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1 Introduction and main results

The study of linear black hole perturbations is of interest from the point of view of gravitational
wave observations [1, 2] and strongly-coupled many body systems through AdS/CFT |3, 4].
Black hole perturbations explore the dissipative nature of the black hole horizon, and are
consequently governed by non-normal operators. This technical feature brings certain
technical challenges, such as a lack of orthogonality and completeness of eigenfunctions, but
it also means that black holes should display a wealth of interesting physical phenomena
that normal systems do not. This work explores these possibilities and presents one such
new phenomenon: transient superradiance.

In previous investigations of the non-normality of black hole linear operators in the
literature, great emphasis has been placed on analysing the ‘stability’ of the spectrum of
eigenfunctions (quasinormal modes, QNMs), under the influence of small changes to the
environment [5, 6] (see also [7]), now undergoing a recent resurgence [8]. However, non-normal
systems also exhibit important non-modal dynamical phenomena, rooted in aspects of linear
perturbations which are not spectral. One way to access such non-modal physics is through
analysis of the pseudospectrum [9], and indeed the idea of using the pseudospectrum as a
window into non-modal dynamical physics for binary black hole mergers was discussed in [10]
and for horizonless compact objects in [11].

Instead, in this work, we turn to a direct time domain analysis of non-modal phenomena
in black hole perturbation theory. This programme was initiated in [12], where it was
shown that linear perturbations could decay arbitrarily slowly, despite all QNMs exhibiting
fast exponential decay.! Here we show that black holes with decaying QNMs can admit

!Boundedness of black hole perturbations without mode decomposition was previously investigated
in [13, 14].
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Figure 1. The k=0 QNM spectrum for charged scalar perturbations of the RN-AdS,4 black brane in
the probe limit ¢ — co at pug = 3.9 where the system is modally stable. Finite ¢ results, beyond the
probe limit, are given later in figure 6.

perturbations whose energies grow in time. Such linear perturbations will ultimately decay
at asymptotic time, but there is a transient period of significant growth which may source
nonlinear effects. Indeed, non-modal growth is an important ingredient in the study of
the transition to turbulence in fluid dynamics, and black holes display a strikingly similar
phenomenology. To illustrate our results in the simplest possible context, we focus on
Reissner-Nordstrom (RN) — AdSy spacetime, linearly perturbed by a charged complex
scalar field. This allows us to introduce and exploit a non-modal analogue of superradiant
scattering, as we shall explain.

We take our complex scalar field 1) to have mass m2L? = —2. QNMs can be defined as
plane-wave perturbations (7, z, %) = 22x(z)6_iWT+iE'f which are ingoing at the future event
horizon and normalisable at the AdS boundary. Here 7 labels hyperboloidal slices of the
spacetime — spacelike slices that pierce the future event horizon. The eigenvalue problem
which determines the spectrum of modes w, is as follows,

@) Y _ . x
7 (—iwx(z)) N (—iwx(z)) ’ (1.1)

where H is a 2x2 matrix and a second-order differential operator in z, given later in (3.16).
Imposing regularity of y at the AdS boundary, z = 0, at the future horizon, z = 1, corresponds
to QNM boundary conditions and quantises the spectrum — this is shown in figure 1 for
the probe limit (charge of the scalar ¢ — o0), and later in figure 6 for the finite ¢ case. As
the black hole temperature is lowered, some QNMs move into the upper half-plane and the
system becomes modally unstable, corresponding to a transition to the broken phase of the
holographic superconductor [15-17], otherwise interpreted as a superradiant instability for
a single mode, whose energy grows in time.

We can assess the growth or decay of more general linear perturbations (beyond a single
mode) by computing their energy, £y, (7). The key result of this work is that Ey,(7) can grow,
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Figure 2. Time evolution of the energy for linear perturbations to the holographic superconductor,
Ey, demonstrating a period of transient growth despite modal stability. The mechanism is that of a
transient form of superradiance, where energy is borrowed from the electric field, Er. The example
shown corresponds to the probe limit ¢ — oo with pug = 3.9, k= 0, with initial data such that the
system maximises [, at time 7, = 2.7 within a subspace spanned by M = 10 QNMs. The dotted line
Gw (1) gives a sharp upper bound on Ey(7) for all possible initial data formed from 10 QNMs. Finite
q results, beyond the probe limit, are given later in figure 7.

even when all QNMs are exponentially decaying. Mathematically, this occurs because H is
non-normal with respect to the inner product associated to Ey(7), and consequently the
QNMs are not orthogonal to one another under this inner product.? Thus the energy of a
sum of QNMs is not the sum of the energy of each QNM, allowing for a non-modal form
of superradiance to occur even when each individual mode is superradiant stable. Earlier,
it was proved that this allows for linear black hole perturbations which decay arbitrarily
slowly [12], despite each QNM decaying exponentially fast.

As an illustration of this phenomenon, the growth of Ey(7) for a particular sum of
QNMs can be seen in figure 2. For simplicity of this introductory presentation, we have here
removed backreaction by first taking the probe limit, ¢ — oo (finite ¢ is considered later). A
microscopic interpretation of this growth is as follows. The RN-AdS, black hole has a radial
electric field, and this encourages the classical wave analogue of pair production of +-charges
outside the black hole. Like-charges are repelled from the black hole, forming a charged scalar
cloud outside the horizon (Ey, increases), while opposite-charges are attracted to the black
hole, depleting the strength of the bulk electric field (so that the energy associated to the
electric field, Er, decreases). The total energy ' = Ey, + Er can only decrease over time due
to losses through the horizon. When the temperature is lowered beyond a critical value this
is a runaway process leading to the formation of a hairy black hole. There is then a QNM
which grows exponentially. At higher temperatures this process still occurs, but there are no
growing QNMs and it is a transient phenomenon arising due to non-modal effects.

Full details of the derivation of these results are presented in section 3. However, let us
first review a similar situation in fluid dynamics and make a side-by-side comparison.

2There are several approaches to constructing orthogonality relations for QNMs in the literature [18-20],
however the relevant observable for us is the energy, and thus it is lack of orthogonality under this specific
energy inner product which is of physical relevance.
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Figure 3. The QNM spectrum for even perturbations to the plane-Poiseuille flow governed by the
non-normal Orr-Sommerfeld operator. The choice of parameters is &« = 1, Re = 5000 where the system
is modally stable.

