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Abstract

In the past few decades, the life sciences have experienced an unprecedented accumulation of data, ranging from genomic sequences and
proteomic profiles to heavy-content imaging, clinical assays, and commercial biological products for research. Traditional static databases have
been invaluable in providing standardized and structured information. However, they fall short when it comes to facilitating exploratory data
interrogation, real-time query, multidimensional comparison, and dynamic visualization. Integrated data-driven research environments aiming at
supporting user-driven data queries and visualization offer promising new avenues for making the best use of the vast and heterogeneous data
streams collected in biological research. This article discusses the potential of interactive and integrated frameworks, highlighting the importance
of implementing this model in biotechnology research, while going through the state-of-the-art in database design, technical choices behind
modern data management systems, and emerging needs in multidisciplinary research. Special attention is given to data interrogation strategies,
user interface design, and comparative analysis capabilities, along with challenges such as data standardization and scalability in data-heavy
applications. Conceptual features for developing interactive data environments along diverse life science domains are then presented in the user
case of cell line selection for in vitro research to bridge the gap between research data generation, actionable biological insight, experimental

design, and clinical relevance.

Biological data management

Biology, nanotechnology, and medicine are data-rich fields [1].
Over the last several decades, high-throughput technologies
have revolutionized biology by generating massive datasets.
These include genomic sequences, proteomics data, high-
resolution imaging, long-term acquisitions, and clinical trial
data.[2] On top of those, companies in the biotech industry
have commercialized large amounts of biological models to
be used in research, biotechnology, and pharmaceutical indus-
tries for in vitro research [3]. In response, the need for versa-
tile and user-friendly resource and data management systems
has grown dramatically [4]. Biological databases tradition-
ally focused on cataloguing discrete pieces of information and
statically showing them online (e.g. Cellosaurus for classify-
ing cell lines) [5] or within private organizations (e.g. internal
databases for storing laboratory equipment information). In
some cases, they integrate simple search functions to facilitate
retrieval of stored data and allow incremental data submis-
sion or periodic expansion by database curators [4]. Classic
examples, such as GenBank [6] and the Protein Data Bank
(PDB), offer comprehensive search and retrieval functions
across standardized metadata fields (e.g. organism, gene name,
accession number, and sequence features in GenBank). Such
systems remain indispensable as reference sources, but they
were largely designed to support data deposition, retrieval,
and preservation, rather than interactive exploration or adap-
tive reuse. Their architecture typically centers around rigid
schemas with limited user-driven comparison capabilities.

With the advent of high-throughput technologies, the vol-
ume and complexity of biological data expanded consider-
ably [7]. In domains such as genomics, drug discovery, in
vitro research, and personalized medicine, interactive and in-
tegrated platforms have the potential to transform the way
we work with data, reducing time currently devolved to hy-
pothesis testing and literature search, and facilitating discov-
ery by designing meaningful workflows based on experimen-
tal objectives. This model would also enable scientists to fo-
cus their efforts on innovation and higher-end intellectual ac-
tivities. Table 1 presents the comparison between traditional
biological databases and the proposed approach. Figure 1 vi-
sualizes the potential of interactive and integrated data envi-
ronments. The following sections guide the development of
next-generation digital research platforms.

The concept of interactivity in database systems has been
widely used to describe data portals or repositories with web
or Application Programming Interface (API) access. Here, this
concept is expanded to include dynamic, modular systems de-
signed for bidirectional interaction, collaborative filtering, hy-
pothesis generation, experimental planning, and feedback in-
tegration. This allows to incorporate experimental metadata,
support multiscale comparative analysis, and integrate FAIR
Digital Objects derived from user interaction. Although no
universally accepted term yet exists for such environments,
this conceptual framework lies at the intersection of intel-
ligent decision-support platforms, collaborative data infras-
tructures, and multi-domain experimental design engines.

Received 3 April 2025; Revised 7 July 2025; Accepted 20 August 2025

© The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

G202 49900 G| UO Jasn AysiaAlun uojdwewnos Aq 678€928/¥904eeq/SSEGRIEP/EE0 L 0 L/I0P/loIE/osEqEIEp/ W00 dNO"0IWapEoE//:SARY WO papeojumoq


https://doi.org/10.1093/database/baaf064
https://orcid.org/0000-0002-0332-1606
mailto:r.moreddu@soton.ac.uk
https://doi.org/10.1093/database/baaf064
https://creativecommons.org/licenses/by/4.0/

Moreddu

Table 1. Comparison between traditional biological databases and next-generation interactive data environments.

Dimension Classical biological databases

Interactive data environments

Access model

Data structure

User engagement
Update frequency
Knowledge generation
Feedback

Use case focus

Read-only, query-based
Schema-defined
Individual

Curated (low frequency)
Initiated by the user
Limited to curation
Archival and citation

Bidirectional and real-time

Flexible (relational, document, and graph)
Multi-user

Real-time ingestion and user feedback
Embedded in dynamic workflows
Real-time FAIR integration

Discovery and planning

This table summarizes key architectural, functional, and epistemological differences between classical repositories, designed primarily for data storage and
retrieval, and the proposed integrated systems, which emphasize bidirectional data flow, real-time analytics, collaborative workflows, and integration of

experimental design logic and user feedback.
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Figure 1. Integrated data environments. A) Overview of integrated data environments, needs, and features. B) Comparison between static repositories
and interactive platforms across three key dimensions: data access methods, analysis workflows, and knowledge integration capabilities. The workflow
at the bottom exemplifies the steps undertook by the user interfacing with an interactive data environment.

Interactive data environments

The concept of interactivity in database systems is closely re-
lated to developments in web technologies, artificial intelli-
gence (Al), and data visualization techniques. Modern systems
are capable to combine web technologies (e.g. JavaScript li-
braries for dynamic visualization) [8] and back-end data man-
agement solutions (e.g. NoSQL databases for unstructured
data or graph databases for relationship modelling) [9]. In-
tegrated research environments are not intended to replace
domain-specific repositories such as GenBank, PDB, or Cel-
losaurus, which remain foundational for primary data submis-
sion and standardized archival. Instead, they could function
as specialized integration and analysis layers that enable re-
searchers to query, visualize, and analyse data across multiple
existing repositories through unified interfaces. This architec-
tural approach shares conceptual similarities with data lakes
[10-12], yet extends beyond traditional data lake implementa-
tions in several crucial ways. Data lakes primarily provide in-
frastructure for storing heterogeneous data in native formats
without imposing rigid schemas [13], whereas the research
environments described here focus on active knowledge inte-
gration and experimental decision support through domain-
specific analytical capabilities. Recent implementations such
as genetic data lakes for drug discovery [10] store and process
genetic data at scale, but typically lack the specialized compar-
ative analysis capabilities and experimental design guidance
that define the systems proposed hereby. General-purpose

data lakes prioritize accommodating massive volumes of raw
data [14], these biotechnology research environments imple-
ment domain-specific user interfaces and analytical workflows
optimized for particular scientific tasks (e.g. cell line selec-
tion, pathway analysis, and biomarker identification). Further-
more, while data lakes typically operate as centralized reposi-
tories within organizational boundaries [15], the research en-
vironments envisioned here function as connection across the
distributed ecosystem of existing biological repositories. They
provide harmonized access layers that preserve the special-
ized governance and data submission workflows of underlying
repositories while enabling cross-repository analyses not fea-
sible through direct interaction with individual primary data
sources.

