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1 Introduction

Quasinormal modes (QNMs) provide a universal characterisation of the decay of black holes
towards equilibrium at asymptotically late times. This makes them an invaluable tool in
the theoretical study and gravitational wave observations of dynamical black holes. Their
decay is due to a dissipative linear-response process in which energy falls through H* or
is radiated to ZT. However, this dissipative process means that QNMs are not orthogonal
to each other in any standard way.

Despite this, orthogonality relations between de Sitter static patch QNMs have been
constructed by applying suitable discrete symmetry operations to the Klein-Gordon product [1],
building on [2-4]. Here the radial integral in the product avoids QNM singularities by
appropriate ie insertions. See also [5, 6] for analogous constructions in celestial holography.

More recently, a similar construction was presented for Kerr spacetimes, employing
T p-reflections [7] with applications in [8]. In this construction the approach begins with a
radial integral which is divergent, and then regulated [9, 10]. Relatedly, in [11, 12] appropriate
integral weights for orthogonality products were identified. In [13] orthogonality relations
for discretised systems are also constructed.

In this work, inspired by the above examples, we construct new orthogonality relations
for QNMs of a wide class of asymptotically AdS black holes. Our orthogonality relation
similarly employs discrete symmetry transformations to modify an existing inner product,
and are defined on a complex radial contour. The contour encircles the QNM branch points
on the horizon and connects two AdS boundaries, see figure 1. Such contours naturally
arise in the context of real-time AdS/CFT [14-20]. In the bulk they can be interpreted as

a slice of the maximally extended black hole spacetime, with appropriate ie insertions that
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Figure 1. Left: the complex radial contour I' used in our QNM orthogonality product. The contour
avoids branch point singularities of QNMs and anti-QNMs on the horizon. Right: the contour I'
on the maximally extended spacetime, connecting two copies of the QFT through Euclidean time
translation by half the thermal circle, 3/2. Here the red line illustrates a singular past horizon on side

1, corresponding to the branch point singularities of QNMs on that side, avoided by the ie insertions.

avoid QNM singularities on the horizon. In the holographic dual they connect two copies
of the boundary QFT on a thermal Schwinger-Keldysh contour. This contour also appears
in the context of the double cone wormhole [21].

Let us first illustrate our results in the simple case of a Klein-Gordon scalar ® of mass

m% = A(A — 2) on the non-rotating BTZ black hole [22],
1 1

ds®* = = [ —(1 = 2%)dt* + ——

s ( (1 —2%)dt” + —

2 2
5> dz* 4+ dp > , (1.1)
with AdS boundary at z = 0 and event horizon at z = 1. The Klein-Gordon product defined
on the contour I' is given by
) 27 1 *H
<a, b>KG = ZA ng /1;dZ 2:(17_22) a at b, (12)
A

where a* 0; b = a*0;b — (0,a*)b. This is the integral of the discontinuity of the integrand
due to branch points in the fields. Given the Hamiltonian H = i9;, under (1.2) one has
the following standard orthogonality relation between its left and right eigenfunctions, u;

and v; respectively,
(Ui, vj) kg < Oij, (1.3)

where Hv; = w;v;, and HiKGy; = wiu;, where HTxG denotes the adjoint under (1.2), i.e.
(H1%Ga,b) o = (a,Hb)iq- This follows from

wj <ui, Uj>KG = <UZ‘, %Uj>KG = <HTKGUZ‘, vj>KG = Wj <ui, Uj>KG s (1.4)



so that if w; # w; then (u;,vj), = 0. Our orthogonality relation is inherited from the
standard relation (1.3) by providing a mapping between left and right eigenfunctions. The
key point is that H1¥¢ = H, which can be shown as follows. By using the equation of motion
and integration by parts on the contour I' one obtains

2=0-+ie
(b0,a™ — a*0,b) , (1.5)

z=0—1€

1— 22

A as z — 0 with A > 1, the boundary

thus for normalisable perturbations, that is, a,b o< z
terms vanish. Since k¢ = 7, any right eigenfunction is also a left eigenfunction, so we can
put right eigenfunctions in both slots, (v;,vj)ka, and still take advantage of (1.3). However,
unlike (1.3), the matrix (v;, vj)k is not diagonal.! Diagonalising the Klein-Gordon product

leads us to our main definition, used throughout this work,
<a7 b) = <C7D7-aa b)KG ’ (16>

where C denotes complex conjugation, 7 denotes ¢ — —t, and in this particular case of BTZ,
P denotes ¢ — —. The role of CP7T is to map an eigenfunction of H with eigenvalue w into
an eigenfunction with eigenvalue w*, and hence (v;,vj) = (u;, vj) o X 0ij, as desired. This
property of CPT can be seen from the separated form of eigenfunctions and commuting CP7T
with the equation of motion. Finally, in section 3, we show that the regular, normalisable
eigenfunctions of H on I' are the QNMs and anti-QNMs, completing the proof that (1.6)
provides the desired orthogonality relations among these modes.

