.1 A rod lying along x-axis.

By assuming time-harmonic motion and applying the method of separation of variables,

the solution to equation (2.1) is assumed to be of the form u(x,t) =U (x)e'*. In the

13-
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following analysis, the time dependence e is suppressed if not explicitly indicated.
U (x) is given by

U(x)=U"e™* +U e** (2.2)
where U* and U~ are complex amplitudes, which can be determined from the
+gikix

excitation and boundary conditions. U represents a positive-going wave and

U e"* a negative-going wave. The variable

=02 2.3

is the longitudinal wavenumber, where o is the frequency in rad/s. It is related to the

wave speed ¢, by

Kk = (2.4)

@
C
Since frequency f =w/27=c /4 , where 4 is the longitudinal wavelength, the

wavenumber can also be expressed as
2z

k, is inversely proportional to the spatial period 4, therefore, the wavenumber k; can

K, (2.5)

be considered as the spatial analogue of the angular frequency . It indicates the phase

change of the wave motion per unit length in the direction of propagation.

2.3 Flexural Wave Propagation in Beams

Bending or flexural waves are widely found in wave propagation in solid structures,
such as beams and plates. This type of wave is characterised by the particle motion
being perpendicular to the direction of propagation. In this section the bending wave
equation and its solutions are briefly introduced.

Consider a beam of constant section lying along the x-axis shown in Figure 2.2. If an

external distributed force f(x,t) is applied to the beam, the partial differential equation

for bending waves is given by Euler-Bernoulli beam bending theory [1-3] as
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o'w o°w
El = + pA e f(xt). (2.6)

where w(x,t) is the transverse displacement of the beam. The equation gives a good

description of the motion in a bending wave field if the wavelength is larger than about
six times the thickness of the beam [1].

WF:(E‘"(bX A VaVERNV Ve W;Efikbx

W, e / \ W, e

Figure 2.2 Wave field of an infinite beam.

For time harmonic waves in beams, the transverse displacement can be written as
w(x,t) =W (x)e"*. (2.7)
Substituting the above equation into equation (2.6), for free response ( f =0), one gets

d‘w

X4

El

—a’pAW =0. (2.8)

The general solution to equation (2.8) can be written as
W (x) =W e ™" + W, e"* +Wie ™ + W e (2.9)

where
k, = ’E—IA (2.10)

Is the bending wavenumber of the beam. It is real and positive unless structural damping
is incorporated into the Young’s modulus when it will have a negative imaginary part.
I is the second moment of area of the cross-section. The first and second terms in
equation (2.9) represent waves that propagate in the positive and negative x-direction
respectively. The third and fourth are the nearfield terms. They have constant phase but
decay exponentially with distance in the positive and negative x-direction respectively.
The near-field terms are of importance only close to excitation points, discontinuities or
terminations. The subscripts P and N denote the propagating and nearfield waves
respectively and the superscripts + and — indicate positive- and negative-going waves
respectively.

The phase velocity of bending waves ¢, = w/k, is
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S LS 2.11)
PA

which is frequency dependent. Waveforms composed of various sinusoidal components
distort with time, because the higher-frequency components will propagate with a
higher velocity than the lower-frequency ones. This is called dispersion [3]. The group
velocity is defined by

_do

C - T,
¢ odk

(2.12)

which is 2k ./El/pA for bending waves. It determines the velocity of energy

propagation along the beam. For bending waves, the group velocity is twice the phase

velocity, ¢, = 2c,, but they are equal for longitudinal waves.

2.4 Damping Effects of Waveguides

The above analysis does not consider the influence of damping of the structure, which is
valid only for ideal situations. In practice the energy contained in a given oscillation
will convert into other forms and therefore every oscillation decays with space and time

because of the damping. The damping can be simply represented by introducing a

complex Young’s modulus for the material E(1+i7) where 7 is the damping loss

factor. Thus all the parameters associated with Young’s modulus will become complex,
such as the stiffness, wave velocity and wavenumber. For example, the flexural

wavenumber becomes

c PA 1
K=o —L2 ok [1-i 213
J=Noy El (1+in) "( 4j (2.13)

where the first order approximation is valid for small damping, i.e. 7 <0.05. Similarly

the complex longitudinal wavenumber can be expressed as k;” ~ k (1— in/2).

The loss factors of metals are usually considerably smaller than 10 except some soft
ones, such as lead, tin, silver and copper. However, the actual damping of practical
structures is determined not only by the loss in the materials but also by friction at

supports, interfaces, connections, etc. Loss factors of other materials, sandwich
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structures and metal interfaces can be seen in reference [1].

Table 2.1 gives the wave amplitude reduction when propagating along the waveguide
due to the damping of waveguides for two kinds of materials, steel and copper. The
value given is the amplitude at distance x as a percentage of the amplitude at distance O.
The typical values of the loss factors in the table are quoted from reference [1]. Except
for soft metals, the wave amplitude attenuation is very small even over a long distance,

say less than 5% in 100 wavelengths.

Table 2.1 Wave amplitude reduction due to damping of waveguide for bending waves.
(A denotes wavelength)

amplitude, e

—kpxn /4

distance, x =101 distance, x=1004

steel: 7 =2x10"" 99.7% 96.9%
copper: 17 =2x10"° 96.9% 73.0%

The damping effects of the discontinuities considered in this thesis will be discussed in

later chapters.

2.5 Reflection and Transmission coefficients

This section introduces the concept of reflection and transmission coefficients. Figure
2.3 shows two waveguides connected by a discontinuity. A positive-going wave
propagating along waveguide a is incident upon the discontinuity, where a reflected
wave and a transmitted wave are generated. At the discontinuity, the amplitudes of the
incident, reflected and transmitted waves can be written as a*, a~ and b". Then the
wave amplitude reflection and transmission coefficients are defined respectively by

RPN

r=—andt (2.14)
a

T

Since wave amplitudes are complex, these two coefficients are also complex. They are

determined by the characteristics of the waveguide and the discontinuity.
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|
a+\/\/\€\/\/\ b*

_ |

a v

a N b

Figure 2.3 Wave field at a discontinuity.

Wave reflection and transmission is actually the redistribution of the energy in the
incident wave to the reflected and transmitted waves. The power in a longitudinal wave

and a bending wave is given by [1]
P= % pAc V[ and P = pAc, V[ (2.15)

where V is the particle velocity. The power reflection and transmission coefficients can
be defined in a similar fashion to the wave amplitude ones as

i (2.16)

and 7 =-L
P

10=

oo

where the subscripts i, r and t represent incident, reflected and transmitted waves
respectively. Referring to equation (2.15) and recalling the definition of amplitude
reflection and transmission coefficients given in equation (2.14), if there is no wave
mode conversion, equation (2.16) becomes

p=I* and £ = 22| (2.47)

a

where Z, and Z, are the characteristic impedances of the waveguides carrying the

incident and transmitted waves. If there is no energy dissipation, the energy involved in

the reflected and transmitted waves should equal to that in the incident waves. Thus
p+r=1. (2.18)

In practice owing to the existence of damping, the sum of power reflection and

transmission coefficients should be less than unity.

Appendices 1 and 2 summarise the reflection and transmission coefficients of some

simple structures in rods and beams.
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2.6 A General Wave Approach

This section reviews the general approach developed in reference [64] which relates the
displacements and internal forces to the wave amplitudes in a waveguide which might

contain various wave modes.

2.6.1 Wave Amplitude, Displacement and Internal Force Vectors

Generally speaking, there might be several different wave modes in a waveguide. At
any cross-section the waves can be separated into two groups in terms of the two
directions they are travelling, positive and negative. Accordingly, the amplitudes of

waves can then be grouped into two vectors

a 3
a, a,

at={’2tanda ={ ¢, (2.19)
a, a,

where the superscripts + and — indicate the positive and negative wave travelling
directions respectively. For the special case where there are both longitudinal and
flexural waves, the wave amplitude vectors are considered to have the form
Ut
at =W, ;. (2.20)
Wy
The displacements and internal forces describe the state of a cross-section at any point
in a waveguide. The displacements can also be grouped into a so-called displacement
vector, W. Similarly, the internal forces moments can be grouped into the internal
force vector, F. For waveguides only including longitudinal and flexural waves
U
W= W (2.21)
oW / ox

and

P
F={Q". (2.22)
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where

2
P:EAa—U, Q=—Elﬂ, M :Elavl/.
OX X OX

(2.23)

P, Q and M correspond to axial force, transverse force and moment respectively.

2.6.2 Displacement and Internal Force Matrices

The general displacements and internal forces can be related to the wave amplitudes

simply by the displacement and internal force matrices respectively. Thus

w=[¥' ‘I’]{:} and F=[ @' qr]{ai} (2.24)

a

where ¥ and W are the displacement matrices, and ®* and @ are the internal force

matrices. For waveguides which involve longitudinal and flexural waves

1 0 0 1 0 O
v'=0 1 1|, ¥=0 1 1 (2.25)
0 —ik, -k, 0 ik, Kk,
and
—iEAK, 0 0 IEAK, 0 0
o= 0 —iEij Elkj , = 0 iEij —Elkj ) (2.26)
0  -EIk EIK 0 -Elk? EIK

These matrices denote the contribution of the wave components to the waveguide

deformations and internal forces.

2.6.3 Wave Propagation, Reflection and Transmission Matrices

Waveguides of finite length have boundaries and may have discontinuities along their
length. The amplitude of a wave changes with distance while travelling along a
waveguide. When a wave impinges on a boundary it is reflected and when it is incident
upon a discontinuity then it will be reflected and transmitted. The amplitudes of the
reflected and transmitted waves are related to the incident waves by the reflection and
transmission coefficients. A particular wave mode may be scattered into other wave
modes depending on the particular structure. Therefore, reflection and transmission

coefficients may involve wave mode conversion. Reflection and transmission matrices
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are composed of these coefficients and are determined by applying the continuity and

equilibrium conditions for the particular structure.

Consider two points, x=x, and X = x, of a one-dimensional waveguide lying along the

x-axis shown in Figure 2.4. The amplitudes of the waves at the two points can be related

by
a;| [S" 0 |]a;
e s hel

where the subscripts 1 and 2 indicate the positions of the waveguide; S* are the
propagation matrices relating the wave propagation of the two points and usually

S =S". For waveguides which involve longitudinal and flexural waves

e*ik| (x2—=x1) 0 0
S*=| 0 g Mo (o) 0 (2.28)
0 0 e*kb(Xz*Xﬂ

The propagation matrices describe the phase and amplitude changes of the waves as

they propagate along the waveguide.

alvAuu azvﬂuu
aI\/yﬂ agxfpﬂ
- ) I — 5 —
X
X=X X=X,

Figure 2.4 Wave vectors at two points of a waveguide lying along x-axis.

Consider a discontinuity connecting two waveguides at junction x = x; (Figure 2.5). A

wave is incident upon the discontinuity, where it is partly reflected and partly
transmitted. In general, wave mode conversion occurs, which means an incident wave

of one mode might be scattered into waves of all modes. Incident waves of amplitudes

aj and b; at the junction are scattered into waves a; and b; . The wave vectors can be

related by the reflection and transmission matrix as
a R#® T |[a*
] b T (2.29)
b; T Ry |[b;
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where R and T are the reflection and transmission matrices composed of reflection
and transmission coefficients. Subscript ‘j° denotes the position of the discontinuity

X =X;. Superscript ‘ab’ indicates from waveguide a to waveguide b. The rest can be

deduced by analogy. For symmetric discontinuities, R® =R™ and T® =T . If the

discontinuity is a boundary, for example, when there is no waveguide b in Figure 2.5,

equation (2.29) can be simplified as a; = RTa] .

")
\N

Figure 2.5 Waves at a discontinuity at x = X;.

2.7 Reflection and Transmission Coefficients in Terms of

Parameters of Discontinuities

This section introduces two methods to set up the continuity and equilibrium equations
of discontinuities in waveguides. One is the dynamic stiffness matrix for the reflection
of boundaries and the other is the transfer matrix method for discontinuities between
waveguides. These methods, especially the latter, will be used in the following chapters

to derive the reflection and transmission coefficients of different structures.

2.7.1 Reflection at Boundaries

This section discusses setting up equilibrium equations at boundaries of waveguides by
the dynamic stiffness matrix. Figure 2.6 shows a waveguide with a boundary at x=0.
In most cases the equilibrium condition can be given by a dynamic stiffness matrix,
which relates the displacements and internal forces at the boundary,

F=DW (2.30)

where D is the dynamic stiffness matrix. It is usually composed of the parameters of
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the boundary.

e e

x=0

Figure 2.6 Wave reflection at a boundary.

Substituting the displacement and internal force vectors given by equation (2.24) into
equation (2.30) and rearranging yields
(@ -D¥ )a =(D¥ -®")a". (2.31)

Assuming the matrix on the left-hand side is invertible, then

-1

a =(® -D¥ ) (DY -®)a’, (2.32)
The wave amplitude vectors are related by the reflection coefficient matrix as
a =Ra". (2.33)
Comparing equations (2.33) and (2.32), the reflection matrix is given by
R=(® -D¥) (D¥ -o). (2.34)

The reflection coefficients include the parameters of the waveguide and discontinuity.

2.7.2 Reflection and Transmission at Discontinuities in Waveguides

This section discusses the reflection and transmission matrices derived by the transfer
matrix method. Figure 2.7 represents a linear element with input and output. For a linear
mechanical system, it can be a combination of many linear subsystems, such as masses,
springs, dampers, or linear continuous systems, such as bars, beams, plates and so on.
Assuming that F and W are the internal force and displacement vectors with

subscripts ‘a’ and ‘b’ indicating the input and output positions, they can be related by

{Wa} {911 ﬂleWb}
= (2.35)
Fa 921 922 l:b

where Q. , i, j=1,2 are the elements of the transfer matrix. They can be obtained by

ij ?

applying appropriate continuity and equilibrium conditions. The transfer matrix method
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is limited for some systems, in which cases, the internal force and displacement vectors
can be related by other methods, such as the spectral element method [2]. All the

systems discussed in this thesis can be analysed by the transfer matrix method.

a} A b}

a} NN b]

W, —> W,
O— element/

F, — F,

Figure 2.7 Element j with input and output forces and displacements.

If the element is a discontinuity connecting two waveguides a and b as shown in
Figure 2.5, referring to equation (2.24), the displacements and internal forces on both

sides can be related to waves amplitudes by

W, ‘I’}a Y. a} W, ‘I’}b ¥, b}
= . i ‘¢ and = . i S r. (2.36)
Fa (I)ja (I)ja aj Fb (I)jb (I)jb bi
Substituting equation (2.36) into (2.35) and rearranging, after some lengthy
manipulation, yield

‘P}a _Qll‘Perb_leq)erb a} _ _‘Pera Qll‘P}b-i_Qqu)}b a} . (2.37)
(I)}a _szPerb _szq)}b b} _(I)era 921‘1’}) + QZZ(I)}b b}
The following introduces the method to obtain the reflection and transmission

coefficients.

Assuming that the matrix on the left-hand side is invertible, then

- - + + 7t + - - +
{aj _ lea _911ij _leq)jb _Tja Qllleb + le(l)jb a; (2.38)
b; (I)}a _921‘11?13 - szq)?b _(I)era QleP}b + QZZ(D}b b;

]

The first matrix on the right-hand side can be written as

TEa _QllTEb _leq)zb _ |:B11 B12:| . (2.39)
(I)ja _Qlejb _szq)jb B21 Bzz

By using the partitioned inverse, it can be obtained that

-1
{Cn C12:| _ {Bn B12j| (2.40)
C, Cy B, B,

where
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C,=(B,-B,B;B,) .
C,=-C,B,B,,,

C,, =-B;B,C,,

C,, =B, +B,,B,,C,,B,B,,.

(2.41)

Substituting equation (2.40) into (2.38) and comparing the result with equation (2.29),

the reflection and transmission matrices are given by

R?a = _Cll‘lﬁj-a _Clzq)é'r

ja!
ija =Cy (Qll‘ll}b + leq)}b ) +Cyp, (QZl‘P}b + sz(p}b ) ,
be = _CZl\Pera - szq);a'

Rt}b =Cy (Qlllll}b + leq)}b ) +C,, (921\11}11 + szq)}b )

(2.42)

The reflection matrix can also be obtained for a boundary by setting the terms with

subscript b to zero.

Some techniques can be used to simplify the process when only reflection and
transmission coefficients of a particular wave mode are of interest. Substituting
equation (2.29) into (2.37) and rearranging gives

— + + aa ba + — — +
Wi W -, @5 | R T =W QW+ 80,0y 1] jaj{ (2.43)
_ + 4 ab bb 4 - — - ' '

P ja _921T ib _9'22(1) ib Tj Rj _q)ja QZl\IlJ'b +922(Djb b;

J
When only one wave mode is assumed to exist in aj, by substituting aj and b; =0

into the above equation, the corresponding reflection and transmission coefficients can
be determined easily from the above equation. The next section discusses such an

example. This method can also be used to obtain the reflection at boundaries.

2.8 Case Study: Reflection and Transmission Coefficients of
Two Identical Semi-infinite Beams Connected by a

Discontinuity

In this section the general approach introduced above is employed to derive the flexural
wave amplitude reflection and transmission coefficients for a discontinuity in a
waveguide. The structure comprises two semi-infinite uniform beams connected by a

mass discontinuity at x=0, as shown Figure 2.8. For simplicity beams a and b are
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taken to have the same physical properties, such as density, Young’s modulus and cross

section. A time harmonic exciting source at x =—oo gives rise to a positive-going
bending wave, W,e"*, where W, is the wave amplitude at x =0. The incident wave
impinges upon the discontinuity at x=0 where it is partly reflected and partly

transmitted. Since there are only flexural waves in the system and there is only one

propagating incident wave in beam a, the wave vectors are expressed as

a, = {W°} and b, = {0}. (2.44)
0 0

Correspondingly the displacement and internal force vectors are

Wab Qab
W = ’ CF =4 7L 2.45
ab {awa,b/ax} ab {Mayb} (2:45)

The beams on both sides of the discontinuity are identical, so the displacement and

and

—ik,

k ik, —k
cpga=q>gb=E|k§[ 1*’} cpga=c1>5b=E|k§[' . 1*’}. (2.47)

The discontinuity is considered to be symmetric, thus

Raa _ Rbb _ |:rPP rNP j| and Tba _ Tab _ {tpp tNP j| (2 48)
0 — 0 T o — o — ' )
v Tn PN tNN

where the subscript * PN ’ indicates from propagating wave to nearfield wave. The rest

can be deduced by analogy.

Woefikbx AV |

S
2

]

x;0

Figure 2.8 A beam with a mass discontinuity at x=0.

The discontinuity in the beam may feature inertia, stiffness and damping, and can

dramatically alter the response of the structure. Depending on the specific situation, one
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or more dynamic properties of the discontinuity may dominate the others. The
discontinuity should be modelled appropriately according to the practical conditions.
Here attention is focused on a mass discontinuity whose parameters are characterised by

a point mass m and moment of inertia J .

By applying continuity and equilibrium conditions to the discontinuity, the transfer
matrix in equation (2.35) can be obtained as

10 00 o'm 0 10
O I P N [P R

Substituting equations (2.44), (2.46) to (2.49) into (2.43), after some lengthy

manipulation (see Appendix 3), yields

1 -1 1 -1 Jfr,) (-1

[ i 1 1 t [

. . Pl=1 b, (2.50)

I —pé+i =1 —ué-11|1,, i

-1 i88+1 1 98 -1t 1
where

M g I = 9K (2.51)
" pAK’ pAE C ' '

x=~/1/ A is the radius of gyration of the cross-section of the beam. « is the ratio of

the added mass to the beam mass in a length x. ¢ is the ratio of the moment of inertia

J to a moment of inertia equivalent to that of a mass pAx with a radius of gyration «.

2

Both parameters x and 9 are frequency independent. £° is the non-dimensional

frequency and is equal to (kbrc)z. By inspection of equation (2.50), it is apparent that

u& and 9% influence the reflection and transmission coefficients. iu& is the ratio of
the translational impedance of the mass discontinuity to the translational characteristic
impedance of bending waves (see Appendix 2). i9&° is the ratio of the rotational

impedance of the mass discontinuity to the rotational characteristic impedance of
bending waves (see Appendix 2). See Appendix 4 for detailed definitions. Parameters

u and 9 are chosen for the task of parameter estimation in Chapters 6 and 7.

The reflection and transmission coefficients can be obtained directly by matrix

inversion in equation (2.50). Alternatively, they can also be expressed in closed form as
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i (we)(98°) - 2ué + 298 |
T (uE+2-2i) (987 -2-2i)
2(ué - 98°+ 4)
(ué+2-2i)(9&° -2-2i) (2.52)
K —1)(u&)(9E°) + 2ué + 2i9E°
M (ué+2-20)(98° - 2-2i)
2(pg-19¢°)
(ué+2-2i)(9&°-2-2i)

From these expressions it can be seen that the reflection and transmission coefficients

PP~

PN

are functions of the frequency dependent impedance ratios, ixé and i9&°.

Figure 2.9 shows the propagating reflection and transmission coefficients as functions
of the magnitudes of the translational and rotational impedance ratios. The magnitudes
of the scattering coefficients are presented by the power coefficients. The mass-
discontinuity is considered to be rigidly connected to the beam and damping is

neglected, so p+7=1. Small values of & signify small added mass and/or low
frequency, while small values of $£° denote small added moment of inertia and/or low

frequency. If both x& and 9&£° are small, p—0 and 7 —1, so most energy is
transmitted. For large modulus of impedance ratios, o —1 and 7 — 0, which means

most energy is reflected. Therefore, a mass discontinuity cannot significantly impede
low frequency wave motion but can effectively reflect high-frequency wave motion. If
either of the magnitudes of impedance ratios tends to zero and the other tends to infinity,
both the power reflection and transmission coefficients approach one half. The reason
behind this is that the mass prevents energy transmission by the internal shear force,
while the moment of inertia by internal flexural moment [4]. At the regions where

p — 0, the phase of the reflection coefficient will have a sudden change of = (Figure

2.9(b)). At regions = — 0, the phase of the transmission coefficient will have a sudden
change of 7 (Figure 2.9(d)).

From equation (2.52), it is easy to find the regions where p=0(z=1)and 7=0(p=1)
in terms of parameters x& and 9&°. Figure 2.10 shows these regions. They are actually

the contour lines for p=0 and 7 =0 in Figure 2.9.
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phase, rad
N ORNWS O

10 10" 0 -1

phase, rad

Figure 2.9 Magnitudes (squared) and phases of the flexural reflection and transmission
coefficients for the mass discontinuity: «¢&, magnitude of translational impedance ratio;

&%, magnitude of rotational impedance ratio: (a) o ; (b) phase of r.,; (c) 7 ; (d) phase

of t,.
10°¢
ot T 1
3 =0
W10’ 1
£ p=0
107} .
2
10 n n R | n n M| n n PR n n Lo
107 10" 10° 10" 10?
us

Figure 2.10 Regions of p=0 and 7 =0 for the mass discontinuity.
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2.9 Summary

This chapter briefly introduced the longitudinal and flexural wave equations, their
solutions and some fundamental concepts regarding wave speed and wavenumbers. The
damping effect of metal waveguides is usually very small. When a wave propagating
along the waveguide impinges on a discontinuity, a reflected wave and a transmitted
wave (if there exists another waveguide on the other side of the discontinuity) will be
generated. Thus the wave amplitude reflection and transmission coefficients were
defined accordingly. From the view point of energy, the power reflection and
transmission coefficients were also introduced. A general wave approach was reviewed
and employed to derive the reflection and transmission coefficients in terms of the
parameters of the boundaries and discontinuities in waveguides. This approach can be
applied to complex structures in which various wave modes are accommodated. Finally
a case study was demonstrated on the reflection and transmission coefficients of two

identical semi-infinite beams connected by a mass discontinuity.
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Chapter 3 Measurement of Reflection and

Transmission Coefficients

3.1 Introduction

The final goal of this thesis is to estimate the parameters of a discontinuity in a
waveguide from measured wave reflection and transmission coefficients. This can be
achieved by two steps: the first is to obtain the reflection and transmission coefficients
from transducer array measurements, and the second is to estimate the parameters of the
joint from these measured coefficients. Clearly, the precision of the measured reflection
and transmission coefficients is crucial to the accuracy of the parameter estimates of the
discontinuity. This chapter considers the accuracy by which the flexural reflection and
transmission coefficients of a discontinuity may be estimated from noisy transfer

function measurements.

A Wave Amplitude Decomposition (WAD) approach can be used to estimate
amplitudes of various waves from transducer array measurements [58, 65]. A series of
transducers are attached at various points to the waveguide. The spectra of their outputs
are post-processed to get the wave amplitudes in the frequency domain. In references
[58, 65] the design of the transducer array was discussed with respect to how to achieve
good numerical conditioning according to the number of effective waves in the
waveguide. However, the quality of the estimated amplitudes depends not only on the
conditioning of the problem, but also on the accuracy of the measured data. By
measuring the responses of transducers on either side of the discontinuity, the wave
amplitudes on each side can be estimated and in turn the reflection and transmission
coefficients of the discontinuity can be obtained from equation (2.14). In practice,
measurement noise contaminates the measured data (transfer functions), and
consequently affects the estimated reflection and transmission coefficients. Here a

Gaussian noise model is introduced to the simulated measured data in the frequency
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domain to examine the effects of measurement noise on the estimated reflection and
transmission coefficients. Closed form solutions for the mean values and variances of
the noisy reflection and transmission coefficients are given. Then Monte Carlo (MC)
simulations and experiments are performed to illustrate the applicability of the closed

form solutions.

In the next section the WAD method is reviewed. Then this method is applied to a
discontinuity connecting two semi-infinite waveguides in Section 3.3. The flexural
reflection and transmission coefficients for the discontinuity are found from the
decomposed amplitudes. In Section 3.4 a Gaussian noise model is applied to the
transducer measurements to simulate the influence of measurement noise. Considering
the noise as a perturbation on the ideal output of the measurement, expressions are
derived for the mean and variance of the power reflection and transmission coefficients.
The parameters that influence the variance of the power reflection and transmission
coefficients are discussed. The statistical distribution of the power reflection coefficient
is also investigated given that the noise on the transducer measurements is assumed to
be Gaussian. Effects of nearfields are considered in Section 3.5. Section 3.6 gives the
MC simulations for the reflection coefficient for a mass discontinuity and the mean and
standard deviation of these simulations are compared with the closed form solutions.
Section 3.7 reviews how the flexural wavenumber may be estimated using
measurements taken by a transducer array. Section 3.8 presents the results of
experiments on a beam with steel blocks attached. Flexural reflection and transmission

coefficients are estimated based on the method introduced in the previous sections.

3.2 A Wave Amplitude Decomposition Approach

A brief outline of a WAD approach is reviewed in this section [58, 65]. This approach is
used to identify the positive- and negative-going wave amplitudes at a point in a
waveguide. The method is demonstrated on flexural waves here but it can be extended

by analogy to various other waves.

Figure 3.1 shows a measurement system comprising n transducers at n locations on a
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waveguide. The aim is to decompose the wave amplitudes at point x = X,. The outputs

(displacement, or velocity or acceleration) of the n transducers are given in terms of the

wave components by

W=AA (3.1)
where
W(x) e o gThn gl gl a,
wo WO (e et e e
W('Xn) e—i;q,xn e";bxn eik;xn ek;’x" Zg

a, and ay are the propagating and nearfield wave amplitudes respectively. W (x;) is
the measured output at point x=x ( i=12,---,n ). Measurements of flexural

wavenumber k, will be discussed in Section 3.7. If the number of measurements is less

than the number of wave components, i.e. the system is underdetermined, additional
conditions are required to yield a solution. More specifically, if the number of
measurements is chosen to match the number of wave components, in which case A is
square, then the wave components are given by

A=A"W (3.3)
In the case of an overdetermined system, the wave components may be found in a least-

squares sense as
A=(A"A) AW (3.4)

The superscript H indicates the conjugate transpose of a matrix.

The estimation of wave amplitudes depends on the existence of the inverse of matrix A,

or A"A in the case of an overdetermined system. Normally, if the transducer spacing is
uniform and the same physical variable is measured at each location, the matrix is
singular when the spacing is zero or an integer number of half-wavelengths. When the
transducer spacings approach those which result in singularity, the matrix is ill-
conditioned and may cause unacceptable errors in the calculated wave amplitudes. This

imposes limits on the transducer spacings. It should be noted that wavenumber k, must

be known in equations (3.3) and (3.4).
A hybrid measurement system which includes a variety of transducer types, allowing
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more than one vibrational quantity (e.g., acceleration and strain) to be measured can
give better conditioning of this method [58]. In this thesis, equally spaced accelerometer

arrays are employed.

Figure 3.1 Local coordinate of transducers.

3.3 Estimating Reflection and Transmission Coefficients by

Wave Amplitude Decomposition

In this section, the reflection and transmission coefficients of a discontinuity in an

infinite beam are derived by using the WAD method introduced above.

