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Abstract 

In the past few decades, the life sciences have experienced an unprecedented accumulation of data, ranging from genomic sequences and 
proteomic profiles to heavy-content imaging, clinical assays, and commercial biological products for research. Traditional static databases have 
been invaluable in providing standardized and structured information. However, they fall short when it comes to facilitating exploratory data 
interrogation, real-time query, multidimensional comparison, and dynamic visualization. Integrated data-driven research environments aiming at 
supporting user-driven data queries and visualization offer promising new avenues for making the best use of the vast and heterogeneous data 
streams collected in biological research. This article discusses the potential of interactive and integrated frameworks, highlighting the importance 
of implementing this model in biotechnology research, while going through the state-of-the-art in database design, technical choices behind 
modern data management systems, and emerging needs in multidisciplinary research. Special attention is given to data interrogation strategies, 
user interface design, and comparative analysis capabilities, along with challenges such as data standardization and scalability in data-heavy 
applications. Conceptual features for developing interactive data environments along diverse life science domains are then presented in the user 
case of cell line selection for in vitro research to bridge the gap between research data generation, actionable biological insight, experimental 
design, and clinical relevance. 
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Biological data management 

Biology, nanotechnology, and medicine are data-rich fields [ 1 ]. 
Over the last several decades, high-throughput technologies 
have revolutionized biology by generating massive datasets. 
These include genomic sequences, proteomics data, high- 
resolution imaging, long-term acquisitions, and clinical trial 
data.[ 2 ] On top of those, companies in the biotech industry 
have commercialized large amounts of biological models to 

be used in research, biotechnology, and pharmaceutical indus- 
tries for in vitro research [ 3 ]. In response, the need for versa- 
tile and user-friendly resource and data management systems 
has grown dramatically [ 4 ]. Biological databases tradition- 
ally focused on cataloguing discrete pieces of information and 

statically showing them online (e.g. Cellosaurus for classify- 
ing cell lines) [ 5 ] or within private organizations (e.g. internal 
databases for storing laboratory equipment information). In 

some cases, they integrate simple search functions to facilitate 
retrieval of stored data and allow incremental data submis- 
sion or periodic expansion by database curators [ 4 ]. Classic 
examples, such as GenBank [ 6 ] and the Protein Data Bank 

(PDB), offer comprehensive search and retrieval functions 
across standardized metadata fields (e.g. organism, gene name, 
accession number, and sequence features in GenBank). Such 

systems remain indispensable as reference sources, but they 
were largely designed to support data deposition, retrieval, 
and preservation, rather than interactive exploration or adap- 
tive reuse. Their architecture typically centers around rigid 

schemas with limited user-driven comparison capabilities. 

With the advent of high-throughput technologies, the vol- 
ume and complexity of biological data expanded consider- 
ably [ 7 ]. In domains such as genomics, drug discovery, in
vitro research, and personalized medicine, interactive and in- 
tegrated platforms have the potential to transform the way 
we work with data, reducing time currently devolved to hy-
pothesis testing and literature search, and facilitating discov- 
ery by designing meaningful workflows based on experimen- 
tal objectives. This model would also enable scientists to fo- 
cus their efforts on innovation and higher-end intellectual ac- 
tivities. Table 1 presents the comparison between traditional 
biological databases and the proposed approach. Figure 1 vi- 
sualizes the potential of interactive and integrated data envi- 
ronments. The following sections guide the development of 
next-generation digital research platforms. 

The concept of interactivity in database systems has been 

widely used to describe data portals or repositories with web
or Application Programming Interface (API) access. Here, this 
concept is expanded to include dynamic, modular systems de- 
signed for bidirectional interaction, collaborative filtering, hy- 
pothesis generation, experimental planning, and feedback in- 
tegration. This allows to incorporate experimental metadata,
support multiscale comparative analysis, and integrate FAIR 

Digital Objects derived from user interaction. Although no 

universally accepted term yet exists for such environments,
this conceptual framework lies at the intersection of intel- 
ligent decision-support platforms, collaborative data infras- 
tructures, and multi-domain experimental design engines. 
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Table 1. Comparison between traditional biological databases and next-generation interactive data environments. 

Dimension Classical biological databases Interactive data environments 

Access model Read-only, query-based Bidirectional and real-time 
Data structure Schema-defined Flexible (relational, document, and graph) 
User engagement Individual Multi-user 
Update frequency Curated (low frequency) Real-time ingestion and user feedback 
Knowledge generation Initiated by the user Embedded in dynamic workflows 
Feedback Limited to curation Real-time FAIR integration 
Use case focus Archival and citation Discovery and planning 

This table summarizes key architectural, functional, and epistemological differences between classical repositories, designed primarily for data storage and 
retrieval, and the proposed integrated systems, which emphasize bidirectional data flow, real-time analytics, collaborative workflows, and integration of 
experimental design logic and user feedback. 

