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Abstract: We present orthogonality relations for quasinormal modes of a wide class

of asymptotically AdS black holes. The definition is obtained from a standard product,

modified by a CPT operator and placed on a complex radial contour which avoids branch

points of the modes. They are inspired by existing constructions for de Sitter and Kerr

spacetimes. The CPT operator is needed to map right eigenfunctions of the Hamiltonian

into left eigenfunctions. The radial contour connects two copies of the dual QFT on a

thermal Schwinger-Keldysh contour, making contact with real-time holography and the

double cone wormhole.
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1 Introduction

Quasinormal modes (QNMs) provide a universal characterisation of the decay of black holes

towards equilibrium at asymptotically late times. This makes them an invaluable tool in

the theoretical study and gravitational wave observations of dynamical black holes. Their

decay is due to a dissipative linear-response process in which energy falls through H+ or

is radiated to I+. However, this dissipative process means that QNMs are not orthogonal

to each other in any standard way.

Despite this, orthogonality relations between de Sitter static patch QNMs have been

constructed by applying suitable discrete symmetry operations to the Klein-Gordon prod-

uct [1], building on [2–4]. Here the radial integral in the product avoids QNM singularities

by appropriate iϵ insertions. See also [5, 6] for analogous constructions in celestial holog-

raphy.

More recently, a similar construction was presented for Kerr spacetimes, employing T φ-
reflections [7] with applications in [8]. In this construction the approach begins with a radial

integral which is divergent, and then regulated [9, 10]. Relatedly, in [11, 12] appropriate

integral weights for orthogonality products were identified. In [13] orthogonality relations

for discretised systems are also constructed.

In this work, inspired by the above examples, we construct new orthogonality relations

for QNMs of a wide class of asymptotically AdS black holes. Our orthogonality relation

similarly employs discrete symmetry transformations to modify an existing inner product,

and are defined on a complex radial contour. The contour encircles the QNM branch points
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Figure 1. Left: The complex radial contour Γ used in our QNM orthogonality product. The

contour avoids branch point singularities of QNMs and anti-QNMs on the horizon. Right: The

contour Γ on the maximally extended spacetime, connecting two copies of the QFT through Eu-

clidean time translation by half the thermal circle, β/2. Here the red line illustrates a singular past

horizon on side 1, corresponding to the branch point singularities of QNMs on that side, avoided

by the iϵ insertions.

on the horizon and connects two AdS boundaries, see figure 1. Such contours naturally

arise in the context of real-time AdS/CFT [14–20]. In the bulk they can be interpreted as

a slice of the maximally extended black hole spacetime, with appropriate iϵ insertions that

avoid QNM singularities on the horizon. In the holographic dual they connect two copies

of the boundary QFT on a thermal Schwinger-Keldysh contour. This contour also appears

in the context of the double cone wormhole [21].

Let us first illustrate our results in the simple case of a Klein-Gordon scalar Φ of mass

m2
Φ = ∆(∆− 2) on the non-rotating BTZ black hole [22],

ds2 =
1

z2

(
−(1− z2)dt2 +

1

(1− z2)
dz2 + dφ2

)
, (1.1)

with AdS boundary at z = 0 and event horizon at z = 1. The Klein-Gordon product

defined on the contour Γ is given by

⟨a, b⟩KG = i

∫ 2π

0
dφ

∫
Γ
dz

1

z(1− z2)
a∗
←→
∂t b, (1.2)

where a∗
←→
∂t b ≡ a∗∂tb − (∂ta

∗)b. This is the integral of the discontinuity of the integrand

due to branch points in the fields. Given the Hamiltonian H = i∂t, under (1.2) one has

the following standard orthogonality relation between its left and right eigenfunctions, ui
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and vj respectively,

⟨ui, vj⟩KG ∝ δij , (1.3)

where Hvi = ωivi, and H†KGui = ω∗
i ui, where H†KG denotes the adjoint under (1.2), i.e.

⟨H†KGa, b⟩KG = ⟨a,Hb⟩KG. This follows from

ωj ⟨ui, vj⟩KG = ⟨ui,Hvj⟩KG = ⟨H†KGui, vj⟩KG = ωi ⟨ui, vj⟩KG , (1.4)

so that if ωi ̸= ωj then ⟨ui, vj⟩KG = 0. Our orthogonality relation is inherited from the

standard relation (1.3) by providing a mapping between left and right eigenfunctions. The

key point is that H†KG = H, which can be shown as follows. By using the equation of

motion and integration by parts on the contour Γ one obtains

⟨a,Hb⟩KG = ⟨Ha, b⟩KG +

∫
dφ

[
1− z2

z
(b∂za

∗ − a∗∂zb)

]z=0+iϵ

z=0−iϵ

, (1.5)

thus for normalisable perturbations, that is, a, b ∝ z∆ as z → 0 with ∆ > 1, the boundary

terms vanish. Since H†KG = H, any right eigenfunction is also a left eigenfunction, so

we can put right eigenfunctions in both slots, ⟨vi, vj⟩KG, and still take advantage of (1.3).