Consider two identical semi-infinite waveguides lying along the x-axis which are

connected by a joint at x=0, as shown in Figure 3.2. Two (positive- and negative-
going) flexural waves a* and b~ are incident upon the discontinuity at x=0, which

give rise to propagating and nearfield reflected and transmitted waves on both sides.
Two transducers are placed with spacing A on each side of the joint. The mid-point of
each pair of transducers is chosen as the local coordinate origin, which is located at
x=-—a and x =b respectively in the global coordinate system. The intention here is to
estimate the flexural reflection and transmission coefficients of the joint by applying

WAD in the local coordinate systems.

a“ L ag NV OV bg b" i
a vy A ag | 2V S ba b A~
1. 2 3 4
e
4 A A A X —> 400
2 2 2 2
X=-a x=0 x=Db

Figure 3.2 Waves in two semi-infinite waveguides connected by a joint.
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As is known, the nearfield waves are only of significance around the discontinuities,
such as the excitation point and the joint. The transducers are considered to be far
enough away from these discontinuities that the influence of the nearfields on the
accelerometer outputs can be neglected. Therefore, the two transducers on each side are
only used to estimate the amplitudes of the propagating flexural waves. The vectors and
matrix in equation (3.1) are then simplified as

W (x —ikyX, iky X +
wo WL % land A={% ] (3.5)
i (Xz) e X2 alXo a,

Applying this equation to the left-hand-side the transducer pair where x, =—-A/2, the

outputs of the transducers can be written as

W giked/2 gikA/27] (o W elet/2 g2 g+
1 — _ _ Pa and 3 — _ _ Pb (36)
W2 e—lkbA/Z elkbA/Z a;a W4 e—lkbA/Z elkbA/Z a;b
where the subscripts 1, 2, 3, 4 indicate the positions of transducers; subscripts a and b

denote waveguides. The wave amplitudes at the local origins can be obtained simply by

solution of the above equation. For example,
a’ 1 eikbA/Z e—ikbA/Z W
P ———— s R b (3.7)
ap, | 2isink,A|e ™2 eMd2 | |W,

Here the singularity of a matrix must be considered. When k. A=nz (n=0,1,2,---), the
matrices in equation (3.5) become singular. In this case, the transducer spacing is equal
to either multiples of one wavelength in which case the transducers observe the same
motion, or odd multiples of half a wavelength in which case the transducers move in
anti-phase. This method fails to identify the positive- and negative-going waves.
Therefore, there is a maximum separation for the transducers within a given frequency

range. Since k, =27z/4 (A is the wavelength), the transducer spacing must be less than

half the shortest wavelength.

Referring to equation (2.29), at the discontinuity (indicated by subscript “0 ), the

propagating reflected and transmitted waves are related to the incident waves by

a: r.aa tba a+
Oa — . " 0a ’ (38)
gy t* r” || ay,

where r® is the propagating reflection coefficient and t* is the transmission

coefficient.
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If the discontinuity is considered to be physically symmetric, the reflection and
transmission coefficients are such that
=r® =r and t* =t™ =t (3.9)

In order to estimate the reflection and transmission coefficients from transducer array

aa

r

measurements, the local coordinate systems need to be related to the global coordinate
system. Referring to equation (2.27), the wave amplitudes at the discontinuity and

midpoints of the transducer pairs can be related by

+ —ikya + ikyb +
SR A I Ll PR R
aOa O e aPa aOb O e an

Substituting equations (3.9) and (3.10) into equation (3.8), the reflection and
transmission coefficients can be expressed in terms of the wave amplitudes defined in

the local coordinate systems as

—ik —ik,b - Ak
| | ape ™" ape ™ apae' e (3.11)
t - a.e —ik,b ate —ik,a at elkb !
P Pb Pa Pb

The wave amplitudes a,,, a,,, a5, and a,, can be expressed as functions of transducer

outputs from equations (3.6) by matrix inversion. Then substituting these wave
amplitudes into equation (3.11) gives the reflection and transmission coefficients in

terms of transducer outputs.

For simplicity, from here on a simple case is considered where there is only one

incident wave in the left-hand waveguide, i.e. a,, =0 . Then the reflection and

transmission coefficients can be expressed in terms of the transducer outputs as

Wle—ikbA/Z _erikbA/Z k2 t W elkbA/Z W eflkbA/Z |kb(a+b)

r=-— - -
ik,A/2 —ik,A/2 ! ikyA/2 —ik,A/2
We™* —W,e ™ We™ " -W,e™

(3.12)

Whilst the reflection and transmission coefficients are in theory determined by the
properties of the waveguides and the discontinuities, the estimated reflection and
transmission coefficients given by equation (3.12) depend on the wavenumber,
transducer spacing and locations as well as the transducer outputs. Again by substituting
equation (3.6) into the denominators of the above expressions, it can be concluded that

when k,A=nz (n=0,12,---) the denominators will become zero, which should be

avoided.
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3.4 Analysis of Influence of Measurement Noise

The above discussion does not consider the influence of noise on the measurement of
the reflection and transmission coefficients. However, in practice, measurement noise is
unavoidable. In this section a noise model is introduced into the simulated measured
transducer outputs. Then the effects of measurement noise on the estimated reflection

and transmission coefficients are investigated. Since the terms k,a and k,b in equation

(3.12) are typically very large and change rapidly with frequency, the phases of the
reflection and transmission coefficients are sensitive to combinations of errors on
wavenumber and transducer locations x=—a and x =D, especially at high frequencies.
Consequently, parameter identification methods for the discontinuity might judiciously
use only the moduli of the estimated reflection and transmission coefficients. This
chapter focuses on the influence of measurement noise on the moduli of the estimated
reflection and transmission coefficients. For convenience, the statistical distribution of
the squared moduli of these coefficients, i.e. the power reflection and transmission
coefficients, will be analysed here.

3.4.1 Noise Model

The measured outputs are assumed to be contaminated by noise. This can be expressed
as

W, =W, + N, (3.13)
where V\A/i is the estimated quantity, W, is the true quantity and N, indicates the noise on
the measured output of transducer i. The noise model can be selected in many ways,
but here it is applied in the frequency domain and is represented as

N, =me" (3.14)

+

. . . . . 2
where m. is Gaussian distributed with zero mean and variance o/ |a;,| and the phase

¢ is uniformly distributed between —z /2 and = /2. m, is chosen to be Gaussian since

the Gaussian distribution often provides an adequate approximation to the distribution

of many measured quantities. Zero mean indicates the noise is purely random and
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without systematic errors. a,, is included here so that the noise on the transducer
readings is assumed to be multiplicative, i.e. proportional to the amplitude of the
incident wave. &7 is assumed to be relatively small, i.e. much smaller than unity.
Therefore, N, can be considered as a perturbation on the output measurement. For
simplicity, N, are assumed to be uncorrelated. Since the noise is random, its phase is

regarded as uniformly distributed between —z and 7. However, with the amplitude
being Gaussian with zero mean, it is equivalent to saying that the phase component of

the noise is uniformly distributed between —z /2 and 7 /2.

3.4.2 Statistical Estimates of the Noisy Power Reflection Coefficient

Given the noise model described above, the mean values and variances of the power

reflection coefficient are estimated in this section by a perturbation method.

Substituting the noisy outputs defined by equation (3.13) into the first expression of
equation (3.12), after some lengthy algebra, the noisy reflection coefficient is given by

polllta) (1+a) g?ha _p 18 (3.15)
a5, (1+¢,) 1+g,

where

_e—ikbA/Z Nl +eikbA/2 N2 e2ikba - eikbA/z Nl _e—ikbA/Z N2
- + - ' 2 = -+ -
2ira;, sink,A 2iaj, sink, A

& =

(3.16)

can be considered as perturbations on the noise free values of wave amplitudes, which

means that the noise levels of the “measured” transducer outputs are relatively small.
Here it is assumed that |&,| <1, then
F= r(1+gl)(1—gz+522 +ot (1) g +) (3.17)

Recalling the definition of power reflection coefficient given in Chapter 2, multiplying

each side of equation (3.17) by its own complex conjugate and neglecting the terms in

which the summed indices of ¢, &,, & or &' are higher than the second order (the
condition that || <1 and |¢,| <1 must be assumed), the estimated power reflection

coefficient can be approximated by
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R l+e+e —g -l + 62+ &2
,0%,0[ 178 —&67&6 T&E TE . (3.18)

+e &g +e,8) —E,—€ €y —&'e, — g€
Substituting for & and ¢, from equation (3.16), taking the expectation of both sides

and neglecting the terms with second and higher orders of o/ or & gives the mean

value of the estimated power reflection coefficient (see Appendix 5 for the detailed
derivation of this mean and other expressions below):

= p {2 Re[re‘2ikba (e"'o7 +e ™"} )} +(1+p) (07 +03 )} , (3.19)

t el A
4sin“ kA
where Re indicates the real part of a complex number. Since k,a is typically very large

and changes rapidly with frequency, the exponential term e %*?

in equation (3.19)
causes fluctuations to the mean value of o . Considering that the magnitudes of r, p

and the exponential terms are all bounded by unity, upper and lower bounds for the

mean value can be approximated by

2 2
o, t0,

. 3.20
sin’k,A (3.20)

PSS p+

Therefore, the mean value is always no less than the noise free value, which means the
expectation is biased.

The variance of a variable quantifies the error dispersion and is defined by

ol = E[Xz]— E?[X], where E[X] indicates the expectation of a variable. Following

similar analysis to the manipulation of the mean value of o, the variance of p is given
by

ol = m{z Re re ™ (%407 +e7%'07) |+ (1+ p)(of + o)}, (3:20)

from which the following upper bound can be obtained:

2p(c?+o7
ol < ﬁ. (3.22)
b

This upper bound can be seen to depend on:
1) the sum of the variances of the two transducers, o +o7. The smaller the noise

variances of the transducers, the lower of the variance of the estimation. It also can

be seen that the sequence of the transducers does not affect the estimation.
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2) the true value of the power reflection coefficient, p. This is a consequence of the

noise model chosen.
3) the transducer spacing, A. The optimum transducer spacing is a quarter wavelength

(where sink, A =1). Poor estimates occur when the transducer spacing is close to

multiples of one half wavelength.

The conditions for the validity of equations (3.17) to (3.22) will be discussed here. The
moduli of the noise contaminations for output measurements are assumed to be
Gaussian. For a Gaussian distribution, data with extremely large deviations still arise

occasionally though they are relatively infrequent. So it is not guaranteed that the

conditions |&| <1 and |¢,| <1 are definitely satisfied for every measurement even if

the simulated noise level on the transducer measurement is assumed to be very small.

However, if both the mean values of |&| and |¢,| are much less than unity, then the first

order approximation is usually a good estimation. With reference to equation (3.16), the

mean values of |&;| and |¢,| are respectively

ol +o; _\oi+o, (3.23)

Hel = 2plsink,A|’ Hel = 2[sink,A|

Since /p <1, it can be said that when

’ 2 2
% 1% <1, (3.24)

2plsink,4|
both M and M, are much less than unity. Under this condition, equations (3.17) to

(3.22) can be regarded as good approximations.

3.4.3 Statistical Estimates of the Noisy Power Transmission

Coefficient

In this section the mean value and variance of the estimated power transmission

coefficient are given.

Similarly to equation (3.15), the estimated transmission coefficient with simulated

measurement noise is given by
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fzme%(a*b) =t1+83 (3.25)
a, (1+¢,) l+g,
where
koA/ZN] a-ikpA/2 )
g = Nam€ "Ny e (3.26)

2ita,, sink, A
Is the perturbation on the transmitted wave amplitude. With the same manipulations as
those of the reflection coefficient, the mean value and variance of the estimated power

transmission coefficient 7 can be approximated respectively by

ﬂ?ﬁr+m[r(o&2+0§)+o§+oﬂ (3.27)
and
o’ im[r(af+a§)+0§+af]. (3.28)

The mean value of 7 is also biased. Since the waves on each side of the discontinuity
are identified by a transducer pair, so the noise on all of the four transducers contributes

to the variance of 7. The effect of the factor sin®k,A is the same as that of the

reflection coefficient. The condition for good approximations of equations (3.27) to

(3.28) are the same as those for the reflection coefficient.

3.5 Effects of Nearfields

The analysis presented in the above sections assumes that the nearfields are negligible.
This section discusses the effect of the nearfield terms. For simplicity, the nearfields on
the left-hand side of the discontinuity are considered here. The nearfields decay
exponentially with distance, so they have more effect on the transducers closer to the
discontinuity. In this case the nearfield at transducer 2 will be studied. The amplitude of
the combined left-going nearfield at the joint can be expressed in an analogous way to
the propagating wave (see equation (3.8)) as

ay, =ra;, +trag, . (3.29)
Referring to equation (3.1), the total output at transducer 2 including nearfield effects

becomes
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—ikyA/2 ikyA /2

W, =a;.e +a,, et a e (3.30)

Consider the case with only one incident wave (with t*a , disappearing in equation

(3.29)), and with reference to equations (3.10) and (3.8) (notice that r;* =r), the above

equation can be expressed as

—ik,A/2

W2 — a;ae + r:aa;aeikb(—2a+A/2) + rﬁaagaekb(—a+A/2) . (331)

—a+A/2

In the nearfield term r*a; (%"~ the amplitude of r*a;, is comparable to that of

—a+A/2

the propagating wave term. However, the component glol ) decays exponentially.

Table 3.1 lists the effect of this exponential component in the nearfield term in terms of
wavelength. For example, if the distance |—a+A/2| is equal to one wavelength, the
amplitude of the nearfield wave will be reduced to 0.2% of its original value; and less

than 5% over a distance of half a wavelength. If the effect of the presence of the

nearfield is much smaller than that of the noise, the nearfield can be neglected.

Table 3.1 Amplitude reduction of nearfield waves with distance.
(A denotes wavelength)

Distance, |-a+A/2| plo(-a+a12)
1 A 0.2%
2 0.731 1%
3 0474 5%

3.6 Numerical Simulations

In this section, MC simulations are performed for a thin, homogeneous, Euler-Bernoulli
beam to which a mass discontinuity is attached. The intentions are to investigate the
accuracy of the closed form solutions for the mean values and variances of the estimated
power reflection and transmission coefficients, and also to investigate the statistical
distribution of the estimated coefficients given a Gaussian noise model for the measured
outputs. For simplicity, it is assumed in what follows that all the transducers have

similar accuracy.
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3.6.1 Parametric Model for the Discontinuity

The beam is assumed to be infinitely long. The mass/inertia discontinuity is considered
to be rigidly attached to the beam. The parametric model introduced in section 2.8 will
be employed here to simulate the mass discontinuity. Table 3.2 lists the properties of the
beam and the discontinuity. Correspondingly, the non-dimensional parameters are

1 =74.019 and 9=1.645x10". These data relate to the experiments which will be

discussed in the next section.

Table 3.2 Properties of the beam and discontinuity (SI units)

beam discontinuity
densi Young’s width x thickness, moment of
ensity, p modulus, E bxh mass, M jinertia, J
7800 194 %10° 0.050x0.006 0.300 2.0x10™*

3.6.2 Simulation Results for the Power Reflection Coefficient

The results of MC simulations on the power reflection coefficient are given in this
section. Conclusions below are all drawn regarding this set of MC simulations. Figure

3.4 shows the MC simulations for the case with noise level o, = o, =5%. The x-axis
k,A is proportional to the non-dimensional frequency &. In this case, k A =29.412¢&

when the transducer spacing A=0.05 m. MC simulations are performed at 100

frequencies at equally spaced wavenumbers in a range of 0<kA<3.5. At each

frequency, 10,000 calculations are performed with random perturbations on “measured”
transducer outputs. The mean value of MC simulation and the true value of the power
reflection coefficient are also shown in the figure. The deviation and fluctuation of the
simulated points can be seen from the “spread” of the data. For frequencies such that

k,A>0.28, the transducers are more than one wavelength from the discontinuity and

the nearfields can be neglected.

When p =0, the energy will be totally transmitted through the discontinuity. Referring

to equation (2.52), I, =0, i.e. u9&° +29£% -2 =0. Substituting the values of 4 and
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& into the this equation, it gives £ =0.042, thus k,A =1.235. Here it should be noticed

that & =k «, where k =h/+/12. When =0 and t,, =0, i.e. 9% —u&+4=0. In this
case £=0.086 and k,A=2529 . The energy will be totally reflected from the

discontinuity.

Figure 3.5(a) shows the mean value of the estimated power reflection coefficient o,
obtained from MC simulations with a transducer spacing A =0.05m and transducer
noise standard deviation levels o, = o, =5%. Also shown is the noise free value, the
approximate solution given by perturbation (equation (3.19)), and the resulting upper
bound given by equation (3.20). The MC simulation is close to the approximate solution
over the whole frequency range, and the upper bound of this is fairly conservative. The
power reflection coefficient is estimated well except near zero frequency and kA =r
where bias in the estimate is most apparent. Near these frequencies the sensor spacing is

nearly 0 and 1 times half a wavelength respectively. This causes sink,A=0 in

equations (3.19) and (3.20).

1.5

p

0.5

0 05 1 15 2 25 3 35
kb.\, rad

Figure 3.4 Monte Carlo simulations of the power reflection coefficient: o, = o, =5%,

a=120mand A=0.05m: ., p; ——, E[p]; =, E[p].

Figure 3.5(b) gives the corresponding estimates for the variance of p. The approximate

solution given by equation (3.21) is again in close agreement with the MC simulations.

The upper bound given by equation (3.22) appears fairly conservative except near zero
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frequency and k,A =7 . This is due in part to fluctuations in the approximate solution

—2ikpa

for p arising from the term e in equation (3.21). The exponent, k,a can become

very large, especially at high frequencies, so the variance changes rapidly with

frequency. The estimate of the variance is smallest at about k,A =1.2, where the power

reflection coefficient is the smallest. This is due to the definition of the noise model.

AN

210"

@ |

Figure 3.5 First order approximations and MC simulations of (a) the mean value and (b)

the variance of p: A=0.05mand o, =0, =5%: ----- , p (noise free); — ,
perturbation solutions; . , Monte Carlo simulations; ——, upper bound of perturbation
solutions.

The effect of noise level was similarly investigated using the approximate solution of
equation (3.22). Figure 3.6 contrasts the effect of transducer noise levels of 1% and 5%
for a fixed sensor spacing of A=0.05m. The results are expressed in terms of the
standard deviation normalised by the true value in order to assess the extent to which
the wave decomposition process amplifies noise on the transducers. The first peak at

about k,A=1.2 is inevitable since there is no true reflection at this frequency to

measure, and the second peak corresponds to a half-wavelength transducer spacing. At
best (i.e. at frequencies for which the transducer spacing is a quarter wavelength) the
noise on the power reflection coefficient is twice as large as that of the individual sensor
measurements. The imperative for high fidelity measurements is clear if high precision

of the reflection coefficients is desired.

-45-



Chapter 3 Measurement of Reflection and Transmission Coefficients

cp/p

10 0 0.5 1 15 2 25 3 3.5

Figure 3.6 Closed form solutions for the upper bound normalised standard deviation of
pi—— 0,=0,=5%; - , 0,=0,=1%.

If the mass or moment of inertia changes, usually the frequencies where p=0 and
p =1 will change correspondingly. If the discontinuity is a spring-like discontinuity,
the trend of p is different from that of the mass and moment of inertia discontinuity.

However, the noise on the power reflection coefficient keeps a similar trend (see Figure

3.4), i.e. when p is small, the noise is small; when p is large, the noise becomes large.
Also at frequencies where k A =nz , the variance of p is very large because of the ill-

condition of the wave amplitude decomposition method.

3.6.3 Statistical Distribution of the Simulated Noisy Power Reflection

Coefficient

This section investigates whether the MC simulation points obey a Gaussian distribution
given the noise model on the output measurements. The following analysis is based on
one MC simulation (one set of random noise seeds in the Matlab code) and conclusions

are therefore limited.

The distribution range of 10,000 MC simulations of p at each frequency is divided into
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100 intervals. Then the probability density of the distribution can be obtained by
counting the number of samples at each interval. The concepts of skew and kurtosis are
introduced first in order to describe the distribution characteristics of the MC
simulations. Skew measures the degree of asymmetry of a distribution. It is defined by
Eﬂﬁ_ﬂf}
7, = — (3.32)

where E indicates the expectation, X is a random variable, # and o are the mean and

standard deviation of X respectively. Negative values for the skew indicate data that are
skewed left and positive values indicate data that are skewed right. Any symmetric data
should have a skew equal to zero. +1 or —1 will be very extreme examples of skew
defined in equation (3.32) [66]. Kurtosis is defined by
E|(n)']

Jix = (3.33)
Kurtosis measures the data’s peakedness relative to a normal distribution which has a
kurtosis of 3. High kurtosis indicates a "peaked" distribution and low kurtosis indicates
a "flat" distribution. Equation (3.33) for kurtosis will yield values around 4 for marked
leptokurtic distributions with sharp middles and flattened tails. A value of around 2 will

indicate platykurtic distributions with rounded middles and thin tails [66].

Figure 3.7 shows the probability densities of the distribution of p at three typical
frequencies with o, =0, =5% . The probability densities are normalised so that the
distributions have zero mean and unit variance. Figure 3.8 shows the skew and kurtosis
of the distribution of the MC simulations on o . From the whole trend, it can be seen
that the distribution of the MC simulations of p with lower measurement noise appears

more Gaussian. All the skews are positive, which means that all the data are skewed
right. But with the lower noise level of “measurement”, the skew of the distribution
approaches zero. This is because the power reflection coefficient is defined as the

squared modulus of the amplitude reflection coefficient. When k A is close to zero or

7, the distribution of MC simulations are skewed significantly to the right. This is due
to the data having lower bounds and the deviations of the data at these areas become

very large.
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deviation
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Figure 3.7 Normalised probability density of p with zero mean and unit variance for

50: ——, k,A=051; —o—, k,A=152; —,

A=247; ---—-, Lap(0,0.9) ; ——, Gaussian.
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The kurtosis shown in Figure 3.8 has a marked leptokurtic distribution, which means the
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Figure 3.8 Skew and Kurtosis of the MC simulations on p.
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distributions have a narrow middle and a great concentration in the tails. This can be
seen from Figure 3.8: the sampled data have a narrow middle compared to Gaussian
distribution. In this respect, the distribution of the sampled data except for the
frequencies with remarkable skews shows a characteristic of a Laplace distribution. The

probability density function of Laplace distribution is defined by

_x=4

P(X) :%e z (3.34)

The parameters for the Laplace distribution in Figure 3.7 are =0 and o =0.9. The

kurtosis for the Laplace distribution is 6.

3.7 Wavenumber Measurements

This section reviews a method for measuring the flexural wavenumber directly. In order
to obtain the wave amplitudes and hence the reflection and transmission coefficients,
the wavenumber of the waveguide needs to be known. The flexural wavenumber from

Euler-Bernoulli beam theory can be expressed as

k, =4/’ pAlEl . (3.35)

Due to inaccuracies in the density, the Young’s modulus and the dimensions of the
waveguide, equation (3.35) is not a reliable estimate for the wavenumber of a practical

waveguide. Alternatively, a method is presented to measure the wavenumber directly.

Consider the one-dimensional waveguide shown in Figure 3.9. Three points are linearly
distributed along the neutral axis of the waveguide. All of them are considered to be far
enough from the excitation point to neglect the nearfields. Location 2 is chosen as the
origin of the coordinate system. By referring to equation (3.1) and neglecting the

nearfields, the outputs at the three points can be obtained by

W gkt g-iked

1 +

a
W,+=| 1 1 { f}. (3.36)

W e—ikbA eikbA aP

3
Thus

Wy + Wy =2C0sk,A . (3.37)

2
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The wavenumber can be derived from the above equation as
1 W, +W.
k, =—arcos———= (3.38)
A 2W,
The optimal transducer spacing, A can be determined after some pre-measurements
based on several reasonable values of A. Note that the optimal value of A depends on

which frequency is of most interest.

<
<«

S 16 2 - 36 -

Figure 3.9 Transducer array for wavenumber measurements.

Any response quantity varying time harmonically under the passage of a wave, such as
the displacement, velocity, acceleration, shear force and so on, can be used as the output
of the transducers. Whichever is chosen is only a matter of convenience. In the
experiments, three accelerometers were placed equidistantly on the centre line of the

beams. The acceleration ratios W, /W, and W, /W, were measured in order to obtain the

wavenumber in equation (3.38).

Referring to equation (3.35), the flexural wavenumber can also be written as
k, =BT (3.39)

where f =w/27 and g =44x° pAlEl . Substituting equation (3.39) into (3.38) gives

AT = arccosv%. (3.40)

2

Then S can be obtained for each frequency. S can also be fitted over many

frequencies by using the Moore-Penrose inverse, thus
1,1\t ¢
'BZX(Q) (p) ¢ O. (3.41)
where ¢ and ® are vectors whose elements are given by \/T, and

arccos[(Wl +W3)/2W2]i respectively. Subscript “i” indicates the ith frequency. Once

£ is known, the wavenumber can be obtained easily from equation (3.39).
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Due to the damping of the waveguide and measurement noise, (W1+W3)/2\N2 is

complex instead of real. Since the damping of metal materials is typically very small,
the imaginary part is usually very small so that it can be neglected. In the following the

damping is set to zero.

3.8 Experiments on Mass Discontinuities

This section discusses the measurements of reflection and transmission coefficients of a
beam with attached mass and moment of inertia discontinuities. The intention is to
investigate the characteristics of measured reflection and transmission coefficients of

mass and moment of inertia discontinuities on a beam.

3.8.1 Experimental Setup

The structure under test was a steel beam suspended by wire at three locations. Figure
3.10 shows the experimental rig. A sandbox was placed on each end of the beam to
approximate anechoic conditions, although the system model developed here can be
applied to waveguides of both infinite and finite length. The beam was excited in the
transducer direction with a random signal by an electrodynamic shaker through a force
gauge. The mass discontinuity was formed by gluing two steel blocks to either side of

the beam, which is shown in Figure 3.11.

Only the flexural wave in the beam is of interest here. A stinger with relatively large
axial but small bending stiffness was incorporated between the shaker and force gauge.
The excitation point was chosen on the centre line of the beam. All of these precautions
were taken to avoid torsional excitation as much as possible. Note that the resonance
frequency of the force gauge and stinger system should be out of the frequency range of

interest, otherwise the measured data will be contaminated.
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Figure 3.10 Experimental setup for measurements on a beam with a mass and moment
of inertia discontinuity: (a) actual experimental rig; (b) block diagram.

Figure 3.11 Steel blocks attached to the beam as discontinuities.
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3.8.2 Wavenumber Measurements

Before measuring the reflection and transmission coefficients, the flexural wavenumber

of the beam was measured using the method introduced in Section 3.7,

The algebraic average of the acceleration ratios between locations 1 to 2 and 3 to 2

(Figure 3.9) is shown in Figure 3.12. The imaginary part is nearly zero. The real part

can be considered as the value of (W, +W,)/2W, needed in equation (3.38). Letting the

real part equal cosk,A gives the estimation of the wavenumber of the beam. By using

equation (3.41), £ =0.851 is obtained in the frequency range 500-3000Hz.

il (b) |

Im
o
|

s ]

"0 1000 2000 3000 4000 5000 6000 7000

Frequency, Hz

Figure 3.12 Algebraic average of the acceleration ratios for wavenumber measurements
of a beam: (a) real part; (b) imaginary part.
Figure 3.13 shows the measured real part of (W, +W,)/2W, compared to cosk,A based

on #=0.851. A very good agreement is obtained. In what follows £ =0.851 is used

for the estimation of the reflection and transmission coefficients of a mass discontinuity

in the beam.
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Figure 3.13 Wavenumber of the beam: —, measured real part of (W, +W,)/2W, ;
....... , cosk, A with fitted wavenumber at frequency range 500-3000Hz ( S = 0.851).

3.8.3 Reflection and Transmission Coefficients

This section discusses the measurements of the reflection and transmission coefficients
of the steel blocks attached to the beam. The dimensions of the beam and the properties

of the blocks are listed in Table 3.3. The beam is of same material as the blocks, for
which the density is p =7.82x10°kg/m®. The method introduced in Section 3.2 is

employed here to decompose the wave amplitudes on both sides of the discontinuity

Table 3.3 Dimension of the beam and steel blocks (SI units).

Beam block 1 block 2 block 3
long-thin short-thin short-thick
Width, b 0.050 0.050 0.050 0.050
Thickness, h 0.006 0.010 0.010 0.020
Length, | 6.060 0.040x2 0.030x2 0.030x2
Mass, m / 0.313 0.235 0.469
Moment of / 207 x10°° 93.6x10°° 187x10°°
inertia, J
1 / 76.955 57.735 115.421
9 / 1.699x10* 7.679x10° 1.535x10*
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from pairs of transducer measurements. The left-hand side local origin of the transducer
pair was located at x=-1.075m and the right-hand side was at x =1.000 m. The
transducer spacing is A=0.050m for which the optimal frequency is about 1400Hz
where the transducer spacing is equal to a quarter wavelength and the worst frequency is
about 5500Hz where the transducer spacing is equal to half wavelength. Above 60Hz
the nearfields can be neglected (influence on the wave amplitude less than 0.2%). The

non-dimensional parameters & =0.066 and k,A =1.903 at 2000Hz, for example.