2 The analogy with transients in plane-Poiseuille flow

As a point of comparison with the results outlined in section 1, we consider a paradigmatic
example of non-modal transients in fluid dynamics — incompressible perturbations of the
plane-Poiseuille flow. This shares much of the phenomenology of our black hole example, and
we have summarised the analogous features where possible in table 1. Full computations
are given in appendix A.

Plane-Poiseuille flow corresponds to a stationary, laminar solution to the Navier-Stokes
equations with a flow in the z direction with velocity profile @ = (u®, u¥,u?) = (1 — 3,0, 0)
between two parallel z — = plates at y = +1, driven by a pressure gradient VP = (—2vp,0,0)
where v is the viscosity and p the density. Perturbing this flow by a stream function ®(¢, z,y)
as follows, @ = (1 — y? + dy®, —0,®,0) and decomposing into plane waves & = P(y)e~wition
gives the Orr-Sommerfeld equation,

aOos ¢(y) = wd(y). (2.1)

Here Ogg is the Orr-Sommerfeld differential operator (A.9), characterised by the Reynolds
number Re = v~!. Boundary conditions correspond to ¢(£1) = ¢'(+1) = 0, which quantise
the spectrum. The spectrum for plane-Poiseuille flow is shown in figure 3. As Re is increased
further, the system becomes modally unstable [21].

The operator Opg is a non-normal operator and, as figure 3 demonstrates, w, are
complex. Here though, the origin of non-normality is bulk dissipation rather than loss
through a boundary, due to the bulk viscous term, ¥V2#. Transient growth in the energy of
perturbations Fy(t) is well-established [22], and we reproduce the phenomena here in figure 4.

The mechanism behind Ey(t) growth is similar to black hole charge superradiance.
Instead of pair creation of oppositely-charged particles in the presence of an electric field, in
this case there is pair creation of oppositely-moving momentum modes in the presence of
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Figure 4. E4(t), Ey(t) for an optimal linear perturbation to the plane-Poiseuille flow at & = 1 and
Re = 5000 for a subspace spanned by M = 30 modes. The dotted line Gy (t) gives a sharp upper
bound on Ey(t) for all possible initial data, and here initial data is chosen such that E4(t) reaches the
maximum. The linear perturbation is characterised by an initial non-modal growth, even though the
system is modally stable with all QNMs in the lower-half plane.

RN-AdS, black brane Plane-Poiseulle flow

radial direction, z direction perpendicular to plates, y

U(1) symmetry translations in x

chemical potential deformation, p applied pressure gradient, 0, P

radial electric field, E, = 2u mean flow in z-direction, U = 1 — 32

non-normal Hamiltonian, H (1.1) non-normal Hamiltonian, Opg (2.1)

charged scalar v QNMs (figure 6) no-slip stream function perturbations ® (figure 3)
superradiance (spontaneously broken U(1)) | turbulence (spontaneously broken 9, )

1) charge, q ® wave number, «

net energy loss through H* net energy loss via kinematic viscosity v (A.16)

Table 1. Summary of the coarse analogy between transient superradiance phenomena discussed in
this work, and transient effects in perturbations to plane-Poiseulle flow.

the background z-independent flow, U(y) = 1 — y%. E4(t) can then increase by non-modally
borrowing energy from the mean flow energy, Ey. The net energy E = Ey 4 Eyy necessarily
decreases due to viscous effects. This is shown in figure 4.

In this section we have drawn an analogy between plane-Poiseulle flow and the pertur-
bations of charged black branes — see table 1 for a summary. There are many differences
between these systems, but the phenomenology is similar. Part of this is because the mech-
anisms behind non-modal transients are similar, but also likely because of the connection
between breaking U(1) symmetry (in the case of charge superradiance) and breaking spacetime
symmetries (in the case of turbulence and rotational superradiance) through dimensional
reduction. It would be interesting to make this link precise within a concrete example.



3 Method and further details

3.1 The bulk model

We consider the four-dimensional Einstein-Maxwell action coupled to a complex scalar field,
with charge ¢, given by

S = [ doy=g (R+6- 17~ DU +2uf). (3.1)

corresponding to the holographic superconductor [17]. In (3.1), FF = dA, D =V —igA and
we have set 167G = 1 and fixed the cosmological constant to be A = —3 (AdS radius L = 1).
The equations of motion associated with the above action are given by

V= J",
1
G,uu - 39;”/ = §T,u1/;
(DuD¥ +2)3 =0, (3.2)
where the conserved U(1) current, J#, and stress tensor, T},,, are given by
Jt = iq (D" — D), (3.3)
where 1 denotes the complex conjugate of 1, and
F
T =T}, +T),
T, = D Do) + Db Do) — gyl DY + gy (210,
1
T::/ = FupFup - Eguqu s (3.4)

respectively, and they satisfy the local conservation equations

VuJt =0,
V,T" =0,
Viu(Typ), = Fpd?,
VuTr)t, =—FyJ°. (3.5)

The equations of motion then admit a unit-radius AdS, vacuum solution with A =1 =0,
which is dual to a d = 3 CFT with an abelian global symmetry. In what follows, we are
interested in placing the CFT at finite temperature 7', with constant chemical potential
. The high temperature, spatially homogeneous and isotropic phase is described by the
planar, electrically charged RN-AdS4 black brane solution, which in Poincaré coordinates,
(t,r), takes the form

d 2
ds®* = —f(r)dt* + R r2(dx? 4 da3),

f(r)
2 2
f(r)_r2—<1+’jl)i+fr2,
A:u<1—i>dt, v =0. (3.6)



The black hole horizon is located at 7 = 1 in these coordinates® and the associated thermo-
dynamic quantities, namely the temperature T', entropy density s, charge density p, energy
density e and pressure P, are given by

2
s=dm, p=up, 5:24—%, le—l—%. (3.7)

In this model the black brane (3.6) is unstable below some critical temperature [23], at
any value of ¢q. In the canonical ensemble the thermodynamically preferred black hole at
low temperatures has non-vanishing charged scalar hair, describing a superfluid phase in the
dual CFT. To obtain the critical temperature for this transition (or equivalently, critical
chemical potential y.), one looks for zero modes around (3.6), that is, QNMs with w = 0.
For later convenience, let us note that when ¢ = 1 we have u. ~ 2.98.

