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Reflection and Transmission Coefficients 
By Bing Zhang 

The dynamic modelling of one-dimensional jointed structures is relevant to many 
engineering applications, such as pipe systems and beam networks in constructions. 
Currently available techniques are undermined by inadequate ability to model the joints 
and other discontinuities due to uncertainty in their properties. Measured modal data can 
be used to update joint models, but often with limited success. In this thesis a wave 
approach is employed to investigate the reflection and transmission coefficients of 
various joint models in structural waveguides. The reflection and transmission 
coefficients are potentially more sensitive to the parameters of the joint models. 
Numerical simulations and experiments have been performed on three types of jointed 
waveguides. Appropriate models have been identified for these cases and sensitivities of 
the scattering coefficients to joint parameters have been investigated.  
 
Accurate measurement of the reflection and transmission coefficients is desired in order 
to estimate joint parameters. A noise model is developed and a perturbation method is 
used to study the influence of measurement noise on the estimated reflection and 
transmission coefficients.  
 
An iterative method is examined to solve the non-linear problem of estimating the 
parameters of a joint from measured reflection and transmission coefficients, in a least-
squares sense. Issues concerning the iteration process, such as the selection of objective 
functions and frequency ranges, are examined in accordance with the sensitivity of the 
objective function to unknown parameters. The parameter identification method is 
validated by numerical simulation case studies and then verified by using measured data 
for mass discontinuities on beams, a supported straight pipe and a right-angled pipe 
bend. The case studies demonstrate that parameter identification of discontinuities in 
waveguides by using the wave approach is a success where modal methods are 
inappropriate.  
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T transverse of a matrix  

T  transverse direction  

N  nearfield wave 

P  propagating flexural wave 

a  waveguide a  

b  flexural wave; waveguide b  

c  complex 

cs  helical wave  

g  group velocity 

i  incident 

j  number 

l  longitudinal wave 

m  measured 

q  dimension of a vector 
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Chapter 1 Introduction  

 

1.1 Background  

Beams, bars and pipes are widely used in many fields of engineering such as 

construction of buildings, power generation facilities, oil refineries, ships and exhaust 

systems for internal combustion engines. Unintentionally, they also act as waveguides, 

conveying vibrational energy away from the source of excitation via wave propagation 

through the structure [1-4]. The transmission of structure-borne sound from built-up 

structures and, more generally, to the infrastructure to which the waveguides are 

connected is an annoyance and can become a health and safety issue, or compromise 

stealth of military vehicles. Dynamic modelling of these structures is often required to 

determine typical in-operation stress cycles for fatigue predictions, to assess structural 

integrity and to monitor the condition of the systems by comparison with vibration 

measurements. Currently available prediction techniques for vibration involve 

compromises between the conflicting demands of accuracy and complexity. Improved 

techniques are required to model built-up structures while retaining a physical insight 

into vibration behaviour. 

 

Built-up piping systems often comprise many joints or discontinuities in the form of 

flanges, hangers, supports, valves, pumps and changes in section. Dynamically, these 

joints contribute stiffness, inertia and damping and can dramatically alter the response 

of the system. A robust technique for parametric joint identification would benefit many 

areas of dynamic modelling, such as improved narrowband prediction of vibration 

response, quantification of Statistical Energy Analysis (SEA) parameters (coupling and 

damping loss factors), for energy flow predictions, condition monitoring of structures 

and quantification of statistical variation in jointed structures due to manufacturing 

processes and installation. In this thesis, an integrated, systematic procedure to estimate 

joint parameters reliably from vibration measurements is presented which makes use of 
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wave models of the systems.  

 

 

1.2 Modelling Methodologies  

Among currently available prediction techniques for vibration in built-up systems, the 

Finite Element Method (FEM), SEA, the Transfer Matrix Method (TMM) and the wave 

propagation approach are frequently used.  

 

The FEM has become commonplace in recent decades and earned itself a good 

reputation in structural dynamic modelling [5-7]. The fundamental principle of the FEM 

is to discretise a complicated structure into many small elements (finite elements). The 

local mass and stiffness matrices for each element are established by assuming that the 

displacements over the element obey a known prescribed function. The dynamic 

response characteristics of the structure, such as natural frequencies and mode shapes, 

can be derived by relating the global mass and stiffness matrices to local ones via 

continuity and equilibrium conditions. The damping properties of the structure are 

usually modelled by introducing a proportional damping matrix. Numerical solutions to 

even very complicated geometries can now be obtained routinely using the FEM. The 

geometries of beams, bars and piping systems, however, are relatively simple and do 

not call for the versatility of the FEM with its associated disadvantages. The underlying 

premise of the FEM is that the response at any position in an element can be 

approximated by a prescribed function of the responses at the nodes of the element. At 

high frequencies, when wavelengths become short, to achieve an accurate result, the 

mesh of the FEM must be further refined. FE models may become very large and the 

program will be expensive to run. Consequently, it may fail to predict the dynamics of 

structures with confidence and reasonable computational cost. Furthermore, the 

numerical solution does not help to understand the physical essence of the problem.  

 

SEA has been applied with some success to power flow in one-dimensional systems [8-

10]. The basic premise of SEA is that the energetic exchange can be modelled in a way 

which is similar to heat diffusion between the hotter subsystem and the cooler one. SEA 

is particularly suited to systems with a large modal density and modal overlap, i.e. for 
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high frequencies, where a deterministic analysis of all the resonant modes of vibration is 

not practical. The weakness of the SEA stems from its heuristic and constrained 

hypothesis: the subsystems are weakly coupled and only an energy level for each 

subsystem can be estimated. This can undermine the confidence in the results from the 

conventional SEA models. 

 

The TMM has been an attractive approach in recent years [11-13]. The coupled 

response of individual elements that support axial, torsional, bending and fluid waves 

can be predicted easily by applying appropriate continuity and equilibrium conditions. 

Each typical element can be described by a transfer matrix and the system transfer 

matrix can be assembled by successive multiplication of the transfer matrices of the 

components. However, the transfer matrices can become ill conditioned or even singular 

at some frequencies. The TMM is discussed in detail in Chapter 2.  

 

 

1.3 Wave Propagation Approach 

Beams, bars and piping systems can be considered as one-dimensional waveguides. The 

wave propagation approach [1-4], therefore, has been widely used in the analysis of the 

response of these systems. This approach deals with vibration of elastic structures such 

as strings, beams, and plates in terms of waves propagating and attenuating in 

waveguides. The wave amplitudes are chosen as the degrees of freedom by which the 

displacements and internal forces of the waveguides can be fully expressed. This 

method can accommodate branches and can be used to analyse complex structures such 

as multi-span beams and trusses. The physical characteristics associated with the 

vibration of the structure can be revealed easily by the wave propagation approach. In 

this thesis, this approach is employed to analyse wave propagation in one-dimensional 

waveguides and wave reflection and transmission at discontinuities or joints. The 

reflection and transmission coefficients of the discontinuities, which are introduced in 

detail in Chapter 2, are derived for some typical structures and used to estimate the 

parameters of the discontinuities.    

 



Chapter 1 Introduction 

 -4-

In this thesis, several chapters are concerned with wave propagation, reflection and 

transmission in in-vacuo piping systems. The dynamic response of a pipe varies largely 

according to the pipe length, diameter and wall thickness. At high frequencies, the 

distortion of the cross section must be considered. However, it is negligible at low 

frequencies for long, slender and thick-walled pipes. In general, only the axial, torsional 

and transverse flexural (bending) wave modes are of practical interest at low 

frequencies in these structures. In this thesis, only in-vacuo piping systems are of 

concern and only the axial, torsional and transverse flexural waves are considered. The 

wave modes associated with cylindrical shells are briefly discussed in Chapter 4.  

 

 

1.4 Uncertainties of Joints and Discontinuities 

The properties of discontinuities depend on the boundary conditions. Joints of built-up 

systems are affected by the friction, elasticity and the relative dimensions of all 

interacting parts. Each factor varies from joint to joint because of manufacturing 

tolerances. As a result, all joints and jointed structures have parametric uncertainty. 

Structural joints can be regarded as sources of energy dissipation due to contacting 

surfaces undergoing relative motions. Energy dissipation through joints in built-up 

structures has been studied [14-16] and it was found that the joint friction exhibited 

viscous-like damping characteristics when the normal force was allowed to vary with 

the relative slip amplitude. The energy dissipation in mechanical joints depends on the 

clamping pressure. Beards and Williams [17] showed in their experiments on a frame 

structure that a useful increase in damping could be achieved by fastening joints tightly 

enough to prohibit translational slip, but not tightly enough to prevent rotational slip. 

Dowell [18] and Tang and Dowell [19, 20] investigated the non-linear response of 

beams and plates to sinusoidal and random excitations at a point close to one end, and 

with dry friction damping due to slippage at the support boundaries. The response 

statistics in terms of the normal load at the support joints by using a statistical 

linearisation method, numerical solution and experimental tests revealed that the stick-

slip and stick phenomena take place as the normal load increases. Esteban and Rogers 

[21] examined an analytical approach to determine the energy dissipation through joints 

at high frequency and its relation to the localised actuation-sensing region surrounding 
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an integrated piezoceramic actuator.  

 

In real applications, most of the boundary conditions are not ideal, for example, infinite 

stiffness for clamped ends can not be obtained. Wang and Chen [22] represented the 

unknown boundaries of a slender beam by a boundary stiffness matrix in their FE model 

and determined the stiffness matrix from measured structural modal parameters. Lee 

and Kim [23] used frequency-dependent transverse and torsional springs to represent 

the non-ideal boundary conditions on a beam. The effective boundary stiffness 

constants were estimated from the measured Frequency Response Functions (FRFs) by 

the spectral element method. The spectral element method relates the vector of forces 

and moments at the boundaries to the vector of degrees of freedom at the boundaries 

through the spectral element matrix. 

 

Doyle and Kamle [24] studied the a parametric model of a T-joint experimentally and 

found that the dynamic response was not sensitive to the particular values of the joint 

model but depended mainly on the member arrangement and only secondarily on the 

particular shape and mass of the joint.  

 

Damping in joints and fasteners is mainly generated by friction in the screw thread, gas 

pumping, asperities of contact surfaces and plastic deformation. The stiffness is affected 

by the hardness and roughness of contact surfaces. The mass and inertia depend mostly 

on the dimensions and material of the structure. In most cases, these parameters cannot 

be accurately modelled due to uncertainties in the manufacture and assembly, variability 

of material properties and dimensions. Parameter uncertainties of joints have been 

qualified by fuzzy parameters [25, 26], which uses fuzzy logic to investigate the 

possible distribution of the parameters. However, for a practical structure, this method 

can not help to predict the response precisely, which undermines its superiority in 

practical engineering applications.  

 

 

1.5 Brief Introduction to Joint Identification 

Identification of joint parameters is required in predicting the dynamic characteristics of 
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mechanical systems. The main purpose of joint identification is to estimate the joint 

parameters that minimise the difference between the measured assembly response, such 

as FRFs and that predicted analytically or numerically [27-31]. There is no doubt that 

due to the problems of inaccuracy in theoretical models and limitations in 

measurements, significant discrepancies are often found to exist between analytical 

predictions and experimental results [32]. In this situation, system identification 

techniques have been popular in the structural dynamics area. They aim to develop a 

model of a system based on experimental measurements. The model to be identified 

may be parametric or non-parametric (black-box problem), and sometimes may be 

nonlinear. The problem of identifying the parameters of a structure involves two main 

steps: the first is to establish an appropriate parametric model for the structure; the 

second is to estimate the corresponding parameters by experimental observation. 

 

Over recent decades, modal testing has developed quickly for the experimental 

evaluation of the dynamic properties [33]. This method extracts the modal data (natural 

frequencies, damping loss factors and mode shapes) from measurement data first and 

then uses these data to obtain the mass, stiffness and damping properties of the model. It 

is supposed to identify the ‘true’ vibration characteristics of a structure from the 

‘correct’ assumptions regarding mass, stiffness and damping properties.  

 

In structural dynamics, modal testing may be considered as a special area of system 

identification. It became an extremely active research topic with the rapid development 

of digital computers since the 1960s [33]. However, the number of coordinates is 

limited and number of modes is incomplete due to various practical restrictions in 

measurements, such as a limited number of measurement locations, limited frequency 

range, measurement noise, and so on. The consequence is that the information acquired 

is primarily available as modal parameters, rather than spatial properties [28]. In order 

to correct the inaccurate spatial properties of the structure, a new technique, model 

updating was proposed [6, 27, 29, 30, 34-36]. It aims at adjusting the mass, stiffness and 

damping parameters of an existing FE model in the light of a measured vibration test. 

After adjustment, the updated model is expected to represent the dynamic behaviour of 

the structure more accurately. More mathematical and comprehensive surveys about 

model updating method were presented by Natke [34], Natke et al [36] and Imregun and 

Visser  [35]. Natke [37] seems to be the first to use direct system identification for the 
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identification of a system without updating a reference model. He referred to model 

updating as indirect system identification. Berman [38, 39] made strong contributions to 

structural system identification. He pointed out that it is usually the result of improper 

actuator or sensor location or limited frequency range involved in the experimental tests. 

Coordinate incompleteness (too few sensor locations) can give rise to problems of ill-

conditioning and non-uniqueness. This can be overcome by extracting the information 

from an a priori model rather than purely from the experimental records.  

 

Model updating involves data post-processing, which may introduce processing errors. 

Accurate modal parameters are not easily obtained for structures containing closely 

spaced modes or large modal damping [40] and sometimes it is impossible to measure 

all possible modes of interest. In order to overcome these shortcomings, rather than 

convert the measurement data into modal data, researchers try to use them directly. The 

data can be FRFs [41-45] or time responses [46]. The substructure synthesis method has 

been widely applied to joint identification from direct use of measured data. Tsai and 

Chou [41] extracted the properties of a single bolt joint directly from the measured 

FRFs of the substructures and the assembled structure. Then the results were checked 

by a synthesis method based on the receptance method. Wang and Liou [42] synthesised 

the FRFs of a two-beam structure by using diagonal matrices for the linear joint springs 

and dampers. They introduced a simple method based on statistical criteria to reduce the 

effect of measurement noise. Ren and Beards [43, 47-49] generalised the FRF joint 

identification technique for systems involving rigid and flexible joints. Mottershead and 

Stanway [44] proposed an algorithm for obtaining structural parameters from FRF 

measurements. However, the algorithm may not be practical for cases where 

measurements are not possible for certain locations. Hong and Lee [45] proposed a 

method to identify the linearised joint parameters of a structure using the measured 

FRFs of a structure and the computed FRFs of an auxiliary model. Thus inverting the 

measured FRF matrices is avoided. Hwang [50] determined the damping and spring 

constants of a joint by measuring the FRFs of a structure with and without connections. 

Yang and Park [40] treated the joint model as a coupled stiffness matrix, and identified 

the translational and rotational stiffness of the joint by the substructure synthesis 

method. The damping properties were not considered. Rong and Tzou [51] developed a 

theoretical model of elastic joints considering the joint friction and clearance effects. A 

time-domain system identification method was presented to estimate the dynamic 
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contact parameters of elastic joints and the eigenvalues of jointed structures. Ma et al. 

[46]  constructed a non-parametric model for a joint from the comparison of the overall 

dynamics of two bolted beams to that of a similar but unbolted beam. Then a numerical 

algorithm was developed to identify the joint force. The approach is not expected to be 

applied to more complex models. Frikha et al. [52] developed a method to estimate in a 

least squares sense the physical joint parameters that most closely replicate measured 

response. However, this approach is ineffective in “bands of critical frequencies”, which 

makes robust implementation tenuous.  

 

This thesis develops a similar parameter identification approach to reference [52] but 

applied to wave-based models. Modal analysis is good at solving systems with single-

degree-of-freedom and multi-degree-of-freedom. But wave approach is good at 

analysing continuous systems, especially at high frequency. Wave models can be 

written in a well-conditioned way at all frequencies, which is superior to methods based 

on modal analysis, such as FEM and SEA. In fact, models have been developed for a 

change in section of a two-rod system with longitudinal waves [53]. But the theory has 

not been verified by practical measurement. Frequently, inertia is modelled explicitly 

but the joint is assumed to be perfectly rigid [24, 54, 55]. Stiffness can be introduced by 

using discrete elements [56, 57]. Damping can be incorporated for reasons of 

convenience by complex Young’s moduli [58], the use of discrete elements [59, 60], or 

omitted altogether [56]. Reflection and transmission coefficients have been derived in 

terms of the parameters of the discontinuities [54, 61] and measured in a single 

discontinuity [24, 62, 63]. However, the related problem of estimating the parameters 

from measured output has not been considered. This thesis discusses the parameter 

identification of discontinuities from reflection and transmission coefficient 

measurements and in particular the estimation of joint properties in structural 

waveguides such as beams. Identifying physical parameters in this way can yield a 

better conditioned inverse problem and also greatly facilitate simultaneous identification 

of more than one joint of a piping system in situ.  
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1.6 Objectives 

The aim of this research is to develop a systematic procedure for accurate modelling of 

joints in structural waveguides and parameter identification of the joint models. The 

specific objectives are to: 

1) develop a theoretical and computational framework for the assembly of wave 

models for joints in structural waveguides using continuous elements supporting 

flexural, longitudinal etc. wave modes;  

2) adapt model updating techniques to joint identification of wave models; 

3) investigate the robustness of wave model joint identification to wave amplitude 

measurement techniques;  

4) examine the applicability of joint identification techniques to the developed wave 

models with measured wave response.   

 

 

1.7 Contributions of the Thesis 

The research has demonstrated that parameters of joints can be successfully identified 

from measured reflection and transmission coefficients. The reflection and transmission 

coefficients are used since they have several advantages over modal information. First, 

these coefficients characterise the joint and adjacent waveguides but are independent of 

the rest of the built-up system; second, they are potentially more sensitive to the joint 

parameters in question. The main contributions of the thesis are summarised as follows:  

 

1) Depending on the contribution of the properties of the discontinuities, such as 

mass/inertia, stiffness and damping, appropriate dynamic models are selected for 

three types of joints, mass discontinuities on beams, a supported straight pipe and a 

right-angled pipe bend. The effect of joint parameters on wave reflection and 

transmission coefficients has been investigated through closed form solutions and 

numerical simulations.  

2) A measurement noise model of individual transducers is developed to simulate the 

influence of measurement noise on the estimated reflection and transmission 

coefficients. Closed form solutions are derived for the mean values and variances of 
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the noisy reflection and transmission coefficients. Monte Carlo simulation results 

agree well with the derived statistical results.  

3) The Gauss-Newton method is first applied to the parameter identification of 

discontinuities through iteration on reflection and transmission coefficients. Issues 

concerning the iteration process, such as the selection of frequency range, objective 

function and initial parameter values and assessment of goodness of identification 

are examined. Numerical case studies indicate the sensitivity of the objective 

function to the unknown parameters is significant to the identification accuracy.  

4) Applicability of the Gauss-Newton method to the parameter identification of 

discontinuities in waveguides is demonstrated using experimentally measured data 

on various structures. The parameters of the discontinuity models are successfully 

estimated.  

 

 

1.8 Overview of the Thesis 

Owing to the uncertainties of the joints and discontinuities in built-up systems, there is 

no ideal technique and there is a strong case to develop continuous models to 

accommodate more complex configurations. Parameter identification of joints and 

discontinuities in built-up structures has been widely discussed by using modal updating 

or direct FRF measurements. In this thesis, a novel approach is developed through 

which the parameters of joint and discontinuity models can be estimated from measured 

reflection and transmission coefficients.  

 

Chapter 2 reviews a general approach for analysing wave propagation, reflection and 

transmission in waveguides carrying various wave modes. A technique is described to 

derive the reflection and transmission coefficients of the discontinuities when only one 

particular wave mode is of interest. As an example, this method is applied to a 

mass/inertia discontinuity in a straight beam. 

 

Chapter 3 investigates the influence of the measurement noise on the estimated 

reflection and transmission coefficients from FRF measurements. A Gaussian-like noise 

model is introduced to the transducer array measurements as a perturbation and the 
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statistics of the estimated reflection and transmission coefficients by a wave amplitude 

decomposition method are discussed. Measurements on the reflection and transmission 

coefficients of a mass/inertia discontinuity in a steel beam are performed. 

 

The general approach given in Chapter 2 is applied to other typical discontinuities, 

namely one-dimensional waveguide supports and angled bends in waveguides in 

Chapters 4 and 5 respectively. Experiments are performed to obtain the reflection and 

transmission coefficients from FRF measurements. The parameters of the pipe supports 

are also measured directly.  

 

Chapter 6 examines an iterative method to solve the non-linear problem of parameter 

identification of the discontinuities from the measured reflection and transmission 

coefficients. This method is then successfully applied to the three typical discontinuities 

in Chapter 7 to estimate the parameters. Finally Chapter 8 summarises the results of this 

research in the parameter identification of discontinuities in waveguides and 

recommends key issues for further research.  
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Chapter 2 Wave Propagation, Reflection and 
Transmission in Waveguides 

 

2.1 Introduction  

The wave propagation approach has been widely used to analyse the dynamic response 

of waveguides [1-4]. When there are discontinuities in the waveguides, it is very 

convenient to use the reflection and transmission coefficients to describe the 

characteristics of the discontinuities. The basic intention of this thesis is to identify the 

parameters of a discontinuity in a waveguide from measured reflection and transmission 

coefficients. This chapter reviews a general approach [64] which aims to relate the 

reflection and transmission coefficients of discontinuities to the parameters of the 

waveguides and discontinuities. The reflection and transmission coefficients of all the 

structures considered in this thesis can be easily derived by this approach.    

 

The next two sections introduce the equations of longitudinal and flexural waves briefly. 

The torsional wave equation is omitted here since it is similar to the longitudinal one. 

The damping of the waveguide can be considered by adopting the complex Young’s 

modulus. Its effect is also discussed briefly. The concepts of reflection and transmission 

coefficients are given subsequently. Then a general wave approach is reviewed. 

Together with the dynamic stiffness and transfer matrix methods, this approach can be 

used to analyse the dynamic response of waveguides in which various wave modes are 

accommodated. Most usefully, the reflection and transmission coefficients can be easily 

related to the parameters of the waveguides and discontinuities by this approach. As an 

example, numerical results are presented for the reflection and transmission coefficients 

of a beam with a mass discontinuity. Then the sensitivity of the reflection and 

transmission coefficients to the parameters of the discontinuity is discussed. The general 

approach will also be used in Chapters 4 and 5 to obtain the reflection and transmission 

coefficients of joint models for pipe supports and a pipe bend.  
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2.2 Longitudinal Wave Propagation in Rods 

Longitudinal waves in rods are compressional/extensional waves, in which the primary 

motion of the rod and the wave propagation both occur in the longitudinal direction [1-

3]. There is also transverse motion perpendicular to the wave propagation direction. 

However, this motion is negligible if the wavelength in the rod is large compared to the 

rod's radial dimension. This thesis only considers longitudinal waves under this 

condition. This section briefly introduces the equation of longitudinal waves in 

homogeneous, slender rods and its solutions.  

 

The longitudinal wave equation of a slender rod can be derived directly based on the 

fundamental relationship between stress and strain for a differential mass element. The 

detailed derivation procedure is omitted here for brevity and only the equation of 

motion is given. For a homogeneous, slender rod lying along the x-axis as shown in 

Figure 2.1, it can be obtained that [1-3] 

 
2 2

2
2 2l
u uc

x t
∂ ∂

=
∂ ∂

 (2.1) 

where u  is the longitudinal displacement and /lc E ρ=  is the longitudinal wave 

speed. E  and ρ  are the Young’s modulus and density of the material respectively. The 

subscript l  indicates the longitudinal character of this wave mode. The wave speed 

increases with increasing stiffness and decreases with increasing density. Since it is 

independent of frequency, this kind of wave propagates without dispersion. This is not 

the case for bending waves, which will be discussed later. The wave equation (2.1) is 

valid for slender rods of arbitrary cross-section. 

 

( , )u x t

x  
Figure 2.1 A rod lying along x-axis. 

 

By assuming time-harmonic motion and applying the method of separation of variables, 

the solution to equation (2.1) is assumed to be of the form ( , ) ( ) i tu x t U x e ω= . In the 
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following analysis, the time dependence i te ω  is suppressed if not explicitly indicated. 

( )U x  is given by 

 ( ) l lik x ik xU x U e U e−+ −= +  (2.2) 

where U +  and U −  are complex amplitudes, which can be determined from the 

excitation and boundary conditions. lik xU e−+  represents a positive-going wave and 
lik xU e−  a negative-going wave. The variable 

 lk
E
ρω=  (2.3) 

is the longitudinal wavenumber, where ω  is the frequency in rad/s. It is related to the 

wave speed lc  by  

 l
l

k
c
ω

= . (2.4) 

Since frequency / 2 /l lf cω π λ= = , where lλ  is the longitudinal wavelength, the 

wavenumber can also be expressed as  

 2
l

l

k π
λ

= . (2.5) 

lk  is inversely proportional to the spatial period lλ , therefore, the wavenumber lk  can 

be considered as the spatial analogue of the angular frequency ω . It indicates the phase 

change of the wave motion per unit length in the direction of propagation. 

 

 

2.3 Flexural Wave Propagation in Beams 

Bending or flexural waves are widely found in wave propagation in solid structures, 

such as beams and plates. This type of wave is characterised by the particle motion 

being perpendicular to the direction of propagation. In this section the bending wave 

equation and its solutions are briefly introduced.  

 

Consider a beam of constant section lying along the x-axis shown in Figure 2.2. If an 

external distributed force ( , )f x t  is applied to the beam, the partial differential equation 

for bending waves is given by Euler-Bernoulli beam bending theory [1-3] as 
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 ( )
4 2

4 2 ,w wEI A f x t
x t

ρ∂ ∂
+ =

∂ ∂
. (2.6) 

where ( ),w x t  is the transverse displacement of the beam. The equation gives a good 

description of the motion in a bending wave field if the wavelength is larger than about 

six times the thickness of the beam [1]. 

 

x

bik x
PW e− bik x

PW e−+

bk x
NW e− bk x

NW e−+

 
Figure 2.2 Wave field of an infinite beam. 

 

For time harmonic waves in beams, the transverse displacement can be written as  

 ( , ) ( ) i tw x t W x e ω= . (2.7) 

Substituting the above equation into equation (2.6), for free response ( 0f = ), one gets 

 
4

2
4 0d WEI AW

dx
ω ρ− = . (2.8) 

The general solution to equation (2.8) can be written as  

 ( ) b b b bik x ik x k x k x
P P N NW x W e W e W e W e− −+ − + −= + + +  (2.9) 

where  

 4
b

Ak
EI
ρω=  (2.10) 

is the bending wavenumber of the beam. It is real and positive unless structural damping 

is incorporated into the Young’s modulus when it will have a negative imaginary part. 

I  is the second moment of area of the cross-section. The first and second terms in 

equation (2.9) represent waves that propagate in the positive and negative x-direction 

respectively. The third and fourth are the nearfield terms. They have constant phase but 

decay exponentially with distance in the positive and negative x-direction respectively. 

The near-field terms are of importance only close to excitation points, discontinuities or 

terminations. The subscripts P  and N  denote the propagating and nearfield waves 

respectively and the superscripts +  and −  indicate positive- and negative-going waves 

respectively.  

The phase velocity of bending waves /b bc kω=  is  
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 4b
EIc

A
ω

ρ
= , (2.11) 

which is frequency dependent. Waveforms composed of various sinusoidal components 

distort with time, because the higher-frequency components will propagate with a 

higher velocity than the lower-frequency ones. This is called dispersion [3]. The group 

velocity is defined by  

 g
dc
dk
ω

= ,  (2.12) 

which is 2 bk EI Aρ  for bending waves. It determines the velocity of energy 

propagation along the beam. For bending waves, the group velocity is twice the phase 

velocity, 2g bc c= , but they are equal for longitudinal waves.  

 

 

2.4 Damping Effects of Waveguides 

The above analysis does not consider the influence of damping of the structure, which is 

valid only for ideal situations. In practice the energy contained in a given oscillation 

will convert into other forms and therefore every oscillation decays with space and time 

because of the damping. The damping can be simply represented by introducing a 

complex Young’s modulus for the material ( )1E iη+  where η  is the damping loss 

factor. Thus all the parameters associated with Young’s modulus will become complex, 

such as the stiffness, wave velocity and wavenumber. For example, the flexural 

wavenumber becomes  

 
( )

4 1
1 4

c
b b

Ak k i
EI i

ρ ηω
η

⎛ ⎞= ≈ −⎜ ⎟+ ⎝ ⎠
 (2.13) 

where the first order approximation is valid for small damping, i.e. 0.05η < . Similarly 

the complex longitudinal wavenumber can be expressed as ( )1 / 2c
l lk k iη≈ − .  

 

The loss factors of metals are usually considerably smaller than 310−  except some soft 

ones, such as lead, tin, silver and copper. However, the actual damping of practical 

structures is determined not only by the loss in the materials but also by friction at 

supports, interfaces, connections, etc. Loss factors of other materials, sandwich 
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structures and metal interfaces can be seen in reference [1].  

 

Table 2.1 gives the wave amplitude reduction when propagating along the waveguide 

due to the damping of waveguides for two kinds of materials, steel and copper. The 

value given is the amplitude at distance x as a percentage of the amplitude at distance 0. 

The typical values of the loss factors in the table are quoted from reference [1]. Except 

for soft metals, the wave amplitude attenuation is very small even over a long distance, 

say less than 5% in 100 wavelengths.    

 

Table 2.1 Wave amplitude reduction due to damping of waveguide for bending waves.  
(λ  denotes wavelength) 

 
amplitude, / 4bk xe η−  

distance, 10x λ=  distance, 100x λ=  

steel: 42 10η −= ×  99.7% 96.9% 

copper: 32 10η −= ×  96.9% 73.0% 

 

The damping effects of the discontinuities considered in this thesis will be discussed in 

later chapters.  

 

 

2.5 Reflection and Transmission coefficients 

This section introduces the concept of reflection and transmission coefficients. Figure 

2.3 shows two waveguides connected by a discontinuity. A positive-going wave 

propagating along waveguide a is incident upon the discontinuity, where a reflected 

wave and a transmitted wave are generated. At the discontinuity, the amplitudes of the 

incident, reflected and transmitted waves can be written as a+ , a−  and b+ . Then the 

wave amplitude reflection and transmission coefficients are defined respectively by  

 ar
a

−

+=  and bt
a

+

+= . (2.14) 

Since wave amplitudes are complex, these two coefficients are also complex. They are 

determined by the characteristics of the waveguide and the discontinuity.  
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a+

a−
b+

a b
 

Figure 2.3 Wave field at a discontinuity.  
 

Wave reflection and transmission is actually the redistribution of the energy in the 

incident wave to the reflected and transmitted waves. The power in a longitudinal wave 

and a bending wave is given by [1] 

 21
2 lP Ac Vρ=  and 2

bP Ac Vρ=  (2.15) 

where V  is the particle velocity. The power reflection and transmission coefficients can 

be defined in a similar fashion to the wave amplitude ones as  

 r

i

P
P

ρ =  and t

i

P
P

τ =  (2.16) 

where the subscripts i , r  and t  represent incident, reflected and transmitted waves 

respectively. Referring to equation (2.15) and recalling the definition of amplitude 

reflection and transmission coefficients given in equation (2.14), if there is no wave 

mode conversion, equation (2.16) becomes  

 2rρ =  and 2b

a

Z t
Z

τ =  (2.17) 

where aZ  and bZ  are the characteristic impedances of the waveguides carrying the 

incident and transmitted waves. If there is no energy dissipation, the energy involved in 

the reflected and transmitted waves should equal to that in the incident waves. Thus  

  1ρ τ+ = . (2.18) 

In practice owing to the existence of damping, the sum of power reflection and 

transmission coefficients should be less than unity.  

 

Appendices 1 and 2 summarise the reflection and transmission coefficients of some 

simple structures in rods and beams.   
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2.6 A General Wave Approach 

This section reviews the general approach developed in reference [64] which relates the 

displacements and internal forces to the wave amplitudes in a waveguide which might 

contain various wave modes.   

 

2.6.1 Wave Amplitude, Displacement and Internal Force Vectors 

Generally speaking, there might be several different wave modes in a waveguide. At 

any cross-section the waves can be separated into two groups in terms of the two 

directions they are travelling, positive and negative. Accordingly, the amplitudes of 

waves can then be grouped into two vectors 

 

1

2

n

a
a

a

+

+
+

+

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

a
#

 and 

1

2

n

a
a

a

−

−
−

−

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

a
#

, (2.19) 

where the superscripts +  and −  indicate the positive and negative wave travelling 

directions respectively. For the special case where there are both longitudinal and 

flexural waves, the wave amplitude vectors are considered to have the form  

 P

N

U
W
W

±

± ±

±

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

a . (2.20) 

The displacements and internal forces describe the state of a cross-section at any point 

in a waveguide. The displacements can also be grouped into a so-called displacement 

vector, W . Similarly, the internal forces moments can be grouped into the internal 

force vector, F . For waveguides only including longitudinal and flexural waves 

 
/

U
W

W x

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪∂ ∂⎩ ⎭

W  (2.21) 

 and   

 
P
Q
M

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

F . (2.22) 
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where  

 
3 2

3 2, ,   .U W WP EA Q EI M EI
x x x

∂ ∂ ∂
= = − =

∂ ∂ ∂
 (2.23) 

P , Q  and M  correspond to axial force, transverse force and moment respectively.  

 

2.6.2 Displacement and Internal Force Matrices 

The general displacements and internal forces can be related to the wave amplitudes 

simply by the displacement and internal force matrices respectively. Thus 

 
+

+ −
−

⎧ ⎫
⎡ ⎤= ⎨ ⎬⎣ ⎦

⎩ ⎭

a
W Ψ Ψ

a
 and 

+
+ −

−

⎧ ⎫
⎡ ⎤= ⎨ ⎬⎣ ⎦

⎩ ⎭

a
F Φ Φ

a
 (2.24) 

where +Ψ  and −Ψ  are the displacement matrices, and +Φ  and −Φ  are the internal force 

matrices. For waveguides which involve longitudinal and flexural waves 

 
1 0 0
0 1 1
0 b bik k

+

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

Ψ , 
1 0 0
0 1 1
0 b bik k

−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Ψ  (2.25) 

and 

 3 3

2 2

0 0
0
0

l

b b

b b

iEAk
iEIk EIk
EIk EIk

+

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

Φ , 3 3

2 2

0 0
0
0

l

b b

b b

iEAk
iEIk EIk
EIk EIk

−

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

Φ . (2.26) 

These matrices denote the contribution of the wave components to the waveguide 

deformations and internal forces.  

 

2.6.3 Wave Propagation, Reflection and Transmission Matrices 

Waveguides of finite length have boundaries and may have discontinuities along their 

length. The amplitude of a wave changes with distance while travelling along a 

waveguide. When a wave impinges on a boundary it is reflected and when it is incident 

upon a discontinuity then it will be reflected and transmitted. The amplitudes of the 

reflected and transmitted waves are related to the incident waves by the reflection and 

transmission coefficients. A particular wave mode may be scattered into other wave 

modes depending on the particular structure. Therefore, reflection and transmission 

coefficients may involve wave mode conversion. Reflection and transmission matrices 
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are composed of these coefficients and are determined by applying the continuity and 

equilibrium conditions for the particular structure. 