However, unlike (1.3), the matrix ⟨vi, vj⟩KG is not diagonal.1 Diagonalising the Klein-

Gordon product leads us to our main definition, used throughout this work,

⟨a, b⟩ ≡ ⟨CPT a, b⟩KG , (1.6)

where C denotes complex conjugation, T denotes t → −t, and in this particular case

of BTZ, P denotes φ → −φ. The role of CPT is to map an eigenfunction of H with

eigenvalue ω into an eigenfunction with eigenvalue ω∗, and hence ⟨vi, vj⟩ = ⟨ui, vj⟩KG ∝ δij ,

as desired. This property of CPT can be seen from the separated form of eigenfunctions

and commuting CPT with the equation of motion. Finally, in section 3, we show that the

regular, normalisable eigenfunctions of H on Γ are the QNMs and anti-QNMs, completing

the proof that (1.6) provides the desired orthogonality relations among these modes.

We can also compute (1.6) on pairs of eigenfunctions to explicitly demonstrate their

orthogonality. The BTZ QNMs Φ±
nm(t, z, φ) are given in (A.1), while the anti-QNMs

Φ̃±
nm(t, z, φ) are given in (A.4), related by CPT Φ±

nm = Φ̃±
nm. They are labeled by an

azimuthal quantum number m, a parity sector ±, and an overtone number n. The compu-

tation presented in appendix A shows,

⟨Φ±
nm,Φ±′

n′m′⟩ =
(2π)2i(−1)n−1 n! Γ (∆)

Γ (∓im− n) Γ (n± im+∆) (∆)n (∆± im+ 2n)
ω±
nm δmm′ δnn′δ±±′ , (1.7)

⟨Φ̃±
nm, Φ̃±′

n′m′⟩ =
(2π)2i(−1)n−1 n! Γ (∆)

Γ (±im− n) Γ (n∓ im+∆) (∆)n (∆∓ im+ 2n)
ω̃±
nm δmm′ δnn′δ±±′ , (1.8)

⟨Φ±
nm, Φ̃±′

n′m′⟩ = 0, (1.9)

1The vanishing of the Klein-Gordon norms (i.e. the diagonal entries of ⟨vi, vj⟩KG) is precisely what

permits complex eigenvalues even though H†KG = H. The problem with using the Klein-Gordon norm for

QNMs was pointed out before [1].
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where ω±
nm and ω̃±

nm are the associated eigenfrequencies (A.3), (A.7). The result demon-

strates orthogonality between all modes, in accordance with the above proof.2

The layout of the rest of the paper is as follows. In section 2 we extend the BTZ ex-

ample presented above to a general class of AdSd+1 black hole spacetimes, with general

metric functions required to obey only certain properties. In particular we prove orthogo-

nality of the regular, normalisable eigenfunctions of H on Γ for this class of spacetimes. In

section 3 we prove that the regular, normalisable eigenfunctions of H on Γ are, indeed, just

the QNMs and anti-QNMs of these general black holes. In section 4 we turn to explicit nu-

merical evaluation of (1.6) with QNMs and anti-QNMs in the slots for Schwarzschild-AdS4,

confirming the result. We finish with a discussion in section 5.

2 Orthogonality for a general class of black holes

In this section we generalise the BTZ results from the introduction to a general class of

asymptotically-AdSd+1 black hole spacetimes, given by the following line element,

ds2 =
1

z2

(
−f(z)dt2 + dz2

g(z)
+ dσ2

d−1

)
, (2.1)

where dσ2
d−1 is the spatial geometry with constant sectional curvature K = 0,±1. The

conformal boundary is reached as z → 0 near which the metric functions behave as

f(z) = 1 +O(z), g(z) = 1 +O(z), (2.2)

and there is an outer, non-extremal event horizon at z = zh so that

f(z) = f0(z − zh) +O(z − zh)
2, g(z) = g0(z − zh) +O(z − zh)

2. (2.3)

Such black holes have a temperature,

β−1 =

√
f0 g0
4π

. (2.4)

This includes a wide class of symmetric black hole spacetimes including Schwarzschild-

AdSd+1 for which f(z) = g(z) = 1 +Kz2 − (1 +Kz2h)
zd

zdh
, as well as other black holes with

matter, such as Reissner-Nordstrom-AdSd+1.