But of greater relevance for this work, another way to get the critical temperature is by
considering (modal) energy growth. By studying linear perturbations of the system formed
from a single QNM, it can be shown that energy can be removed from the system through
superradiance if the frequency, w, of the corresponding QNM satisfies the condition

we {w € C‘ (mew+’;q>2+(3ma;)2 < (*;q>2} (3.8)

The critical temperature is then the highest one where a QNM satisfying (3.8) first exists.
However, as we will see in section 4, perturbations of the system composed of more than
one QNMs allow for energy growth even above this critical temperature.

3.2 Hyperboloidal coordinates

The holographic superconductor is most commonly analysed using Poincaré coordinates (¢, 7).
In what follows we will instead use a hyperboloidal slicing: spacelike slices that pierce the
future event horizon, rather than degenerate at the bifurcation point. The advantage of
using this coordinate system is that it avoids the past horizon where QNMs are singular, and
provides a way to track the amount of energy falling into the black hole over time.

Hyperboloidal coordinates [25-33] are obtained starting from Poincaré coordinates via
the following coordinate transformation

t=1—"nh(2), r=R(z), (3.9)

where the height function h(z) bends the original Cauchy slice so that 7 = const. corresponds
to a hypersurface ¥, which penetrates the black hole horizon, and for convenience R(z) is
used to perform a spatial compactification. Here the new radial coordinate z € [0, 1] is chosen
such that z = 1 corresponds to the future horizon, while z = 0 corresponds to the conformal

3Throughout the paper, times and frequencies are given in units of r;, = 1 which can be related to e.g.
thermodynamic units by reinserting explicit factors of 7, into (3.7).

“Note here this requires a numerical solution, but for RN-AdSs the critical temperature can be determined
analytically [24].



boundary of AdS. In this parametrisation, the metric and gauge field read

ds? = _f(z) dr? + Qf(z)h’(z) drdz + (R}Eif - f(z)h’(z)2> dz? + R(z)deZ’
A=p(1=Re)") dr—p(1- R W ()2, f(2) = fIR()), (3.10)
Our choice of coordinates is given by
2
h(z) = i log(l —z) — 2"; (log(ze — z) — log(zc)) , (3.11)
R(z)=1/z, (3.12)

chosen so that the mode is ingoing at the Cauchy horizon, while ensuring that h(0) = 0 so
that the asymptotic time is not adjusted. Here z. is the location of the Cauchy horizon, and
K, ke are the surface gravities at the horizon and Cauchy horizon respectively

C12—p2
K= ’
8
9 4,2 3 2_4 3_8
fo= ek zg’: Ze O (3.13)
C
2/3(3,2
2§/54M4+6(\/ﬁ\/27u4+56u2+48+12),ﬂ+64+ 12737 +1) +8

§/27;L4+3 (\/5 27,u4+56u2+48+12) 12432

Ze= 62

Demanding that ¥, intersects the future event horizon only requires the first term in (3.11).
However, when approaching low temperatures, the influence of the Cauchy horizon increases
and we require subsequent terms ~ log(z. — z) to maintain a good spacelike slice. These are
similar to the slices used in [34] which also contain such terms, and reduce to those used
in [12] for Schwarzschild-AdS when p — 0.
If we linearise the scalar field ¢ around the RN-AdS; background,
¥ =1We+ 0(e)? (3.14)

and decompose into plane waves as follows,

W, 2 &’k i
V(1 2, T) :/(27T)2Z Xj (7, 2)e™", (3.15)

then the equation of motion for xj is given by

. Xz X 0 1
0, E)=H k), H= 3.16
orfan) = () (e e) 019

where
_ —1i 2 2 2 2 2 3 72 .2 3 7! 37 s r
£1—T4f~2h/2 [q (—142)*p+22°f 4+ f(2—k*z"+22° ')+ 2 f(zf 8Z—|—f(482—|—zazz))] 7
Lom— [_2¢q<—1+z)u+z4 PN +2° (AN +zh0") + 22 th’é?Z] : (3.17)
_1+Z4f2h,2

Note that, for convenience, in the decomposition above we have also removed a factor of z2,
with A = 2 corresponding to the scaling dimension of the operator holographically dual to ¥
— this ensures that regularity of x; enforces the required normalisable behaviour at z = 0.



3.3 Energy and charge
The main observable of interest is the energy of the scalar field on a spacelike slice labelled
by 7, X,, given by
E, = / (T )" n,dSs, (3.18)
DN

where n = \/%dT is the unit, future-directed normal to ;. This is conserved up to flux
through the future horizon and through exchange with the gauge field, since,

0. Ey = / 3 (Ty)" |, — / V—gF.,J* dzd*%. (3.19)
On the other hand, the total energy FE, as well as the charge Q,

E E/E TH n, d¥,, (3.20)

QE/ T, dSs, (3.21)
D

are both conserved up to only boundary terms. In the special case of the probe limit — where
q — oo so that backreaction is parameterically suppressed — the additional energy comes
only from the gauge field, and we denote this contribution by Er = E — Ey.

To proceed we linearise the scalar as in (3.14) and evaluate Ey, Q to O(e)?. Since T ;f’,j
and J#" are quadratic in 1, scalar perturbations to O(e) are sufficient. With a plane wave
decomposition of (1) (3.15), we have the following scalar contribution to energy,

Pk !
Bo=e [ 25 [ 0(2)0, X0 + Pe(2)OR0: e + a8 (e (3.22)
+ (e (=)Xp0mxg + c¢) + (as(2)xz0xz + c.c)] +0(e)",

and charge,

Q= 62/ (;Z:;Q /01 [(wQ(z)YE&XE + pQ(2)X;0:Xxj + CIQ(Z)Y;;X;;) + c.c.} dz + O(e), (3.23)

where the coefficient functions wg(2), pe(z), qe(2), a1(z), aa(2), wo(z), po(2), qo(z) are
given in appendix B. In what follows we will refer to £, and @ as the above O(e€)? pieces,
with the formal parameter set to ¢ = 1. On the other hand, E begins at order ¢

12
E = -voly + O(e)?, (3.24)

receiving corrections due to both the gauge field and metric at order €2. In the probe limit in
particular, one has Er = E — Ey = [y, (Tr)" n,d%; = %QVOIQ + EI(;2)62 + O(e)*.