Figure 1. Integrated data environments. A) Overview of integrated data environments, needs, and features. B) Comparison between static repositories 
and interactive platforms across three key dimensions: data access methods, analysis workflows, and knowledge integration capabilities. The workflow 

at the bottom exemplifies the steps undertook by the user interfacing with an interactive data environment. 
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nteractive data environments 

he concept of interactivity in database systems is closely re- 
ated to developments in web technologies, artificial intelli- 
ence (AI), and data visualization techniques. Modern systems 
re capable to combine web technologies (e.g. JavaScript li- 
raries for dynamic visualization) [ 8 ] and back-end data man- 
gement solutions (e.g. NoSQL databases for unstructured 

ata or graph databases for relationship modelling) [ 9 ]. In- 
egrated research environments are not intended to replace 
omain-specific repositories such as GenBank, PDB, or Cel- 
osaurus, which remain foundational for primary data submis- 
ion and standardized archival. Instead, they could function 

s specialized integration and analysis layers that enable re- 
earchers to query, visualize, and analyse data across multiple 
xisting repositories through unified interfaces. This architec- 
ural approach shares conceptual similarities with data lakes 
 10–12 ], yet extends beyond traditional data lake implementa- 
ions in several crucial ways. Data lakes primarily provide in- 
rastructure for storing heterogeneous data in native formats 
ithout imposing rigid schemas [ 13 ], whereas the research 

nvironments described here focus on active knowledge inte- 
ration and experimental decision support through domain- 
pecific analytical capabilities. Recent implementations such 

s genetic data lakes for drug discovery [ 10 ] store and process 
enetic data at scale, but typically lack the specialized compar- 
tive analysis capabilities and experimental design guidance 
hat define the systems proposed hereby. General-purpose 

data lakes prioritize accommodating massive volumes of raw
data [ 14 ], these biotechnology research environments imple-
ment domain-specific user interfaces and analytical workflows
optimized for particular scientific tasks (e.g. cell line selec-
tion, pathway analysis, and biomarker identification). Further-
more, while data lakes typically operate as centralized reposi-
tories within organizational boundaries [ 15 ], the research en-
vironments envisioned here function as connection across the
distributed ecosystem of existing biological repositories. They
provide harmonized access layers that preserve the special-
ized governance and data submission workflows of underlying
repositories while enabling cross-repository analyses not fea-
sible through direct interaction with individual primary data
sources. 

Despite the dramatic development in computer science and
web technologies, the life science domain still sees crucial
gaps to enable smooth selection and dataset navigation [ 16 ,
17 ]. The need of transitioning towards these features is be-
coming evident through the growing complexity of biological
questions, in parallel with the technological advances in other
fields that make complex computations and visualizations fea-
sible in real time and with less efforts from the user [ 18 , 19 ].
The next subsections highlight selected desirable characteris-
tics and their technological feasibility within interactive data
environments for the life sciences domain. Cell line selection
for in vitro research is presented as a possible implementation
case. 
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Integrated data-driven biotechnology research environments 3
Features 

The heterogeneity of biological data, from structured clinical 
trial tables and semi-structured cell line annotations to un- 
structured experimental notes, poses a fundamental challenge 
for the development of integrated data environments [ 20 ]. 
Successfully integrating these different data types requires a 
strategic balance to ensure that the system accommodates 
evolving data landscapes without sacrificing analytical preci- 
sion. At the core of this integration lies the concept of adap- 
tive data modelling [ 21 ], where the choice of database schemes 
dictates both functionality and scalability. Relational models 
with a rigid table structure are indispensable for managing 
structured data such as genomic variants, patient demograph- 
ics, and cell lines properties [ 22 ]. However, the dynamic nature 
of life sciences research sometimes demands schemeless archi- 
tectures. In this context, document-oriented databases (e.g. 
MongoDB) [ 23 ] could be employed, allowing nested struc- 
tures to capture variable data, for instance that associated 

with single-cell sequencing experiments [ 24 ]. For highly inter- 
connected data, such as protein–protein interaction networks 
or metabolic pathways in cells, graph databases (e.g. Neo4j) 
offer the required traversal speed to enable real-time queries 
across millions of nodes and edges [ 25 ]. 