We consider a complex scalar Φ perturbation on the background (2.1) with mass given

by m2
Φ = ∆(∆−d) and we restrict our attention to the larger root of this equation, so that

2∆ > d. The Klein-Gordon equation is

i∂t

(
Φ

∂tΦ

)
= H

(
Φ

∂tΦ

)
, H =

(
0 i

L 0

)
(2.5)

2Note here the important caveat that the m = 0 modes have zero norm. This can be understood a

degeneration between the orthogonal ± sectors at m = 0.
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with

L = ifg∂2
z + i

zgf ′ + f(−2(d− 1)g + zg′)

2z
∂z + if∆σ − i

m2
Φf

z2
, (2.6)

where ∆σ is the spatial Laplacian. The Klein-Gordon product, defined on the contour Γ,

is given by

⟨a, b⟩KG ≡ i

∫
dΣµ a∗

←→
∂µ b (2.7)

= i

∫
dσd−1

∫
Γ
dz

1

zd−1
√
f(z)

√
g(z)

a∗
←→
∂t b, (2.8)

which we use to define our bilinear form ⟨·, ·⟩ through the relation (1.6), inserting CPT
into the left slot. CPT is required for the reasons discussed in the introduction; without

it, one does not obtain the correct pairings of left and right eigenfunctions, which leads

to zero norms. As before in the BTZ case, C corresponds to complex conjugation, and T
to time reversal. However, P depends on the choice of K, the basic requirement is that

CP should leave eigenfunctions of ∆σ invariant. For K = 0, P corresponds to a parity

operator, σ → −σ, for all spatial coordinates σ. For K = 1, P corresponds to φ → −φ
where φ is the azimuthal angle on the sphere.

Finally we come to the demonstration of orthogonality under (1.6), which parallels

that of the BTZ case in the introduction. Using (2.5) and integration by parts on the

contour Γ, one has,

⟨a, (H−H†)b⟩ =
∫

dσd−1

[
z1−d

√
f(z)

√
g(z) (b∂z(PT a)− (PT a)∂zb)

]z=0+iϵ

z=0−iϵ
. (2.9)

Normalisable perturbations obey a ∼ a∆z
∆, b ∼ b∆z

∆ for z → 0, and so the integrand

behaves as ∼ z2∆−d for z → 0. Thus we recover that H† = H, with respect to the

bilinear form (1.6).3 Note that H† = H also follows immediately from H†KG = H given

that [H, CPT ] = 0. It then follows that regular, normalisable eigenfunctions of H with

different frequencies ω are orthogonal to one another under (1.6), since if vi, vj are such

eigenfunctions with eigenvalues ωi, ωj , then

(ωj − ωi) ⟨vi, vj⟩ = ⟨vi,Hvj⟩ − ⟨Hvi, vj⟩ = 0, (2.10)

so that if ωi ̸= ωj then ⟨vi, vj⟩ = 0.

3 Regular, normalisable eigenfunctions of H on Γ

In the previous section we showed that regular, normalisable eigenfunctions ofH on Γ are all

orthogonal to each other under (1.6). In this section we will show that such eigenfunctions

3Just as in the introduction, H† = H does not imply reality of eigenvalues, here it is because (1.6) is

linear in both slots, rather than linear in one and anti-linear in the other.
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correspond to the QNMs and anti-QNMs of the black hole. An analogous result can be

found in the context of the double cone wormhole [21, 23, 24].4

We are looking for eigenfunctions of H = i∂t. These take the form

Φ(t, z, σ) = e−iωtS(z, σ) (3.1)

where ω is the eigenvalue. Without loss of generality we can decompose S as follows,

S(z, σ) =
∑
J

ZJ(z)YJ(σ) (3.2)

where Y are eigenfunctions of ∆σ labeled by quantum numbers J . Then ZJ(z) obeys

LJZJ(z) = −iω2ZJ(z), (3.3)

where LJ is the operator (2.6) with ∆σ replaced by its eigenvalue, −λJ where ∆σYJ =

−λJYJ . From here on we will drop the label on ZJ . Near the horizon, the general solution

to (3.3) takes the form5

Z(z) = ĉA(z − zh)
iβω
4π (1 + . . .) + ĉR(z − zh)