Despite the dramatic development in computer science and
web technologies, the life science domain still sees crucial
gaps to enable smooth selection and dataset navigation [16,
17]. The need of transitioning towards these features is be-
coming evident through the growing complexity of biological
questions, in parallel with the technological advances in other
fields that make complex computations and visualizations fea-
sible in real time and with less efforts from the user [18, 19].
The next subsections highlight selected desirable characteris-
tics and their technological feasibility within interactive data
environments for the life sciences domain. Cell line selection
for in vitro research is presented as a possible implementation
case.
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Features

The heterogeneity of biological data, from structured clinical
trial tables and semi-structured cell line annotations to un-
structured experimental notes, poses a fundamental challenge
for the development of integrated data environments [20].
Successfully integrating these different data types requires a
strategic balance to ensure that the system accommodates
evolving data landscapes without sacrificing analytical preci-
sion. At the core of this integration lies the concept of adap-
tive data modelling [21], where the choice of database schemes
dictates both functionality and scalability. Relational models
with a rigid table structure are indispensable for managing
structured data such as genomic variants, patient demograph-
ics, and cell lines properties [22]. However, the dynamic nature
of life sciences research sometimes demands schemeless archi-
tectures. In this context, document-oriented databases (e.g.
MongoDB) [23] could be employed, allowing nested struc-
tures to capture variable data, for instance that associated
with single-cell sequencing experiments [24]. For highly inter-
connected data, such as protein—protein interaction networks
or metabolic pathways in cells, graph databases (e.g. Neo4j)
offer the required traversal speed to enable real-time queries
across millions of nodes and edges [25].

Data pipelines require automated workflows that analyse
raw FASTQ files [26], screen online publications for experi-
mental conditions, or obtain real-time sensor data from lab-
oratory equipment [27, 28]. Tools with error-handling frame-
works could standardize this process, e.g. Apache NiFi or cus-
tom Python scripts, but challenges exist [29]. For instance, in-
consistencies in how labs report cell line contamination sta-
tus require context-aware natural language processing mod-
els to normalize inputs [30, 31]. However, these models them-
selves may introduce noise or bias, especially when trained on
incomplete or poorly annotated datasets. In addition to in-
consistencies, metadata may be entirely missing or provided
in minimal form, despite repository guidelines requesting
rich contextual descriptors. Submitters may also inadvertently
provide erroneous information due to lab tracking errors or
manual entry mistakes. These factors further complicate data
harmonization and highlight the need for robust validation
mechanisms, error propagation awareness, and contributor-
facing feedback loops within interactive platforms.

To bridge this gap, hybrid interfaces are gaining traction,
e.g. Galaxy Project combining drag-and-drop workflows with
Python scripting to allow users to transition from structured
prompts (e.g. ‘show all breast cancer cell lines in the database
having HER2 + status’) to programmatic analyses (e.g. suit-
ability analysis for a given experiment evaluated using R li-
braries) [32]. Then, dynamic visualization could transform
these raw query results into actionable insights. Modern sys-
tems integrate libraries to render interactive plots for genome-
wide association studies, optimal cell profile to test a given
technology, or 3D protein structures visualization. Examples
of employed libraries are Plotly or D3.js [33]. However, in-
teractivity implies that visualization must extend beyond pas-
sive observation. Interactive data environments could let users
click on a graph or comparison plot to trigger a secondary
query, e.g. extract all genes differentially expressed in a spe-
cific cluster, or group up all cells in different subclusters based
on user-prompted features. Coupling visualization with ana-
lytical tools could enable this functionality, and assistive Al

could amplify this interactivity and scope. All these functions
drive the design of a suitable user interface and define user
experience features.

Case study: biological cell line selection

Cell line selection represents an ideal case study for demon-
strating the potential of interactive data environments in the
life sciences. The complexity of choosing appropriate cell
models from the thousands or commercially available lineages
exemplifies why traditional static repositories are insufficient
for modern research needs [34]. Currently, researchers often
select cell lines based on convenience, tradition, or limited
familiarity rather than comprehensive biological relevance,
leading to potential experimental irreproducibility, transla-
tional failures, and wasted resources [34, 35]. The challenge
lies in navigating multidimensional considerations simultane-
ously, spanning from genetic background, tissue origin, dis-
ease relevance, authentication status, growth characteristics,
pathway activations, compatibility with experimental proce-
dures, and more [34]. While valuable reference resources exist
(Cellosaurus, ATCC catalogs, and LINCS) [36], they typically
present information in isolation, making comparative analysis
labour-intensive and prone to oversight of critical variables if
run by humans.

An interactive data environment would transform cell line
selection by enabling researchers to dynamically filter, com-
pare, and visualize multiple cell lines across diverse parame-
ters simultaneously. Such a system would integrate disparate
data sources, including existing static repositories, literature
outcomes, genomic profiles and user-contributed experimen-
tal metadata, creating a thoughtful support platform. The fol-
lowing subsections examine a potential envisioned architec-
ture for implementation, structured into three interconnected
layers: back-end data management systems for storing and
processing diverse cell data, middleware and APIs facilitating
integration and communication, and front-end technologies
enabling intuitive exploration, comparison, and visualization.
This is also schematized in Fig. 2.

Back-end data management systems

The back-end infrastructure forms the pillar of any interac-
tive data environments [37, 38] where storage solutions are
selected based on the inherent structure of biological infor-
mation. Traditional relational database management systems,
such as PostgreSQL and MySQL, build the foundations of
many established biological repositories [39]. An example
is Cellosaurus, a comprehensive repository of cell lines [5].
While invaluable as a reference, its traditional structure lim-
its the utilization of the stored data. Currently, data can be
visualized one by one for each cell line, making multidimen-
sional comparisons across tens or hundreds of cells unfeasible.
Document-oriented NoSQL databases offer significant advan-
tages for cell line repositories that accumulate diverse ex-
perimental metadata [40]. MongoDB, for instance, can store
cell lines as flexible JavaScript Object Notation (JSON) doc-
uments [23]. This allows to incorporate new characterization
data of various nature, from morphological features to au-
thentication profiles, without disruptive changes in the funda-
mental structure.