 

Consider two points, 1x x=  and 2x x=  of a one-dimensional waveguide lying along the 

x-axis shown in Figure 2.4. The amplitudes of the waves at the two points can be related 

by  

 2 1

1 2

+ ++

− −−

⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦⎩ ⎭ ⎩ ⎭

a aS 0
a a0 S

, (2.27) 

where the subscripts 1 and 2 indicate the positions of the waveguide; ±S  are the 

propagation matrices relating the wave propagation of the two points and usually 
− +=S S . For waveguides which involve longitudinal and flexural waves   

 

2 1

2 1

2 1

( )

( )

( )

0 0
0 0
0 0

l

b

b

ik x x

ik x x

k x x

e
e

e

− −

− −±

− −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S  (2.28) 

The propagation matrices describe the phase and amplitude changes of the waves as 

they propagate along the waveguide.   

 

1x x=

x

1
+a

1
−a

2x x=

2
+a

2
−a

 
Figure 2.4 Wave vectors at two points of a waveguide lying along x-axis.  

 

Consider a discontinuity connecting two waveguides at junction jx x=  (Figure 2.5). A 

wave is incident upon the discontinuity, where it is partly reflected and partly 

transmitted. In general, wave mode conversion occurs, which means an incident wave 

of one mode might be scattered into waves of all modes. Incident waves of amplitudes 

j
+a  and j

−b  at the junction are scattered into waves j
−a  and j

+b . The wave vectors can be 

related by the reflection and transmission matrix as  

 
aa ba

j j j j
ab bb

j j j j

− +

+ −

⎧ ⎫ ⎡ ⎤ ⎧ ⎫⎪ ⎪ ⎪ ⎪= ⎢ ⎥⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

a R T a
b T R b

, (2.29) 
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where R  and T  are the reflection and transmission matrices composed of reflection 

and transmission coefficients. Subscript ‘j’ denotes the position of the discontinuity 

jx x= . Superscript ‘ab’ indicates from waveguide a  to waveguide b .  The rest can be 

deduced by analogy. For symmetric discontinuities, aa bb=R R  and ab ba=T T . If the 

discontinuity is a boundary, for example, when there is no waveguide b  in Figure 2.5, 

equation (2.29) can be simplified as aa
j j j
− +=a R a . 

 

jx x=

x

j
+a

j
−a

j
+b

j
−b

a b

 
Figure 2.5 Waves at a discontinuity at jx x= .  

 

 

2.7 Reflection and Transmission Coefficients in Terms of 
Parameters of Discontinuities 

This section introduces two methods to set up the continuity and equilibrium equations 

of discontinuities in waveguides. One is the dynamic stiffness matrix for the reflection 

of boundaries and the other is the transfer matrix method for discontinuities between 

waveguides. These methods, especially the latter, will be used in the following chapters 

to derive the reflection and transmission coefficients of different structures.   

 

2.7.1 Reflection at Boundaries  

This section discusses setting up equilibrium equations at boundaries of waveguides by 

the dynamic stiffness matrix. Figure 2.6 shows a waveguide with a boundary at 0x = . 

In most cases the equilibrium condition can be given by a dynamic stiffness matrix, 

which relates the displacements and internal forces at the boundary,  

 =F DW  (2.30) 

where D  is the dynamic stiffness matrix. It is usually composed of the parameters of 
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the boundary.  

 

0x =

x

+a
−a

a

D

 
Figure 2.6 Wave reflection at a boundary.  

 

Substituting the displacement and internal force vectors given by equation (2.24)  into 

equation (2.30) and rearranging yields  

 ( ) ( )− − − + + +− = −Φ DΨ a DΨ Φ a . (2.31) 

Assuming the matrix on the left-hand side is invertible, then  

 ( ) ( )1−− − − + + += − −a Φ DΨ DΨ Φ a . (2.32) 

The wave amplitude vectors are related by the reflection coefficient matrix as  

 − +=a Ra . (2.33) 

Comparing equations (2.33) and (2.32), the reflection matrix is given by  

 ( ) ( )1−− − + += − −R Φ DΨ DΨ Φ . (2.34) 

The reflection coefficients include the parameters of the waveguide and discontinuity.  

 

2.7.2 Reflection and Transmission at Discontinuities in Waveguides  

This section discusses the reflection and transmission matrices derived by the transfer 

matrix method. Figure 2.7 represents a linear element with input and output. For a linear 

mechanical system, it can be a combination of many linear subsystems, such as masses, 

springs, dampers, or linear continuous systems, such as bars, beams, plates and so on. 

Assuming that F  and W  are the internal force and displacement vectors with 

subscripts ‘a’ and ‘b’ indicating the input and output positions, they can be related by   

 11 12

21 22

a b

a b

⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦⎩ ⎭ ⎩ ⎭

W WΩ Ω
F FΩ Ω

 (2.35) 

where ijΩ , , 1, 2i j =  are the elements of the transfer matrix. They can be obtained by 

applying appropriate continuity and equilibrium conditions. The transfer matrix method 
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is limited for some systems, in which cases, the internal force and displacement vectors 

can be related by other methods, such as the spectral element method [2]. All the 

systems discussed in this thesis can be analysed by the transfer matrix method.  

 

aW

aF

bW

bF

j
+a

j
−a

j
+b

j
−b

 
Figure 2.7 Element j  with input and output forces and displacements.  

 

If the element is a discontinuity connecting two waveguides a  and b  as shown in 

Figure 2.5, referring to equation (2.24), the displacements and internal forces on both 

sides can be related to waves amplitudes by 

 a ja ja j

a ja ja j

+ − +

+ − −

⎡ ⎤ ⎧ ⎫⎧ ⎫ ⎪ ⎪= ⎢ ⎥⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

W Ψ Ψ a
F Φ Φ a

 and b jb jb j

b jb jb j

+ − +

+ − −

⎡ ⎤ ⎧ ⎫⎧ ⎫ ⎪ ⎪= ⎢ ⎥⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

W Ψ Ψ b
F Φ Φ b

. (2.36) 

Substituting equation (2.36) into (2.35) and rearranging, after some lengthy 

manipulation, yield  

 11 12 11 12

21 22 21 22

ja jb jb j ja jb jb j

ja jb jb j ja jb jb j

− + + − + − − +

− + + + + − − −

⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫− − − +⎪ ⎪ ⎪ ⎪=⎢ ⎥ ⎢ ⎥⎨ ⎬ ⎨ ⎬− − − +⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭

Ψ Ω Ψ Ω Φ a Ψ Ω Ψ Ω Φ a
Φ Ω Ψ Ω Φ b Φ Ω Ψ Ω Φ b

. (2.37) 

The following introduces the method to obtain the reflection and transmission 

coefficients.  

 

Assuming that the matrix on the left-hand side is invertible, then  

 
1

11 12 11 12

21 22 21 22

j ja jb jb ja jb jb j

j ja jb jb ja jb jb j

−− − + + + − − +

+ − + + + − − −

⎧ ⎫ ⎡ ⎤ ⎡ ⎤ ⎧ ⎫− − − +⎪ ⎪ ⎪ ⎪= ⎢ ⎥ ⎢ ⎥⎨ ⎬ ⎨ ⎬− − − +⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎣ ⎦ ⎩ ⎭

a Ψ Ω Ψ Ω Φ Ψ Ω Ψ Ω Φ a
b Φ Ω Ψ Ω Φ Φ Ω Ψ Ω Φ b

. (2.38) 

The first matrix on the right-hand side can be written as  

 11 12 11 12

21 22 21 22

ja jb jb

ja jb jb

− + +

− + +

⎡ ⎤− − ⎡ ⎤
=⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎣ ⎦⎣ ⎦

Ψ Ω Ψ Ω Φ B B
Φ Ω Ψ Ω Φ B B

. (2.39) 

By using the partitioned inverse, it can be obtained that  

 
1

11 12 11 12

21 22 21 22

−
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

C C B B
C C B B

 (2.40) 

where  
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( ) 11
11 11 12 22 21

1
12 11 12 22

1
21 22 21 11

1 1 1
22 22 22 21 11 12 22

,

,

,

.

−−

−

−

− − −

= −

= −

= −

= +

C B B B B

C C B B

C B B C

C B B B C B B

 (2.41) 

Substituting equation (2.40) into (2.38) and comparing the result with equation (2.29), 

the reflection and transmission matrices are given by   

 
( ) ( )

( ) ( )

11 12

11 11 12 12 21 22

21 22

21 11 12 22 21 22

,

,

,

.

aa
j ja ja

ba
j jb jb jb jb

ab
j ja ja

bb
j jb jb jb jb

+ +

− − − −

+ +

− − − −

= − −

= + + +

= − −

= + + +

R C Ψ C Φ

T C Ω Ψ Ω Φ C Ω Ψ Ω Φ

T C Ψ C Φ

R C Ω Ψ Ω Φ C Ω Ψ Ω Φ

 (2.42) 

The reflection matrix can also be obtained for a boundary by setting the terms with 

subscript b  to zero.  

 

Some techniques can be used to simplify the process when only reflection and 

transmission coefficients of a particular wave mode are of interest. Substituting 

equation (2.29) into (2.37) and rearranging gives  

 11 12 11 12

21 22 21 22

aa ba
ja jb jb j j ja jb jb j

ab bb
ja jb jb j j ja jb jb j

− + + + − − +

− + + + − − −

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎧ ⎫− − − +⎪ ⎪⎪ ⎪− =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎨ ⎬⎨ ⎬− − − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎪ ⎪⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎩ ⎭⎩ ⎭

Ψ Ω Ψ Ω Φ R T Ψ Ω Ψ Ω Φ a
0

Φ Ω Ψ Ω Φ T R Φ Ω Ψ Ω Φ b
. (2.43) 

When only one wave mode is assumed to exist in j
+a , by substituting j

+a  and j
− =b 0  

into the above equation, the corresponding reflection and transmission coefficients can 

be determined easily from the above equation. The next section discusses such an 

example. This method can also be used to obtain the reflection at boundaries.  

 

2.8 Case Study: Reflection and Transmission Coefficients of 
Two Identical Semi-infinite Beams Connected by a 
Discontinuity 

In this section the general approach introduced above is employed to derive the flexural 

wave amplitude reflection and transmission coefficients for a discontinuity in a 

waveguide. The structure comprises two semi-infinite uniform beams connected by a 

mass discontinuity at 0x = , as shown Figure 2.8. For simplicity beams a  and b  are 
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taken to have the same physical properties, such as density, Young’s modulus and cross 

section. A time harmonic exciting source at x = −∞  gives rise to a positive-going 

bending wave, 0
bik xW e− , where 0W  is the wave amplitude at 0x = . The incident wave 

impinges upon the discontinuity at 0x =  where it is partly reflected and partly 

transmitted. Since there are only flexural waves in the system and there is only one 

propagating incident wave in beam a , the wave vectors are expressed as    

 0
0 0

W+ ⎧ ⎫
= ⎨ ⎬
⎩ ⎭

a  and 0

0
0

− ⎧ ⎫
= ⎨ ⎬
⎩ ⎭

b .  (2.44) 

Correspondingly the displacement and internal force vectors are  

 ,
,

, /
a b

a b
a b

W
W x

⎧ ⎫
= ⎨ ⎬∂ ∂⎩ ⎭

W , ,
,

,

a b
a b

a b

Q
M
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

F . (2.45) 

The beams on both sides of the discontinuity are identical, so the displacement and 

internal force matrices are 

 0 0

1 1
a b

b bik k
+ + ⎡ ⎤
= = ⎢ ⎥− −⎣ ⎦

Ψ Ψ , 0 0

1 1
a b

b bik k
− − ⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
Ψ Ψ   (2.46) 

and  

 2
0 0 1 1

b b
a b b

ik k
EIk+ + ⎡ ⎤−

= = ⎢ ⎥−⎣ ⎦
Φ Φ , 2

0 0 1 1
b b

a b b
ik k

EIk− − ⎡ ⎤−
= = ⎢ ⎥−⎣ ⎦

Φ Φ .  (2.47) 

The discontinuity is considered to be symmetric, thus  

 0 0
PP NPaa bb

PN NN

r r
r r
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

R R  and 0 0
PP NPba ab

PN NN

t t
t t
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

T T .  (2.48) 

where the subscript ‘ PN ’ indicates from propagating wave to nearfield wave. The rest 

can be deduced by analogy.  

 

0x =

x

0
bik xW e−

a b

,m J

 
Figure 2.8 A beam with a mass discontinuity at 0x = .  

 

The discontinuity in the beam may feature inertia, stiffness and damping, and can 

dramatically alter the response of the structure. Depending on the specific situation, one 
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or more dynamic properties of the discontinuity may dominate the others. The 

discontinuity should be modelled appropriately according to the practical conditions. 

Here attention is focused on a mass discontinuity whose parameters are characterised by 

a point mass m  and moment of inertia J .  

 

By applying continuity and equilibrium conditions to the discontinuity, the transfer 

matrix in equation (2.35) can be obtained as  

  11

1 0
0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Ω , 12

0 0
0 0
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Ω , 
2

21 2

0
0
m

J
ω

ω
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Ω  and 22

1 0
0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Ω . (2.49) 

Substituting equations (2.44), (2.46) to (2.49) into (2.43), after some lengthy 

manipulation (see Appendix 3), yields  

 

3 3

1 1 1 1 1
1 1
1 1

1 1 1 1 1

PP

PP

PN

PN

r
ti i i
ri i i
ti

μξ μξ
ϑξ ϑξ

− − −⎧ ⎫⎡ ⎤ ⎧ ⎫
⎪ ⎪⎢ ⎥ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥− + − − − ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪− + −⎣ ⎦ ⎩ ⎭⎩ ⎭

, (2.50) 

where  

 3, , .
l

m J
A A c

ωκμ ϑ ξ
ρ κ ρ κ

= = =  (2.51) 

/I Aκ =  is the radius of gyration of the cross-section of the beam. μ  is the ratio of 

the added mass to the beam mass in a length κ . ϑ  is the ratio of the moment of inertia 

J  to a moment of inertia equivalent to that of a mass Aρ κ  with a radius of gyration κ . 

Both parameters μ  and ϑ  are frequency independent. 2ξ  is the non-dimensional 

frequency and is equal to ( )2
bk κ . By inspection of equation (2.50), it is apparent that 

μξ  and 3ϑξ  influence the reflection and transmission coefficients. iμξ  is the ratio of 

the translational impedance of the mass discontinuity to the translational characteristic 

impedance of bending waves (see Appendix 2). 3iϑξ  is the ratio of the rotational 

impedance of the mass discontinuity to the rotational characteristic impedance of 

bending waves (see Appendix 2). See Appendix 4 for detailed definitions. Parameters 

μ  and ϑ  are chosen for the task of parameter estimation in Chapters 6 and 7.  

 

The reflection and transmission coefficients can be obtained directly by matrix 

inversion in equation (2.50). Alternatively, they can also be expressed in closed form as 
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( )( )
( )( )

( )
( ) ( )

( )( )( )
( )( )

( )
( )( )

3 3

3

3

3

3 3
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3

3

2 2
,

2 2 2 2

2 4
,

2 2 2 2

1 2 2
,

2 2 2 2

2
.

2 2 2 2

PP

PP

PN

PN

i
r

i i

t
i i

i i
r

i i

i
t

i i

μξ ϑξ μξ ϑξ

μξ ϑξ

μξ ϑξ

μξ ϑξ

μξ ϑξ μξ ϑξ

μξ ϑξ

μξ ϑξ

μξ ϑξ

⎡ ⎤− +⎣ ⎦= −
+ − − −

− +
= −

+ − − −

− + +
=

+ − − −

−
=

+ − − −

 (2.52) 

From these expressions it can be seen that the reflection and transmission coefficients 

are functions of the frequency dependent impedance ratios, iμξ  and 3iϑξ .  

 

Figure 2.9 shows the propagating reflection and transmission coefficients as functions 

of the magnitudes of the translational and rotational impedance ratios. The magnitudes 

of the scattering coefficients are presented by the power coefficients. The mass-

discontinuity is considered to be rigidly connected to the beam and damping is 

neglected, so 1ρ τ+ = . Small values of μξ  signify small added mass and/or low 

frequency, while small values of 3ϑξ  denote small added moment of inertia and/or low 

frequency. If both μξ  and 3ϑξ  are small, 0ρ →  and 1τ → , so most energy is 

transmitted. For large modulus of impedance ratios, 1ρ →  and 0τ → , which means 

most energy is reflected. Therefore, a mass discontinuity cannot significantly impede 

low frequency wave motion but can effectively reflect high-frequency wave motion. If 

either of the magnitudes of impedance ratios tends to zero and the other tends to infinity, 

both the power reflection and transmission coefficients approach one half. The reason 

behind this is that the mass prevents energy transmission by the internal shear force, 

while the moment of inertia by internal flexural moment [4]. At the regions where 

0ρ → , the phase of the reflection coefficient will have a sudden change of π  (Figure 

2.9(b)). At regions 0τ → , the phase of the transmission coefficient will have a sudden 

change of π  (Figure 2.9(d)).  

 

From equation (2.52), it is easy to find the regions where 0ρ = ( 1τ = ) and 0τ = ( 1ρ = ) 

in terms of parameters μξ  and 3ϑξ . Figure 2.10 shows these regions. They are actually 

the contour lines for  0ρ =  and 0τ =  in Figure 2.9.   
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Figure 2.9 Magnitudes (squared) and phases of the flexural reflection and transmission 

coefficients for the mass discontinuity: μξ , magnitude of translational impedance ratio; 
3ϑξ , magnitude of rotational impedance ratio: (a) ρ ; (b) phase of PPr ; (c) τ ; (d) phase 

of PPt . 
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Figure 2.10 Regions of 0ρ =  and 0τ =  for the mass discontinuity.  
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2.9 Summary 

This chapter briefly introduced the longitudinal and flexural wave equations, their 

solutions and some fundamental concepts regarding wave speed and wavenumbers. The 

damping effect of metal waveguides is usually very small.  When a wave propagating 

along the waveguide impinges on a discontinuity, a reflected wave and a transmitted 

wave (if there exists another waveguide on the other side of the discontinuity) will be 

generated. Thus the wave amplitude reflection and transmission coefficients were 

defined accordingly. From the view point of energy, the power reflection and 

transmission coefficients were also introduced. A general wave approach was reviewed 

and employed to derive the reflection and transmission coefficients in terms of the 

parameters of the boundaries and discontinuities in waveguides. This approach can be 

applied to complex structures in which various wave modes are accommodated. Finally 

a case study was demonstrated on the reflection and transmission coefficients of two 

identical semi-infinite beams connected by a mass discontinuity.  
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Chapter 3 Measurement of Reflection and 
Transmission Coefficients  

 

3.1 Introduction  

The final goal of this thesis is to estimate the parameters of a discontinuity in a 

waveguide from measured wave reflection and transmission coefficients. This can be 

achieved by two steps: the first is to obtain the reflection and transmission coefficients 

from transducer array measurements, and the second is to estimate the parameters of the 

joint from these measured coefficients. Clearly, the precision of the measured reflection 

and transmission coefficients is crucial to the accuracy of the parameter estimates of the 

discontinuity. This chapter considers the accuracy by which the flexural reflection and 

transmission coefficients of a discontinuity may be estimated from noisy transfer 

function measurements.  

 

A Wave Amplitude Decomposition (WAD) approach can be used to estimate 

amplitudes of various waves from transducer array measurements [58, 65]. A series of 

transducers are attached at various points to the waveguide. The spectra of their outputs 

are post-processed to get the wave amplitudes in the frequency domain. In references 

[58, 65] the design of the transducer array was discussed with respect to how to achieve 

good numerical conditioning according to the number of effective waves in the 

waveguide. However, the quality of the estimated amplitudes depends not only on the 

conditioning of the problem, but also on the accuracy of the measured data. By 

measuring the responses of transducers on either side of the discontinuity, the wave 

amplitudes on each side can be estimated and in turn the reflection and transmission 

coefficients of the discontinuity can be obtained from equation (2.14). In practice, 

measurement noise contaminates the measured data (transfer functions), and 

consequently affects the estimated reflection and transmission coefficients. Here a 

Gaussian noise model is introduced to the simulated measured data in the frequency 
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domain to examine the effects of measurement noise on the estimated reflection and 

transmission coefficients. Closed form solutions for the mean values and variances of 

the noisy reflection and transmission coefficients are given. Then Monte Carlo (MC) 

simulations and experiments are performed to illustrate the applicability of the closed 

form solutions.  

 

In the next section the WAD method is reviewed. Then this method is applied to a 

discontinuity connecting two semi-infinite waveguides in Section 3.3. The flexural 

reflection and transmission coefficients for the discontinuity are found from the 

decomposed amplitudes. In Section 3.4 a Gaussian noise model is applied to the 

transducer measurements to simulate the influence of measurement noise. Considering 

the noise as a perturbation on the ideal output of the measurement, expressions are 

derived for the mean and variance of the power reflection and transmission coefficients. 

The parameters that influence the variance of the power reflection and transmission 

coefficients are discussed. The statistical distribution of the power reflection coefficient 

is also investigated given that the noise on the transducer measurements is assumed to 

be Gaussian. Effects of nearfields are considered in Section 3.5. Section 3.6 gives the 

MC simulations for the reflection coefficient for a mass discontinuity and the mean and 

standard deviation of these simulations are compared with the closed form solutions. 

Section 3.7 reviews how the flexural wavenumber may be estimated using 

measurements taken by a transducer array. Section 3.8 presents the results of 

experiments on a beam with steel blocks attached. Flexural reflection and transmission 

coefficients are estimated based on the method introduced in the previous sections.     

 

 

3.2 A Wave Amplitude Decomposition Approach 

A brief outline of a WAD approach is reviewed in this section [58, 65]. This approach is 

used to identify the positive- and negative-going wave amplitudes at a point in a 

waveguide. The method is demonstrated on flexural waves here but it can be extended 

by analogy to various other waves.  

 

Figure 3.1 shows a measurement system comprising n transducers at n locations on a 
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waveguide. The aim is to decompose the wave amplitudes at point 0x x= . The outputs 

(displacement, or velocity or acceleration) of the n transducers are given in terms of the 

wave components by   

 =W ΛA  (3.1) 

where 

 

( )
( )

( )

1 1 1 1

2 2 2 2

1

2 , ,

b b b b

b b b b

b n b n b n b n

ik x k x ik x k x
P

ik x k x ik x k x
N

P
ik x k x ik x k x

n N

W x ae e e e
W x ae e e e

a
W x e e e e a

+− −

+− −

−

− − +

⎧ ⎫⎧ ⎫ ⎡ ⎤
⎪ ⎪⎪ ⎪ ⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥= = =⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

W Λ A
# # # # #

. (3.2) 

Pa±  and Na±  are the propagating and nearfield wave amplitudes respectively. ( )iW x  is 

the measured output at point ix x=  ( 1,2, ,i n= " ). Measurements of flexural 

wavenumber bk  will be discussed in Section 3.7. If the number of measurements is less 

than the number of wave components, i.e. the system is underdetermined, additional 

conditions are required to yield a solution. More specifically, if the number of 

measurements is chosen to match the number of wave components, in which case Λ  is 

square, then the wave components are given by  

 1−=A Λ W  (3.3) 

In the case of an overdetermined system, the wave components may be found in a least-

squares sense as 

 ( ) 1H H−
=A Λ Λ Λ W  (3.4) 

The superscript H  indicates the conjugate transpose of a matrix.  

 

The estimation of wave amplitudes depends on the existence of the inverse of matrix Λ , 

or HΛ Λ  in the case of an overdetermined system. Normally, if the transducer spacing is 

uniform and the same physical variable is measured at each location, the matrix is 

singular when the spacing is zero or an integer number of half-wavelengths. When the 

transducer spacings approach those which result in singularity, the matrix is ill-

conditioned and may cause unacceptable errors in the calculated wave amplitudes. This 

imposes limits on the transducer spacings. It should be noted that wavenumber bk  must 

be known in equations (3.3) and (3.4).  

 

A hybrid measurement system which includes a variety of transducer types, allowing 
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more than one vibrational quantity (e.g., acceleration and strain) to be measured  can 

give better conditioning of this method [58]. In this thesis, equally spaced accelerometer 

arrays are employed.  

  

x →∞

1 2 n"

0x x=
 

Figure 3.1 Local coordinate of transducers.  
 

 

3.3 Estimating Reflection and Transmission Coefficients by 
Wave Amplitude Decomposition 

In this section, the reflection and transmission coefficients of a discontinuity in an 

infinite beam are derived by using the WAD method introduced above.  

 

Consider two identical semi-infinite waveguides lying along the x-axis which are 

connected by a joint at 0x = , as shown in Figure 3.2. Two (positive- and negative-

going) flexural waves +a  and −b  are incident upon the discontinuity at 0x = , which 

give rise to propagating and nearfield reflected and transmitted waves on both sides. 

Two transducers are placed with spacing Δ  on each side of the joint. The mid-point of 

each pair of transducers is chosen as the local coordinate origin, which is located at 

x a= −  and x b=  respectively in the global coordinate system. The intention here is to 

estimate the flexural reflection and transmission coefficients of the joint by applying 

WAD in the local coordinate systems.   

 

2 3 41

x a= − 0x =
2
Δ

2
Δ

2
Δ

2
Δ

x b=

+a
−a

0
+a
0
−a

0
+b
0
−b

x →+∞

+b
−b

 
Figure 3.2 Waves in two semi-infinite waveguides connected by a joint. 
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As is known, the nearfield waves are only of significance around the discontinuities, 

such as the excitation point and the joint. The transducers are considered to be far 

enough away from these discontinuities that the influence of the nearfields on the 

accelerometer outputs can be neglected. Therefore, the two transducers on each side are 

only used to estimate the amplitudes of the propagating flexural waves. The vectors and 

matrix in equation (3.1) are then simplified as  

 
( )
( )

1

2

W x

W x

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

W , 
1 1

2 2

b b
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ik x ik x

ik x ik x

e e
e e

−

−

⎡ ⎤
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⎣ ⎦

Λ  and P

P

a
a

+

−

⎧ ⎫
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⎩ ⎭

A . (3.5) 

Applying this equation to the left-hand-side the transducer pair where 1 / 2x = −Δ , the 

outputs of the transducers can be written as 
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⎩ ⎭ ⎣ ⎦ ⎩ ⎭
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2 2
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ik ik
Pb

ik ik
Pb
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−− Δ Δ
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=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎣ ⎦ ⎩ ⎭
 (3.6) 

where the subscripts 1, 2, 3, 4 indicate the positions of transducers; subscripts a  and b  

denote waveguides. The wave amplitudes at the local origins can be obtained simply by 

solution of the above equation. For example,  

 
2 2

1
2 2

2

1
2 sin

b b

b b

ik ik
Pa

ik ik
bPa

Wa e e
Wi ka e e

+ Δ − Δ

− − Δ Δ
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=⎨ ⎬ ⎨ ⎬⎢ ⎥Δ ⎩ ⎭⎣ ⎦⎩ ⎭

. (3.7) 

Here the singularity of a matrix must be considered. When bk nπΔ =  ( 0,1,2,n = " ), the 

matrices in equation (3.5) become singular. In this case, the transducer spacing is equal 

to either multiples of one wavelength in which case the transducers observe the same 

motion, or odd multiples of half a wavelength in which case the transducers move in 

anti-phase. This method fails to identify the positive- and negative-going waves. 

Therefore, there is a maximum separation for the transducers within a given frequency 

range. Since 2bk π λ=  (λ  is the wavelength), the transducer spacing must be less than 

half the shortest wavelength.  

 

Referring to equation (2.29), at the discontinuity (indicated by subscript “ 0 ”), the 

propagating reflected and transmitted waves are related to the incident waves by  

 0 0

0 0

aa ba
a a

ab bb
b b

a ar t
a at r

− +

+ −

⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦⎩ ⎭ ⎩ ⎭

, (3.8) 

where aar  is the propagating reflection coefficient and abt  is the transmission 

coefficient.  
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If the discontinuity is considered to be physically symmetric, the reflection and 

transmission coefficients are such that 

 aa bbr r r= =  and ab bat t t= =  (3.9) 

In order to estimate the reflection and transmission coefficients from transducer array 

measurements, the local coordinate systems need to be related to the global coordinate 

system. Referring to equation (2.27), the wave amplitudes at the discontinuity and 

midpoints of the transducer pairs can be related by  

 0
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. (3.10) 

Substituting equations (3.9) and (3.10) into equation (3.8), the reflection and 

transmission coefficients can be expressed in terms of the wave amplitudes defined in 

the local coordinate systems as 
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b b b

b b b

ik a ik b ik a
P Pa Pb Pa
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. (3.11) 

The wave amplitudes Paa+ , Paa− , Pba+  and Pba−  can be expressed as functions of transducer 

outputs from equations (3.6) by matrix inversion. Then substituting these wave 

amplitudes into equation (3.11) gives the reflection and transmission coefficients in 

terms of transducer outputs.  

 

For simplicity, from here on a simple case is considered where there is only one 

incident wave in the left-hand waveguide, i.e. 0Pba− = . Then the reflection and 

transmission coefficients can be expressed in terms of the transducer outputs as 
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−
. (3.12) 

Whilst the reflection and transmission coefficients are in theory determined by the 

properties of the waveguides and the discontinuities, the estimated reflection and 

transmission coefficients given by equation (3.12) depend on the wavenumber, 

transducer spacing and locations as well as the transducer outputs. Again by substituting 

equation (3.6) into the denominators of the above expressions, it can be concluded that 

when bk nπΔ =  ( 0,1,2,n = " ) the denominators will become zero, which should be 

avoided.  
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3.4 Analysis of Influence of Measurement Noise 

The above discussion does not consider the influence of noise on the measurement of 

the reflection and transmission coefficients. However, in practice, measurement noise is 

unavoidable. In this section a noise model is introduced into the simulated measured 

transducer outputs. Then the effects of measurement noise on the estimated reflection 

and transmission coefficients are investigated. Since the terms bk a  and bk b  in equation 

(3.12) are typically very large and change rapidly with frequency, the phases of the 

reflection and transmission coefficients are sensitive to combinations of errors on 

wavenumber and transducer locations x a= −  and x b= , especially at high frequencies. 

Consequently, parameter identification methods for the discontinuity might judiciously 

use only the moduli of the estimated reflection and transmission coefficients. This 

chapter focuses on the influence of measurement noise on the moduli of the estimated 

reflection and transmission coefficients. For convenience, the statistical distribution of 

the squared moduli of these coefficients, i.e. the power reflection and transmission 

coefficients, will be analysed here.  

 

3.4.1 Noise Model 

The measured outputs are assumed to be contaminated by noise. This can be expressed 

as 

 ˆ
i i iW W N= +  (3.13) 

where ˆ
iW  is the estimated quantity, iW  is the true quantity and iN  indicates the noise on 

the measured output of transducer i . The noise model can be selected in many ways, 

but here it is applied in the frequency domain and is represented as 

 ii
i iN m e φ=  (3.14) 

where im  is Gaussian distributed with zero mean and variance 
22

i Paaσ +  and the phase 

iφ  is uniformly distributed between / 2π−  and / 2π . im  is chosen to be Gaussian since 

the Gaussian distribution often provides an adequate approximation to the distribution 

of many measured quantities. Zero mean indicates the noise is purely random and 
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without systematic errors. Paa+  is included here so that the noise on the transducer 

readings is assumed to be multiplicative, i.e. proportional to the amplitude of the 

incident wave. 2
iσ  is assumed to be relatively small, i.e. much smaller than unity. 

Therefore, iN  can be considered as a perturbation on the output measurement. For 

simplicity, iN  are assumed to be uncorrelated. Since the noise is random, its phase is 

regarded as uniformly distributed between π−  and π . However, with the amplitude 

being Gaussian with zero mean, it is equivalent to saying that the phase component of 

the noise is uniformly distributed between / 2π−  and / 2π . 

 

3.4.2 Statistical Estimates of the Noisy Power Reflection Coefficient  

Given the noise model described above, the mean values and variances of the power 

reflection coefficient are estimated in this section by a perturbation method.   

 

Substituting the noisy outputs defined by equation (3.13) into the first expression of 

equation (3.12), after some lengthy algebra, the noisy reflection coefficient is given by   
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( )
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1 1ˆ
1 1
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ε ε
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−
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+ +
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where  
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e N e N e N e Ne
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ε ε
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+ +

− + −
= =

Δ Δ
 (3.16) 

can be considered as perturbations on the noise free values of wave amplitudes, which 

means that the noise levels of the “measured” transducer outputs are relatively small. 

Here it is assumed that 2 1ε < ,  then 

 ( ) ( )( )2
1 2 2 2ˆ 1 1 1 n nr r ε ε ε ε= + − + + + − +" " . (3.17) 

Recalling the definition of power reflection coefficient given in Chapter 2, multiplying 

each side of equation (3.17) by its own complex conjugate and neglecting the terms in 

which the summed indices of 1ε , 2ε , H
1ε  or H

2ε  are higher than the second order (the 

condition that 1 1ε �  and 2 1ε �  must be assumed), the estimated power reflection 

coefficient can be approximated by  
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.  (3.18) 

Substituting for 1ε  and 2ε  from equation (3.16), taking the expectation of both sides 

and neglecting the terms with second and higher orders of 2
1σ  or 2

2σ  gives the mean 

value of the estimated power reflection coefficient (see Appendix 5 for the detailed 

derivation of this mean and other expressions below):  

 ( ) ( )( ){ }2 2 2 2 2
ˆ 1 2 1 22

1 2Re 1
4sin

b b bik a ik ik

b

re e e
kρμ ρ σ σ ρ σ σ− Δ − Δ⎡ ⎤+ + + + +⎣ ⎦Δ

� , (3.19) 

where Re indicates the real part of a complex number. Since bk a  is typically very large 

and changes rapidly with frequency, the exponential term 2 bik ae−  in equation (3.19) 

causes fluctuations to the mean value of ρ̂ . Considering that the magnitudes of r , ρ  

and the exponential terms are all bounded by unity, upper and lower bounds for the 

mean value can be approximated by 

 
2 2
1 2

ˆ 2sin bkρ
σ σρ μ ρ +

≤ ≤ +
Δ

. (3.20) 

Therefore, the mean value is always no less than the noise free value, which means the 

expectation is biased.  

 

The variance of a variable quantifies the error dispersion and is defined by 

[ ]2 2 2
X E X E Xσ ⎡ ⎤= −⎣ ⎦ , where [ ]E X  indicates the expectation of a variable. Following 

similar analysis to the manipulation of the mean value of ρ̂ , the variance of ρ̂  is given 

by  

 ( ) ( )( ){ }22 2 2 2 2
ˆ 1 2 1 22 2Re 1

2sin
b b bik a ik ik

b

re e e
kρ

ρσ σ σ ρ σ σ− Δ − Δ⎡ ⎤+ + + +⎣ ⎦Δ
� , (3.21) 

from which the following upper bound can be obtained: 

 
( )2 2

1 22
ˆ 2

2
sin bkρ

ρ σ σ
σ

+
≤

Δ
. (3.22) 

This upper bound can be seen to depend on: 

1) the sum of the variances of the two transducers, 2 2
1 2σ σ+ . The smaller the noise 

variances of the transducers, the lower of the variance of the estimation. It also can 

be seen that the sequence of the transducers does not affect the estimation.  
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2) the true value of the power reflection coefficient, ρ . This is a consequence of the 

noise model chosen. 