Finally, we consider the contribution to £, coming from a single E—mode, Xj(7, 2), and
define the associated energy inner product,®

1
(€1,6) = /0 dz €G- &, (3.25)

5From now on, we drop the & label: x(T, 2).



Figure 5. Overlap |<§~Z,£~J>| for QNMs i and j, when ordered by their imaginary part, starting from
the longest-lived mode at i = j = 1 in the top left of the diagram. For diagonal elements, i = j, the
overlap satisfies (&,f}) = 1 (white). For off-diagonal elements, ¢ # j, 0 < |(§~l,§~J>| < 1 (grey, with
lighter shades corresponding to larger values). The choice of parameters used is ¢ = 1, u = 2.9, k=0.

x(7,2)

where we have introduced the notation £(7,z) = <8 (r.2)
TX\T, 2

) — here and throughout the

text, * denotes the conjugate transpose — and

. (52 pi(2) 0- + g (2) + s (2) 0. + - s (2) a1(2)> 7 (3.26)
a1 (2) wp(z)

such that Ey[¢] = (£, §).

Under the energy inner product (3.25), QNMs are not orthogonal to one another. In
particular, this means that the energy of a sum of QNMs is not the sum of their energies, and
the additional terms allow for transient effects in the time evolution E,. Figure 5 quantifies
the overlap between pairs of QNMs for the spectrum shown in figure 6. Lighter colour
corresponds to a stronger overlap. Specifically, for any two QNMs, labelled by ¢ and j, the
figure shows the value of |<§~Z, £j>\, where € are the normalised eigenfunctions

£(2)
(€(2),€(x))

The visible grid-like structure corresponds to a lower overlap between different branches

{= (3.27)

in the spectrum.

3.4 Optimal perturbations and scalar energy growth curve

In this subsection we briefly review the algorithm for calculating optimal perturbations —
those perturbations which maximise energy growth Ey[£(7, 2)]/Ey[£(0, 2)] at a fiducial finite

,10,



time 7 (see [12] for more details), and then apply it to our model. The algorithm is as follows:

1. Construct QNMs corresponding to perturbations of the charged scalar field. Specifically,
we denote the eigenfunctions as &,(z) and eigenvalues wy,, with n = 1,2,... in order of
decreasing imaginary part. Here, this step is performed numerically.

2. Select a finite set of QNMs consisting of the first M modes, {£,}M . Let us denote the
subspace of linear perturbations spanned by these QNMs as W, such that dim(W') = M.

3. Use the scalar field energy norm to normalise the corresponding eigenfunctions

Fo_ &n(2)
SN A ERACTE

(3.28)

4. Use the Gram-Schmidt method to construct an orthonormal set of functions {¢,}M
satisfying ((;, ¢j) = d0i;. This process will also yield the change of basis matrix Uy, that
corresponds to the projections between these two sets of functions, i.e

(€, &) (G.&) - (G.ém)

0 (&) ... (C2ém)

Uy = (3.29)

0 0 ... (Crsémr)
5. Obtain the matrix Hyy = Uy Dyw Uy, where Dy = diag(wi,wa, ..., war).

6. Carry out a singular value decomposition for the W-projected time evolution operator,

—iHwT

e . Its maximum singular value squared computes the energy growth curve in

W [12]
Ey[é(r,2)] —iH 2
Gw(r)= sup ZPoi=l= e w3, (3.30)
¢(0,2)ew Eyl€(0, 2)]
which captures the maximum possible Ey, at any given time 7 > 0 within W. Here || - ||2
denotes the usual [2-norm induced from the Euclidean inner product (€}, €3)s = €;*€5.
On the other hand, its right principal singular vector gives a set of coefficients d such

that
M

M
§(07 Z) = Z Cngn = dnCn (331)
n=1 1

n—
corresponds to optimal initial data maximising the energy, I at time 7. It should be
clarified that the energy growth Gy (7) is not the time evolution of the energy of a
perturbation, Ey[£(7, z)]. Rather, there exists initial data £(0,z) € W for each 7 > 0
such that Gw (1) = Ey[&(T, 2)].

The numerical implementation of the above algorithm makes use of Chebyshev spectral
methods. The inner product is also discretised into (£1,&2) = {;‘ G& = (F:S_i)*(Fgg), where
Gis a2(N+1) x 2(N + 1) matrix and F' its Cholesky decomposition. Note that in the
computation of G one needs to include the quadrature weights coming from integrating
over a Chebyshev grid. In addition, in order to minimise loss of accuracy resulting from

— 11 —
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Figure 6. The k=0 QNM spectrum for ¢ = 1 charged scalar perturbations of the RN-AdSy black
brane at p = 2.9 where the system is modally stable (u. ~ 2.98 at ¢ = 1).

approximating the integrand in (3.25) as a single Chebyshev expansion, we first compute
G on a grid of double resolution 2(N + 1) and then interpolate down to N + 1 grid points.
Throughout the paper, unless otherwise stated, all numerical results are derived at N = 450
and using 200 digits of precision.

Let us now discuss our results. We focus on parameters ¢ = 1,u = 2.9 and k= 0,
corresponding to a subcritical region of the phase diagram (u < p.) where all QNMs are
decaying in time. The QNM spectrum for this choice of parameters is shown in figure 6.
In this subcritical region, we can define the growth factor in W as the maximum possible
Eyl&(T,2)] over all 7 for any choice of £(0,2z) € W. By definition of Gw (7) (3.30), the
growth factor is simply Gw (Tpeak) = sup,>o Gw (7). Figure 7 shows the optimal perturbation
constructed out of M = 10 modes for the subcritical holographic superconductor, chosen to
maximise the energy growth at a time 7, = Tpeax = 9.83. With these parameters, there is a
growth factor of Gy (Tpeak) ~ 5.83, while soon after 7, there is a transition to modal decay.