We can also compute (1.6) on pairs of eigenfunctions to explicitly demonstrate their or-
thogonality. The BTZ QNMs ®% (¢, z, ) are given in (A.1), while the anti-QNMs &% (¢, z, )
are given in (A.4), related by CPT @ = <’Iv>fm They are labeled by an azimuthal quantum
number m, a parity sector +, and an overtone number n. The computation presented in

appendix A shows,
- (2m)%i(—1)""tnlT (A
~ I(Fim—n) T (nLim+A) (A),

G B )= (2m)%i(—1)" "t nlT(
rme S nim I'(tim —n) T (nFim+ A) (A), (AFim+2n)

(@ 3L ) =0, (1.9)

+ =+’
<(I)nm, ¢n’m/

+
Ot O 1Ot 1.
A+im+ 2n) Whm 9mm/ Onn/O0++/, ( 7)

N — [ —

TE s O Or, (1.8)

+
nm

orthogonality between all modes, in accordance with the above proof.?

where w = and @, are the associated eigenfrequencies (A.3), (A.7). The result demonstrates

'The vanishing of the Klein-Gordon norms (i.e. the diagonal entries of (v;,v;)ka) is precisely what permits
complex eigenvalues even though HXG = #{. The problem with using the Klein-Gordon norm for QNMs was
pointed out before [1].

2Note here the important caveat that the m = 0 modes have zero norm. This can be understood a

degeneration between the orthogonal + sectors at m = 0.



The layout of the rest of the paper is as follows. In section 2 we extend the BTZ ex-
ample presented above to a general class of AdS;y;1 black hole spacetimes, with general metric
functions required to obey only certain properties. In particular we prove orthogonality of the
regular, normalisable eigenfunctions of H on I' for this class of spacetimes. In section 3 we
prove that the regular, normalisable eigenfunctions of H on I' are, indeed, just the QNMs and
anti-QNMs of these general black holes. In section 4 we turn to explicit numerical evaluation
of (1.6) with QNMs and anti-QNMs in the slots for Schwarzschild-AdS4, confirming the

result. We finish with a discussion in section 5.

2 Orthogonality for a general class of black holes

In this section we generalise the BTZ results from the introduction to a general class of

asymptotically-AdS,11 black hole spacetimes, given by the following line element,

2
ds® = 217 (—f(z)dt2 + gd(zz) + d06211> ) (2.1)

where d0§_1 is the spatial geometry with constant sectional curvature K = 0,+1. The

conformal boundary is reached as z — 0 near which the metric functions behave as
f(z) =14+ 0(z), g9(z) =1+ 0(2), (2.2)
and there is an outer, non-extremal event horizon at z = z; so that
F2) = folz = 2) + O = )% g(2) = qolz— ) + Oz —2)%  (23)

Such black holes have a temperature,

,1_\/f0.90
B = (2.4)

This includes a wide class of symmetric black hole spacetimes including Schwarzschild-AdS g1
for which f(z) = g(2) = 1+ Kz? — (1 + Kz,%)%, as well as other black holes with matter,
such as Reissner-Nordstrom-AdSg4.

We consider a complex scalar ¢ perturbation on the background (2.1) with mass given
by m3, = A(A — d) and we restrict our attention to the larger root of this equation, so
that 2A > d. The Klein-Gordon equation is

D) = () - %= (20) @5
0 ® 0y ® L0

2Z z ag 22 Y

with
L=ifgd® +i




where A, is the spatial Laplacian. The Klein-Gordon product, defined on the contour I,
is given by
<
(a,0) e = i / st a* b 2.7)

a0, (2.8)

i/dadl/rdzzd_l\/%\/g(iz)a*

which we use to define our bilinear form (-,-) through the relation (1.6), inserting CPT
into the left slot. CP7T is required for the reasons discussed in the introduction; without
it, one does not obtain the correct pairings of left and right eigenfunctions, which leads to
zero norms. As before in the BTZ case, C corresponds to complex conjugation, and T to
time reversal. However, P depends on the choice of K, the basic requirement is that CP
should leave eigenfunctions of A, invariant. For K = 0, P corresponds to a parity operator,
o — —o, for all spatial coordinates o. For K = 1, P corresponds to ¢ — —p where ¢ is
the azimuthal angle on the sphere.