− iβω
4π (1 + . . .), (3.4)

here the cuts are arranged to the left of zh, towards the boundary. The prefactor ĉA

multiplies an outgoing field, and the solution integrated from the horizon to the boundary

(on either sheet) is the advanced bulk-to-boundary Green’s function, G̃A(ω, z). Similarly,

ĉR multiplies ingoing behaviour and in integrated form is the retarded bulk-to-boundary

Green’s function, G̃R(ω, z), hence,

Z(z) = cAG̃A(ω, z) + cRG̃R(ω, z), (3.5)

where the coefficients have been adjusted to incorporate our normalisation choice, G̃A,R(ω, z) ∼
zd−∆ as z → 0. In our setup, we have two copies of the (real) spacetime, which we can

label by i = 1, 2 respectively, corresponding to each leg of the contour Γ attached to CFTi

as in figure 1,

Z(i) = c
(i)
A G̃A(ω, z) + c

(i)
R G̃R(ω, z). (3.6)

The source (the non-normalisable data) associated to Z(i) is therefore, as read off at z = 0,

s(i) = lim
z→0

z∆−dZ(i) = c
(i)
A + c

(i)
R . (3.7)

The two solutions (3.6) are not independent, as we require them to be regular solutions

on the contour Γ. They are therefore related by continuity along Γ which goes around the

4We thank V. Ziogas for discussions on this point.
5In cases where the powers are separated by an integer – i.e. at (Wick rotated) Matsubara frequencies

ωn = 2πn
β

i – there are also logarithms.
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branch points at z = zh. This analytic continuation imposes relations between the four

coefficients c
(i)
A,R,

c
(2)
A = e

βω
2 c

(1)
A , c

(2)
R = e−

βω
2 c

(1)
R . (3.8)

Then (3.7) and (3.8) are four relations which determine the four coefficients c
(i)
A,R in terms

of sources s(i) as follows,

c
(1)
A = n

(
−s(1) + e

βω
2 s(2)

)
,

c
(1)
R = n

(
eβωs(1) − e

βω
2 s(2)

)
,

c
(2)
A = n

(
−eβω

2 s(1) + eβωs(2)
)
,

c
(2)
R = n

(
e

βω
2 s(1) − s(2)

)
,

(3.9)

where n = (eβω− 1)−1 is the Bose-Einstein distribution function. These match the expres-

sions (24a) and (24b) in [14] when ω > 0 with sources on the two-sided black hole, or, the

prescription in [17] with σ = β/2.

Finally we are ready to impose the normalisability condition. The fields take the

following form near the boundary,

Z(1) = s(1)zd−∆ + . . . (3.10)

+
(
n(−s(1) + e

βω
2 s(2))GA + n(eβωs(1) − e

βω
2 s(2))GR

) z∆

2∆− d
+ . . .

Z(2) = s(2)zd−∆ + . . . (3.11)

+
(
n(−eβω

2 s(1) + eβωs(2))GA + n(e
βω
2 s(1) − s(2))GR

) z∆

2∆− d
+ . . .

where GA,R are the advanced and retarded Green’s function of the dual QFT, and ellipses

denote higher order terms in the expansion that are determined by the data shown. Here we

work at generic ∆ > d/2 and factors of 2∆−d come from holographic renormalisation [25].

Indeed, varying the one-point functions v(j) (i.e. (−1)j+1(2∆− d) times the coefficients of

z∆ in the expansions above) with respect to s(j) confirms the σ = β/2 Schwinger-Keldysh

correlators,

G11 =
δv(1)

δs(1)
= n(eβωGR −GA), (3.12)

G12 = G21 = −
δv(2)

δs(1)
= −δv(1)

δs(2)
= ne

βω
2 (GR −GA), (3.13)

G22 =
δv(2)

δs(2)
= n(GR − eβωGA), (3.14)

as in [14]. Normalisability here is the condition that no sources are present, s(i) = 0. First,

let us set one of the boundary conditions, s(1) = 0, and also normalise the subleading data

there to unity. Then we have,

Z(1) = z∆ + . . . , (3.15)

Z(2) = −(2∆− d)

G12
zd−∆ + . . .+

G22

G12
z∆ + . . . . (3.16)
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Therefore Z(2) is also normalisable only at the poles of G12, which occur only at QNM

and anti-QNM frequencies [26–28].6 Hence QNMs and anti-QNMs are the only regular,

normalisable eigenfunctions of H on the complex radial contour Γ.