Data pipelines require automated workflows that analyse 
raw FASTQ files [ 26 ], screen online publications for experi- 
mental conditions, or obtain real-time sensor data from lab- 
oratory equipment [ 27 , 28 ]. Tools with error-handling frame- 
works could standardize this process, e.g. Apache NiFi or cus- 
tom Python scripts, but challenges exist [ 29 ]. For instance, in- 
consistencies in how labs report cell line contamination sta- 
tus require context-aware natural language processing mod- 
els to normalize inputs [ 30 , 31 ]. However, these models them- 
selves may introduce noise or bias, especially when trained on 

incomplete or poorly annotated datasets. In addition to in- 
consistencies, metadata may be entirely missing or provided 

in minimal form, despite repository guidelines requesting 
rich contextual descriptors. Submitters may also inadvertently 
provide erroneous information due to lab tracking errors or 
manual entry mistakes. These factors further complicate data 
harmonization and highlight the need for robust validation 

mechanisms, error propagation awareness, and contributor- 
facing feedback loops within interactive platforms. 

To bridge this gap, hybrid interfaces are gaining traction, 
e.g. Galaxy Project combining drag-and-drop workflows with 

Python scripting to allow users to transition from structured 

prompts (e.g. ‘show all breast cancer cell lines in the database 
having HER2 + status’) to programmatic analyses (e.g. suit- 
ability analysis for a given experiment evaluated using R li- 
braries) [ 32 ]. Then, dynamic visualization could transform 

these raw query results into actionable insights. Modern sys- 
tems integrate libraries to render interactive plots for genome- 
wide association studies, optimal cell profile to test a given 

technology, or 3D protein structures visualization. Examples 
of employed libraries are Plotly or D3.js [ 33 ]. However, in- 
teractivity implies that visualization must extend beyond pas- 
sive observation. Interactive data environments could let users 
click on a graph or comparison plot to trigger a secondary 
query, e.g. extract all genes differentially expressed in a spe- 
cific cluster, or group up all cells in different subclusters based 

on user-prompted features. Coupling visualization with ana- 
lytical tools could enable this functionality, and assistive AI 

could amplify this interactivity and scope. All these functions 
drive the design of a suitable user interface and define user
experience features. 

Case study: biological cell line selection 

Cell line selection represents an ideal case study for demon- 
strating the potential of interactive data environments in the 
life sciences. The complexity of choosing appropriate cell 
models from the thousands or commercially available lineages 
exemplifies why traditional static repositories are insufficient 
for modern research needs [ 34 ]. Currently, researchers often 

select cell lines based on convenience, tradition, or limited 

familiarity rather than comprehensive biological relevance,
leading to potential experimental irreproducibility, transla- 
tional failures, and wasted resources [ 34 , 35 ]. The challenge
lies in navigating multidimensional considerations simultane- 
ously, spanning from genetic background, tissue origin, dis- 
ease relevance, authentication status, growth characteristics,
pathway activations, compatibility with experimental proce- 
dures, and more [ 34 ]. While valuable reference resources exist
(Cellosaurus, ATCC catalogs, and LINCS) [ 36 ], they typically
present information in isolation, making comparative analysis 
labour-intensive and prone to oversight of critical variables if 
run by humans. 

An interactive data environment would transform cell line 
selection by enabling researchers to dynamically filter, com- 
pare, and visualize multiple cell lines across diverse parame- 
ters simultaneously. Such a system would integrate disparate 
data sources, including existing static repositories, literature 
outcomes, genomic profiles and user-contributed experimen- 
tal metadata, creating a thoughtful support platform. The fol- 
lowing subsections examine a potential envisioned architec- 
ture for implementation, structured into three interconnected 

layers: back-end data management systems for storing and 

processing diverse cell data, middleware and APIs facilitating 
integration and communication, and front-end technologies 
enabling intuitive exploration, comparison, and visualization.
This is also schematized in Fig. 2 . 

Back-end data management systems 
The back-end infrastructure forms the pillar of any interac- 
tive data environments [ 37 , 38 ] where storage solutions are
selected based on the inherent structure of biological infor- 
mation. Traditional relational database management systems,
such as PostgreSQL and MySQL, build the foundations of 
many established biological repositories [ 39 ]. An example 
is Cellosaurus, a comprehensive repository of cell lines [ 5 ].
While invaluable as a reference, its traditional structure lim- 
its the utilization of the stored data. Currently, data can be
visualized one by one for each cell line, making multidimen- 
sional comparisons across tens or hundreds of cells unfeasible.
Document-oriented NoSQL databases offer significant advan- 
tages for cell line repositories that accumulate diverse ex- 
perimental metadata [ 40 ]. MongoDB, for instance, can store
cell lines as flexible JavaScript Object Notation (JSON) doc- 
uments [ 23 ]. This allows to incorporate new characterization 

data of various nature, from morphological features to au- 
thentication profiles, without disruptive changes in the funda- 
mental structure. 