Finally we come to the demonstration of orthogonality under (1.6), which parallels
that of the BTZ case in the introduction. Using (2.5) and integration by parts on the
contour I', one has,

2=0+1¢

(a, (H — H)b) = / doys {zl_dq/ F(2)J9(2) (b0.(PTa) — (PTa)d.b) (29)

2=0—ie
Normalisable perturbations obey a ~ apz®, b ~ baz® for z — 0, and so the integrand behaves
as ~ 2227 for z — 0. Thus we recover that H = H, with respect to the bilinear form (1.6).3
Note that H' = H also follows immediately from H'x¢ = H given that [H,CPT] = 0.
It then follows that regular, normalisable eigenfunctions of H with different frequencies
w are orthogonal to one another under (1.6), since if v;,v; are such eigenfunctions with

eigenvalues w;,w;, then
(wj — wi) <?)Z',’Uj> = (Ui,'HUj> — <'HUZ‘,’Uj> =0, (2.10)

so that if w; # w; then (v;,v;) = 0.

3 Regular, normalisable eigenfunctions of ‘H on T’

In the previous section we showed that regular, normalisable eigenfunctions of H on I" are all
orthogonal to each other under (1.6). In this section we will show that such eigenfunctions
correspond to the QNMs and anti-QNMs of the black hole. An analogous result can be found
in the context of the double cone wormhole [21, 23, 24].%

We are looking for eigenfunctions of H = i0;. These take the form

d(t,z,0) = e “S(z,0) (3.1)

3Just as in the introduction, H' = # does not imply reality of eigenvalues, here it is because (1.6) is linear
in both slots, rather than linear in one and anti-linear in the other.
*We thank V. Ziogas for discussions on this point.



where w is the eigenvalue. Without loss of generality we can decompose S as follows,
S(z,0) = Z Zj(2)Y;(0) (3.2)
J

where Y are eigenfunctions of A, labeled by quantum numbers J. Then Z;(z) obeys
LyZ(z) = —iw*Z;(2), (3.3)

where L is the operator (2.6) with A, replaced by its eigenvalue, —A; where A,Y; = —\;Y}.
From here on we will drop the label on Z;. Near the horizon, the general solution to (3.3)
takes the form?®

Z(2) = éalz — ) T (14 .. )+ en(z—zp) T (1+...), (3.4)

here the cuts are arranged to the left of zj, towards the boundary. The prefactor ¢4 multiplies
an outgoing field, and the solution integrated from the horizon to the boundary (on either
sheet) is the advanced bulk-to-boundary Green’s function, G A(w, z). Similarly, ég multiplies
ingoing behaviour and in integrated form is the retarded bulk-to-boundary Green’s function,

éR(w, z), hence,
Z(2) = caGalw, 2) + crGR(w, 2), (3.5)

where the coefficients have been adjusted to incorporate our normalisation choice, G4 r(w, z) ~

2472 as z — 0. In our setup, we have two copies of the (real) spacetime, which we can label by

1 = 1, 2 respectively, corresponding to each leg of the contour I' attached to CFT; as in figure 1,

AR c%)é,q(w, z) + c%)éR(w, 2). (3.6)

The source (the non-normalisable data) associated to Z(¥ is therefore, as read off at z = 0,
(D) — iy SA—d7(d) _ (3) (@)

s lg]%z Z cy +cp. (3.7)

The two solutions (3.6) are not independent, as we require them to be regular solutions
on the contour I'. They are therefore related by continuity along I' which goes around
the branch points at z = z;,. This analytic continuation imposes relations between the

. (4)
four coeflicients ¢ AR

@ _ ) -8 (3.8)

Cy =€ez2cy’, R =€ 2cp’.
Then (3.7) and (3.8) are four relations which determine the four coefficients CEQ R in terms

of sources s as follows,

(3.9)

5In cases where the powers are separated by an integer — i.e. at (Wick rotated) Matsubara frequencies

wn = Q“T"z — there are also logarithms.



where n = (¢’ —1)~! is the Bose-Einstein distribution function. These match the expressions
(24a) and (24b) in [14] when w > 0 with sources on the two-sided black hole, or, the
prescription in [17] with o = £/2.