3) the transducer spacing, Δ . The optimum transducer spacing is a quarter wavelength 

(where sin 1bk Δ = ). Poor estimates occur when the transducer spacing is close to 

multiples of one half wavelength. 

 

The conditions for the validity of equations (3.17) to (3.22) will be discussed here. The 

moduli of the noise contaminations for output measurements are assumed to be 

Gaussian. For a Gaussian distribution, data with extremely large deviations still arise 

occasionally though they are relatively infrequent. So it is not guaranteed that the 

conditions 1 1ε �  and 2 1ε �  are definitely satisfied for every measurement even if 

the simulated noise level on the transducer measurement is assumed to be very small. 

However, if both the mean values of 1ε  and 2ε  are much less than unity, then the first 

order approximation is usually a good estimation. With reference to equation (3.16), the 

mean values of 1ε  and 2ε  are respectively 

 
1 2

2 2 2 2
1 2 1 2,

2 sin2 sin bb kkε ε

σ σ σ σ
μ μ

ρ
+ +

= =
ΔΔ

. (3.23) 

Since 1ρ ≤ , it can be said that when  

 
2 2
1 2 1

2 sin bk
σ σ
ρ

+

Δ
� , (3.24) 

both 
1ε

μ  and 
2ε

μ  are much less than unity. Under this condition, equations (3.17) to 

(3.22) can be regarded as good approximations.  

 

3.4.3 Statistical Estimates of the Noisy Power Transmission 
Coefficient 

In this section the mean value and variance of the estimated power transmission 

coefficient are given.  

 

Similarly to equation (3.15), the estimated transmission coefficient with simulated 

measurement noise is given by  
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where  
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e N e N e
ita k

ε
Δ − Δ

+
+

−
=

Δ
 (3.26) 

is the perturbation on the transmitted wave amplitude. With the same manipulations as 

those of the reflection coefficient, the mean value and variance of the estimated power 

transmission coefficient τ̂  can be approximated respectively by  

 ( )2 2 2 2
ˆ 1 2 3 42

1
4sin bkτμ τ τ σ σ σ σ⎡ ⎤+ + + +⎣ ⎦Δ

�  (3.27) 

and  

 ( )2 2 2 2 2
ˆ 1 2 3 422sin bkτ

τσ τ σ σ σ σ⎡ ⎤+ + +⎣ ⎦Δ
� . (3.28) 

The mean value of τ̂  is also biased. Since the waves on each side of the discontinuity 

are identified by a transducer pair, so the noise on all of the four transducers contributes 

to the variance of τ̂ . The effect of the factor 2sin bk Δ  is the same as that of the 

reflection coefficient. The condition for good approximations of equations (3.27) to 

(3.28) are the same as those for the reflection coefficient. 

 

 

3.5 Effects of Nearfields 

The analysis presented in the above sections assumes that the nearfields are negligible. 

This section discusses the effect of the nearfield terms. For simplicity, the nearfields on 

the left-hand side of the discontinuity are considered here. The nearfields decay 

exponentially with distance, so they have more effect on the transducers closer to the 

discontinuity. In this case the nearfield at transducer 2 will be studied. The amplitude of 

the combined left-going nearfield at the joint can be expressed in an analogous way to 

the propagating wave (see equation (3.8)) as 

 0 0
aa ba

Na N a N ba r a t a− + −= + . (3.29) 

Referring to equation (3.1), the total output at transducer 2 including nearfield effects 

becomes 
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 / 2 / 2 ( / 2)
2

b b bik ik k a
Pa Pa NaW a e a e a e− Δ Δ − +Δ+ − −= + + . (3.30) 

Consider the case with only one incident wave (with 0
ba
N bt a−  disappearing in equation 

(3.29)), and with reference to equations (3.10) and (3.8) (notice that aa
Pr r= ), the above 

equation can be expressed as 

 ( ) ( )2 /2 /2/2
2

b bb ik a k aik aa aa
Pa P Pa N PaW a e r a e r a e− +Δ − +Δ− Δ+ + += + + . (3.31) 

In the nearfield term ( )/2bk aaa
N Par a e − +Δ+ , the amplitude of aa

N Par a+  is comparable to that of 

the propagating wave term. However, the component ( )/ 2bk ae − +Δ  decays exponentially. 

Table 3.1 lists the effect of this exponential component in the nearfield term in terms of 

wavelength. For example, if the distance / 2a− + Δ  is equal to one wavelength, the 

amplitude of the nearfield wave will be reduced to 0.2% of its original value; and less 

than 5% over a distance of half a wavelength. If the effect of the presence of the 

nearfield is much smaller than that of the noise, the nearfield can be neglected.  

 

Table 3.1 Amplitude reduction of nearfield waves with distance.  
(λ  denotes wavelength) 

 Distance, / 2a− + Δ  ( )/ 2bk ae − +Δ  

1 λ  0.2% 

2 0.73λ  1% 

3 0.47λ  5% 

 

 

3.6 Numerical Simulations 

In this section, MC simulations are performed for a thin, homogeneous, Euler-Bernoulli 

beam to which a mass discontinuity is attached. The intentions are to investigate the 

accuracy of the closed form solutions for the mean values and variances of the estimated 

power reflection and transmission coefficients, and also to investigate the statistical 

distribution of the estimated coefficients given a Gaussian noise model for the measured 

outputs. For simplicity, it is assumed in what follows that all the transducers have 

similar accuracy. 
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3.6.1 Parametric Model for the Discontinuity  

The beam is assumed to be infinitely long. The mass/inertia discontinuity is considered 

to be rigidly attached to the beam. The parametric model introduced in section 2.8 will 

be employed here to simulate the mass discontinuity. Table 3.2 lists the properties of the 

beam and the discontinuity. Correspondingly, the non-dimensional parameters are 

74.019μ =  and 41.645 10ϑ = × . These data relate to the experiments which will be 

discussed in the next section.  

 

Table 3.2 Properties of the beam and discontinuity (SI units) 

 
 

3.6.2 Simulation Results for the Power Reflection Coefficient  

The results of MC simulations on the power reflection coefficient are given in this 

section. Conclusions below are all drawn regarding this set of MC simulations. Figure 

3.4 shows the MC simulations for the case with noise level 1 2 5%σ σ= = . The x-axis 

bk Δ  is proportional to the non-dimensional frequency ξ . In this case, 29.412bk ξΔ =  

when the transducer spacing 0.05Δ = m. MC simulations are performed at 100 

frequencies at equally spaced wavenumbers in a range of 0 3.5bk< Δ < . At each 

frequency, 10,000 calculations are performed with random perturbations on “measured” 

transducer outputs. The mean value of MC simulation and the true value of the power 

reflection coefficient are also shown in the figure. The deviation and fluctuation of the 

simulated points can be seen from the “spread” of the data. For frequencies such that 

0.28bk Δ > , the transducers are more than one wavelength from the discontinuity and 

the nearfields can be neglected.  

 

When 0ρ = , the energy will be totally transmitted through the discontinuity. Referring 

to equation (2.52), 0PPr = , i.e. 3 22 2 0μϑξ ϑξ μ+ − = . Substituting the values of μ  and 

beam discontinuity 

density, ρ  
Young’s 

modulus, E 
width× thickness, 

b h×  mass, m  
moment of 
inertia, J  

7800  9194 10×  0.050 0.006×  0.300  42.0 10−×  
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ϑ  into the this equation, it gives 0.042ξ = , thus 1.235bk Δ = . Here it should be noticed 

that bkξ κ= , where / 12hκ = . When 0τ =  and 0PPt = , i.e. 3 4 0ϑξ μξ− + = . In this 

case 0.086ξ =  and 2.529bk Δ = . The energy will be totally reflected from the 

discontinuity.  

 

Figure 3.5(a) shows the mean value of the estimated power reflection coefficient ρ̂ , 

obtained from MC simulations with a transducer spacing 0.05Δ = m and transducer 

noise standard deviation levels 1 2 5%σ σ= = . Also shown is the noise free value, the 

approximate solution given by perturbation (equation (3.19)), and the resulting upper 

bound given by equation (3.20). The MC simulation is close to the approximate solution 

over the whole frequency range, and the upper bound of this is fairly conservative. The 

power reflection coefficient is estimated well except near zero frequency and bk πΔ =  

where bias in the estimate is most apparent. Near these frequencies the sensor spacing is 

nearly 0 and 1 times half a wavelength respectively. This causes sin 0bk Δ ≈  in 

equations (3.19) and (3.20).  

 

 
Figure 3.4 Monte Carlo simulations of the power reflection coefficient: 1 2 5%σ σ= = , 

1.20a = m and 0.05Δ = m:  , ρ̂ ; ,  [ ]ˆE ρ ; , [ ]E ρ .  
 

Figure 3.5(b) gives the corresponding estimates for the variance of ρ̂ . The approximate 

solution given by equation (3.21) is again in close agreement with the MC simulations. 

The upper bound given by equation (3.22) appears fairly conservative except near zero 
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frequency and bk πΔ = . This is due in part to fluctuations in the approximate solution 

for ρ̂  arising from the term 2 bik ae−  in equation (3.21). The exponent, bk a  can become 

very large, especially at high frequencies, so the variance changes rapidly with 

frequency. The estimate of the variance is smallest at about 1.2bk Δ = , where the power 

reflection coefficient is the smallest. This is due to the definition of the noise model.  
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Figure 3.5 First order approximations and MC simulations of (a) the mean value and (b) 

the variance of ρ̂ : 0.05Δ = m and 1 2 5%σ σ= = : , ρ (noise free); , 
perturbation solutions;  •  , Monte Carlo simulations; , upper bound of perturbation 

solutions. 
 

The effect of noise level was similarly investigated using the approximate solution of 

equation (3.22). Figure 3.6 contrasts the effect of transducer noise levels of 1% and 5% 

for a fixed sensor spacing of 0.05Δ = m. The results are expressed in terms of the 

standard deviation normalised by the true value in order to assess the extent to which 

the wave decomposition process amplifies noise on the transducers. The first peak at 

about 1.2bk Δ =  is inevitable since there is no true reflection at this frequency to 

measure, and the second peak corresponds to a half-wavelength transducer spacing. At 

best (i.e. at frequencies for which the transducer spacing is a quarter wavelength) the 

noise on the power reflection coefficient is twice as large as that of the individual sensor 

measurements. The imperative for high fidelity measurements is clear if high precision 

of the reflection coefficients is desired.   
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Figure 3.6 Closed form solutions for the upper bound normalised standard deviation of 

ρ̂ : , 1 2 5%σ σ= = ; , 1 2 1%σ σ= = . 
 

If the mass or moment of inertia changes, usually the frequencies where 0ρ =  and 

1ρ =  will change correspondingly. If the discontinuity is a spring-like discontinuity, 

the trend of ρ  is different from that of the mass and moment of inertia discontinuity. 

However, the noise on the power reflection coefficient keeps a similar trend (see Figure 

3.4), i.e. when ρ  is small, the noise is small; when ρ  is large, the noise becomes large. 

Also at frequencies where bk nπΔ = , the variance of ρ  is very large because of the ill-

condition of the wave amplitude decomposition method.  

 

3.6.3 Statistical Distribution of the Simulated Noisy Power Reflection 
Coefficient  

This section investigates whether the MC simulation points obey a Gaussian distribution 

given the noise model on the output measurements. The following analysis is based on 

one MC simulation (one set of random noise seeds in the Matlab code) and conclusions 

are therefore limited. 

 

The distribution range of 10,000 MC simulations of ρ̂  at each frequency is divided into 
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100 intervals. Then the probability density of the distribution can be obtained by 

counting the number of samples at each interval. The concepts of skew and kurtosis are 

introduced first in order to describe the distribution characteristics of the MC 

simulations. Skew measures the degree of asymmetry of a distribution. It is defined by  

 
( )3

1 3

ˆE x μ
γ

σ

⎡ ⎤−⎣ ⎦= , (3.32) 

where E  indicates the expectation, x̂  is a random variable, μ  and σ  are the mean and 

standard deviation of x̂  respectively. Negative values for the skew indicate data that are 

skewed left and positive values indicate data that are skewed right. Any symmetric data 

should have a skew equal to zero. 1+  or 1−  will be very extreme examples of skew 

defined in equation (3.32) [66]. Kurtosis is defined by  

 
( )4

2 4

ˆE x μ
β

σ

⎡ ⎤−⎣ ⎦= . (3.33) 

Kurtosis measures the data’s peakedness relative to a normal distribution which has a 

kurtosis of 3. High kurtosis indicates a "peaked" distribution and low kurtosis indicates 

a "flat" distribution. Equation (3.33) for kurtosis will yield values around 4  for marked 

leptokurtic distributions with sharp middles and flattened tails. A value of around 2 will 

indicate platykurtic distributions with rounded middles and thin tails [66]. 

 

Figure 3.7 shows the probability densities of the distribution of ρ̂  at three typical 

frequencies with 1 2 5%σ σ= = . The probability densities are normalised so that the 

distributions have zero mean and unit variance. Figure 3.8 shows the skew and kurtosis 

of the distribution of the MC simulations on ρ̂ . From the whole trend, it can be seen 

that the distribution of the MC simulations of ρ̂  with lower measurement noise appears 

more Gaussian. All the skews are positive, which means that all the data are skewed 

right. But with the lower noise level of “measurement”, the skew of the distribution 

approaches zero. This is because the power reflection coefficient is defined as the 

squared modulus of the amplitude reflection coefficient. When bk Δ  is close to zero or 

π , the distribution of MC simulations are skewed significantly to the right. This is due 

to the data having lower bounds and the deviations of the data at these areas become 

very large.  
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Figure 3.7 Normalised probability density of ρ̂  with zero mean and unit variance for 

various values of bk Δ : 1 2 5%σ σ= = : , 0.51bk Δ = ; , 1.52bk Δ = ; , 
2.47bk Δ = ; , (0,0.9)Lap ; , Gaussian. 

 

The kurtosis shown in Figure 3.8 has a marked leptokurtic distribution, which means the  
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(b) 1 2 1%σ σ= =  

Figure 3.8 Skew and Kurtosis of the MC simulations on ρ̂ . 
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distributions have a narrow middle and a great concentration in the tails. This can be 

seen from Figure 3.8: the sampled data have a narrow middle compared to Gaussian 

distribution. In this respect, the distribution of the sampled data except for the 

frequencies with remarkable skews shows a characteristic of a Laplace distribution. The 

probability density function of Laplace distribution is defined by  

 1( )
2

x

P x e
μ

σ

σ

−
−

=  (3.34) 

The parameters for the Laplace distribution in Figure 3.7 are 0μ =  and 0.9σ = . The 

kurtosis for the Laplace distribution is 6.  

 

 

3.7 Wavenumber Measurements   

This section reviews a method for measuring the flexural wavenumber directly. In order 

to obtain the wave amplitudes and hence the reflection and transmission coefficients, 

the wavenumber of the waveguide needs to be known. The flexural wavenumber from 

Euler-Bernoulli beam theory can be expressed as  

 24 /bk A EIω ρ= . (3.35) 

Due to inaccuracies in the density, the Young’s modulus and the dimensions of the 

waveguide, equation (3.35) is not a reliable estimate for the wavenumber of a practical 

waveguide. Alternatively, a method is presented to measure the wavenumber directly.   

 

Consider the one-dimensional waveguide shown in Figure 3.9. Three points are linearly 

distributed along the neutral axis of the waveguide. All of them are considered to be far 

enough from the excitation point to neglect the nearfields. Location 2 is chosen as the 

origin of the coordinate system. By referring to equation (3.1) and neglecting the 

nearfields, the outputs at the three points can be obtained by 

 
1

2

3

1 1

b b

b b

ik ik

P

ik ik P

W e e
a

W
a

W e e

Δ − Δ
+

−
− Δ Δ

⎡ ⎤⎧ ⎫
⎧ ⎫⎢ ⎥⎪ ⎪ =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎩ ⎭⎪ ⎪ ⎢ ⎥⎩ ⎭ ⎣ ⎦

. (3.36) 

Thus  

 1 3

2

2cos b
W W k

W
+

= Δ . (3.37) 



Chapter 3 Measurement of Reflection and Transmission Coefficients 

 -50-

The wavenumber can be derived from the above equation as 

 1 3

2

1 arcos
2b

W Wk
W
+

=
Δ

 (3.38) 

The optimal transducer spacing, Δ  can be determined after some pre-measurements 

based on several reasonable values of Δ . Note that the optimal value of Δ  depends on 

which frequency is of most interest.  

 

Δ Δ

 
Figure 3.9 Transducer array for wavenumber measurements. 

 

Any response quantity varying time harmonically under the passage of a wave, such as 

the displacement, velocity, acceleration, shear force and so on, can be used as the output 

of the transducers. Whichever is chosen is only a matter of convenience. In the 

experiments, three accelerometers were placed equidistantly on the centre line of the 

beams. The acceleration ratios 1 2/W W  and 3 2/W W  were measured in order to obtain the 

wavenumber in equation (3.38).  

 

Referring to equation (3.35), the flexural wavenumber can also be written as  

 bk fβ=  (3.39) 

where 2f ω π=  and 24 4 /A EIβ π ρ= . Substituting equation (3.39) into (3.38) gives  

 1 3

2

arccos
2

W Wf
W

β +
Δ = . (3.40) 

Then β  can be obtained for each frequency. β  can also be fitted over many 

frequencies by using the Moore-Penrose inverse, thus  

 ( ) 1T T1β
−

=
Δ

φ φ φ ω . (3.41) 

where φ  and ω  are vectors whose elements are given by if  and 

( )1 3 2arccos / 2
i

W W W+⎡ ⎤⎣ ⎦  respectively. Subscript ‘ i ’ indicates the ith frequency. Once 

β  is known, the wavenumber can be obtained easily from equation (3.39).  
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Due to the damping of the waveguide and measurement noise, ( )1 3 22W W W+  is 

complex instead of real. Since the damping of metal materials is typically very small, 

the imaginary part is usually very small so that it can be neglected. In the following the 

damping is set to zero.  

 

 

3.8 Experiments on Mass Discontinuities   

This section discusses the measurements of reflection and transmission coefficients of a 

beam with attached mass and moment of inertia discontinuities. The intention is to 

investigate the characteristics of measured reflection and transmission coefficients of 

mass and moment of inertia discontinuities on a beam.  

 

3.8.1 Experimental Setup 

The structure under test was a steel beam suspended by wire at three locations. Figure 

3.10 shows the experimental rig. A sandbox was placed on each end of the beam to 

approximate anechoic conditions, although the system model developed here can be 

applied to waveguides of both infinite and finite length. The beam was excited in the 

transducer direction with a random signal by an electrodynamic shaker through a force 

gauge. The mass discontinuity was formed by gluing two steel blocks to either side of 

the beam, which is shown in Figure 3.11.  

 

Only the flexural wave in the beam is of interest here. A stinger with relatively large 

axial but small bending stiffness was incorporated between the shaker and force gauge. 

The excitation point was chosen on the centre line of the beam. All of these precautions 

were taken to avoid torsional excitation as much as possible. Note that the resonance 

frequency of the force gauge and stinger system should be out of the frequency range of 

interest, otherwise the measured data will be contaminated. 

 

 

 

 



Chapter 3 Measurement of Reflection and Transmission Coefficients 

 -52-

 

 

 
Figure 3.10 Experimental setup for measurements on a beam with a mass and moment 

of inertia discontinuity: (a) actual experimental rig; (b) block diagram.  
 

 

 
Figure 3.11 Steel blocks attached to the beam as discontinuities.  
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3.8.2 Wavenumber Measurements 

Before measuring the reflection and transmission coefficients, the flexural wavenumber 

of the beam was measured using the method introduced in Section 3.7.  

 

The algebraic average of the acceleration ratios between locations 1 to 2 and 3 to 2 

(Figure 3.9) is shown in Figure 3.12. The imaginary part is nearly zero. The real part 

can be considered as the value of ( )1 3 22W W W+  needed in equation (3.38). Letting the 

real part equal cos bk Δ  gives the estimation of the wavenumber of the beam. By using 

equation (3.41), 0.851β =  is obtained in the frequency range 500-3000Hz.  
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Figure 3.12 Algebraic average of the acceleration ratios for wavenumber measurements 

of a beam: (a) real part; (b) imaginary part.  
 

Figure 3.13 shows the measured real part of ( )1 3 22W W W+  compared to cos bk Δ  based 

on 0.851β = . A very good agreement is obtained. In what follows 0.851β =  is used 

for the estimation of the reflection and transmission coefficients of a mass discontinuity 

in the beam. 
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Figure 3.13 Wavenumber of the beam: , measured real part of ( )1 3 22W W W+ ; 
, cos bk Δ  with fitted wavenumber at frequency range 500-3000Hz ( 0.851β = ).  

 

3.8.3 Reflection and Transmission Coefficients  

This section discusses the measurements of the reflection and transmission coefficients 

of the steel blocks attached to the beam. The dimensions of the beam and the properties 

of the blocks are listed in Table 3.3. The beam is of same material as the blocks, for 

which the density is 37.82 10ρ = × kg/ 3m . The method introduced in Section 3.2 is 

employed here to decompose the wave amplitudes on both sides of the discontinuity  

 

Table 3.3 Dimension of the beam and steel blocks (SI units).  

 Beam block 1 
long-thin 

block 2 
short-thin 

block 3 
short-thick 

Width, b  0.050 0.050 0.050 0.050 

Thickness, h  0.006 0.010 0.010 0.020 

Length, l  6.060 0.040×2 0.030×2 0.030×2 

Mass, m  / 0.313 0.235 0.469 

Moment of 
inertia, J  

/ 6207 10−×  693.6 10−×  6187 10−×  

μ  / 76.955 57.735 115.421 

ϑ  / 41.699 10×  37.679 10×  41.535 10×  
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from pairs of transducer measurements. The left-hand side local origin of the transducer 

pair was located at 1.075x = − m and the right-hand side was at 1.000x = m. The 

transducer spacing is 0.050Δ = m for which the optimal frequency is about 1400Hz 

where the transducer spacing is equal to a quarter wavelength and the worst frequency is 

about 5500Hz where the transducer spacing is equal to half wavelength. Above 60Hz 

the nearfields can be neglected (influence on the wave amplitude less than 0.2%).  The 

non-dimensional parameters 0.066ξ =  and 1.903bk Δ =  at 2000Hz, for example.  

 

The FRFs of the accelerations of the four locations to the exciting force at each 

frequency were measured and their magnitudes are shown in Figure 3.14. Figure 3.15 

illustrates the positive- and negative-going wave amplitudes at the local origins of the 

transducer pairs, which are decomposed from the measured FRFs. Figure 3.16 gives the 

power reflection and transmission coefficients, ρ̂  and τ̂  of block 1 estimated from the 

decomposed wave amplitudes based on assumptions described in Section 3.3, which are 

that there is one incident wave from each side of the discontinuity and the discontinuity 

itself is symmetric. This actually assumes the presence of the end reflections of the 

beam. The decomposed wave amplitudes, and reflection and transmission coefficients 

can interpret the behaviour of the measured FRFs. For example, below 1000Hz, since 

the reflection from the discontinuity is small, the measured FRFs are of similar 

magnitudes. Above that frequency, the reflected wave (dashed line in Figure 3.15) 

becomes larger, and the transmitted wave (dotted line in Figure 3.15) becomes smaller. 

Therefore the FRFs on the left-hand-side get larger and correspondingly the FRFs on 

the right-hand-side become smaller. From about 2800Hz the transmitted wave begins to 

increase slowly, which causes the increase of the measured FRFs on the right-hand-side. 

The fluctuations of the measured left-hand side FRFs originate from the standing waves 

on the left-hand side beam. They are caused by the distance from the transducers to the 

mass.  

 

From Figure 3.15 it can be seen that the influence of the reflected wave from the right-

hand side end of the beam is relatively large below about 2200Hz, but above that it 

becomes nearly zero. The decomposition method fails at very low frequencies and 

5400Hz where the transducer spacing is about half wavelength. This is consistent with 

the results of Section 3.6.  
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Figure 3.14 Magnitudes of the measured accelerances for block 1: , location 1 in 

Figure 3.2; , location 2; , location 3; , location 4.  
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Figure 3.15 Decomposed wave amplitudes of at the centres of the transducer pairs for 

block 1: , positive-going, left-hand-side; , negative-going left-hand-side; , 
positive-going, right-hand-side; , negative-going, right-hand-side. 

 

In Figure 3.16 the estimated power reflection and transmission coefficients are poor 

around zero frequency and 5400 Hz where bk πΔ = . This is because of the ill-condition 

of the wave amplitude decomposition method. The estimated scattering coefficients are 

relatively noisy at frequencies where they are large. In this sense, the noise model 

chosen in section 3.4.1 is reasonable.  
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Figure 3.16 Decomposed power reflection and transmission coefficients of block 1.  

 

Figure 3.17 gives the sum of the decomposed power reflection and transmission 

coefficients. Below 3000Hz it can be seen that they approximately sum up to unity. This 

means the damping effect of structure can be neglected below 3000Hz. The following 

analysis will focus on frequencies below 3000Hz.  
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Figure 3.17 Sum of measured power reflection and transmission coefficients.  

 

In section 3.4 it was seen that the decomposed power reflection and transmission 

coefficients are biased based on a Gaussian-like measurement noise model, therefore, 
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the discontinuity parameters estimated from these coefficients are also biased. However, 

if the measurement noise is very small, the estimates can be considered to be very close 

to the real values.  

 

Figures 3.18 and 3.19 show the experimental estimates of the power reflection and 

transmission coefficients respectively compared with the theoretical predictions from 

the parametric model given in section 2.8. The curves are included for different sets of 

assumptions. The results from the non-reflecting end assumption are oscillatory. The 

oscillations are significant up to 2200Hz. This is consistent with the results shown in 

Figure 3.15, where the wave reflected from the beam end is relatively large below 

2200Hz. The non-reflecting end assumption is only valid above this frequency since the 

reflections from the beam end are nearly zero from there on (dash-dot line in Figure 

3.15). Large errors occur at low frequencies, as a result of the poor conditioning of the 

WAD method. The assumption of reflecting ends (one incident wave from each side) 

produces smoother results. For both the reflection and transmission coefficients, the 

overall trends have been produced for the frequency range considered here and good 

agreement with the theoretical predictions is achieved. This indicates that the blocks 

match the lumped mass theory well.  
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Figure 3.18 Power reflection coefficients of block 1: , experimental estimate 

assuming reflecting ends; , experimental estimate assuming non-reflecting ends; 
, predicted based on directly measured mass and moment of inertia (non-reflecting 

ends): (a) reflection coefficient; (b) transmission coefficient.  
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Figure 3.19 Power transmission coefficients of block 1: , experimental estimate 
assuming reflecting ends; , experimental estimate assuming non-reflecting ends; 

, predicted based on directly measured mass and moment of inertia (non-reflecting 
ends): (a) reflection coefficient; (b) transmission coefficient.  

 

Figures 3.20(a), (b) show the sums of the measured power reflection and transmission 

coefficients for blocks 2 and 3 respectively. In the range 200-3000Hz the sums are close 

to unity, which means the damping is very small.  

 

Figure 3.21 shows the experimentally estimated power reflection and transmission 

coefficients of blocks 2 and 3 along with the theoretical predictions. The overall trends 

of the predictions can also be obtained in the frequency range shown in the figures. 

With increasing frequency, the differences become larger. The model presented here is 

less accurate.  
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Figure 3.20 Sum of the estimated power reflection and transmission coefficients for (a) 

block 2 and (b) block 3. 
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Figure 3.21 Power reflection and transmission coefficients for blocks 2 and 3: , 
experimental estimate assuming reflecting ends; , predicted based on directly 

measured mass and inertia (non-reflecting ends): (a) ρ  of block 2; (b) τ  of block 2; (c) 
ρ  of block 3; (d) τ  of block 3. 

 

 

3.9 Summary 

A wave amplitude decomposition approach has been reviewed and employed to 

calculate the reflection and transmission coefficients of discontinuities from the 

measurements of arrays of transducers. Considering noise contamination as a 

perturbation on the ideal measurements, expressions for the mean and standard 

deviation of the power reflection and transmission coefficients were derived and a first 

order approximation was developed. The results of Monte Carlo simulations on a 

discontinuity which involves a mass and a moment of inertia agree well with the first 

order approximations. To minimise the standard deviation of the power reflection and 

transmission coefficients, the optimal transducer spacing is a quarter wavelength and 

poor situations occur at small spacings and those approaching a multiple of half a 

wavelength. The statistical distribution of the Monte Carlo simulations for the power 

reflection coefficient was also investigated and found to be fairly similar to a Laplace 

distribution under some particular conditions.  
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Experiments were performed on a beam with attached steel blocks. The flexural 

reflection and transmission coefficients were estimated by the wave amplitude 

decomposition approach. The results were consistent with the theoretical analysis given 

in the previous sections. The anechoic assumption caused large errors if the reflection 

from the beam end is large. For the long-thin block, the measured power reflection and 

transmission coefficients agree well with the predictions based on the theoretical model 

given in Chapter 2. The agreement for the short-thin and short-thick blocks is less 

consistent, especially with increasing frequency, which means the discontinuity model 

is less valid for blocks of larger dimensions.   

 



Chapter 4 Wave Reflection and Transmission at Pipe Supports 

 -62-

 

Chapter 4 Wave Reflection and Transmission at 
Pipe Supports 

 

4.1 Introduction  

Built-up systems comprise many discontinuities in the form of joints, hangers, supports, 

flanges and so on. Dynamically these discontinuities contribute stiffness, inertia and 

damping and can dramatically alter the response of the system. In Chapters 2 and 3, 

wave reflection and transmission through a mass discontinuity on a beam has been 

investigated. This chapter discusses wave reflection and transmission at a support of an 

in-vacuo piping system. This support features not only mass and moment of inertia, but 

also translational and rotational stiffnesses, and damping.  

 

Mace [61] modelled a point support of a beam by translational and rotational dynamic 

stiffnesses, and derived the reflection and transmission coefficients of such a model in 

terms of the support dynamic stiffnesses. Here the pipe support is modelled in the same 

way and then the dynamic stiffnesses are decomposed into mass, inertia and stiffness 

terms, which help the parameter identification of the support in Chapter 7. Damping is 

incorporated into the dynamic stiffnesses by loss factors.  

 

In the next section, wave modes in in-vacuo piping systems are discussed briefly. In this 

thesis, attention is only focused on the axial and transverse waves. Section 4.3 gives the 

parametric model for a pipe support. The reflection and transmission coefficients are 

derived using the general method presented in Chapter 2. Then numerical simulations of 

the reflection and transmission coefficients are performed in terms of the non-

dimensional joint dynamic stiffnesses. Section 4.4 presents the experiments on a pipe 

support. The propagating flexural reflection and transmission coefficients of the support 

are measured by using the wave amplitude decomposition method. In order to be able to 

compare the measured and simulated reflection and transmission coefficients, methods 
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are also developed to measure the translational and rotational dynamic stiffnesses of the 

support directly. The stiffnesses, mass and moment of inertia of the support are 

estimated from the directly measured translational and rotational dynamic stiffnesses.  

 

 

4.2 Wave Modes in In-vacuo Piping Systems 

Piping systems can be considered as an example of thin-walled cylindrical shells. A 

thin-walled cylindrical shell can be considered as a three dimensional structure. 

Structural waves in a thin-walled cylinder propagate in a helical pattern and can be 

described by the wavenumber csk , shown in Figure 4.1 (Fahy [3]). The wavenumber of 

the helical wave, csk  is given by  

 2 2 2
cs l sk k k= +  (4.1) 

where lk  is the longitudinal wavenumber and sk  is the circumferential wavenumber. 

The longitudinal wavenumber is hence  

 2 2
l cs sk k k= −  (4.2) 

Therefore the longitudinal wave can propagate only when 2 2
cs sk k≥ . Otherwise, the wave 

is evanescent.  

 

φ
a

θ lk
csk

sk
z

 
Figure 4.1 Cylindrical shell coordinates and wavenumbers.  

 

The radial wave variables must be continuous in the circumferential direction due to the 

closure of the pipe in this direction. Thus the radial displacement takes the form of sine 

or cosine functions of sk aθ , where a  is the mean radius of the pipe, θ  is the angle in 

the polar coordinate system of the cross-section and /sk n a=  ( 0,1,2,n = " ), n  is the 

wave mode number. The 0n =  mode behaves as a line monopole with only stretching 
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and contracting of the wall. The 1n =  mode, also called the bending wave mode, 

propagates as a line dipole. There is no cross-sectional deformation with this mode. The 

2n =  mode, ovalling mode, moves as a line quadrupole, and so on (Figure 4.2).  
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Figure 4.2 Cross-sectional mode shapes of a cylindrical shell.  

 

Longitudinal, torsional and flexural (bending) waves can always propagate at all 

frequencies. For longitudinal and torsional waves 0n =  and for flexural waves 1n = . 

However, the 0n =  breathing wave mode can only exist above the ring frequency [3] 

 l
r

c
a

ω =  (4.3) 

where lc  is the longitudinal wavespeed in a plate of the shell material. The longitudinal 

wavelength in the shell wall is equal to the shell circumference at the ring frequency. 

2n =  and higher modes can only exist above their cut-on frequencies. The cut-on 

frequencies are given approximately by  

 2 3
212

cut on

r

h n
a

ω
ω

− ⎛ ⎞≈ −⎜ ⎟
⎝ ⎠

, 2n ≥ , (4.4) 

where h  is the wall thickness. In this thesis, only the longitudinal and flexural wave 

modes are of interest. An estimate for the cut-on frequency for the 2n =  wave mode 

can be obtained from the above equation and this is an upper bound frequency that 

should be considered in the numerical simulations and experimental measurements, 

above which the simple models break down.  

 

 

4.3 Dependence of Reflection and Transmission Coefficients on 
Parametric model of a Support 

The infrastructure to which the waveguide is connected acts as a discontinuity when 
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structural waves propagate along the waveguide. Supports or hangers of pipes can be 

considered as such discontinuities. This section discusses the modelling of a support of 

a one-dimensional waveguide carrying flexural waves and the reflection and 

transmission coefficients in terms of the parameters of such a model.    

 

4.3.1 Model of a Support 

This section gives the model of a support of a one-dimensional waveguide. Figure 4.3 

shows a waveguide of infinite length lying along the x-axis supported at 0x = . For 

simplicity the waveguides on both sides of the support are considered to have the same 

physical properties, such as material and dimension. The support exerts both 

translational and rotational constraints, which are modelled by translational dynamic 

stiffness TD  and rotational dynamic stiffness RD . Here the flexural reflection and 

transmission coefficients of this support will be derived by using the general approach 

presented in Chapter 2.       

 

RD

TD

+a

a b

−a

+b

x

0x =  
Figure 4.3 The model of a support of an infinite one-dimensional waveguide.  

 

4.3.2 Parametric Reflection and Transmission Coefficients 

The reflection and transmission coefficients of the support described above are derived 

in this section. Now consider the case that a set of flexural incident waves +a  

propagates along waveguide a  and impinges upon the support, which gives rise to 

reflected −a  and transmitted +b  waves. The excitation source that generates the incident 

wave is considered to be far enough away from the support, therefore the nearfield 

component in the incident wave is neglected. Thus the wave vectors, displacement and 

internal force vectors and matrices, and the reflection and transmission coefficients 

matrices are the same as the case discussed in Section 2.8, which are given by equations 
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(2.44) to (2.48). Note that the support is also considered to be symmetric.  