The FRFs of the accelerations of the four locations to the exciting force at each
frequency were measured and their magnitudes are shown in Figure 3.14. Figure 3.15
illustrates the positive- and negative-going wave amplitudes at the local origins of the
transducer pairs, which are decomposed from the measured FRFs. Figure 3.16 gives the

power reflection and transmission coefficients, o and 7 of block 1 estimated from the

decomposed wave amplitudes based on assumptions described in Section 3.3, which are
that there is one incident wave from each side of the discontinuity and the discontinuity
itself is symmetric. This actually assumes the presence of the end reflections of the
beam. The decomposed wave amplitudes, and reflection and transmission coefficients
can interpret the behaviour of the measured FRFs. For example, below 1000Hz, since
the reflection from the discontinuity is small, the measured FRFs are of similar
magnitudes. Above that frequency, the reflected wave (dashed line in Figure 3.15)
becomes larger, and the transmitted wave (dotted line in Figure 3.15) becomes smaller.
Therefore the FRFs on the left-hand-side get larger and correspondingly the FRFs on
the right-hand-side become smaller. From about 2800Hz the transmitted wave begins to
increase slowly, which causes the increase of the measured FRFs on the right-hand-side.
The fluctuations of the measured left-hand side FRFs originate from the standing waves
on the left-hand side beam. They are caused by the distance from the transducers to the

mass.

From Figure 3.15 it can be seen that the influence of the reflected wave from the right-
hand side end of the beam is relatively large below about 2200Hz, but above that it
becomes nearly zero. The decomposition method fails at very low frequencies and
5400Hz where the transducer spacing is about half wavelength. This is consistent with

the results of Section 3.6.
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Figure 3.14 Magnitudes of the measured accelerances for block 1: —, location 1 in
Figure 3.2; ... , location 2; ... , location 3; - - _, location 4.
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Figure 3.15 Decomposed wave amplitudes of at the centres of the transducer pairs for
block 1: —, positive-going, left-hand-side; ------- , Negative-going left-hand-side; -
positive-going, right-hand-side; - - -, negative-going, right-hand-side.

In Figure 3.16 the estimated power reflection and transmission coefficients are poor
around zero frequency and 5400 Hz where k,A = . This is because of the ill-condition
of the wave amplitude decomposition method. The estimated scattering coefficients are
relatively noisy at frequencies where they are large. In this sense, the noise model

chosen in section 3.4.1 is reasonable.
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Figure 3.16 Decomposed power reflection and transmission coefficients of block 1.

Figure 3.17 gives the sum of the decomposed power reflection and transmission
coefficients. Below 3000Hz it can be seen that they approximately sum up to unity. This
means the damping effect of structure can be neglected below 3000Hz. The following

analysis will focus on frequencies below 3000Hz.

0 1000 2000 3000 4000 5000 6000 7000
Frequency, Hz

Figure 3.17 Sum of measured power reflection and transmission coefficients.

In section 3.4 it was seen that the decomposed power reflection and transmission

coefficients are biased based on a Gaussian-like measurement noise model, therefore,
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the discontinuity parameters estimated from these coefficients are also biased. However,
if the measurement noise is very small, the estimates can be considered to be very close
to the real values.

Figures 3.18 and 3.19 show the experimental estimates of the power reflection and
transmission coefficients respectively compared with the theoretical predictions from
the parametric model given in section 2.8. The curves are included for different sets of
assumptions. The results from the non-reflecting end assumption are oscillatory. The
oscillations are significant up to 2200Hz. This is consistent with the results shown in
Figure 3.15, where the wave reflected from the beam end is relatively large below
2200Hz. The non-reflecting end assumption is only valid above this frequency since the
reflections from the beam end are nearly zero from there on (dash-dot line in Figure
3.15). Large errors occur at low frequencies, as a result of the poor conditioning of the
WAD method. The assumption of reflecting ends (one incident wave from each side)
produces smoother results. For both the reflection and transmission coefficients, the
overall trends have been produced for the frequency range considered here and good
agreement with the theoretical predictions is achieved. This indicates that the blocks

match the lumped mass theory well.

12
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0.2

1500 2000 2500 3000

Frequency, Hz
Figure 3.18 Power reflection coefficients of block 1: —, experimental estimate
assuming reflecting ends; ------- , experimental estimate assuming non-reflecting ends;

.............. , predicted based on directly measured mass and moment of inertia (non-reflecting
ends): (a) reflection coefficient; (b) transmission coefficient.
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Frequency, Hz
Figure 3.19 Power transmission coefficients of block 1: —, experimental estimate
assuming reflecting ends; ... , experimental estimate assuming non-reflecting ends;

.............. , predicted based on directly measured mass and moment of inertia (non-reflecting
ends): (a) reflection coefficient; (b) transmission coefficient.

Figures 3.20(a), (b) show the sums of the measured power reflection and transmission
coefficients for blocks 2 and 3 respectively. In the range 200-3000Hz the sums are close

to unity, which means the damping is very small.

Figure 3.21 shows the experimentally estimated power reflection and transmission
coefficients of blocks 2 and 3 along with the theoretical predictions. The overall trends
of the predictions can also be obtained in the frequency range shown in the figures.
With increasing frequency, the differences become larger. The model presented here is

less accurate.

0 1000 2000 3000 4000 0 1000 2000 3000 4000
Frequency, Hz Frequency, Hz

Figure 3.20 Sum of the estimated power reflection and transmission coefficients for (a)
block 2 and (b) block 3.
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Figure 3.21 Power reflection and transmission coefficients for blocks 2 and 3: ——,
experimental estimate assuming reflecting ends; ... , predicted based on directly
measured mass and inertia (non-reflecting ends): (a) o of block 2; (b) = of block 2; (c)

p of block 3; (d) = of block 3.

3.9 Summary

A wave amplitude decomposition approach has been reviewed and employed to
calculate the reflection and transmission coefficients of discontinuities from the
measurements of arrays of transducers. Considering noise contamination as a
perturbation on the ideal measurements, expressions for the mean and standard
deviation of the power reflection and transmission coefficients were derived and a first
order approximation was developed. The results of Monte Carlo simulations on a
discontinuity which involves a mass and a moment of inertia agree well with the first
order approximations. To minimise the standard deviation of the power reflection and
transmission coefficients, the optimal transducer spacing is a quarter wavelength and
poor situations occur at small spacings and those approaching a multiple of half a
wavelength. The statistical distribution of the Monte Carlo simulations for the power
reflection coefficient was also investigated and found to be fairly similar to a Laplace

distribution under some particular conditions.
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Experiments were performed on a beam with attached steel blocks. The flexural
reflection and transmission coefficients were estimated by the wave amplitude
decomposition approach. The results were consistent with the theoretical analysis given
in the previous sections. The anechoic assumption caused large errors if the reflection
from the beam end is large. For the long-thin block, the measured power reflection and
transmission coefficients agree well with the predictions based on the theoretical model
given in Chapter 2. The agreement for the short-thin and short-thick blocks is less
consistent, especially with increasing frequency, which means the discontinuity model

is less valid for blocks of larger dimensions.
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Chapter 4 Wave Reflection and Transmission at

Pipe Supports

4.1 Introduction

Built-up systems comprise many discontinuities in the form of joints, hangers, supports,
flanges and so on. Dynamically these discontinuities contribute stiffness, inertia and
damping and can dramatically alter the response of the system. In Chapters 2 and 3,
wave reflection and transmission through a mass discontinuity on a beam has been
investigated. This chapter discusses wave reflection and transmission at a support of an
in-vacuo piping system. This support features not only mass and moment of inertia, but
also translational and rotational stiffnesses, and damping.

Mace [61] modelled a point support of a beam by translational and rotational dynamic
stiffnesses, and derived the reflection and transmission coefficients of such a model in
terms of the support dynamic stiffnesses. Here the pipe support is modelled in the same
way and then the dynamic stiffnesses are decomposed into mass, inertia and stiffness
terms, which help the parameter identification of the support in Chapter 7. Damping is

incorporated into the dynamic stiffnesses by loss factors.

In the next section, wave modes in in-vacuo piping systems are discussed briefly. In this
thesis, attention is only focused on the axial and transverse waves. Section 4.3 gives the
parametric model for a pipe support. The reflection and transmission coefficients are
derived using the general method presented in Chapter 2. Then numerical simulations of
the reflection and transmission coefficients are performed in terms of the non-
dimensional joint dynamic stiffnesses. Section 4.4 presents the experiments on a pipe
support. The propagating flexural reflection and transmission coefficients of the support
are measured by using the wave amplitude decomposition method. In order to be able to

compare the measured and simulated reflection and transmission coefficients, methods
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are also developed to measure the translational and rotational dynamic stiffnesses of the
support directly. The stiffnesses, mass and moment of inertia of the support are
estimated from the directly measured translational and rotational dynamic stiffnesses.

4.2 Wave Modes in In-vacuo Piping Systems

Piping systems can be considered as an example of thin-walled cylindrical shells. A
thin-walled cylindrical shell can be considered as a three dimensional structure.
Structural waves in a thin-walled cylinder propagate in a helical pattern and can be

described by the wavenumber k_, shown in Figure 4.1 (Fahy [3]). The wavenumber of

the helical wave, k is given by
k2 =k} +k? 4.1)
where k, is the longitudinal wavenumber and k; is the circumferential wavenumber.

The longitudinal wavenumber is hence

k, = k2 —k? (4.2)

Therefore the longitudinal wave can propagate only when k2 > kZ. Otherwise, the wave

cs —

is evanescent.

Figure 4.1 Cylindrical shell coordinates and wavenumbers.

The radial wave variables must be continuous in the circumferential direction due to the
closure of the pipe in this direction. Thus the radial displacement takes the form of sine

or cosine functions of k.ad, where a is the mean radius of the pipe, @ is the angle in
the polar coordinate system of the cross-section and k, =n/a (n=0,1,2,---), n is the

wave mode number. The n=0 mode behaves as a line monopole with only stretching
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and contracting of the wall. The n=1 mode, also called the bending wave mode,
propagates as a line dipole. There is no cross-sectional deformation with this mode. The

n =2 mode, ovalling mode, moves as a line quadrupole, and so on (Figure 4.2).

m=0 =1 =2 m=3

Figure 4.2 Cross-sectional mode shapes of a cylindrical shell.

Longitudinal, torsional and flexural (bending) waves can always propagate at all
frequencies. For longitudinal and torsional waves n=0 and for flexural waves n=1.

However, the n =0 breathing wave mode can only exist above the ring frequency [3]
w =— (4.3)

where ¢, is the longitudinal wavespeed in a plate of the shell material. The longitudinal

wavelength in the shell wall is equal to the shell circumference at the ring frequency.
n=2 and higher modes can only exist above their cut-on frequencies. The cut-on

frequencies are given approximately by

Oy h (., 3j
Garon o L [z 2| >0, 4.4
0, Jﬁa( 2 44

where h is the wall thickness. In this thesis, only the longitudinal and flexural wave
modes are of interest. An estimate for the cut-on frequency for the n=2 wave mode
can be obtained from the above equation and this is an upper bound frequency that
should be considered in the numerical simulations and experimental measurements,

above which the simple models break down.

4.3 Dependence of Reflection and Transmission Coefficients on

Parametric model of a Support

The infrastructure to which the waveguide is connected acts as a discontinuity when
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structural waves propagate along the waveguide. Supports or hangers of pipes can be
considered as such discontinuities. This section discusses the modelling of a support of
a one-dimensional waveguide carrying flexural waves and the reflection and

transmission coefficients in terms of the parameters of such a model.

4.3.1 Model of a Support

This section gives the model of a support of a one-dimensional waveguide. Figure 4.3
shows a waveguide of infinite length lying along the x-axis supported at x=0. For
simplicity the waveguides on both sides of the support are considered to have the same
physical properties, such as material and dimension. The support exerts both
translational and rotational constraints, which are modelled by translational dynamic

stiffness D, and rotational dynamic stiffness D, . Here the flexural reflection and

transmission coefficients of this support will be derived by using the general approach
presented in Chapter 2.

at AN D (_E b" AnA
a~ ANy R o ]
~N -
X

x=0

Figure 4.3 The model of a support of an infinite one-dimensional waveguide.

4.3.2 Parametric Reflection and Transmission Coefficients

The reflection and transmission coefficients of the support described above are derived

in this section. Now consider the case that a set of flexural incident waves a*

propagates along waveguide a and impinges upon the support, which gives rise to

reflected a~ and transmitted b" waves. The excitation source that generates the incident
wave is considered to be far enough away from the support, therefore the nearfield
component in the incident wave is neglected. Thus the wave vectors, displacement and
internal force vectors and matrices, and the reflection and transmission coefficients

matrices are the same as the case discussed in Section 2.8, which are given by equations
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(2.44) to (2.48). Note that the support is also considered to be symmetric.

By applying continuity and equilibrium conditions to the support, the transfer matrices

in equation (2.35) can be obtained as

a -t %a 2% % %lpge, -t ° (4.5)
"Tlo 1" o o' | 0 -D 2710 1) '

Substituting equations (2.44), (2.46) to (2.48) and (4.1) into (2.43), after some lengthy
manipulation (referring to Appendix 3), yields

1 -1 1 -1
i i 1 1 Mop -1
t [
i Aogi o1 Ao =1 (4.6)
f fon I
1 ni¥eir 1 Yoog|te) U
i S s
where
D; Dy K
= W= L E= [ 4.7
o =eare VT EIR ST 4.7
x =~/1/ A is the radius of gyration of the pipe. The parameters in equation (4.7) are all

non-dimensional. Parameter y, is the ratio of the translational dynamic stiffness of the
support to the axial stiffness of a length x of the pipe. Parameter y/ is the ratio of the
rotational dynamic stiffness of the support to the rotational stiffness of a cantilever of
length x . By inspection of equation (4.6), it is apparent that y,/&° and y, /&
determine the reflection and transmission coefficients. —iy, /£° is the ratio of the

translational impedance of the support to the translational characteristic impedance of

the waveguide, and —iy, / & is the ratio of rotational impedance of the support to the

rotational characteristic impedance of the waveguide (see Appendix 4).

The reflection and transmission coefficients can be obtained numerically by matrix

inversion in equation (4.6). Alternatively, they can also be expressed in closed form as
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__i[(Zles)(‘/’Dlg)JfZZD/fS—21//D/§]
" (ZD/§3—2+2i)(t//D//§+2+2i)
_ 2AwlE-ylE-4)
® T (ol € =2+ 20) (v [ £ +2+2)
(L=1)( 20/ € )(wo 1 &)+ 270 1 £ +2ipy 1 &
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If the support is modelled as a structure characterised by translational stiffness K.,

(4.8)

oy =—

tPN -

rotational stiffnesses K., mass m and moment of inertia J, shown in Figure 4.4, and

assuming that there is no eccentricity, then the dynamic stiffnesses can be expressed as

D, =K, -m&?, D, =K, -J&’. (4.9a,b)
Then the parameters in equation (4.7) can be written as
Xo=x-1E' yy =y -9& (4.10)
where
K; Kg m J
= L W= . MU= , 9= . 4.11
d EA/x v El/x a pAx pAKC (4.11)

The physical meanings of these parameters can be interpreted similarly to those in
equation (4.7). Damping in the support can be included by introducing loss factors to
the dynamic stiffnesses. Letting y =0 and y =0, and substituting equation (4.10) into
(4.8), the same expressions can be obtained as those of the mass-like discontinuity given

in equation (2.52).

Figure 4.4 Model of a support featured with mass, moment of inertia and stiffnesses.

4.3.3 Numerical Examples

Some numerical simulations of the propagating wave reflection and transmission
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coefficients of the support are given in this section. The magnitudes (squared) and
phases are shown as functions of the magnitudes of impedance ratios in Figures 4.5 (a)

to (d). Damping is not considered in the parameters here, so the rest parts, y, /£° and
w, /<& are real, and the power reflection and transmission coefficients sum to unity.
Positive y, /&% and w, /& indicate stiffness dominated regions and negative ones
signify mass and moment of inertia dominated regions. When the magnitudes of both
701 & and w1 £ become large, whether positively or negatively, p —1and 7 -0,
I.e. the energy in the incident waves is totally reflected. At the regions where
2o/ E=2and w, /& islarge, or w,/E=-2 and y,/&° is large, the energy is totally
transmitted through the support. Note that y,/&° =2 means that the magnitude of

translational impedance of the support is twice that of the translational characteristic

impedance of bending waves in the waveguide, and w, /<& =-2 signifies that the

magnitude of rotational impedance of the support is minus twice that of the rotational

characteristic impedance of bending waves in the waveguide. The phases of r,, and t.,

have a sudden change of 7 when the magnitudes approach zero.

(@)

phase of r,, rad
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K

phase of ., rad
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Figure 4.5 Magnitudes (squared) and phases of the propagating wave reflection and
transmission coefficients for the support.
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In order to study the influence of frequency, in the following examples the power

reflection and transmission coefficients are plotted against the non-dimensional
frequency, &% =wx/c, . A frequency range of wx/c, <0.1 is selected to ensure that,
firstly, Euler-Bernoulli beam theory is valid and, secondly, the n=2 wave mode has

not yet cut-on for a typical thin-walled cylindrical pipe. Detailed analysis of these two

conditions is given in Appendix 6.

Figure 4.6 shows the power reflection and transmission coefficients as functions of the

non-dimensional frequency based on specific values for the parameters of the support,
which are y =107, w =10", £ =10 and $=10. Recalling the physical meanings of
the parameters, these values are not unrealisable. For example, for y =107, the

translational stiffness of the support is equivalent to that of the axial stiffness of a pipe

of length 100« , which is roughly 70 times the pipe radius. Values of the other

parameters can be interpreted similarly. From the expression of r,, in equation (4.8) it
can be seen that when frequency & — 0, |rPP| —1, i.e. p—1. This means most of the

energy will be reflected at low frequencies. For the particular values of the parameters

given above, p=1 also occurs when wx/c, =0.014 and p=0 occurs when

ok /c, =0.028.

0.8-

o
o)

o
~

Power coefficients

0.2r

okl c

Figure 4.6 Power reflection and transmission coefficients of a support: y =107,
w=10", y=10and $=10: —, p; ———-, 7.
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The above simulations do not consider damping in the support, so p+7=1. As
mentioned previously the damping of the joint can be included as a complex stiffness.

Therefore the translational damping loss factor, 7, and rotational loss factor, 7, are
incorporated into the translational and rotational stiffnesses, y and w which can be
written as ;((1+i77T) and y/(1+i77R) respectively. Figure 4.7 shows the influence of

damping of the translational and rotational springs on the power reflection and
transmission coefficients. The loss factors of riveted or bolted thin sheet-metal

structures are typically about 0.02. For welded structures of thick plates 7 ~ 0.001 [1].

10 10° 10° 10 10 10° 107 10"
wxlc wx /¢
Figure 4.7 The influence of damping on the power reflection coefficient p: y =107,
w=10", y=10and $=10: —, n=0; -——-, n=0.01; , n=0.1. (a), (d)
damping in translational spring; (b), (e) damping in rotational spring; (c), (f) damping in
both translational and rotational springs.
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It can be seen that for this order of magnitude, the effect of damping is negligible. Only
when the loss factor is very large, does the damping effect become obvious. The effects
of damping in the translational and rotational directions are different, which is related to
the sensitivity of the power reflection coefficient to the translational and rotational
dynamic stiffnesses. For the case considered here, damping in the translational direction

only dominates the regions where p =1 and z =1. And the effect of the damping in the
rotational direction becomes apparent when p or z is of large magnitude. When

considering the damping in both directions, the effect is the combination of the two

separate cases. It also should be noted that due to the existence of damping, p+7 <1.

4.4 Experiments on Pipe Supports

This section presents measurements of the reflection and transmission coefficients of a
pipe support by the method discussed in Chapter 3. The translational and rotational
stiffnesses of the support are also measured directly. The intention is to verify the
applicability of the reflection and transmission coefficients in determining the
parameters of the support.

4.4.1 Experimental Setup

Figure 4.8 shows the experimental rig featuring a 6m straight thin-walled copper pipe
held at its mid-point by an adjustable support. A steel block is mounted by three long
bolts to a massive concrete block which can be considered as a grounded support. A
clamp which holds the pipe is connected by screws to a supporting bar at each end. The
pipe support is idealised. The length of the supporting bars is adjustable in order to
accommodate more positions, i.e. more supports with each pair of supporting bars. The
rig is designed to be symmetrical in order to avoid torsional motion of the pipe (here
only flexural waves are considered). A sandbox is placed at each end of the pipe to
approximate anechoic conditions. On each side of the support, two accelerometers are
attached to the pipe. The pipe is excited by a shaker in the direction perpendicular to the
pipe in the horizontal plane. The method introduced in Chapter 3 is employed to

measure the reflection and transmission coefficients of the support. Attention was paid
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to the position of the accelerometers to ensure that the motions measured were in the

same direction as the excitation.

steel base concrete

e

PR ock sandbox

supporting bar |

screw bolt

Figure 4.8 Experimental rig for measuring the reflection and transmission coefficients
of a pipe support.

Two kinds of materials, aluminium and steel, were used for the supporting bars and the
bars were designed to be fixed at one of two lengths. Therefore, in total 4 support
configurations were investigated. The properties of the copper pipe are listed in Table
4.1.

Table 4.1 Properties of the pipe (SI units).
Density Outer radius ~ Wall thickness Length

8900 0.014 0.9x10°° 6.060

4.4.2 Wavenumber Measurement and n=2 Cut-on Frequency

In order to obtain the wave amplitudes and further the reflection and transmission
coefficients, the wavenumber of the waveguide needs to be measured. The flexural
wavenumber of the pipe was measured first by the method discussed in Chapter 3.

Figure 4.9 shows the measured real part of (W, +W,)/2W, (see equation (3.35)). The

-72-



Chapter 4 Wave Reflection and Transmission at Pipe Supports

transducer spacing was A =0.10 m which is a quarter wavelength at 1250Hz. At

frequency 2200Hz, the n=2 wave mode cuts on. The wavenumber constant of
proportionality g =Kk, / ﬁ was estimated in a least-squares sense, and S =0.428 and
S =0.427 were obtained in the ranges 200-2000Hz and 200-1400Hz respectively. They
are quite close to each other. The fitted estimate of cos(k,A) with £ =0.427 is also

plotted in the figure. A good agreement is obtained in the frequency range considered.

In what follows, the analysis is focus on the frequency range 200-1400Hz.

cos(kbA)

1.5¢ .
% 500 1000 1500 2000 2500
Frequency, Hz
Figure 4.9 Wavenumber of the pipe: —, measured real part of (W1+W3)/2W  eeeeeee ,

cosk,A using fitted wavenumber over frequency range 200-1400Hz ( 5 = 0.427).

4.4.3 Direct Measurements of the Translational Dynamic Stiffness of
the Supports

The translational and rotational dynamic stiffnesses of the pipe support were measured
directly. The intention is to find the mass and stiffness parameters of the support, verify
the applicability of the support model in predicting the reflection and transmission
coefficients, and later to compare these values with the parameter values estimated by

inverse means in Chapter 7. This section discusses the measurements of the translational
dynamic stiffness.
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The translational dynamic stiffness is defined by
D, =— (4.12)

where F is the exciting force and X is the displacement output. Referring to equation
(4.9a) and considering the damping effect of the structure give

D, =K, (1+in )-m'e’. (4.13)
The stiffness, K; and mass, m" of the support can be estimated from the measured

dynamic stiffnesses at two frequencies, or in a frequency range containing more than
two frequencies by fitting the real part of the measured dynamic stiffness using the
least-squares method. The damping loss factor can be found from the imaginary part of
the measured dynamic stiffness.

Figure 4.10 shows the experimental rig used to measure the translational dynamic
stiffness of the support. A short length of the pipe was placed in the clamp in order to
replicate the local stiffness present when measuring the reflection and transmission
coefficients in practice. The clamp was excited directly by a shaker through a force
transducer. The force transducer was connected to the shaker by a stinger. An

accelerometer was attached to the other side of the clamp.

accelerometer

Tl

/

pipe segment

Figure 4.10 Experimental rig for direct measurements of the translational dynamic
stiffness of the pipe supports.
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Figure 4.11 shows the real and imaginary parts of the measured dynamic stiffness for
the aluminium pipe support fixed at its larger length. Also shown in the figure is the

fitted result of the mass-spring-damping model by the least-squares method in the range

200-1400Hz. A good agreement is obtained in this frequency range.

X 106

DT, N/m

.
g

00 400 600

Figure 4.11 Translational dynamic stiffness of the long aluminium pipe support: —,
, fitted real part of D, over the frequency range 200-

, imaginary part of measured D, .

real part of measured D, ; -------
1400Hz; oo

The measured translational dynamic stiffnesses for the other three support conditions
are given in Appendix 7. The estimated parameters for the four supports are presented

in Table 4.2. Different frequency ranges are chosen based on the behaviour of the

1000 1200 1400 1600 1800 2000
Frequency, Hz

measured dynamic stiffnesses (translational and rotational).

Table 4.2 Estimated translational parameters of the supports (SI).

Support Frequency range K; m’ 1
long 200-1400 2.595x10° 0.101 0.003
aluminium
short 400-1400 9.019x10° 0.100 0.003
| long 200-1400 5.127x10° 0.130 0.002
stee
short 400-1400 1.464x10’ 0.115 0.009

Note: 1. the pipe segment (m, = 0.015) is included in the above mass.

2. the mass-loading effect of the force transducer: 38% of the total mass of the
force transducer (m, = 0.0235), is considered to be added to the support (see

Appendix 8).
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4.4.4 Direct Measurement of the Rotational Dynamic Stiffness of the

Supports

The direct measurements of the rotational dynamic stiffnesses of the pipe supports are
described in this section. In general, the rotational dynamic stiffness of a structure is
much more difficult to measure. Here an approach is developed. Figure 4.12 shows the
experimental rig to measure the rotational dynamic stiffness (in the direction of the
torsional motion of the supporting bars) of the support. Owing to the close proximity of
the clamp to the seismic mass, the clamp could only be excited on the side far away
from the concrete block. Accelerometers were placed on either side of the clamp to
measure the side to side motions. The structure becomes asymmetric because of the

mass-loading effect of the force transducer.

Figure 4.13 shows the measured accelerances of the two accelerometers when the force
was applied as shown in Figure 4.12. The first resonance is principally in the
translational direction because the phases of the two accelerances are the same. The
second resonance around 1180Hz is predominantly rotational since the phase difference
is . At frequencies above 1400Hz, more resonances occur and the situation becomes

more complicated. Here, attention is focused only on the frequency range 200-1400Hz.

Figure 4.12 Experimental rig for direct measurements of the rotational dynamic
stiffness of the pipe supports.
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Figure 4.13 Measured accelerances of the long aluminium support: (a) magnitude; (b)
phase: —, X, /F; . , X,/ F.

The rotational dynamic stiffness is defined by

D= _ 7 (4.14)
0. O.IF

where the moment M =Fy, F is the force, 6, is the rotational displacement of the

support about its geometric central axis and y is the distance of the excitation point to
the central axis.
The rotational displacement can be estimated from the accelerances at the two points in

Figure 4.12 by (assuming the two points are symmetrically located with respect to the
central axis)

X, /F-X,/F

0./F=— 4 (4.15)

2y
Substituting the above equation into equation (4.14), the rotational dynamic stiffness
can be obtained from the FRF measurements by
2y° 0’

D, =—— . 4.16
"X IF=X,IF (4.16)

A parametric model is also needed to fit the estimated rotational dynamic stiffness. This
is discussed in the following section.
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4.4.5 Parameter Fitting of the Directly Measured Rotational Dynamic

Stiffness of the Supports

In the experimental rig, one force transducer was attached to the clamp to excite the
support, which gives rise to the presence of eccentricity of the structure. Due to this, the
rotational dynamic stiffness can not be written in a simple form analogously to the
translational dynamic stiffness given in equation (4.13). A more complicated model
needs to be developed for the system. Figure 4.15 illustrates the free body diagram of a

suitable model. The rotational stiffness, K, and translational stiffness, K; (different
from K, discussed in the above section) are defined at the geometric centre of the

system. The moment of inertia J" is defined at the centre of gravity. The eccentricity is
indicated by e . Considering equilibrium of forces in the x direction and equilibrium of

moments about the geometric central axis yields

m” m’e X Kr 0 ](X F
, Xel | ™ “l= : (4.17)
m'e J"+m"e" || 6, 0 Killé6 M

For time harmonic excitation, the above equation can be expressed as

K_lr—y_m”a)Z _mﬂea)Z XC /F 1
) 2\ 2 = . (4.18)
-m'ew’  K,—(3"+m'e’)e’ |6 /F ] |y
A A
Xy T Xc X,
/4 L4 /4

X T A BN B

"t &P 2
o

Figure 4.15 Free body diagram of the experimental rig for directly measuring the
rotational dynamic stiffness.