Network-oriented biological data presents another stor-
age challenge that graph databases address. Systems such as
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Figure 2. Technical architecture of integrated data environments: a case study on informed cell line selection. The schematic illustrates the three-tier
structure comprising back-end data management systems (databases and storage solutions), middleware integration layer (APls, microservices, and Al
components), and front-end technologies (visualization tools and user interfaces), tailored to cell line selection as a sample case.

Neo4j could transform the way relationships between cell
lines are accessed and understood [25]. In cancer research,
one could explore the connections between patient-derived
xenografts, immortalized cell lines and original tumour sam-
ples through intuitive graphs and user-driven multidimen-
sional queries. This approach could reveal lineage relation-
ships and experimental compatibility that remain obscured
in conventional tabular repositories. Supplementary storage
technologies could then drive performance considerations.
Response times during comparative analyses could be dramat-
ically reduced by employing key-value stores such as Redis to
catch frequently accessed data, e.g. commonly requested cell
lines or culture protocols. This hybrid storage approach would
allow databases to maintain responsive performance even as
users perform complex multiline comparisons simultaneously.

Middleware and APIs

The middleware layer in a database typically orchestrates
communication between storage systems and user applica-
tions [41], in this case enabling to transform static cell line
references into dynamic research tools. Instead of making sep-
arate requests for each cell line of interest, queries that directly
compare multiple lines across selected parameters (growth ki-
netics, drug sensitivities, and genetic backgrounds) in a single
operation could be constructed. Examples of tools to achieve
this include GraphQL over traditional RESTful APIs [42]. Al
represents one of the most powerful middleware integrations
[43]. Machine learning microservices could analyse patterns
across thousands of cell lines to recommend optimal models
for specific research questions. Drug screening experiments
could be informed by recommendation assistants that iden-

tifies cell lines most relevant to their target pathway based
on expression profiles, previous experimental outcomes, and
literature associations. Such systems transform passive cell
line catalogues into active research planning tools, integrat-
ing them with the latest research findings. The latter could be,
in turn, standardized over time by researchers themselves who
engage with the interactive data environments.

The microservices architectural pattern can partition
monolithic applications into independent, specialized compo-
nents, enhancing system flexibility [44]. A modernized cell line
database should separate authentication verification, experi-
mental condition optimization, and cross-reference resolution
into discrete services. When researchers upload new character-
ization data for a cell line, a validation microservice could au-
tomatically verify consistency with existing profiles, while an-
other service updates recommended culture conditions based
on combined experimental outcomes. Another key middle-
ware component is workflow services, including laboratory
information management systems [45], facilitating the link
between information and action. An example is comparing
metabolic profiles across hepatocyte cell lines to generate cus-
tomized experimental protocols based on optimal culture con-
ditions for each line, with reagent lists automatically adjusted
for the specific metabolic properties of selected models.

Hybrid architecture and data integration framework

The proposed database architecture adopts a hybrid model
combining a centralized repository for high-frequency pri-
mary data (e.g. cell line identifiers, validated traits) with fed-
erated integration of distributed secondary sources (e.g. ge-
nomic and literature databases) via standardized APIs. A
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three-tiered mediation layer enables technical integration. The
physical access layer could employ Open Archives Initiative
Protocol for Metadata Harvesting (OAI-PMH) and bioinfor-
matics standards such as Global Alliance for Genomics and
Health (GA4GH) to standardize data harvesting. The middle-
ware layer performs schema mapping for structured data and
semantic normalization for unstructured content. At the top, a
global identifier registry utilizes CURIEs and DOIs for cross-
referencing across heterogeneous resources.

Three core interfaces are meant to ensure interoperabil-
ity: (i) a unified query interface translating user requests into
native database languages (SQL, Cypher, MongoDB); (ii) a
synchronization interface maintaining consistency across re-
lational, document, and graph stores; and (iii) a metadata ex-
change interface compliant with ISA-Tab for harmonizing bi-
ological experiment descriptions. These enable referential in-
tegrity across datasets and pathway graphs. A feedback inte-
gration pathway captures user interactions (e.g. annotations,
experimental suitability tags) as FAIR Digital Objects with
standardized metadata. A dedicated ingestion module vali-
dates and reintegrates these into the core database, creating
a dynamic knowledge refinement loop. This approach might
allow the system to evolve collaboratively, integrating expert
input and computational insights to enhance both analytical
functionality and data richness over time.

Front-end technologies

The front-end layer transforms static cell line catalogs into dy-
namic research platforms through intuitive interfaces for users
[46]. This layer harmonically presents the features of the previ-
ous two layers through visualization and interactive features.
Modern JavaScript frameworks enable sophisticated compar-
ative visualization and interaction [46]. React components
could render comparisons of cell lines, highlighting differences
in morphology, growth characteristics, gene expression pro-
files, clinical relevance, usage, and much more, through inter-
active visualizations that respond instantly to parameter ad-
justments driven by the user. Visual comparison tools repre-
sent a simple yet potentially game-changing tool in cell line
selection. Interactive matrices could display drug sensitivity
patterns across multiple cell lines, with hierarchical clustering
revealing unexpected relationships between seemingly unre-
lated models. This cross-check at multiple levels would likely
produce precious novel insights based on fully exploiting and
interpreting already-existing data. These comparisons could
be filtered based on the most disparate parameters, needs or
curiosities, based on specific mutations, tissue origins, or ex-
perimental conditions, transforming what would be weeks of
literature review into minutes of interactive exploration [34].

Al assistants integrated directly into the front-end inter-
face could provide tailored and specifically trained guidance
through cell line selection processes based on experimental
goals [47]. For example, they could highlight cell lines with rel-
evant properties, flag potential authentication concerns, con-
tradictory experimental findings from the literature, or suggest
complementary models to strengthen experimental design. Fi-
nally, virtual cell culture simulators would be a transformative
front-end addition to integrate mathematical models of cell
behaviour with accumulated experimental data. This could
facilitate the prediction around how different cell lines might
respond to experimental manipulations before physical exper-
iments begin, enabling to adjust culture conditions, test drug
concentrations, or simulate time-course experiments through

intuitive interfaces, with predictions based on historical data.
To support collaborative data exploration and hypothesis gen-
eration, the front-end interface is designed to enable real-time
multi-user interaction. This would enable to synchronously
examine data views, annotate selections, and share insights
within team environments. Examples of technologies are Fire-
base Realtime Database or Socket.IO, employed in collabora-
tive sessions where selections and filters are mirrored across
team members interfaces in real time. This setup might facili-
tate distributed but coordinated interpretation of complex bi-
ological datasets.