Finally we are ready to impose the normalisability condition. The fields take the

following form near the boundary,

ZW = sWpd=a 4 (3.10)
+ (n(—s(l) e Fs)G + n(efos® - eﬂ%s(?))GR) QZA_ S

A e (3.11)
+ (n(—e%ws(l) + MGy + n(e%ws(l) — 3(2))GR) QAZA_ R

where G 4 g are the advanced and retarded Green’s function of the dual QFT, and ellipses
denote higher order terms in the expansion that are determined by the data shown. Here we
work at generic A > d/2 and factors of 2A — d come from holographic renormalisation [25].
Indeed, varying the one-point functions v (i.e. (—1)7t1(2A — d) times the coefficients of
22 in the expansions above) with respect to s) confirms the o = /2 Schwinger-Keldysh

correlators,

so)

n=sgy = n(e?Gr —Ga), (3.12)
sv2) svM Bw
G12 = G21 = *m = *m = ne 2 (GR — GA), (313)
Sv@
29 = m = n(GR — eﬂwGA), (314)

as in [14]. Normalisability here is the condition that no sources are present, s() = 0. First,
let us set one of the boundary conditions, s®') = 0, and also normalise the subleading data

there to unity. Then we have,

ZW = A4 (3.15)
2A —d G
7(2) _ _(Gm)zd—ﬁju...JrGizAJr.... (3.16)

Therefore Z(?) is also normalisable only at the poles of Gja, which occur only at QNM
and anti-QNM frequencies [26-28].% Hence QNMs and anti-QNMs are the only regular,

normalisable eigenfunctions of H on the complex radial contour I'.

SWe included in this definition of QNMs and anti-QNMSs some special cases corresponding to so-called
‘pole-skipping’ points, where QNMs at certain complex values of the quantum numbers J have Matsubara
frequencies, and appear as poles in G12 despite not being poles of Gr 4 [28]. In the A = 2 BTZ case, for

= w_

instance, w 0. —i

n=0,m=+1

would-be pole in G is indeed cancelled by a would-be zero. Similarly for (A.7) and Ga.

= —i in (A.3), corresponding to the first Matsubara frequency, and the



4 Explicit evaluations on QNMs

The main result of this paper, the orthogonality of QNMs under (1.6), was established for a
general class of black holes in sections 2 and 3. However, it is still instructive to see explicit
evaluations of (®,, ) with ®,; any two selected from the set of QNMs and anti-QNMs.

Each choice takes the form,
Qo p(t,z,0) = €_iwa’tha’b(Z>YJa7b(U)’ (4.1)

where Y are eigenfunctions of A, with quantum numbers J,, Jp, enjoying an orthogonality

relation,

/dUd,1Yja (O')ij(0'> = N05Jan, (42)

where in non-compact cases (on the plane) the § is a Dirac delta. Then, a useful intermediate

result is,

(Dg, Bp) = Nyby,g, e @ (W 4+ wy) Iy (4.3)

ab /d d— leE/)— (44)

Our focus is on evaluating the radial contour integral (4.4) for J, = Jj.
The first step is to obtain the QNM and anti-QNM eigenfrequencies w,. We do this

by solving (3.3) in z € [0, 1], imposing ingoing behaviour at z = 1 and normalisability at

z = 0 for QNMs. The radial operator are discretised using Chebyshev spectral methods,
ensuring convergence with numerical resolution and digits of precision. Further details of
this technique can be found, for example, in appendix C of [29].

With the eigenfrequencies obtained, we construct the eigenfunctions on I', and I,;. Recall
that the eigenfunctions have branch point singularities at z = z, (3.4). This leads to a
practical issue whereby going too close to z = z; leads to large numbers and reduces our
ability to accurately evaluate I, with numerics. To resolve this we define a new contour
[ which is simply the deformation of I', such that the endpoints are the same and no new
singularities are crossed. We choose T to give z = zp, a wide berth. By Cauchy’s theorem the
integral is the same, but the numerical approximations are improved.