 

By applying continuity and equilibrium conditions to the support, the transfer matrices 

in equation (2.35) can be obtained as 

 11

1 0
0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Ω , 12

0 0
0 0
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Ω , 21

0
0

T

R

D
D

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

Ω  and 22

1 0
0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Ω . (4.5) 

Substituting equations (2.44), (2.46) to (2.48) and (4.1) into (2.43), after some lengthy 

manipulation (referring to Appendix 3), yields  

 3 3

1 1 1 1
11 1

1 1

11 1 1 1

PP

PPD D

PN

PND D

ri i
t i

i i
r i
ti

χ χ
ξ ξ
ψ ψ
ξ ξ

− −⎡ ⎤
⎢ ⎥ −⎧ ⎫ ⎧ ⎫⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪=+ − − ⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭⎩ ⎭− − + − −⎢ ⎥

⎣ ⎦

 (4.6) 

where  

 , ,
/ /
T R

D D
l

D D
EA EI c

ωκχ ψ ξ
κ κ

= = = . (4.7) 

/I Aκ =  is the radius of gyration of the pipe. The parameters in equation (4.7) are all 

non-dimensional. Parameter Dχ  is the ratio of the translational dynamic stiffness of the 

support to the axial stiffness of a length κ  of the pipe. Parameter Dψ  is the ratio of the 

rotational dynamic stiffness of the support to the rotational stiffness of a cantilever of 

length κ . By inspection of equation (4.6), it is apparent that 3/Dχ ξ  and /Dψ ξ  

determine the reflection and transmission coefficients. 3/Diχ ξ−  is the ratio of the 

translational impedance of the support to the translational characteristic impedance of 

the waveguide, and /Diψ ξ−  is the ratio of rotational impedance of the support to the 

rotational characteristic impedance of the waveguide (see Appendix 4).  

 

The reflection and transmission coefficients can be obtained numerically by matrix 

inversion in equation (4.6). Alternatively, they can also be expressed in closed form as 
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 (4.8) 

If the support is modelled as a structure characterised by translational stiffness TK , 

rotational stiffnesses RK , mass m  and moment of inertia J , shown in Figure 4.4, and 

assuming that there is no eccentricity, then the dynamic stiffnesses can be expressed as  

 2
T TD K mω= − , 2

R RD K Jω= − . (4.9a,b) 

Then the parameters in equation (4.7) can be written as  

 4
Dχ χ μξ= − , 4

Dψ ψ ϑξ= −  (4.10) 

where 

 3, , ,
/ /
T RK K m J

EA EI A A
χ ψ μ ϑ

κ κ ρ κ ρ κ
= = = = . (4.11) 

The physical meanings of these parameters can be interpreted similarly to those in 

equation (4.7). Damping in the support can be included by introducing loss factors to 

the dynamic stiffnesses. Letting 0χ =  and 0ψ = , and substituting equation (4.10) into 

(4.8), the same expressions can be obtained as those of the mass-like discontinuity given 

in equation (2.52).  
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RK
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Figure 4.4 Model of a support featured with mass, moment of inertia and stiffnesses.  

 

4.3.3 Numerical Examples  

Some numerical simulations of the propagating wave reflection and transmission 
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coefficients of the support are given in this section. The magnitudes (squared) and 

phases are shown as functions of the magnitudes of impedance ratios in Figures 4.5 (a) 

to (d). Damping is not considered in the parameters here, so the rest parts, 3/Dχ ξ  and 

/Dψ ξ  are real, and the power reflection and transmission coefficients sum to unity. 

Positive 3/Dχ ξ  and /Dψ ξ  indicate stiffness dominated regions and negative ones 

signify mass and moment of inertia dominated regions. When the magnitudes of both 
3/Dχ ξ  and /Dψ ξ  become large, whether positively or negatively, 1ρ →  and 0τ → , 

i.e. the energy in the incident waves is totally reflected. At the regions where 
3/ 2Dχ ξ =  and /Dψ ξ  is large, or / 2Dψ ξ = −  and 3/Dχ ξ  is large,  the energy is totally 

transmitted through the support. Note that 3/ 2Dχ ξ =  means that the magnitude of 

translational impedance of the support is twice that of the translational characteristic 

impedance of bending waves in the waveguide, and / 2Dψ ξ = −  signifies that the 

magnitude of rotational impedance of the support is minus twice that of the rotational 

characteristic impedance of bending waves in the waveguide. The phases of PPr  and PPt  

have a sudden change of π  when the magnitudes approach zero.   
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Figure 4.5 Magnitudes (squared) and phases of the propagating wave reflection and 

transmission coefficients for the support.  
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In order to study the influence of frequency, in the following examples the power 

reflection and transmission coefficients are plotted against the non-dimensional 

frequency, 2 / lcξ ωκ= . A frequency range of / 0.1lcωκ <  is selected to ensure that, 

firstly, Euler-Bernoulli beam theory is valid and, secondly, the 2n =  wave mode has 

not yet cut-on for a typical thin-walled cylindrical pipe. Detailed analysis of these two 

conditions is given in Appendix 6.   

 

Figure 4.6 shows the power reflection and transmission coefficients as functions of the 

non-dimensional frequency based on specific values for the parameters of the support, 

which are 210χ −= , 110ψ −= , 10μ =  and 10ϑ = . Recalling the physical meanings of 

the parameters, these values are not unrealisable. For example, for 210χ −= , the 

translational stiffness of the support is equivalent to that of the axial stiffness of a pipe 

of length 100κ , which is roughly 70 times the pipe radius. Values of the other 

parameters can be interpreted similarly. From the expression of PPr  in equation (4.8) it 

can be seen that when frequency 0ξ → , 1PPr → , i.e. 1ρ → . This means most of the 

energy will be reflected at low frequencies. For the particular values of the parameters 

given above, 1ρ =  also occurs when / 0.014lcωκ =  and 0ρ =  occurs when 

/ 0.028lcωκ = .  
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Figure 4.6 Power reflection and transmission coefficients of a support: 210χ −= , 

110ψ −= , 10μ =  and 10ϑ = : , ρ ; , τ . 
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The above simulations do not consider damping in the support, so 1ρ τ+ =  . As 

mentioned previously the damping of the joint can be included as a complex stiffness. 

Therefore the translational damping loss factor, Tη  and rotational loss factor, Rη  are 

incorporated into the translational and rotational stiffnesses, χ  and ψ  which can be 

written as ( )1 Tiχ η+  and ( )1 Riψ η+  respectively. Figure 4.7 shows the influence of 

damping of the translational and rotational springs on the power reflection and 

transmission coefficients. The loss factors of riveted or bolted thin sheet-metal 

structures are typically about 0.02 . For welded structures of thick plates 0.001η ≈  [1].  
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Figure 4.7 The influence of damping on the power reflection coefficient ρ : 210χ −= , 
110ψ −= , 10μ =  and 10ϑ = : , 0η = ; ,  0.01η = ; , 0.1η = . (a), (d) 

damping in translational spring; (b), (e) damping in rotational spring; (c), (f) damping in 
both translational and rotational springs. 
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It can be seen that for this order of magnitude, the effect of damping is negligible. Only 

when the loss factor is very large, does the damping effect become obvious. The effects 

of damping in the translational and rotational directions are different, which is related to 

the sensitivity of the power reflection coefficient to the translational and rotational 

dynamic stiffnesses. For the case considered here, damping in the translational direction 

only dominates the regions where 1ρ =  and 1τ = . And the effect of the damping in the 

rotational direction becomes apparent when ρ  or τ  is of large magnitude. When 

considering the damping in both directions, the effect is the combination of the two 

separate cases. It also should be noted that due to the existence of damping, 1ρ τ+ < . 

 

 

4.4 Experiments on Pipe Supports  

This section presents measurements of the reflection and transmission coefficients of a 

pipe support by the method discussed in Chapter 3. The translational and rotational 

stiffnesses of the support are also measured directly. The intention is to verify the 

applicability of the reflection and transmission coefficients in determining the 

parameters of the support.  

 

4.4.1 Experimental Setup 

Figure 4.8 shows the experimental rig featuring a 6m straight thin-walled copper pipe 

held at its mid-point by an adjustable support. A steel block is mounted by three long 

bolts to a massive concrete block which can be considered as a grounded support. A 

clamp which holds the pipe is connected by screws to a supporting bar at each end. The 

pipe support is idealised. The length of the supporting bars is adjustable in order to 

accommodate more positions, i.e. more supports with each pair of supporting bars. The 

rig is designed to be symmetrical in order to avoid torsional motion of the pipe (here 

only flexural waves are considered). A sandbox is placed at each end of the pipe to 

approximate anechoic conditions. On each side of the support, two accelerometers are 

attached to the pipe. The pipe is excited by a shaker in the direction perpendicular to the 

pipe in the horizontal plane. The method introduced in Chapter 3 is employed to 

measure the reflection and transmission coefficients of the support. Attention was paid 
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to the position of the accelerometers to ensure that the motions measured were in the 

same direction as the excitation.  

 

concrete 
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pipe
shaker
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steel base

 
Figure 4.8 Experimental rig for measuring the reflection and transmission coefficients 

of a pipe support.   
 

Two kinds of materials, aluminium and steel, were used for the supporting bars and the 

bars were designed to be fixed at one of two lengths. Therefore, in total 4 support 

configurations were investigated. The properties of the copper pipe are listed in Table 

4.1.  

 

Table 4.1 Properties of the pipe (SI units).  
Density Outer radius Wall thickness Length 

8900 0.014 0.9 310−×  6.060 

 

4.4.2 Wavenumber Measurement and n=2 Cut-on Frequency 

In order to obtain the wave amplitudes and further the reflection and transmission 

coefficients, the wavenumber of the waveguide needs to be measured. The flexural 

wavenumber of the pipe was measured first by the method discussed in Chapter 3. 

Figure 4.9 shows the measured real part of ( )1 3 22W W W+  (see equation (3.35)). The 
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transducer spacing was 0.10Δ = m which is a quarter wavelength at 1250Hz. At 

frequency 2200Hz, the 2n =  wave mode cuts on. The wavenumber constant of 

proportionality /bk fβ =  was estimated in a least-squares sense, and 0.428β =  and 

0.427β =  were obtained in the ranges 200-2000Hz and 200-1400Hz respectively. They 

are quite close to each other. The fitted estimate of  ( )cos bk Δ  with 0.427β =  is also 

plotted in the figure. A good agreement is obtained in the frequency range considered. 

In what follows, the analysis is focus on the frequency range 200-1400Hz.  
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Figure 4.9 Wavenumber of the pipe: , measured real part of ( )1 3 22W W W+ ; , 
cos bk Δ  using fitted wavenumber over frequency range 200-1400Hz ( 0.427β = ). 

 

4.4.3 Direct Measurements of the Translational Dynamic Stiffness of 
the Supports 

The translational and rotational dynamic stiffnesses of the pipe support were measured 

directly. The intention is to find the mass and stiffness parameters of the support, verify 

the applicability of the support model in predicting the reflection and transmission 

coefficients, and later to compare these values with the parameter values estimated by 

inverse means in Chapter 7. This section discusses the measurements of the translational 

dynamic stiffness.  
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The translational dynamic stiffness is defined by 

 T
FD
X

=  (4.12) 

where F  is the exciting force and X  is the displacement output. Referring to equation 

(4.9a) and considering the damping effect of the structure give  

 ( ) 21T T TD K i mη ω′= + − . (4.13) 

The stiffness, TK  and mass, m′  of the support can be estimated from the measured 

dynamic stiffnesses at two frequencies, or in a frequency range containing more than 

two frequencies by fitting the real part of the measured dynamic stiffness using the 

least-squares method. The damping loss factor can be found from the imaginary part of 

the measured dynamic stiffness.   

 

Figure 4.10 shows the experimental rig used to measure the translational dynamic 

stiffness of the support. A short length of the pipe was placed in the clamp in order to 

replicate the local stiffness present when measuring the reflection and transmission 

coefficients in practice. The clamp was excited directly by a shaker through a force 

transducer. The force transducer was connected to the shaker by a stinger. An 

accelerometer was attached to the other side of the clamp.  

 

accelerometer

force 
transducer

pipe segment

 
Figure 4.10 Experimental rig for direct measurements of the translational dynamic 

stiffness of the pipe supports.  
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Figure 4.11 shows the real and imaginary parts of the measured dynamic stiffness for 

the aluminium pipe support fixed at its larger length. Also shown in the figure is the 

fitted result of the mass-spring-damping model by the least-squares method in the range 

200-1400Hz. A good agreement is obtained in this frequency range.  
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Figure 4.11 Translational dynamic stiffness of the long aluminium pipe support: , 
real part of measured TD ; , fitted real part of TD  over the frequency range 200-

1400Hz; , imaginary part of measured TD .   
 

The measured translational dynamic stiffnesses for the other three support conditions 

are given in Appendix 7. The estimated parameters for the four supports are presented 

in Table 4.2. Different frequency ranges are chosen based on the behaviour of the 

measured dynamic stiffnesses (translational and rotational).  

 
Table 4.2 Estimated translational parameters of the supports (SI).  

Support Frequency range TK  m′  Tη  

aluminium 
long 200-1400 62.595 10×  0.101  0.003 

short 400-1400 69.019 10×  0.100 0.003 

steel 
long 200-1400 65.127 10×  0.130 0.002 

short 400-1400 71.464 10×  0.115 0.009 

     Note: 1. the pipe segment ( 0.015sm = ) is included in the above mass.  
               2. the mass-loading effect of the force transducer: 38% of the total mass of the 

force transducer ( 0.0235am = ), is considered to be added to the support (see 
Appendix 8).   
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4.4.4 Direct Measurement of the Rotational Dynamic Stiffness of the 
Supports 

The direct measurements of the rotational dynamic stiffnesses of the pipe supports are 

described in this section. In general, the rotational dynamic stiffness of a structure is 

much more difficult to measure. Here an approach is developed. Figure 4.12 shows the 

experimental rig to measure the rotational dynamic stiffness (in the direction of the 

torsional motion of the supporting bars) of the support. Owing to the close proximity of 

the clamp to the seismic mass, the clamp could only be excited on the side far away 

from the concrete block. Accelerometers were placed on either side of the clamp to 

measure the side to side motions. The structure becomes asymmetric because of the 

mass-loading effect of the force transducer.  

 

Figure 4.13 shows the measured accelerances of the two accelerometers when the force 

was applied as shown in Figure 4.12. The first resonance is principally in the 

translational direction because the phases of the two accelerances are the same. The 

second resonance around 1180Hz is predominantly rotational since the phase difference 

is π . At frequencies above 1400Hz, more resonances occur and the situation becomes 

more complicated. Here, attention is focused only on the frequency range 200-1400Hz.   

 

accelerometer
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Figure 4.12 Experimental rig for direct measurements of the rotational dynamic 

stiffness of the pipe supports.  
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Figure 4.13 Measured accelerances of the long aluminium support: (a) magnitude; (b) 

phase: , 1 /X F�� ; , 2 /X F�� . 
 

The rotational dynamic stiffness is defined by  

 
/R

C C

MD
F

γ
θ θ

= =  (4.14) 

where the moment M Fγ= , F  is the force, Cθ  is the rotational displacement of the 

support about its geometric central axis and γ  is the distance of the excitation point to 

the central axis.  

The rotational displacement can be estimated from the accelerances at the two points in 

Figure 4.12 by (assuming the two points are symmetrically located with respect to the 

central axis)  

 1 2
2

/ //
2C

X F X FFθ
γω
−

= −
�� ��

. (4.15) 

Substituting the above equation into equation (4.14), the rotational dynamic stiffness 

can be obtained from the FRF measurements by  

 
2 2

1 2

2
/ /RD

X F X F
γ ω

= −
−�� �� . (4.16) 

A parametric model is also needed to fit the estimated rotational dynamic stiffness. This 

is discussed in the following section.   
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4.4.5 Parameter Fitting of the Directly Measured Rotational Dynamic 
Stiffness of the Supports 

In the experimental rig, one force transducer was attached to the clamp to excite the 

support, which gives rise to the presence of eccentricity of the structure. Due to this, the 

rotational dynamic stiffness can not be written in a simple form analogously to the 

translational dynamic stiffness given in equation (4.13). A more complicated model 

needs to be developed for the system. Figure 4.15 illustrates the free body diagram of a 

suitable model. The rotational stiffness, RK  and translational stiffness, TK ′′  (different 

from TK  discussed in the above section) are defined at the geometric centre of the 

system. The moment of inertia J ′′  is defined at the centre of gravity. The eccentricity is 

indicated by e . Considering equilibrium of forces in the x  direction and equilibrium of 

moments about the geometric central axis yields   

 2

0
0

CTC

CRC

XKm m e FX
Km e J m e Mθθ

′′′′ ′′ ⎧ ⎫ ⎧ ⎫⎡ ⎤⎡ ⎤ ⎧ ⎫
+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥′′ ′′ ′′+⎣ ⎦ ⎩ ⎭⎣ ⎦ ⎩ ⎭⎩ ⎭

��
�� . (4.17) 

For time harmonic excitation, the above equation can be expressed as  

 ( )
2 2

2 2 2

/ 1
/

T C

CR

K m m e X F
Fm e K J m e

ω ω

θ γω ω

′′ ′′ ′′⎡ ⎤− − ⎧ ⎫ ⎧ ⎫
=⎢ ⎥ ⎨ ⎬ ⎨ ⎬′′ ′′ ′′− − +⎢ ⎥ ⎩ ⎭⎩ ⎭⎣ ⎦

. (4.18) 
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Figure 4.15 Free body diagram of the experimental rig for directly measuring the 

rotational dynamic stiffness.  
 

By introducing the following symbols 

 ( )
2 2

2 2 2

T

R

K m m e

m e K J m e

ω ω

ω ω

′′ ′′ ′′⎡ ⎤− −
= ⎢ ⎥

′′ ′′ ′′− − +⎢ ⎥⎣ ⎦
D , 

1
γ
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

b  and { }0 1=z , (4.19) 

and assuming that D  is invertible, the rotational displacement FRF can be obtained by  
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 1/C Fθ −= zD b . (4.20) 

Substituting equation (4.20) into the equation (4.14) gives the rotational dynamic 

stiffness in terms of the mass and stiffness parameters of the support, 

 1RD γ
−=

zD b
. (4.21) 

Updating the parameters of the support to fit the rotational dynamic stiffness given by 

equation (4.21) to the measured one given by equation (4.16) is a non-linear problem. 

The Gauss-Newton iterative method (detailed later in Chapter 6) is employed here. The 

objective function is defined in terms of the rotational dynamic stiffness and the 

iteration process is performed on the five parameters, TK ′′ , m′′ , RK , J ′′  and e . 

Considering the conditioning of the iteration process, the damping effect (typically 

small and only significant around the resonance and anti-resonance frequencies) is 

neglected here. So only the real part of the measured rotational dynamic stiffness is 

discussed here. 

 

In Figure 4.16, the rotational dynamic stiffness of the long aluminium support is plotted 

against frequency. The small fluctuations in the measured FRFs around 700Hz (Figure 

4.13) can cause large and rapid changes in the rotational dynamic stiffness. These 

frequencies were excluded in the iteration process. The initial values of the mass, 

moment of inertia and stiffnesses for the iteration process were estimated from the 

simple model given by equation (4.13). The parameters were then identified and are 

given in Table 4.3. Figure 4.16 also shows the rotational stiffness as predicted by the 

method given the estimated parameters of the support. Except for the frequency ranges 

deliberately excluded from the fit for reasons stated previously, the estimated dynamic 

stiffness agrees well with the measured result.   

 

The measured FRFs for the other three support conditions are given in Appendix 9 

alongside the rotational dynamic stiffnesses and fitted counterparts. Table 4.3 also gives 

the estimated parameters for the other three supports. Considering the dimension of the 

structure and the masses of the clamp (0.042kg) and the force transducer, the values for 

the eccentricity are reasonable. The asymmetry of the support is considered to be caused 

by the mass-loading effect of the force transducer.  
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Figure 4.16 Directly measured rotational dynamic stiffness of the long aluminium pipe 
support: , real part of measured RD ; , fitted real part of RD . 

 

Table 4.3 Rotational parameter fit of the supports (SI units).  
support frequency TK ′′  m′′  RK  J ′′  e  

aluminium 

long 

[ ]200,300  

[ ]420,600  

[ ]900,1400  
5

8.811
10×

 0.069 3

1.398
10×

 
5

2.833
10−×

 0.007 

short 

[ ]200,300  

[ ]450,1100  

[ ]1400,1700  
6

2.328
10×

 0.061 3

1.840
10×

 
5

1.918
10−×

 0.009 

steel 

long 

[ ]200,300  

[ ]460,840  

[ ]1000,1400  
6

3.941
10×

 0.161 3

2.713
10×

 
5

3.575
10−×

 0.006 

short 

[ ]200,300  

[ ]460,1200  

[ ]1280,1400  

[ ]1900, 2100  

6

4.923
10×

 0.079 3

2.997
10×

 
5

1.808
10−×

 0.009 

     Note: 1. the pipe segment ( 0.015sm = ) is included in the above mass.  
               2. the mass-loading effect of the force transducer: 38% of the total mass of the 

force transducer ( 0.0235am = ), is considered to be added to the support (see 
Appendix 8).   
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4.4.6 Reflection and Transmission Coefficients 

In this section, the power reflection and transmission coefficients measured by the 

WAD method are presented. Based on the estimated support parameters from direct 

measurements, the reflection and transmission coefficients are also predicted by the 

parametric model for the waveguide support described in Section 4.2. Here the 

transducer spacing is 0.10Δ = m.   

 

When directly measuring the parameters of the support, the directly measured mass m′  

and moment of inertia J ′′  were influenced by the added pipe segment and the mass-

loading effect of the force transducer. In order to revert to the status of the support for 

measurements of the reflection and transmission coefficients by the WAD method, they 

need to be modified when used to predict the reflection and transmission coefficients.  

 

In Table 4.2, the damping loss factors are typically very small in the translational 

direction and can be neglected in the frequency range discussed. The mass m′  includes 

the added pipe segment and the loaded mass of the force transducer, which should be 

reduced. The modified mass is given by  

 0.41s am m m m′= − −  (4.22) 

where 0.015sm =  is the mass of the pipe segment held by the clamp, and am  is the 

mass of the force transducer.  

 

When measuring the rotational dynamic stiffness of the support, the eccentricity is 

considered to be the consequence of the mass-loading effect of the force transducer. It 

will be excluded in the support model to predict the reflection and transmission 

coefficients. Considering the influence of the pipe segment, the mass loading of the 

force transducer, and the eccentricity, the inertia J ′′  in Table 4.3 is adjusted by  

 2 2 2/12 0.38s s aJ J m e m L m γ′′ ′′= + − −  (4.23) 

where 0.022sL =  is the length of the pipe segment.  

 

The parameters of the support with the adjusted values are listed in Table 4.4. In the 

following figures the power reflection and transmission coefficients are predicted by the 

parametric model given in Section 4.2 based on the directly measured parameters. Also 
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in the figures are the corresponding power reflection and transmission coefficients 

estimated by the wave amplitude decomposition method. Here it is assumed that the 

ends of the pipe are reflecting. 

 

Table 4.4 Modified values of the directly measured parameters of the supports (SI units).  
support TK , 610×  m  RK , 310×  J , 510−×  

aluminium 
long 2.595 0.077 1.398 2.840 

short 9.019 0.076 1.840 2.081 

steel 
long 5.127 0.106 2.713 3.823 

short 14.642 0.091 2.997 2.116 

 

Figures 4.17 and 4.18 show the power reflection and transmission coefficients for the 

long aluminium support. Corresponding the frequency range 200Hz – 2000Hz, bk Δ  

changes from 0.604 to 1.910. In the frequency range plotted, the measured power 

coefficients and those predicted by the theoretical model agree very well although slight 

differences are found in some frequency ranges. This indicates the consistency of the 

parametric model of the support with the wave-based predictions.  
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Figure 4.17 Power reflection coefficient of the long aluminium support: , measured; 

, predicted based on measured parameters.  
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Figure 4.18 Power transmission coefficient of the long aluminium support: , 

measured; , predicted based on measured parameters. 
 

Figure 4.19 shows the sum of the measured power reflection and transmission 

coefficients for the long aluminium support. In the frequency range plotted, this sum is 

nearly unity, which indicates that the damping of the structure is negligible.   
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Figure 4.19 Sum of power reflection and transmission coefficients of the long 

aluminium support: , measured; , predicted based on measured parameters. 
 

The power reflection and transmission coefficients for the other three supports are 

presented in Figures 4.20 to 4.22. Each of the power coefficients predicted from the 
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parametric model follows the same trends with frequency as the measured results. The 

results for the long supports are always better than those of the short, which means the 

parametric model is more appropriate for the long supports. At high frequencies, due to 

the presence of high order resonances (see the direct measurements of the dynamic 

stiffnesses in Appendices 6 and 7), the measured power reflection and transmission 

coefficients correspondingly differ by larger amount. On the whole, the parametric 

model for the supports agrees well with the measured results. However, if the 

parameters of the supports are to be estimated accurately from measured reflection and 

transmission coefficients, appropriate frequency ranges need to be selected. This will be 

discussed in Chapter 7. 
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Figure 4.20 Power reflection and transmission coefficients of the short aluminium 

support: , measured; , predicted based on measured parameters. 
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Figure 4.21 Power reflection and transmission coefficients of the long steel support: 

, measured; , predicted based on measured parameters. 
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Figure 4.22 Power reflection and transmission coefficients of the short steel support: 

, measured; , predicted based on measured parameters. 
 

 

4.5 Summary  

A parametric model was used to represent a pipe support in which the translational and 

rotational dynamic stiffnesses were considered. The flexural wave reflection and 

transmission coefficients of the support were derived in terms of the translational and 

rotational dynamic stiffnesses of the support. The dynamic stiffnesses were further 

decomposed into mass and stiffness parameters. The pipe was modelled as a waveguide 

for flexural waves. Therefore the analysis is only valid below the cut-on frequency of 

the 2n =  wave mode. Numerical simulations illustrated the dynamic characteristics of 

the reflection and transmission coefficients. Damping of the support was also discussed 

when considering an example of the reflection and transmission coefficients in terms of 

the mass and stiffness parameters.   

 

The experimental rig features a support holding a pipe. In order to allow for 

discrepancies between the calculations at the design stage and the measurements, the 

support was designed to be adjustable so that the translational and rotational dynamic 

stiffnesses can be altered. Methods were developed to measure the translational and 

rotational dynamic stiffnesses of the supports directly and the parameters composing the 

dynamic stiffnesses, such as translational and rotational stiffnesses, mass and moment 

of inertia were estimated. The flexural wave reflection and transmission coefficients 

were calculated from the estimated parameters based on the parametric model of the 

support. Also the reflection and transmission coefficients were measured by the wave 

amplitude decomposition method. The results from these two approaches agree well, 
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which indicates that the parametric model is a good model for the reflection and 

transmission coefficients of the support. 

 



Chapter 5 Wave Reflection and Transmission at Angled Bends 

 -87-

 

Chapter 5 Wave Reflection and Transmission at 
Angled Bends 

 

5.1 Introduction  

Previous chapters have discussed wave reflection and transmission in straight 

waveguides with discontinuities. In this chapter attention is focused on a structure with 

two waveguides jointed at an arbitrary angle.  

 

Wave reflection and transmission in such a structure is more complicated since wave 

mode conversion occurs. Previous studies have shown much interest in this kind of 

system: Cremer et al. [1] have studied rigidly connected and simply supported right-

angled bends. Desmond [67] considered wave propagation at a junction of three bars, 

which were rigidly connected. Doyle and Kamle [24] discussed the reflection and 

transmission of flexural waves at an arbitrary T-joint. They considered the joint model 

as a mass-like discontinuity. Leung and Pinnington [59, 60] investigated a right-angled 

joint with compliance in all three degrees of freedom. A model for an arbitrary angled 

bend is considered in this chapter which is characterised by translational and rotational 

stiffnesses, mass and moment of inertia. The wave reflection and transmission 

coefficients of the angled bend are investigated by the general approach introduced in 

Chapter 2.  

 

In the next section, the wave fields in in-vacuo piping networks are discussed briefly. 

Then the reflection and transmission coefficients of an arbitrary angled bend are derived 

based on a parametric joint model. Power reflection and transmission coefficients 

associated with the angled bend are discussed. Closed form solutions are given for the 

special case of a rigid mass-free connection, a mass-like and a spring-like joint, and 

numerical simulations are performed on these three kinds of joints. For the mass-like 

and spring-like joints the simulations are given in terms of the impedance ratios. 
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Damping effects of the joint are also studied by incorporating the damping loss factor as 

complex stiffnesses. Experiments were performed on a right-angled pipe bend. The 

decomposed wave amplitudes in the two pipes and the power reflection and 

transmission coefficients induced by an in-plane flexural wave are presented.  

 

 

5.2 Wave Fields in Some Joint Networks  

Some typical joints, such as L-bends, T-junctions and cross-junctions, etc. shown in 

Figure 5.1, are widely used in pipe networks. Each pipe can be considered to be a one-

dimensional waveguide. The wave modes involved in the branches of the structures 

depend on the direction of the excitation, boundary conditions and the characteristics of 

the joint. Figure 5.2 shows an example for two semi-infinite waveguides connected by a 

joint at a right angle. If waveguide a  is excited vertically by an in-plane force, response 

will be induced not only in waveguide a  itself, but also in b  through the joint. From 

the viewpoint of wave propagation in structures, the excitation in waveguide a  gives 

rise to a flexural incident propagating wave and a nearfield wave travelling towards the 

joint. At the joint the incident waves are partly transmitted to branch b  and partly 

reflected to branch a  as well. Owing to the continuity of the structure at the joint, axial  

 

(a) (b) (c)

(d) (e)
 

Figure 5.1 Typical structures in pipe networks. 
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Figure 5.2 Wave fields in a right angled structure.  

 

and flexural waves may be reflected from and transmitted through the joint. The 

characteristic of the joint is crucial to the reflection and transmission of waves. For 

example, if the rotational stiffness of the joint is zero, then there will be no transmitted 

flexural waves in branch b .  

 

 

5.3 Reflection and Transmission Coefficients in terms of the 
Parameters of an Angled Bend 

In this section, the wave reflection and transmission coefficients at an arbitrary angled 

bend are derived by using the approach introduced in Chapter 2. For simplicity, only 

axial and flexural waves in the plane of the bend are assumed to exist in the system. 

Correspondingly the parameters of the bend are also only defined in this plane.   

 

5.3.1 Reflection and Transmission Coefficient Matrices  

The reflection and transmission coefficient matrices for an angled bend are given in this 

section. Figure 5.3 shows two waveguides connected at an angle φ . When a wave 

(either in-plane flexural or axial) reaches the angled bend, due to the continuity of the 

joint, the incident wave is reflected and transmitted. As a result, three reflected waves 

and three transmitted waves are generated: one propagating flexural wave, one nearfield 

flexural wave and one axial wave. The positive and negative-going wave amplitudes at 
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any point can be expressed by equation (2.20). The propagation matrix between two 

points along x-axis is given by equation (2.28). The general displacements and forces 

can be expressed by equations (2.21) and (2.22) respectively. They are related to the 

wave amplitudes by the displacement and force matrices given respectively in equations 

(2.25) and (2.26).   
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Figure 5.3 Wave amplitudes at an arbitrary-angled bend.  

 

Consider incident waves +a  and −b  propagating towards the joint from each side. The 

wave amplitudes at the joint are related by equation (2.29), which is here 

 0 0 0 0

0 0 0 0

aa ba

ab bb

− +

+ −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

a R T a
b T R b

, (5.1) 

where R  and T  are the 3 3×  reflection and transmission coefficient matrices. If the 

joint is assumed to be symmetrical, then the matrices can be written as   

 0 0

LL PL NL
aa bb

LP PP NP

LN PN NN

r r r
r r r
r r r

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

R R , 0 0

LL PL NL
ba ab

LP PP NP

LN PN NN

t t t
t t t
t t t

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

T T . (5.2) 

Two subscripts are used for the corresponding reflection and transmission coefficients 

to signify the incident and the resulting wave modes. Subscripts L , P  and N  indicate 

axial, propagating flexural and nearfield flexural wave respectively.   

 

5.3.2 Parametrical Model of the Angled Bend  

Various models can be developed for the angled bend. However, here the bend is 

assumed to incorporate two masses and three springs, as shown in Figure 5.4. Each 

mass is characterised by a mass im  and a moment of inertia iJ  ( 1, 2i = ) and is 
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considered to be rigidly connected to the end of the each waveguide. The three springs 

which have translational stiffnesses xK , yK  and angular stiffness RK  respectively 

connect the two masses together.  
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Figure 5.4 Model of an angled bend.  

 

Figure 5.5 shows the free body diagram of each part of the bend. For simplicity, the 

offset of the system is not considered here. The three parts of the structure can be 

considered as connected substructures. Such a system can be analysed easily by the 

transfer matrix method described in Chapter 2. By applying continuity and equilibrium 

conditions to each of masses 1 and 2, the displacements and forces on the two sides of 

each mass can be related respectively by  

 
1 1

011 12
1 1

021 22

a a

a a

⎡ ⎤⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎩ ⎭⎣ ⎦

W WΩ Ω
F FΩ Ω

 and 
3 3

0 11 12
3 3

0 21 22

b b

b b

⎡ ⎤⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎩ ⎭⎣ ⎦

W WΩ Ω
F FΩ Ω

. (5.3) 

The elements of the transfer matrices are 

 

1 3 1 3 1 3
11 11 12 12 22 22

2 2
1 2

1 2 3 2
21 1 21 2

2 2
1 2

1 0 0 0 0 0 1 0 0
0 1 0 , 0 0 0 , 0 1 0 ,
0 0 1 0 0 0 0 0 1

0 0 0 0
0 0 , 0 0 .
0 0 0 0

m m
m m

m J m J

ω ω
ω ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Ω Ω Ω Ω Ω Ω

Ω Ω

 (5.4) 

The displacements and forces on both sides of the three springs are related by   

 
2 2

0 011 12
2 2

0 021 22

a b

a b

⎡ ⎤⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎩ ⎭⎣ ⎦

W WΩ Ω
F FΩ Ω

 (5.5) 

where 
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2 2
11 12

2 2
21 22

cos sin 0 cos sin 0
sin cos 0 , sin cos 0 ,
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,
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K

φ φ φ φ
φ φ φ φ

φ φ
φ φ

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Ω Ω

Ω Ω

 (5.6) 

It must be noted that when the stiffnesses of the springs are zero, the transfer matrix 

might be poorly conditioned.  

Combining equations (5.3) and (5.5) gives  

 11 12

21 22

a b

a b

⎡ ⎤⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎩ ⎭⎣ ⎦

W WΩ Ω
F FΩ Ω

 (5.7) 

where  

 
1 1 2 2 3 3

11 12 11 12 11 12 11 12
1 1 2 2 3 3

21 22 21 22 21 22 21 22

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Ω Ω Ω Ω Ω Ω Ω Ω
Ω Ω Ω Ω Ω Ω Ω Ω

. (5.8) 

Thus the displacements and forces on both sides are related by the parameters of the 

bend.  
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Figure 5.5 Free body diagram of the angled bend and each waveguide. 