Selected applications of dynamic data
software

The applications of interactive data environments span the en-
tire spectrum of life sciences. In domains where relationships
between entities are multidimensional and contextual, static
tabular presentations fail to capture the complexity of bio-
logical systems. Interactive data environments are meant to
integrate both structured and unstructured data. While struc-
tured data (genomic variants, protein structures, and clinical
measurements) forms the foundation, unstructured data (sci-
entific literature, clinical notes, and experimental protocols)
provides crucial context at a given time. The following sub-
sections examine four domains where interactive data envi-
ronments are demonstrating and can further have particular
impact: genomics, drug discovery, systems biology, and clinical
research. Each case explores how the interactive paradigm can
address domain-specific challenges and transforms research
practices.

Genomics

The genomics field has been an early adopter of Interactive
data environments approaches, driven by the complexity and
volume of sequencing data which made this route inevitable
[48]. Genome Aggregation Database (gnomAD) evolved from
simple variant browsers to sophisticated interactive systems
to explore allele frequencies across populations, visualize ge-
nomic contexts, and assess functional impacts of variants in
real-time [48]. These capabilities have proven to be critical
for rare disease research. Modern genomic interactive data
environments integrate machine learning algorithms that pre-
dict variant pathogenicity while allowing users to adjust pa-
rameters based on domain knowledge [49]. For example, the
ClinGen Pathogenicity Calculator enables clinicians to inter-
actively apply American College of Medical Genetics and Ge-
nomics (ACMG) guidelines for variant classification while vi-
sualizing supporting evidence from multiple sources [49]. This
represents a significant advance over static variant lists, en-
abling interpretation that adapts to evolving clinical knowl-
edge.

Drug development

In pharmaceutical research, interactive data environments are
revolutionizing multiple stages of the drug discovery and de-
velopment pipeline. DrugBank systems allow to explore drug-
target interactions across chemical and biological space [50].
Modern implementations combine structural databases with
molecular docking algorithms, allowing users to interactively
modify potential compounds and visualize predicted bind-
ing affinities in real-time. Virtual screening applications par-

G202 49900 G| UO Jasn AysiaAlun uojdwewnos Aq 678€928/¥904eeq/SSEGRIEP/EE0 L 0 L/I0P/loIE/osEqEIEp/ W00 dNO"0IWapEoE//:SARY WO papeojumoq



ticularly benefit from interactive capabilities, where pharma-
cophore models or chemical similarity metrics can be adjusted
to observe how these changes affect the ranking of poten-
tial hits. This interactivity significantly accelerates the itera-
tive optimization process behind modern drug design. An ex-
ample is Schrodinger LiveDesign integrating data from public
and proprietary sources with interactive modelling tools that
guide rational drug design while managing the complexity of
structure—activity relationships [51].

Systems biology

Systems biology approaches benefit from interactive data en-
vironments that enable exploration of complex biological
networks. Reactome and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) currently include interactive path-
way browsers that enable to navigate from organism-level
pathways down to molecular interactions, visualizing exper-
imental data in context [52]. The ability to overlay multi-
omics data (transcriptomics, proteomics, and metabolomics)
onto these pathways in real-time provides insights that would
be impossible to extract from static representations. Ad-
vanced systems biology databases incorporate simulation ca-
pabilities, where researchers can interactively perturb net-
work components and observe predicted system-wide ef-
fects. For example, Cell Collective allows users to build
and simulate logical models of biological networks, interac-
tively testing hypotheses about regulatory relationships [53].
These interactive modelling approaches bridge static pathway
maps and dynamic biological processes to facilitate in silico
experimentation.

Clinical research

In clinical research, interactive data environments are trans-
forming how patient cohorts are analysed and stratified [54].
Modern clinical trial databases allow to dynamically seg-
ment patient populations based on multiple clinical vari-
ables, biomarkers, treatment responses, and genomic pro-
files. These systems enable the identification of responder sub-
groups that might be missed in traditional aggregate analyses.
This interactive approach is particularly valuable for precision
medicine, where treatment decisions increasingly depend on
complex combinations of biomarkers. In this context, cBio-
Portal for Cancer Genomics is used by clinicians to interac-
tively explore relationships between genomic alterations and
clinical outcomes across thousands of patients, and identify
patterns that inform treatment selection for individual cases
[54]. As these systems evolve, they increasingly incorporate
natural language processing of clinical notes and Al-assisted
pattern recognition to extract insights from unstructured clin-
ical data.

The applications discussed across genomics, drug develop-
ment, systems biology, and clinical research demonstrate dif-
ferent approaches to biological data interactivity. To better il-
lustrate the current limitations and development gaps, Table 2
provides a systematic comparison of representative platforms
in each domain, highlighting both implemented capabilities
and features requiring further development.

Despite strong domain-specific performance, major limita-
tions persist in cross-domain data integration. Systems must
evolve to support standardized linking of genomic variants,
pathway disruptions, drug targets, and clinical outcomes into
unified, interactive analyses. In parallel, most platforms re-

Moreddu

main tailored for single-user interactions, lacking collabora-
tive functions such as version control, permission manage-
ment, or synchronized multi-user workspaces. Another lim-
itation lies in the unidirectional flow of information. Cur-
rent tools primarily serve as endpoints for querying exist-
ing knowledge rather than facilitating knowledge generation.
Embedding structured annotation frameworks could enable
users to contribute validated insights, fostering dynamic feed-
back loops between researchers and databases. Moreover,
computational scalability remains a barrier: simple filtering
and visualization are often responsive, but complex analyses
are hindered by performance constraints. To overcome this,
platforms will need distributed computing architectures op-
timized for biological data types. Finally, most systems of-
fer only retrospective data exploration; integrating predictive
modelling and simulation would enable hypothesis testing, al-
lowing users to evaluate potential interventions prior to exper-
imentation, significantly accelerating and improving research
outcomes.

Discussion and challenges

Despite their transformative potential, interactive data envi-
ronments in life sciences face substantial challenges. The most
intuitive challenges span from unawareness among people,
privacy and access, user experience, and intrinsically data-
related challenges. People-related challenges revolve around
the lack of awareness among part of life science researchers
of what computing tools can offer to optimize, speed up, and
improve the intellectual quality of life science research. This
challenge reflects poor communication and limited exchange
between life sciences and computational disciplines, which ur-
gently need to be bridged. On the same line, user adoption
represents a critical challenge. Interactive systems must ac-
commodate diverse user groups with varying computational
literacy while providing sufficient analytical depth to address
complex biological questions.