T is taken to be piecewise, parametrised with a set of curves zi(A) and A € [0, 1] we have

LA
=X | S O AT )

Then, given a pair of frequencies wg,w;, we wish to obtain I, by solving the following set

of three ODEs in A, on each curve z;,

1y Za(2i(N) Zp(2:(N)) p
B = e vy 0
(LZa) (2:(N) = —iwg Za(2i(N)), (4.7)
(LZ) (2:(N)) = —iw Zy(2i(N)), (4.8)



where we impose conditions F;(0) = 0 on each curve. To start the process at z = 0 — ie

A with arbitrary normalisation,

i.e. at A = 0 on the first curve, we impose Z,,Zp ~ z
which provides initial data for the first integration, Z,, Zy, OrxZg, 062, at A = 0. One then
integrates (4.6), (4.7), (4.8) along the first curve. At the end of the first curve, the values
of Z,, Zy, 0\Zy, 022y are known there, and this gives the initial data for integrating along
the next curve (with appropriate analytic continuation for the derivatives at corners). Thus
continues until T is completed and then I, = 37, Fi(1). To assess the numerical results it

is useful to define a normalised version of the product (4.3),

(@, 3 |
(e ®6) = 15 T[] (4.9)

where |[la|| = /] {a,a)|.
As an example, we take Schwarzschild-AdS, black brane, with K = 0, and we take
zn = 1 so that f(z) = g(z) = 1 — z3. In this case we parameterise I" with the following

three straight line segments,
20 =2 + 2 (2" - 2Y), (4.10)

forming a triangular contour that starts and ends at z = Fie and avoids z = 1,

3
zg ) = — e, z%b) =5 %, (4.11)
() _3 _ 1 _3 @

40 =5" 5 %) =S +3, (4.12)
zéa) = g + %, zéb) = €. (4.13)

The QNMs are arranged in a ‘christmas tree’ structure with a w — —w* symmetry. We
label the QNMs in this tree as n+, where n labels the distance of the mode from the origin
and + denotes the Rew > 0 branch, while — denotes the Rew < 0 branch, and similarly for
anti-QNMs with a tilde, n4. The results from the numerical computation are displayed in
table 1. Because of the prefactor w, + wp in (4.3) and the w — —w* symmetry, the ny are

automatically orthogonal to n+ giving some exact zeros in the table.

5 Discussion

In this work we constructed an orthogonality relation between QNMs for a wide class of
symmetric black holes in AdS;4;. The key ingredients were a modification of the Klein-Gordon
product with a CPT operator and a complex radial contour, T'.

The CPT operator was required to map eigenfunctions of H with frequency w into
eigenfunctions with frequency w*. This is because black holes present the peculiar scenario
of having a formally self-adjoint Hamiltonian (on our contour I') with complex eigenvalues,
due to the vanishing of Klein-Gordon norms. The CPT acts to diagonalise the product

and produces the correct orthogonality relation. This result is not specific to black holes



1_ | 14 2_ 2, 1_ i 2_ 2,
1|1 1x10718 | 3x10718 [ 4x1071 | 1x107'8 |0 3x1071° | 1 x 10718
. |- |1 2x 10717 | 6 x 10719 | 0 1x107% | 2x 107 | 2 x 10717
2. | — | - 1 1x1071 | 2x 10717 | 1x107® | 8 x 1077 | 0
2, | - | - — 1 2x 10719 | 3x 1071 | 0 8 x 10717
|- |- — - 1 1x10718 | 6x 1071 | 2x 10717
1, |- | - — - - 1 4x1071 | 3x 10718
2| - | = - — — — 1 1x10716
2, | — | - — - — - - 1

Table 1. The orthogonality relation (4.9) evaluated among all pairings between the first 4 QNMs
and first 4 anti-QNMs of the Schwarzschild-AdS, black brane with A = 2. We use numerical precision
40 and € = 10~7. We omit the lower triangular values as the product is manifestly symmetric. The
off-diagonal entries become smaller as € is reduced. Here k = 0 is shown; similar level of confirmation
was seen for values of k # 0.

in AdS. Relatedly, complex eigenvalues with self-adjoint Hamiltonians also appear when
rewriting perturbations of Schwarzschild as a supersymmetric quantum mechanics [30]. The
requirement of pairing different left and right eigenfunctions was also seen in an AdSy example

in [24] when deforming from normal modes in AdSs to the double-sided black hole.