 

5.3.3 Reflection and Transmission Coefficients  

In this section, the reflection and transmission coefficients of the bend are found using 

the approach described in Chapter 2. Here it is assumed that the two waveguides in 
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Figure 5.5 are semi-infinite. By considering only one wave component of the incident 

waves, the reflection and transmission coefficients induced by this incident wave can be 

derived by solving equation (2.43). Here as an example, the case with only one incident 

flexural propagating wave in waveguide a  is considered, thus  

 
0

0
PW+ +

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

a  and 
0
0
0

−

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

b . (5.9) 

Substituting equations (2.25), (2.26), (5.2), (5.8) and (5.9) into equation (2.43), after 

some lengthy manipulations (referring to Appendix 3), yields 

 

( ) ( ) ( )

( ) ( ) ( )

3 6 1 6 2 6 2

3 3 3 3 3

4 3 1 4 4 1 4 4

1 1 1 1 1 1 1

4 4
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1

1 1

2

2 2
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0

0

1

1
1
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r

t

r i i

t i i i

r

t
i i i

γ
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γ

σ γ
σ σ γ σ

− +
=

− − +

− +

− − +
+ +

⎡ ⎤⎧ ⎫ ⎧ ⎫⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦

 (5.10) 

where  

 

3
2 2 2 2 2 2 2 2 2

1 2 3 3
1 1 1 1 1 1 1 1 1

3
2 2 2 2

4 3
1 1 1 1

1 2 33
1 1 1 1 1 1 1 1 1
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1 2 33
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4 53
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l b l
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y xR

b b l

b b l
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E A k E I k E A k
E A k E A k E I k

E I k k
E I k k

K KKi i i
E I k E I k E A k

im iJ im
E I k E I k E A k

im
E I k
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σ σ σ

ω ω ωγ γ γ

ωγ γ

= = =

= =

= − = − = −

= = =

= =
2 2

2 2
6

1 1 1 1 1 1

, .
b l

iJ im
E I k E A k

ω ωγ =

 (5.11) 

See Appendix 4 for the definition of the above symbols. In equation (5.10), the two 

waveguides are considered to be of different materials and dimensions. For simplicity, 

and as is often the case in practice, it is assumed henceforth that the two waveguides are 

of the same materials and dimensions, such that   

 1 4 2
3

11, 1, 1,ξ ξ ν ξ ξ
ξ

= = = = =  (5.12) 

and that the joint is symmetrical, i.e. X Y TK K K= = , 1 2 / 2m m m= =  and 



Chapter 5 Wave Reflection and Transmission at Angled Bends 

 -94-

1 2 / 2J J J= = , therefore, 

 
1 2 33 2

3 2

1 4 2 5 3 6

, , ,

, , .
2 2 2

i i i

i i i

χ ψ χσ σ σ
ξ ξ ξ

μξ ϑξ μξγ γ γ γ γ γ

= = =

= = = = = =

 (5.13) 

where  

 3, , , ,
/ /
T R

l

K K m J
EA EI A cA

ωκχ ψ μ ϑ ξ
κ κ ρ κ ρ κ

= = = = = . (5.14) 

/I Aκ =  is the radius of gyration of the waveguide’s cross-section. The parameters in 

equation (5.14) are non-dimensional and defined in Appendix 4. The physical meanings 

of the parameters are the same as those defined in Chapters 2 and 4. The first four 

parameters concern the joint properties relating to the characteristics of the waveguide 

and are frequency independent. They are the parameters that will be estimated in 

Chapters 6 and 7.  

 

Substituting the symbols in equations (5.12), (5.13) and (5.14) into equation (5.10) 

yields 

( ) ( ) ( )

2 2 2 2
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3 3 3 3 3
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⎢ ⎥⎨ ⎬ ⎨ ⎬
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⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪⎩ ⎭⎢ ⎥
⎢ ⎥⎣ ⎦

 (5.15) 

The six reflection and transmission coefficients can be obtained numerically by solving 

the above equation.  

 

Equation (5.15) is for the parametric joint model as shown in Figure 5.5, which involves 

the inertia, stiffness and damping (incorporated into the stiffness) of the joint and angle 

of the bend. Depending on the situation, one or two properties may dominate the others, 
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in which case the model can be simplified to a special case, such as rigid connection, 

mass-like discontinuity or spring-like discontinuity. The corresponding equation for the 

reflection and transmission coefficients can be obtained by applying appropriate values 

to the parameters in equation (5.15). Also, the coefficients depend on the joint angle φ . 

If 0φ = , the system becomes a straight waveguide. These cases are discussed in 

Chapters 2, 3 and 4. In practice, the right-angled bends are used widely. Assuming that 

/ 2φ π= , equation (5.15) becomes 
2 2 2

2

2 2 2
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3 3 3 3
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⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎪ ⎪

⎪ ⎪
⎪ ⎪⎩ ⎭

. (5.16) 

In what follows, attention will be focused on right-angled joints.   
 

5.3.4 Power Reflection and Transmission Coefficients    

Since wave mode conversion occurs in an angled bend, the definition of the power 

reflection and transmission coefficients need to consider the power involved in each 

wave mode. The power in an axial wave and a flexural wave are given by equation 

(2.15). Consider lV  and bV  as the axial and flexural wave velocities. They are 

proportional to the axial and flexural wave displacements, i.e. lV Uω=  and 

bV Wω= . Therefore the flexural power reflection coefficient can be expressed as  

 
2

2
2

2
2

b br
PP bb

b bi

Ac V
r

Ac V
ρ

ρ
ρ

= =  (5.17) 

where the subscripts r  and i  indicate the reflected and incident wave modes 

respectively. The flexural power transmission coefficient is given by 
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2

2
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2
2

b bt
PP bb

b bi
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t

Ac V
ρ

τ
ρ

= =  (5.18) 

where subscript t  indicates the transmitted wave. Similarly the axial power reflection 

and transmission coefficients are given respectively by 
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22

l lr
PL PL

b bi
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ρ

ρ
ξρ

= = , 
2

2
2

1
22

l lt
PL PL

b bi

Ac V
t

Ac V
ρ

τ
ξρ

= = .  (5.19) 

If there is no energy dissipation in the system, then 

 1PL PL PP PPρ τ ρ τ+ + + = .  (5.20) 

In practice the sum of these four coefficients is less than unity owing to the existence of 

the damping of the system.  

 

5.3.5 Rigid Massless Right-angled Connection    

If the joint in Figure 5.5 is considered to be rigidly connected and massless, then 

1 2 0m m= = , 1 2 0J J= = , χ →∞  and ψ →∞ . The propagating reflection and 

transmission coefficients can be found from equation (5.16) to be  

 

( )
( )( )

( )
( )( )

( )( )
( )( )

( ) ( )
( )( )

22

2 1 2 1 2
, 2 ,

1 2 1 1 2 1

1 1 1
, .

1 2 1 1 2 1

PL PL

PP PP

i i i
r t

i i i i

i i i i
r t

i i i i

ξ ξ ξ
ξ

ξ ξ ξ ξ

ξ ξ ξ
ξ ξ ξ ξ

− + − + −
= =

+ − + − + − + −

− − − − +
= =

+ − + − + − + −

 (5.21) 

At low frequencies, when the high order terms of ξ  can be neglected, the power 

reflection and transmission coefficients can be approximated respectively by  

 5,
6 2 6 2PL PL
ξ ξρ τ
ξ ξ

= =
+ +

, 1 1,
6 2 6 2PP PPρ τ
ξ ξ

= =
+ +

. (5.22) 

Equations (5.22) can be considered the asymptotes of the corresponding power 

reflection and transmission coefficients at low frequencies. From the above equation, at 

very low frequencies, i.e. 0ξ → , then 0PLρ →  and 0PLτ → . This indicates that there 

is almost no wave mode conversion to axial waves. Conversely, both 0.5PPρ →  and 

0.5PPt → , which means that the flexural incident wave is half transmitted and half 

reflected in the form of flexural waves.  
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Figure 5.6 shows the power reflection and transmission coefficients against the non-

dimensional frequency, 2 / lcξ ωκ= . The power reflection and transmission coefficients 

obtained from equations (5.22) are very close to those obtained from equation (5.21) at 

low frequencies. With increasing frequency, deviations are found. Since PLρ  and PLτ  

are relatively small compared with PPρ  and PPτ , only a small proportion of the power is 

transferred from flexural incident wave to axial waves, especially at low frequencies. 

PLτ  is always about 5 times larger than PLρ , which means that power in the form of 

axial waves is mainly carried in waveguide 2. With increasing frequency, the power 

involved in the axial waves increases, accordingly the power in the flexural waves 

decreases. In addition, PPτ  becomes larger than PPρ , so a greater proportion of the 

power in the form of flexural waves is transmitted into waveguide 2.  
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Figure 5.6 Power reflection and transmission coefficients of the rigid massless joint.  

 

5.3.6 Mass-like Joint 

Referring to the joint model shown in Figure 5.5, if the connection is rigid and the mass 

and inertia of the joint play a significant role, it can be considered as a mass-like joint. 
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In this case, the stiffnesses tend to infinity. The propagating reflection and transmission 

coefficients are  

 

( ) ( )

( ) ( )( ) ( ) ( ) ( )
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 (5.23) 

where  
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⎡ ⎤+ − −⎣ ⎦

 

Here, 2iμξ  is the ratio of the impedance of the mass to the longitudinal characteristic 

impedance of the waveguide. Similarly, 3iϑξ  is the ratio of the impedance of the 

moment of inertia to the rotational characteristic impedance of the waveguide.  

 

Closed form solutions for the power reflection and transmission coefficients are very 

complicated. However, since the non-dimensional frequency, 2ξ  is very small, the 

higher order terms in ξ  can be neglected. The first order approximations become  
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−
≈ ≈

− + − +

 (5.24) 

These expressions are only valid when 1ξ �  and 2μξ ξ� . From these approximate 

expressions, an important frequency where 3 2ξ ϑ =  can be noted. At this frequency the 

power reflection and transmission coefficients reach their local minima or maxima. This 

holds both for the exact and simplified expressions. Referring to Equations (5.11) and 

(5.13), 3 2ϑξ =  means that magnitude of the rotational impedance of the joint is twice 

that of the rotational characteristic impedance of the waveguide, i.e. the magnitude of 
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rotational impedance of each added mass ( 1m  and 2m ) is twice that of rotational 

characteristic impedance of the waveguide. Once this frequency is found, the joint 

moment of inertia can be estimated simply by 32 /ϑ ξ= . Consequently, the mass 

parameter, μ  can be estimated from equation (5.23).  

 

Figure 5.7 shows the power reflection and transmission coefficients as functions of the 

magnitudes of translational and rotational impedance ratios at the frequency 
2 0.0084ξ = . This frequency is equivalent to 500Hz for the pipe in Chapter 4. At the 

regions where 3 2ξ ϑ = , the power reflection and transmission coefficients reach their 

local extrema. Large translational impedance or mass of the bend can impede wave 

mode conversion effectively. Large rotational impedance or inertia of the joint can 

prevent rotational motion of the bend, and therefore, restrain the energy in the flexural 

incident waves from transferring to flexural waves in the second waveguide. 

Consequently, the energy in the reflected axial waves is also reduced. When the mass of 

the bend is large but the moment of inertia is small, the energy in the flexural incident 

waves will be half reflected and half transmitted in the form of flexural waves, because 

in this case the translational motions are prevented but the rotational motions can be 

transmitted freely. When both of the mass and moment of inertia of the bend are large, 

both the translational and rotational motions are restrained, so the energy will be totally 

reflected in the original wave modes.  

 

Figure 5.8 illustrates the power reflection and transmission coefficients as functions of 

the magnitudes of impedance ratios at the frequency 2 0.0336ξ = , which is equivalent 

to 2000Hz for the pipe used in the measurements of Chapter 4. The trends of the 

coefficients are the same as in Figure 5.7 except that the wave mode conversion is larger 

than that at the low frequency ( 2 0.0084ξ = ) when the translational impedance of the 

bend is small.   
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Figure 5.7 Power reflection and transmission coefficients of the mass-like joint: 

2 0.0084ξ = .  
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Figure 5.8 Power reflection and transmission coefficients of the mass-like joint: 

2 0.0336ξ = .  
 

Figures 5.9 and 5.10 show the first order approximations for the power reflection and 

transmission coefficients given in equation (5.24) against the magnitudes of impedance 
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ratios at 2 0.0084ξ =  and 2 0.0336ξ =  respectively. For first order approximations, PPρ  

and PPτ  are the same for the two values of 2ξ . Therefore, in Figure 5.10, only PLρ  and 

PLτ  are given. The simplified expressions are close to the exact ones shown in Figures 

5.7 and 5.8 when the translational impedance of the bend is large. It can also be seen 

that the first order approximations are more accurate at low frequency. In Figure 5.10(b) 

1PLτ > . This is not true since when 3ϑξ  is large, the first order approximations are not 

accurate. 
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Figure 5.9 First order approximations for the power reflection and transmission 

coefficients of the mass-like joint: 2 0.0084ξ = . 
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Figure 5.10 First order approximations for the power reflection and transmission 

coefficients of the mass-like joint: 2 0.0336ξ = . 
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5.3.7 Spring-like Joint 

For the joint model shown in Figure 5.5, if the mass of the bend is relatively small and 

can be neglected, i.e. 1 2 0m m= =  and 1 2 0J J= = , the joint will behave as a spring-like 

discontinuity. The propagating reflection and transmission coefficients can be found 

from equation (5.16) to be  

 

( ) ( )( ) ( )( )

( ) ( )
( )( )( )
( )( ) ( )( )

( )( ) ( ) ( )( )
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3 3
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 (5.25) 

where  

( )( )( ) ( )( ) ( )( )

( )( )

3 3

3

2 1 / / 1 / 2 1 / 1

1 / 1 .

sD i i

i i

i iξ ξ χ ξ ψ ξ χ ξ ψ ξ

ξ χ ξ

ξ⎡ ⎤= + + + − − −⎣ ⎦
⎡ ⎤+ + −⎣ ⎦

+ +
 

Note that 3/iχ ξ−  is the ratio of the impedance of the translational spring to the 

translational characteristic impedance of the waveguide. Similarly, /iψ ξ−  is the ratio 

of the impedance of the rotational spring to the rotational characteristic impedance of 

the waveguide.  

 

In Figure 5.11 the power reflection and transmission coefficients are plotted against 

parameters 3/χ ξ  and /ψ ξ  at frequency 2 0.0084ξ = . Figure 5.11(a) shows that if the 

magnitudes of impedance ratios are very small, 1PPρ → . This is as expected because a 

very soft joint will not transmit energy to the second waveguide, and there would be no 

wave mode conversion for this case as well. With increasing rotational stiffness, the 

energy involved in the reflected flexural waves decreases except around regions where 
3/ 1χ ξ = . Around these regions, PPρ  is insensitive to the rotational stiffnesses. With 

soft translational springs, at least half of the energy will be reflected as flexural waves. 

Figure 5.11(b) shows the energy in the transmitted flexural waves increases with the 
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rotational stiffness of the bend except at the regions where 3/ 1χ ξ = . At these regions 

there is almost no energy transmitted to the flexural waves in the second waveguide. At 

most half of the total energy can be transmitted to the second waveguide as flexural 

waves. Figure 5.11(c) indicates that the energy carried by the axial waves in the first 

waveguide is an order of magnitude smaller than that in the second waveguide. Figure 

5.11(d) signifies that the energy in the transmitted axial waves reaches its maximum at 

the regions where 3/ 1χ ξ = . PLτ  is less sensitive to the rotational stiffness of the bend. 

In all, the extent of the energy transferred from the incident flexural waves to other 

waves, as expected, increases with the stiffnesses of the bend. Around the regions where 
3/ 1χ ξ = , wave mode conversion is most noticeable.  

 

Figure 5.12 shows the power reflection and transmission coefficients as functions of 

parameters 3/χ ξ  and /ψ ξ  at frequency 2 0.0336ξ = . It can be seen that the trend of 

each coefficient is the same as in Figure 5.11. An obvious phenomenon is that at high 

frequencies, wave mode conversion increases. More energy is converted into the axial 

wave modes in the second waveguide at the regions where 3/ 1χ ξ = .  

 

 

10
-2 10

-1 10
0 10

1 10
2

10
-2

10
0

10
2
0

0.1

0.2

0.3

0.4

χ/ξ3

ψ/ξ

τ PL

 

10
-2 10

-1 10
0 10

1 10
2

10
-2

10
0

10
2
0

0.01

0.02

0.03

0.04

χ/ξ3

ψ/ξ

ρ PL

 

10
-2 10

-1 10
0 10

1 10
2

10
-2

10
0

10
2

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

χ/ξ3

ψ/ξ

ρ PP

(a)  

10
-2 10

-1 10
0 10

1 10
2

10
-2

10
0

10
2
0

0.1

0.2

0.3

0.4

0.5

χ/ξ3

ψ/ξ

τ PP

(b)

(c) (d)

 
Figure 5.11 Power reflection and transmission coefficients of the spring-like joint: 

2 0.0084ξ = .  
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Figure 5.12 Power reflection and transmission coefficients of the spring-like joint: 

2 0.0336ξ = .  
 

5.3.8 Damping of the Joint 

Damping of the joint is inevitable in practice, therefore it is essential to investigate its 

effect on the reflection and transmission coefficients. Here a complex stiffness model is 

incorporated into the stiffness parameters χ   and ψ  by multiplying them respectively 

by ( )1 Tiη+  and ( )1 Riη+ , where Tη  and Rη  are the damping loss factors in the 

translational and rotational directions respectively. Figure 5.13 shows the influence of 

the damping loss factors on the power coefficients PPρ  and PLτ  with joint parameters 

0.01χ = , 0.1ψ = , 10μ =  and 10ϑ = . When the loss factors are small, i.e. 0.01η < , 

the effect of the damping is insignificant. The effects of the damping in the translational 

and rotational springs are different. This is because of the sensitivities of the coefficients 

to the stiffnesses. For example, PLτ  is not sensitive to the rotational stiffness, therefore 

the damping in the rotational direction has almost no effect on it. When considering the 

damping in both translational and rotational springs, the effect is the combination of 

these two cases. The other power reflection and transmission coefficients are similarly 

affected by damping.  
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Figure 5.13 Power reflection and transmission coefficients of the right-angled bend: 

0.01χ = , 0.1ψ = , 10μ =  and 10ϑ = : varying damping loss factors: , 0η = ; 
,  0.01η = ; , 0.1η = : (a), (d) damping in translational springs; (b), (e) 

damping in rotational spring; (c), (f) damping in both translational and rotational springs.  
 

 

5.4 Reflection and Transmission Coefficients in terms of Wave 
Amplitudes  

A wave amplitude decomposition method has been presented in Chapter 3 to measure 

reflection and transmission coefficients. This section describes how the reflection and 

transmission coefficients of the right-angled bend can be measured by such a method. 

This requires that the reflection and transmission coefficients be derived in terms of the 

wave amplitudes in the waveguides. The wave field of the system is shown in Figure 

5.14. A general excitation in the plane of the bend is assumed to be applied at point 1 of 

pipe a , which gives rise to waves with amplitudes +c  and −c  at this point. The 
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negative-going waves with amplitudes −c  will be reflected at the end of pipe a  (point 

4). The reflected waves travel a distance 3l  and superimpose upon the positive-going 

waves at point 1 to form the positive-going waves on the right-hand side of point 1. At 

the pipe bend, the waves are reflected and transmitted. Reflections from the end of pipe 

b  give rise to negative-going waves. The wave amplitudes at points 2 and 3 are 

expressed by ±a  and ±b  respectively. The waves at the bend are indicated by the 

subscript 0.  

 

2l

+a
−a

0
+a
0
−a

1l

0
+b 0

−b

+b −b

3l

−c

2

3

+c

1

+d

4
a

b

 
Figure 5.14 Wave field in the right-angled pipes.   

 

The positive- and negative-going waves on both sides of the bend are related by 

equation (5.1). Symmetry of the structure can reduce the number of unknown reflection 

and transmission coefficients given by equation (5.2) from 36 to 18. Note that since 

there are wave mode changes, R  and T  are not symmetrical. Neglecting the nearfields, 

only 8 coefficients are unknown and equation (5.1) becomes  

 

0 0

0 0

0 0

0 0

LL PL LL PLa a

LP PP LP PPa a

LL PL LL PLb b

LP PP LP PPb b

r r t tu u
r r t tw w
t t r ru u
t t r rw w

− +

− +

+ −

+ −

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

. (5.26) 

Assuming that the pipe ends are axially non-reflecting, for the excitation considered 

here, 0 0au+ =  and 0 0bu− = . The above equation can then be written as   

 0 0 0 0

0 0 0 0

PL PLa a a b

PP PPb b b a

r tu w w w
r tu w w w

− − + −

+ + − +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
. (5.27) 

The wave amplitudes at points 2 and 3 in Figure 5.14 can be obtained by the wave 
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amplitude decomposition method discussed in Chapter 3 and then converted to the wave 

amplitudes at the bend by equation (2.28). Thus the reflection and transmission 

coefficients can be obtained by solving equation (5.27).  

 

 

5.5 Experiments on a Right-angled Pipe Bend  

This section describes experiments carried out on a right-angled pipe bend. The 

frequency where the 2n =  wave mode cuts on and the wavenumber of the pipe were 

measured. Then the reflection and transmission coefficients of the bend were measured 

using the wave amplitude decomposition method. The behaviour of the power reflection 

and transmission coefficients are analysed below the cut-on frequency of the 2n =  

ovalling mode.  

 

5.5.1 Experimental Setup 

The experimental rig is shown in Figure 5.15. Two copper pipes of length 4m, outer 

radius 14mm and wall thickness 0.9mm were joined with a soldered right-angled elbow 

and suspended at two locations by wire. A sandbox with foam wedges was placed at 

each end of the pipes to approximate anechoic conditions for the flexural waves. A 

sandwich steel panel was attached perpendicularly to the end of each pipe to minimise 

axial wave reflections. The approach using a sandwich panel was described previously 

by Brennan [68], in which the thickness of the panel was chosen to let the characteristic 

impedance in loading of the panel match the characteristic impedance of the axial wave 

motion of the pipe, so the energy in the axial waves is transmitted effectively into the 

panel.  

 

One of the pipes was excited perpendicularly in the plane of the bend by a shaker 

through a stinger with a force transducer mounted on the pipe. Then below the cut-on 

frequency for 2n =  ovalling mode, only flexural and axial wave modes were generated 

although torsional waves might exist in practice. A pair of accelerometers was located 

on each side of the bend, far enough from the pipe ends, the pipe bend and the 

excitation point, so that the nearfields can be neglected. Flexural and axial motions were 
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measured separately because the number of available channels on the analyser was 

limited. The spacings of accelerometers were chosen to be a quarter wavelength at the 

centre-frequency of interest based on approximate estimates, which were 0.10 m for 

flexural waves and 0.70 m for axial waves.  

 

 
Figure 5.15 Experimental rig for measurements of the reflection and transmission 

coefficients of a right-angled pipe bend.   
 

5.5.2 Cut-on Frequency for n =2 wave mode  

Depending on frequency, piping systems can propagate very complicated wave modes. 

This has been discussed briefly in Chapter 4. When doing measurements on pipes, the 

wave modes propagating in the frequency range of interest must be known. Since only 

the in-plane axial and flexural waves are of interest in this thesis, the cut-on frequency 

for the 2n =  wave mode is very important.  

 

Figure 5.16 shows the cross-section of the pipe under test. The pipe was excited in the 

horizontal direction. Two accelerometers were placed on opposing sides of the pipe 

cross-section as shown in the figure. The magnitude and phase of the transmissibility 

between the two accelerometers are shown in Figure 5.17. It can be seen that the 

magnitude ratio is almost unity and the phase difference between these two 
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accelerations is π  until about 2500Hz. Thus the cut-on frequency for the 2n =  wave 

mode for this pipe is about 2500Hz. Measurements on both pipe arms of the bend are 

very similar. Note that above 2000Hz, the magnitude of the transmissibility begins to 

deviate from unity. Henceforth the discussion will focus on frequencies below 2000Hz.  
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Figure 5.16 Placement of the accelerometers to measure the cut-on frequency for the 

2n =  wave mode.  
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Figure 5.17 Measured transmissibility, 2 1a a  between the two accelerometers shown in 

Figure 5.16: (a) Magnitude; (b) Phase.   
 

5.5.3 Wavenumber Measurements  

In order to obtain the wave amplitudes and from them the reflection and transmission 

coefficients, the wavenumbers of the pipes need to be measured. The flexural 

wavenumber of the pipes was measured over the frequency range of interest by the 

method described in Chapter 3. A sensor spacing of 0.10Δ = m was chosen. Figure 5.18 
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shows the measured real and imaginary parts of the algebraic average of the 

acceleration ratios, ( ) 231 2aaa +  shown in Figure 3.10. The imaginary part is almost 

equal to zero which means the damping of pipe is very small, therefore the real part is 

considered to be the value of ( )1 3 2/ 2W W W+ . Figure 5.19 shows the least-squares fit to 

Δbkcos  in the frequency range 500-2000Hz, which gives 0.428β = . The errors in β  

caused by considering it to be a constant are less than 3% in this frequency range.     
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Figure 5.18 Magnitude of ( )1 3 2/ 2W W W+  for wavenumber measurements of the right-

angled pipe: (a) Real part; (b) imaginary part.   
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Figure 5.19 cos bk Δ  for the pipes: , raw data; , least-squares fit in 500-

2000Hz, fkb β=Δ  ( 0.428β = ).     
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5.5.4 Measured Reflection and Transmission Coefficients   

The measured reflection and transmission coefficients are presented in this section. The 

axial and flexural wave amplitudes were decomposed independently by the method 

introduced in Chapter 3. The reflection and transmission coefficients of the right-angled 

bend were obtained from the decomposed wave amplitudes by application of equation 

(5.27).  

 

Figure 5.20 shows the method to measure the axial wave motion. The circle is the cross-

section of the pipe. One lateral side of the transducer was attached to the pipes to 

measure the axial motion. Here it is assumed that the difference between the axial 

motions of the top and bottom of the cross-section is negligible.  

 

 
Figure 5.20 Measurement method of the axial wave motion. 

 

Figure 5.21 shows the magnitudes of the outgoing and returning flexural waves in each 

pipe with in-plane flexural excitation. There are clear resonances below 500Hz. Above 

this frequency, the differences between the magnitudes of the individual waves in the 

pipes is very clear: the incident wave is always of the largest magnitude and the 

amplitude of the end-reflected wave becomes consistently small compared to the 

amplitudes of the other three waves. However, even with the sandbox, the end-

reflection is still not insignificant. This means the end is not anechoic.  

 

Figure 5.22 depicts the magnitudes of the outgoing and returning axial waves in each 

pipe with flexural excitation. Above 500Hz it is apparent that the waves transmitted 
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through the bend have the largest magnitudes. There are two large peaks at frequencies 

1300Hz and 1800Hz which correspond to the two minima in the magnitudes of the 

reflected flexural waves in Figure 5.21. At these two frequencies, the energy is mostly 

converted to the transmitted axial waves. The pipe ends are also not perfectly anechoic 

for axial waves since the magnitudes of the end-reflected axial waves are not 

insignificant.  
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Figure 5.21 Flexural wave amplitudes in each pipe: flexural excitation: , incident 
wave in pipe a ; , reflected wave in pipe a ; , transmitted wave in pipe b ; 

, end-reflected wave in pipe b . 
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Figure 5.22 Axial wave amplitudes in each pipe: flexural excitation: , end-reflected 

wave in pipe a ; , reflected wave in pipe a ; , transmitted wave in pipe b ; 
, end-reflected wave in pipe b . 
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Figure 5.23 shows the power reflection and transmission coefficients of the right-angled 

bend under the assumption of axially non-reflecting boundaries only and flexurally non-

reflecting boundaries only. The reflection and transmission coefficients in these two 

cases are compared to those of the fully non-reflecting boundary assumption. When the  
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Figure 5.23 Power reflection and transmission coefficients of the pipe bend: , 

assuming all boundaries are anechoic; (a),(b),(c) and (d), , assuming boundaries 
are anechoic only for axial waves; (e),(f),(g) and (h), , assuming boundaries are 

anechoic only for flexural waves. 
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reflections of the flexural waves from end of pipe b  (the solid lines in (a) to (d)) only 

are considered, the rapid oscillations are smoothed dramatically. This means that the 

reflections of flexural waves from the pipe end are significant. When the reflections of 

the axial waves from both pipe ends (the dotted lines in (e) to (h)) only are considered, 

only the two large peaks in frequency range 1000-2000Hz are refined. It can be 

concluded that the rapid oscillations are caused by neglecting the reflections of the 

flexural waves from the pipe end and the slow oscillations arise from the assumption of 

axially non-reflecting boundaries only. It also should be noted that only considering the 

end reflections of one wave mode does not lessen the oscillations of power coefficients 

associated with the other wave mode. For example, the oscillations of Figure 5.27(c) are 

enlarged rather than reduced.  

 

Figures 5.24 to 5.27 show the power reflection and transmission coefficients estimated 

based on the assumptions of non-reflecting and reflecting boundaries of the pipes. The 

results from the assumption of non-reflecting pipe ends appear very oscillatory. These 

oscillations result from the reflections from the pipe ends. This is shown in Figure 5.23. 

The oscillations can be reduced effectively under the reflecting boundary assumption, 

especially at high frequencies. This is shown by the solid lines in Figures 5.24 to 5.27. 

However, the slow oscillations have not been removed totally, i.e. the reflections of 

axial waves from the pipe ends still have a large influence. A frequency averaging 

method [63] was adopted to deal with this problem. For each of the power coefficients, 

the averaging was performed based on a frequency range over which an axial wave has 

travelled twice the length of one pipe. Since the axial waves are non-dispersive, the 

averaging bandwidth is then frequency-invariant and it can be calculated based on the 

wave speed of the axial waves or obtained from Figures 5.24 and 5.27 in which the 

frequency difference between the two large valleys/peaks can be considered 

approximately as the averaging bandwidth. Here it is about 480Hz.  

 

In Chapter 7 the parameters of the bend model will be identified from the measured 

power reflection and transmission coefficients, and then the power reflection and 

transmission coefficients will be calculated based on the estimated parameters and 

compared with the measured counterparts. In the limited frequency range considered, 

the frequency averaged power reflection and transmission coefficients do not change 

much, which may cause bad conditioning in the parameter identification process.  
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Figure 5.24 Power reflection coefficient PPρ  of the pipe bend: , non-reflecting 

boundary assumption; , reflecting boundary assumption; , frequency averaged. 
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Figure 5.25 Power transmission coefficient PPτ  of the pipe bend: , non-reflecting 

boundary assumption; , reflecting boundary assumption; , frequency averaged. 
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Figure 5.26 Power reflection coefficient PLρ  of the pipe bend: , non-reflecting 

boundary assumption; , reflecting boundary assumption; , frequency averaged. 
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Figure 5.27 Power transmission coefficient PLτ  of the pipe bend: , non-reflecting 

boundary assumption; , reflecting boundary assumption; , frequency averaged. 
 

The sum of the four power reflection and transmission coefficients based on the 

assumptions of anechoic and echoic boundaries is shown in Figure 5.28. None of the 

calculations consider damping effects in the structure. In the frequency range of 500-

2000Hz, the sum of the frequency averaged reflection and transmission coefficients is 

close to unity, as expected. Therefore the damping for this case is negligible.   
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Figure 5.28 Sum of the power reflection and transmission coefficients of the pipe bend: 

, anechoic boundary assumption; , echoic boundary assumption; , 
frequency averaged.  

 

 

5.6 Summary  

An arbitrary angled bend connecting two in-vacuo pipes was considered to have mass, 

moment of inertia, and translational and rotational stiffnesses. The general approach 

introduced in Chapter 2 was employed to derive the reflection and transmission 

coefficients of the ‘mass-spring-mass’ model of the arbitrary angled bend. When 

considering an incident flexural wave in the plane of the bend in one pipe, closed form 

solutions were given for a massless rigidly connected joint, a mass-like joint and a 

spring-like joint. The power reflection and transmission coefficients were investigated.  

 

For a rigid massless connection, the power involved in axial waves is much smaller than 

that in the flexural waves at low frequencies. With increasing frequency, more power is 

converted from flexural waves to axial waves. The power associated with the axial 

waves is mainly in the second waveguide. This results from the incident wave being an 

in-plane flexural wave. 

 

The behaviour of the power reflection and transmission coefficients of the mass-like and 

spring-like joints can be easily interpreted from the point view of impedance ratios. For 
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the mass-like joint, at the regions where 3 2ξ ϑ = , the power reflection and transmission 

coefficients reach their local extrema. Large mass of the bend can impede wave mode 

conversion effectively. Large moment of inertia of the joint can prevent rotational 

motion of the bend, and therefore, restrain the energy in the flexural incident waves 

from transferring to flexural waves in the second waveguide. For the spring-like joint, 

the extent of the energy transferred from the incident flexural waves to other waves, as 

expected, increases with the stiffnesses of the bend. Around the regions where 3/ 1χ ξ = , 

wave mode conversion is the most dramatic.  

 

For the damping model considered, the effect of the translational and rotational 

damping of the bend is related to the sensitivity of the power reflection and transmission 

coefficients to the corresponding stiffnesses. The damping of the pipes measured was 

considered to be negligible.  

 

For the experiments on the right-angled pipe bend, although sandboxes and sandwich 

panels were applied for the purpose of removing the wave reflections from the pipe ends, 

their effect is imperfect. Significant flexural, and especially axial waves were still found 

to be reflected from the pipe ends. This causes large oscillations in the estimated power 

reflection and transmission coefficients based on the anechoic boundary assumption. 

The reflections of flexural waves from the pipe ends are responsible for the rapid 

oscillations with frequency of the power coefficients and the reflections of the axial 

waves from pipe ends for the slow oscillations with large amplitude. Including the 

reflection from the ends in the calculations can reduce the rapid oscillations effectively. 

The slow oscillations are smoothed by using a frequency averaging method. In the 

limited frequency range considered, the power reflection and transmission coefficients 

change only slightly, which may cause bad conditioning for parameter identification 

process. This will be discussed in Chapter 7.   
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Chapter 6 Parameter Identification  

 

6.1 Introduction  

Waveguides, such as piping systems, comprise joints in the form of flanges, hangers, 

bolts, valves, pumps and changes in section. These joints contribute to inertia, stiffness 

and damping and can dramatically alter the dynamic response of the whole system. In 

many cases these properties are poorly known. A good estimate of the properties of the 

joints would not only help to predict the dynamic response, but also benefit controlling 

the vibration level of the waveguides by designing and modifying the joint structures. 

This chapter discusses approaches by which a parametric joint model is updated from 

measured wave reflection and transmission coefficients. The experimental 

implementation of the iterative approach is described in Chapter 7 using the models 

discussed in Chapters 2, 4 and 5.  

 

A theoretical model for a structure can be updated by experimental measurements. This 

procedure includes two main steps: the first is to determine an appropriate parametric 

model for the structure; the second is to estimate the corresponding parameters of the 

model by experimental observation. Chapters 2, 4 and 5 have developed models for 

discontinuities in waveguides and derived the reflection and transmission coefficients in 

terms of the parameters of the discontinuities. Chapter 3 discussed a method to measure 

the wave amplitude reflection and transmission coefficients. In this chapter, the generic 

problem concerning parametric joint identification is introduced first. Then approaches 

concerning the estimation of the joint parameters from measured wave reflection and 

transmission coefficients are studied. Attention is focused on the Gauss-Newton method 

in which an objective function is defined that quantifies the discrepancy between 

measured and predicted reflection and transmission coefficients. Minimisation of this 

objective function is a non-linear optimisation problem that yields estimates for the 

parameters of the discontinuities. Problems concerning the choice of the initial values of 
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the parameters, criteria for terminating the iteration and evaluation of the accuracy of 

the estimates are also discussed. 