By introducing the following symbols

K{—’ _ mﬂa)Z _m”ea)z 1
D= , N and z={0 1}, (4.19)
-m'ew’  Kg—(3"+m'e*)o y

and assuming that D is invertible, the rotational displacement FRF can be obtained by
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0./F=zD"b. (4.20)
Substituting equation (4.20) into the equation (4.14) gives the rotational dynamic

stiffness in terms of the mass and stiffness parameters of the support,

Y
D, = . 4.21
R zD (4.21)

Updating the parameters of the support to fit the rotational dynamic stiffness given by
equation (4.21) to the measured one given by equation (4.16) is a non-linear problem.
The Gauss-Newton iterative method (detailed later in Chapter 6) is employed here. The
objective function is defined in terms of the rotational dynamic stiffness and the

iteration process is performed on the five parameters, K/, m", K., J” and e.

Considering the conditioning of the iteration process, the damping effect (typically
small and only significant around the resonance and anti-resonance frequencies) is
neglected here. So only the real part of the measured rotational dynamic stiffness is

discussed here.

In Figure 4.16, the rotational dynamic stiffness of the long aluminium support is plotted
against frequency. The small fluctuations in the measured FRFs around 700Hz (Figure
4.13) can cause large and rapid changes in the rotational dynamic stiffness. These
frequencies were excluded in the iteration process. The initial values of the mass,
moment of inertia and stiffnesses for the iteration process were estimated from the
simple model given by equation (4.13). The parameters were then identified and are
given in Table 4.3. Figure 4.16 also shows the rotational stiffness as predicted by the
method given the estimated parameters of the support. Except for the frequency ranges
deliberately excluded from the fit for reasons stated previously, the estimated dynamic

stiffness agrees well with the measured result.

The measured FRFs for the other three support conditions are given in Appendix 9
alongside the rotational dynamic stiffnesses and fitted counterparts. Table 4.3 also gives
the estimated parameters for the other three supports. Considering the dimension of the
structure and the masses of the clamp (0.042kg) and the force transducer, the values for
the eccentricity are reasonable. The asymmetry of the support is considered to be caused
by the mass-loading effect of the force transducer.
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Figure 4.16 Directly measured rotational dynamic stiffness of the long aluminium pipe
support: —, real part of measured D ; ------- , fitted real part of D,.

Table 4.3 Rotational parameter fit of the supports (SI units).

support frequency Ky m" Kg J" e
200,300
| ] 811 1.398  2.833
long  [420,600] ) 069 s s 0007
X X
[900,1400]
aluminium
[200,300]
2.328 1.840 1.918
short ~ [450,1100] 0 0061 105 0009
X X X
[1400,1700]
200,300
[ ] 3.941 2.713 3575
long  [460,840] - 161 10 10° 0.006
X X X
[1000,1400]
steel [200,300]
[460,1200]  4.923 2997  1.808

short 0.079 0.009
[1280,1400]  x10° x10°  x10°

[1900,2100]

Note: 1. the pipe segment (m, = 0.015) is included in the above mass.

2. the mass-loading effect of the force transducer: 38% of the total mass of the
force transducer (m, = 0.0235), is considered to be added to the support (see
Appendix 8).
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4.4.6 Reflection and Transmission Coefficients

In this section, the power reflection and transmission coefficients measured by the
WAD method are presented. Based on the estimated support parameters from direct
measurements, the reflection and transmission coefficients are also predicted by the
parametric model for the waveguide support described in Section 4.2. Here the

transducer spacing is A =0.10m.

When directly measuring the parameters of the support, the directly measured mass m’
and moment of inertia J” were influenced by the added pipe segment and the mass-
loading effect of the force transducer. In order to revert to the status of the support for
measurements of the reflection and transmission coefficients by the WAD method, they

need to be modified when used to predict the reflection and transmission coefficients.

In Table 4.2, the damping loss factors are typically very small in the translational
direction and can be neglected in the frequency range discussed. The mass m’ includes
the added pipe segment and the loaded mass of the force transducer, which should be
reduced. The modified mass is given by

m=m'-m,—-0.41m, (4.22)
where m, =0.015 is the mass of the pipe segment held by the clamp, and m, is the

mass of the force transducer.

When measuring the rotational dynamic stiffness of the support, the eccentricity is
considered to be the consequence of the mass-loading effect of the force transducer. It
will be excluded in the support model to predict the reflection and transmission
coefficients. Considering the influence of the pipe segment, the mass loading of the

force transducer, and the eccentricity, the inertia J” in Table 4.3 is adjusted by
J=J"+m"e*-mL?/12-0.38m, 5 (4.23)

where L, =0.022 is the length of the pipe segment.

The parameters of the support with the adjusted values are listed in Table 4.4. In the
following figures the power reflection and transmission coefficients are predicted by the
parametric model given in Section 4.2 based on the directly measured parameters. Also
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in the figures are the corresponding power reflection and transmission coefficients
estimated by the wave amplitude decomposition method. Here it is assumed that the

ends of the pipe are reflecting.

Table 4.4 Modified values of the directly measured parameters of the supports (SI units).

support K, x10° m Kg, x10°  J, x10°
o long 2.595 0.077 1.398 2.840
aluminium
short 9.019 0.076 1.840 2.081
el long 5.127 0.106 2.713 3.823
stee
short 14.642 0.091 2.997 2.116

Figures 4.17 and 4.18 show the power reflection and transmission coefficients for the
long aluminium support. Corresponding the frequency range 200Hz — 2000Hz, k,A
changes from 0.604 to 1.910. In the frequency range plotted, the measured power
coefficients and those predicted by the theoretical model agree very well although slight
differences are found in some frequency ranges. This indicates the consistency of the

parametric model of the support with the wave-based predictions.

1.2

0.8.¢

< 0.6

0.4+

0.2+

e

| | e el I I
900 400 600 800 1000 1200 1400 1600 1800 2000
Frequency, Hz

Figure 4.17 Power reflection coefficient of the long aluminium support: —, measured,;
....... , predicted based on measured parameters.
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Figure 4.18 Power transmission coefficient of the long aluminium support: —,
measured; - , predicted based on measured parameters.

Figure 4.19 shows the sum of the measured power reflection and transmission
coefficients for the long aluminium support. In the frequency range plotted, this sum is

nearly unity, which indicates that the damping of the structure is negligible.

1.2

0.8 ]

0.7 b

0'!200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency, Hz

Figure 4.19 Sum of power reflection and transmission coefficients of the long
aluminium support: —, measured; .- , predicted based on measured parameters.

The power reflection and transmission coefficients for the other three supports are

presented in Figures 4.20 to 4.22. Each of the power coefficients predicted from the
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parametric model follows the same trends with frequency as the measured results. The

results for the long supports are always better than those of the short, which means the

parametric model is more appropriate for the long supports. At high frequencies, due to

the presence of high order resonances (see the direct measurements of the dynamic

stiffnesses in Appendices 6 and 7), the measured power reflection and transmission

coefficients correspondingly differ by larger amount. On the whole, the parametric

model for the supports agrees well with the measured results. However, if the

parameters of the supports are to be estimated accurately from measured reflection and

transmission coefficients, appropriate frequency ranges need to be selected. This will be

discussed in Chapter 7.

' (a) 7 (b) |

\
\
\\

\

?00 700 1200 1700 2000 ?00 700 1200
Frequency, Hz Frequency, Hz

1700 2000

Figure 4.20 Power reflection and transmission coefficients of the short aluminium
support: —, measured; ... , predicted based on measured parameters.
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Figure 4.21 Power reflection and transmission coefficients of the long steel support:
—, measured; ——----- , predicted based on measured parameters.
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Figure 4.22 Power reflection and transmission coefficients of the short steel support:
—, measured; - , predicted based on measured parameters.

4.5 Summary

A parametric model was used to represent a pipe support in which the translational and
rotational dynamic stiffnesses were considered. The flexural wave reflection and
transmission coefficients of the support were derived in terms of the translational and
rotational dynamic stiffnesses of the support. The dynamic stiffnesses were further
decomposed into mass and stiffness parameters. The pipe was modelled as a waveguide
for flexural waves. Therefore the analysis is only valid below the cut-on frequency of
the n=2 wave mode. Numerical simulations illustrated the dynamic characteristics of
the reflection and transmission coefficients. Damping of the support was also discussed
when considering an example of the reflection and transmission coefficients in terms of

the mass and stiffness parameters.

The experimental rig features a support holding a pipe. In order to allow for
discrepancies between the calculations at the design stage and the measurements, the
support was designed to be adjustable so that the translational and rotational dynamic
stiffnesses can be altered. Methods were developed to measure the translational and
rotational dynamic stiffnesses of the supports directly and the parameters composing the
dynamic stiffnesses, such as translational and rotational stiffnesses, mass and moment
of inertia were estimated. The flexural wave reflection and transmission coefficients
were calculated from the estimated parameters based on the parametric model of the
support. Also the reflection and transmission coefficients were measured by the wave

amplitude decomposition method. The results from these two approaches agree well,
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which indicates that the parametric model is a good model for the reflection and

transmission coefficients of the support.
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Chapter 5 Wave Reflection and Transmission at

Angled Bends

5.1 Introduction

Previous chapters have discussed wave reflection and transmission in straight
waveguides with discontinuities. In this chapter attention is focused on a structure with

two waveguides jointed at an arbitrary angle.

Wave reflection and transmission in such a structure is more complicated since wave
mode conversion occurs. Previous studies have shown much interest in this kind of
system: Cremer et al. [1] have studied rigidly connected and simply supported right-
angled bends. Desmond [67] considered wave propagation at a junction of three bars,
which were rigidly connected. Doyle and Kamle [24] discussed the reflection and
transmission of flexural waves at an arbitrary T-joint. They considered the joint model
as a mass-like discontinuity. Leung and Pinnington [59, 60] investigated a right-angled
joint with compliance in all three degrees of freedom. A model for an arbitrary angled
bend is considered in this chapter which is characterised by translational and rotational
stiffnesses, mass and moment of inertia. The wave reflection and transmission
coefficients of the angled bend are investigated by the general approach introduced in
Chapter 2.

In the next section, the wave fields in in-vacuo piping networks are discussed briefly.
Then the reflection and transmission coefficients of an arbitrary angled bend are derived
based on a parametric joint model. Power reflection and transmission coefficients
associated with the angled bend are discussed. Closed form solutions are given for the
special case of a rigid mass-free connection, a mass-like and a spring-like joint, and
numerical simulations are performed on these three kinds of joints. For the mass-like

and spring-like joints the simulations are given in terms of the impedance ratios.
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Damping effects of the joint are also studied by incorporating the damping loss factor as
complex stiffnesses. Experiments were performed on a right-angled pipe bend. The
decomposed wave amplitudes in the two pipes and the power reflection and

transmission coefficients induced by an in-plane flexural wave are presented.

5.2 Wave Fields in Some Joint Networks

Some typical joints, such as L-bends, T-junctions and cross-junctions, etc. shown in
Figure 5.1, are widely used in pipe networks. Each pipe can be considered to be a one-
dimensional waveguide. The wave modes involved in the branches of the structures
depend on the direction of the excitation, boundary conditions and the characteristics of
the joint. Figure 5.2 shows an example for two semi-infinite waveguides connected by a
joint at a right angle. If waveguide a is excited vertically by an in-plane force, response
will be induced not only in waveguide a itself, but also in b through the joint. From
the viewpoint of wave propagation in structures, the excitation in waveguide a gives
rise to a flexural incident propagating wave and a nearfield wave travelling towards the
joint. At the joint the incident waves are partly transmitted to branch b and partly

reflected to branch a as well. Owing to the continuity of the structure at the joint, axial

[ | [ |
@) (b) ©)
[ ] ( /% 0
) ©

Figure 5.1 Typical structures in pipe networks.
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Figure 5.2 Wave fields in a right angled structure.

and flexural waves may be reflected from and transmitted through the joint. The
characteristic of the joint is crucial to the reflection and transmission of waves. For
example, if the rotational stiffness of the joint is zero, then there will be no transmitted

flexural waves in branch b .

5.3 Reflection and Transmission Coefficients in terms of the

Parameters of an Angled Bend

In this section, the wave reflection and transmission coefficients at an arbitrary angled
bend are derived by using the approach introduced in Chapter 2. For simplicity, only
axial and flexural waves in the plane of the bend are assumed to exist in the system.

Correspondingly the parameters of the bend are also only defined in this plane.

5.3.1 Reflection and Transmission Coefficient Matrices

The reflection and transmission coefficient matrices for an angled bend are given in this
section. Figure 5.3 shows two waveguides connected at an angle ¢. When a wave
(either in-plane flexural or axial) reaches the angled bend, due to the continuity of the
joint, the incident wave is reflected and transmitted. As a result, three reflected waves
and three transmitted waves are generated: one propagating flexural wave, one nearfield

flexural wave and one axial wave. The positive and negative-going wave amplitudes at

-89-



Chapter 5 Wave Reflection and Transmission at Angled Bends

any point can be expressed by equation (2.20). The propagation matrix between two
points along x-axis is given by equation (2.28). The general displacements and forces
can be expressed by equations (2.21) and (2.22) respectively. They are related to the
wave amplitudes by the displacement and force matrices given respectively in equations
(2.25) and (2.26).

Figure 5.3 Wave amplitudes at an arbitrary-angled bend.

Consider incident waves a* and b~ propagating towards the joint from each side. The

wave amplitudes at the joint are related by equation (2.29), which is here

a, | _| Ry T || a; (5.1)
by [T" REJLbo )

where R and T are the 3x3 reflection and transmission coefficient matrices. If the

joint is assumed to be symmetrical, then the matrices can be written as

LTI T 1T LTI Y V)
aa bb ba ab
Ry =Ry =1p T Np | T =T =t tp | (5.2)
v Ten M LT SV VY

Two subscripts are used for the corresponding reflection and transmission coefficients
to signify the incident and the resulting wave modes. Subscripts L, P and N indicate

axial, propagating flexural and nearfield flexural wave respectively.

5.3.2 Parametrical Model of the Angled Bend

Various models can be developed for the angled bend. However, here the bend is
assumed to incorporate two masses and three springs, as shown in Figure 5.4. Each

mass is characterised by a mass m. and a moment of inertia J, (i=12) and is
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considered to be rigidly connected to the end of the each waveguide. The three springs

which have translational stiffnesses K, , K, and angular stiffness K, respectively

connect the two masses together.

a m,J; K,

Figure 5.4 Model of an angled bend.

Figure 5.5 shows the free body diagram of each part of the bend. For simplicity, the
offset of the system is not considered here. The three parts of the structure can be
considered as connected substructures. Such a system can be analysed easily by the
transfer matrix method described in Chapter 2. By applying continuity and equilibrium
conditions to each of masses 1 and 2, the displacements and forces on the two sides of

each mass can be related respectively by

{wa } : {sz; Qiz} {w} - {wbo } ) {sz; szfz} {W} 53
Fa Q]él Q]éZ FaO FbO le 9?2’2 Fb
The elements of the transfer matrices are
100 0 00 100
Q. =02 =(0 1 0, Q,=9=/0 0 0, Q,,=0Q,=/0 1 0],
0 01 0 00 0 01
mo? 0 0 mw® 0 0 G4
Q.= 0 mo* 0 | Q= 0 mao 0
0 0 mJ? 0 0 mJ’°
The displacements and forces on both sides of the three springs are related by
{wao} i} {9; 9;} {W} 55
FaO le Q;Z FbO

where
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[cos¢ —sing O —cosg/K, sing/K, 0
Q’ =|sing cosg 0|, Qf=|-sing/K, -cosg/K, 0 |
L0 0 7 O WD g
0 0O cosg -—sing O
Q=0 0 0|, Q)=|sing cosg O]
0 00 o 0 1

It must be noted that when the stiffnesses of the springs are zero, the transfer matrix
might be poorly conditioned.

Combining equations (5.3) and (5.5) gives
a2
Fa 921 922 Fb

|:Qll 912 :| — |:Qil 912 :| |:9121 9122 :| |:Qfl QfZ :| ) (58)
S221 922 Q]él QJéZ le QSZ le 9?2’2

Thus the displacements and forces on both sides are related by the parameters of the
bend.

where

Figure 5.5 Free body diagram of the angled bend and each waveguide.

5.3.3 Reflection and Transmission Coefficients

In this section, the reflection and transmission coefficients of the bend are found using

the approach described in Chapter 2. Here it is assumed that the two waveguides in
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Figure 5.5 are semi-infinite. By considering only one wave component of the incident
waves, the reflection and transmission coefficients induced by this incident wave can be
derived by solving equation (2.43). Here as an example, the case with only one incident

flexural propagating wave in waveguide a is considered, thus

0 0
=qW; r and b” =40. (5.9)
0 0

Substituting equations (2.25), (2.26), (5.2), (5.8) and (5.9) into equation (2.43), after
some lengthy manipulations (referring to Appendix 3), yields

i (g +ig)asg 0 (dy-ig)sng 0 (Hp+&)sng] .
r
i +iy, +i o, aB 0 ic; sing 0 ic sing . 0
0 (iy+ig)sng i+ (ig+ig)asg i1 (iy—&)asg i o
r iy +i
0 Hosing g +iy, +i o aB ig+iy -1 -oasg 0 = iy (5_10)
4 . .4
0 0 7,1 W+ iy, +1 vy —— r —,+1
14 14
o : S AL
L O 0 -o,—7,-1 -0, ic, +iy, +1 ic, i
where
E Azklz Ezlzkt?z E A2kI2
&= &= &3 3
E A1k|1 E1A1k|1 E. 1k
4 ’ ’
Elllklfl Ko
. K : . K
o,=—i—2—, 0,=- Ke @ oot (5.11)
SYIL SR E Ak,
im,w? iJ,0° im,w?
N=fgy3 72~ v V3= ’
E. 1Lk E.lky E Ak,
im, o’ iJ,0” _im0®

_ Y __v2 _ .

7/4 Elllkbgl’ 75 Elllkbl, 7/6 ElAikll
See Appendix 4 for the definition of the above symbols. In equation (5.10), the two
waveguides are considered to be of different materials and dimensions. For simplicity,

and as is often the case in practice, it is assumed henceforth that the two waveguides are

of the same materials and dimensions, such that
1
&=1 &=1v=l & =—=¢ (5.12)

and that the joint is symmetrical, ie. K, =K, =K, , m=m,=m/2 and
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J, =3, =712, therefore,

O'l=ils, O'z—iz, og—i%,
g g g 2 (5.13)
S IS s
71:7/4_|7, 72_7/5_|T’ V3=V =1 5
where
K; Kgr m J K
_ = Cou=—" 9= , = 5.14
=eare VTR M oae T oAl ST (.14)
x=~/1/ A is the radius of gyration of the waveguide’s cross-section. The parameters in

equation (5.14) are non-dimensional and defined in Appendix 4. The physical meanings

of the parameters are the same as those defined in Chapters 2 and 4. The first four

parameters concern the joint properties relating to the characteristics of the waveguide

and are frequency independent. They are the parameters that will be estimated in

Chapters 6 and 7.

Substituting the symbols in equations (5.12), (5.13) and (5.14) into equation (5.10)

yields
—+i —+i | ¢ 0 —| —+¢& [sing 0 —+¢& [sing
2 2 2 2
iy ,ug iy iy iy
— i+ —— s ¢ 0 —sing 0 —sing
2
(I i). /73 (l,uf ) i (i,w; )
0 —+—|sing —+i —+i|osg —- —-1|cxsg
2 ¢ 2 2 2 2
i iy i iy iy i iy
0 —sing — i —— o5 ¢ ——— Y
g 2 g & 2 g
& & & &
0 0 —-1 —+1 i—+1 —4—-1
2 2 2 2
v & % v v
0 0 — -1 — i—+i—+1 i—
L s 2 4 s 2 4 .

(5.15)

The six reflection and transmission coefficients can be obtained numerically by solving

the above equation.

Equation (5.15) is for the parametric joint model as shown in Figure 5.5, which involves

the inertia, stiffness and damping (incorporated into the stiffness) of the joint and angle

of the bend. Depending on the situation, one or two properties may dominate the others,
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in which case the model can be simplified to a special case, such as rigid connection,
mass-like discontinuity or spring-like discontinuity. The corresponding equation for the
reflection and transmission coefficients can be obtained by applying appropriate values

to the parameters in equation (5.15). Also, the coefficients depend on the joint angle ¢.
If =0, the system becomes a straight waveguide. These cases are discussed in

Chapters 2, 3 and 4. In practice, the right-angled bends are used widely. Assuming that
¢ =12, equation (5.15) becomes

i—=+i 0 0 —iﬁ—if 0 A—+g
2 2 0
i—=—i—+i 0 0 = 0 i ’
6 2 § gz rPL 3
. A= +i
0 |—+l i£+i 0 iE—l 0 " ?
2 ¢ 2 2 Bl _i?iﬂi . (5.16)
2
0 SEARNE AN TN 0 i it 0 b
2 53 2 If‘PN 1%3 1
-—+
0 0 _£_1 £+1 i£+1 —|£—l fo ?
2 2 2 2 ;Z_f?i+1
2
0 0 _Z_£_1 . iz+|£+l |Z :
i &2 ¢ & 2 ¢

In what follows, attention will be focused on right-angled joints.

5.3.4 Power Reflection and Transmission Coefficients

Since wave mode conversion occurs in an angled bend, the definition of the power
reflection and transmission coefficients need to consider the power involved in each
wave mode. The power in an axial wave and a flexural wave are given by equation

(2.15). Consider V, and V, as the axial and flexural wave velocities. They are
proportional to the axial and flexural wave displacements, ie. |V,|=w|U| and
V,| = w|W|. Therefore the flexural power reflection coefficient can be expressed as

2pAc, V[

- =Ir. F 5.17
2pAc, [V, [ o G17)

Prp

where the subscripts r and i indicate the reflected and incident wave modes

respectively. The flexural power transmission coefficient is given by
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_2pA, V|
2pAc, IVbi |2

where subscript t indicates the transmitted wave. Similarly the axial power reflection

=[ty| (5.18)

PP

and transmission coefficients are given respectively by

2 2
_ PAC [Vlr| 1 2 _ PAC |Vlt| 1 2 519
PpL = 2 __|rPL| v TpL _—z__| PL| (5.19)
2pAc, V| 26 2pAc, V| 26
If there is no energy dissipation in the system, then
PoL +ToL + Ppp +Tpp =1. (5.20)

In practice the sum of these four coefficients is less than unity owing to the existence of

the damping of the system.

5.3.5 Rigid Massless Right-angled Connection

If the joint in Figure 5.5 is considered to be rigidly connected and massless, then
m=m,=0, J;=J,=0, y—>w and yw »>o . The propagating reflection and
transmission coefficients can be found from equation (5.16) to be

—2&(i¢ +1) (2-1)&+1-2i

) (2e 1) T (G (28 41)

_ (¢&7-ig-1)(-i) (i) i)

e ) (28 +10) T (EHloi)(2E110)

At low frequencies, when the high order terms of & can be neglected, the power

(5.21)

reflection and transmission coefficients can be approximated respectively by

& 5 1 1
=27 A LT iz A Pee T v T T L 4
65 +2 6 +2 6 +2 6542

PrL (5.22)

Equations (5.22) can be considered the asymptotes of the corresponding power
reflection and transmission coefficients at low frequencies. From the above equation, at

very low frequencies, i.e. £ — 0, then p, — 0 and 7z, — 0. This indicates that there
is almost no wave mode conversion to axial waves. Conversely, both p,, — 0.5 and
t., = 0.5, which means that the flexural incident wave is half transmitted and half

reflected in the form of flexural waves.
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Figure 5.6 shows the power reflection and transmission coefficients against the non-
dimensional frequency, & = wx /¢, . The power reflection and transmission coefficients
obtained from equations (5.22) are very close to those obtained from equation (5.21) at
low frequencies. With increasing frequency, deviations are found. Since p,, and 7,
are relatively small compared with p,, and 7, only a small proportion of the power is

transferred from flexural incident wave to axial waves, especially at low frequencies.
7, IS always about 5 times larger than p, , which means that power in the form of
axial waves is mainly carried in waveguide 2. With increasing frequency, the power
involved in the axial waves increases, accordingly the power in the flexural waves

decreases. In addition, 7., becomes larger than p.,, so a greater proportion of the

power in the form of flexural waves is transmitted into waveguide 2.

0
10 E
(a) TPLE’_—:-‘-.—.:.—..—.::T--’--’-::?
¢ 10* e T )
[N 3 annnn® - —EH(B DY 0 Mmammeme =
- T B 7 =58/(65+2) ]
= S 1
g =
-
10 ]
<
-3
10

top=1/(65+2)

Ppp@nd 7
o
w

Ppp

10 10 10° 10"
wx! c

Figure 5.6 Power reflection and transmission coefficients of the rigid massless joint.

5.3.6 Mass-like Joint

Referring to the joint model shown in Figure 5.5, if the connection is rigid and the mass

and inertia of the joint play a significant role, it can be considered as a mass-like joint.
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In this case, the stiffnesses tend to infinity. The propagating reflection and transmission
coefficients are

(2+20) & & +&-i),

PL

U|HBU|H

(2 2)&](142)(98°)~(2+1) i +(&-ig—i) 98 ~(2-i)£-1+21 |,

o () ()2 w2 ) 027 -2 ) (5.23)

T Dy [ 4(22-2ig-1)(9F) 22 +2ig+2
:iz(ygz+§—i)2.

m

where
:[(ﬂgz)(353)—2(1+i)(y§2)+(§—ig—i)(ggg)—zg—mzq
() e-ig=i]
Here, iu&? is the ratio of the impedance of the mass to the longitudinal characteristic

impedance of the waveguide. Similarly, i9&° is the ratio of the impedance of the

moment of inertia to the rotational characteristic impedance of the waveguide.

Closed form solutions for the power reflection and transmission coefficients are very
complicated. However, since the non-dimensional frequency, &° is very small, the

higher order terms in & can be neglected. The first order approximations become

2 45[(539—2)2%}
2 r T B 2 !

(9-2) +a]("u +1) (£9-2) +4 (&' +)

£9-2)+4 " (£9-2) 44

(£*9-2) (¢*9-2)

PoL
[ (5.24)

Ppp ®

These expressions are only valid when & <1 and u&® > &. From these approximate

expressions, an important frequency where £%3 =2 can be noted. At this frequency the

power reflection and transmission coefficients reach their local minima or maxima. This

holds both for the exact and simplified expressions. Referring to Equations (5.11) and
(5.13), 9£% =2 means that magnitude of the rotational impedance of the joint is twice

that of the rotational characteristic impedance of the waveguide, i.e. the magnitude of
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rotational impedance of each added mass (m, and m,) is twice that of rotational
characteristic impedance of the waveguide. Once this frequency is found, the joint
moment of inertia can be estimated simply by $=2/&%. Consequently, the mass

parameter, x can be estimated from equation (5.23).

Figure 5.7 shows the power reflection and transmission coefficients as functions of the

magnitudes of translational and rotational impedance ratios at the frequency

£2=0.0084. This frequency is equivalent to 500Hz for the pipe in Chapter 4. At the

regions where £°9=2, the power reflection and transmission coefficients reach their

local extrema. Large translational impedance or mass of the bend can impede wave
mode conversion effectively. Large rotational impedance or inertia of the joint can
prevent rotational motion of the bend, and therefore, restrain the energy in the flexural
incident waves from transferring to flexural waves in the second waveguide.
Consequently, the energy in the reflected axial waves is also reduced. When the mass of
the bend is large but the moment of inertia is small, the energy in the flexural incident
waves will be half reflected and half transmitted in the form of flexural waves, because
in this case the translational motions are prevented but the rotational motions can be
transmitted freely. When both of the mass and moment of inertia of the bend are large,
both the translational and rotational motions are restrained, so the energy will be totally

reflected in the original wave modes.

Figure 5.8 illustrates the power reflection and transmission coefficients as functions of
the magnitudes of impedance ratios at the frequency & =0.0336, which is equivalent

to 2000Hz for the pipe used in the measurements of Chapter 4. The trends of the
coefficients are the same as in Figure 5.7 except that the wave mode conversion is larger

than that at the low frequency (&° =0.0084) when the translational impedance of the

bend is small.
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Figure 5.7 Power reflection and transmission coefficients of the mass-like joint:
£% =0.0084.
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Figure 5.8 Power reflection and transmission coefficients of the mass-like joint:
&% =0.0336.

Figures 5.9 and 5.10 show the first order approximations for the power reflection and

transmission coefficients given in equation (5.24) against the magnitudes of impedance
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ratios at &% =0.0084 and &° =0.0336 respectively. For first order approximations, p,,
and z,, are the same for the two values of &*. Therefore, in Figure 5.10, only p,_and

7, are given. The simplified expressions are close to the exact ones shown in Figures

5.7 and 5.8 when the translational impedance of the bend is large. It can also be seen

that the first order approximations are more accurate at low frequency. In Figure 5.10(b)
., >1. This is not true since when 9&° is large, the first order approximations are not

accurate.
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Figure 5.9 First order approximations for the power reflection and transmission
coefficients of the mass-like joint: &% =0.0084.