Network-oriented biological data presents another stor- 
age challenge that graph databases address. Systems such as 
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4 Moreddu

Figure 2. Technical architecture of integrated data environments: a case study on informed cell line selection. The schematic illustrates the three-tier 
structure comprising back-end data management systems (databases and storage solutions), middleware integration layer (APIs, microservices, and AI 
components), and front-end technologies (visualization tools and user interfaces), tailored to cell line selection as a sample case. 
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eo4j could transform the way relationships between cell 
ines are accessed and understood [ 25 ]. In cancer research, 
ne could explore the connections between patient-derived 

enografts, immortalized cell lines and original tumour sam- 
les through intuitive graphs and user-driven multidimen- 
ional queries. This approach could reveal lineage relation- 
hips and experimental compatibility that remain obscured 

n conventional tabular repositories. Supplementary storage 
echnologies could then drive performance considerations. 
esponse times during comparative analyses could be dramat- 

cally reduced by employing key-value stores such as Redis to 

atch frequently accessed data, e.g. commonly requested cell 
ines or culture protocols. This hybrid storage approach would 

llow databases to maintain responsive performance even as 
sers perform complex multiline comparisons simultaneously. 

iddleware and APIs 
he middleware layer in a database typically orchestrates 
ommunication between storage systems and user applica- 
ions [ 41 ], in this case enabling to transform static cell line 
eferences into dynamic research tools. Instead of making sep- 
rate requests for each cell line of interest, queries that directly 
ompare multiple lines across selected parameters (growth ki- 
etics, drug sensitivities, and genetic backgrounds) in a single 
peration could be constructed. Examples of tools to achieve 
his include GraphQL over traditional RESTful APIs [ 42 ]. AI 
epresents one of the most powerful middleware integrations 
 43 ]. Machine learning microservices could analyse patterns 
cross thousands of cell lines to recommend optimal models 
or specific research questions. Drug screening experiments 
ould be informed by recommendation assistants that iden- 

tifies cell lines most relevant to their target pathway based
on expression profiles, previous experimental outcomes, and
literature associations. Such systems transform passive cell
line catalogues into active research planning tools, integrat-
ing them with the latest research findings. The latter could be,
in turn, standardized over time by researchers themselves who
engage with the interactive data environments. 

The microservices architectural pattern can partition
monolithic applications into independent, specialized compo-
nents, enhancing system flexibility [ 44 ]. A modernized cell line
database should separate authentication verification, experi-
mental condition optimization, and cross-reference resolution
into discrete services. When researchers upload new character-
ization data for a cell line, a validation microservice could au-
tomatically verify consistency with existing profiles, while an-
other service updates recommended culture conditions based
on combined experimental outcomes. Another key middle-
ware component is workflow services, including laboratory
information management systems [ 45 ], facilitating the link
between information and action. An example is comparing
metabolic profiles across hepatocyte cell lines to generate cus-
tomized experimental protocols based on optimal culture con-
ditions for each line, with reagent lists automatically adjusted
for the specific metabolic properties of selected models. 

Hybrid architecture and data integration framework 

The proposed database architecture adopts a hybrid model
combining a centralized repository for high-frequency pri-
mary data (e.g. cell line identifiers, validated traits) with fed-
erated integration of distributed secondary sources (e.g. ge-
nomic and literature databases) via standardized APIs. A
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Integrated data-driven biotechnology research environments 5
three-tiered mediation layer enables technical integration. The 
physical access layer could employ Open Archives Initiative 
Protocol for Metadata Harvesting (OAI-PMH) and bioinfor- 
matics standards such as Global Alliance for Genomics and 

Health (GA4GH) to standardize data harvesting. The middle- 
ware layer performs schema mapping for structured data and 

semantic normalization for unstructured content. At the top, a 
global identifier registry utilizes CURIEs and DOIs for cross- 
referencing across heterogeneous resources. 

Three core interfaces are meant to ensure interoperabil- 
ity: (i) a unified query interface translating user requests into 

native database languages (SQL, Cypher, MongoDB); (ii) a 
synchronization interface maintaining consistency across re- 
lational, document, and graph stores; and (iii) a metadata ex- 
change interface compliant with ISA-Tab for harmonizing bi- 
ological experiment descriptions. These enable referential in- 
tegrity across datasets and pathway graphs. A feedback inte- 
gration pathway captures user interactions (e.g. annotations, 
experimental suitability tags) as FAIR Digital Objects with 

standardized metadata. A dedicated ingestion module vali- 
dates and reintegrates these into the core database, creating 
a dynamic knowledge refinement loop. This approach might 
allow the system to evolve collaboratively, integrating expert 
input and computational insights to enhance both analytical 
functionality and data richness over time. 