 

 

6.2 Generic Problem  

This section introduces the generic problem concerning joint parameter identification. A 

joint is usually used to connect two or more substructures. Some typical examples have 

been shown in Figure 5.1. An example case of coplanar substructures connected by a 

joint is given in Figure 6.1. When an external excitation is applied to a branch, for 

example, substructure a , response will arise not only in substructure a  itself, but also 

in b  and c  through the joint. From the viewpoint of wave propagation in structures, the 

excitation in waveguide a  gives rise to structural waves incident upon the joint, which 

may be composed of several wave modes, such as longitudinal, flexural, torsional, etc. 

At the joint the incident waves are partly transmitted to waveguides b  and c , and partly 

reflected to waveguide a  as well. If there are more excitations in the system, or if the 

reflections from ends of the waveguides are considered, more reflected waves and 

transmitted waves will be generated. Here the properties of the joint play a crucial role. 

They determine the response of the whole system.  

 

ba

x

+a

−a

+b

c

+c
y

θ

−c

−b

f

 
Figure 6.1 Joint with three coplanar waveguides.  

 

The objective is now to investigate the dynamic characteristics of the joint, model it and 

try to estimate its parameters, such as the inertia, stiffness and damping, from 

measurements of the responses in waveguides a , b  and c . Here the wave amplitude 

reflection and transmission coefficients of the joint are chosen to be a measure of the 

dynamic characteristics of the system. The reason is that the reflection and transmission 



Chapter 6 Parameter Identification 

 -121-

coefficients depend on the properties of the waveguide and joint. Correspondingly, the 

scattering coefficients thus can reveal the characteristics of the waveguide and joint. 

Some parametric models which relate the reflection and transmission coefficients to the 

properties of the joint have been developed in Chapters 2, 4 and 5. Chapter 3 discussed 

a method by which the reflection and transmission coefficients corresponding to each 

wave mode can be estimated from wave amplitude measurements. Now the problem is 

how to estimate the parameters of the joint model from the measured reflection and 

transmission coefficients. Questions such as which coefficient or coefficients (reflection 

or transmission) is to be used, and in which frequency range the measured data is to be 

chosen to update the parameters will be investigated.  

 

Basically two methods may be employed to estimate the parameters of the joint in this 

stage: 

1) Direct method. If the parameters of the joint can be explicitly expressed as functions 

of the reflection and transmission coefficients, substituting the measured reflection and 

transmission coefficients into the corresponding expressions gives the parameters 

directly. This method is simple, but in most cases either such expressions do not exist or 

the expressions suffer from high sensitivity to measurement errors. Under such 

situations this method cannot help.  

2) Iterative method. It is quite usual that differences are found between the measured 

data and analytical model. An objective function is usually defined as the sum of the 

squares of the differences between the measured and estimated data. The unknown 

parameters can be updated by minimising this objective function step by step through an 

iterative algorithm. If the change in the parameters between successive iterations 

decreases rapidly enough, then the solution will converge. As far as this thesis is 

concerned, the objective function will be defined in terms of the power reflection and/or 

transmission coefficients of the discontinuities.  

 

Both of these methods require an appropriate parametric model of the joint. The second 

method, the iterative method, is widely used in parameter estimation. The following 

section introduces these two methods in detail.  
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6.3 Parameter Estimation Methods 

Joint identification, in the sense of parameter estimation, can be considered as an 

optimisation problem in which the objective is to improve the correlation (determined 

by an objective function) between the measured and predicted responses by making 

parametric changes to the analytical model. This often presents a least-squares problem. 

Many mathematical methods have been applied to such a problem, especially iterative 

methods [69, 70]. In this section, both the direct method and iterative method 

concerning parameter identification are introduced.    

 

6.3.1 Direct Method   

In some cases, the parameters of the joint model can be expressed in a simple way as  

 =AX b  (6.1) 

where q-vector X  represents the unknown parameters, n q×  matrix A  and 1n×  vector 

b  involve wave reflection and transmission coefficients. Assuming that matrix A  is 

invertible, the parameters can be estimated by  

 1−=X A b . (6.2) 

Generally, for a given joint model, A  may be singular or nearly singular at some 

frequencies. In this case, for an overdetermined problem ( n q> ), i.e. the reflection and 

transmission coefficients are measured at more frequencies than the number of the 

parameters, the inverse can be defined such that −AX b  can be minimised in the 

least-squares sense in which is   

 ( ) 1H H−+ =A A A A , (6.3) 

where the superscript H  indicates the complex conjugate transpose (the Hermitian). 

Overdetermining the set of equations can reduce the sensitivity to noise, sensor 

miscalibration and other measurement errors. However, if the errors are too large, this 

method is still prone to fail. On the other hand, it is not always possible to find such an 

explicit expression as equation (6.1).    
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6.3.2 Iterative Method  

If the direct method fails or is not applicable, an iterative algorithm can be used. In this 

section the nonlinear least-squares problem, usually encountered in parameter 

identification, is introduced and then an iterative method to solve this kind of problem is 

reviewed.  

 

6.3.2.1 Nonlinear Least-squares Problem 
The general nonlinear least-squares problem is introduced here. In data fitting or 

parameter identification problems, the objective function is usually defined as the sum 

of squares of the difference between the measured and predicted outputs, which can be 

written in the form 

 ( ) ( ) ( )T1
2

F =X R X R X  (6.4) 

where the q-vector ( )1 2 qX X X=X "  represents the unknown parameters to be 

updated. The n-vector ( ) ( )1 2 nR R R=R X "  is called the residual at X  and can be 

defined as   

 ( ) ( ) ( )m= −R X Y X Y X   (6.5) 

where ( )mY X  indicates the measured response and ( )Y X  represents the predicted 

output from the theoretical model based on parameters X . For the problem considered 

in this thesis, ( )mY X  is the measured reflection and/or transmission coefficient(s) at a 

number of frequencies and ( )Y X  is the predicted counterpart from the parametric joint 

model. Since the number of frequencies is typically much larger than the number of 

unknown parameters, the problem here is overdetermined. If the residual ( )R X  is a 

nonlinear function of parameters X , iterative procedures are usually required.  

  

6.3.2.2 Gauss-Newton Method 
Many iterative algorithms have been developed for parameter optimisation problems 

[69, 70]. In this section, the Gauss-Newton method is reviewed. It is an iterative method 

and requires the calculation of the Jacobean matrix of the objective function.  
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The Gauss-Newton solution to minimising the objective function in equation (6.4) can 

be expressed as (see references [69, 70] for detailed procedure)  

 ( ) 1T T
j j j j j

−
Δ = −X S S S R  (6.6) 

where jjj XXX −=Δ +1 , so  

 ( ) 1T T
1j j j j j j

−

+ = −X X S S S R  (6.7) 

where the subscript j  indicates the jth iteration, 1j+X  and jX  are the estimates of the 

parameters after j+1 and j iterations respectively, j m j= −R Y Y , jY  is the jth predicted 

output from the parametric model. jS  is the Jacobean matrix of jR  and is defined by  

 

1 1 1

1 2

2 2 2

1 2

1 2

q

qj

n n n

q j

R R R
X X X

R R R
X X X

R R R
X X X

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥∂ ∂ ∂= ⎢ ⎥
⎢ ⎥
⎢ ⎥
∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎣ ⎦

S

"

"

# # % #

"

. (6.8) 

Thus the updated parameters may be obtained iteratively from equation (6.6). This 

approach assumes that each component of the measured data, mY  has equal weight. 

However, in a typical measurement, the responses may have been measured to different 

accuracy levels or be of different orders of magnitude or different units. In this case, a 

weighting matrix can be incorporated into the updating algorithm. The objective 

function then becomes 

 ( ) ( ) ( )T1
2 RRF =X R X W R X   (6.9) 

where the weighting matrix, RRW  is positive definite and usually diagonal. Its elements 

may be given by, for example, the reciprocals of the variances of the corresponding 

measurements [6]. The Gauss-Newton method minimising this objective function gives 

the updated parameters as  

 ( ) 1T T
1j j j RR j j RR j

−

+ = −X X S W S S W R . (6.10) 

An assumption in equation (6.6) and (6.10) is that T
j jS S  or T

j RR jS W S  is nonsingular. If 

matrix T
j jS S  or T

j RR jS W S  has full rank, the equations may be solved. If they are ill-

conditioned or nearly rank-deficient, which may result from incorrectly scaled 
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parameters, for example, one of the parameters may have little influence on the 

measurements, or combinations of parameters having similar effects, it is wise to 

reconsider the choice of parametric model or objective function.  

 

If the model used in data fitting or parameter optimisation is good, ( )F X  is expected to 

be small and the minimising process is called a small residual problem. Otherwise one 

has a large residual problem.  

 

For overdetermined small residual problems with accurate initial data, convergence of 

the Gauss-Newton method can be expected to be fast. But the method may not converge 

at all for large residual problems and/or initial data far from the solution [69]. There 

may be several local minima in a given range, but the global minimum is usually the 

desired solution. Estimating the initial parameter values prior to iteration is of great 

importance since an inaccurate choice may lead to a local rather than the global 

minimum, or even divergence of iteration.  

 

 

6.4 Application of Parameter Estimation Methods to Joints 

Parameter identification of some specific joints from simulated wave reflection and 

transmission coefficients measurements is investigated in this section. For example, 

consider a case of a mass-like discontinuity in a straight waveguide, shown in Figure 

6.2. The discontinuity is characterised by a mass, m  and a moment of inertia, J . The 

objective is to estimate the joint parameters, m  and J  from simulated reflection and 

transmission coefficients measurements for which the true parameter values are known. 

The parameter identification procedure is shown in Figure 6.3, and includes the 

following steps:  

1) Set up the joint model and assume some initial joint parameter values; 

2) Evaluate the reflection and transmission coefficients in terms of the parameters of 

the discontinuity; 

3) Evaluate the displacements (FRFs) at ‘sensor locations’ assumed for simulations for 

given input; 

4) Add noise to the simulated sensor displacements; 
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5) Estimate wave amplitudes from noisy simulated sensor displacement measurements; 

6) Estimate reflection and transmission coefficients from wave amplitudes obtained at 

step 5; 

7) Estimate joint parameters from reflection and transmission coefficients obtained in 

steps 2 and 6 (for direct method, data from step 6 only are used); 

8) Compare updated joint parameters with assumed values at step 1, and compare 

reflection and transmission coefficients from updated model with simulated 

measurements. 

 

,m J

 
Figure 6.2 A mass-like discontinuity attached to a uniform beam. 
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Figure 6.3 Flow chart of joint parameter identification based on simulated response data.  

 

In short, these steps can be merged into two basic processes: one is to generate a 

simulated data set. This is a forward problem, including steps 1-6. The other, the inverse 

problem, is to identify joint parameters from the simulated data, step 7 and evaluate the 

accuracy of the applied approach, step 8. When using practical experimental data to 

estimate the joint parameters, measured rather than simulated reflection and 
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transmission coefficients will be employed in the process. This will be discussed in 

Chapter 7.  

 

Apart from these conventional methods, some particular methods may also be very 

useful for some special cases. These involve identifying certain frequencies, for 

example, such as the frequency at which 3 2ϑξ =  occurs in the mass-like right-angled 

joint and the frequency at which 3/ 1χ ξ =  occurs in the spring-like right-angled joint 

discussed in Chapter 5. If such a point can be found, the corresponding parameter can 

be estimated directly. The other parameter (or parameters) can be estimated by the 

conventional methods, and it will be easier since the number of the parameters to be 

identified has been reduced.  

 

6.4.1 Direct Method for a Mass-like Discontinuity 

Consider flexural wave propagation in an infinite waveguide to which a mass-like 

discontinuity is attached at 0x =  as shown in Figure 6.2. The expressions for the direct 

method can be derived easily from equation (2.50) as 

 ( ) ( )( )2 1 1PP PP PP PPi r t i r tξ μ+ + = − − + +⎡ ⎤⎣ ⎦  (6.11) 

and  

 ( ) ( )3 2(1 ) 1PP PP PP PPi r t i r tξ ϑ⎡ ⎤+ − = − + −⎣ ⎦  (6.12) 

where parameters μ  and ϑ  are the non-dimensional mass and moment of inertia 

respectively given by equation (2.51). They are the joint parameters to be estimated.  

 

Equations (6.11) and (6.12) are scalar equations and independent of each other. The 

mass, μ  and moment of inertia, ϑ  can be estimated from these two equations based on 

the reflection and transmission coefficients respectively at a single frequency. The 

results obtained in this way can be highly affected by noise. By considering n 

frequencies, each equation can be stacked to form a matrix equation in the form of 

X =A b , where A  and b  are 1n×  vectors and X  is a scalar. Then the parameters can 

be estimated in a least-squares sense by equation (6.3). This may reduce the effect of 

noise on data from a single frequency. However, simulations have been performed and 

results (not presented here) indicate that A  and b  are very sensitive to the phase errors 
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of the ‘measured’ reflection and transmission coefficients. This can be explained by 

inspection of equation (3.12), where the terms involving bk a  and/or bk b  influence the 

phases of estimated reflection and transmission coefficients. Terms bk a  and bk b  can 

typically be very large so that the errors in the phases of the reflection and transmission 

coefficients also become very large, especially at high frequencies. The joint parameters 

estimated from these reflection and transmission coefficients contaminated by large 

phase errors are also dramatically affected. Therefore, this direct method, from this 

point of view, does not give accurate results.  

 

For a spring-like discontinuity in a straight waveguide, similar expressions to equations 

(6.11) and (6.12) can also be obtained. For more complicated joint models, such as 

joints in a right-angled bends, it is difficult or impossible to find such explicit 

expressions for the joint parameters.  

  

6.4.2 Iterative Method for a Mass-like Discontinuity 

Since the phases of reflection and transmission coefficients are very sensitive to 

measurement errors, a method which uses only the moduli of the coefficients is applied 

to the same case discussed in the above section. For convenience, the squared moduli of 

the reflection or transmission coefficient, i.e. the power reflection coefficient, 2
PPrρ =  

or power transmission coefficient, 2
PPtτ =  is adopted.  

 

The power reflection coefficient for the joint shown in Figure 6.2 can be derived from 

equation (2.52) as 

 
( )( )

( )( )

23 3

2 2 2 6 3

2 2

4 8 4 8

μξ ϑξ μξ ϑξ
ρ

μ ξ μξ ϑ ξ ϑξ

⎡ ⎤− +⎣ ⎦=
+ + − +

 (6.13) 

where μ  and ϑ  are the non-dimensional mass and moment of inertia respectively. The 

residual jR  in equation (6.6) is defined as  

  j m j= −R ρ ρ . (6.14) 

In the above expression, ( )T
1 2m m m mnρ ρ ρ=ρ "  where miρ , 1, 2, ,i n= " , is the 

‘measured’ power reflection coefficient at the ith frequency and 
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( )T

1 2j j j jnρ ρ ρ=ρ "  is the analytical counterpart at the jth iteration. The ith 

component of jρ  is given by  

 
( )( )

( )( )

23 3

2 2 2 6 3

2 2

4 8 4 8
j i j i j i j i

ji
j i j i j i j i

μ ξ ϑ ξ μ ξ ϑ ξ
ρ

μ ξ μ ξ ϑ ξ ϑ ξ

⎡ ⎤− +⎣ ⎦=
+ + − +

. (6.15) 

The Jacobean matrix ( )S X  at jX  is  

 

T
1 2

1 2

j j jn

j
j j jn

ρ ρ ρ
μ μ μ
ρ ρ ρ
ϑ ϑ ϑ

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥= −
⎢ ⎥∂ ∂ ∂
⎢ ⎥
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S
"

"
 (6.16) 

where, by differentiating equation (6.13)     

 

( )( ) ( )
( ) ( )
( )( ) ( )
( )( )

3 3 3

22 2 2 6 3

3 3 3 3

22 2 2 6 3

8 2 2 4
,

4 8 4 8

8 2 2 4
.

4 8 4 8

i j i j i j i j i j i j iji

j i j i j i j i

i j i j i j i j i j i j iji

j i j i j i j i

ξ μ ξ ϑ ξ μ ξ ϑ ξ ϑ ξ μ ξρ
μ μ ξ μ ξ ϑ ξ ϑ ξ

ξ μ ξ ϑ ξ μ ξ ϑ ξ ϑ ξ μ ξρ
ϑ μ ξ μ ξ ϑ ξ ϑ ξ

⎡ ⎤− + − −∂ ⎣ ⎦=
∂ + + − +

⎡ ⎤− + − −∂ ⎣ ⎦= −
∂ + + − +

 (6.17) 

It should be noted that the non-dimensional mass, μ  and moment of inertia, ϑ  have 

different orders of magnitudes and so do the two derivatives in equation (6.17).  

 

If the objective function is insensitive to one or more parameters in a given frequency 

range, a reasonable value(s) can be assumed for the parameter(s) and only the other 

parameter(s) is updated. This will simplify the identification process dramatically in 

some circumstances since the more parameters there are to be updated usually makes 

the convergence of the iteration method slower and less reliable.   

 

The flow chart for the Gauss-Newton iteration procedure for the mass-like discontinuity 

on a beam is shown in Figure 6.4.  

 

When using the power transmission coefficient, 2
PPtτ =  to update the parameters of 

the joint, similar expressions can be derived. If there is no energy dissipated, ρ  and τ   

are related by  

 1ρ τ+ = . (6.18) 
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Therefore  

 τ ρ
μ μ
∂ ∂

= −
∂ ∂

 and τ ρ
ϑ ϑ
∂ ∂

= −
∂ ∂

. (6.19) 

The Jacobean matrix is thus the negative of that of the power reflection coefficient. Of 

course, 1m mρ τ+ ≠  due to measurement errors and damping, and one may be more 

accurate than the other.  

 

start

{ }T
1 1 1 , ,mμ ϑ ε=X ρ

 Model output

 Jacobean Matrix jS

jρ

( )1T T
1j j j j j m j

−
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{ }T
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Figure 6.4 Flow chart of Gauss-Newton solution procedure on a simple mass-like 

discontinuity. 
 

6.4.3 Iterative Method for a Right-angled Joint 

In the previous section, the power reflection and transmission coefficients could be 

expressed explicitly as functions of the joint parameters, as could the objective function. 

In this section a general method is introduced to obtain the power reflection coefficient 

or transmission coefficient whether they are expressed explicitly or not.   

 

For the case of the right-angled joint discussed in Chapter 5, Equation (5.16) can be 
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expressed in the form  

 =AC b  (6.20) 

where 
2 2 2

2

2 2 2
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⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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{ }T
PL PL PP PP PN PNr t r t r t=C , 

T3 3

30 0 1 1
2 2 2 2

i i i i iμξ χ μξ ϑξ ψ ϑξ
ξ ξ

⎧ ⎫
= + − + + − + − +⎨ ⎬
⎩ ⎭

b . 

Then the vector of reflection and transmission coefficients can be obtained as  

  1−=C A b . (6.21) 

If the power reflection coefficient, bbρ  is to be used in the objective function, for 

example, here a vector z  can be defined as   

  { }T0 0 1 0 0 0=z . (6.22) 

The vectors for other reflection and transmission coefficients can be deduced by 

analogy. Then the flexural reflection coefficient is given by  

  T
PPr = z C . (6.23) 

Given the definition of the power reflection coefficient as  

  H
PP PP PPr rρ = , (6.24) 

substituting Equations (6.21) and (6.23) into (6.24) yields  

  ( )HH 1 T 1
PPρ − −= b A zz A b . (6.25) 

Correspondingly the derivatives of PPρ  to parameter μ  can be obtained by  
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( ) ( )

( ) ( )

H1H H1 T 1 H T 1

1H HH 1 T H 1 T 1

PPρ
μ μ μ

μ μ

−
− − −

−
− − −

∂∂ ∂
= +

∂ ∂ ∂

∂ ∂
+ +

∂ ∂

Ab A zz A b b zz A b

A bb A zz b b A zz A

. (6.26) 

See Appendix 10 for the detailed derivation. Other derivatives can be found by analogy. 

If the four parameters, μ , ϑ , χ  and ψ  are to be estimated simultaneously, then 

{ }Tμ ϑ χ ψ=X . The Jacobean matrix S  at jX  becomes  

 

1 1 1 1

2 2 2 2

PPj PPj PPj PPj

PPj PPj PPj PPj

j

PPjn PPjn PPjn PPjn

ρ ρ ρ ρ
μ ϑ χ ψ

ρ ρ ρ ρ
μ ϑ χ ψ

ρ ρ ρ ρ
μ ϑ χ ψ

∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥= − ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥
⎢ ⎥
∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

S
# # # #

 (6.27) 

where the subscripts ji , 1, 2, ,i n= "  are the same as those in Equation (6.16).  

 

The method introduced above can also be used in the case of the pipe support model 

discussed in Chapter 4.  

 

 

6.5 Some Issues Concerning the Iteration Process  

For the iteration process of the Gauss-Newton method, some major issues will be 

encountered. They are discussed in detail in what follows.   

 

6.5.1 Choice of Objective Function 

In theory either the reflection or transmission coefficient can be chosen to establish the 

objective function. The one with higher sensitivity to the parameters (this is usually 

frequency dependent) is more preferable. In practice, the accuracy and ease of the 

measurements of the coefficients should also be considered.  
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6.5.2 Selection of Frequency Range 

The choice of the frequency range for the parameter identification process is usually 

based on the sensitivity of the objective function to the parameters. High sensitivity of 

the objective function to the parameters to be updated can improve the goodness of 

estimation.  

 

6.5.3 Initial Estimate of Parameters 

As mentioned at the end of section 6.3.2.2, the initial estimates are of importance to the 

convergence of the iteration. Good estimates of the initial parameters can lead to a fast 

convergence while poor estimates might result in slow convergence, converging to 

other local minima, or even divergence.  

 

Taking the mass-like discontinuity on a beam for example, there are two joint 

parameters to be updated. One is the non-dimensional mass, μ  and the other is the non-

dimensional moment of inertia, ϑ . In practice, an initial estimate of the mass can be 

expected to be more accurately known than that of the moment of inertia. However, an 

estimate of ϑ  can be obtained based on that of μ . Referring to equation (6.13), when  

 ( )( )3 32 2 0μξ ϑξ ϑξ μξ+ − =  (6.28) 

there is no reflection. From the ‘measured’ power reflection coefficient against non-

dimensional frequency 2ξ , the frequency 2ξ  at which 0ρ =  might be estimated. From 

equation (6.28), it yields  

 3 2

2
2

μϑ
μξ ξ

=
+

. (6.29) 

The parameter ϑ  can be estimated based on an estimate for μ  and the value of ξ  at 

this frequency.   

 

A more generally applicable technique for finding good estimates of the initial 

parameters is possible if a range for each parameter is assumed within which the global 

minimum is located. Then their ranges can be divided into a coarse grid (Figure 6.5). 

The initial estimates of the parameters can be chosen as the pair of  μ  and ϑ  where the 

objective function is lowest. However, it must be noted that this still does not guarantee 
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good initial parameter estimates since the global minimum may not lie within the ranges 

chosen.   

 

lowerμ upperμ
lowerϑ

upperϑ minF

 
Figure 6.5 Grid of the range of estimated μ  and ϑ  for the simple mass-like 

discontinuity.  
 

6.5.4 Termination of Iteration 

A theoretical model is always an approximation of the true system. Owing to the 

existence of measurement noise and inaccuracy of the joint model, the solution at the 

j th iteration jX  need never converge to the true value. It may converge to a value 

close to the true value depending on the noise level and nonsingularity of T
j RR jS W S  in 

equation (6.10). Many criteria for terminating the iteration can be defined. Considering 

the orders of magnitudes of these two parameters and that 0jμ =  or 0jϑ =  is possible, 

a weighted norm of the difference between the parameter vectors of two successive 

iterations is used, which is  

 T
j j XX jδ = Δ ΔX W X . (6.30) 

where XXW  is the weighting matrix. When jδ  is small enough, the iteration can be 

terminated. It should be noted that even if the value of equation (6.30) is very small, it is 

not sufficient to say that the method has converged. Only when j
j

δ
→∞
∑  tends to a 

constant, can it be said that the method is converged.   
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6.5.5 Evaluating the Goodness of the Estimates 

When the iteration process is complete, the identification result is obtained. The result 

needs to be evaluated before drawing any final conclusion. Two ways, graphical and 

numerical, may be used to measure the goodness of the result. From the plot of the 

‘measured’ and estimated power reflection or transmission coefficient, the result can be 

viewed easily. A more quantitative way for parametric models is to evaluate the result 

statistically, among which the sum of squares due to errors (SSE), R-square, adjusted R-

square and root mean squared error are quite often used. They are discussed in 

references [71, 72], here only a brief introduction is given.   

1) The sum of squares due to errors (SSE) 

This statistic measures the total deviation from the estimate to the response values and 

is given by 

 ( )2

1

n

i mi i
i

SSE w y y
=

= −∑  (6.31) 

where miy  is the ith observed or measured response value, iy  is the corresponding 

response predicted by the model after each iteration, iw  is the ith weighting factor 

( 0iw ≠ ) and n  is the number of response values. A value closer to zero means a better 

fit of the model.  Here the power reflection coefficient ρ  or transmission coefficient τ  

can be the substitute for y .  

2) R-square 

R-square is the square of the correlation between the measured and predicted response 

values. It is defined as the ratio of the sum of squares of the regression (SSR) and the 

total sum of squares (SST). SSR is defined as 

 ( )2

1

n

i i m
i

SSR w y y
=

= −∑  (6.32) 

where my  is the mean value of the observed response. SST is also called the sum of 

squares about the mean, and is defined as 

 ( )2

1

n

i mi m
i

SST w y y
=

= −∑  (6.33) 

It can be proved that SST SSR SSE= + . Therefore, R-square can be expressed as  

 2 1SSR SSER
SST SST

= = −  (6.34) 
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Note that it is possible to get a negative R-square. In this case, R-square cannot be 

interpreted as the square of a correlation. 

3) Adjusted R-square 

If the number of estimated parameters in the model is increased, R-square might 

increase although the estimation may not improve. To avoid this, the degrees of 

freedom adjusted R-square statistic is used. The adjusted R-square is defined as  

 ( )
( )

2
a

1
1

SSE n
R

SST n q
−

= −
−

 (6.35) 

where q  is the number of parameters to be estimated. Here the power reflection 

coefficient ρ  or transmission coefficient τ  can be the substitute for y . The R-square 

and adjusted R-square can take on any value less than or equal to 1, with a value closer 

to 1 indicating a better estimate.  

4) Root mean squared error 

The root mean square error is defined as  

 SSERMSE
n q

=
−

. (6.36) 

A RMSE value closer to zero means a better estimate.  

 

The R-square and the adjusted R-square include both information of SSE and SST. Only 

the R-square will be given in what follows. 

 

 

6.6 Numerical Simulations on a Mass-like Discontinuity  

The reflection and transmission coefficients of a mass-like discontinuity in a straight 

waveguide have been given in terms of the parameters of the discontinuity and 

waveguide at the end of Chapter 2. In Chapter 3, by introducing a noise model to the 

transducer array measurements, the reflection and transmission coefficients were 

obtained from the simulated noisy measurements. In this section, by considering the 

simulated noisy reflection and transmission coefficients as the ‘measured’ counterparts, 

numerical simulations are performed on parameter identification of this discontinuity. 

The intention is to investigate the robustness of the Gauss-Newton method on joint 

identification. For simplicity, only the power reflection coefficient is used in the 
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simulations.  

 

Non-dimensional mass, 0 50μ =  and non-dimensional moment of inertia, 4
0 10ϑ =  are 

chosen as the true values of the parameters of the discontinuity. In Figure 6.6 the noisy 

power reflection coefficients are plotted against the non-dimensional frequency, 
2 / lcξ ωκ= . The noise level is 1 2 2%σ σ= =  here. The noisy power reflection 

coefficient is calculated at 1000 values of 2ξ , which are linearly spaced in the 

frequency range considered. The dotted line indicates the true value based on the 

theoretical model. Owing to the randomness of the noise at each point, the simulated 

‘measured’ reflection coefficient is only one particular case. The conclusions drawn 

here are therefore only limited to this case.    
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    Figure 6.6 Numerical simulations of noisy power reflection coefficient: , 

numerical simulations; , noise free values based on theoretical model. 
 

6.6.1 Effect of Selected Frequency Range 

The objective function is defined over a frequency range. Therefore, the parameters 

estimated by the Gauss-Newton method are only valid to a particular frequency range. 

This section examines the influence of frequency range selected for parameter 

estimation on the identified results. The accuracy of identified results depends on the 
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sensitivity of the objective function to the unknown parameters. This is also shown in 

the following analysis.   

 

Four cases of choosing frequency ranges are studied here. Based on the behaviour of the 

power reflection coefficient over the whole frequency range considered, 

[ ]2 30.1, 3.0 10ξ −∈ × , [ ]2 33.1, 6.0 10ξ −∈ ×  and [ ]2 36.1, 9.0 10ξ −∈ ×  are considered 

as the first three cases. Case 4 includes all the frequencies of the first three cases. In the 

first range ρ  is of small magnitude and the noise is also small. In the third range ρ  is 

getting larger and so does the noise (which is due to the chosen noise model). In the 

second range, ρ  changes rapidly with frequency. In the frequency range above 
2 39.0 10ξ −> × , ρ  is almost independent of frequency which will cause bad 

conditioning of the estimation process, so it is not considered here.  

 

The dimensionless mass, μ  and moment of inertia, ϑ  are estimated over the four 

frequency ranges. Owing to the equal relative noise levels, the weighting matrix of the 

objective function is taken to be the identity matrix. Figure 6.7 shows the true power 

reflection coefficient compared with the one estimated from the identified parameters in 

the third frequency range. The estimated power reflection coefficient is very close to the 

true one. The estimated results over the four frequency ranges are listed in Table 6.1. 

The results for the third frequency range are the worst. The next section gives the reason 

for the different estimation accuracies.   

 

Table 6.1 The estimated values of μ  and ϑ  in different frequency ranges: noise free 
values: 0 50μ =  and 3

0 10 10ϑ = × . (Percentages in the brackets are relative errors).   
2ξ  ( 310−× ) μ  ϑ  (× 310 ) 

[ ]0.1, 3.1  51.38 (2.8%) 10.06 (0.6%) 

[ ]3.1, 6.0  57.30 (14.6%) 10.28 (2.8%) 

[ ]6.0, 9.0  39.26 (-21.5%) 9.33 (-6.7%) 
Case 4 51.74 (3.5%) 10.09 (0.9%) 

Note: Case 4 includes all the frequencies of the first three cases.  
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Figure 6.7 Identified power reflection coefficient in the frequency range 
[ ]2 36.0, 9.0 10ξ −∈ × : , predicted by true values of μ  and ϑ ; , predicted 

based on identified results of μ  and ϑ . 
 

6.6.2 Sensitivity of the Objective Function to Parameters 

The accuracy of the estimated parameters is determined by the sensitivity of the 

objective function to these parameters. In Figure 6.8, the objective functions (equation 

(6.4)) composed of power reflection coefficient for the four frequency ranges are plotted 

against the relative mass and inertia parameters, 0/μ μ  and 0/ϑ ϑ . It can be seen that the 

minimum of the objective function is a valley-like area parallel to the mass μ  axis, 

especially for the cases of 2 and 4. This means that the objective function is less 

sensitive to the mass parameter, μ  than to the moment of inertia, ϑ . That is why the 

estimated value of μ  is relatively poor compared to that of ϑ . 

 

The condition for termination of the iteration process is that the 2-norm of normalised 

change of the unknown parameter vector of successive steps (see Figure 6.4) is less than 

0.1%. Table 6.2 lists the number of total steps of the iteration for each frequency range 

and the step change of the mass and moment of inertia relative to the true values in the 

last step of the iteration. The condition number of the Jacobean matrix in the last 

iteration step is also given. The condition number of the Jacobean matrix corresponds to 

the accuracy of the identification results. The smaller the condition number, the better 
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the estimated results. The results of the identified moment of inertia, ϑ  are better than 

those of the mass, μ  because the objective function is more sensitive to the moment of 

inertia (except for the first frequency range for which the objective function is flat 

around the true values of the parameters). Although the results for the first frequency 

range are the best, it is not necessarily the best option. In practical measurements the 

measurement noise might have a large influence on the measured power reflection 

coefficient at low frequencies. Based on the same noise level in all the frequency ranges, 

the frequency range of case 4 is a good choice. It includes all the frequency ranges and 

the condition number of the Jacobean matrix is also relatively small.  
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Figure 6.8 Objective function in the four frequency ranges: (a) [ ]2 30.1, 3.0 10ξ −∈ × ; (b) 

[ ]2 33.1, 6.0 10ξ −∈ × ; (c) [ ]2 36.1, 9.0 10ξ −∈ × ; (d) case 4.  
 

Table 6.2 Step changes of μ  and ϑ  relative to true values and the condition number of 
S  in the last iteration.  ( j  is the number of iterations)  

2ξ  ( 310−× ) j  /j jμ μΔ  /j jϑ ϑΔ  Condition number of S  

[ ]0.1, 3.1  4 40.33 10−×  40.99 10−×  143 

[ ]3.1, 6.0  5 40.29 10−− × 40.05 10−− × 355 

[ ]6.0, 9.0  7 30.90 10−×  30.23 10−×  498 
Case 4 5 40.42 10−− × 40.08 10−− × 144 
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6.6.3 Effect of Initial Parameter Values  

Good estimates of the initial parameters for the iteration process are paramount to avoid 

convergence to a local minimum rather than the global minimum, since the initial 

values of the parameters influence the iteration direction. The method for selecting the 

initial values of the parameters introduced in Section 6.5.3 was used in the above 

iteration processes. In order to illustrate the effect of the initial values of the parameters, 

in what follows two sets of initial values of the parameters are chosen. Take the 

frequency range of Case 4 for example. In Figure 6.8(d) there are several local minima 

of the objective function. Figures 6.9 and 6.10 show the contour plots of the objective 

function of Figure 6.8(d). Also shown in these figures are the steps of the iteration 

process with two different initial parameter pairs. It is obvious that a good estimate of 

the initial parameters takes fewer steps to reach the final result. A bad choice of the 

initial values of the parameters takes more steps to reach the global minimum or may 

fail to converge to the global minimum due to existence of the local minima.  
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Figure 6.9 Contour plot of the objective function in the frequency range of case 4 with 
starting parameters, 0/ 0.8μ μ =  and  0/ 0.8ϑ ϑ = : *, starting point; ×, iteration steps; 

O, true values.  
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Figure 6.10 Contour plot of the objective function in the frequency range of case 4 with 
starting parameters: 0/ 0.2μ μ =  and  0/ 0.5ϑ ϑ = : *, starting point; ×, iteration steps; 

O, true values. 
 

 

6.7 Summary  

In this Chapter, two methods, a direct method and an iterative method, have been 

discussed to estimate the joint parameters from measured reflection or transmission 

coefficients. 

 

Owing to the high sensitivity of the phases of the reflection and transmission 

coefficients to the measurement errors, the direct method including the phase 

information of the reflection and transmission coefficients does not give robust 

estimates. The emphasis is then put on an iterative method, the Gauss-Newton method, 

in which only the modulus of the reflection or transmission coefficient is included.  