Technical challenges are primarily about data standardiza-
tion, performance, data quality, and accessibility. Data qual-
ity itself represents a central bottleneck, revolving around
noisy or incomplete entries, inconsistent measurement pro-
tocols, and experimental bias, which can critically impair
the interpretability and reproducibility of downstream analy-
ses. Sophisticated analyses that provide meaningful biological
insights often require computational resources incompatible
with real-time interaction. This creates a challenging design
space where analytical depth must be balanced against perfor-
mance constraints. Privacy and access challenges are particu-
larly relevant in clinical and patient-derived datasets, involv-
ing ethical concerns, consent frameworks, and jurisdictional
restrictions. For example, the use and sharing of patient-level
data must adhere to data protection regulations (e.g. GDPR
and HIPAA), institutional review protocols, and evolving ex-
pectations around participant autonomy and trust. These con-
straints are essential for safeguarding rights and ethics, yet of-
ten introduce friction in integrating sensitive data across plat-
forms. Initiatives such as the GA4GH are working to establish
interoperable standards and policies to facilitate responsible
data sharing while preserving privacy. Integrated data plat-
forms intended to operate in this domain must be designed
with embedded compliance layers and customizable permis-
sion systems.
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Table 2. Comparison of existing integrated data environments across major medical biotechnology domains.

Category

Feature

Genomics (gnomAD)

Drug development
(DrugBank)

Systems biology
(reactome)

Clinical research
(cBioPortal)

Data structure and
storage

Query and
visualization

Multi-omics data

Unstructured data
Temporal data support

Real-time filtering
of >10° records

Interactive
cross-domain queries

3D/spatial data

Variant-focused with
limited transcriptomic
data

Limited text mining

Static datasets

Population-scale
variant filtering

Limited to genomic
context

Limited protein

Chemical-biological
integration

Chemical literature

Limited reaction
kinetics

Limited to subsets of
compound database

Drug-target-pathway
connections

Molecular structure

Pathway-focused with
limited multi-omics

Protocol
documentation

Dynamic pathway
simulation

Pathway-limited scope

Within pathway
boundaries

Network topology

Multi-omics with
clinical data

Clinical notes
processing

Longitudinal patient
data

Sample-limited cohort
selection

Genotype-phenotype
correlations

Limited anatomical

visualization structure

Interactive statistical
analysis

Population frequency
tools

Analytics and
interactivity

Limited to constraint
metrics

Hypothesis testing
framework

Machine learning Variant pathogenicity

integration

Collaborative features Multi-user Single-user model
simultaneous
interaction
Version control of Download-only
analyses
User annotation None
frameworks

Technical architecture  API extensibility Comprehensive REST

API

Computational Cloud-based
scalability distributed computing
FAIR data principles  Partial implementation
implementation

viewers context

Survival and
correlation analysis

Structure-activity Enrichment analysis

analysis

Biomarker association
testing

Virtual screening Pathway perturbation

Chemical similarity Limited predictive
models

Single-user model

Outcome prediction
Single-user model Limited sharing
capabilities
Study groups

Limited project saving Export options

Limited annotations ~ None Basic study
descriptions
Basic REST endpoints Limited API access Comprehensive

programmatic access

Limited analytical Server-based
capacity processing
Partial implementation Partial implementation

Hybrid architecture

Partial implementation

The table summarizes implemented features and highlights missing capabilities across representative platforms in genomics, drug development, systems

biology, and clinical research, in relation to the proposed interactive model.

Data standardization

Biological data are produced by a wide variety of instru-
ments and experimental methods, which often results in het-
erogeneous formats and varied quality. Standardizing data for-
mats and ensuring data quality are fundamental challenges.
Life science domains have developed specialized vocabular-
ies that often overlap but use different terminologies for sim-
ilar concepts. For example, cell lines may be described us-
ing inconsistent nomenclature across repositories (HeLa vs.
HeLa S3 vs. Hela-S3), and the similarity across names could
lead to misassignments. These misassignments, even if rare,
could cause cascade problems. Ontology mapping has been
already initiated, e.g. through OBO Foundry (Open Biological
and Biomedical Ontologies) providing frameworks for ontol-
ogy integration, but implementation remains challenging due
to the evolving nature of biological knowledge [55]. Natu-
ral language processing models are increasingly employed to
automatically map terms across vocabularies, but these sys-
tems require careful curation to validate mappings. The value
of interactive queries depends fundamentally on the quality
and completeness of underlying metadata, for instance, exper-
imental details necessary for proper interpretation. To address
this challenge, interactive data environments could implement
validation systems that flag missing critical data and provide
feedback to contributors about data quality. Some systems

now employ data provenance indicators or reputation scores
for data sources, allowing users to filter query results based on
source trustworthiness and metadata completeness. Examples
are BioThings Explorer and FAIRsharing [56, 57].

Performance

As databases grow in size and complexity, ensuring that
query responses remain fast and accurate is crucial. Inter-
active medical biotechnology queries involve complex mul-
tidimensional parameters. For example, identification of cell
lines with specific genetic mutations, protein expression pat-
terns, and growth characteristics, alongside dynamic visual-
ization of multiscale relationships across tens of cell types and
culture. Advanced computational approaches addressing this
challenge include bitmap indexing for genomic data and spa-
tial indexing techniques adapted for multidimensional biolog-
ical data [58].

Cloud-native database architectures that scale horizontally
to handle compute-intensive queries are increasingly essential
for interactive performance across large biological datasets.
Interactive visualization of large biological datasets presents
unique performance challenges. Modern interactive data en-
vironments address this through server-side aggregation, pro-
gressive loading techniques that refine visualizations incre-
mentally, WebGL and GPU-accelerated rendering, and intel-
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ligent sampling methods that preserve statistical properties
while reducing data volume [59]. These techniques enable re-
sponsive exploration even for datasets too large to transmit
in their entirety. This transition can be enabled step by step,
handling datasets that are easier to manage first.

Data accessibility

Advanced interactivity can only be effective if users find
the system intuitive and accessible. Interactive biological
databases face a fundamental issue between analytical power
and interface simplicity. Systems that expose the full com-
plexity of underlying data models risk overwhelming non-
computational users, while oversimplified interfaces may limit
discovery potential. This challenge is particularly acute in mul-
tidisciplinary fields where users range from computational
specialists to wet-lab biologists and clinicians. Adaptive in-
terface approaches show promise in addressing this challenge
through progressive disclosure of features based on user ex-
pertise, context-sensitive guidance, customizable workspaces,
and natural language query capabilities for nontechnical
users. Features such as automatic query history tracking (e.g.
as implemented in National Center for Biotechnology Infor-
mation (NCBI) resources) and computational notebooks (e.g.
Jupyter) are now widely adopted tools that have proven ef-
fective in enhancing reproducibility, transparency, and user
engagement when integrated into interactive database inter-
faces. Another issue related to data accessibility concerns the
integration and retrieval of information from existing biologi-
cal databases, which is often hindered by inconsistent formats,
limited APIs, or restricted access policies.