The growth factor Gy (Tpeak) does not however appear to be bounded with the number of
modes. This is illustrated in figure 8 which shows the scalar energy growth factor, Gw (Tpeak),
as a function of M = dim(W). This may be an important consideration for the seeding
of nonlinear effects in the continuum theory.®

The corresponding optimal initial data is localised near the horizon, see figure 9. This
then expands to fill the spacetime before decaying via QNMs, as illustrated in the density
plots of figure 7.7 There is an oscillatory behaviour in |0;x|,—o close to the horizon for larger
M. This has an imprint on the densities Fy, |x|, @: portions of these densities spread out of
the horizon over slightly different time scales. On a figure similar to figure 7, this appears
as a number of ‘beams’ of density emanating from the horizon.

SNote that in the Orr-Sommerfeld case the growth factor saturates at around M ~ 60.
"The energy and charge densities are computed by evaluating the integrands as shown in (3.18) and (3.21);
note that the energy density differs from the integrand of (3.22) by total derivative terms.
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T T

Figure 7. Optimal perturbation in the subcritical regime, demonstrating a period of transient growth
despite modal stability. Ey,|x|, @ densities as functions of 7 and z, showing that the scalar field is
localised close to the horizon. The maximum displayed value of the @ density is 44.3 for visualisation
purposes. Integrating these on the hyperboloidal slice -, the last panel also shows the time evolution
of By, Q given optima, clearly demonstrating transient growth for a period of time, before it eventually
decays modally. The dotted line Gy (7) gives a sharp upper bound on E,, for all possible initial data.
The choice of parameters is ¢ = 1, u = 2.9, k=0and 7. = 9.83.

excluded

5 10 15 20 25 30 35 40 45 50 55 60 65 70
M

Figure 8. Growth factor as a function of M. The choice of parameters is ¢ =1, p = 2.9, k=0.
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3.0 1

Xlr—o (M =T70)

OrX|r= M =170

9.5 0Xlr=0  ( )
—— [xlmo (M =40)

=== |0:X|r= M =40

2.0 0Xlr=0  ( )
— o (M =10)

-0 ‘87X|7'=0 (1” = 10)

1.5 1

Figure 9. The initial data corresponding to optimal perturbations of the RN-AdS, black brane,
formed from a sum of the leading M QNMs with k = 0. Each example of initial data shown has
Ey =1, which then increases transiently. Optimal perturbations are those which reach the maximum
possible energy during this transient period. The choice of parameters is ¢ = 1, u = 2.9.

104 ——— el
|
102<
100‘
1 P 3 4 5 6 7 8 9 10

Figure 10. The QNM coefficients, ¢,, (black) in the optimal perturbation shown in figure 7, at
the initial data surface 7 = 0 (3.31). Also shown are the coefficients in the orthonormal basis for
W, d, (grey). Note V d*d =1 and VZ*G ~ 10*. The choice of parameters is ¢ = 1, u = 2.9, k=0
and 7, = 9.83.

Finally, the magnitude of the coefficients in the decomposition of the optimal perturbation
is shown in figure 10. While the coefficients in the orthonormal basis for W are order one
(the d,,), the coefficients in a sum of QNMs are large (the ¢,).

One can repeat the investigation in this section but at supercritical temperatures. For
such values of u,q, the spectrum includes an exponentially growing mode. However, we
find that non-modal optimal perturbations grow much faster than the QNM growth. Our
results for the optimal perturbation in this case are shown in figure 11 for u = 3.1 > pu,,
q =1, k= 0, M = 10 with target time 7. = 7.5.
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20 1 B,

------ modal growth

Figure 11. Optimal perturbation, Ey, in the supercritical regime (black solid line). This demonstrates
a sum of QNMs with a growth rate much faster than the single unstable QNM in the spectrum (blue
dashed line). The choice of parameters is p = 3.1 > u., ¢ =1, k=0, M =10 and 7. = 7.5.

3.5 Truncated-Hamiltonian pseudospectrum

We now introduce the pseudospectrum [9] for a truncated Hamiltonian Hyy, oc(Hy ). This
is defined as

oe(Hw) = {w € C[|R(w; Hw)lp, = €'}, (3.32)

where R(w;Hw) = (w — Hw) ! is the resolvent, Hy is Hamiltonian for the subspace W
and the size of the perturbation € is measured with respect to the energy norm || - [|g,. As
we show explicitly in appendix C

| R(w; Hw)ll e, = [|R(w; Hw)ll2, (3.33)

where Hyy is defined in section 3.4. Hy is a finite dimensional matrix and is computed by
knowing only a subset of the spectrum of #, and thus (3.32) has the advantage of being a well
defined quantity. This is in contrast with o.(#), which when computed through numerical
approximations do not converge to a continuum value in some cases [8].

In figure 12 (left) we plot the sets o (Hyw ) for several e, with W containing only the first
M =10 QNMs. This exhibits the usual characteristics anticipated for spectrally unstable
systems. In addition to this, for our purposes, the contours protrude significantly enough into
the upper half plane to imply transient growth through the Kreiss Matrix Theorem. This
theorem arises by writing the resolvent as a Laplace transform of the time evolution operator,
i(w—H)"L = [3°e“Te~™M7dr 8 whose norm can then be straightforwardly bounded,’

H/O ezw’re—z’HrdT S/O ‘e’LOJT’He—ZHT”dT

. [e%S)
< sup Hefﬂ-LTH / efjmwr dr
7>0 0

1 —iHT
— 3.34
e e (3.34)

8Convergent if Jmw > Jm \ for any eigenvalue A of .
9f Jmw > 0 > Jm \ for any eigenvalue A of .
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Figure 12. Left: Pseudospectrum for the truncated Hamiltonian. Here, spin(w — Hw) = ||(w —

Hy) '3 and we make use of the equivalent definition of the pseudospectrum o (Hy) = {w €
C | Smin(w — Hw) < €}. Note the protrusion of pseudospectral contour lines in the upper half
plane. Right: Jmw|/(w — Hw ) !||2 as a function of Jmw in the upper half plane for Rew = 0.03
(approximately the real part of the frequency of the lowest lying QNM). This gives an indication of
the depth of the protrusion of the pseudospectral contour line in the upper half plane, with the peak
on this plot setting a lower bound for the Kreiss constant. The choice of parameters is ¢ = 1, u = 2.9,