Front-end technologies 
The front-end layer transforms static cell line catalogs into dy- 
namic research platforms through intuitive interfaces for users 
[ 46 ]. This layer harmonically presents the features of the previ- 
ous two layers through visualization and interactive features. 
Modern JavaScript frameworks enable sophisticated compar- 
ative visualization and interaction [ 46 ]. React components 
could render comparisons of cell lines, highlighting differences 
in morphology, growth characteristics, gene expression pro- 
files, clinical relevance, usage, and much more, through inter- 
active visualizations that respond instantly to parameter ad- 
justments driven by the user. Visual comparison tools repre- 
sent a simple yet potentially game-changing tool in cell line 
selection. Interactive matrices could display drug sensitivity 
patterns across multiple cell lines, with hierarchical clustering 
revealing unexpected relationships between seemingly unre- 
lated models. This cross-check at multiple levels would likely 
produce precious novel insights based on fully exploiting and 

interpreting already-existing data. These comparisons could 

be filtered based on the most disparate parameters, needs or 
curiosities, based on specific mutations, tissue origins, or ex- 
perimental conditions, transforming what would be weeks of 
literature review into minutes of interactive exploration [ 34 ]. 

AI assistants integrated directly into the front-end inter- 
face could provide tailored and specifically trained guidance 
through cell line selection processes based on experimental 
goals [ 47 ]. For example, they could highlight cell lines with rel- 
evant properties, flag potential authentication concerns, con- 
tradictory experimental findings from the literature, or suggest 
complementary models to strengthen experimental design. Fi- 
nally, virtual cell culture simulators would be a transformative 
front-end addition to integrate mathematical models of cell 
behaviour with accumulated experimental data. This could 

facilitate the prediction around how different cell lines might 
respond to experimental manipulations before physical exper- 
iments begin, enabling to adjust culture conditions, test drug 
concentrations, or simulate time-course experiments through 

intuitive interfaces, with predictions based on historical data.
To support collaborative data exploration and hypothesis gen- 
eration, the front-end interface is designed to enable real-time 
multi-user interaction. This would enable to synchronously 
examine data views, annotate selections, and share insights 
within team environments. Examples of technologies are Fire- 
base Realtime Database or Socket.IO, employed in collabora- 
tive sessions where selections and filters are mirrored across 
team members interfaces in real time. This setup might facili-
tate distributed but coordinated interpretation of complex bi- 
ological datasets. 

Selected applications of dynamic data 

software 

The applications of interactive data environments span the en- 
tire spectrum of life sciences. In domains where relationships 
between entities are multidimensional and contextual, static 
tabular presentations fail to capture the complexity of bio- 
logical systems. Interactive data environments are meant to 

integrate both structured and unstructured data. While struc- 
tured data (genomic variants, protein structures, and clinical 
measurements) forms the foundation, unstructured data (sci- 
entific literature, clinical notes, and experimental protocols) 
provides crucial context at a given time. The following sub- 
sections examine four domains where interactive data envi- 
ronments are demonstrating and can further have particular 
impact: genomics, drug discovery, systems biology, and clinical 
research. Each case explores how the interactive paradigm can 

address domain-specific challenges and transforms research 

practices. 

Genomics 

The genomics field has been an early adopter of Interactive 
data environments approaches, driven by the complexity and 

volume of sequencing data which made this route inevitable 
[ 48 ]. Genome Aggregation Database (gnomAD) evolved from 

simple variant browsers to sophisticated interactive systems 
to explore allele frequencies across populations, visualize ge- 
nomic contexts, and assess functional impacts of variants in 

real-time [ 48 ]. These capabilities have proven to be critical
for rare disease research. Modern genomic interactive data 
environments integrate machine learning algorithms that pre- 
dict variant pathogenicity while allowing users to adjust pa- 
rameters based on domain knowledge [ 49 ]. For example, the
ClinGen Pathogenicity Calculator enables clinicians to inter- 
actively apply American College of Medical Genetics and Ge- 
nomics (ACMG) guidelines for variant classification while vi- 
sualizing supporting evidence from multiple sources [ 49 ]. This
represents a significant advance over static variant lists, en- 
abling interpretation that adapts to evolving clinical knowl- 
edge. 