Figure 5.10 First order approximations for the power reflection and transmission
coefficients of the mass-like joint: £* =0.0336.
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5.3.7 Spring-like Joint

For the joint model shown in Figure 5.5, if the mass of the bend is relatively small and
can be neglected, i.e. m; =m, =0 and J, =J, =0, the joint will behave as a spring-like

discontinuity. The propagating reflection and transmission coefficients can be found

from equation (5.16) to be
=g (2 2)E 1) w1861 (21€) 1]
Ly . (E+2E+2+1)( 71 E) (vl &)
tPL_DS(Z 221 H(iE+14) (21 E)~(2-1)(wl &) 1|
1A e () (1 4( -2 )
D | +2(2i&+1)( 21 E) (vl &)+2(i+1) (21 E)-2(wi£)-1 ’

t =%s2(;y/ 5)[(i§+1)( ;(/53)—1]2.

(5.25)

where
DS:[2(§+i§+1)(;(/§3)(y//§)+(i§+i+1)(;(/§3)—2(1—i)(y//§)—1]
[(ig+i+1)(x/&%)-1].
Note that —iy/&® is the ratio of the impedance of the translational spring to the

translational characteristic impedance of the waveguide. Similarly, —iy /£ is the ratio

of the impedance of the rotational spring to the rotational characteristic impedance of

the waveguide.

In Figure 5.11 the power reflection and transmission coefficients are plotted against
parameters y/&° and w /& at frequency £° =0.0084. Figure 5.11(a) shows that if the
magnitudes of impedance ratios are very small, p,, —1. This is as expected because a

very soft joint will not transmit energy to the second waveguide, and there would be no
wave mode conversion for this case as well. With increasing rotational stiffness, the

energy involved in the reflected flexural waves decreases except around regions where
x!& =1. Around these regions, p,, is insensitive to the rotational stiffnesses. With

soft translational springs, at least half of the energy will be reflected as flexural waves.
Figure 5.11(b) shows the energy in the transmitted flexural waves increases with the
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rotational stiffness of the bend except at the regions where y /&£ =1. At these regions

there is almost no energy transmitted to the flexural waves in the second waveguide. At
most half of the total energy can be transmitted to the second waveguide as flexural
waves. Figure 5.11(c) indicates that the energy carried by the axial waves in the first
waveguide is an order of magnitude smaller than that in the second waveguide. Figure

5.11(d) signifies that the energy in the transmitted axial waves reaches its maximum at
the regions where y/&° =1. r, is less sensitive to the rotational stiffness of the bend.
In all, the extent of the energy transferred from the incident flexural waves to other
waves, as expected, increases with the stiffnesses of the bend. Around the regions where

1% =1, wave mode conversion is most noticeable.

Figure 5.12 shows the power reflection and transmission coefficients as functions of
parameters y/¢&° and y /& at frequency £° =0.0336. It can be seen that the trend of

each coefficient is the same as in Figure 5.11. An obvious phenomenon is that at high

frequencies, wave mode conversion increases. More energy is converted into the axial

wave modes in the second waveguide at the regions where y /& =1.
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Figure 5.11 Power reflection and transmission coefficients of the spring-like joint:
£% =0.0084.
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Figure 5.12 Power reflection and transmission coefficients of the spring-like joint:
£% =0.0336.

5.3.8 Damping of the Joint

Damping of the joint is inevitable in practice, therefore it is essential to investigate its
effect on the reflection and transmission coefficients. Here a complex stiffness model is

incorporated into the stiffness parameters y and y by multiplying them respectively
by (1+in;) and (1+in;), where 7, and 7, are the damping loss factors in the
translational and rotational directions respectively. Figure 5.13 shows the influence of
the damping loss factors on the power coefficients p,, and z,_ with joint parameters
x=0.01, w=0.1, £=10 and $=10. When the loss factors are small, i.e. 7 <0.01,

the effect of the damping is insignificant. The effects of the damping in the translational
and rotational springs are different. This is because of the sensitivities of the coefficients
to the stiffnesses. For example, 7, is not sensitive to the rotational stiffness, therefore
the damping in the rotational direction has almost no effect on it. When considering the
damping in both translational and rotational springs, the effect is the combination of
these two cases. The other power reflection and transmission coefficients are similarly

affected by damping.
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Figure 5.13 Power reflection and transmission coefficients of the right-angled bend:
x=0.01, v =0.1, =10 and $=10: varying damping loss factors: —, n=0;
-, n=0.01; , 1=0.1: (a), (d) damping in translational springs; (b), (e)
damping in rotational spring; (c), (f) damping in both translational and rotational springs.

5.4 Reflection and Transmission Coefficients in terms of Wave

Amplitudes

A wave amplitude decomposition method has been presented in Chapter 3 to measure
reflection and transmission coefficients. This section describes how the reflection and
transmission coefficients of the right-angled bend can be measured by such a method.
This requires that the reflection and transmission coefficients be derived in terms of the
wave amplitudes in the waveguides. The wave field of the system is shown in Figure
5.14. A general excitation in the plane of the bend is assumed to be applied at point 1 of

pipe a, which gives rise to waves with amplitudes ¢ and ¢ at this point. The
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negative-going waves with amplitudes ¢~ will be reflected at the end of pipe a (point
4). The reflected waves travel a distance |, and superimpose upon the positive-going
waves at point 1 to form the positive-going waves on the right-hand side of point 1. At
the pipe bend, the waves are reflected and transmitted. Reflections from the end of pipe
b give rise to negative-going waves. The wave amplitudes at points 2 and 3 are
expressed by a* and b* respectively. The waves at the bend are indicated by the

subscript 0.

d ¢ ¢ —> a aS—»
—» <«———>» <«—a @ a, €«—
|y <7|14>
)
: T W f
a b; b,
|
b S
b" b
3

Figure 5.14 Wave field in the right-angled pipes.

The positive- and negative-going waves on both sides of the bend are related by
equation (5.1). Symmetry of the structure can reduce the number of unknown reflection
and transmission coefficients given by equation (5.2) from 36 to 18. Note that since
there are wave mode changes, R and T are not symmetrical. Neglecting the nearfields,

only 8 coefficients are unknown and equation (5.1) becomes

+

Uao e oo T Tol || Ugg
W, e e tp Top || Wy
== . (5.26)
Upo t T M Te || Upg
N _
Woo te tTp Tp  Top || W

Assuming that the pipe ends are axially non-reflecting, for the excitation considered

here, u;, =0 and u,, =0. The above equation can then be written as

|:ua0 Wa0:| — |:W;O Wb0:||:rPL tPL:| (5 27)
u I:O W;O WI;O W;- 0 rP P t PP

The wave amplitudes at points 2 and 3 in Figure 5.14 can be obtained by the wave
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amplitude decomposition method discussed in Chapter 3 and then converted to the wave
amplitudes at the bend by equation (2.28). Thus the reflection and transmission

coefficients can be obtained by solving equation (5.27).

5.5 Experiments on a Right-angled Pipe Bend

This section describes experiments carried out on a right-angled pipe bend. The
frequency where the n=2 wave mode cuts on and the wavenumber of the pipe were
measured. Then the reflection and transmission coefficients of the bend were measured
using the wave amplitude decomposition method. The behaviour of the power reflection
and transmission coefficients are analysed below the cut-on frequency of the n=2

ovalling mode.

5.5.1 Experimental Setup

The experimental rig is shown in Figure 5.15. Two copper pipes of length 4m, outer
radius 14mm and wall thickness 0.9mm were joined with a soldered right-angled elbow
and suspended at two locations by wire. A sandbox with foam wedges was placed at
each end of the pipes to approximate anechoic conditions for the flexural waves. A
sandwich steel panel was attached perpendicularly to the end of each pipe to minimise
axial wave reflections. The approach using a sandwich panel was described previously
by Brennan [68], in which the thickness of the panel was chosen to let the characteristic
impedance in loading of the panel match the characteristic impedance of the axial wave
motion of the pipe, so the energy in the axial waves is transmitted effectively into the

panel.

One of the pipes was excited perpendicularly in the plane of the bend by a shaker
through a stinger with a force transducer mounted on the pipe. Then below the cut-on
frequency for n =2 ovalling mode, only flexural and axial wave modes were generated
although torsional waves might exist in practice. A pair of accelerometers was located
on each side of the bend, far enough from the pipe ends, the pipe bend and the

excitation point, so that the nearfields can be neglected. Flexural and axial motions were
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measured separately because the number of available channels on the analyser was
limited. The spacings of accelerometers were chosen to be a quarter wavelength at the
centre-frequency of interest based on approximate estimates, which were 0.10 m for

flexural waves and 0.70 m for axial waves.

‘ sandwich paneGI“
R (™= sandbox

- .‘-\ - &)
force gauge - = S

right-angled
pipe bend

analyser B
=Y

Figure 5.15 Experimental rig for measurements of the reflection and transmission
coefficients of a right-angled pipe bend.

5.5.2 Cut-on Frequency for n =2 wave mode

Depending on frequency, piping systems can propagate very complicated wave modes.
This has been discussed briefly in Chapter 4. When doing measurements on pipes, the
wave modes propagating in the frequency range of interest must be known. Since only
the in-plane axial and flexural waves are of interest in this thesis, the cut-on frequency

for the n=2 wave mode is very important.

Figure 5.16 shows the cross-section of the pipe under test. The pipe was excited in the
horizontal direction. Two accelerometers were placed on opposing sides of the pipe
cross-section as shown in the figure. The magnitude and phase of the transmissibility
between the two accelerometers are shown in Figure 5.17. It can be seen that the

magnitude ratio is almost unity and the phase difference between these two
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accelerations is 7 until about 2500Hz. Thus the cut-on frequency for the n=2 wave
mode for this pipe is about 2500Hz. Measurements on both pipe arms of the bend are
very similar. Note that above 2000Hz, the magnitude of the transmissibility begins to

deviate from unity. Henceforth the discussion will focus on frequencies below 2000Hz.

Cross
section of
the pipe

2

f a \Ha
o /V

Figure 5.16 Placement of the accelerometers to measure the cut-on frequency for the
n=2 wave mode.
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Figure 5.17 Measured transmissibility, a,/a, between the two accelerometers shown in
Figure 5.16: (a) Magnitude; (b) Phase.

5.5.3 Wavenumber Measurements

In order to obtain the wave amplitudes and from them the reflection and transmission
coefficients, the wavenumbers of the pipes need to be measured. The flexural
wavenumber of the pipes was measured over the frequency range of interest by the

method described in Chapter 3. A sensor spacing of A =0.10m was chosen. Figure 5.18
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shows the measured real and imaginary parts of the algebraic average of the

acceleration ratios, (a1 +a3)/2a2 shown in Figure 3.10. The imaginary part is almost
equal to zero which means the damping of pipe is very small, therefore the real part is
considered to be the value of (W, +W,)/2W, . Figure 5.19 shows the least-squares fit to
cosk, A in the frequency range 500-2000Hz, which gives f=0.428. The errors in S

caused by considering it to be a constant are less than 3% in this frequency range.

1- (b) A
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|
=
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Frequency, Hz

Figure 5.18 Magnitude of (W, +W,)/2W, for wavenumber measurements of the right-

angled pipe: (a) Real part; (b) imaginary part.

cos(kbA)
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Frequency,Hz
Figure 5.19 cosk,A for the pipes: ——, raw data; — —, least-squares fit in 500-

2000Hz, k,A = B/f (f=0.428).
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5.5.4 Measured Reflection and Transmission Coefficients

The measured reflection and transmission coefficients are presented in this section. The
axial and flexural wave amplitudes were decomposed independently by the method
introduced in Chapter 3. The reflection and transmission coefficients of the right-angled
bend were obtained from the decomposed wave amplitudes by application of equation
(5.27).

Figure 5.20 shows the method to measure the axial wave motion. The circle is the cross-
section of the pipe. One lateral side of the transducer was attached to the pipes to
measure the axial motion. Here it is assumed that the difference between the axial

motions of the top and bottom of the cross-section is negligible.

Figure 5.20 Measurement method of the axial wave motion.

Figure 5.21 shows the magnitudes of the outgoing and returning flexural waves in each
pipe with in-plane flexural excitation. There are clear resonances below 500Hz. Above
this frequency, the differences between the magnitudes of the individual waves in the
pipes is very clear: the incident wave is always of the largest magnitude and the
amplitude of the end-reflected wave becomes consistently small compared to the
amplitudes of the other three waves. However, even with the sandbox, the end-

reflection is still not insignificant. This means the end is not anechoic.

Figure 5.22 depicts the magnitudes of the outgoing and returning axial waves in each
pipe with flexural excitation. Above 500Hz it is apparent that the waves transmitted
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through the bend have the largest magnitudes. There are two large peaks at frequencies
1300Hz and 1800Hz which correspond to the two minima in the magnitudes of the
reflected flexural waves in Figure 5.21. At these two frequencies, the energy is mostly
converted to the transmitted axial waves. The pipe ends are also not perfectly anechoic

for axial waves since the magnitudes of the end-reflected axial waves are not

insignificant.
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Figure 5.21 Flexural wave amplitudes in each pipe: flexural excitation: —, incident
wave in pipe a; ----, reflected wave in pipe a; - , transmitted wave in pipe b ;
— - -, end-reflected wave in pipe b .
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Figure 5.22 Axial wave amplitudes in each pipe: flexural excitation: —, end-reflected
wave in pipe a; - - --, reflected wave in pipe a; - , transmitted wave in pipe b ;

~ — -, end-reflected wave in pipe b.
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Figure 5.23 shows the power reflection and transmission coefficients of the right-angled
bend under the assumption of axially non-reflecting boundaries only and flexurally non-
reflecting boundaries only. The reflection and transmission coefficients in these two

cases are compared to those of the fully non-reflecting boundary assumption. When the
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Figure 5.23 Power reflection and transmission coefficients of the pipe bend: - - - -,
assuming all boundaries are anechoic; (a),(b),(c) and (d), —, assuming boundaries
are anechoic only for axial waves; (e),(f),(g) and (h), - , assuming boundaries are

anechoic only for flexural waves.
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reflections of the flexural waves from end of pipe b (the solid lines in (a) to (d)) only
are considered, the rapid oscillations are smoothed dramatically. This means that the
reflections of flexural waves from the pipe end are significant. When the reflections of
the axial waves from both pipe ends (the dotted lines in (e) to (h)) only are considered,
only the two large peaks in frequency range 1000-2000Hz are refined. It can be
concluded that the rapid oscillations are caused by neglecting the reflections of the
flexural waves from the pipe end and the slow oscillations arise from the assumption of
axially non-reflecting boundaries only. It also should be noted that only considering the
end reflections of one wave mode does not lessen the oscillations of power coefficients
associated with the other wave mode. For example, the oscillations of Figure 5.27(c) are

enlarged rather than reduced.

Figures 5.24 to 5.27 show the power reflection and transmission coefficients estimated
based on the assumptions of non-reflecting and reflecting boundaries of the pipes. The
results from the assumption of non-reflecting pipe ends appear very oscillatory. These
oscillations result from the reflections from the pipe ends. This is shown in Figure 5.23.
The oscillations can be reduced effectively under the reflecting boundary assumption,
especially at high frequencies. This is shown by the solid lines in Figures 5.24 to 5.27.
However, the slow oscillations have not been removed totally, i.e. the reflections of
axial waves from the pipe ends still have a large influence. A frequency averaging
method [63] was adopted to deal with this problem. For each of the power coefficients,
the averaging was performed based on a frequency range over which an axial wave has
travelled twice the length of one pipe. Since the axial waves are non-dispersive, the
averaging bandwidth is then frequency-invariant and it can be calculated based on the
wave speed of the axial waves or obtained from Figures 5.24 and 5.27 in which the
frequency difference between the two large valleys/peaks can be considered

approximately as the averaging bandwidth. Here it is about 480Hz.

In Chapter 7 the parameters of the bend model will be identified from the measured
power reflection and transmission coefficients, and then the power reflection and
transmission coefficients will be calculated based on the estimated parameters and
compared with the measured counterparts. In the limited frequency range considered,
the frequency averaged power reflection and transmission coefficients do not change

much, which may cause bad conditioning in the parameter identification process.

-114-



Chapter 5 Wave Reflection and Transmission at Angled Bends

go]
>
(@))
g s
= O
[&]
o =
Y=
© 3
o c m .
rdl S e = 3
- = 2 =2 g
R -2
~o 'u“lll T =
T I -
.-t 7 m
1...-|n|\\| Im m
= c
- s g & -
L c Is g \ -
..... H — L S 3
: 2 o
N S B
§opmmssmnensass - v >
e 175}
o . S 2
4 N =
cooh ] T 5 3
..... g . )
L < g 193 . 2 \ i
e So o g
—F Y =1 S Q m g
T = ¢ = o
[ < L o Qo
2 ey
(28 £ =
ke 5 B
S < 5 S 8
[ ||\|HUH| l.nnuuuuuuunl 18 ) ﬁ
.ﬂl..l.llnnlln ~ ||wnhuuuuunnlllllln o m bt
|m' -U -
[&]
i)
Y—
[}
= ..
& 5
=
00 W o
a £
< >
N A
o ©
L
3 S
2 =
L =
o
o)

, frequency averaged.

Frequency, Hz
, reflecting boundary assumption; ...
-115-

Figure 5.25 Power transmission coefficient 7, of the pipe bend: - - - -, non-reflecting

boundary assumption;



Chapter 5 Wave Reflection and Transmission at Angled Bends

Frequency, Hz

Figure 5.26 Power reflection coefficient p,, of the pipe bend: - - - -, non-reflecting
boundary assumption; —, reflecting boundary assumption; ... , frequency averaged.

1000 1500 2000

Frequency, Hz

Figure 5.27 Power transmission coefficient 7z, of the pipe bend: - - - -, non-reflecting
boundary assumption; —, reflecting boundary assumption; ... , frequency averaged.

The sum of the four power reflection and transmission coefficients based on the
assumptions of anechoic and echoic boundaries is shown in Figure 5.28. None of the
calculations consider damping effects in the structure. In the frequency range of 500-
2000Hz, the sum of the frequency averaged reflection and transmission coefficients is

close to unity, as expected. Therefore the damping for this case is negligible.
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Figure 5.28 Sum of the power reflection and transmission coefficients of the pipe bend:
, anechoic boundary assumption; —, echoic boundary assumption; ... ,
frequency averaged.

5.6 Summary

An arbitrary angled bend connecting two in-vacuo pipes was considered to have mass,
moment of inertia, and translational and rotational stiffnesses. The general approach
introduced in Chapter 2 was employed to derive the reflection and transmission
coefficients of the ‘mass-spring-mass’ model of the arbitrary angled bend. When
considering an incident flexural wave in the plane of the bend in one pipe, closed form
solutions were given for a massless rigidly connected joint, a mass-like joint and a

spring-like joint. The power reflection and transmission coefficients were investigated.

For a rigid massless connection, the power involved in axial waves is much smaller than
that in the flexural waves at low frequencies. With increasing frequency, more power is
converted from flexural waves to axial waves. The power associated with the axial
waves is mainly in the second waveguide. This results from the incident wave being an

in-plane flexural wave.

The behaviour of the power reflection and transmission coefficients of the mass-like and

spring-like joints can be easily interpreted from the point view of impedance ratios. For
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the mass-like joint, at the regions where £°9 =2, the power reflection and transmission

coefficients reach their local extrema. Large mass of the bend can impede wave mode
conversion effectively. Large moment of inertia of the joint can prevent rotational
motion of the bend, and therefore, restrain the energy in the flexural incident waves
from transferring to flexural waves in the second waveguide. For the spring-like joint,

the extent of the energy transferred from the incident flexural waves to other waves, as
expected, increases with the stiffnesses of the bend. Around the regions where y/&° =1,

wave mode conversion is the most dramatic.

For the damping model considered, the effect of the translational and rotational
damping of the bend is related to the sensitivity of the power reflection and transmission
coefficients to the corresponding stiffnesses. The damping of the pipes measured was

considered to be negligible.

For the experiments on the right-angled pipe bend, although sandboxes and sandwich
panels were applied for the purpose of removing the wave reflections from the pipe ends,
their effect is imperfect. Significant flexural, and especially axial waves were still found
to be reflected from the pipe ends. This causes large oscillations in the estimated power
reflection and transmission coefficients based on the anechoic boundary assumption.
The reflections of flexural waves from the pipe ends are responsible for the rapid
oscillations with frequency of the power coefficients and the reflections of the axial
waves from pipe ends for the slow oscillations with large amplitude. Including the
reflection from the ends in the calculations can reduce the rapid oscillations effectively.
The slow oscillations are smoothed by using a frequency averaging method. In the
limited frequency range considered, the power reflection and transmission coefficients
change only slightly, which may cause bad conditioning for parameter identification
process. This will be discussed in Chapter 7.
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Chapter 6 Parameter Identification

6.1 Introduction

Waveguides, such as piping systems, comprise joints in the form of flanges, hangers,
bolts, valves, pumps and changes in section. These joints contribute to inertia, stiffness
and damping and can dramatically alter the dynamic response of the whole system. In
many cases these properties are poorly known. A good estimate of the properties of the
joints would not only help to predict the dynamic response, but also benefit controlling
the vibration level of the waveguides by designing and modifying the joint structures.
This chapter discusses approaches by which a parametric joint model is updated from
measured wave reflection and transmission coefficients. The experimental
implementation of the iterative approach is described in Chapter 7 using the models

discussed in Chapters 2, 4 and 5.

A theoretical model for a structure can be updated by experimental measurements. This
procedure includes two main steps: the first is to determine an appropriate parametric
model for the structure; the second is to estimate the corresponding parameters of the
model by experimental observation. Chapters 2, 4 and 5 have developed models for
discontinuities in waveguides and derived the reflection and transmission coefficients in
terms of the parameters of the discontinuities. Chapter 3 discussed a method to measure
the wave amplitude reflection and transmission coefficients. In this chapter, the generic
problem concerning parametric joint identification is introduced first. Then approaches
concerning the estimation of the joint parameters from measured wave reflection and
transmission coefficients are studied. Attention is focused on the Gauss-Newton method
in which an objective function is defined that quantifies the discrepancy between
measured and predicted reflection and transmission coefficients. Minimisation of this
objective function is a non-linear optimisation problem that yields estimates for the

parameters of the discontinuities. Problems concerning the choice of the initial values of
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the parameters, criteria for terminating the iteration and evaluation of the accuracy of

the estimates are also discussed.

6.2 Generic Problem

This section introduces the generic problem concerning joint parameter identification. A
joint is usually used to connect two or more substructures. Some typical examples have
been shown in Figure 5.1. An example case of coplanar substructures connected by a
joint is given in Figure 6.1. When an external excitation is applied to a branch, for
example, substructure a, response will arise not only in substructure a itself, but also
in b and c through the joint. From the viewpoint of wave propagation in structures, the
excitation in waveguide a gives rise to structural waves incident upon the joint, which
may be composed of several wave modes, such as longitudinal, flexural, torsional, etc.
At the joint the incident waves are partly transmitted to waveguides b and c, and partly
reflected to waveguide a as well. If there are more excitations in the system, or if the
reflections from ends of the waveguides are considered, more reflected waves and
transmitted waves will be generated. Here the properties of the joint play a crucial role.

They determine the response of the whole system.

Figure 6.1 Joint with three coplanar waveguides.

The objective is now to investigate the dynamic characteristics of the joint, model it and
try to estimate its parameters, such as the inertia, stiffness and damping, from
measurements of the responses in waveguides a, b and c. Here the wave amplitude
reflection and transmission coefficients of the joint are chosen to be a measure of the

dynamic characteristics of the system. The reason is that the reflection and transmission
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coefficients depend on the properties of the waveguide and joint. Correspondingly, the
scattering coefficients thus can reveal the characteristics of the waveguide and joint.
Some parametric models which relate the reflection and transmission coefficients to the
properties of the joint have been developed in Chapters 2, 4 and 5. Chapter 3 discussed
a method by which the reflection and transmission coefficients corresponding to each
wave mode can be estimated from wave amplitude measurements. Now the problem is
how to estimate the parameters of the joint model from the measured reflection and
transmission coefficients. Questions such as which coefficient or coefficients (reflection
or transmission) is to be used, and in which frequency range the measured data is to be
chosen to update the parameters will be investigated.

Basically two methods may be employed to estimate the parameters of the joint in this
stage:

1) Direct method. If the parameters of the joint can be explicitly expressed as functions
of the reflection and transmission coefficients, substituting the measured reflection and
transmission coefficients into the corresponding expressions gives the parameters
directly. This method is simple, but in most cases either such expressions do not exist or
the expressions suffer from high sensitivity to measurement errors. Under such
situations this method cannot help.

2) Iterative method. It is quite usual that differences are found between the measured
data and analytical model. An objective function is usually defined as the sum of the
squares of the differences between the measured and estimated data. The unknown
parameters can be updated by minimising this objective function step by step through an
iterative algorithm. If the change in the parameters between successive iterations
decreases rapidly enough, then the solution will converge. As far as this thesis is
concerned, the objective function will be defined in terms of the power reflection and/or

transmission coefficients of the discontinuities.
Both of these methods require an appropriate parametric model of the joint. The second

method, the iterative method, is widely used in parameter estimation. The following
section introduces these two methods in detail.
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6.3 Parameter Estimation Methods

Joint identification, in the sense of parameter estimation, can be considered as an
optimisation problem in which the objective is to improve the correlation (determined
by an objective function) between the measured and predicted responses by making
parametric changes to the analytical model. This often presents a least-squares problem.
Many mathematical methods have been applied to such a problem, especially iterative
methods [69, 70]. In this section, both the direct method and iterative method

concerning parameter identification are introduced.

6.3.1 Direct Method

In some cases, the parameters of the joint model can be expressed in a simple way as

AX=b (6.1)
where g-vector X represents the unknown parameters, nxq matrix A and nx1 vector
b involve wave reflection and transmission coefficients. Assuming that matrix A is
invertible, the parameters can be estimated by

X=A"b. (6.2)
Generally, for a given joint model, A may be singular or nearly singular at some
frequencies. In this case, for an overdetermined problem (n>q), i.e. the reflection and
transmission coefficients are measured at more frequencies than the number of the
parameters, the inverse can be defined such that |[AX—b|| can be minimised in the
least-squares sense in which is

A" =(A"A) A", (6.3)

where the superscript « indicates the complex conjugate transpose (the Hermitian).
Overdetermining the set of equations can reduce the sensitivity to noise, sensor
miscalibration and other measurement errors. However, if the errors are too large, this

method is still prone to fail. On the other hand, it is not always possible to find such an

explicit expression as equation (6.1).
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6.3.2 Iterative Method

If the direct method fails or is not applicable, an iterative algorithm can be used. In this
section the nonlinear least-squares problem, usually encountered in parameter
identification, is introduced and then an iterative method to solve this kind of problem is

reviewed.

6.3.2.1 Nonlinear Least-squares Problem

The general nonlinear least-squares problem is introduced here. In data fitting or
parameter identification problems, the objective function is usually defined as the sum
of squares of the difference between the measured and predicted outputs, which can be

written in the form

F(X)=%R(X)TR(X) (6.4)
where the g-vector Xz(x1 X, - Xq) represents the unknown parameters to be
updated. The n-vector R(X)=(R, R, -+ R,) iscalled the residual at X and can be
defined as

R(X)=Y,(X)-Y(X) (6.5)

where Y, (X) indicates the measured response and Y(X) represents the predicted
output from the theoretical model based on parameters X . For the problem considered
in this thesis, Y,,(X) is the measured reflection and/or transmission coefficient(s) at a
number of frequencies and Y(X) is the predicted counterpart from the parametric joint

model. Since the number of frequencies is typically much larger than the number of

unknown parameters, the problem here is overdetermined. If the residual R(X) is a

nonlinear function of parameters X, iterative procedures are usually required.

6.3.2.2 Gauss-Newton Method
Many iterative algorithms have been developed for parameter optimisation problems
[69, 70]. In this section, the Gauss-Newton method is reviewed. It is an iterative method

and requires the calculation of the Jacobean matrix of the objective function.

-123-



Chapter 6 Parameter Identification

The Gauss-Newton solution to minimising the objective function in equation (6.4) can
be expressed as (see references [69, 70] for detailed procedure)

-1
AX; :_(S}SJ) SR, (6.6)

where AX; =X, —X;,s0

-1
X1 =X _(SJTSJ') SIR, (6.7)

where the subscript j indicates the jth iteration, X, , and X, are the estimates of the

j+l
parameters after j+1 and j iterations respectively, R; =Y, -Y;, Y; is the jth predicted

output from the parametric model. S.

; Is the Jacobean matrix of R; and is defined by

R R R
oX, OX, oX,
R, R R
S, =| oX, oX, X, | . (6.8)
R, R, R
X, X, X, |,

Thus the updated parameters may be obtained iteratively from equation (6.6). This

approach assumes that each component of the measured data, Y,, has equal weight.

However, in a typical measurement, the responses may have been measured to different
accuracy levels or be of different orders of magnitude or different units. In this case, a
weighting matrix can be incorporated into the updating algorithm. The objective
function then becomes

F(X) :%R(X)T W..R(X) (6.9)

where the weighting matrix, W, is positive definite and usually diagonal. Its elements

may be given by, for example, the reciprocals of the variances of the corresponding
measurements [6]. The Gauss-Newton method minimising this objective function gives

the updated parameters as

X, =X, ~(S]WeeS,) STW,.R,. (6.10)
An assumption in equation (6.6) and (6.10) is that S|S; or S;W,.S  is nonsingular. If
matrix S7S; or STW,.S; has full rank, the equations may be solved. If they are ill-

conditioned or nearly rank-deficient, which may result from incorrectly scaled
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parameters, for example, one of the parameters may have little influence on the
measurements, or combinations of parameters having similar effects, it is wise to

reconsider the choice of parametric model or objective function.