—

k=0and M = 10.

yielding a result that relates the pseudospectrum contours to growth in time,

K(H)= sup (Imw)||R(w;H)|| < sup He_mTH, (3.35)
Jmw>0 720

where K(H) is the Kreiss constant. Specialised to our truncated system and the energy
norm, (3.35) implies

K% (Hw) < sup Gy (1), (3.36)
7>0
where
K(Hw) = sup (Imw)||R(w;Hw)|r, = sup (Imw)|R(w; Hw)l|2. (3.37)
Jmw>0 Jmw>0

Thus if K(Hw ) > 1 there exist perturbations that exhibit energy growth. Focusing on
MRew = 0.03 (approximately the same real part as the fundamental QNM frequency) and
moving upwards into the upper half plane, we track the value of Imw||R(w; Hw )||2 against
Jmw; this is shown in figure 12 (right). The maximum of this curve then gives a lower bound
on K(Hw) through (3.37).19 Notably C(Hw ) > 1 indeed, in agreement with the observation
of transient growth through the construction of optimal perturbations in section 3.4. The
shaded area on figure 8 denotes the region excluded by the Kreiss Matrix Theorem (3.36)
for various Hamiltonian truncations with dimW = M.

10The Kreiss constant is computed at the points of maximal protrusion in the upper half plane. Here, we
instead obtain a bound by focusing on a fixed value of Rew.
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4 A positivity theorem for QNM energies

In the previous section, we have demonstrated that charged linear scalar perturbations on the
RN-AdS4 background can exhibit transient amplification in their energy via superradiance in
the modally stable regime. This arises due to non-modal effects in the time evolution of sums
of QNMs on a 7 = 0 slice, ultimately coming from the non-normality of the system.'! This
is in contrast with the usual picture of superradiance in which individual scattered plane
waves contain higher energy than the incident wave, either from infinity in asymptotically
flat space [35] (see [36] for a review), or from sources at the conformal boundary of AdS [37].

In this section we derive under which conditions QNMs exhibit (transient) superradiant
amplification in our system, and, as a result, we arrive at a theorem on the positivity of
QNM energies.

Consider the flux of the scalar field energy (3.19). Working at linear level in 1) translates
into working at O(e)? in (3.19) such that

@sz—g/fﬂ&wﬁ

+u/wfﬁﬁ§ﬁ
z=1

:-g/fﬂ&¢ﬂ

+u/ffaQW (4.1)
z=1

where we have used (3.4), Fyr = —p + O(€)? in the first line, and V,J* = 0 along with
integration by parts in the second. Thus, upon plane wave decomposition (3.15), considering
a single k-mode contribution (dropping the associated label) and for a single QNM with
frequency w, x(7,2) = e"“7Z(z), one has

0, B = —2e2™ (Jwf? 4 pgew) |Z(1), (4.2)

naturally giving rise to a condition that needs to be satisfied by w for a single QNM to
exhibit superradiance. Namely,

% A%
V7 ERI&TESNM >0 & we {(IJ eC ‘ <m€@+2> +(jma))2 < (2> }, (43)
region in C corresponding to an open disk of radius pq/2 centred at (—ug/2,0). This result
leads to the following theorem

Theorem 1. Let £(0, z) be a scalar QNM with charge q on the RN-AdSy background (3.6) at
chemical potential . Let w be its associated eigenfrequency, such that &(7,z) = e=*“7£(0, 2).
Then, for w with Jmw # 0, its energy (3.22) Ey[{(T,2)] > 0VYT € R if and only if w € S =
S1U Sy (see figure 13), where

2 2
Si={weC|Imw >0, <£Rew+#2q> + (Ima)? < <“2q> } (4.4)

2 2
SQE{(DEC‘SIU(Z)<0, (ma@—l—/;(]) +(3m@)2> (/;(]) 1. (4.5)

'We have also checked that transient superradiance can still take place for generic choices of initial data.
‘We discuss this matter further in section 5.
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NN

Rew
Figure 13. The region S in Theorem 1.
Proof. From (3.22), the time dependence of the energy of a single QNM &(7, 2) = e~ “7¢(0, 2)

is given by
Eylé(r, 2)] = Ce*™eT, (4.6)

with constant C.

(=) by contradiction:

o Jmw > 0: Assume w € S¢. Then (4.2) implies 0 Ey[£(T, z)] < 0 which by (4.6) implies
C < 0 and thus Ey[{(T, 2)] < 0 yielding a contradiction.

o Jmw < 0: Assume w € S¢. Then (4.2) implies 0, Ey[£(T, z)| > 0 which by (4.6) implies
C < 0 and thus Ey[§(7, 2)] < 0 yielding a contradiction.

(<:):

o Jmw > 0: When w € S (4.2) implies 9, Ey[£(T, z)] > 0, which by (4.6) implies C' > 0
and thus Ey[¢(T, 2)] > 0.

o Jmw < 0: When w € S (4.2) implies 9, Ey[£(T, z)] < 0, which by (4.6) implies C' > 0
and thus Ey[£(T, 2)] > 0.

O]

Thus far, the analysis has been concerned with linear perturbations formed of a single
QNM. We have found that, provided that its frequency w satisfies the superradiant condi-
tion (4.3), the associated energy is monotonically increasing, i.e. it is not a transient effect.
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Let us now consider a linear perturbation constructed from a sum of 2 QNMs x(7, z) =
c1e T 71 (2) + coe ™27 Zo(2), with flux (4.1)

0rEy = —|c1 [22e2 ™™ <|w1|2~|—uqi¥iew1) | Z1 (1) ? — | cp|22e2Ime2T (|wQ|2+uqmeW2) | Zo(1))?
—2%Re [clége_i(wl_@)'r(lewg+uq(w1 +@))ZI(1)72(1)} . (4.7)

Note that the first two terms above correspond exactly to the flux of each QNM alone, as
seen in (4.2). However, also note the appearance of the third term mixing QNM; and QNM,
— a non-orthogonal term that opens the door for a transient period where 0, E, > 0 even
when neither wy or ws satisfy the superradiant condition (4.3). This highlights how the
phenomenon of transient superradiance studied in this paper is rooted in non-normal physics.