4 Explicit evaluations on QNMs

The main result of this paper, the orthogonality of QNMs under (1.6), was established for a

general class of black holes in sections 2 and 3. However, it is still instructive to see explicit

evaluations of ⟨Φa,Φb⟩ with Φa,b any two selected from the set of QNMs and anti-QNMs.

Each choice takes the form,

Φa,b(t, z, σ) = e−iωa,btZa,b(z)YJa,b(σ), (4.1)

where YJ are eigenfunctions of ∆σ with quantum numbers Ja, Jb, enjoying an orthogonality

relation, ∫
dσd−1Y

∗
Ja(σ)YJb(σ) = NσδJaJb , (4.2)

where in non-compact cases (on the plane) the δ is a Dirac delta. Then, a useful interme-

diate result is,

⟨Φa,Φb⟩ = Nσ δJaJb e
−i(ωb−ωa)t(ωb + ωa) Iab (4.3)

Iab ≡
∫
Γ
dz

Za(z)Zb(z)

zd−1
√
f(z)

√
g(z)

. (4.4)

Our focus is on evaluating the radial contour integral (4.4) for Ja = Jb.

The first step is to obtain the QNM and anti-QNM eigenfrequencies ωa. We do this

by solving (3.3) in z ∈ [0, 1], imposing ingoing behaviour at z = 1 and normalisability at

z = 0 for QNMs. The radial operator are discretised using Chebyshev spectral methods,

ensuring convergence with numerical resolution and digits of precision. Further details of

this technique can be found, for example, in appendix C of [29].

With the eigenfrequencies obtained, we construct the eigenfunctions on Γ, and Iab.

Recall that the eigenfunctions have branch point singularities at z = zh, (3.4). This leads

to a practical issue whereby going too close to z = zh leads to large numbers and reduces

our ability to accurately evaluate Iab with numerics. To resolve this we define a new contour

Γ̃ which is simply the deformation of Γ, such that the endpoints are the same and no new

singularities are crossed. We choose Γ̃ to give z = zh a wide berth. By Cauchy’s theorem

the integral is the same, but the numerical approximations are improved.

6We included in this definition of QNMs and anti-QNMs some special cases corresponding to so-called

‘pole-skipping’ points, where QNMs at certain complex values of the quantum numbers J have Matsubara

frequencies, and appear as poles in G12 despite not being poles of GR/A [28]. In the ∆ = 2 BTZ case, for

instance, ω+
n=0,m=+i = ω−

n=0,m=−i = −i in (A.3), corresponding to the first Matsubara frequency, and the

would-be pole in GR is indeed cancelled by a would-be zero. Similarly for (A.7) and GA.
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Γ̃ is taken to be piecewise, parametrised with a set of curves zi(λ) and λ ∈ [0, 1] we

have

Iab =
∑
i

∫ 1

0

Za(zi(λ))Zb(zi(λ))

zi(λ)d−1
√
f(zi(λ))

√
g(zi(λ))

z′i(λ)dλ. (4.5)

Then, given a pair of frequencies ωa, ωb we wish to obtain Iab by solving the following set

of three ODEs in λ, on each curve zi,

F ′
i (λ) =

Za(zi(λ))Zb(zi(λ))

zi(λ)d−1
√
f(zi(λ))

√
g(zi(λ))

z′i(λ), (4.6)

(LZa) (zi(λ)) = −iω2
aZa(zi(λ)), (4.7)

(LZb) (zi(λ)) = −iω2
bZb(zi(λ)), (4.8)

where we impose conditions Fi(0) = 0 on each curve. To start the process at z = 0 − iϵ

i.e. at λ = 0 on the first curve, we impose Za, Zb ∼ z∆ with arbitrary normalisation,

which provides initial data for the first integration, Za, Zb, ∂λZa, ∂λZb at λ = 0. One then

integrates (4.6),(4.7),(4.8) along the first curve. At the end of the first curve, the values of

Za, Zb, ∂λZa, ∂λZb are known there, and this gives the initial data for integrating along the

next curve (with appropriate analytic continuation for the derivatives at corners). Thus

continues until Γ̃ is completed and then Iab =
∑

i Fi(1). To assess the numerical results it

is useful to define a normalised version of the product (4.3),

(Φa,Φb) =
| ⟨Φa,Φb⟩ |
||Φa|| ||Φb||

, (4.9)

where ||a|| ≡
√
| ⟨a, a⟩ |.