 

For the iterative method, the initial values of the parameters are of importance since a 

bad choice may lead the process to a local minimum rather than the global minimum, or 

divergence. The non-dimensional joint parameters have different orders of magnitude. 

Therefore, when terminating the iteration, not only the absolute change but also the 

relative change in each parameter should be considered.  
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Based on the sensitivities of the objective function to the parameters of the discontinuity, 

the iteration process can be performed on the power reflection coefficient or 

transmission coefficient. In practice, the accuracy and ease of the measurements on the 

corresponding coefficient should also be considered when establishing the objective 

function.  

 

Owing to the difference of the sensitivity of the objective function to the parameters in a 

given frequency range, not every parameter is required to be involved in the iteration 

process. A reasonable value can be assumed for the parameter to which the objective 

function is much less sensitive. By this way, the identification process can be simplified 

dramatically and the conditioning of the problem can be improved correspondingly.  

 

To illustrate the applicability of the Gauss-Newton method, numerical simulations have 

been performed on the parameter identification of a mass/moment of inertia 

discontinuity in a straight beam. Some issues relating to the iteration process have been 

investigated.  
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Chapter 7 Experimental Validation of the 
Parameter Identification Method 

 

7.1 Introduction  

The application of parameter identification methods to reflection and transmission 

coefficients of joints was introduced and numerical case studies were carried out in 

Chapter 6. In this chapter, the joint identification technique is validated using 

experimentally measured reflection and transmission coefficients. These are taken from 

three types of structures discussed in Chapters 3, 4 and 5, which are mass/moment of 

inertia discontinuities on a straight beam (Figure 3.12), supported straight pipes (Figure 

4.4) and a right-angled pipe bend (Figure 5.4). The parameters estimated by the joint 

identification method are compared to the directly measured parameters for the mass-

like discontinuities in a beam and the pipe supports. Problems concerning the selection 

of frequency ranges, choice of the objective functions (i.e. reflection or transmission 

coefficient) are investigated. The feasibility and robustness of the method are examined 

by these experimental case studies. 

 

 

7.2 Parameter Identification of the Mass/Moment of Inertia 
Discontinuity on a Beam  

The wave reflection and transmission coefficients of a mass/moment of inertia 

discontinuity on a straight waveguide were described in Chapter 2 and measurements of 

the reflection and transmission coefficients of steel blocks attached to a straight beam 

were presented in Chapter 3. Three mass/moment of inertias were used, which are 

characterised by long-thin (block 1), short-thin (block 2) and short-thick (block 3) (see 

Table 3.3). The experimental results showed that estimates of the reflection and 
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transmission coefficients based on the assumption of reflected beam ends are more 

accurate than those which assume anechoic boundaries. Therefore, in the iteration 

process, the measured power reflection and transmission coefficients found using this 

assumption are used.  

 

7.2.1 Results over Different Frequency Ranges 

The objective function is composed of reflection and/or transmission coefficients over a 

chosen frequency range. This section presents the parameter identification results using 

different frequency ranges. The iteration process is only performed on the power 

reflection coefficient in this section. Figure 7.1 shows the measured power reflection 

coefficient ρ̂  for block 1 compared with the predicted values using directly measured 

mass and inertia. Below 200Hz, the measured results are contaminated by noise and 

poor numerical conditioning of the Wave Amplitude Decomposition (WAD) method. 

Above 1500Hz oscillations in the estimates become apparent. In accordance with the 

above behaviour of the power reflection coefficient, four ways of selecting frequency 

ranges are considered. They are 500-1500Hz, 1000-2000Hz and 200-3000Hz in which 

each frequency was selected and Case 4 in which 20 equally spaced frequencies are 

selected in the range 200-3000Hz. Figures 7.2(a)-(d) show the mesh plots of the 

objective function against the non-dimensional mass and moment of inertia over the 

four frequency ranges. The valley-like feature parallel to the mass parameter axis 

indicates that the objective function is more sensitive to the moment of inertia, therefore 

in general the estimations of the moment of inertia are more accurate than those of the 

mass. The flat shape of the objective function in range 500-1500Hz (Figure 7.2(a)) 

implies that if the initial value of the moment of inertia is far from the true value, bad 

estimates of the moment of inertia might also be produced.  
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Figure 7.1 Power reflection coefficient of block 1: , measured; , estimated 
based on identified parameters in Case 4; , estimated based on directly measured 

mass and moment of inertia. 
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Figure 7.2 Objective function based on power reflection coefficient for block 1: nμ  and 

nϑ  are the non-dimensional mass and moment of inertia parameters based on direct 
measurements: (a) 500-1500Hz; (b) 1000-2000Hz; (c) 200-3000Hz; (d) Case 4.  

 

The non-dimensional mass μ  and moment of inertia ϑ  of block 1 are estimated for 

each chosen frequency range and presented in Table 7.1. The results are the best fit to 

the measured power reflection coefficient in each frequency range. Also given in the 
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table are the results based on direct measurements. The percentages in the brackets are 

the relative errors of the identification results with respect to the direct measurements. 

The directly measured results are only nominal values of the parameters and are not 

necessarily exact. Due to the connection condition of the mass blocks to the beam and 

measurement noise, it is normal that differences exist between the direct measurements 

and estimates from the reflection coefficient. The results from the range 200-3000Hz 

and Case 4 are very similar. Case 4 actually uses a weighted matrix, which speeds up 

the iteration process (fewer frequencies), but the random deviations of the measured 

data are still not removed. As a whole, the percentages shown in the table indicate the 

parametric model of the mass-like discontinuity is good enough. 

 

Table 7.1 Estimates of the parameters of block 1 from measured power reflection 
coefficient. 

 directly 
measured

500-1500Hz 
1000-

2000Hz 

200-

3000Hz Case 4 

mass, μ  77.0 58.2 (-24%) 71.1(-8%) 74.8 (-3%) 76.7 (-0.4%) 

inertia, ϑ 310×  17.0 16.9 (-1%) 17.6 (4%) 17.8 (5%) 17.8 (5%) 

Note: Case 4: 20 equally spaced frequencies in the range 200-3000Hz.  

 

Also shown in Figure 7.1 is the predicted power reflection coefficient using parameter 

values for Case 4. It agrees with the predicted power reflection coefficient based on the 

directly measured mass and inertia very well except in the middle of the frequency 

range. The reconstructed power reflection coefficients for other frequency ranges (not 

shown in the figure) are also very close to the predicted ones based on directly 

measured mass and moment of inertia. This means the distinctions between the results 

from different frequency ranges are very small.  

 

7.2.2 Results from Measured Transmission Coefficients 

The parameters of the discontinuity can also be estimated from the measured power 

transmission coefficient. Figure 7.3 shows the measured power transmission coefficient 

along with the one predicted using the identified parameters in Case 4 and the one based 

on directly measured mass and moment of inertia. Although larger deviations are found 

than the power reflection coefficient, the results based on the identified parameters also 
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mimic the general trend very closely. Table 7.2 shows the mass and moment of inertia 

identified from the power transmission coefficient. The oscillations on the measured 

power transmission coefficient are larger than those of the power reflection coefficient, 

therefore the identified parameters from the transmission coefficient have larger 

deviations than those obtained from the reflection coefficient. Again the results for the 

moment of inertia are more accurate than those for the mass, which is due to the high 

sensitivity of the objective function to the moment of inertia.  
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Figure 7.3 Power transmission coefficient of block 1: , measured; , predicted 
from parameters identified in Case 4; , predicted based on directly measured mass 

and inertia.  
 

Table 7.2 Estimation of the parameters of block 1 from measured power transmission 
coefficient. 

 directly 
predicted

500-1500Hz 
1000-

2000Hz 

200-

3000Hz 
Case 4 

mass, μ  77.0 46.3 (-40%) 43.2(-44%) 68.7 (-11%) 67.6 (-12%) 

inertia, ϑ 310×  17.0 16.3 (-4%) 16.2 (-5%) 17.7 (4%) 17.7 (4%) 

Note: Case 4: 20 equally spaced frequencies in the range 200-3000Hz.  
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7.2.3 Results from Normalised Reflection or Transmission 
Coefficient 

If the damping of the system is negligible, the power reflection and transmission 

coefficients should sum to unity. The sum of the measured power reflection and 

transmission coefficients for block 1 has large oscillations although it is nearly unity in 

the frequency range up to 3000Hz (Figure 3.21). The damping is not considered in the 

beam or in the model of the discontinuity. In order to remedy this, the oscillations in the 

power reflection and transmission coefficients can be smoothed via normalisation by 

their sum, i.e. ( )ˆ ˆ ˆ/ρ ρ τ+  or ( )ˆˆ ˆ/τ ρ τ+ . Thus the normalised power reflection and 

transmission coefficients sum to unity. Therefore, the parameters estimated from the 

normalised power reflection coefficient or transmission coefficient are the same. This 

can be deduced from Equation (6.19). Figures 7.4(a) and (b) show the normalised power 

reflection and transmission coefficients along with those predicted from the identified 

and directly measured mass and moment of inertia. The oscillations are reduced 

dramatically by the normalisation, and the agreement between the measured and 

predicted data is improved greatly.  
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Figure 7.4 Normalised power reflection and transmission coefficients of block 1: , 

measured; , predicted from identified parameters from 200-3000Hz; , 
predicted based on directly measured parameters.  

 

Table 7.3 lists the estimated mass and moment of inertia from the normalised power 

reflection or transmission coefficient. The estimated mass and moment of inertia in the 

four frequency ranges are much more consistent than those using the unnormalised 

power reflection and transmission coefficients (see Table 7.1). It was mentioned in 

Section 7.2.1 that the directly measured results are only nominal values of the 
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parameters and are not necessarily exact. Normalisation of reflection and transmission 

coefficients can improve the robustness of estimation.  

 

Table 7.3 Estimates of the parameters of block 1 from normalised power reflection or 
transmission coefficient, ( )ˆ ˆ ˆ/ρ ρ τ+  or ( )ˆˆ ˆ/τ ρ τ+ . 

 directly 
predicted

500-

1500Hz 

1000-

2000Hz 

200-

3000Hz 
Case 4 

mass, μ  77.0 59.9 (-22%) 48.3 (-37%) 59.2(-23%) 61.5 (-20%) 

inertia, ϑ 310×  17.0 17.0 (0%) 16.5 (-3%) 17.2 (1%) 17.3 (2%) 

Note: Case 4: 20 equally spaced frequencies in the range 200-3000Hz.  

 

7.2.4 Accuracy of the Identified Results 

The goodness of the above estimates in terms of R-square (equation (6.34)) is listed in 

Table 7.4. In all, the R-square values are very close to unity, which means the iteration 

processes are very successful and the model of the discontinuity accurately predicts the 

measured data used in the fit. In each frequency range, the estimate based on the power 

reflection coefficient is marginally better fitted by the theoretical model than the power 

transmission coefficient. This means that there is more confidence in the estimate using 

the power reflection coefficient and that the data of the power reflection coefficient are 

more reliable. After normalisation, the goodness of fit improves again since the errors 

caused by neglecting the damping of the system are reduced.  

 

Table 7.4 Goodness of the estimation for block 1 in terms of 2R . 

 
500-

1500Hz 

1000-

2000Hz 

200-

3000Hz 
Case 4 

ρ  0.9989 0.9966 0.9979 0.9980 

τ  0.9845 0.9964 0.9973 0.9966 

( )ˆ ˆ ˆ/ρ ρ τ+  or ( )ˆˆ ˆ/τ ρ τ+  0.9992 0.9985 0.9995 0.9993 

Note: Case 4: 20 equally spaced frequencies in the range 200-3000Hz.  
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7.2.5 Results for Blocks 2 and 3 

Figures 7.5(a)-(d) show the measured normalised power reflection and transmission 

coefficients for block 2 and block 3 together with those predicted from the directly 

measured mass and moment of inertia. Again, the normalisation smoothes the 

oscillations on the measured reflection and transmission coefficients, which can be seen 

from comparison with Figure 3.21. The identified mass and moment of inertia of blocks 

2 and 3 from the measured power reflection and transmission coefficients in the 

frequency range of Case 4 are listed in Table 7.5. The directly measured values of the 

parameters and the R-square values of the estimation are also given in the table. The 

estimated parameters are within 16% of the directly measured ones. The values of the 

R-square are very close to unity. All these indicate that the discontinuity model closely 

captures the dynamic response of the structure. The robustness of the iterative method is 

also demonstrated.   
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Figure 7.5 Power reflection and transmission coefficients for blocks 2 and 3: , 

measured; , predicted from identified parameters of Case 4; , predicted based 
on directly measured parameters: (a) block 2: fitting ( )ρ ρ τ+ ; (b) block 2: fitting 

( )τ ρ τ+ ; (c) block 3: fitting ( )ρ ρ τ+ ; (d) block 3: fitting ( )τ ρ τ+ . 
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Table 7.5 Estimates of the parameters of blocks 2 and 3 from normalised measured 
reflection and transmission coefficients. 

 block 2 block 3 

 directly 
measured

( )ˆ ˆ ˆ/ρ ρ τ+  or 

( )ˆˆ ˆ/τ ρ τ+  
directly 

measured 
( )ˆ ˆ ˆ/ρ ρ τ+  or 

( )ˆˆ ˆ/τ ρ τ+  
mass, μ  57.7 49.2 (-15%) 115 96.5 (-16%) 

Moment of inertia, 
ϑ ( 310× ) 7.68 7.97 (4%) 15.4 14.1 (-8%) 

2R  / 0.9995 / 0.9855 
Note: Case 4: 20 equally spaced frequencies in the range 200-3000Hz. 

 

7.3 Parameter Identification of Pipe Supports  

In Chapter 4, measurements of the reflection and transmission coefficients of four 

supports, long and short aluminium, long and short steel (see Figure 4.8 and Tables 4.2 

and 4.3), were presented. In this section, the estimated parameters of these pipe supports 

are investigated. Since the damping in the parameter model of the pipe and supports is 

neglected, the measured reflection or transmission coefficients normalised by their sum 

are employed. The power reflection and transmission coefficients predicted from the 

directly measured parameters are very close to those estimated by the wave amplitude 

decomposition method. Therefore, these directly measured parameters are used as the 

initial values for the iteration process (see Table 4.4).  

 

Figures 7.6(a) and (b) show the normalised power reflection and transmission 

coefficients for the long aluminium support. The four parameters, translational and 

rotational stiffnesses and mass and moment of inertia of the support, are updated in the 

range 200-2000Hz. The final results for the four parameters are listed in Table 7.6. The 

power reflection and transmission coefficients predicted from these parameters are also 

plotted in the figure, which are the best fit to the normalised measurements and they 

agree very well. The general trends of the fitted reflection and transmission coefficients 

also have a good agreement with those predicted using the directly measured parameters.  
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Figure 7.6 Power reflection and transmission coefficients of the long aluminium support: 

, normalised measured; , predicted from directly measured parameters; , 
predicted from identified parameters using ( )ˆ ˆ ˆ/ρ ρ τ+  or ( )ˆˆ ˆ/τ ρ τ+ .  

 

The same process is performed for the other three supports. The normalised power 

reflection and transmission coefficients for each case are plotted in Figures 7.7 to 7.9. 

The frequency range for the iteration process for each case is selected based on the 

behaviour of the measured power reflection and transmission coefficients. The data 

around 350Hz are not used. The power reflection and transmission coefficients 

predicted from the identified translational and rotational stiffnesses, mass and moment 

of inertia are also given in the figures. They mimic the general trend of the normalised 

power reflection and transmission coefficients very well, especially at the middle 

frequencies. At low and high frequencies, relatively large deviations are found, which 

are considered as the consequence of the resonances occurring in these frequency ranges. 

The agreement for the long support of each material (aluminium or steel) is always 

better than that for the short one. This is consistent with the quality and confidence of 

the parameters estimated from the direct measurements.  
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Figure 7.7 Power reflection and transmission coefficients of the short aluminium 

support: , normalised measured; , predicted from directly measured 
parameters; , predicted from identified parameters using ( )ˆ ˆ ˆ/ρ ρ τ+  or ( )ˆˆ ˆ/τ ρ τ+ . 

 



Chapter 7 Experimental Validation of the Parameter Identification Method 

 -154-

 

200 700 1200 1700 20000

0.2

0.4

0.6

0.8

1

1.2

Frequency, Hz

τ

 

200 700 1200 1700 20000

0.2

0.4

0.6

0.8

1

1.2

Frequency, Hz

ρ

 
Figure 7.8 Power reflection and transmission coefficients of the long steel support: 

, normalised measured; , predicted from directly measured parameters; , 
predicted from identified parameters using ( )ˆ ˆ ˆ/ρ ρ τ+  or ( )ˆˆ ˆ/τ ρ τ+ . 
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Figure 7.9 Power reflection and transmission coefficients of the short steel support: 

, normalised measured; , predicted from directly measured parameters; , 
predicted from identified parameters using ( )ˆ ˆ ˆ/ρ ρ τ+  or ( )ˆˆ ˆ/τ ρ τ+ . 

 

The parameters estimated from the normalised power reflection or transmission 

coefficient for the four supports are listed in Table 7.6. Due to the complex 

configurations and boundary conditions of the supports, the values in the table are not 

exactly consistent with those calculated based on the dimensions of the supports and 

assumptions of simply-supported or clamped boundary conditions. However, the 

magnitudes of the values are still roughly within the theoretical values given by simply-

supported and clamped boundary condition assumptions (see Appendix 11). The 

percentages in the table indicate the relative deviation of the identified results from 

those directly measured and given in Table 4.4. The directly measured values of the 

parameters are only nominal values and not necessarily exact. The translational stiffness 

has a good consistency. Results for the other three parameters have relatively large 

discrepancies. This is due to the difference of the sensitivity of the objective function to 

the updated parameters. Table 7.7 gives the relative changes of the parameters and the 

condition number of the Jacobean matrix S  at the last step of iteration. The total 
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number of iteration steps for each support is also given in the table. The objective 

function is considered to be less sensitive to the parameter with large relative change. 

This is consistent with the percentages shown in Table 7.6. The large magnitude of the 

condition number of S  indicates relatively low confidence of accuracy.  

 

Table 7.6 Estimates of the parameters of the pipe supports from ( )ˆ ˆ ˆ/ρ ρ τ+ . (SI units) 

Support frequency TK , 610×  m  RK , 310×  J , 510−×  

aluminium 
long 200-2000 2.317  

(-11%) 
0.056 

(-30%) 
1.572 
(12%) 

3.276 
(15%) 

short 200-1400 7.929 
(-12%) 

0.046 
(-42%) 

2.369 
(29%) 

1.792 
(-15%) 

steel 
long 400-2000 4.465 

(-13%) 
0.077 

(-29%) 
3.785 
(40%) 

3.442 
(-10%) 

short 400-1400 14.737 
(1%) 

0.065 
(-31%) 

4.716 
(57%) 

6.474 
(204%) 

Note: Percentages in the brackets are relative deviations from the directly measured 
values given in Table 4.4.  

 

Table 7.7 Relative change of parameters and condition number of the Jacobean matrix 
S  at the last step of iteration for each pipe support.  

support j  
/Tj TjK KΔ  

( 310−× ) 

/j jm mΔ  

( 310−× ) 

/Rj RjK KΔ  

( 310−× ) 
/j jJ JΔ  

( 310−× ) 
n  

( 610× ) 

aluminium 
long 5 0.0017 0.2382 0.0270 -0.1708 1.4871 

short 5 -0.0017 -0.0071 -0.0530 -0.4307 2.1095 

steel 
long 5 -0.0005 -0.1078 0.0008 0.0709 1.1359 

short 6 -0.0023 0.0149 -0.0403 -0.2785 2.6010 

Note: j , total iteration times; n , condition number of S  at the last step. 

 

 

7.4 Parameter Identification of a Right-angled Pipe Bend  

This section discusses the estimation of the parameter of the right-angled bend of a 

piping system from measured power reflection and transmission coefficients. The 

iterative method introduced in Chapter 6 is used to update the joint parameters of the 

right-angled pipe bend discussed in Chapter 5. The intention is to validate the model of 

right-angled bend and verify the feasibility of the iterative method of parameter 

identification.  
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The measured power reflection and transmission coefficients of the right-angled pipe 

bend have been given in Chapter 5. A mass-free rigid connected model has previously 

been compared with the measured results of this structure by other researchers [63]. A 

more appropriate parametric model is still needed for better agreement. Although a 

general parametric model was developed in Chapter 5 in which four parameters, the 

translational and rotational stiffnesses, mass and moment of inertia, were considered, it 

is not necessarily the best choice for the parameter identification process. In the 

frequency range measured reliably, each of the power coefficients does not change 

much. Actually when applying the general bend model (with four parameters to update) 

to the iteration process over the frequency range 500-2000Hz, the Jacobean matrix is 

badly conditioned and the iteration does not converge. This means the general model is 

not appropriate for the iteration process.  

 

The iteration process was then applied to the mass-like and spring-like joint models. By 

investigating the agreement of the whole trend of each power coefficient and the 

goodness of the estimation, it is found that the measured results and spring-like model 

match well. The following discussion only focuses on the spring-like model of the bend. 

The frequency averaged method reduces the oscillations on the measured power 

reflection and transmission coefficients effectively (see Chapter 5), and the power 

reflection and transmission coefficients obtained by this manipulation nearly sum to 

unity, so are chosen to compose the objective function of the iteration process.   

 

When applying the spring-like model to update the translational and rotational stiffness 

parameters χ  and ψ  using PPρ  (can be obtained from equation (5.25)), the iteration 

process is terminated due to the bad conditioning of the Jacobean matrix S . This is 

because the objective function is insensitive to the translational stiffness, χ  because the 

joint is effectively rigid. By fixing 1χ =  (very rigid) and only updating the rotational 

stiffness parameter, finally 0.160ψ =  is obtained. This value means that the rotational 

stiffness of the joint is equal to the bending stiffness of a cantilevered pipe of length 

6.25 times the radius of gyration of the cross-section with a moment applied at the end. 

The predicted power reflection and transmission coefficients based on this result are 

shown in Figure 7.10. Compared with the massless rigid connected joint model  [63], 
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the general trend of each power coefficient has a much better agreement with the 

measured one. Relatively large differences are found for PLρ . This is because, in this 

case, PLρ  is of small order of magnitude. However, due to the measurement noise, such 

a small order of magnitude cannot be measured accurately by the equipment and 

method used here. Usually the axial wave amplitudes are more difficult to measure than 

the flexural ones. Therefore, the power coefficients involving axial waves are 

considered to be less reliable. They are presented here only for reference. The iteration 

process will not be performed through them.   
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Figure 7.10 Results for the power reflection and transmission coefficients of the right-

angled bend when iterating on the rotational stiffness using PPρ : 1χ = , 0.160ψ = : 
, raw measured; , frequency averaged; , predicted from identified 

parameters.  
 

Figure 7.11 shows the predicted power reflection and transmission coefficients based on 

the iteration on the rotational stiffness parameter ψ  through PPτ  when 1χ = . 

0.156ψ =  is obtained for this case. It is very close to the result when iterating using 

PPρ . It can be concluded that this right-angled bend behaves as a rotational spring-like 

joint in the frequency range discussed. In the axial direction the joint is considered to be 

rigidly connected; the rotational stiffness of the bend is about the bending stiffness of a 
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cantilevered pipe of length 6 times the radius of gyration of the cross-section with a 

moment applied at the end.  
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Figure 7.11 Results for the power reflection and transmission coefficients of the right-

angled bend when iterating on the rotational stiffness using bbτ : 1χ = , 0.156ψ = : , 
raw measured; , frequency averaged; , predicted from identified parameters. 

  

The difference between the identified and measured reflection and transmission 

coefficients originated from the limitations of the experimental data rather than the 

parameter identification method itself.  

 

 

7.5 Summary  

In this chapter, the joint identification method was applied to three types of structures, 

mass-like discontinuities on a beam, supported straight pipes and a right-angled pipe 

bend using measured reflection and transmission coefficients. The parameters of the 

first two structures estimated in this way were compared to the directly measured ones 

and good agreement has been achieved. There were problems with the pipe bend mainly 

because of the limitations in the experimental data rather than the method itself. Some 

problems concerning the iteration process were discussed, which can be concluded in 
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what follows.  

 

The selection of the frequency range for the parameter updating process relies on the 

sensitivity of the objective function to the parameters and the accuracy of the measured 

data. These two aspects should also be considered when choosing the power reflection 

or transmission coefficient to compose the objective function. High sensitivity of the 

objective function to the parameters and good quality of measured data lead to accurate 

estimates.  

 

The confidence of the estimated parameters is determined by the sensitivity of the 

objective function. For an insensitive parameter, if an appropriate value can be assumed, 

then removing this parameter from the iterative process can improve the conditioning of 

the process and increase the accuracy of the other parameters. If the above effort fails, a 

more suitable parametric model might be needed for the structure. 

 

In all, the parametric models for the structures are appropriate and can reveal the 

general trend of the reflection and transmission coefficients. The joint identification 

method is robust for the parameter identification of the discontinuities from the 

measured power reflection and transmission coefficients. 
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Chapter 8 Conclusions  

 

8.1 Introduction  

The motivation of this thesis has been to develop an approach by which the parameters 

of joints in beams and pipes can be estimated from the measured reflection and 

transmission coefficients. This chapter summarises the contributions that this work has 

made to the field. Recommendations for future work are given in the light of the 

conclusions drawn in this research.   

 

 

8.2 Modelling of Joints and Discontinuities 

Dynamic modelling of joints and discontinuities in built-up structures is a challenging 

task owing to the uncertainty involved in the joints and discontinuities. In most cases, 

the parameters of joints, such as their damping, stiffness, mass and inertia cannot be 

accurately modelled due to manufacturing uncertainties and variability of material and 

dimensions. In this thesis, joint models, such as a mass and moment of inertia 

discontinuity on a straight beam, a supported straight pipe and a right-angled pipe bend 

have been examined in Chapters 2, 4 and 5 respectively by using a general wave 

approach. By using wave approach, the displacements and internal forces can be related 

to the general wave amplitude vectors in terms of the displacement and internal force 

matrices respectively. Thus the conventional displacement continuity and force 

equilibrium equations can then be transformed and expressed by the wave amplitude 

vectors of the waveguides. This feature of wave approach makes it superior to modal 

method at solving problems of continuous systems. The parameter identification is 

based on the premise of the establishment of the joint models. For each joint model, the 

effect of joint parameters on wave reflection and transmission coefficients has been 

investigated through closed form solutions and numerical simulations. The experimental 
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results of the reflection and transmission coefficients of the three types of joints agreed 

well with the chosen models, which is prerequisite for the parameter identification in 

later chapters.  

 

 

8.3 Measurement Considerations 

A wave amplitude decomposition method has been reviewed by which the reflection 

and transmission coefficients of discontinuities in waveguides can be estimated from 

transducer array measurements. The estimation of reflection and transmission 

coefficients involves the post processing of measurements in which measurement noise 

can be amplified. A Gaussian-like noise model has been adopted to represent the 

measurement noise and a perturbation technique has been used to obtain closed form 

solutions for the mean and variance of the power reflection and transmission 

coefficients. These agree well with the Monte Carlo simulations. This has been 

discussed in Chapter 3. The exercise has given some insight into frequency ranges 

where reflection and transmission coefficients can be reliably estimated. This helps to 

determine the frequency ranges to accurately estimate the joint parameters from the 

measured scattering coefficients.  

 

 

8.4 Parameter Identification  

A parameter identification approach previously applied to FE models has been adapted 

in Chapter 6 to estimate the parameters of the wave models. Since the phases of 

measured reflection and transmission coefficients typically change rapidly with the 

transducer locations and cannot be measured accurately, only the magnitudes of the 

coefficients have been used. Thus the power reflection coefficient or power 

transmission coefficient has been chosen to establish the objective function, which is a 

non-linear function of the parameters of the wave models. The selection of the initial 

parameters, criteria of terminating the iteration process and evaluation of the accuracy 

of the estimates have been discussed. The updating approach converges rapidly when 

the initial parameters are estimated with sufficient accuracy.  
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8.5 Validation of Parameter Identification Approach 

The joint parameter identification technique has been validated through both simulated 

and experimental case studies. Experimental case studies of mass and moment of inertia 

discontinuities on a straight beam, pipe supports and a right-angled pipe bend have been 

implemented in Chapter 7. The parameter identification approach is successful at 

accurately estimating joint parameters discussed in this thesis, which reaches the final 

objective of this research. However, some aspects concerning the iteration procedure 

should be noted:  

1) For complex discontinuities, such as the pipe supports and right-angled bend, in 

order to include all properties of the structures, physical parameters such as 

stiffness, damping, mass and moment of inertia are all considered in the models. 

However, for a given structure used in the experiments, it is quite likely that only 

some particular parameters dominate the dynamic behaviour. In this case, the 

selection of updating parameters is vital for the iteration process of estimating the 

properties of the discontinuities. Including parameters to which the objective 

function is insensitive may result in inaccurate answers. For the structures used in 

the experiments, appropriate parameters have been chosen for updating and good 

results have been obtained. 

2) The frequency ranges included in the iteration process influence the identification 

results since in different frequency ranges the sensitivity of the objective function to 

unknown parameters might be different. Furthermore, measures have been taken to 

avoid the frequency ranges which have large effect on the measurements. 

3) The Jacobean matrix of the objective function becomes ill-conditioned when any 

two parameters to be updated have similar effects on the output at every 

measurement, or when the objective function is insensitive to one or more 

parameters. By adjusting the objective function and reselecting the parameters to 

update, the conditioning of the updating process can be improved to enable 

convergence of the update where divergence occurs previously. 
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8.6 Future Work  

The research carried out in this thesis has enhanced the dynamic modelling of 

discontinuities in waveguides and increased the understanding of estimating stiffness, 

mass and inertia from measured reflection and transmission coefficients. The following 

topics warrant some further work.    

 

1) A measurement noise model has been given in Chapter 3 and the influence of the 

noise on the estimated reflection and transmission coefficients has been discussed. 

Further research on the noise model would help to understand the nature of 

measurement noise better. For example, different noise levels could be assumed on 

different transducers and the statistical distribution characteristics of the estimated 

reflection and transmission coefficients could be examined further. 

2) This thesis has focused on the parameter identification of stiffnesses, mass and 

inertia. Damping has not been thoroughly investigated. Further identification of the 

damping of a structure would help to know the energy loss in the system.  

3) With the increasing number of parameters to update, the iterative method presented 

in this research becomes ill-conditioned. More robust methods for parameter 

identification are still required to accommodate more parameters, such as damping. 

4) Only the flexural and longitudinal waves were discussed in this thesis. The 

reflection and transmission coefficients of other types of waves, such as high order 

wave modes of pipes, might be more sensitive to the joint parameters. Further 

research on this topic is worthwhile.  
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Appendix 1 Longitudinal Wave Propagation in 
Rods 

 

Wave equation 
2 2

2
2 2l
u uc

t x
∂ ∂

=
∂ ∂

  

Solutions ( ) ( )( , ) l li t k x i t k xu x t Be Deω ω− += +  

Wave properties 

Wave speed l
Ec
ρ

= ,  

Wave number lk
E
ρω= , l

l

k
c
ω

=  

Group speed d
dg

Ec
k
ω

ρ
= = , g lc c=  

Response of a semi-infinite rod excited by a point force at the end 

Case 1  
0x = u

0
i tP e ω

x →+∞

Waves in the rod ( )
0( , ) li t k xu x t U e ω −=  

Response 

Boundary condition:  

Force balance: 0 0 0
0

( )i t i t i t
l

x

uP e EA P e EA ik U e
x

ω ω ω

=

∂
= ⇒ = −

∂
 

Solutions: 0
0

0

PU
i Zω

= − , 

Characteristic impedance 0 /l lZ A E Ac A cρ ρ Ε= = =  
Wave reflection at a boundary of a semi-infinite rod 

 with an impedance TZ attached to the end 

Case 2 
0x =u+

xu− TZx−∞←

Waves in the rod 
Amplitude of incident wave: ( )

0( , ) li t k xu x t U e ω −+ = , 
Amplitude of reflected wave: ( )

0( , ) li t ik x
lu x t rU e ω +− = , 

Total amplitude at x: ( , ) ( , ) ( , )u x t u x t u x t+ −= +  

Reflection 
Boundary condition: 
Force balance:  (0, ) (0, )TP t Z u t= − �  
   0 0( ) (1 )l l l T lEAU ik ir k i Z U rω⇒ − + = − +  
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Reflection coefficient: 0
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Reflection coefficient: 
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−
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Reflection coefficient: 1
1lr
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+
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T

l

C
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δ
ρ
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Free end 

1lr =  

 
Fixed end 

1lr = −  

Two semi-infinite rods connected by an impedance TZ  

Case 3 
0x =1u+

1u−
TZ

2u+

21
x−∞← x →+∞

Impedances  ( ) ( ) ( ) ( )1 21 1 2 2
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Waves in rods 
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Mass  

Boundary conditions: 
1 2
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2 1 2
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Reflection and transmission coefficients: 
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Boundary conditions: 
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Reflection and transmission coefficients: 
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Appendix 2 Bending Wave Propagation in Beams 

Wave equation 
4 2

4 2

( , ) ( , ) ( , )w x t w x tEI A Q x t
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General solutions 1 2 3 4( , ) ( )b b b bik x ik x k x k x i tw x t A e A e A e A e e− − ω= + + +  

Wave properties 
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Response of a semi-infinite beam excited by a force and a moment at the end 

Case 1  
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Wave reflection at a boundary of a semi-infinite beam with a translational impedance 
TZ  and a rotational impedance RZ  attached to the end 

Case 2 
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TZRZ
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Waves in the beam 
Amplitude of incident wave: 0( , ) bik x i tw x t W e e−+ ω=  
Amplitude of reflected wave: 0 p n( , ) ( )b bik x k x i tw x t W r e r e e− ω= +  

Total amplitude at x: ( , ) ( , ) ( , )w x t w x t w x t+ −= +  
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Boundary conditions: 
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Reflection coefficients: 
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Damper 
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0, 0 : (2.1); 0, : (2.4);
, 0 : (2.3); , : (2.2)
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C C C C
C C C C

→ → → →∞⎛ ⎞
⎜ ⎟→∞ → →∞ →∞⎝ ⎠

 

 
(2.1) Free end p n, 1r i r i= − = −  

  
(2.2) Fixed end 

p n, 1r i r i= − = −  

  
(2.3) Pinned end  

p n1, 0r r= − =  

  
(2.4) Sliding end 

p n1, 0r r= =  

Wave reflection and transmission for two semi-infinite beams 
connected by impedances TZ  and RZ  

Case 3 1w+

x

1w−

2w+
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TZRZ

1

2
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Beam 1 and beam 2 have the same characteristic impedance. 