Drug development 

In pharmaceutical research, interactive data environments are 
revolutionizing multiple stages of the drug discovery and de- 
velopment pipeline. DrugBank systems allow to explore drug- 
target interactions across chemical and biological space [ 50 ].
Modern implementations combine structural databases with 

molecular docking algorithms, allowing users to interactively 
modify potential compounds and visualize predicted bind- 
ing affinities in real-time. Virtual screening applications par- 
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icularly benefit from interactive capabilities, where pharma- 
ophore models or chemical similarity metrics can be adjusted 

o observe how these changes affect the ranking of poten- 
ial hits. This interactivity significantly accelerates the itera- 
ive optimization process behind modern drug design. An ex- 
mple is Schrödinger LiveDesign integrating data from public 
nd proprietary sources with interactive modelling tools that 
uide rational drug design while managing the complexity of 
tructure–activity relationships [ 51 ]. 

ystems biology 

ystems biology approaches benefit from interactive data en- 
ironments that enable exploration of complex biological 
etworks. Reactome and the Kyoto Encyclopedia of Genes 
nd Genomes (KEGG) currently include interactive path- 
ay browsers that enable to navigate from organism-level 
athways down to molecular interactions, visualizing exper- 

mental data in context [ 52 ]. The ability to overlay multi- 
mics data (transcriptomics, proteomics, and metabolomics) 
nto these pathways in real-time provides insights that would 

e impossible to extract from static representations. Ad- 
anced systems biology databases incorporate simulation ca- 
abilities, where researchers can interactively perturb net- 
ork components and observe predicted system-wide ef- 

ects. For example, Cell Collective allows users to build 

nd simulate logical models of biological networks, interac- 
ively testing hypotheses about regulatory relationships [ 53 ]. 
hese interactive modelling approaches bridge static pathway 
aps and dynamic biological processes to facilitate in silico 

xperimentation. 

linical research 

n clinical research, interactive data environments are trans- 
orming how patient cohorts are analysed and stratified [ 54 ]. 

odern clinical trial databases allow to dynamically seg- 
ent patient populations based on multiple clinical vari- 

bles, biomarkers, treatment responses, and genomic pro- 
les. These systems enable the identification of responder sub- 
roups that might be missed in traditional aggregate analyses. 
his interactive approach is particularly valuable for precision 

edicine, where treatment decisions increasingly depend on 

omplex combinations of biomarkers. In this context, cBio- 
ortal for Cancer Genomics is used by clinicians to interac- 
ively explore relationships between genomic alterations and 

linical outcomes across thousands of patients, and identify 
atterns that inform treatment selection for individual cases 
 54 ]. As these systems evolve, they increasingly incorporate 
atural language processing of clinical notes and AI-assisted 

attern recognition to extract insights from unstructured clin- 
cal data. 

The applications discussed across genomics, drug develop- 
ent, systems biology, and clinical research demonstrate dif- 

erent approaches to biological data interactivity. To better il- 
ustrate the current limitations and development gaps, Table 2 

rovides a systematic comparison of representative platforms 
n each domain, highlighting both implemented capabilities 
nd features requiring further development. 

Despite strong domain-specific performance, major limita- 
ions persist in cross-domain data integration. Systems must 
volve to support standardized linking of genomic variants, 
athway disruptions, drug targets, and clinical outcomes into 

nified, interactive analyses. In parallel, most platforms re- 

main tailored for single-user interactions, lacking collabora-
tive functions such as version control, permission manage-
ment, or synchronized multi-user workspaces. Another lim-
itation lies in the unidirectional flow of information. Cur-
rent tools primarily serve as endpoints for querying exist-
ing knowledge rather than facilitating knowledge generation.
Embedding structured annotation frameworks could enable
users to contribute validated insights, fostering dynamic feed-
back loops between researchers and databases. Moreover,
computational scalability remains a barrier: simple filtering
and visualization are often responsive, but complex analyses
are hindered by performance constraints. To overcome this,
platforms will need distributed computing architectures op-
timized for biological data types. Finally, most systems of-
fer only retrospective data exploration; integrating predictive
modelling and simulation would enable hypothesis testing, al-
lowing users to evaluate potential interventions prior to exper-
imentation, significantly accelerating and improving research
outcomes. 

Discussion and challenges 

Despite their transformative potential, interactive data envi-
ronments in life sciences face substantial challenges. The most
intuitive challenges span from unawareness among people,
privacy and access, user experience, and intrinsically data-
related challenges. People-related challenges revolve around
the lack of awareness among part of life science researchers
of what computing tools can offer to optimize, speed up, and
improve the intellectual quality of life science research. This
challenge reflects poor communication and limited exchange
between life sciences and computational disciplines, which ur-
gently need to be bridged. On the same line, user adoption
represents a critical challenge. Interactive systems must ac-
commodate diverse user groups with varying computational
literacy while providing sufficient analytical depth to address
complex biological questions. 