The choice of contour I' (see figure 1) is significant in three respects. Firstly, because it
avoids the branch points at the horizon, the integral in the product is convergent as defined,
rather than being a regulated version of something else. Secondly, there is no contribution
from boundary terms at the horizon. This allows the Hamiltonian to be self-adjoint under
this product; boundary terms at the horizon are responsible for the lack of self-adjointedness
of the Hamiltonian in other products, preventing orthogonality [29]. Thirdly, I" connects
two copies of the QFT on a thermal Schwinger-Keldysh contour as a natural construction
in real-time AdS/CFT.

Let us comment on the relation of our work to previous orthogonality products in the
literature [1-13]. In this paper, we provided a general explanation of the origin of QNM
orthogonality in terms of left- and right-eigenfunctions of the Hamiltonian not addressed in
previous works. In particular, our construction justifies from first principles the insertion of the
discrete symmetry operators in one of the entries of a Klein-Gordon product, which appears
also in some of the references listed above. Thus, we expect our framework to be applicable to
any black hole or cosmological spacetime with QNMs, regardless of their asymptotics. Indeed,
we have checked that our relation holds for scalar QNMs on the static patch of dS as well,
and it is realised by taking the complex radial contour that encircles the cosmological horizon
and connects the points » = 0 £ i€, in agreement with the results in [1]. The application
of our relation to asymptotically flat spacetimes is more delicate due to the presence of
null-infinity, and it has not been addressed directly in this work. However, we expect the

same construction to remain valid with a suitable Schwinger-Keldysh contour connecting

,10,



two copies of flat space asymptotically. This is potentially what is happening in [7, 11],
where a complexified contour was adopted for regulation purposes, but the connections with

Schwinger-Keldysh and with the role of the CP7T operator were not made.

An outstanding question is one of completeness — whether QNMs and anti-QNMs form
a suitable basis of regular, normalisable functions on the complex radial contour I". While the
Hamiltonian is self-adjoint under (1.6), this product lacks many basic properties to furnish
us with a self-adjoint Sturm-Liouville problem. In particular the weight function on I' is
complex, and product is not positive definite. We observe that QNMs alone do not form a
basis, since the anti-QNMs are orthogonal to them under our product, however one may wish
to specialise to functions that are regular on the future horizon, excluding anti-QNMs. We
note there are counterexamples to completeness of QNMs only, on a single real copy of the
exterior spacetime [31]. A related observation is that the two-sided holographic correlator,

G129, is constructed from only QNM frequencies and their complex conjugates [28].
Regardless of whether or not QNMs and anti-QNMs are complete, it is reasonable to
expect that a sum of QNMs can approximate a solution at late times in the backgrounds
we have considered (2.1). We expect that our product (1.6) will extract the relevant QNM
expansion coefficients in this regime. Indeed, in asymptotically flat examples [7], projection
using the appropriate orthogonality relation agrees with relevant ‘excitation coefficients’
corresponding to the contribution of poles of the retarded Green’s function [32-35]. This
physics can also be expressed in the language of a Keldysh spectral expansion [36, 37| which

can be constructed in a product-independent fashion [37].

Concerning the generality of the product (1.6). We based the construction of the product
around a modification of the Klein-Gordon product. A similar construction can be made based
around other products. For example, in appendix B we present an analogous construction
built around so-called ‘energy norms’ that are second order functionals. The outcome is

much the same.

It is also natural to ask about the choice of bulk Hamiltonian, i.e. the choice of time slicing
used in the bulk. We note that ingoing coordinates such as null or hyperboloidal slices [38—46]
are set up to avoid QNM singularities on the past horizon. However, CPT exchanges QNMs
with anti-QNMs, and so branch points will still appear inside any CP7T-modified product
on ingoing slices. This would allow for a similar construction as presented here, but on an

ingoing complex contour such as [19].
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A Further details of the BTZ example

The QNMs for a complex scalar obeying (0® = A(A — 2)® on the BTZ background (1.1)

are given as follows,

BE, = Zik,(2) P it (A1)
+ A2 FE-2 . 2
wi = 4m—i2n+A), (A.3)

while the anti-QNMs are given by

L = ZE (3)eime eminmt, (A.4)

zZE (2) = 2R (22 — l)i%mi% oy (—n Fim+n+ A A; 22> (A.5)
m ’ T2

= Zny_ny(2) = Zin(2) (A.6)

OE = +m+i(2n+ A). (A7)

Note that CPT®E = &L . In this case, the radial part of the product defined in (4.4),