Waves in beams 

Amplitude of incident wave: 1 0( , ) bik x i tw x t W e e ω−+ =  
Amplitude of reflected wave: 1 0 p n( , ) ( )b bik x k x i tw x t W r e r e e ω− = +  
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Boundary conditions: 
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+ + = +⎧
⎪− + + = − −⎪⎪⇒ ⎨ ⎡ ⎤− + − − − + = − − −⎣ ⎦⎪
⎪ ⎡ ⎤− − − − + = − +⎪ ⎣ ⎦⎩

 

Reflection and transmission coefficients: 
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( )
( )( )

( )
( )( )

( )
( )( )

( )
( )( )

3 2

p 3

3

p 3

3 2

n 3

2

n 3

2 2
,

2 2 2 2

2 4
,

2 2 2 2

1 2 2
,

2 2 2 2

2

2 2 2 2

i
r

i i

t
i i

i i
r

i i

i
t

i i

ξ μϑξ ϑξ μ

μξ ϑξ

ϑξ μξ

μξ ϑξ

ξ μϑξ ϑξ μ

μξ ϑξ

ξ ϑξ μ

μξ ϑξ

+ −
= −

+ − − −

− −
=

+ − − −

⎡ ⎤− + +⎣ ⎦=
+ − − −

−
= −

+ − − −

 

See Case 2 for andμ, ϑ ξ  
0, 0 : (3.1); 0, : (3.4);

, 0 : (3.3); , : (3.2)
m J m J
m J m J
→ → → →∞⎛ ⎞

⎜ ⎟→∞ → →∞ →∞⎝ ⎠
 

Spring  

,T
T

R
R

KZ
i
KZ
i

ω

ω

⎛ ⎞=⎜ ⎟
⎜ ⎟
⎜ ⎟=⎜ ⎟
⎝ ⎠

 

Boundary conditions: 

[ ]
[ ]

1 2

1 2

2 1 2

2 1 2

continuity of moment: (0, ) (0, )
continuity of force: (0, ) (0, )
force balance: (0, ) (0, ) (0, )

moment balance: (0, ) (0, ) (0, )
T

R

EIw t EIw t
EIw t EIw t

k w t w t EIw t

k w t w t EIw t

′′ ′′=⎧
⎪ ′′′ ′′′− = −⎪
⎨ ′′′− = −⎪
⎪ ′ ′ ′′− =⎩

 

p n p n

p n p n

3
p n p n p n

p n p n p n

1

( ) (1 ) ( )

( ) ( ) ( )

T b

R b

r r t t

i ir r it t

K t t r r EIk it t

K it t i ir r EIk t t

− − + = − +⎧
⎪ − + = −⎪⎪⇒ ⎨ ⎡ ⎤+ − + + = − −⎣ ⎦⎪
⎪ ⎡ ⎤− − − − + + = − +⎪ ⎣ ⎦⎩

 

Reflection and transmission coefficients: 
( )

( )( )
( )

( )( )
( )

( )( )
( )

( )( )

3

p 3

4 3

p 3

3

n 3

3

n 3

2 2 / 2 / 1
,

4 / 1 4 / 1

4 4 / / /
,

4 / 1 4 / 1

2 2 / 2 / 1
,

4 / 1 4 / 1

4 / /

4 / 1 4 / 1

i
r

i i

t
i i

i i
r

i i

i
t

i i

χ ξ ψ ξ

χ ξ ψ ξ

χψ ξ χ ξ ψ ξ

χ ξ ψ ξ

χ ξ ψ ξ

χ ξ ψ ξ

χ ξ ψ ξ

χ ξ ψ ξ

− −
= −

− + + +

+ −
=

− + + +

+ + −
=

− + + +

−
=

− + + +

 

See Case 2 for , andχ ψ ξ  
0, 0 : (3.5); 0, : (3.6);

, 0 : (3.7); , : (3.1)
T R T R

T R T R

K K K K
K K K K

→ → → →∞⎛ ⎞
⎜ ⎟→∞ → →∞ →∞⎝ ⎠

 

Damper 
,T T

R R

Z C
Z C

=⎛ ⎞
⎜ ⎟=⎝ ⎠

 Boundary conditions:  
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[ ]
[ ]

1 2

1 2

2 1 2

2 1 2

continuity of moment: (0, ) (0, )
continuity of shear force: (0, ) (0, )
force balance: (0, ) (0, ) (0, )

moment balance: (0, ) (0, ) (0, )
T

R

EIw t EIw t
EIw t EIw t

C w t w t EIw t

C w t w t EIw t

′′ ′′=⎧
⎪ ′′′ ′′′− = −⎪
⎨ ′′′− = −

′ ′ ′′− =

� �

� �
⎪
⎪
⎩

 

p n p n

p n p n

3
p n p n p n

p n p n p n

1

( ) (1 ) ( )

( ) ( ) ( )

T b

R b

r r t t

i ir r it t

i C t t r r EIk it t

i C it t i ir r EIk t t

ω

ω

− − + = − +⎧
⎪ − + = −⎪⎪⇒ ⎨ ⎡ ⎤+ − + + = − −⎣ ⎦⎪
⎪ ⎡ ⎤− − − − + + = − +⎪ ⎣ ⎦⎩

 

Reflection and transmission coefficients: 
( )

( )( )
( )

( )( )
( )

( )( )
( )

( )( )

p p

n n

2 2 2 4 4
, ,

4 1 4 1 4 1 4 1

2 2 2 1 4
,

4 1 4 1 4 1 4 1

i i i
r t

i i i i

i i i
r t

i i i i

δ Ρ δΡ δ Ρ
δ Ρ δ Ρ

δ Ρ δ Ρ
δ Ρ δ Ρ

− + − +
= − =

+ + + − + + + −

− + − +
= − = −

+ + + − + + + −

 

See Case 2 for andδ Ρ  
0, 0 : (3.5); 0, : (3.6);

, 0 : (3.7); , : (3.1)
T R T R

T R T R

C C C C
C C C C

→ → → →∞⎛ ⎞
⎜ ⎟→∞ → →∞ →∞⎝ ⎠

 

 
(3.1) No discontinuity p n p n0, 0, 1, 0r r t t= = = =  

 
(3.2)Clamped 

p n p n, 1, 0, 0r i r i t t= − = − = =   

 
(3.3)Simply supported p n p n

1 1 1 1, , ,
2 2 2 2

i i i ir r t t− − − + − − +
= = = =  

 
(3.4) Sliding support 

p n p n
1 1 1 1, , ,

2 2 2 2
i i i ir r t t− − + + −

= = = =  

 
(3.5) Separated p n p n, 1 , 0, 0r i r i t t= − = − = =  

 
(3.6) Double-side sliding p n p n

1 1 1 1, , ,
2 2 2 2

i i i ir r t t− − + − +
= = = =  

 
(3.7) Hinge connected p n p n

1 1 1 1, , ,
2 2 2 2

i i i ir r t t− − − − −
= = = =  

Energy 

Power reflection coefficient: 
2

p
r

i

P r
P

ρ = =  

Power transmission coefficient: 
22

p
1

t

i

P Z t
P Z

τ = =  
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Appendix 3 Simplification of the general equation for 

the reflection and transmission coefficients 

of a mass and moment of inertia 

discontinuity 

The wave vectors are given by equation (2.44) as  

 0
0 0

W+ ⎧ ⎫
= ⎨ ⎬
⎩ ⎭

a  and 0

0
0

− ⎧ ⎫
= ⎨ ⎬
⎩ ⎭

b .  (2.44) 

Therefore vector 

 

0

0
0
0

j

j

W
+

−

⎧ ⎫
⎪ ⎪⎧ ⎫⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪⎩ ⎭
⎪ ⎪⎩ ⎭

a
b

.  (A3.1) 

So in the equation (2.43), for the matrix  

 11 12 11 12

21 22 21 22

aa ba
ja jb jb j j ja jb jb

ab bb
ja jb jb j j ja jb jb

− + + + − −

− + + + − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − − +
−⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Ψ Ω Ψ Ω Φ R T Ψ Ω Ψ Ω Φ
Φ Ω Ψ Ω Φ T R Φ Ω Ψ Ω Φ

 (A3.2) 

only the elements in the first column is of interest. And each of them is equal to zero. 

And the first two columns of the above matrix are given by  

 
( )
( )

11 12

21 22

aa ab
ja j jb jb j ja

aa ab
jaja j jb jb j

− + + +

+− + +

⎡ ⎤− + ⎡ ⎤
⎢ ⎥ + ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + ⎣ ⎦⎣ ⎦

Ψ R Ω Ψ Ω Φ T Ψ
ΦΦ R Ω Ψ Ω Φ T

 (A3.3) 

Substituting the equations (2.46) to (2.49) into (A3.3) yields  

2 2
2 2

2 2

1 1 1 1 1 1

1 1 1 1

PP NP PP NP

b b PN NN b b PN NN b b

PP NP PP NPb b b b
b b

PN NN PN NNb b

r r t t
ik k r r ik k t t ik k

r r t tm mik k ik k
EIk EIk

r r t ti Jk Jk
ω ω
ω ω

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
−⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− − − −⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥+⎢ ⎥⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤− ⎡ ⎤ − ⎡ ⎤⎢ ⎥− +⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥− −− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠⎣ ⎦

2

1 1
b b

b
ik k

EIk

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥

⎢ ⎥⎡ ⎤−⎢ ⎥⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦

 (A3.4) 

Since only the first column will be used, then first column of the above matrix is  
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 ( ) ( )
( ) ( )

2 3 2 3 3
2

22 2 2 2

1PP PN PP PN

b PP b PN b PP b PN
b

b PP b PN bb PP b PN
b

bPP PN b b PP b b PN

r r t t
ik r k r ik t k t ik

m iEIk t m EIk t iEIkik r k r
EIk

EIkr r i Jk EIk t Jk EIk t

ω ω

ω ω

⎡ + + ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎢ ⎥⎢ ⎥ ⎢ ⎥+ − − ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ −⎢ ⎥+⎢ ⎥⎡ ⎤− + + ⎢ ⎥−⎡ ⎤−⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥⎢ ⎥ −− + ⎢ ⎥ ⎣ ⎦− − + − +⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦

 (A3.5) 

Therefore the final equation becomes  

 ( ) ( )
( ) ( )

3 3 2 3 2 3 3

22 2 2 2 2 2

1 0
0
0
0

PP PN PP PN

b PP b PN b PP b PN
b

b PP b PN b PP b PN b

bb PP b PN b b PP b b PN

r r t t
ik r k r ik t k t ik

iEIk r EIk r m iEIk t m EIk t iEIk
EIkEIk r EIk r i Jk EIk t Jk EIk t

ω ω

ω ω

+ − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ =⎢ ⎥− − − − + ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ −− + + + + − ⎣ ⎦⎣ ⎦⎣ ⎦

 (A3.6) 

This can be written as  

 ( ) ( )
( ) ( )

3 2 3 3 2 3 3

22 2 2 2 2 2

1 1 1 1 1PP

b b b b
PP b

b b b b PN b

PN bb b b b b b

r
ik ik k k t ik

iEIk m iEIk EIk m EIk r iEIk
t EIkEIk i Jk EIk EIk Jk EIk

ω ω

ω ω

− −⎡ ⎤ −⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥− − − − + ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− + − ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (A3.7) 

By introducing corresponding symbols the above equation can be expressed as equation 

(2.50)  
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Appendix 4 Some definitions of Symbols  

Some symbols used in the thesis are derived here and the physical meanings of these 

symbols are also interpreted.  

 

The longitudinal and flexural wave speeds are given respectively by   

 l
Ec
ρ

= , 4b
EIc

A
ω

ρ
= . (A4.1) 

So  

 2
lE cρ= , 

4

2
bAc

EI
ρ
ω

= . (A4.2) 

The longitudinal and flexural wavenumber and the wave speed are related respectively 

by  

 l
l

k
c
ω

= , b
b

k
c
ω

= . (A4.3) 

Therefore  

 2
l l l

l

EAk c A Ac
c
ωρ ρ ω= = , 

34
3

2
b

b b
b

Ac
EIk Ac

c
ρ ω ρ ω
ω

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
. (A4.4) 

Then  

 2 2 2 2 2 2
1

1 1 1 1 1 1

l l

l l

E A k A c
E A k A c

ρ
ξ

ρ
= = , 

3
2 2 2 2 2 2

2
1 1 1 1 1 1

b b

l l

E I k A c
E A k A c

ρ
ξ

ρ
= = . (A4.5) 

3ξ  and 4ξ  can be derived in the same way. Here lAcρ  and bAcρ  are the longitudinal 

and translational characteristic impedance of the waveguide. So the meaning of 1ξ  can 

be explained to be the longitudinal characteristic impedance ratio between the two 

waveguides.  

Similarly   

 1 3
1 1 1 1 1 1

/y y

b b

K K i
i

E I k A c
ω

σ
ρ

= − =  (A4.6) 

where /yK iω  can be considered the impedance of the spring along y-axis. So 1σ  is the 

ratio of the impedance of the spring along the y-axis to the translational characteristic 

impedance of bending waves in waveguide 1.  
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Parameter    

 
2

1 1
2

1 1 1 1 1 1/b b

J iJi
E I k E I c
ω ωγ = =  (A4.7) 

can be explained as the ratio of the impedance of the moment inertia 1 to the rotational 

characteristic impedance of bending waves in waveguide 1. The rest in equation (3.32) 

can be interpreted by analogy. 

 

If the material and dimension of the two waveguides are the same, then  

 4
4

b

l

Ec I
c EAA EI

ω ρ ρξ ω
ω ρ

= = =  (A4.8) 

Since that radius of gyration I Aκ =  and longitudinal wave speed lc E ρ= , then 

equation (A4.8) becomes  

 lcξ ω κ=  (A4.9) 

This can be considered the non-dimensional frequency. Then 3 1γ ξγ=  and 3 1σ ξσ= . 

Then 

 
22

1 3

/l

b b l

im cim im mi
EIk Ac A c A

ξ κω ωγ ξ
ρ ρ ξ ρ κ

= = = = . (A4.10) 

Here /m Aμ ρ κ=  is the ratio between the added mass and the waveguide mass in a 

length κ . Similarly  

 
( )322 3

3
2 3 3 3 3

/l

b b l

iJ ciJ iJ Ji
EIk Ac A c A

ξ κω ωγ ξ
ρ ρ ξ ρ κ

= = = = . (A4.11) 

Parameter 3/J Aϑ ρ κ=  is the ratio between the added moment of inertia and the inertia 

of the waveguide mass in a length κ  with a radius of gyration κ .  

 As for the stiffness parameter  

 
( )

3 3

1 33 32 2

1
//

T lT T

b l

K cK Ki i i
EIk EAEA c

ξσ
κ ξκ ξ κ

= − = − = − . (A4.12) 

Parameter ( )/ /TK EAχ κ=  is the ratio between the transverse stiffness the spring and 

the axial stiffness of the waveguide in a length κ . 

Parameter 

 2 2

1
/ /

R b R lR R

b l

K c K cK Ki i i i
EIk EI EI c EI

ξσ
ω ξ κ κ ξ

= − = − = − = − . (A4.13) 



Appendix 4 Some Definitions of Symbols 

 -180-

Parameter ( )/ /RK EIψ κ=  is the ratio between the rotational stiffness of the spring 

and the rotational stiffness of a cantilever waveguide in a length κ . 
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Appendix 5 Mean Values and Variances of Noisy 
Reflection and Transmission Coefficients 

In this appendix, the mean values and the standard deviations of the estimated power 

reflection and transmission coefficients are derived in detail.  

 

1. The Expectation of the Estimated Power Reflection Coefficient ρ̂ :  

Taking the expected value of both sides of equation (3.18) gives 

 ( )2 2 2 H H H
ˆ 1 2 2 1 2 1 2 1 1 2 22 Rer r Eρμ ε ε ε ε ε ε ε ε ε ε ε⎡ ⎤+ − + − − + +⎣ ⎦�  (A5.1) 

where [ ]E i  denotes taking the expectation. Now each term in the square bracket will be 

analysed.  The expectation of 1ε  is 

 
[ ] ( )

[ ] [ ]( )1 2

2
2 2

1 1 2

2
2 2

1 2

2 sin

2 sin

b
b b

b
b b

ik a
ik ik

Pa b

ik a
ik iki i

Pa b

eE E e N e N
ira k

e e E e E m e E e E m
ira k

φ φ

ε − Δ Δ
+

− Δ Δ
+

⎡ ⎤
= − +⎢ ⎥Δ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦Δ

 (A5.2) 

Since 1m  and 2m  are Gaussian variables with zero mean, [ ]1 0E m =  and [ ]2 0E m = . 

Then [ ]1 0E ε = . Similarly, [ ]2 0E ε = . The expectation of 2
2ε  is given by 

 
( )

1 2 1 2

2
2 22

2 1 2

2 22 2
1 2 1 22 2

1
2 sin

1 2
4 sin

b b

b b

ik ik

Pa b

ik iki i i i

Pa b

E E e N e N
ia k

E e e m e e m e e m m
a k

φ φ φ φ

ε Δ − Δ
+

Δ − Δ
+

⎡ ⎤⎧ ⎫
⎡ ⎤ ⎢ ⎥= −⎨ ⎬⎣ ⎦ Δ⎢ ⎥⎩ ⎭⎣ ⎦

− ⎡ ⎤= + −⎣ ⎦Δ

 (A5.3) 

As mentioned previously, 1φ  is uniformly distributed between 2π−  and 2π , so 

 1 1 1

/ 2
/ 22 2 2

1 / 2
/ 2

1 1 1 0
2

i i iE e e d e
i

π
πφ φ φ

π
π

φ
π π −

−

⎡ ⎤ = = =⎣ ⎦ ∫ . (A5.4) 

Similarly, 22 0iE e φ⎡ ⎤ =⎣ ⎦ . Therefore, equation (A5.3) becomes 2
2 0E ε⎡ ⎤ =⎣ ⎦ .  

 

The expectation of term 1 2ε ε  is  
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[ ] ( ) ( )

1 2 1 2 1 2

2
2 2 2 2

1 2 1 2 1 2

2
2 22 2

1 2 1 2 1 22 2

1
2 sin 2 sin

4 sin
0

b
b b b b

b
b b

ik a
ik ik ik ik

Pa b b

ik a
ik iki i i i i i

Pa b

eE E e N e N e N e N
ira k ia k

e E e m e m e e e mm e e e mm
ra k

φ φ φ φ φ φ

ε ε − Δ Δ Δ − Δ
+ +

Δ − Δ
+

⎡ ⎤
= − + −⎢ ⎥Δ Δ⎣ ⎦

⎡ ⎤= + − −⎣ ⎦Δ
=

 (A5.5) 

As for H
1 2ε ε ,  

( ) ( )

1 2 1 2

2 H2 2 2 2H
1 2 1 2 1 2H H

2
2 2

1 2 1 2 1 22H 2

1
2 sin 2 sin

4 sin

b
b b b b

l
b b

ik a
ik ik ik ik

Pa b Pa b

ikx
ik ik i i i i

Pa b

eE E e N e N e N e N
ir a k ia k

e E e m e m e e mm e e mm
r a k

φ φ φ φ

ε ε
−

− Δ Δ Δ − Δ
+ +

−
Δ − Δ − −

+

⎡ ⎤
⎡ ⎤ = − + −⎢ ⎥⎣ ⎦ − Δ Δ⎣ ⎦

− ⎡ ⎤= + − −⎣ ⎦Δ

 (A5.6) 

Since the variance of a variable X  can be obtained by [ ]2 2 2
X E X E Xσ ⎡ ⎤= −⎣ ⎦ , so the 

expectation of 2
1m  is given by  

 

[ ] [ ]
[ ]

2 2
1 1 1

1

22
1 Pa

E m Var m E m

Var m

aσ +

⎡ ⎤ = +⎣ ⎦
=

=

 (A5.7) 

where [ ]Var i  denotes variance. Similarly, 
22 2

2 2 PaE m aσ +⎡ ⎤ =⎣ ⎦ . Then equation (A5.6) 

becomes  

 ( )
2

H 2 2
1 2 1 2H 24 sin

b
b b

ik a
ik ik

b

eE e e
r k

ε ε σ σ
−

Δ − Δ−⎡ ⎤ = +⎣ ⎦ Δ
 (A5.8) 

The expectation of term H
1 1ε ε  is   

 

( )

2H
1 1 1

22
2 2

1 2

2 2
1 222 2

2 2
1 2

2 2

2 sin

1

4 sin

4 sin

b
b b

ik a
ik ik

Pa b

Pa b

b

E E

eE e N e N
ira k

E m m
r a k

r k

ε ε ε

σ σ

− Δ Δ
+

+

⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥= − +

Δ⎢ ⎥⎣ ⎦

⎡ ⎤= +⎣ ⎦Δ

+
=

Δ

 (A5.9) 

Similarly the expectation of H
2 2ε ε  is  

 ( )
2 2 2

2 2H 1 2
2 2 1 2 2

1
2 sin 4sin

b bik ik

Pa b b

E E e N e N
ia k k

σ σε ε Δ − Δ
+

⎡ ⎤ +⎡ ⎤ ⎢ ⎥= − =⎣ ⎦ Δ Δ⎢ ⎥⎣ ⎦
 (A5.10) 
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Substituting the above terms into equation (A5.1) and rearranging gives the expectation 

of ρ̂ :  

 ( ) ( )( ){ }2 2 2 2 2
ˆ 1 2 1 22

1 2 Re 1
4sin

b b bik a ik ik

b

re e e
kρμ ρ σ σ ρ σ σ− Δ − Δ⎡ ⎤+ + + + +⎣ ⎦Δ

�  (A5.11) 

The maximum and minimum of term ( )2 2 2
1 2Re b b bik a ik ikre e eσ σ− Δ − Δ⎡ ⎤+⎣ ⎦  are ( )2 2

1 2r σ σ± +  

respectively. Therefore, the minimum and maximum of the expectation of ρ̂  can be 

given by  

 ( ) ( )
2 2 2 2

2 21 2 1 2
ˆ2 21 1

4sin 4sinb b

r r
k kρ

σ σ σ σρ μ ρ+ +
+ − ≤ ≤ + +

Δ Δ
 (A5.12) 

Consider further the range of r , the lower and upper bounds of ρ̂μ  can be obtained 

when 1r = . These are expressed as  

 
2 2
1 2

ˆ 2sin bkρ
σ σρ μ ρ +

≤ ≤ +
Δ

 (A5.13) 

So far, the expectation of ρ̂  and its lower and upper bounds have been derived. The 

following section will discuss the standard deviation of ρ̂ . 

 

2. The variance of the estimated power reflection coefficient ρ̂ :  

This section gives the detailed derivation of the variance of ρ̂ .  

The variance of ρ̂  must be acquired before getting its standard deviation. As mentioned 

previously, the variance of a random variable X  can be obtained by 

[ ]2 2 2
X E X E Xσ ⎡ ⎤= −⎣ ⎦ . When using this definition to calculate the variance of ρ̂ , the 

expectation of 2ρ̂  should be obtained first. From equation (3.18),  

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

( ) ( )
( )

2

24 H H 2 2H H H H H H H
1 1 2 2 2 2 1 1 2 2 1 2 1 2 1 2 1 2ˆ

H H 2 H2 2 H2 H H
1 1 2 2 1 1 2 2 1 1 2 24

H H H H
1 2 1 2 1 2 1 2

4 4 4H H H
1 2 1 1 2 2

1

1 2 2 3 4 4

4 4

2 Re 4 4

r E

r E

r r E r E

ρ
μ ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε

⎡ ⎤= + + − + + + + + − + − +⎢ ⎥⎣ ⎦
⎡ ⎤+ + − + + + + + + +
⎢ ⎥
⎢ ⎥− + − +⎣ ⎦

⎡ ⎤= + − + +⎣ ⎦

�

( ) ( )( ){ }
2

4 2 2 2 2 2
1 2 1 22 2Re 1

sin
b b bik a ik ik

b

r
r re e e

k
σ σ ρ σ σ− Δ − Δ

⎡ ⎤⎣ ⎦

⎡ ⎤= + + + + +⎣ ⎦Δ

 (A5.14) 

In the above deduction, the terms in which the summed indices of  1ε , 2ε , H
1ε  or H

2ε  are 
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higher than second order are neglected. Also the following result is used.  

 

( )

1 2 1 2

22
2 22

1 1 2

4
2 2 2 22 2

1 2 1 22 2 2

2 sin

2
4 sin
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b
b b
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Pa b
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ik iki i i i
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eE E e N e N
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e E e e m e e m e e m m
r a k

φ φ φ φ

ε − Δ Δ
+

− Δ Δ
+

⎡ ⎤⎧ ⎫
⎡ ⎤ ⎢ ⎥= − +⎨ ⎬⎣ ⎦ Δ⎢ ⎥⎩ ⎭⎣ ⎦

− ⎡ ⎤= + −⎣ ⎦Δ
=

 (A5.15) 

So the variance of ρ̂  can be obtained by  

 
[ ]

( ) ( )( ){ }

2 2 2
ˆ

2 2 2 2 2
1 2 1 22

ˆ ˆ

2Re 1
2sin

b b bik a ik ik

b

E E

re e e
k

ρσ ρ ρ

ρ σ σ ρ σ σ− Δ − Δ

⎡ ⎤= −⎣ ⎦

⎡ ⎤+ + + +⎣ ⎦Δ
�

 (A5.16) 

In equation (A5.16), the terms with second and higher order of 2
1σ  or 2

2σ  are neglected.  

By a similar way to that of equation (A5.11), the upper bound of the variance of ρ̂  can 

be approximated  by 

 ( )2 2 2
ˆ 1 22

2
sin bkρ

ρσ σ σ≤ +
Δ

 (A5.17) 

 

3. The expectation of the estimated power transmission coefficient τ̂ :  

This section gives the deduction of the expected value of estimated power transmission 

coefficient τ̂ .  

 

The expected value of τ̂  can be obtained in a similar way to that of ρ̂ . Equation (3.25) 

can also be expressed as  

 ( ) ( )( )2
3 2 2 2

ˆ 1 1 1 n nt t ε ε ε ε= + − + + + − +" " . (A5.18) 

The estimated power transmission coefficient can be given by  

 
H H 2 H2

3 3 2 2 2 2

H H H H H H
2 2 3 3 3 2 3 2 3 2 3 2

1
ˆ

ε ε ε ε ε ε
τ τ

ε ε ε ε ε ε ε ε ε ε ε ε

⎡ ⎤+ + − − + +
≈ ⎢ ⎥

+ + − − − −⎢ ⎥⎣ ⎦
.  (A5.19) 

Taking the expectation of both sides of the  equation  gives 

 2 H H 2 H2 H H H H H H
ˆ 3 3 2 2 2 2 2 2 3 3 3 2 3 2 3 2 3 2t Eτμ τ ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε⎡ ⎤+ + − − + + + + − − − −⎣ ⎦�  (A5.20) 

Some of terms in the square bracket have been known. Since iN  are uncorrelated, 

among the terms with 3ε  or H
3ε , only the term H

3 3ε ε  is non-zero.  
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The expectation of H
3 3ε ε  is obtained by 

 

( )
2( )

2 2H
3 3 3 4

2 2
3 422 2

2 2
3 4
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 (A5.21) 

Therefore, equation (A5.20) becomes 
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2 H H
ˆ 2 2 3 3

2 2 2 2
1 2 3 42
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k

τμ τ ε ε ε ε

τ τ σ σ σ σ

⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦
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�
 (A5.22) 

The above expression is simple enough, so there is no need to calculate its lower and 

upper bounds.  

 

4. The variance of the estimated power transmission coefficient τ̂ :  

This section discuss the variance of τ̂ . The deduction process is also similar to that of 

ρ̂ .  

 

First the expectation of 2τ̂   
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 (A5.23) 

In the above deduction, the terms in which the summed indices of  3ε , 2ε , H
3ε  or H

2ε  are 

higher than second order are neglected. Also the following result is used.  
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The variance of τ̂  is given by  
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1 2 3 422sin bk
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 (A5.25) 
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Appendix 6 Conditions for Euler-Bernoulli beam 
theory and cut-on frequency for n=2 
wave mode in terms of non-
dimensional frequency 2ξ    

Euler-Bernoulli beam condition:  

The correction terms of the Timoshenko beam equation to Euler-Bernoulli’s make less 

than 10% difference of the wave amplitude when the flexural wavelength satisfies  

 6hλ >  (A6.1) 

where h  is the height of the beam.  

For a beam with rectangular cross-section b h× : 

Radius of gyration  

 
12

I h
A

κ = =  (A6.2) 

then 12h κ= , so 6 12λ κ> . Recalling that  

 
2

b

l l

c
c c

λωξ
π

= =  (A6.3) 

then  

 
26 12 3 12

2 2l lc c
λω κω ξξ
π π π

= > =  (A6.4) 

so 0.30
3 12
πξ < ≈  satisfies the Euler-Bernoulli beam condition.  

For a pipe with outside radius A  and inside radius a : 

 
4 4 2 2

2 2

( ) / 4
( ) 4

I A a A a
A A a

πκ
π

− +
= = =

−
 (A6.5) 

If it is a thin pipe, A a≈ , then / 2aκ = . The Euler-Bernoulli pipe condition may be 

described as 6 2aλ > × . Then 12 2λ κ> , and  
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212 2 6 2

2 2l lc c
λω κω ξξ
π π π

= > =  (A6.6) 

so 0.37
6 2
πξ < ≈  satisfies the Euler-Bernoulli beam condition.  

 

Cut-on frequency for 2n =  wave mode:  

Referring to equation (4.4) the cut-on frequency for the 2n = wave mode is given by  

 2
2

3 52
212 2 12

l
cut on r

hch
aa

ω ω−
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 (A6.7) 

Substituting cut on cut on lcξ ω κ− −=  into the above equation yields 2
2

5
2 12cut on

h
a
κξ

−
= . 

For cylindrical pipes, / 2aκ = , so 2 5
4 6cut on

h h
a a

ξ
−
= ≈ .  
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Appendix 7 Direct Measurements of the 
Translational Dynamic Stiffnesses of 
Pipe Supports 

The measurements of the translational dynamic stiffness of the short aluminium, long 

steel and short steel pipe supports are presented in the following figures.   
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Figure A7.1 Translational dynamic stiffness of the short aluminium support: , real 
part of measured TD ; , fitted real part of TD  in 400-1400Hz; , imaginary part 

of measured TD . 
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Figure A7.2 Translational dynamic stiffness of the long steel support: , real part of 
measured TD ; , fitted real part of TD  in 200-1400Hz; , imaginary part of 

measured TD .  
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Figure A7.3 Translational dynamic stiffness of the short steel support: , real part of 
measured TD ; , fitted real part of TD  in 400-1400Hz; , imaginary part of 

measured TD   
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Appendix 8 Mass-loading Effect of the Force 
Transducer  

Referring to the mass cancellation described in reference [33], the mass-loading effect 

of the force transducer can be measured in the following way. Figure A8.1 shows the 

measurement setup. The force transducer was connected to the shaker by a stinger in the 

vertical direction. A PCB acceleration transducer (with small mass) was attached to the 

other side of the force transducer. By changing the excitation and/or response point of 

the force transducer, two types of dynamic masses could be measured. Figure A8.2 

shows these two dynamic masses. In the frequency range 1000-2000Hz, the dynamic 

mass in the standard position is about 0.0090Kg, and when upside down is about 

0.0145Kg. So it can be considered the mass-loading of the force transducer is roughly 

0.0090Kg when it is in standard position. Compared to the total mass of the force 

transducer 0.0235am = Kg, therefore about 38% of the total mass of the force 

transducer was added to the support.  

 

 

 
Figure A8.1 Experimental Setup for measuring the mass-loading effect of the force 

transducer.  
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Figure A8.2 Measured dynamic mass of the transducer for the two positions.  
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Appendix 9 Direct Measurements of the 
Rotational Dynamic Stiffnesses of 
Pipe Supports 

The measurements of the rotational dynamic stiffness of the short aluminium, long steel 

and short steel pipe supports are presented in the following figures. 
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Figure A9.1 Rotational dynamic stiffness of the short aluminium support: , real 
part of measured RD ; , fitted real part of RD . 
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Figure A9.2 Rotational dynamic stiffness of the long steel support: , real part of 
measured RD ; , fitted real part of RD .  
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Figure A9.3 Rotational dynamic stiffness of the short steel support: , real part of 
measured RD ; , fitted real part of RD . 
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Appendix 10 Derivative of a Matrix to a Variable   

Derivative of a matrix to a variable can be obtained by the following method: 

Since ( ) ( )1μ μ− =A A I , so  

 
( )1 1

1 0
μ μ μ

− −
−

∂ ∂ ∂
= + =

∂ ∂ ∂

A A A AA A . (A10.1) 

Then  

 
1

1 1

μ μ

−
− −∂ ∂

= −
∂ ∂
A AA A . (A10.2) 

Since ( ) ( )
H1μ μ−⎡ ⎤ =⎣ ⎦A A I , so  
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Then  

 
( ) ( ) ( )
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−
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∂ ∂
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Therefore 
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∂ ∂ ∂
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Appendix 11 Stiffnesses of Several Pipe Support 

Models 

This appendix gives the stiffnesses of several pipe supports described in Chapters 4 and 

7 based on simply-supported and clamped boundary conditions.  

 

Figure A11.1 shows a support model which combines two bars with one end clamped 

and the other free. The stiffness of the model can be considered as the sum of the 

translational stiffness at the end of the bar. D  is the outside diameter of the copper pipe 

discussed in Chapters 4 and 7. The combined stiffness can be obtained by  

 
( )3

32
/ 2 / 2

T
EIK

l D
=

−
 (A11.1) 

where E  is the young’s modulus of the supporting bar, I  is the second moment of the 
area and l  is the span of the whole support.  
 

/ 2D

/ 2l

TK

 
Figure A11.1 Translational stiffness of two clamped parallel bars: Model A11.1.  

 

Figure A11.2 shows bar with simply-supported ends. The translational stiffness at the 

middle point of the bar is  

 3

48
T

EIK
l

= . (A11.2) 

The dimension of the copper pipe is also neglected here.  
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Figure A11.2 Translational stiffness at the middle point of a bar with simply-supported 

ends: Model A11.2. 
 

Figure A11.3 shows bar with clamped ends. The translational stiffness at the middle 

point of the bar is  

 3

192
T

EIK
l

= . (A11.3) 

The dimension of the copper pipe is also neglected here.  
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Figure A11.3 Translational stiffness at the middle point of a bar with clamped ends: 

Model A11.3. 
 

Figure A11.4 shows bar with clamped ends. The torsional stiffness at the middle point 

of the bar is  

 
4

16R
GdK

l
π

=  (A11.4) 

where G  is the shear modulus and d  is the diameter of the supporting bar. The 

dimension of the copper pipe is also neglected here. This can be considered as the 

rotational stiffness of the pipe support discusses in Chapters 4 and 7.  
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Figure A11.4 Torsional stiffness at the middle point of a bar with clamped ends: Model 

A11.4 

 

Table A11.1 gives the translational and rotational stiffnesses for the pipe supports based 

on the above discussed boundary conditions. Compared to those values listed in Table 

7.6, for the aluminium supports, the estimated values of the translational stiffness from 

measurements are close to the model with clamped ends; for the steel supports, the 

estimated values of the translational stiffness are close to the model with simply-

supported ends. The values of estimated rotational stiffness agree well with the model 

A11.4.  

 

Table A11.1 Stiffnesses of pipe supports based on several boundary condition 
assumptions. (SI units) 

support TK , 610×  RK , 310×  
Model A11.1 Model A11.2 Model A11.3 Model A11.4

aluminium
long 1.126 0.688 2.753 1.472 

short 4.775 2.231 8.925 2.179 

steel 
long 3.285 2.008 8.030 4.199 

short 13.927 6.508 26.031 6.214 

Note:  1. 0.01266d = ; 
 2. 0.185l =  for long supports and 0.165l =  for short supports; 
 3. 107.2 10E = ×  and 102.7 10G = × for aluminium supports, and 112.1 10E = ×  

and 107.7 10G = ×  for steel supports. 
 