Technical challenges are primarily about data standardiza-
tion, performance, data quality, and accessibility. Data qual-
ity itself represents a central bottleneck, revolving around
noisy or incomplete entries, inconsistent measurement pro-
tocols, and experimental bias, which can critically impair
the interpretability and reproducibility of downstream analy-
ses. Sophisticated analyses that provide meaningful biological
insights often require computational resources incompatible
with real-time interaction. This creates a challenging design
space where analytical depth must be balanced against perfor-
mance constraints. Privacy and access challenges are particu-
larly relevant in clinical and patient-derived datasets, involv-
ing ethical concerns, consent frameworks, and jurisdictional
restrictions. For example, the use and sharing of patient-level
data must adhere to data protection regulations (e.g. GDPR
and HIPAA), institutional review protocols, and evolving ex-
pectations around participant autonomy and trust. These con-
straints are essential for safeguarding rights and ethics, yet of-
ten introduce friction in integrating sensitive data across plat-
forms. Initiatives such as the GA4GH are working to establish
interoperable standards and policies to facilitate responsible
data sharing while preserving privacy. Integrated data plat-
forms intended to operate in this domain must be designed
with embedded compliance layers and customizable permis-
sion systems. 
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Table 2. Comparison of existing integrated data environments across major medical biotechnology domains. 

Category Feature Genomics (gnomAD) 
Drug development 
(DrugBank) 

Systems biology 
(reactome) 

Clinical research 
(cBioPortal) 

Data structure and 
storage 

Multi-omics data Variant-focused with 
limited transcriptomic 
data 

Chemical-biological 
integration 

Pathway-focused with 
limited multi-omics 

Multi-omics with 
clinical data 

Unstructured data Limited text mining Chemical literature Protocol 
documentation 

Clinical notes 
processing 

Temporal data support Static datasets Limited reaction 
kinetics 

Dynamic pathway 
simulation 

Longitudinal patient 
data 

Query and 
visualization 

Real-time filtering 
of > 106 records 

Population-scale 
variant filtering 

Limited to subsets of 
compound database 

Pathway-limited scope Sample-limited cohort 
selection 

Interactive 
cross-domain queries 

Limited to genomic 
context 

Drug-target-pathway 
connections 

Within pathway 
boundaries 

Genotype-phenotype 
correlations 

3D/spatial data 
visualization 

Limited protein 
structure 

Molecular structure 
viewers 

Network topology Limited anatomical 
context 

Analytics and 
interactivity 

Interactive statistical 
analysis 

Population frequency 
tools 

Structure-activity 
analysis 

Enrichment analysis Survival and 
correlation analysis 

Hypothesis testing 
framework 

Limited to constraint 
metrics 

Virtual screening Pathway perturbation Biomarker association 
testing 

Machine learning 
integration 

Variant pathogenicity Chemical similarity Limited predictive 
models 

Outcome prediction 

Collaborative features Multi-user 
simultaneous 
interaction 

Single-user model Single-user model Single-user model Limited sharing 
capabilities 

Version control of 
analyses 

Download-only Limited project saving Export options Study groups 

User annotation 
frameworks 

None Limited annotations None Basic study 
descriptions 

Technical architecture API extensibility Comprehensive REST 

API 
Basic REST endpoints Limited API access Comprehensive 

programmatic access 

Computational 
scalability 

Cloud-based 
distributed computing 

Limited analytical 
capacity 

Server-based 
processing 

Hybrid architecture 

FAIR data principles 
implementation 

Partial implementation Partial implementation Partial implementation Partial implementation 

The table summarizes implemented features and highlights missing capabilities across representative platforms in genomics, drug development, systems 
biology, and clinical research, in relation to the proposed interactive model. 

D
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nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baaf064/82638
Data standardization 

Biological data are produced by a wide variety of instru- 
ments and experimental methods, which often results in het- 
erogeneous formats and varied quality. Standardizing data for- 
mats and ensuring data quality are fundamental challenges. 
Life science domains have developed specialized vocabular- 
ies that often overlap but use different terminologies for sim- 
ilar concepts. For example, cell lines may be described us- 
ing inconsistent nomenclature across repositories (HeLa vs. 
HeLa S3 vs. Hela-S3), and the similarity across names could 

lead to misassignments. These misassignments, even if rare, 
could cause cascade problems. Ontology mapping has been 

already initiated, e.g. through OBO Foundry (Open Biological 
and Biomedical Ontologies) providing frameworks for ontol- 
ogy integration, but implementation remains challenging due 
to the evolving nature of biological knowledge [ 55 ]. Natu- 
ral language processing models are increasingly employed to 

automatically map terms across vocabularies, but these sys- 
tems require careful curation to validate mappings. The value 
of interactive queries depends fundamentally on the quality 
and completeness of underlying metadata, for instance, exper- 
imental details necessary for proper interpretation. To address 
this challenge, interactive data environments could implement 
validation systems that flag missing critical data and provide 
feedback to contributors about data quality. Some systems 

now employ data provenance indicators or reputation scores 
for data sources, allowing users to filter query results based on
source trustworthiness and metadata completeness. Examples 
are BioThings Explorer and FAIRsharing [ 56 , 57 ]. 