As an example, we take Schwarzschild-AdS4 black brane, with K = 0, and we take

zh = 1 so that f(z) = g(z) = 1 − z3. In this case we parameterise Γ with the following

three straight line segments,

zi(λ) = z
(a)
i + λ

(
z
(b)
i − z

(a)
i

)
, (4.10)

forming a triangular contour that starts and ends at z = ∓iϵ and avoids z = 1,

z
(a)
1 = −iϵ, z

(b)
1 =

3

2
− i

2
, (4.11)

z
(a)
2 =

3

2
− i

2
, z

(b)
2 =

3

2
+

i

2
, (4.12)

z
(a)
3 =

3

2
+

i

2
, z

(b)
3 = iϵ. (4.13)

The QNMs are arranged in a ‘christmas tree’ structure with a ω → −ω∗ symmetry. We

label the QNMs in this tree as n±, where n labels the distance of the mode from the origin

and + denotes the Reω > 0 branch, while − denotes the Reω < 0 branch, and similarly

for anti-QNMs with a tilde, ñ±. The results from the numerical computation are displayed

in table 1. Because of the prefactor ωa + ωb in (4.3) and the ω → −ω∗ symmetry, the n±

are automatically orthogonal to ñ∓ giving some exact zeros in the table.
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1− 1+ 2− 2+ 1̃− 1̃+ 2̃− 2̃+

1− 1 1× 10−18 3× 10−18 4× 10−19 1× 10−18 0 3× 10−19 1× 10−18

1+ − 1 2× 10−17 6× 10−19 0 1× 10−18 2× 10−19 2× 10−17

2− − − 1 1× 10−16 2× 10−17 1× 10−18 8× 10−17 0

2+ − − − 1 2× 10−19 3× 10−19 0 8× 10−17

1̃− − − − − 1 1× 10−18 6× 10−19 2× 10−17

1̃+ − − − − − 1 4× 10−19 3× 10−18

2̃− − − − − − − 1 1× 10−16

2̃+ − − − − − − − 1

Table 1. The orthogonality relation (4.9) evaluated among all pairings between the first 4 QNMs

and first 4 anti-QNMs of the Schwarzschild-AdS4 black brane with ∆ = 2. We use numerical

precision 40 and ϵ = 10−7. We omit the lower triangular values as the product is manifestly

symmetric. The off-diagonal entries become smaller as ϵ is reduced. Here k = 0 is shown; similar

level of confirmation was seen for values of k ̸= 0.

5 Discussion

In this work we constructed an orthogonality between QNMs for a wide class of symmetric

black holes in AdSd+1. The key ingredients were a modification of the Klein-Gordon

product with a CPT operator and a complex radial contour, Γ.

The CPT operator was required to map eigenfunctions of H with frequency ω into

eigenfunctions with frequency ω∗. This is because black holes present the peculiar scenario

of having a formally self-adjoint Hamiltonian (on our contour Γ) with complex eigenvalues,

due to the vanishing of Klein-Gordon norms. The CPT acts to diagonalise the product

and produces the correct orthogonality relation. This result is not specific to black holes

in AdS. Relatedly, complex eigenvalues with self-adjoint Hamiltonians also appear when

rewriting perturbations of Schwarzschild as a supersymmetric quantum mechanics [30].

The requirement of pairing different left and right eigenfunctions was also seen in an AdS2

example in [24] when deforming from normal modes in AdS2 to the double-sided black

hole.

The choice of contour Γ (see figure 1) is significant in three respects. Firstly, because

it avoids the branch points at the horizon, the integral in the product is convergent as

defined, rather than being a regulated version of something else. Secondly, there is no

contribution from boundary terms at the horizon. This allows the Hamiltonian to be self-

adjoint under this product; boundary terms at the horizon are responsible for the lack

of self-adjointedness of the Hamiltonian in other products, preventing orthogonality [29].

Thirdly, Γ connects two copies of the QFT on a thermal Schwinger-Keldysh contour as a

natural construction in real-time AdS/CFT.

An outstanding question is one of completeness – whether QNMs and anti-QNMs form

a suitable basis of regular, normalisable functions on the complex radial contour Γ. While
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the Hamiltonian is self-adjoint under (1.6), this product lacks many basic properties to

furnish us with a self-adjoint Sturm-Liouville problem. In particular the weight function

on Γ is complex, and product is not positive definite. We observe that QNMs alone do not

form a basis, since the anti-QNMs are orthogonal to them under our product, however one

may wish to specialise to functions that are regular on the future horizon, excluding anti-

QNMs. We note there are counterexamples to completeness of QNMs only, on a single real

copy of the exterior spacetime [31]. A related observation is that the two-sided holographic

correlator, G12, is constructed from only QNM frequencies and their complex conjugates

[28].