Outlook

interactive data environments could represent a paradigm
shift in how research data is stored, handle, and shared, offer-
ing significant advantages towards driving collective scientific
progress meant for clinical translation and reliable fundamen-
tal results. Their emergence signals not merely a technological
evolution but a fundamental shift in how biological knowl-
edge is constructed, validated, and extended. This reconcep-
tualizes the scientific process itself where the boundaries be-
tween hypothesis generation, data analysis, and experimental
design become increasingly iterative, with a strong urge for
data reproducibility and validation. Currently, different ex-
pertise in computational methods creates a gap between those
who can and cannot effectively interrogate complex biolog-
ical datasets. Integrated frameworks designed with intuitive
interfaces could democratize access to advanced analytical ca-
pabilities, potentially shifting control over data interpretation
and exploratory analysis from computational specialists to a
broader range of scientists. The development trajectory of in-
teractive data environments will inevitably be shaped by eco-
nomic forces and institutional priorities that extend beyond
purely scientific considerations. Commercial entities building
such platforms face tensions between creating proprietary sys-
tems that generate revenue and contributing to open scien-
tific models that maximize knowledge generation and shar-
ing. These economic realities suggest that hybrid models com-
bining open source models with commercial components may
emerge.

Interactive data environments also have the potential to
transform interdisciplinary collaboration by creating shared

Moreddu

cognitive spaces where specialists from diverse backgrounds
can explore complex biological questions. This potential ex-
tends beyond collaboration among human experts to include
the integration of Al-driven tools that support data explo-
ration and interpretation, while preserving human oversight
and decision-making. Static repositories indirectly reinforce
reductionist perspectives by presenting biological entities as
discrete objects. Interactive systems that dynamically visu-
alize multidimensional relationships could instead represent
the existing interconnections between the most seemingly dis-
parate domains, making full use of the acquired data across
domains.

Conflicts of interest: None declared.

References

1. Martani A, Genevieve LD, Elger B ez al. “It’s not something
you can take in your hands’. Swiss experts’ perspectives on
health data ownership: an interview-based study. BM] Open
2021;11:e045717. https://doi.org/10.1136/bmjopen-2020-04571
7

2. Perez-Riverol Y, Alpi E, Wang R et al. Making proteomics data ac-
cessible and reusable: current state of proteomics databases and
repositories. Proteomics 2015;15:930-50. https://doi.org/10.100
2/pmic.201400302

3. Seth A, Banyal A, Kumar P. Commercialization and technology
transfers of bioprocess. In: Bhatt AK, Bhatia RK, Bhalla TC (eds),
Basic Biotechniques for Bioprocess and Bioentrepreneurship. Aca-
demic Press, 2023, 455-69.

4. Jagadish HV, Olken F. Database management for life sciences re-
search. ACM SIGMOD Record 2004;33:15-20. https://doi.org/10
.1145/1024694.1024697

5. Bairoch A. The cellosaurus, a cell-line knowledge resource. |
Biomol Tech 2018;29:25-38. https://doi.org/10.7171/jbt.18-290
2-002

6. Clark K, Karsch-Mizrachi I, Lipman D] et al. Nucleic Acids Res
2016;44:D67-72. https://doi.org/10.1093/nar/gkv1276

7. Thessen AE, Patterson DJ. Data issues in the life sciences. ZooKeys
2011;150:15-51. https://doi.org/10.3897/z00keys.150.1766

8. Jeong Y, Young L, Hicks D. Synchronized static and dynamic vi-
sualization in a web-based programming environment. In: 2016
IEEE 24th International Conference on Program Comprehension
(ICPC). Springer, Cham. 2016. https://doi.org/10.1109/ICPC.201
6.7503733

9. Meier A, Kaufmann M. NoSQL Databases. In: SOL & NoSQL
Databases. Cham: Springer, 2019, 201-18. https://doi.org/10.100
7/978-3-031-27908-9_7

10. Chatelain C, Lessard S, Klinger K et al. Building a human genetic
data lake to scale up insights for drug discovery. Drug Discov To-
day 2025;30:104385. https://doi.org/10.1016/j.drudis.2025.1043
85

11. Wolski M, Woloszynski T, Stachowiak G et al. Bone data lake: a
storage platform for bone texture analysis. Proc Inst Mech Eng
Part H ] Eng Med 2025;239:190-201. https://doi.org/10.1177/09
544119251318434

12. Schneider M, Zolg DP, Samaras P et al. A scalable, web-based plat-
form for proteomics data processing, result storage and analysis. |
Proteome Res 2025;24:1241-49. https://doi.org/10.1021/acs.jpro
teome.4c00871

13. Fang H. Managing data lakes in big data era: what’s a data lake
and why has it became popular in data management ecosystem.
In: 2015 IEEE International Conference on Cyber Technology in
Automation, Control, and Intelligent Systems (CYBER). 2015.

14. Miloslavskaya N, Tolstoy A. Big data, fast data and data lake con-
cepts. Proc Comp Sci 2016;88:300-305. https://doi.org/10.1016/j.
procs.2016.07.439

G202 49900 G| UO Jasn AysiaAlun uojdwewnos Aq 678€928/¥904eeq/SSEGRIEP/EE0 L 0 L/I0P/loIE/osEqEIEp/ W00 dNO"0IWapEoE//:SARY WO papeojumoq


https://doi.org/10.1136/bmjopen-2020-045717
https://doi.org/10.1002/pmic.201400302
https://doi.org/10.1145/1024694.1024697
https://doi.org/10.7171/jbt.18-2902-002
https://doi.org/10.1093/nar/gkv1276
https://doi.org/10.3897/zookeys.150.1766
https://doi.org/10.1109/ICPC.2016.7503733
https://doi.org/10.1007/978-3-031-27908-9_7
https://doi.org/10.1016/j.drudis.2025.104385
https://doi.org/10.1177/09544119251318434
https://doi.org/10.1021/acs.jproteome.4c00871
https://doi.org/10.1016/j.procs.2016.07.439

Integrated data-driven biotechnology research environments

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Hai R, Geisler S, Quix C. Constance. In: Proceedings of the 2016
International Conference on Management of Data. 2016. https:
/ldoi.org/10.1145/2882903.2899389