5 Discussion

In this work we have shown that transient energy growth can occur for linear perturbations

12 We focussed on the

of black holes, even in situations where all QNMs are decaying.
prototypical example of the holographic superconductor. This system shares many common
features with the plane-Poiseulle flow in fluid dynamics, as listed in table 1. In both systems,
transient energy growth occurs by borrowing energy from a bath — the charged black hole
and the mean fluid flow, respectively. In the former it corresponds to a transient breaking of
U(1) symmetry, while in the latter, to the breaking of translational invariance.

The superconducting instability can be seen as the classical field analogue of Schwinger
pair production in AdSy [39-41]. A natural question is therefore whether the transients that
we have seen here are also rooted in AdSs physics. Indeed, in the case where the critical
temperature of the holographic superconductor is very low and the QNM spectra appear
similar to that of AdSs, the transient growth is more pronounced. It would also be interesting
to investigate the connection to the Aretakis instability [42] for this reason (see also [43, 44]).

We analysed the maximum energy growth through the construction of optimal pertur-
bations. However, it does not appear to be the case that such perturbations are fine tuned.
Preliminary results indicate that simply adding Gaussian initial data peaked near the horizon
has similar energy dynamics. Thus, the large coefficient functions in a QNM expansion of
optimal perturbations are likely reflective of the poor level of orthogonality displayed by these
modes, rather than being indicative of fine tuning. Indeed, they are of the same order of
magnitude as the excitation coefficients defined using the orthogonality relation of [19].

When is the transition between transient and modal behaviour? This question is
particularly relevant when trying to extract QNMs from time-domain signals. Without
prior knowledge of the transition point, this process could result in an attempt to measure
a QNM amplitude from a transient signal. Such considerations are relevant in black hole
ringdown, and specifically within the spectroscopy programme [45], as well as in the context
of thermalisation of strongly coupled systems within AdS/CFT.

The effects we discuss arise from dissipation via energy loss through the black hole
horizon. One may wonder how this is reflected in the dynamics of one point functions in a

12Here, superradiance is absent only at the classical level, however note it was recently pointed out that
quantum effects can also induce it [38].
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dual theory. The dissipative nature of the horizon gives rise to damped QNMs and in linear
response, CFT one point functions are given by a sum of these modes. In the bulk, this
dissipation enabled us to construct states which take an arbitrarily long time to thermalise.
In the boundary it is easy to see that a transiently growing one point function can also be
arranged by carefully choosing the coefficients in a sum of decaying exponentials. These two
effects are related through reading off QNM coeflicients from bulk initial data.

In the astrophysical context, it is by now well established that superradiance can facilitate
the detection of light bosonic degrees of freedom, relevant in searches for dark matter and
physics beyond the Standard Model [46-50]. Specifically, for spinning massive black holes, the
spin-down rate can put constraints on the mass of the bosonic fields triggering superradiance.
Traditional analysis, usually considered in the form of scattering monochromatic waves off
the black hole, shows that only bosons with mass below a certain threshold can lead to
superradiance. In this work we have shown that superradiance can also be seen transiently,
meaning that one might see a spin-down of the black hole followed by a spin-up, in situations
where the mass of the boson is not in the superradiant range.

A by-product of this work was the introduction of the truncated-Hamiltonian pseu-
dospectrum. This quantity is numerically convergent. This is an advantage compared to
the full-Hamiltonian pseudospectrum which is not, at least in hyperboloidal foliations. In
null coordinates, the full pseudospectrum enjoys improved convergence properties [51], and
also when the energy norm is appropriately modified to include higher derivative terms that
enforce a functional space of higher regularity [29]. The truncated-Hamiltonian pseudospec-
trum, also imposes restrictions on the functional space, since it only takes into account a
subset of the spectrum. It is thus an alternative to existing approaches in the literature
to UV regulate the pseudospectrum.

We also introduced a theorem for QNM energies, giving a rigorously determined region in
the complex w plane where QNMs with positive energies lie. It is possible that knowledge of
this region can be used as an additional ingredient in analytic bootstrap approaches to QNM
properties, for example by combining it with recently developed causality bounds [52, 53],
or knowledge of pole-skipping point locations [54-56].

Finally, it is worth reiterating that the mechanism behind transient growth is linear.
What remains to be seen is whether such growth can source and sustain interesting nonlinear
effects.'® Thus, an important open question is whether there is a sustained period of out-
of-equilibrium dynamics, akin to the transition to turbulence in shear flows. From the
holographic perspective this would represent novel states of strongly interacting QFTs. We
hope to report on this in future work.
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A Calculations for the perturbed plane-Poiseuille flow
The incompressible Navier-Stokes equation is given by,
(B +@-V)i=—p 'VP+ V2, (A1)

where « is the fluid 3-velocity, P the pressure, p a constant density and v the constant
kinematic viscosity. We consider plane-Poiseuille flow plus a stream function perturbation,
®(t,z,y), and pressure perturbation dP(t,x,y), viz.

u’ =U(y) + 0y®(t, z,y), (A.2)
u =0—0,P(t,z,y), (A.3)
u® =0, (A4)
P = 2vpx +dP(t,z,y), (A.5)

where U(y) = 1 — y2. The perturbed flow is incompressible, V.= 0, and we impose no-slip
boundary conditions ®(t,+1) = 0,®(¢t,+1) = 0. In order to correctly account for energy in
the system we work to second order in perturbation theory,

6P = ePY (t,z,y) + PP (t, 2, y) + O(e)® (A.6)
® = edW(t,2,y) + 0D (t,2,y) + O(e), (A.7)
where € is a formal parameter counting orders in the expansion. Let us consider each

order in turn.
At O(e) we take a real perturbation formed as follows:

oW (t,2,y) = d(t, )™ + G(t, y)e " (A.8)

with wavenumber o # 0. P is determined algebraically by the z-component of (A.1)
at order e. The y component of (A.1l), after inserting PM | gives the Orr-Sommerfeld
equation (2.1), where the Orr-Sommerfeld operator is

Oos = ;" [(ia Re)™ A3 = U(y)As + U (y)], (A.9)

with Reynolds number Re = v~!, and where Ay = 633 — o? is the spatial Laplacian for
the z,y-plane.
At O(e)? we have perturbations sourced by O(e) terms. These take the form,

O (t,2,y) = ¢0(t,y) + Y 0¢1alt,y)e™2. (A.10)
+

The zero-momentum piece dyd¢y obeys the following diffusion equation,

(at - uaj) 0,600 = iad, (wya - aayqﬁ) : (A.11)
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with viscosity v serving as the diffusivity, and a current source term coming from the O(e)
perturbations. P®, §¢.,, (t,y) are determined by other differential equations but we will
not need them here.