Regardless of whether or not QNMs and anti-QNMs are complete, it is reasonable to

expect that a sum of QNMs can approximate a solution at late times in the backgrounds

we have considered (2.1). We expect that our product (1.6) will extract the relevant QNM

expansion coefficients in this regime. Indeed, in asymptotically flat examples [7], projection

using the appropriate orthogonality relation agrees with relevant ‘excitation coefficients’

corresponding to the contribution of poles of the retarded Green’s function [32–35]. This

physics can also be expressed in the language of a Keldysh spectral expansion [36, 37] which

can be constructed in a product-independent fashion [37].

Concerning the generality of the product (1.6). We based the construction of the

product around a modification of the Klein-Gordon product. A similar construction can

be made based around other products. For example, in appendix B we present an analogous

construction built around so-called ‘energy norms’ that are second order functionals. The

outcome is much the same.

It is also natural to ask about the choice of bulk Hamiltonian, i.e. the choice of time

slicing used in the bulk. We note that ingoing coordinates such as null or hyperboloidal

slices [38–46] are set up to avoid QNM singularities on the past horizon. However, CPT
exchanges QNMs with anti-QNMs, and so branch points will still appear inside any CPT -
modified product on ingoing slices. This would allow for a similar construction as presented

here, but on an ingoing complex contour such as [19].
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A Further details of the BTZ example

The QNMs for a complex scalar obeying □Φ = ∆(∆− 2)Φ on the BTZ background (1.1)

are given as follows,

Φ±
nm = Z±

nm(z) eimφ e−iω±
nmt, (A.1)

Z±
nm = z∆

(
z2 − 1

)∓ im
2
−∆

2
2F1

(
−n,±im+ n+∆;∆;

z2

z2 − 1

)
, (A.2)

ω±
nm = ±m− i(2n+∆), (A.3)

while the anti-QNMs are given by

Φ̃±
nm = Z̃±

nm(z) eimφ e−iω̃±
nmt, (A.4)

Z̃±
nm(z) = z∆

(
z2 − 1

)± im
2
−∆

2
2F1

(
−n,∓im+ n+∆;∆;

z2

z2 − 1

)
(A.5)

= Z±
n(−m)(z) = Z∓

nm(z) (A.6)

ω̃±
nm = ±m+ i(2n+∆). (A.7)

Note that CPT Φ̃±
nm = Φ±

nm. In this case, the radial part of the product defined in (4.4),

Iab, when adorned with all relevant labels, becomes

I±,±′

n,n′,m ≡
∫
Γ
dz

1

z(1− z2)
Z±
nm(z)Z±′

n′m(z), (A.8)

and we therefore have

⟨Φ±
nm,Φ±′

n′m′⟩ = 2πδmm′ (ω±′

n′m + ω±
nm)e−i(ω±′

n′m−ω±
nm)t I±,±′

n,n′,m, (A.9)

⟨Φ̃±
nm, Φ̃±′

n′m′⟩ = 2πδmm′ (ω̃±′

n′m + ω̃±
nm)e−i(ω̃±′

n′m−ω̃±
nm)t I∓∓′

n,n′,m, (A.10)

⟨Φ±
nm, Φ̃±′

n′m′⟩ = 2πδmm′ (ω̃±′

n′m + ω±
nm)e−i(ω̃±′

n′m−ω±
nm)t I±,∓′

n,n′,m. (A.11)

Thus all products are known once I±,±′

n,n′,m is evaluated. To evaluate I±,±′

n,n′,m we note that

the hypergeometeric functions in (A.2) can be written as finite sums,

2F1

(
−n,±im+ n+∆;∆;

z2

z2 − 1

)
=

n∑
s=0

(−1)s n!

s! (n− s)!