If the model used in data fitting or parameter optimisation is good, F(X) is expected to

be small and the minimising process is called a small residual problem. Otherwise one
has a large residual problem.

For overdetermined small residual problems with accurate initial data, convergence of
the Gauss-Newton method can be expected to be fast. But the method may not converge
at all for large residual problems and/or initial data far from the solution [69]. There
may be several local minima in a given range, but the global minimum is usually the
desired solution. Estimating the initial parameter values prior to iteration is of great
importance since an inaccurate choice may lead to a local rather than the global

minimum, or even divergence of iteration.

6.4 Application of Parameter Estimation Methods to Joints

Parameter identification of some specific joints from simulated wave reflection and

transmission coefficients measurements is investigated in this section. For example,

consider a case of a mass-like discontinuity in a straight waveguide, shown in Figure

6.2. The discontinuity is characterised by a mass, m and a moment of inertia, J . The

objective is to estimate the joint parameters, m and J from simulated reflection and

transmission coefficients measurements for which the true parameter values are known.

The parameter identification procedure is shown in Figure 6.3, and includes the

following steps:

1) Set up the joint model and assume some initial joint parameter values;

2) Evaluate the reflection and transmission coefficients in terms of the parameters of
the discontinuity;

3) Evaluate the displacements (FRFs) at “sensor locations’ assumed for simulations for
given input;

4) Add noise to the simulated sensor displacements;
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5) Estimate wave amplitudes from noisy simulated sensor displacement measurements;

6) Estimate reflection and transmission coefficients from wave amplitudes obtained at
step 5;

7) Estimate joint parameters from reflection and transmission coefficients obtained in
steps 2 and 6 (for direct method, data from step 6 only are used);

8) Compare updated joint parameters with assumed values at step 1, and compare
reflection and transmission coefficients from updated model with simulated

measurements.

m,J

Figure 6.2 A mass-like discontinuity attached to a uniform beam.

Joint model
(parameter values) |
« [inverse
r _problem,

Reflection and
transmission coefficients

| 1

Wave amplitude

decomposition method
A

A
Displacements at sensor

locations
A

Y

Add noise

Figure 6.3 Flow chart of joint parameter identification based on simulated response data.

In short, these steps can be merged into two basic processes: one is to generate a
simulated data set. This is a forward problem, including steps 1-6. The other, the inverse
problem, is to identify joint parameters from the simulated data, step 7 and evaluate the
accuracy of the applied approach, step 8. When using practical experimental data to

estimate the joint parameters, measured rather than simulated reflection and
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transmission coefficients will be employed in the process. This will be discussed in
Chapter 7.

Apart from these conventional methods, some particular methods may also be very

useful for some special cases. These involve identifying certain frequencies, for

example, such as the frequency at which $£° =2 occurs in the mass-like right-angled

joint and the frequency at which y/&* =1 occurs in the spring-like right-angled joint
discussed in Chapter 5. If such a point can be found, the corresponding parameter can
be estimated directly. The other parameter (or parameters) can be estimated by the
conventional methods, and it will be easier since the number of the parameters to be

identified has been reduced.

6.4.1 Direct Method for a Mass-like Discontinuity

Consider flexural wave propagation in an infinite waveguide to which a mass-like
discontinuity is attached at x =0 as shown in Figure 6.2. The expressions for the direct

method can be derived easily from equation (2.50) as

[(i+Top +1pp )& | =2(i =1) (—1+ Fpp +1pp ) (6.11)
and

[(i+ Top —tpp ) E° |9 = 2(1—1) (14 Fop —typ ) (6.12)
where parameters ¢ and ¢ are the non-dimensional mass and moment of inertia

respectively given by equation (2.51). They are the joint parameters to be estimated.

Equations (6.11) and (6.12) are scalar equations and independent of each other. The
mass, ¢ and moment of inertia, 9 can be estimated from these two equations based on
the reflection and transmission coefficients respectively at a single frequency. The
results obtained in this way can be highly affected by noise. By considering n
frequencies, each equation can be stacked to form a matrix equation in the form of
AX =b, where A and b are nx1 vectors and X is a scalar. Then the parameters can
be estimated in a least-squares sense by equation (6.3). This may reduce the effect of
noise on data from a single frequency. However, simulations have been performed and

results (not presented here) indicate that A and b are very sensitive to the phase errors

-127-



Chapter 6 Parameter Identification

of the ‘measured’ reflection and transmission coefficients. This can be explained by

inspection of equation (3.12), where the terms involving k,a and/or kb influence the
phases of estimated reflection and transmission coefficients. Terms k,a and k,b can

typically be very large so that the errors in the phases of the reflection and transmission
coefficients also become very large, especially at high frequencies. The joint parameters
estimated from these reflection and transmission coefficients contaminated by large
phase errors are also dramatically affected. Therefore, this direct method, from this

point of view, does not give accurate results.

For a spring-like discontinuity in a straight waveguide, similar expressions to equations
(6.11) and (6.12) can also be obtained. For more complicated joint models, such as
joints in a right-angled bends, it is difficult or impossible to find such explicit

expressions for the joint parameters.

6.4.2 Iterative Method for a Mass-like Discontinuity

Since the phases of reflection and transmission coefficients are very sensitive to
measurement errors, a method which uses only the moduli of the coefficients is applied
to the same case discussed in the above section. For convenience, the squared moduli of

the reflection or transmission coefficient, i.e. the power reflection coefficient, p =|r.,|

- . .. 2 .
or power transmission coefficient, 7 =|t,,|" is adopted.

The power reflection coefficient for the joint shown in Figure 6.2 can be derived from

equation (2.52) as

- [(1£)(98°) 20 +298° | 619

(178 +4p& +8)(FE° - 49£° +8)

where x and 4 are the non-dimensional mass and moment of inertia respectively. The

residual R; in equation (6.6) is defined as
R, =p,—p;. (6.14)

In the above expression, p, =(pwm Pms = Pm) Where p, i=12,---,n, is the

‘measured”  power reflection coefficient at the ith frequency and
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P =(,ojl Pis pjn)T is the analytical counterpart at the jth iteration. The ith

component of p; is given by

|:(:uj§i )(gjé:ig)_ 2,Uj§i + 23j§i3:|2

. . 6.15
8T (e ap g +8)(95 49,8 +8) (619
The Jacobean matrix S(X) at X is
S, =- Ou OH OH (6.16)
%n %P %Py
08 a9 09
where, by differentiating equation (6.13)
opy 84 [(16)(94")-2mé +29,8 (9,8 - & -4)
ou (1282 +au& +8) (9°&° 49,8 +8) 617
opy _ 88°[(14)(98)) 216 +298 |(9,8 - w6 - 4)
08 (1282 +4p,& +8) (9260 — 49,8 +8)

It should be noted that the non-dimensional mass, ©# and moment of inertia, ¢ have

different orders of magnitudes and so do the two derivatives in equation (6.17).

If the objective function is insensitive to one or more parameters in a given frequency
range, a reasonable value(s) can be assumed for the parameter(s) and only the other
parameter(s) is updated. This will simplify the identification process dramatically in
some circumstances since the more parameters there are to be updated usually makes

the convergence of the iteration method slower and less reliable.

The flow chart for the Gauss-Newton iteration procedure for the mass-like discontinuity

on a beam is shown in Figure 6.4.

When using the power transmission coefficient, z =|tF,F,|2 to update the parameters of

the joint, similar expressions can be derived. If there is no energy dissipated, o and

are related by
p+r=1. (6.18)
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Therefore

2:_8_’0 and Q:_é’_p. (619)
ou  ou 89 a9

The Jacobean matrix is thus the negative of that of the power reflection coefficient. Of
course, p,, +7,, #1 due to measurement errors and damping, and one may be more

accurate than the other.

Model output P

Jacobean Matrix S

{,Ll ’9}T = Xj+l

Figure 6.4 Flow chart of Gauss-Newton solution procedure on a simple mass-like
discontinuity.

6.4.3 Iterative Method for a Right-angled Joint

In the previous section, the power reflection and transmission coefficients could be
expressed explicitly as functions of the joint parameters, as could the objective function.
In this section a general method is introduced to obtain the power reflection coefficient

or transmission coefficient whether they are expressed explicitly or not.

For the case of the right-angled joint discussed in Chapter 5, Equation (5.16) can be
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expressed in the form

AC=Db (6.20)
where
[ e we ]
- +1 0 ——ié 0 +&
2 2 2
LB o £ . 2
3 2 g 3
ue i HS He
0 -+ ——+i - 0
2 2 2
A= : ,
V4 X X
0 - — =i 0 —_—-—-1 0
é:a 53 2 3 2
0 0 —lﬁ—l i£+ —£+1 i -
2 2 2 2
0 0 |Z—| 5 -1 iK 4 £+ 4
L 14 2 & & 2 &
T
C= {rPL o e T Ty oy } ’
£ XK 98 w9
b=10 0 £=4j e i T B B B B B
¢ 2 2 & 2
Then the vector of reflection and transmission coefficients can be obtained as
C=A"b. (6.21)

If the power reflection coefficient, p,, is to be used in the objective function, for

example, here a vector z can be defined as

z={0 01 0 0 0}

(6.22)

The vectors for other reflection and transmission coefficients can be deduced by

analogy. Then the flexural reflection coefficient is given by
Mop = z'C.

Given the definition of the power reflection coefficient as

H
Pep = Tpp Top

substituting Equations (6.21) and (6.23) into (6.24) yields

Pue =b" (A7) 227A7D.

(6.23)

(6.24)

(6.25)

Correspondingly the derivatives of p,, to parameter x can be obtained by
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(?pi = E(A_l)H 722" A'b +b" (A—_l)HZZTA"lb
ou o O . (6.26)
+b" (A’l)H 7z’ ai71b +b" (A‘l)H zzTA_la—b
ou ou

See Appendix 10 for the detailed derivation. Other derivatives can be found by analogy.

If the four parameters, u, ¢, y and yw are to be estimated simultaneously, then

X={u 9 g z//}T. The Jacobean matrix S at X; becomes

I Perin Perin OPrris OPpris |
ou 09 oy oy

Pepiz OPppiz OPrriz OPppi2

Si=-| ou 09 oy oy (6.27)

6,Oppjn 8,Oppjn 8/Oppjn 8pppjn
ou 09 oy oy

where the subscripts ji, i=1,2,---,n are the same as those in Equation (6.16).

The method introduced above can also be used in the case of the pipe support model
discussed in Chapter 4.

6.5 Some Issues Concerning the Iteration Process

For the iteration process of the Gauss-Newton method, some major issues will be

encountered. They are discussed in detail in what follows.

6.5.1 Choice of Objective Function

In theory either the reflection or transmission coefficient can be chosen to establish the
objective function. The one with higher sensitivity to the parameters (this is usually
frequency dependent) is more preferable. In practice, the accuracy and ease of the

measurements of the coefficients should also be considered.

-132-



Chapter 6 Parameter Identification

6.5.2 Selection of Frequency Range

The choice of the frequency range for the parameter identification process is usually
based on the sensitivity of the objective function to the parameters. High sensitivity of
the objective function to the parameters to be updated can improve the goodness of

estimation.

6.5.3 Initial Estimate of Parameters

As mentioned at the end of section 6.3.2.2, the initial estimates are of importance to the
convergence of the iteration. Good estimates of the initial parameters can lead to a fast
convergence while poor estimates might result in slow convergence, converging to

other local minima, or even divergence.

Taking the mass-like discontinuity on a beam for example, there are two joint

parameters to be updated. One is the non-dimensional mass, x and the other is the non-

dimensional moment of inertia, . In practice, an initial estimate of the mass can be
expected to be more accurately known than that of the moment of inertia. However, an

estimate of 9 can be obtained based on that of . Referring to equation (6.13), when

(1€)(9°)+288° —2ué =0 (6.28)
there is no reflection. From the ‘measured’ power reflection coefficient against non-
dimensional frequency &2, the frequency &2 at which p =0 might be estimated. From

equation (6.28), it yields

9 =%. (6.29)
UG +28

The parameter & can be estimated based on an estimate for x and the value of & at

this frequency.

A more generally applicable technique for finding good estimates of the initial
parameters is possible if a range for each parameter is assumed within which the global
minimum is located. Then their ranges can be divided into a coarse grid (Figure 6.5).
The initial estimates of the parameters can be chosen as the pair of x and 9 where the

objective function is lowest. However, it must be noted that this still does not guarantee
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good initial parameter estimates since the global minimum may not lie within the ranges

chosen.

. F
19upper - / min

9

lower

lulower /uupper

Figure 6.5 Grid of the range of estimated x and ¢ for the simple mass-like
discontinuity.

6.5.4 Termination of Iteration

A theoretical model is always an approximation of the true system. Owing to the
existence of measurement noise and inaccuracy of the joint model, the solution at the

j th iteration X; need never converge to the true value. It may converge to a value

close to the true value depending on the noise level and nonsingularity of S}WRRSJ. in

equation (6.10). Many criteria for terminating the iteration can be defined. Considering

the orders of magnitudes of these two parameters and that x; =0 or 9, =0 is possible,
a weighted norm of the difference between the parameter vectors of two successive
iterations is used, which is

8; =AXT W, AX . (6.30)
where W,, is the weighting matrix. When ¢, is small enough, the iteration can be

terminated. It should be noted that even if the value of equation (6.30) is very small, it is

not sufficient to say that the method has converged. Only when 25]. tends to a

joo

constant, can it be said that the method is converged.
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6.5.5 Evaluating the Goodness of the Estimates

When the iteration process is complete, the identification result is obtained. The result
needs to be evaluated before drawing any final conclusion. Two ways, graphical and
numerical, may be used to measure the goodness of the result. From the plot of the
‘measured’ and estimated power reflection or transmission coefficient, the result can be
viewed easily. A more gquantitative way for parametric models is to evaluate the result
statistically, among which the sum of squares due to errors (SSE), R-square, adjusted R-
square and root mean squared error are quite often used. They are discussed in
references [71, 72], here only a brief introduction is given.
1) The sum of squares due to errors (SSE)
This statistic measures the total deviation from the estimate to the response values and
is given by

SSEzzjimg(ym——m)z (6.31)

i=1

where y_. is the ith observed or measured response value, y, is the corresponding
response predicted by the model after each iteration, w, is the ith weighting factor
(w, #0) and n is the number of response values. A value closer to zero means a better
fit of the model. Here the power reflection coefficient o or transmission coefficient ¢
can be the substitute for y .
2) R-square
R-square is the square of the correlation between the measured and predicted response
values. It is defined as the ratio of the sum of squares of the regression (SSR) and the
total sum of squares (SST). SSR is defined as

$R:§NNm-xf (6.32)

i=1

where Y, is the mean value of the observed response. SST is also called the sum of

squares about the mean, and is defined as
SST =3 W, (Y = Vi) (6.33)
i=1
It can be proved that SST =SSR + SSE . Therefore, R-square can be expressed as
_SSR 1 SSE

RZ=22SC 20—
SST SST

(6.34)
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Note that it is possible to get a negative R-square. In this case, R-square cannot be
interpreted as the square of a correlation.
3) Adjusted R-square
If the number of estimated parameters in the model is increased, R-square might
increase although the estimation may not improve. To avoid this, the degrees of
freedom adjusted R-square statistic is used. The adjusted R-square is defined as

re 1 SSE(N-1) (6.35)

‘ SST (n—q)

where q is the number of parameters to be estimated. Here the power reflection
coefficient p or transmission coefficient z can be the substitute for y. The R-square

and adjusted R-square can take on any value less than or equal to 1, with a value closer
to 1 indicating a better estimate.
4) Root mean squared error

The root mean square error is defined as

RMSE = | 2°C (6.36)
n—g

A RMSE value closer to zero means a better estimate.

The R-square and the adjusted R-square include both information of SSE and SST. Only

the R-square will be given in what follows.

6.6 Numerical Simulations on a Mass-like Discontinuity

The reflection and transmission coefficients of a mass-like discontinuity in a straight
waveguide have been given in terms of the parameters of the discontinuity and
waveguide at the end of Chapter 2. In Chapter 3, by introducing a noise model to the
transducer array measurements, the reflection and transmission coefficients were
obtained from the simulated noisy measurements. In this section, by considering the
simulated noisy reflection and transmission coefficients as the ‘measured’ counterparts,
numerical simulations are performed on parameter identification of this discontinuity.
The intention is to investigate the robustness of the Gauss-Newton method on joint

identification. For simplicity, only the power reflection coefficient is used in the
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simulations.

Non-dimensional mass, x4, =50 and non-dimensional moment of inertia, 4, =10* are

chosen as the true values of the parameters of the discontinuity. In Figure 6.6 the noisy

power reflection coefficients are plotted against the non-dimensional frequency,

£ =wxlc, . The noise level is o, =0, =2% here. The noisy power reflection

coefficient is calculated at 1000 values of &2, which are linearly spaced in the
frequency range considered. The dotted line indicates the true value based on the
theoretical model. Owing to the randomness of the noise at each point, the simulated
‘measured’ reflection coefficient is only one particular case. The conclusions drawn

here are therefore only limited to this case.

1.2

1t b e
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okl c

Figure 6.6 Numerical simulations of noisy power reflection coefficient: :
numerical simulations; - ---, noise free values based on theoretical model.

6.6.1 Effect of Selected Frequency Range

The objective function is defined over a frequency range. Therefore, the parameters
estimated by the Gauss-Newton method are only valid to a particular frequency range.
This section examines the influence of frequency range selected for parameter
estimation on the identified results. The accuracy of identified results depends on the
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sensitivity of the objective function to the unknown parameters. This is also shown in

the following analysis.

Four cases of choosing frequency ranges are studied here. Based on the behaviour of the

power reflection coefficient over the whole frequency range considered,
£2e[0.1, 3.0]x107°, £%€[3.1, 6.0]x10° and &% €[6.1, 9.0]x107° are considered

as the first three cases. Case 4 includes all the frequencies of the first three cases. In the

first range o is of small magnitude and the noise is also small. In the third range p is

getting larger and so does the noise (which is due to the chosen noise model). In the

second range, p changes rapidly with frequency. In the frequency range above

£2>9.0x107° , p is almost independent of frequency which will cause bad

conditioning of the estimation process, so it is not considered here.

The dimensionless mass, ¢ and moment of inertia, ¢ are estimated over the four

frequency ranges. Owing to the equal relative noise levels, the weighting matrix of the
objective function is taken to be the identity matrix. Figure 6.7 shows the true power
reflection coefficient compared with the one estimated from the identified parameters in
the third frequency range. The estimated power reflection coefficient is very close to the
true one. The estimated results over the four frequency ranges are listed in Table 6.1.
The results for the third frequency range are the worst. The next section gives the reason
for the different estimation accuracies.

Table 6.1 The estimated values of x and $ in different frequency ranges: noise free
values: x4, =50 and 4, =10x10°. (Percentages in the brackets are relative errors).

& (x107) H 9 (x10°)
[0.1, 3.1] 51.38 (2.8%) 10.06 (0.6%)
[3.1, 6.0] 57.30 (14.6%) 10.28 (2.8%)
[6.0, 9.0] 39.26 (-21.5%) 9.33 (-6.7%)
Case 4 51.74 (3.5%) 10.09 (0.9%)

Note: Case 4 includes all the frequencies of the first three cases.
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Figure 6.7 Identified power reflection coefficient in the frequency range
£2e[6.0, 9.0]x107°: —, predicted by true values of x and &; ----, predicted

based on identified results of # and 9.

6.6.2 Sensitivity of the Objective Function to Parameters

The accuracy of the estimated parameters is determined by the sensitivity of the
objective function to these parameters. In Figure 6.8, the objective functions (equation
(6.4)) composed of power reflection coefficient for the four frequency ranges are plotted

against the relative mass and inertia parameters, u/ u, and 8/9,. It can be seen that the
minimum of the objective function is a valley-like area parallel to the mass x axis,

especially for the cases of 2 and 4. This means that the objective function is less

sensitive to the mass parameter, x than to the moment of inertia, . That is why the

estimated value of x is relatively poor compared to that of 4.

The condition for termination of the iteration process is that the 2-norm of normalised
change of the unknown parameter vector of successive steps (see Figure 6.4) is less than
0.1%. Table 6.2 lists the number of total steps of the iteration for each frequency range
and the step change of the mass and moment of inertia relative to the true values in the
last step of the iteration. The condition number of the Jacobean matrix in the last
iteration step is also given. The condition number of the Jacobean matrix corresponds to

the accuracy of the identification results. The smaller the condition number, the better
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the estimated results. The results of the identified moment of inertia, ¢ are better than

those of the mass, u because the objective function is more sensitive to the moment of

inertia (except for the first frequency range for which the objective function is flat
around the true values of the parameters). Although the results for the first frequency
range are the best, it is not necessarily the best option. In practical measurements the
measurement noise might have a large influence on the measured power reflection
coefficient at low frequencies. Based on the same noise level in all the frequency ranges,
the frequency range of case 4 is a good choice. It includes all the frequency ranges and

the condition number of the Jacobean matrix is also relatively small.
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Figure 6.8 Objective function in the four frequency ranges: (a) &2 e [0.1, 3.0]><10‘3; (b)
£2e[3.1, 6.0]x107%; (c) &% €[6.1, 9.0]x107%; (d) case 4.

Table 6.2 Step changes of 4 and ¢ relative to true values and the condition number of
S in the last iteration. ( j is the number of iterations)

£% (x107) ] Apy A3 19, Condition number of S
[0.1, 3.1] 4 0.33x10*  0.99x10™ 143
[3.1, 6.0] 5 -0.29x10*  -0.05x10™* 355
[6.0, 9.0] 7 0.90x10°  0.23x10°° 498
Case 4 5 -0.42x10* —0.08x10™* 144
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6.6.3 Effect of Initial Parameter Values

Good estimates of the initial parameters for the iteration process are paramount to avoid
convergence to a local minimum rather than the global minimum, since the initial
values of the parameters influence the iteration direction. The method for selecting the
initial values of the parameters introduced in Section 6.5.3 was used in the above
iteration processes. In order to illustrate the effect of the initial values of the parameters,
in what follows two sets of initial values of the parameters are chosen. Take the
frequency range of Case 4 for example. In Figure 6.8(d) there are several local minima
of the objective function. Figures 6.9 and 6.10 show the contour plots of the objective
function of Figure 6.8(d). Also shown in these figures are the steps of the iteration
process with two different initial parameter pairs. It is obvious that a good estimate of
the initial parameters takes fewer steps to reach the final result. A bad choice of the
initial values of the parameters takes more steps to reach the global minimum or may

fail to converge to the global minimum due to existence of the local minima.
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Figure 6.9 Contour plot of the objective function in the frequency range of case 4 with
starting parameters, u/ 1, =0.8 and $/9, =0.8:*, starting point; X, iteration steps;

O, true values.
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Figure 6.10 Contour plot of the objective function in the frequency range of case 4 with
starting parameters: u/u, =0.2 and 9/, =0.5:*, starting point; X, iteration steps;

O, true values.

6.7 Summary

In this Chapter, two methods, a direct method and an iterative method, have been
discussed to estimate the joint parameters from measured reflection or transmission

coefficients.

Owing to the high sensitivity of the phases of the reflection and transmission
coefficients to the measurement errors, the direct method including the phase
information of the reflection and transmission coefficients does not give robust
estimates. The emphasis is then put on an iterative method, the Gauss-Newton method,

in which only the modulus of the reflection or transmission coefficient is included.

For the iterative method, the initial values of the parameters are of importance since a
bad choice may lead the process to a local minimum rather than the global minimum, or
divergence. The non-dimensional joint parameters have different orders of magnitude.
Therefore, when terminating the iteration, not only the absolute change but also the
relative change in each parameter should be considered.
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Based on the sensitivities of the objective function to the parameters of the discontinuity,
the iteration process can be performed on the power reflection coefficient or
transmission coefficient. In practice, the accuracy and ease of the measurements on the
corresponding coefficient should also be considered when establishing the objective

function.

Owing to the difference of the sensitivity of the objective function to the parameters in a
given frequency range, not every parameter is required to be involved in the iteration
process. A reasonable value can be assumed for the parameter to which the objective
function is much less sensitive. By this way, the identification process can be simplified
dramatically and the conditioning of the problem can be improved correspondingly.

To illustrate the applicability of the Gauss-Newton method, numerical simulations have
been performed on the parameter identification of a mass/moment of inertia
discontinuity in a straight beam. Some issues relating to the iteration process have been

investigated.
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Chapter 7 Experimental Validation of the

Parameter Ildentification Method

7.1 Introduction

The application of parameter identification methods to reflection and transmission
coefficients of joints was introduced and numerical case studies were carried out in
Chapter 6. In this chapter, the joint identification technique is validated using
experimentally measured reflection and transmission coefficients. These are taken from
three types of structures discussed in Chapters 3, 4 and 5, which are mass/moment of
inertia discontinuities on a straight beam (Figure 3.12), supported straight pipes (Figure
4.4) and a right-angled pipe bend (Figure 5.4). The parameters estimated by the joint
identification method are compared to the directly measured parameters for the mass-
like discontinuities in a beam and the pipe supports. Problems concerning the selection
of frequency ranges, choice of the objective functions (i.e. reflection or transmission
coefficient) are investigated. The feasibility and robustness of the method are examined

by these experimental case studies.

7.2 Parameter Identification of the Mass/Moment of Inertia

Discontinuity on a Beam

The wave reflection and transmission coefficients of a mass/moment of inertia
discontinuity on a straight waveguide were described in Chapter 2 and measurements of
the reflection and transmission coefficients of steel blocks attached to a straight beam
were presented in Chapter 3. Three mass/moment of inertias were used, which are
characterised by long-thin (block 1), short-thin (block 2) and short-thick (block 3) (see

Table 3.3). The experimental results showed that estimates of the reflection and
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transmission coefficients based on the assumption of reflected beam ends are more
accurate than those which assume anechoic boundaries. Therefore, in the iteration
process, the measured power reflection and transmission coefficients found using this

assumption are used.

7.2.1 Results over Different Frequency Ranges

The objective function is composed of reflection and/or transmission coefficients over a
chosen frequency range. This section presents the parameter identification results using
different frequency ranges. The iteration process is only performed on the power
reflection coefficient in this section. Figure 7.1 shows the measured power reflection

coefficient p for block 1 compared with the predicted values using directly measured

mass and inertia. Below 200Hz, the measured results are contaminated by noise and
poor numerical conditioning of the Wave Amplitude Decomposition (WAD) method.
Above 1500Hz oscillations in the estimates become apparent. In accordance with the
above behaviour of the power reflection coefficient, four ways of selecting frequency
ranges are considered. They are 500-1500Hz, 1000-2000Hz and 200-3000Hz in which
each frequency was selected and Case 4 in which 20 equally spaced frequencies are
selected in the range 200-3000Hz. Figures 7.2(a)-(d) show the mesh plots of the
objective function against the non-dimensional mass and moment of inertia over the
four frequency ranges. The valley-like feature parallel to the mass parameter axis
indicates that the objective function is more sensitive to the moment of inertia, therefore
in general the estimations of the moment of inertia are more accurate than those of the
mass. The flat shape of the objective function in range 500-1500Hz (Figure 7.2(a))
implies that if the initial value of the moment of inertia is far from the true value, bad

estimates of the moment of inertia might also be produced.
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Figure 7.1 Power reflection coefficient of block 1: —, measured; ------- , estimated

based on identified parameters in Case 4;

............ , estimated based on directly measured

mass and moment of inertia.
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Figure 7.2 Objective function based on power reflection coefficient for block 1: x4, and
&, are the non-dimensional mass and moment of inertia parameters based on direct
measurements: (a) 500-1500Hz; (b) 1000-2000Hz; (c) 200-3000Hz; (d) Case 4.

The non-dimensional mass ¢ and moment of inertia & of block 1 are estimated for

each chosen frequency range and presented in Table 7.1. The results are the best fit to

the measured power reflection coefficient in each frequency range. Also given in the
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table are the results based on direct measurements. The percentages in the brackets are
the relative errors of the identification results with respect to the direct measurements.
The directly measured results are only nominal values of the parameters and are not
necessarily exact. Due to the connection condition of the mass blocks to the beam and
measurement noise, it is normal that differences exist between the direct measurements
and estimates from the reflection coefficient. The results from the range 200-3000Hz
and Case 4 are very similar. Case 4 actually uses a weighted matrix, which speeds up
the iteration process (fewer frequencies), but the random deviations of the measured
data are still not removed. As a whole, the percentages shown in the table indicate the

parametric model of the mass-like discontinuity is good enough.

Table 7.1 Estimates of the parameters of block 1 from measured power reflection

coefficient.
directly  500-1500Hz 0O 200-
measured 2000Hz  3000Hz Case 4
mass, 4 770 582 (24%) 711(-8%) 74.8(3%) 76.7 (-0.4%)

inertia, 9 x10°  17.0  16.9(-1%) 17.6 (4%) 17.8(5%) 17.8 (5%)

Note: Case 4: 20 equally spaced frequencies in the range 200-3000Hz.