To O(¢)? the energy of the perturbed flow evaluates to

1 1 1
E = / dy/dmﬂ- u = vol, (6 + 262/ (layqﬁ\Q + a2|¢]2) dy (A.12)
—1 15 -1
1
4 2¢2 / (1= 42) 8,060 dy + 0(6)3) (A.13)
-1
We isolate the two contributions at order €2, which we write as

1

Eo= [ (10,0 + a?l0F) dy. (A11
1

0Ly = [1(1 —y%) 9,000 dy. (A.15)

E,4 matches the energy norm ||¢[|3, in [22] equation (A.6).!* Note that E > 0 and Ez; > 0
but no such restriction exists for §Ey. One can show that

1

2
0y (Ey + 6Ey) = —

Thus, the total energy at order €2, E4 + dEy, is strictly non-increasing, and can decrease due
to viscous dissipative effects. However, 0;F4 alone contains a non-viscous bulk term which
is not sign-definite and this is where transient growth can appear.

To see the behaviour of Ey4 in practise, we consider the growth curve example given
in [22] at parameter choices o = 1, v~! = Re = 5000. We use 200 Chebyshev grid points and
the subspace W is formed of 30 eigenfunctions, whose eigenvalues are plotted in figure 3. We
first evaluate Ey for an optimal perturbation corresponding to Ey(t = 0) = 1 and E; which
achieves the peak of the growth curve, using initial data corresponding to the right principal
singular eigenvector of the truncated time evolution operator. From figure 4 we see that Fy
displays transient growth, and then modally returns to zero over a time set by the longest
lived QNM, which in this case is quite long: (—Jmw)~! ~ 571. This is the result established
n [22]. Unlike the growth curve for transient superradiance (see the discussion surrounding
figure 8), here increasing the dimension of W does not lead to an increased peak of the curve.

To evaluate 0 Ey we solve for 0y0¢g in (A.11) using the Crank-Nicolson method, starting
from 0Ey = d¢p(t = 0) = 0. The result is also shown in figure 4, showing a decrease JEy; .
This is the counterpart to the result of [22], i.e. the missing piece that ensures that the
total Ey 4+ dEy cannot increase (it just decreases due to viscous dissipation). Thus one
may interpret this transient process as an interaction between the quadratic zero-momentum
mode d¢y and the two linear momentum modes ¢, ¢ — a coupling which exists only due
to the background flow U(y).

The second term in [22] (A.6) appears to have a typo, reading |¢| instead of |¢|>. The factors of 2 in our
energies come from a different perturbation strength in (A.8).
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B Coefficients appearing in energy and charge integrals

The coefficient functions appearing in (3.22) are given by,

wp(z) = 2Yg(2),

pe(z) = 2'Pe(2),

qp(2) = 2'qp(2) - 20 (Pp(2)2) 2* + 2°k°

a1 (2) = 2tay(2),

a(2) = 2ran(z), (B.1)

where
~ ((4 _ 423 4 2’4 MQ o 2’3/1,2)2h/2 _ 16)
B 422 (p224 — (p2 4+ 4) 23 +4)
2.2
N z 1 1
o) =54 5 -1 (1 +4) 2
z

4 22 4
212 (242 -1) 3+z2 (4 —2p2¢?) + 4z + 4)

24 (223 — 422 — 42 — 4) ’
5(2) = — —2) ((4 — 423 + 2 p® — 23u2)%h"? — 16)
az) = 422 (u22* — (p? +4) 23 + 4) ’
- pg(z —1)% (4(1 + 2 + 2%) — 23p2) 0
ao(z) = (4 2 ) . (B.2)

Note that to arrive at (3.22) we have removed the boundary term fol dz 0. (pr(2)223%x) = 0.

The coefficient functions appearing in (3.23) are given by,

where

(<164 (44 =12 = 24+ u2))* n2)

wo(2) = —ig 422 (4 + 242 — 23(4 + p?)) ’
z3 _ _ P 2 /
ﬁQ(z):_iq(u ( 4+4;1+ W))W
o) = g’ (5.4)

225 4 4t 423 4 4227

Note that these functions are written in terms of h/(z), where h(z) is given in (3.11) for
our specific case.
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C Proof of (3.33)

Given the formal expansion,

I 2
(w—HW)‘lzaJrH—WJrZ—g"jL..., (C.1)

it can be shown that

I(w=Hw) " (0.2) |1, = (w=Hw)1&(0,2), (w—Hw) '£(0,2))

chem((W—Hw)  en, (W—Hw) &)

3
—

=[Uw (
= || Uw (w—Dw) ' Ui d|3
= || (w—Hw)~"d]}3. (C.2)
Similarly,
Hf(O Z)HEw <€(O7Z)7€(072)>
M ~ ~
= Z cncm{&ns&m)
n,m=1
M M
= > > em((Uw)jn) (Uw)rm (G Cr)
n,m=1j k=1
= (Uw?@)" (Uw?)
= |owell3
= |13, (C.3)
such that
I(w = Hw)'€(0,2)[1%
w—Hw) E, = sup J
o =Hw) e, = oo, e, 21,
e = Hw) N3
decM 13
= || (w — Hw) "3 (C.4)

In the above, we have used the expansion (3.31), the change of basis &, = >"M_ (Uw) ymnCms
and the orthonormality relation ((j, (k) = djp-
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