(±im+ n+∆)s
(∆)s

(
z2

z2 − 1

)s

,

(A.12)

Then, moving these sums outside the integral we obtain,

I±±′

n,n′,m =
n∑

s=0

n′∑
s′=0

(−1)s+s′ n! (±im+ n+∆)s
s! (n− s)! (∆)s

n′! (±′im+ n′ +∆)s′

s′! (n′ − s′)! (∆)s′
Ĩ±±′

s,s′,m, (A.13)

where we have defined

Ĩ±±′

s,s′,m ≡
∫
Γ
z2∆+2s+2s′−1

(
z2 − 1

)−∆∓ im
2
∓′ im

2
−s−s′−1

dz

=
iπΓ (s+ s′ +∆)

Γ
(
∓ im

2 ∓′ im
2

)
Γ
(
1± im

2 ±′ im
2 +∆+ s+ s′

) . (A.14)
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We note the integral above is a special case of the following useful result,∫
Γ
za
(
z2 − 1

)b
dz =

iπΓ
(
1+a
2

)
Γ(−b)Γ

(
b+ 3+a

2

) , (Re a > −1). (A.15)

Performing the summations in (A.13), we find

I±±′

n,n′,m =
iπ(−1)n′−1 n! Γ (∆)

(
∆± im

2 ±′ im
2 + n+ n′)−1

Γ(n− n′ + 1)Γ(−n+ n′ + 1)Γ
(
∓ im

2 ∓′ im
2 − n′

)
(∆)n′ Γ

(
n± im

2 ±′ im
2 +∆

) .
(A.16)

Because of the presence of the Γ-functions Γ(n−n′+1),Γ(−n+n′+1) in the denominator,

the result vanishes unless n = n′, thus,

I±±′

n,n′,m =
iπ(−1)n−1 n! Γ (∆)

(
∆± im

2 ±′ im
2 + 2n

)−1

Γ
(
∓ im

2 ∓′ im
2 − n

)
(∆)n Γ

(
n± im

2 ±′ im
2 +∆

)δnn′ . (A.17)

Moreover, because of the presence of the Γ-function Γ
(
∓ im

2 ∓′ im
2 − n

)
in the denominator,

we see that when ± ≠ ±′ the result vanishes, as well as the case m = 0. Hence,

I±±′

n,n′,m =
iπ(−1)n−1 n! Γ (∆)

Γ (∓im− n) Γ (n± im+∆) (∆)n (∆± im+ 2n)
δnn′δ±±′ . (A.18)

Through (A.11), this result implies that ⟨Φ±
nm, Φ̃±′

n′m′⟩ = 0; the Kronecker deltas in I±,∓′

n,n′,m

enforce n = n′ and ± = ∓′, whereupon the prefactor vanishes, ω̃∓
nm + ω±

nm = 0. Thus we

obtain the main BTZ results (1.7), (1.8), (1.9).

B CPT energy norms

In the main text we have presented a CPT modification of the Klein-Gordon product on

a complex contour Γ, under which QNMs are orthogonal. QNM orthogonality under this

new product ultimately stemmed from orthogonality between right and left eigenfunctions

of H on Γ in the original Klein-Gordon product (1.3), using that H†KG = H, and the

mapping between these pairings that CPT implements. Thus, analogous QNM orthogo-

nality relations can be constructed from a different starting product ⟨·, ·⟩Ω that also satisfies

H†Ω = H on Γ. In this appendix, we present one such an example where the starting point

is the so-called ‘energy norm’, often used in the context of the black hole pseudospectrum

[47, 48], see also [49–51]. We make the analogous modifications of it, and show it serves

the same role.

Consider the energy of a complex scalar Φ on a fixed t slice,

E =

∫
dΣµTµt, (B.1)

where

Tµν =
1

2
∇µΦ

∗∇νΦ+
1

2
∇νΦ

∗∇µΦ− gµν

(
1

2
∇αΦ

∗∇αΦ+
1

2
m2Φ∗Φ

)
. (B.2)

– 13 –



This is a quadratic functional that inspires the following energy norm, here written at fixed

quantum number for the transverse eigenfunctions, with eigenvalue of ∆σY (σ) = −λY (σ),

⟨a, b⟩E =
volσ
2

∫
C

dz

zd−1
√
f
√
g

(
∂ta

∗∂tb+ fg∂za
∗∂zb+

(
m2

z2
+ λ

)
fa∗b

)
, (B.3)

such that E[a] = ⟨a, a⟩E . Then, we can define the modified product following (1.6),

⟨a, b⟩E,CPT = ⟨CPT a, b⟩E . (B.4)

Similar to what happens for the product (1.6), here one can also show that

⟨a, (H−H†)b⟩E,CPT =
ivolσ
2

[
z1−d

√
f
√
g (∂t(T a)∂zb+ ∂z(T a)∂tb)

]z=0+iϵ

z=0−iϵ
(B.5)

= 0, (B.6)

from which orthogonality follows. We have also verified this result with numerical tests.

This shows that orthogonality is not a special property of the modified Klein-Gordon prod-

uct, and instead emphasises the importance of the CPT and complex contour modifications.
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