Also shown in Figure 7.1 is the predicted power reflection coefficient using parameter
values for Case 4. It agrees with the predicted power reflection coefficient based on the
directly measured mass and inertia very well except in the middle of the frequency
range. The reconstructed power reflection coefficients for other frequency ranges (not
shown in the figure) are also very close to the predicted ones based on directly
measured mass and moment of inertia. This means the distinctions between the results

from different frequency ranges are very small.

7.2.2 Results from Measured Transmission Coefficients

The parameters of the discontinuity can also be estimated from the measured power
transmission coefficient. Figure 7.3 shows the measured power transmission coefficient
along with the one predicted using the identified parameters in Case 4 and the one based
on directly measured mass and moment of inertia. Although larger deviations are found

than the power reflection coefficient, the results based on the identified parameters also
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mimic the general trend very closely. Table 7.2 shows the mass and moment of inertia
identified from the power transmission coefficient. The oscillations on the measured
power transmission coefficient are larger than those of the power reflection coefficient,
therefore the identified parameters from the transmission coefficient have larger
deviations than those obtained from the reflection coefficient. Again the results for the
moment of inertia are more accurate than those for the mass, which is due to the high

sensitivity of the objective function to the moment of inertia.

2500 3000

0 500 1000 1500 2000

Frequency, Hz
Figure 7.3 Power transmission coefficient of block 1: —, measured; ------- , predicted
from parameters identified in Case 4; ... , predicted based on directly measured mass

and inertia.

Table 7.2 Estimation of the parameters of block 1 from measured power transmission

coefficient.
directl 1000- 200-
irectly - 500-1500Hz Case 4
predicted 2000Hz 3000Hz
mass, u 77.0 46.3 (-40%) 43.2(-44%) 68.7 (-11%) 67.6 (-12%)

inertia, 9 x10°  17.0  16.3(-4%) 16.2(-5%) 17.7 (4%)  17.7 (4%)

Note: Case 4: 20 equally spaced frequencies in the range 200-3000Hz.
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7.2.3 Results from Normalised Reflection or Transmission

Coefficient

If the damping of the system is negligible, the power reflection and transmission
coefficients should sum to unity. The sum of the measured power reflection and
transmission coefficients for block 1 has large oscillations although it is nearly unity in
the frequency range up to 3000Hz (Figure 3.21). The damping is not considered in the
beam or in the model of the discontinuity. In order to remedy this, the oscillations in the

power reflection and transmission coefficients can be smoothed via normalisation by

their sum, i.e. p/(p+7) or 7/(p+7). Thus the normalised power reflection and

transmission coefficients sum to unity. Therefore, the parameters estimated from the
normalised power reflection coefficient or transmission coefficient are the same. This
can be deduced from Equation (6.19). Figures 7.4(a) and (b) show the normalised power
reflection and transmission coefficients along with those predicted from the identified
and directly measured mass and moment of inertia. The oscillations are reduced
dramatically by the normalisation, and the agreement between the measured and

predicted data is improved greatly.

12
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0.2“ .
% 500 1000 1500 2000 2500 3000 % 500 1000 1500 2000 2500 3000
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Figure 7.4 Normalised power reflection and transmission coefficients of block 1: — |
measured; ------- , predicted from identified parameters from 200-3000HZ; - ,
predicted based on directly measured parameters.

Table 7.3 lists the estimated mass and moment of inertia from the normalised power
reflection or transmission coefficient. The estimated mass and moment of inertia in the
four frequency ranges are much more consistent than those using the unnormalised
power reflection and transmission coefficients (see Table 7.1). It was mentioned in

Section 7.2.1 that the directly measured results are only nominal values of the
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parameters and are not necessarily exact. Normalisation of reflection and transmission

coefficients can improve the robustness of estimation.

Table 7.3 Estimates of the parameters of block 1 from normalised power reflection or
transmission coefficient, p/(p+7) or 7/(p+7).

. 500- 1000- 200-
directly Case 4
predicted 1500Hz 2000Hz 3000Hz
mass, u 77.0 59.9 (-22%) 48.3 (-37%) 59.2(-23%) 61.5 (-20%)

inertia, 9 x10° 17.0 17.0 (0%) 16.5(-3%) 17.2 (1%) 17.3 (2%)

Note: Case 4: 20 equally spaced frequencies in the range 200-3000Hz.

7.2.4 Accuracy of the Identified Results

The goodness of the above estimates in terms of R-square (equation (6.34)) is listed in
Table 7.4. In all, the R-square values are very close to unity, which means the iteration
processes are very successful and the model of the discontinuity accurately predicts the
measured data used in the fit. In each frequency range, the estimate based on the power
reflection coefficient is marginally better fitted by the theoretical model than the power
transmission coefficient. This means that there is more confidence in the estimate using
the power reflection coefficient and that the data of the power reflection coefficient are
more reliable. After normalisation, the goodness of fit improves again since the errors

caused by neglecting the damping of the system are reduced.

Table 7.4 Goodness of the estimation for block 1 in terms of R?.

500- 1000- 200-
Case 4
1500Hz 2000Hz 3000Hz
P 0.9989 0.9966 0.9979 0.9980
T 0.9845 0.9964 0.9973 0.9966
/3/(,5+f) or r“/([)+f) 0.9992 0.9985 0.9995 0.9993

Note: Case 4: 20 equally spaced frequencies in the range 200-3000Hz.
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7.2.5 Results for Blocks 2 and 3

Figures 7.5(a)-(d) show the measured normalised power reflection and transmission
coefficients for block 2 and block 3 together with those predicted from the directly
measured mass and moment of inertia. Again, the normalisation smoothes the
oscillations on the measured reflection and transmission coefficients, which can be seen
from comparison with Figure 3.21. The identified mass and moment of inertia of blocks
2 and 3 from the measured power reflection and transmission coefficients in the
frequency range of Case 4 are listed in Table 7.5. The directly measured values of the
parameters and the R-square values of the estimation are also given in the table. The
estimated parameters are within 16% of the directly measured ones. The values of the
R-square are very close to unity. All these indicate that the discontinuity model closely
captures the dynamic response of the structure. The robustness of the iterative method is

also demonstrated.

1.2
(b)
1 4
0.8
0.6
0.4
0.2
% 1000 2000 3000 4000 % 1000 2000 3000 4000
Frequency, Hz Frequency, Hz
1.2 : : : 1.2
(c) (d)
1 e 1 1
0.8 0.8
Q0.6 ~0.6
0.4 0.4
0.2 0.2
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Frequency, Hz Frequency, Hz

Figure 7.5 Power reflection and transmission coefficients for blocks 2 and 3: —
measured; .- , predicted from identified parameters of Case 4; ... , predicted based

on directly measured parameters: (a) block 2: fitting p/(p+z'); (b) block 2: fitting
7/(p+7); (c) block 3: fitting p/(p+7); (d) block 3: fitting z/(p+7).
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Table 7.5 Estimates of the parameters of blocks 2 and 3 from normalised measured
reflection and transmission coefficients.

block 2 block 3
directly ~ P/(p+7) or directly pl(p+t) or
measured f/(,} + f) measured f/(/a + f)
mass, u 57.7 49.2 (-15%) 115 96.5 (-16%)
Moment of inertia
! 0 -Q0,
9(x10%) 7.68 7.97 (4%) 15.4 14.1 (-8%)
R’ / 0.9995 / 0.9855

Note: Case 4: 20 equally spaced frequencies in the range 200-3000Hz.

7.3 Parameter ldentification of Pipe Supports

In Chapter 4, measurements of the reflection and transmission coefficients of four
supports, long and short aluminium, long and short steel (see Figure 4.8 and Tables 4.2
and 4.3), were presented. In this section, the estimated parameters of these pipe supports
are investigated. Since the damping in the parameter model of the pipe and supports is
neglected, the measured reflection or transmission coefficients normalised by their sum
are employed. The power reflection and transmission coefficients predicted from the
directly measured parameters are very close to those estimated by the wave amplitude
decomposition method. Therefore, these directly measured parameters are used as the

initial values for the iteration process (see Table 4.4).

Figures 7.6(a) and (b) show the normalised power reflection and transmission
coefficients for the long aluminium support. The four parameters, translational and
rotational stiffnesses and mass and moment of inertia of the support, are updated in the
range 200-2000Hz. The final results for the four parameters are listed in Table 7.6. The
power reflection and transmission coefficients predicted from these parameters are also
plotted in the figure, which are the best fit to the normalised measurements and they
agree very well. The general trends of the fitted reflection and transmission coefficients
also have a good agreement with those predicted using the directly measured parameters.
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1.2 : : ‘ @) ] 1.27 (b) ]
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Figure 7.6 Power reflection and transmission coefficients of the long aluminium support:
—, normalised measured; ---—---- , predicted from directly measured parameters; ... ,

predicted from identified parameters using p/(p+7) or 7/(p+7).

The same process is performed for the other three supports. The normalised power
reflection and transmission coefficients for each case are plotted in Figures 7.7 to 7.9.
The frequency range for the iteration process for each case is selected based on the
behaviour of the measured power reflection and transmission coefficients. The data
around 350Hz are not used. The power reflection and transmission coefficients
predicted from the identified translational and rotational stiffnesses, mass and moment
of inertia are also given in the figures. They mimic the general trend of the normalised
power reflection and transmission coefficients very well, especially at the middle
frequencies. At low and high frequencies, relatively large deviations are found, which
are considered as the consequence of the resonances occurring in these frequency ranges.
The agreement for the long support of each material (aluminium or steel) is always
better than that for the short one. This is consistent with the quality and confidence of

the parameters estimated from the direct measurements.

(b)
1’ ,--— ________
0.8 ’
0.6
0.4
0.2r T
o 700 1200 1700 o 700 1200 1700
Frequency, Hz Frequency, Hz

Figure 7.7 Power reflection and transmission coefficients of the short aluminium
support: —, normalised measured; ------- , predicted from directly measured

parameters; ... , predicted from identified parameters using p/(p+7) or 7/(p+7).

-153-



Chapter 7 Experimental Validation of the Parameter Identification Method
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Figure 7.8 Power reflection and transmission coefficients of the long steel support:

—, normalised measured; ---—---- , predicted from directly measured parameters;
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predicted from identified parameters using p/(p+7) or 7/(p+7).
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Figure 7.9 Power reflection and transmission coefficients of the short steel support:
—, normalised measured; --—---- , predicted from directly measured parameters; ... ,

predicted from identified parameters using p/(p+7) or 7/(p+7).

The parameters estimated from the normalised power reflection or transmission
coefficient for the four supports are listed in Table 7.6. Due to the complex
configurations and boundary conditions of the supports, the values in the table are not
exactly consistent with those calculated based on the dimensions of the supports and
assumptions of simply-supported or clamped boundary conditions. However, the
magnitudes of the values are still roughly within the theoretical values given by simply-
supported and clamped boundary condition assumptions (see Appendix 11). The
percentages in the table indicate the relative deviation of the identified results from
those directly measured and given in Table 4.4. The directly measured values of the
parameters are only nominal values and not necessarily exact. The translational stiffness
has a good consistency. Results for the other three parameters have relatively large
discrepancies. This is due to the difference of the sensitivity of the objective function to
the updated parameters. Table 7.7 gives the relative changes of the parameters and the

condition number of the Jacobean matrix S at the last step of iteration. The total
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number of iteration steps for each support is also given in the table. The objective
function is considered to be less sensitive to the parameter with large relative change.
This is consistent with the percentages shown in Table 7.6. The large magnitude of the

condition number of S indicates relatively low confidence of accuracy.

Table 7.6 Estimates of the parameters of the pipe supports from p/(p+7). (S units)

Support frequency K, x10° m Kg, x10°  J, x10°°
2317 0056 1572 3.276

i long  200-2000 490y (300)  (12%) (15%)
dort oooiace 7929 0046 2369 1.792

12%)  (-42%)  (29%)  (-15%)

4465 0077  3.785 3.442

el long 4002000 qa90y  (20%)  (40%)  (-10%)
14737 0065 4716 6.474

short  400-1400 (1%) (-31%) (57%) (204%)
Note: Percentages in the brackets are relative deviations from the directly measured
values given in Table 4.4.

Table 7.7 Relative change of parameters and condition number of the Jacobean matrix
S at the last step of iteration for each pipe support.

AKG Ky Amy/my AK /Ky AJ /T, n

support J
PP (x10°)  (x107%) (x10°)  (x10%) (x10°)
o long 5 0.0017 0.2382 0.0270 -0.1708  1.4871
aluminium
short 5 -0.0017 -0.0071 -0.0530 -0.4307 2.1095
el long 5 -0.0005 -0.1078 0.0008 0.0709 1.1359
stee

short 6  -0.0023 0.0149 -0.0403 -0.2785  2.6010

Note: j, total iteration times; n, condition number of S at the last step.

7.4 Parameter Identification of a Right-angled Pipe Bend

This section discusses the estimation of the parameter of the right-angled bend of a
piping system from measured power reflection and transmission coefficients. The
iterative method introduced in Chapter 6 is used to update the joint parameters of the
right-angled pipe bend discussed in Chapter 5. The intention is to validate the model of
right-angled bend and verify the feasibility of the iterative method of parameter

identification.
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The measured power reflection and transmission coefficients of the right-angled pipe
bend have been given in Chapter 5. A mass-free rigid connected model has previously
been compared with the measured results of this structure by other researchers [63]. A
more appropriate parametric model is still needed for better agreement. Although a
general parametric model was developed in Chapter 5 in which four parameters, the
translational and rotational stiffnesses, mass and moment of inertia, were considered, it
is not necessarily the best choice for the parameter identification process. In the
frequency range measured reliably, each of the power coefficients does not change
much. Actually when applying the general bend model (with four parameters to update)
to the iteration process over the frequency range 500-2000Hz, the Jacobean matrix is
badly conditioned and the iteration does not converge. This means the general model is

not appropriate for the iteration process.

The iteration process was then applied to the mass-like and spring-like joint models. By
investigating the agreement of the whole trend of each power coefficient and the
goodness of the estimation, it is found that the measured results and spring-like model
match well. The following discussion only focuses on the spring-like model of the bend.
The frequency averaged method reduces the oscillations on the measured power
reflection and transmission coefficients effectively (see Chapter 5), and the power
reflection and transmission coefficients obtained by this manipulation nearly sum to

unity, so are chosen to compose the objective function of the iteration process.

When applying the spring-like model to update the translational and rotational stiffness
parameters y and y using pp, (can be obtained from equation (5.25)), the iteration
process is terminated due to the bad conditioning of the Jacobean matrix S. This is
because the objective function is insensitive to the translational stiffness, y because the
joint is effectively rigid. By fixing y =1 (very rigid) and only updating the rotational
stiffness parameter, finally y =0.160 is obtained. This value means that the rotational

stiffness of the joint is equal to the bending stiffness of a cantilevered pipe of length
6.25 times the radius of gyration of the cross-section with a moment applied at the end.
The predicted power reflection and transmission coefficients based on this result are

shown in Figure 7.10. Compared with the massless rigid connected joint model [63],
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the general trend of each power coefficient has a much better agreement with the

measured one. Relatively large differences are found for p, . This is because, in this
case, pp, Is of small order of magnitude. However, due to the measurement noise, such

a small order of magnitude cannot be measured accurately by the equipment and
method used here. Usually the axial wave amplitudes are more difficult to measure than
the flexural ones. Therefore, the power coefficients involving axial waves are
considered to be less reliable. They are presented here only for reference. The iteration

process will not be performed through them.

1

0.8

&0.6[\\:; ________ LN/ e
WY A

0.2
00 1000 1500 2000 0 1000 1500 2000
Frequency, Hz Frequency, Hz
0.3
(c)
0.2

£o0 1000 1500 2000
Frequency, Hz Frequency, Hz

Figure 7.10 Results for the power reflection and transmission coefficients of the right-
angled bend when iterating on the rotational stiffness using pp.: ¥ =1, ¢ =0.160:

—, raw measured; - ---, frequency averaged; - , predicted from identified
parameters.

Figure 7.11 shows the predicted power reflection and transmission coefficients based on

the iteration on the rotational stiffness parameter y through z,, when y=1.
w =0.156 is obtained for this case. It is very close to the result when iterating using
Pep - It can be concluded that this right-angled bend behaves as a rotational spring-like

joint in the frequency range discussed. In the axial direction the joint is considered to be

rigidly connected; the rotational stiffness of the bend is about the bending stiffness of a
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cantilevered pipe of length 6 times the radius of gyration of the cross-section with a
moment applied at the end.

1
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Figure 7.11 Results for the power reflection and transmission coefficients of the right-
angled bend when iterating on the rotational stiffness using z,,: ¥ =1, v =0.156: —,

raw measured; - - —-, frequency averaged; ... , predicted from identified parameters.

The difference between the identified and measured reflection and transmission
coefficients originated from the limitations of the experimental data rather than the

parameter identification method itself.

7.5 Summary

In this chapter, the joint identification method was applied to three types of structures,
mass-like discontinuities on a beam, supported straight pipes and a right-angled pipe
bend using measured reflection and transmission coefficients. The parameters of the
first two structures estimated in this way were compared to the directly measured ones
and good agreement has been achieved. There were problems with the pipe bend mainly
because of the limitations in the experimental data rather than the method itself. Some

problems concerning the iteration process were discussed, which can be concluded in
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what follows.

The selection of the frequency range for the parameter updating process relies on the
sensitivity of the objective function to the parameters and the accuracy of the measured
data. These two aspects should also be considered when choosing the power reflection
or transmission coefficient to compose the objective function. High sensitivity of the
objective function to the parameters and good quality of measured data lead to accurate

estimates.

The confidence of the estimated parameters is determined by the sensitivity of the
objective function. For an insensitive parameter, if an appropriate value can be assumed,
then removing this parameter from the iterative process can improve the conditioning of
the process and increase the accuracy of the other parameters. If the above effort fails, a

more suitable parametric model might be needed for the structure.

In all, the parametric models for the structures are appropriate and can reveal the
general trend of the reflection and transmission coefficients. The joint identification
method is robust for the parameter identification of the discontinuities from the

measured power reflection and transmission coefficients.
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Chapter 8 Conclusions

8.1 Introduction

The motivation of this thesis has been to develop an approach by which the parameters
of joints in beams and pipes can be estimated from the measured reflection and
transmission coefficients. This chapter summarises the contributions that this work has
made to the field. Recommendations for future work are given in the light of the

conclusions drawn in this research.

8.2 Modelling of Joints and Discontinuities

Dynamic modelling of joints and discontinuities in built-up structures is a challenging
task owing to the uncertainty involved in the joints and discontinuities. In most cases,
the parameters of joints, such as their damping, stiffness, mass and inertia cannot be
accurately modelled due to manufacturing uncertainties and variability of material and
dimensions. In this thesis, joint models, such as a mass and moment of inertia
discontinuity on a straight beam, a supported straight pipe and a right-angled pipe bend
have been examined in Chapters 2, 4 and 5 respectively by using a general wave
approach. By using wave approach, the displacements and internal forces can be related
to the general wave amplitude vectors in terms of the displacement and internal force
matrices respectively. Thus the conventional displacement continuity and force
equilibrium equations can then be transformed and expressed by the wave amplitude
vectors of the waveguides. This feature of wave approach makes it superior to modal
method at solving problems of continuous systems. The parameter identification is
based on the premise of the establishment of the joint models. For each joint model, the
effect of joint parameters on wave reflection and transmission coefficients has been

investigated through closed form solutions and numerical simulations. The experimental
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results of the reflection and transmission coefficients of the three types of joints agreed
well with the chosen models, which is prerequisite for the parameter identification in

later chapters.

8.3 Measurement Considerations

A wave amplitude decomposition method has been reviewed by which the reflection
and transmission coefficients of discontinuities in waveguides can be estimated from
transducer array measurements. The estimation of reflection and transmission
coefficients involves the post processing of measurements in which measurement noise
can be amplified. A Gaussian-like noise model has been adopted to represent the
measurement noise and a perturbation technique has been used to obtain closed form
solutions for the mean and variance of the power reflection and transmission
coefficients. These agree well with the Monte Carlo simulations. This has been
discussed in Chapter 3. The exercise has given some insight into frequency ranges
where reflection and transmission coefficients can be reliably estimated. This helps to
determine the frequency ranges to accurately estimate the joint parameters from the

measured scattering coefficients.

8.4 Parameter Identification

A parameter identification approach previously applied to FE models has been adapted
in Chapter 6 to estimate the parameters of the wave models. Since the phases of
measured reflection and transmission coefficients typically change rapidly with the
transducer locations and cannot be measured accurately, only the magnitudes of the
coefficients have been used. Thus the power reflection coefficient or power
transmission coefficient has been chosen to establish the objective function, which is a
non-linear function of the parameters of the wave models. The selection of the initial
parameters, criteria of terminating the iteration process and evaluation of the accuracy
of the estimates have been discussed. The updating approach converges rapidly when

the initial parameters are estimated with sufficient accuracy.
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8.5 Validation of Parameter Identification Approach

The joint parameter identification technique has been validated through both simulated

and experimental case studies. Experimental case studies of mass and moment of inertia

discontinuities on a straight beam, pipe supports and a right-angled pipe bend have been

implemented in Chapter 7. The parameter identification approach is successful at

accurately estimating joint parameters discussed in this thesis, which reaches the final

objective of this research. However, some aspects concerning the iteration procedure

should be noted:

1)

2)

3)

For complex discontinuities, such as the pipe supports and right-angled bend, in
order to include all properties of the structures, physical parameters such as
stiffness, damping, mass and moment of inertia are all considered in the models.
However, for a given structure used in the experiments, it is quite likely that only
some particular parameters dominate the dynamic behaviour. In this case, the
selection of updating parameters is vital for the iteration process of estimating the
properties of the discontinuities. Including parameters to which the objective
function is insensitive may result in inaccurate answers. For the structures used in
the experiments, appropriate parameters have been chosen for updating and good
results have been obtained.

The frequency ranges included in the iteration process influence the identification
results since in different frequency ranges the sensitivity of the objective function to
unknown parameters might be different. Furthermore, measures have been taken to
avoid the frequency ranges which have large effect on the measurements.

The Jacobean matrix of the objective function becomes ill-conditioned when any
two parameters to be updated have similar effects on the output at every
measurement, or when the objective function is insensitive to one or more
parameters. By adjusting the objective function and reselecting the parameters to
update, the conditioning of the updating process can be improved to enable

convergence of the update where divergence occurs previously.
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8.6 Future Work

The research carried out in this thesis has enhanced the dynamic modelling of

discontinuities in waveguides and increased the understanding of estimating stiffness,

mass and inertia from measured reflection and transmission coefficients. The following

topics warrant some further work.

1)

2)

3)

4)

A measurement noise model has been given in Chapter 3 and the influence of the
noise on the estimated reflection and transmission coefficients has been discussed.
Further research on the noise model would help to understand the nature of
measurement noise better. For example, different noise levels could be assumed on
different transducers and the statistical distribution characteristics of the estimated
reflection and transmission coefficients could be examined further.

This thesis has focused on the parameter identification of stiffnesses, mass and
inertia. Damping has not been thoroughly investigated. Further identification of the
damping of a structure would help to know the energy loss in the system.

With the increasing number of parameters to update, the iterative method presented
in this research becomes ill-conditioned. More robust methods for parameter
identification are still required to accommodate more parameters, such as damping.
Only the flexural and longitudinal waves were discussed in this thesis. The
reflection and transmission coefficients of other types of waves, such as high order
wave modes of pipes, might be more sensitive to the joint parameters. Further

research on this topic is worthwhile.
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Appendix 1 Longitudinal Wave Propagation in Rods

Appendix 1 Longitudinal Wave Propagation in

Rods
2 2
Wave equation 6_21 =c’ 8_[21
ot OX

Solutions

U(X,t) — Bei(a}t—kp() + Dei((ut+k|><)

Wave properties Wave number k, = a)\/é , Kk =

Wave speed ¢, = \/E ,
P

®
Cl

Group speed c, :Z—fz\/E, C, =G
Yo

Response of a semi-infinite rod excited by a point force at the end

Case 1 Pet— ——————— - —>
X —> +00
Waves in the rod |u(x,t) =Ug'*™"
Boundary condition:
Force balance: Pe'* = EAZ—u = Pe" = EA(-ikUe"")
X x=0
Response P
Solutions: U, =——2—,
loZ,
Characteristic impedance Z, = A\/pE = pAc, = EAl ¢,
Wave reflection at a boundary of a semi-infinite rod
with an impedance Z; attached to the end
u+ — Xx=0
|
Case 2 N — —>
—00 < X u «—— ZT X

Amplitude of incident wave: u*(x,t) =Ue"“ ™",

Waves in the rod |Amplitude of reflected wave: u™(x,t) = rUg'*"»

Total amplitude at x: u(x,t) =u"(x,t) +u (x,t)

Reflection

Boundary condition:
Force balance: P(0,t) =-Z,u(0,t)

—  EAU,(-ik +irk ) =—ioZ,U,(L+r)
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Appendix 1 Longitudinal Wave Propagation in Rods

Reflection coefficient: r, :%,
1+27,1Z,
Z; =iom
—iué? m—0:r -1
Reflection coefficient: r, = L !uﬁz . !
Mass 1+iué m—-o:n —>-1
m / K
=, = o —
pAK : G
Z;, =K, liw
i 2 K;—>0:r -1
. Reflection coefficient: r, =%. T '
Spring 1-iylé K; > > -1
_ KT
X~ EAlx
Z, =C,
C,—-0:r-1
Reflection coefficient: :ﬁ. C, > oo, > -1
Damper 1+6
C,=2,1=0
0= Cr
PAC,
n=1
Free end
r=-1
Fixed end
Two semi-infinite rods connected by an impedance Z,
u — x=0 u, —»
Case 3 S——- -5 —>
—0X U «—  Ir X —> +00
Impedances  |Z, =(pAc), =(EA/c),. Z,=(pAc),=(EAlC),

Waves in rods

Uf (X,t) _ eri(a)t—kux) ,
ul— (X, t) _ rIUOei(wHkllx),
Uy (x,t) = tU e’

u (X, t) =u (X, t)+u; (Xt), u,(x,t)=u,(x,t)

Mass

Boundary conditions:
u,(0,t) =u,(0,t)
P,(0,t) - P,(0,t) = —w’mu, (O, t)

1+1 =t
Zt, —Z,(1-1) =—iomt,
Reflection and transmission coefficients:
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Appendix 1 Longitudinal Wave Propagation in Rods

2

r_l_iﬂé:z_é:l _
| 1+i,u682+681 .

D l+ipEt+ ]

K Z,
¢= a’[c—ll é:l:Z_l

1—51' { > 2 :
1+¢ 1+¢
m-oow: [ >-1 t—>0

m

A oAn),

m—>0: r—>

Boundary conditions:
{Pl(olt) = PZ(O,'[) {Zl(l—ﬁ)zzztu

Ky [u,(0,t) -u, (0,t)]= PR, (0,1) Kr (t, —1-1) =-laZ,,
Reflection and transmission coefficients:
r_(1—§1);(/§2+i§1 271 &

(1+§1)Z/§2+i§1,

(l+§1)1/§2+i§1 .

Spring
— KT
* = (EAlx),
ki >0: -1 t —>0;
k; > naﬁ, t— 2
1+¢& 1+¢&
Boundary conditions:
{Pl(o,t) =P,(0,t) N {Zl(l— ) =2t
C;[u,(0,t) -, (0,t)] =R, (0,1) Cr(t -1-1)=-2x,
Reflection and transmission coefficients:
Damper L+ g)s+ET T (1+&)6+4
=S
(pAC| )1
C,>0: n->1 t—>0;
C, > oo: r,—>—l_§1, t, — 2
1+¢& 1+&
No discontinuity =0 t=1 (5=
n=-1 t =0

Infinite impedance
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Appendix 2 Bending Wave Propagation in Beams

Appendix 2 Bending Wave Propagation in Beams

4 2
Wave equation El %ﬂﬂa wixt) =Q(x,t)
General solutions | w(x,t) = (Ae™* + Ae™™* + A" + A e )e™
14
Wave speed: ¢, = »"? E =2,
PA Ky
A 14 W
Wave properties ~ \Wave number: k, = »"? ('E—Ij Ky =—
Cb

Group speed: ¢, = ((jji) =2k ( L\j , €4 =2¢,
Yo,

Response of a semi-infinite beam excited by a force and a moment at the end

Case 1 Me L —— T —»

Waves in the beam | w(x,t) = (W,e " +W,e™*)e"!