Brown AW, Kaiser KA, Allison DB. Issues with data and analyses:
errors, underlying themes, and potential solutions. Proc Natl Acad
Sci2018;115:2563-70. https://doi.org/10.1073/pnas. 1708279115
Anderson NR, Lee ES, Brockenbrough JS et al. Issues in biomedical
research data management and analysis: needs and barriers. | Am
Med Inform Assoc 2007;14:478-88. https://doi.org/10.1197/jami
a.M2114

Sheikh A, Anderson M, Albala S et al. Health information technol-
ogy and digital innovation for national learning health and care
systems. Lancet Digital Health 2021;3:¢383-96. https://doi.org/10
.1016/52589-7500(21)00005-4

Szymkowiak A, Melovic B, Dabi¢ M et al. Information technology
and Gen Z: the role of teachers, the internet, and technology in the
education of young people. Technol Soc 2021;65:101565. https:
/ldoi.org/10.1016/j.techsoc.2021.101565

Birkland A, Yona G. BIOZON: a system for unification, manage-
ment and analysis of heterogeneous biological data. BMC Bioinf
2006;7:70. https://doi.org/10.1186/1471-2105-7-70

Joe Qin S. Recursive PLS algorithms for adaptive data modeling.
Comput Chem Eng 1998;22:503-14. https://doi.org/10.1016/s0
098-1354(97)00262-7

Biba M, Vajjhala NR. Statistical relational learning for ge-
nomics applications: a state-of-the-art review. In: Roy SS, Taguchi
YH(eds), Handbook of Machine Learning Applications for Ge-
nomics, Studies in Big Data. vol. 103, Singapore: Springer, 2022,
31-42. https://doi.org/10.1007/978-981-16-9158-4_3

Gyorodi C, Gyorodi R, Pecherle G et al. A comparative study:
mongoDB vs. MySQL. In: 2015 13th International Conference
on Engineering of Modern Electric Systems (EMES). 2015. https:
/ldoi.org/10.1109/EMES.2015.7158433

Schadt EE, Linderman MD, Sorenson J et al. Computational solu-
tions to large-scale data management and analysis. Nat Rev Genet
2010;11:647-57. https://doi.org/10.1038/nrg2857

Webber J. A programmatic introduction to Neo4j. In: Proceedings
of the 3rd Annual Conference on Systems, Programming, and Ap-
plications: Software for Humanity. 2012.

Frampton M, Houlston R. Generation of artificial FASTQ files to
evaluate the performance of next-generation sequencing pipelines.
PLoS One 2012;7:€49110. https://doi.org/10.1371/journal.pone.0
049110

Brazdil P, van Rijn JN, Soares C ef al. Automating work-
flow/pipeline design. In: Metalearning. Cognitive Technologies.
Cham: Springer, 2022, 123-40. https://doi.org/10.1007/978-3-03
0-67024-5_7

Spjuth O, Bongcam-Rudloff E, Hernandez GC et al. Experiences
with workflows for automating data-intensive bioinformatics.
Biol Direct 2015;10:43. https://doi.org/10.1186/s13062-015-007
1-8

Bindal PM,K. Quantum flow: enterprise data orchestration and
processing suite. In: IC3-2024: Proceedings of the 2024 Sixteenth
International Conference on Contemporary Computing. 2024,
577-84. https://doi.org/10.1145/3675888.3676116

Horbach S, Halffman W. The ghosts of HeLa: how cell line
misidentification contaminates the scientific literature. PLoS
One 2017;12:¢0186281. https://doi.org/10.1371/journal.pone.0
186281

Capes-Davis A, Theodosopoulos G, Atkin I et al. Check your cul-
tures! A list of cross-contaminated or misidentified cell lines. Int |
Cancer 2010;127:1-8. https://doi.org/10.1002/ijc.25242

Jalili V, Afgan E, Gu Q et al. The Galaxy platform for accessible,
reproducible and collaborative biomedical analyses: 2020 update.
Nucleic Acids Res 2020;48:W395-402. https://doi.org/10.1093/na
r/gkaa434

Sievert C. Interactive Web-Based Data Visualization with R, Plotly,
and Shiny. New York: Chapman and Hall/CRC, 2020. https://doi.
org/10.1201/9780429447273

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

Dias D, Jones CF, Moreira AC, et al. Multidimensional
classification framework for human breast cancer cell lines.
arXiv:2502.15868, 2025.

Holliday DL, Speirs V. Choosing the right cell line for breast cancer
research. Breast Cancer Res 2011;13:215. https://doi.org/10.1186/
bcr2889

Laizé V, Rosa JT, Tarasco M et al. Status, challenges, and per-
spectives of fish cell culture—focus on cell lines capable of in
vitro mineralization. In: Monzo6n IF, Fernandes JMO(eds), Cellular
and Molecular Approaches in Fish Biology. Academic Press, 2022,
381-404. https://doi.org/10.1016/B978-0-12-822273-7.00004-5
DiFranzo D, Graves A, Erickson JS et al. The web is my back-end:
creating mashups with linked open government data. In: Wood
D(ed.), Linking Government Data. New York, NY: Springer, 2011,
205-19. https://doi.org/10.1007/978-1-4614-1767-5_10
Drucker J. The back end: infrastructure design for scholarly re-
search. | Mod Period Stud 2017;8:119-33. https://doi.org/10.532
S/jmodeperistud.8.2.0119

Dall’Alba G, Casa PL, Abreu FP et al. A survey of biological data
in a big data perspective. Big Data 2022;10:279-97. https://doi.or
¢/10.1089/big.2020.0383

Kumar KBS, Srividya, Mohanavalli S. A performance compar-
ison of document oriented NoSQL databases. In: 2017 Inter-
national Conference on Computer, Communication and Signal
Processing (ICCCSP). 2017. https://doi.org/10.1109/ICCCSP.201
7.7944071

Patifio-Martinez M, Jiménez-Peris R, Kemme B et al. Middle-R.
ACM Trans Comput Syst 2005;23:375-423. https://doi.org/10.1
145/1113574.1113576

Burley SK, Berman HM, Kleywegt GJ et al. Protein Data Bank
(PDB): the single global macromolecular structure archive. Meth-
ods Mol Biol 2017;1607:627-41. https://doi.org/10.1007/978-1-
4939-7000-1_26

Wang J, Lu T, Li L et al. Enhancing personalized search with Al:
a hybrid approach integrating deep learning and cloud computing.
J Adv Comput Syst 2024;4:1-13. https://doi.org/10.69987/jacs.20
24.41001

Marquez G, Astudillo H. Actual use of architectural patterns in
microservices-based open source projects. In: 2018 25th Asia-
Pacific Software Engineering Conference (APSEC). 2018. https:
/ldoi.org/10.1109/APSEC.2018.00017