I, when adorned with all relevant labels, becomes

Lt = [ 4o Zonl) Zi (o) (A3)

and we therefore have

(D, B ) = 206 (W + i, Je )t [ (A.9)
(B BE) = 2 (@ + B T [ (A.10)
(B B ) = 2y (G, + w6 @)t I,fjm (A.11)
Thus all products are known once I5% s evaluated. To evaluate I . We note that the

nnm

hypergeometeric functions in (A.2) can be written as finite sums,

, P s nl (£im +n+ A)s 2 \°
2F]_ <—n7ilm+n+A,A,22_1 = Z(—l) Z2 1 )

= sl(n —s)! (A)g -
(A.12)
Then, moving these sums outside the integral we obtain,
/ nl(Eim 4+ n+ A)g 0/l (Him+n' 4+ A)g
7:LI:;NL: m Z Z s+s ( ) I:I::l: (Al?))

5=0s'=0 (n—S)'(A)S /'( —8/)!(A)s/ 5,8',m?
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where we have defined

dz

~ . —AFImpim g
e _ / L2A+25425'—1 <22 _ 1) 2T 2
r

s,8',m —
it (s + 5 + A) (A.14)

We note the integral above is a special case of the following useful result,

) by ol (HTG)
/Fz (22 _ 1) dz = FCor (H 3*7“) (Rea > —1). (A.15)

Performing the summations in (A.13), we find

, . . -1
in(—1)" 1T (A) (A4 3 4 12 4t

Dn 4 O(n 4+ OF (F4 5 3 ) (A) T (nt 3 2/ 2 4 A)
(A.16)

Because of the presence of the I'-functions I'(n — n’ +1),['(—n 4+ n’ 4+ 1) in the denominator,

Ii:l:’ _

nn’;m

the result vanishes unless n = n/, thus,

in(—1)" 1 nlT (A) (A S 2n)—1
F(q:ijmq:’i%”—n) (A)nf(ni%ﬂi/%n_FA)

++/

n,n’;m —

S (A.17)

Moreover, because of the presence of the I'-function I ($% =y % — n) in the denominator,

we see that when 4 # £’ the result vanishes, as well as the case m = 0. Hence,
e in(—1)""tnIT (A)

’ - nn' /. Al
na'm = T (Fim =) T (n £ im + A (A), (A £ am + 2m) v 0% (A.18)

Through (A.11), this result implies that (®F éilmJ = 0; the Kronecker deltas in If ’nj,Flm
enforce n = n’ and + = F’, whereupon the prefactor vanishes, & 4+ w® = 0. Thus we

obtain the main BTZ results (1.7), (1.8), (1.9).

B CPT energy norms

In the main text we have presented a CPT modification of the Klein-Gordon product on a
complex contour I', under which QNMs are orthogonal. QNM orthogonality under this new
product ultimately stemmed from orthogonality between right and left eigenfunctions of H on
I in the original Klein-Gordon product (1.3), using that H¢ = #, and the mapping between
these pairings that CP7T implements. Thus, analogous QNM orthogonality relations can be
constructed from a different starting product (-, -)(, that also satisfies He =H on I'. In this
appendix, we present one such an example where the starting point is the so-called ‘energy
norm’, often used in the context of the black hole pseudospectrum [47, 48], see also [49-51].

We make the analogous modifications of it, and show it serves the same role.

,13,



Consider the energy of a complex scalar ® on a fixed ¢ slice,

E- /dZ“THt, (B.1)
where . ) ) )
T = iv”@*vy@ + §V1,<I>*VM<I> — Guv (ZVQCD*VO‘(I) + 2m2<I>*<I>) . (B.2)
This is a quadratic functional that inspires the following energy norm, here written at fixed
quantum number for the transverse eigenfunctions, with eigenvalue of A,Y (¢0) = =AY (o),
vol, dz

2
(a,b) y = <8ta*8tb+ £90,a*8.b + (7?2 n /\) fa*b> . (B.3)

2 Czd—l\/f\/g

such that Ela] = (a,a)y. Then, we can define the modified product following (1.6),

Similar to what happens for the product (1.6), here one can also show that

2=0+1€

(a, (H = HY) popy = ”;1" [T VE @ Ta)ob + o (Taow) . (B.5)

=0, (B.6)

from which orthogonality follows. We have also verified this result with numerical tests. This
shows that orthogonality is not a special property of the modified Klein-Gordon product, and

instead emphasises the importance of the CP7T and complex contour modifications.
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