Boundary conditions:

Mg = Elw"(0,t)
Qe =—-Elw"(0,t)
M, = EIK?(-W, +W,)
{Qo = —Elk3 (iw, -W,)

Force balance: {

Response

Solutions:

W M, Q w (M, Q
2 2 EK? EK}) ' 2 |EIk? EIK

Wave reflection at a boundary of a semi-infinite beam with a translational impedance
Z, and a rotational impedance Z, attached to the end

Case 2
e -
—0 ¢ X W mx=0
Elk>  pAc Elk El
Point impedance =—>2 -2 b Z,=—2=—
- 1mp T e 1 T @rie @t

Characteristic

. ranslational Z¢, = rotational ZS. =
impedance translational Z;, = pAc, , rotational Z;, =El /c,
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Appendix 2 Bending Wave Propagation in Beams

Waves in the beam

Amplitude of incident wave: w*(x,t) =W,e™"**e""
Amplitude of reflected wave: w™(x,t) =W, (r.e"* +r,e**)e'
Total amplitude at x: w(x,t) =w"(x,t) +w (X,t)

General impedance

Boundary conditions:

M, (0,t) =—-Z,W'(0,t)

Q(0,1) =—Z,W(0,t)
Elw’(0,t) = —iwZ,w'(0,t)

{—Elw”’(o,t) =—iwZ,w(0,t)

Reflection coefficients:
_ 2iR.Ry—R, +R, —i

P 2RR,+R. +R,+1"
R, =Z,1Z;y, Rq=2Zy/Zg,

Force balance: {

_ (-DE@RR: -1
" 2R.R,+R +R,+1

Mass

Z; =iom,
Z,=1wJ

- —p9E° + (L) s+ (1-1)9E° +i
P p9E — (i) uE + (1-1)9E° -1
. (i —1)(u9E° +1)

" p9E — (Ui uE + (1-1)9E -1

R m ), WK
pE = p=——, &=

1+i pAKx C,
9=t g I

-1 pAKx

m—0,J >0:(2.1); m—0,] >x:(2.4);
m—o,J—>0:(23); M-o>wnJ>x:(2.2)

P At ) V2Rl Ut 2R
P I E Qi) E (I -y -1
(i-D(zw /& +D)

Sprirllg " E Qi) E =Dy -1
Zy =, 2R K
'k“’ & —(1+i)’ EA/x’
ZR_i Z: RR = KR
£ o1-i’ El/«x
K; -0,K; =>0:(2.)); K; =>0,K; >0:(2.4);
Ki 2o, Ky >0:(23); K; 500, Ky > 0:(2.2)
. _ —ioP—(1-1)0+([A+1)P —i
Damper PSP+ (A-i)0+(A+)P+1 ]
7 -C.. _ (i-1)(oP -1)
(T Tj " SP+(1-i)+(@+i)P+1]
Zr =Cr R C R, C
5:—T: T; P:—R_: R
1-i pAc, 1+i El/c,
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Appendix 2 Bending Wave Propagation in Beams

(CT —0,C, —0:(2.1);

C;, »0,C, > ©:(2.4);
C, > x,C, »>0:(2.3);

C, 5 x,C, 5> x:(2.2)

=-l, =1—
(2.1) Free end h="h N I
r=-i, r,=i-1
(2.2) Fixed end
rn=-1 r,=0
(2.3) Pinned end ’
r=1 r =0

(2.4) Sliding end

Wave reflection and transmission for two semi-infinite beams

connected by impedances Z; and Z,

Case 3

 —— e -
. —" X —> 00
/BVAVAVA ZR‘T‘ y L X
D 1 —
—0 < X W;szo

Beam 1 and beam 2 have the same characteristic impedance.

Waves in beams

Amplitude of incident wave: w; (x,t) =W,e "*¢'*

Amplitude of reflected wave: w; (x,t) =W, (re"" +r,e“*)e'”
Amplitude of transmitted wave: w; (x,t) =W, (t,e ™ +t,e**)e"*
Total amplitude in beam 1: w,(x,t) = w," (X,t) + w, (x,t)

Total amplitude in beam 2: w, (x,t) = w, (x,t)

Mass

Z, =iom,
Z,=1wJ

Boundary conditions:
continuity of translational displacement :w; (0,t) = w, (0,t)

continuity of angular displacement: w; (0,t) = w, (0,t)
moment balance: M, (0,t)— M, (0,t) = —w° Jw; (0, )
force balance: Q,(0,t) —Q,(0,t) = —w’mw, (0,t)

1+r+1n, =t +t,

—i i+ =—it -t

Elk, [ (-t, +t,) = (-1-1, +1,) | = -0 I (-it, —t,)
—~Elk [ (it, —t,) = (i—ir, +1,) | = —o’m(t, +1,)
Reflection and transmission coefficients:
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Appendix 2 Bending Wave Propagation in Beams

i&(u9E° +29&° —2u)
" (uE+2-2i) (980 -2-2i)
2(9&° - u&-4)
" (uE+2-2i)(9¢°-2-2i)
E[(I-1) w9 +2i9% + 2, |
(ue+2-2i)(98° -2-2i)
2¢ (195 - )
(ué+2-2i)(9£° -2-2i)
See Case 2 for x4, 9 and &
m—0,J - 0:(3.2); m—0,J > 0:(3.4);
m—o0,J — 0:(3.3); m-—o,J - w0:(3.2)

n =

Boundary conditions:
continuity of moment: EIw;(0,t) = Elw;(0,t)

continuity of force: — EIw(0,t) = —Elw;,(0,t)

force balance: k; [w, (0,t) —w, (0,t)] =—EIw;(0,t)
moment balance: kg [w;(0,t) —w;(0,t)] = Elw;(0,t)
“1-r+r, =-t, +t,

i—ir +r1 =it -t

Ky [t +t,) =@+ 1, +1,) |=—Elk(it, - t,)
K [ (-it, —t,) = (=i +ir, +1,) | = Elk, (-t, +1,)

Spr||r;g Reflection and transmission coefficients:
Z, —ﬁ, B 2i(2x1& -2y 1&-1)
r=_
L K " (Ax 1 E-1+i) (A 1 E+1+i)
T o Wagw1§'+ 218 -y 1¢)
" (4x )& -1+i) (A 1 E+1i)
2(2y1 & +2iy | £+i-1)
" (axlE -1+i) (4wl E+14i)
B Ay 18-yl &)
(4718 -1+i1) (4 ] E+1+)
See Case 2 for y, w and &
K. >0,K,—>0:(35); K, —>0,K,—>w:(3.6);
(KT — o, Ky > 0:(3.7); K; = o, K, —>oo:(3.1)]
Damper

T:CT’
Z, =C,

Boundary conditions:
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Appendix 2 Bending Wave Propagation in Beams

continuity of moment: EIw;(0,t) = Elw;(0,t)
continuity of shear force: —EIw/(0,t) = —EIw;(0,t)
force balance: C; [V, (0,t) -, (0,t)] =—EIw;(0, )
moment balance: C, [W,(0,t) -\ (0,t)] = Elw; (0,t)
“1-r 41, =t +t,

i—ir +r =it -t

ioC, [ (t,+t,) - (@+r, +1,) | =—Elk:(it, -t,)
iwC, [ (—it, —t,) = (=i +ir, +1,) | = EIk, (-t, +1,)
Reflection and transmission coefficients:

2(26-2P+i) _ 4(46P-i5+iP)
P (40 +1+0)(4P+1-i) " (45+1+1)(4P+1-i)
2(2i5-2P+i-1) ~ 4(is+P)

h= (40 +1+0)(4P+1-1)" " (45 +1+i)(4P+1-i)
See Case 2 for & and P

C, —»0C,—>0:(35); C;,—>0,C,—>x:(3.6);
(CT —©,C; > 0:(3.7); C; »>x,C, —>oo:(3.1)]

(3.1) No discontinuity »=0 =0 1%=11=0
S
—_—t rn=-i, r,=i-1 t =0, t, =0
(3.2)Clamped
¥ —-1-i —1+i —i —1+i
A /ﬁ rp :—’ n = f tp :_, tn =
(3.3)Simply supported 2 2 2 2
P  E— e e ) T = R C
® I R Y
(3.4) Sliding support
(3.5) Separated fh=-l h=1-11,=01=0
%****#**_*j% r :ﬂ, rnzl;', i :ﬂ, tn:_1+|
(3.6) Double-side sliding P 2 2 P 2 2
T r __1_i r _ﬂ t _1;| t _1__i
(3.7) Hinge connected P g T n g o
Power reflection coefficient:
— PI’ — 2
p‘E_‘ |
Energy Power transmission coefficient:
r=st Loy
P Z
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Appendix 3 Simplification of the general equation for the reflection and transmission
coefficients of a mass and moment of inertia discontinuity

Appendix 3 Simplification of the general equation for
the reflection and transmission coefficients
of a mass and moment of inertia

discontinuity

The wave vectors are given by equation (2.44) as

ag = {WO} and b, = {0}. (2.44)
0 0

WO

0 o
{Z{}: . (A3.2)

0

So in the equation (2.43), for the matrix

‘P}a _Qll‘Perb_QlZ(D}b R?a T?a _ _‘Pera inll}b"'glzq)}b
(I)}a _QZl‘Perb_QZZ(D;b Tjab Rl}b _(I)era QleP}b_'—QZZ(D}b

Therefore vector

} (A3.2)

only the elements in the first column is of interest. And each of them is equal to zero.

And the first two columns of the above matrix are given by

‘P;aR?a_(QllT}b+le®}b)sz J{\yw} a33)
D RY —(Q,¥;, +Q,®, )T | [Pk
Substituting the equations (2.46) to (2.49) into (A3.3) yields
i [1 17, rwﬂl 1}[% te 1771 177
kK ] [k ot b 8
Lo ko (A34)

_ +
ol | e Re dm  &m o[k K[| b o[k, K
_Ek"L 1LN rm__ﬂ—iaﬂ% —wZJIJ-FEK{—l JLN tJ _Ek"[—l 1}

Since only the first column will be used, then first column of the above matrix is
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I+ top oy 1
ikbrPP+kbrPl\l B _ikbtPP _kbtPN _ikb

EW;{ikbrppkbrm}_[ (FMENG e +{ F M+ Elk ] + 4-E,k§ (A3.5)
ooty | | (—af I, ~EIK )t +(—aF I, + Bty || LEIS
Therefore the final equation becomes
i AR S 11 1110
Koo Kooy, ik oo +Koton, ik 0
Iy — Bl —( MBI )t (M Bty [T _iewe | |o (A3.6)
BT, +EIC T +{ic 3k, +EIK )t +( o I, —EIK )ty —EI? | |0
This can be written as
1 -1 1 1 74
ok ko k| ik
= (A3.7)

el —(Sm-iEll;) -l —{m+Elk) k| |iEK
B (i, +EI) B (cfd BN [t ] (B

By introducing corresponding symbols the above equation can be expressed as equation
(2.50)

-177-
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Appendix 4 Some definitions of Symbols

Some symbols used in the thesis are derived here and the physical meanings of these

symbols are also interpreted.

The longitudinal and flexural wave speeds are given respectively by

C = E, Gy :\/mﬂ. (A4.1)
\ p PA
So
A 4
E=pc?, El = pwfb . (A4.2)

The longitudinal and flexural wavenumber and the wave speed are related respectively

by

K, =C2, y = (A4.3)
| b
Therefore
Act (o)
EAK, = pe? AL = pAce, Elk = Lo [QJ = pAC,®. (A4.4)
C o ¢,
Then

& = E, Ak, _ P, AC, g = E2|2k§2 _ P, ACy, (A4.5)

CEAk,  pAc T EAk pAc

&, and &, can be derived in the same way. Here pAc, and pAc, are the longitudinal
and translational characteristic impedance of the waveguide. So the meaning of & can
be explained to be the longitudinal characteristic impedance ratio between the two
waveguides.

Similarly

o, =il (A4.6)
E.Lk;, pAC,

where K, /i can be considered the impedance of the spring along y-axis. So o, is the

ratio of the impedance of the spring along the y-axis to the translational characteristic

impedance of bending waves in waveguide 1.
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Parameter

. J,0’ i),
7/2 = =
Elllkbl Elll /Cbl

(A4.7)

can be explained as the ratio of the impedance of the moment inertia 1 to the rotational
characteristic impedance of bending waves in waveguide 1. The rest in equation (3.32)
can be interpreted by analogy.

If the material and dimension of the two waveguides are the same, then

_G_ NplE et
6Z_c, Joil pAJEI Vo EA

Since that radius of gyration x=./1/A and longitudinal wave speed c, =,/E/p, then

(A4.8)

equation (A4.8) becomes
& =wlx/c, (A4.9)

This can be considered the non-dimensional frequency. Then y, =¢&y, and o, = &o, .

Then

imo’  imo _im§2c|/z<_i m

TEI pAc,  pAfc,  phAx

7 £ (A4.10)

Here i =m/ pAx is the ratio between the added mass and the waveguide mass in a

length «. Similarly

3
il il (&% K
Vot _ o’ (& ] 3) ) e Ad1D)
Elk, pAc, PALC pAx

V2=

Parameter ¢ =J/ pAx?® is the ratio between the added moment of inertia and the inertia

of the waveguide mass in a length x with a radius of gyration «.

As for the stiffness parameter

K Kefe K 1
BlkyEAc? (&% /x) EA/x ST

o, =

(A4.12)

Parameter y = K, /(EA/«) is the ratio between the transverse stiffness the spring and

the axial stiffness of the waveguide in a length « .

Parameter

—i KR =_j KRCb =_j KRé:CI = KR i
Elk, Elo El&se I« El /x¢&

(A4.13)

o,
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Parameter y = K /(EI /K) is the ratio between the rotational stiffness of the spring

and the rotational stiffness of a cantilever waveguide in a length « .
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Appendix 5 Mean Values and Variances of Noisy

Reflection and Transmission Coefficients

In this appendix, the mean values and the standard deviations of the estimated power

reflection and transmission coefficients are derived in detail.

1. The Expectation of the Estimated Power Reflection Coefficient o :
Taking the expected value of both sides of equation (3.18) gives

= Irf +|r[" E [2 Re(g1 —&,+&l—¢€8,— &€, ) +e8 +¢&,6) } (A5.1)
where E[] denotes taking the expectation. Now each term in the square bracket will be

analysed. The expectation of ¢, is

E[gl]:E[ °

2ira,, sink,A

(—e’ik"A/ZE [ei”ﬁl] E[m,]+e"E [e”’z ] E[m, ])

2ikya

(_e—ikbA/Z Nl + eikbA/Z N2 ):|
(A5.2)

e2ikba

~ 2ira;, sink, A

Since m, and m, are Gaussian variables with zero mean, E[m,|=0 and E[m,]=0.
Then E[g]=0. Similarly, E[&,]=0. The expectation of & is given by
1 2
E 52 -E eikbA/ZN _e—ikbA/ZN
[] HZia;asin kbA( ' )
(A5.3)
-1 koA 2 2 | —ikpA £ 2ids a2 ith nids
=——————E|[e™"e™m +e ™ e"”m; —2e"e”mm
4aizsin® kA [ ' 2 1 2]
As mentioned previously, ¢ is uniformly distributed between —z/2 and 7/2, so
72
i i2g 1 11 ;2
Ele? |= | e =dg =——¢e"*|  =0. Ab5.4
[ ] _;[/2 P 2 7 2i -zl2 ( )

Similarly, E[ €' |=0. Therefore, equation (A5.3) becomes E| £ |=0.

The expectation of term ¢,¢, is
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Coefficients

(_e—ikbA/Z Nl +eikbA/2 N2 ) — :l-' (eikbA/z Nl _e_ikbA/z Nz)
2ia” sink, A

e2ikba
2ira, sink A
e2ka

+2 ainn? EI:
4ra,; sin“k A
=0

E[%]:E{

et +e it —e* et mm, —e *eieimm, | (AB.5)
Asfor g,
El 4 ]=E{LM(%"WN +eA2N )H;(ein RN )}
L —2irta:H sink A : 2} 2y, sink A 1 2
2y
a, | sink A

(A5.6)

E[eikbA Im|* +e7|my|” —e4e mm, —e e rqmz}

4r™

Since the variance of a variable X can be obtained by o} = E[XZJ— E*[X], so the
expectation of m? is given by

E [mf] =Var[m,]+E*[m,]
=Var[m,] (A5.7)

RY:

a‘Pa

_ 2
_Gl

where Var|[+] denotes variance. Similarly, E[m§] = 2|, . Then equation (A5.6)

becomes
_e—zikha

E |:€1H€2] = m(eikbAO—f + e_ikbAO'ZZ) (A58)
b

The expectation of term ¢.&/" is

E [glng ] =E [|51|2}

:

“a)f

e2ikba
2ira,, sink,A
1

“sin2k.A

(_efikbA/Z Nl + eikbA/Z N2 )

|

(A5.9)

E| m,[* +[m |

+
aPa

_ ol +o;
4| sin? k, A

Similarly the expectation of &,¢}' is
E [828; ] =E [ L

— : (eikbA/z Nl _e—ikbA/ZNZ)
2iaj, sink,A

| otto?
=———2 (A5.10)
4sin” kA
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Substituting the above terms into equation (A5.1) and rearranging gives the expectation

of p:

w, = p {2 Re[ re ™ (%407 +e7%40%) |+ (L+ p) (oF + aj)} (A5.11)

4sin’ kA
The maximum and minimum of term Re[re’ZiKba(e"‘hAaf+e ot 2)] are +r (o} +07 )
respectively. Therefore, the minimum and maximum of the expectation of o can be
given by

2 612 +622
4sin” k, A

2 61 +(72 <

(A5.12)
4sin? k,A

p+(1-r) p; < p+(1+1)

Consider further the range of r, the lower and upper bounds of 4, can be obtained

when r =1. These are expressed as

2 2
o, +0,

A5.13
sin®k,A ( )

PSU; S p+

So far, the expectation of o and its lower and upper bounds have been derived. The

following section will discuss the standard deviation of o .

2. The variance of the estimated power reflection coefficient p :
This section gives the detailed derivation of the variance of o .

The variance of o must be acquired before getting its standard deviation. As mentioned
previously, the variance of a random variable X <can be obtained by

oy =E| X?|-E*[X]. When using this definition to calculate the variance of /5, the
expectation of 5 should be obtained first. From equation (3.18),

ity L) () {2 it (ol e

125 o)~y ) (2 +0%) 13 2+ 82) s+t

a5, +4'8 ) -4 d'g+55)) (A5.14)
~|"+2I Re(E[ -4 |} +4l'E e+ |

i|r|4 E

=|* T || {ZRe[re‘z'kba( Mo 1 '“Aol)} (1+p)(of+0§)}

In the above deduction, the terms in which the summed indices of ¢, ¢,, & or &' are
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higher than second order are neglected. Also the following result is used.

2ik,a _ _ 2
£ [812} = H 2ira§a sink,A (_eilkbm N, + gl N, )} }

4ikpa

—e
T 2472 qin?
4r°al; sin® kA
=0

E [efik"AeiM m12 + glkodgi2e m22 — Dgi2#pi2s m1m2] (A5_15)

So the variance of p can be obtained by

o’ =E[p*|-E*[p]
- . A5.16)
- P “2ikya (koA 2 | a-ikpA 2 2 2 (
_W{Z Re[re (e o; +e%07 )}+(l+p)(0'1 +0, )}
In equation (A5.16), the terms with second and higher order of o or o7 are neglected.
By a similar way to that of equation (A5.11), the upper bound of the variance of p can

be approximated by

o2 < 2P (07 +07) (A5.17)

3. The expectation of the estimated power transmission coefficient 7 :
This section gives the deduction of the expected value of estimated power transmission

coefficient 7.

The expected value of 7 can be obtained in a similar way to that of p. Equation (3.25)

can also be expressed as
f=t(lrg)(1-g+ 8+ 4 (-1) & +--). (A5.18)

The estimated power transmission coefficient can be given by

R l+e.+el —g -l + 62+ M2
Tzrl: o e (A5.19)

+E,E) 68N — &8, —Er gy —ENE, —E,8)
Taking the expectation of both sides of the equation gives
L iz'+|t|2 E[g3 +el —g, -8 +& +&8 &8 +eel —eg,—dle —£lle, —gsgﬂ (A5.20)
Some of terms in the square bracket have been known. Since N. are uncorrelated,

among the terms with &, or &', only the term &,&!' is non-zero.
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The expectation of &,&!' is obtained by

gy gy |
1 s - )
1 2 2
= Ef{{m,[ +m (A5.21)
4|t|2 a;azsinzkbA D o 4”
__ o3to
4lt[* sin® k,A

Therefore, equation (A5.20) becomes

e =7+t {E [gzg; ] +E [8383” ]}
I
4sin’ k, A

(A5.22)

[r(af +a§)+a§ +aj]

The above expression is simple enough, so there is no need to calculate its lower and
upper bounds.

4. The variance of the estimated power transmission coefficient 7 :

This section discuss the variance of 7. The deduction process is also similar to that of

5.

First the expectation of 72

Mo i|t|4 E[(1+g3 +& g~ +&+&P red veel —gg, e —Elle, —5355')2}
e 142 g, +8))-2( g, +&) ) +(& +87)+3(& +8° ) +4egl +4e
Hap+8'5 ) -4 &5+e5) (A5.23)
=t E[1+4z' +45,4' |

T
-t +%Uq (2 +03)+of+0 |

In the above deduction, the terms in which the summed indices of &,, ¢,, &' or &' are

higher than second order are neglected. Also the following result is used.
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gl (@+0) 2 s/ o) )
Elg2|=El| —————— eibAZN _e—ibAZN
L5 2it,a* sink,A ( ’ )

_p2iky (ash)
~ 4t?asin?k A
=0

The variance of 7 is given by

E [(e‘kbA/ %' m, —e "% m, )2} (A5.24)

O-fz = ﬂ;Z _(/’lf)z
=
2sin’ k,A

[r(af +022)+a§ +af] (A5.25)
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Appendix 6 Conditions for Euler-Bernoulli beam
theory and cut-on frequency for n=2
wave mode in terms of non-

dimensional frequency ¢

Euler-Bernoulli beam condition:

The correction terms of the Timoshenko beam equation to Euler-Bernoulli’s make less

than 10% difference of the wave amplitude when the flexural wavelength satisfies
A>6h (A6.1)

where h is the height of the beam.

For a beam with rectangular cross-section bxh:

Radius of gyration

K= Ea— e ——— 3 A6.2
T (A6.2)
then h=+12x, 50 1 > 612« Recalling that
E= G _ Ao (A6.3)
c, 27ncC
then
2
£ Ao . 6v12k0 _ 3W12¢ (A6.4)
27c, 27c, T
S0 &< % _ ~0.30 satisfies the Euler-Bernoulli beam condition.
312
For a pipe with outside radius A and inside radius a:
4 L4 2 2
K:\ﬁ: (A Za)2/4:\/A +a (A65)
A (A" —-a%) 4

If it is a thin pipe, A~ a, then k= a/~/2 . The Euler-Bernoulli pipe condition may be
described as A >6x2a. Then 4 >12+/2x, and
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_do 12V2k0 _ 6J2¢°
27c, 27c, /s

(A6.6)

S0 &< ' _ ~0.37 satisfies the Euler-Bernoulli beam condition.

6+/2

Cut-on frequency for n =2 wave mode:

Referring to equation (4.4) the cut-on frequency for the n =2 wave mode is given by

h 3 5 hc
o —w — |22 2= A6.7
cut—on r /123.( 2) 2 (12 3.2 ( )
Substituting &, ., =@ +/k/C into the above equation yields & :ih_’;
cut-on 2 ’12 a
_ . 5 h h
For cylindrical pipes, x =a//2,s0 &2 =———~—.
y pIp S ifoa a
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Appendix 7 Direct Measurements of the
Translational Dynamic Stiffnesses of

Pipe Supports

The measurements of the translational dynamic stiffness of the short aluminium, long

steel and short steel pipe supports are presented in the following figures.

x 10

15

10

DT, N/m
[¢)]

EE%MMN\«“_W i

o

1600 2000

Fo0 600 1100
Frequency, Hz
Figure A7.1 Translational dynamic stiffness of the short aluminium support: —, real
, fitted real part of D, in 400-1400Hz; ... , Imaginary part

part of measured D; ; -------
of measured D; .
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_fOO 600 1100 1600 2000
Frequency, Hz

Figure A7.2 Translational dynamic stiffness of the long steel support: —, real part of
measured D; ; - , fitted real part of D, in 200-1400Hz; ... , Imaginary part of

measured D; .

_]:!'O!O 600 1100 1600 2000

Frequency, Hz

Figure A7.3 Translational dynamic stiffness of the short steel support: —, real part of
measured D;; - , fitted real part of D, in 400-1400Hz; ... , Imaginary part of

measured D;
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Appendix 8 Mass-loading Effect of the Force

Transducer

Referring to the mass cancellation described in reference [33], the mass-loading effect
of the force transducer can be measured in the following way. Figure A8.1 shows the
measurement setup. The force transducer was connected to the shaker by a stinger in the
vertical direction. A PCB acceleration transducer (with small mass) was attached to the
other side of the force transducer. By changing the excitation and/or response point of
the force transducer, two types of dynamic masses could be measured. Figure A8.2
shows these two dynamic masses. In the frequency range 1000-2000Hz, the dynamic
mass in the standard position is about 0.0090Kg, and when upside down is about
0.0145Kg. So it can be considered the mass-loading of the force transducer is roughly
0.0090Kg when it is in standard position. Compared to the total mass of the force

transducer m, =0.0235 Kg, therefore about 38% of the total mass of the force

transducer was added to the support.

st
ot
st
s
s
=
e
[l
s I
e |
2 |

Figure A8.1 Experimental Setup for measuring the mass-loading effect of the force
transducer.
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Figure A8.2 Measured dynamic mass of the transducer for the two positions.
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Appendix 9 Direct Measurements of the
Rotational Dynamic Stiffnesses of

Pipe Supports

The measurements of the rotational dynamic stiffness of the short aluminium, long steel

and short steel pipe supports are presented in the following figures.
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Figure A9.1 Rotational dynamic stiffness of the short aluminium support: —, real
part of measured D ; --—---- , fitted real part of Dj.
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Figure A9.2 Rotational dynamic stiffness of the long steel support: —, real part of
measured Dg; ------- , fitted real part of Dj.
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Figure A9.3 Rotational dynamic stiffness of the short steel support: —, real part of
measured Dg; ---—-- , fitted real part of Dj.
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Appendix 10 Derivative of a Matrix to a Variable

Derivative of a matrix to a variable can be obtained by the following method:

Since A(u)flA(y):I, )

a(AilA) = oA™ A+A’18—A:O.
ou ou ou
Then
A" A0 Ln
ou ou
Since [A(y)flA(,u)}H =1,s0
a(A—lA)H ) a(AH (A—l)H) oA (A—l)H K 8(A*1)H y
ou - ou - ou ou o
Then
6(A71)H oyl OA" _\H
ou - (A ) ou (A )
Therefore
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Appendix 11 Stiffnesses of Several Pipe Support

Models

This appendix gives the stiffnesses of several pipe supports described in Chapters 4 and
7 based on simply-supported and clamped boundary conditions.

Figure A11.1 shows a support model which combines two bars with one end clamped
and the other free. The stiffness of the model can be considered as the sum of the
translational stiffness at the end of the bar. D is the outside diameter of the copper pipe
discussed in Chapters 4 and 7. The combined stiffness can be obtained by

3El

Ky =2— " All.1
" (1/2-D12) ALY

where E is the young’s modulus of the supporting bar, | is the second moment of the
area and | is the span of the whole support.

Figure A11.1 Translational stiffness of two clamped parallel bars: Model A11.1.

Figure A11.2 shows bar with simply-supported ends. The translational stiffness at the
middle point of the bar is

_ 48El

K ==5 (A11.2)

The dimension of the copper pipe is also neglected here.
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Figure A11.2 Translational stiffness at the middle point of a bar with simply-supported
ends: Model A11.2.

Figure A11.3 shows bar with clamped ends. The translational stiffness at the middle
point of the bar is
~ 192EI

IS

(A11.3)

KT

The dimension of the copper pipe is also neglected here.

”

T

/2

Figure A11.3 Translational stiffness at the middle point of a bar with clamped ends:
Model A11.3.

Figure A11.4 shows bar with clamped ends. The torsional stiffness at the middle point
of the bar is

3 7Gd*?

= All4
Ay (A11.4)

where G is the shear modulus and d is the diameter of the supporting bar. The
dimension of the copper pipe is also neglected here. This can be considered as the

rotational stiffness of the pipe support discusses in Chapters 4 and 7.
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KR

/2

Figure A11.4 Torsional stiffness at the middle point of a bar with clamped ends: Model
All4

Table A11.1 gives the translational and rotational stiffnesses for the pipe supports based
on the above discussed boundary conditions. Compared to those values listed in Table
7.6, for the aluminium supports, the estimated values of the translational stiffness from
measurements are close to the model with clamped ends; for the steel supports, the
estimated values of the translational stiffness are close to the model with simply-
supported ends. The values of estimated rotational stiffness agree well with the model
Alla4.

Table A11.1 Stiffnesses of pipe supports based on several boundary condition
assumptions. (Sl units)

K;, x10° Ksq, x10°
support
Model A11.1 Model A11.2 Model A11.3 Model A11.4
. long 1.126 0.688 2.753 1.472
aluminium
short 4,775 2.231 8.925 2.179
el long 3.285 2.008 8.030 4.199
stee
short 13.927 6.508 26.031 6.214

Note: 1. d=0.01266;
2. 1 =0.185 for long supports and | =0.165 for short supports;

3. E=7.2x10" and G = 2.7x10" for aluminium supports, and E = 2.1x10"
and G =7.7x10" for steel supports.
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