Prasad PJ, Bodhe GL. Trends in laboratory information manage-
ment system. Chemom Intell Lab Syst 2012;118:187-92. https:
/ldoi.org/10.1016/j.chemolab.2012.07.001

Goh HA, Ho CK, Abas FS. Front-end deep learning web apps de-
velopment and deployment: a review. Appl Intell 2023;53:15923—
45. https://doi.org/10.1007/s10489-022-04278-6

Harrison Oke E, Regina Coelis K. Adebamigbe Alex, F. The future
of software development: integrating Al and machine learning into
front-end technologies. Glob | Adv Res Rev 2024;2:069-77. https:
/ldoi.org/10.58175/gjarr.2024.2.1.0031

Gudmundsson S, Singer-Berk M, Watts NA et al. Variant
interpretation using population databases: lessons from
gnomAD. Hum Mutar 2022;43:1012-30. https://doi.org/10.1
002/humu.24309

Patel RY, Shah N, Jackson AR et al. ClinGen pathogenicity calcu-
lator: a configurable system for assessing pathogenicity of genetic
variants. Genome Med 2017;9:3. https://doi.org/10.1186/s13073
-016-0391-z

Knox C, Wilson M, Klinger CM et al. DrugBank 6.0: the DrugBank
Knowledgebase for 2024. Nucleic Acids Res 2024;52:D1265-75.
https://doi.org/10.1093/nar/gkad976

May M. Computational tools take advantage of the data deluge.
Genet Eng Biotechnol News 2023;43:42-44. https://doi.org/10.1
089/gen.43.04.14

Nguyen H, Pham VD, Nguyen H et al. CCPA: cloud-based, self-
learning modules for consensus pathway analysis using GO, KEGG
and Reactome. Brief Bioinf 2024;25. https://doi.org/10.1093/bib/
bbae222

G202 49900 G| UO Jasn AysiaAlun uojdwewnos Aq 678€928/¥904eeq/SSEGRIEP/EE0 L 0 L/I0P/loIE/osEqEIEp/ W00 dNO"0IWapEoE//:SARY WO papeojumoq


https://doi.org/10.1145/2882903.2899389
https://doi.org/10.1073/pnas.1708279115
https://doi.org/10.1197/jamia.M2114
https://doi.org/10.1016/S2589-7500(21)00005-4
https://doi.org/10.1016/j.techsoc.2021.101565
https://doi.org/10.1186/1471-2105-7-70
https://doi.org/10.1016/s0098-1354(97)00262-7
https://doi.org/10.1007/978-981-16-9158-4_3
https://doi.org/10.1109/EMES.2015.7158433
https://doi.org/10.1038/nrg2857
https://doi.org/10.1371/journal.pone.0049110
https://doi.org/10.1007/978-3-030-67024-5_7
https://doi.org/10.1186/s13062-015-0071-8
https://doi.org/10.1145/3675888.3676116
https://doi.org/10.1371/journal.pone.0186281
https://doi.org/10.1002/ijc.25242
https://doi.org/10.1093/nar/gkaa434
https://doi.org/10.1201/9780429447273
https://doi.org/10.1186/bcr2889
https://doi.org/10.1016/B978-0-12-822273-7.00004-5
https://doi.org/10.1007/978-1-4614-1767-5_10
https://doi.org/10.5325/jmodeperistud.8.2.0119
https://doi.org/10.1089/big.2020.0383
https://doi.org/10.1109/ICCCSP.2017.7944071
https://doi.org/10.1145/1113574.1113576
https://doi.org/10.1007/978-1-4939-7000-1_26
https://doi.org/10.69987/jacs.2024.41001
https://doi.org/10.1109/APSEC.2018.00017
https://doi.org/10.1016/j.chemolab.2012.07.001
https://doi.org/10.1007/s10489-022-04278-6
https://doi.org/10.58175/gjarr.2024.2.1.0031
https://doi.org/10.1002/humu.24309
https://doi.org/10.1186/s13073-016-0391-z
https://doi.org/10.1093/nar/gkad976
https://doi.org/10.1089/gen.43.04.14
https://doi.org/10.1093/bib/bbae222

10

53.

54.

55.

56.

Helikar T, Kowal B, McClenathan S et al. The cell collec-
tive: toward an open and collaborative approach to systems
biology. BMC Syst Biol 2012;6:96. https://doi.org/10.1186/1752
-0509-6-96

Gao J, Aksoy BA, Dogrusoz U e al. Integrative analysis of com-
plex cancer genomics and clinical profiles using the cBioPortal. Sci
Signal 2013;6:pl1. https://doi.org/10.1126/scisignal.2004088
Smith B, Ashburner M, Rosse C et al. The OBO foundry: coor-
dinated evolution of ontologies to support biomedical data inte-
gration. Nat Biotechnol 2007;25:1251-55. https://doi.org/10.103
8/nbt1346

Holik AZ, Law CW, Liu R et al. RNA-seq mixology: designing
realistic control experiments to compare protocols and analysis

57.

58.

59.

Moreddu

methods. Nucleic Acids Res 2017;45:¢30. https://doi.org/10.109
3/nar/gkw1063

Sansone SA, McQuilton P, Rocca-Serra P et al. FAIRsharing as a
community approach to standards, repositories and policies. Nat
Biotechnol 2019;37:358-67. https://doi.org/10.1038/s41587-019
-0080-8

Jong VL, Novianti PW, Roes KC et al. Selecting a classification
function for class prediction with gene expression data. Bioin-
formatics 2016;32:1814-22. https://doi.org/10.1093/bioinformati
cs/btw034

Yu G, Liu C, Fang T ef al. A survey of real-time rendering on
Web3D application. Virtual Real Intell Hardw 2023;5:379-94.
https://doi.org/10.1016/j.vrih.2022.04.002

Received 3 April 2025; Revised 7 July 2025; Accepted 20 August 2025
© The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

G202 1990J20 G| UO Jasn Aysianlun uojdweynos Aq 678€928/790)EEq/aSEqRIEP/E60 L 0 L/I0p/loIe/asEdE)Ep/Wod dNo"dlWapedE//:Sdny Wolj papeojumoq


https://doi.org/10.1186/1752-0509-6-96
https://doi.org/10.1126/scisignal.2004088
https://doi.org/10.1038/nbt1346
https://doi.org/10.1093/nar/gkw1063
https://doi.org/10.1038/s41587-019-0080-8
https://doi.org/10.1093/bioinformatics/btw034
https://doi.org/10.1016/j.vrih.2022.04.002
https://creativecommons.org/licenses/by/4.0/

	Biological data management
	Interactive data environments
	Selected applications of dynamic data software
	Discussion and challenges
	Outlook
	References