Performance 

As databases grow in size and complexity, ensuring that 
query responses remain fast and accurate is crucial. Inter- 
active medical biotechnology queries involve complex mul- 
tidimensional parameters. For example, identification of cell 
lines with specific genetic mutations, protein expression pat- 
terns, and growth characteristics, alongside dynamic visual- 
ization of multiscale relationships across tens of cell types and
culture. Advanced computational approaches addressing this 
challenge include bitmap indexing for genomic data and spa- 
tial indexing techniques adapted for multidimensional biolog- 
ical data [ 58 ]. 

Cloud-native database architectures that scale horizontally 
to handle compute-intensive queries are increasingly essential 
for interactive performance across large biological datasets.
Interactive visualization of large biological datasets presents 
unique performance challenges. Modern interactive data en- 
vironments address this through server-side aggregation, pro- 
gressive loading techniques that refine visualizations incre- 
mentally, WebGL and GPU-accelerated rendering, and intel- 
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igent sampling methods that preserve statistical properties 
hile reducing data volume [ 59 ]. These techniques enable re- 

ponsive exploration even for datasets too large to transmit 
n their entirety. This transition can be enabled step by step, 
andling datasets that are easier to manage first. 

ata accessibility 

dvanced interactivity can only be effective if users find 

he system intuitive and accessible. Interactive biological 
atabases face a fundamental issue between analytical power 
nd interface simplicity. Systems that expose the full com- 
lexity of underlying data models risk overwhelming non- 
omputational users, while oversimplified interfaces may limit 
iscovery potential. This challenge is particularly acute in mul- 
idisciplinary fields where users range from computational 
pecialists to wet-lab biologists and clinicians. Adaptive in- 
erface approaches show promise in addressing this challenge 
hrough progressive disclosure of features based on user ex- 
ertise, context-sensitive guidance, customizable workspaces, 
nd natural language query capabilities for nontechnical 
sers. Features such as automatic query history tracking (e.g. 
s implemented in National Center for Biotechnology Infor- 
ation (NCBI) resources) and computational notebooks (e.g. 

upyter) are now widely adopted tools that have proven ef- 
ective in enhancing reproducibility, transparency, and user 
ngagement when integrated into interactive database inter- 
aces. Another issue related to data accessibility concerns the 
ntegration and retrieval of information from existing biologi- 
al databases, which is often hindered by inconsistent formats, 
imited APIs, or restricted access policies. 

utlook 

nteractive data environments could represent a paradigm 

hift in how research data is stored, handle, and shared, offer- 
ng significant advantages towards driving collective scientific 
rogress meant for clinical translation and reliable fundamen- 
al results. Their emergence signals not merely a technological 
volution but a fundamental shift in how biological knowl- 
dge is constructed, validated, and extended. This reconcep- 
ualizes the scientific process itself where the boundaries be- 
ween hypothesis generation, data analysis, and experimental 
esign become increasingly iterative, with a strong urge for 
ata reproducibility and validation. Currently, different ex- 
ertise in computational methods creates a gap between those 
ho can and cannot effectively interrogate complex biolog- 

cal datasets. Integrated frameworks designed with intuitive 
nterfaces could democratize access to advanced analytical ca- 
abilities, potentially shifting control over data interpretation 

nd exploratory analysis from computational specialists to a 
roader range of scientists. The development trajectory of in- 
eractive data environments will inevitably be shaped by eco- 
omic forces and institutional priorities that extend beyond 

urely scientific considerations. Commercial entities building 
uch platforms face tensions between creating proprietary sys- 
ems that generate revenue and contributing to open scien- 
ific models that maximize knowledge generation and shar- 
ng. These economic realities suggest that hybrid models com- 
ining open source models with commercial components may 
merge. 

Interactive data environments also have the potential to 

ransform interdisciplinary collaboration by creating shared 

cognitive spaces where specialists from diverse backgrounds
can explore complex biological questions. This potential ex-
tends beyond collaboration among human experts to include
the integration of AI-driven tools that support data explo-
ration and interpretation, while preserving human oversight
and decision-making. Static repositories indirectly reinforce
reductionist perspectives by presenting biological entities as
discrete objects. Interactive systems that dynamically visu-
alize multidimensional relationships could instead represent
the existing interconnections between the most seemingly dis-
parate domains, making full use of the acquired data across
domains. 

Conflicts of interest : None declared. 
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