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On land, we can easily detect ecological changes through our senses, whether it’s hearing a
new bird species or noticing fewer insects, and these sensory cues drive scientific inquiry. In
contrast, changes in marine ecosystems are far less perceptible, making it challenging to notice
and investigate ecological trends. Environmental DNA (eDNA) monitoring provides a powerful
biomolecular tool to reveal these hidden trends, offering critical insight into the impacts of
anthropogenic activities on marine ecosystems.

Traditional approaches to understanding these impacts often rely on micro- and mesocosm
experiments, which may not accurately reflect natural marine communities. Long-term place-
based monitoring is essential to observe cumulative effects and support adaptive management
strategies. However, conventional visual monitoring in marine environments is costly,
logistically challenging, and sometimes hazardous, limiting its ability to deliver the temporal and
spatial resolution required to detect change.

Autonomous eDNA sampling technologies, such as the Robotic Cartridge Sampling Instrument
(RoCSl), offer a promising solution. Although the initial investment is substantial, a network of
these autonomous samplers could provide consistent, low-cost biodiversity data, that is
resilient to funding fluctuations, due to the option to store samples in biobanks for future
analysis.

This doctoral research explores how biomolecular monitoring and autonomous technologies
like RoCSl can enhance marine biodiversity monitoring. Chapter 2 demonstrates the RoCSl's
ability to autonomously collect samples via a ship’s underway system, increasing the spatial
resolution of eDNA sampling. Chapter 3 focuses on the RoCSl's capability to capture high
temporal resolution samples in a highly urbanised estuary. Chapter 4 optimises the RoCSl for
long-term deployment by comparing different liquid nucleic acid preservatives. Chapter 5
discusses improvements in data management practices for biomolecular research, facilitating
the integration of RoCSl data into a global/national scale observation network. Chapter 6
evaluates the Oxford Nanopore’s portable MinlON sequencer for its potential use alongside the
RoCSlI.

Overall, this thesis validates the RoCSl as an effective tool for high-resolution temporal and
spatial biodiversity monitoring, optimises it use for long-term deployments, and advances data
management practices for large-scale biomolecular observations. The findings provide
foundational evidence for establishing a national-scale ocean biomolecular observatory that
combines both autonomous and manual methods to deliver consistent, long-term ecological
data needed to inform adaptive, place-based management of marine ecosystems.
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Supplementary Figure 30. We frame part of our perspective in an adaptation of Porter’s (1985)
value chain, where a product passes through all portions of the chain, gaining
value from each activity. The language used in Porter’s value chain relates to
commercial business activities, this adaptation gives examples for the types of
omic research activities that could apply to each category. Category headings
have been adapted to fit omics operations and research, as follows: Firm

infrastructure > Community infrastructure, Procurement > Procurements /
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BEBOP ...cevviiiiiieiieieee, Better Biomolecular Ocean Practices

CAD .o, Computer-Aided Design

COl e, mitochondrial gene cytochrome C Oxidase subunit | - A standardized

molecular marker for classifying animal species
EBV .. Essential Biodiversity Variable

eDNA ..., Environmental DeoxyriboNucleic Acids — The mixture of genomic
material that can be extracted from an environmental sample (such

as water, soil, faeces and air)
EOV e, Essential Ocean Variable

eRNA .l Environmental RiboNucleic Acids — The ribonucleic acids that can be

extracted from an environmental sample (such as water, soil, faeces
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Sandwich-Hybridization Assays
DNA/RNA Shield (Zymo Research)
Submersible Incubation Device

Suspended Particulate Rosette

United Nations Educational, Scientific and Cultural Organization

19



Chapter 1

Chapter 1 Autonomous eDNA sampling with the
Robotic Cartridge Sampling Instrument:
Increasing the temporal and spatial
resolution of marine biodiversity
observations for the UN Ocean Decade for

Sustainable Development

1.1 What is environmental DNA?

Environmental DNA (eDNA) is the mixture of genomic material that can be extracted from an
environmental sample (such as water, soil, faeces and air). Potential sources of DNA within an
environmental sample include cellular materials (e.g. broken cells, DNA molecules), pieces of
tissue (mucus, scales, skin, etc.) and faeces that are sloughed off or excreted by organisms to
the environment, as well as whole microorganisms and gametes (Pawlowski et al., 2020;
Taberlet et al., 2012). The term eDNA is most commonly used for research focusing on macro-
organisms. However, microbial life is always present in eDNA samples and increasingly
research is focusing on both the microbial and macrobial life (Pawlowski et al., 2020).
Therefore, in this thesis the term eDNA will be used to refer to all research that examines the
nucleic acids (DNA and RNA) found in environmental samples, including all living organisms,

from microbes to megafauna.

Samples of eDNA can be used to monitor target species, functional genes, and/or overall
community composition (Bohmann et al., 2014). Targeted quantification of key taxa or
functional genes is most commonly performed using quantitative PCR (gPCR), which provides
quantitative data on the presence of DNA from the target taxa or gene within a sample (Knudsen
etal., 2019; Tang et al., 2020). Metabarcoding is another widely used technique for determining
overall community composition (Holman et al., 2019). Metabarcoding studies can provide
relatively comprehensive data for the presence/absence of a wide range of taxa, however,
abundance estimates from this method should be interpreted with caution (Bista et al., 2018; L.
J. Clarke et al., 2017; Deiner, Renshaw, et al., 2017), due to interspecific differences in gene
copy number, difference in DNA shedding rates, as well as biases introduced during PCR
amplification. Shotgun sequencing or metagenomic approaches are less established methods

for identifying community composition from eDNA samples, mainly used in microbial research
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(Jo et al., 2020). However, metagenomics methods are rapidly developing and have the potential
to provide overall community composition data with more reliable biomass estimates that are
less impacted by amplification biases (Bista et al., 2018; Tessler et al., 2017; Venter et al.,
2019). Metabarcoding, gPCR and metagenomics are the three approaches used and discussed
in this thesis, but many other techniques such a fluorescent in situ hybridisation (FISH), or
Loop-mediated isothermal amplification (LAMP) can also be used to analyse eDNA (Notomi et

al., 2015; Williams et al., 2021; Zwirglmaier, 2005)

1.2 A brief history of eDNA and autonomous sampling in the marine

environment

Techniques for capturing eDNA and identifying taxonomic diversity were first developed in
microbiology. In this field, many microorganisms that cannot be cultured were instead identified
using molecular techniques (Giovannoni et al., 1990; Ward et al., 1990). In 1987, Ogram et al.
produced a protocol for the extraction of microbial DNA from sediment (Ogram et al., 1987). By
1990 the first metabarcoding studies were published, analysing the diversity of the 16S rRNA
gene for bacterioplankton from the Sargasso Sea (Giovannoni et al., 1990) and the

cyanobacterial mat from Octopus Spring, Yellowstone National Park (Ward et al., 1990).

The first articles using DNA barcodes to identify macro-organisms occurred in 2003, when
Hebert et al. demonstrated that profiles of the mitochondrial gene cytochrome c oxidase | (COl),
could be used to correctly distinguish between 200 closely allied lepidopteran species(Hebert,
Cywinska, et al., 2003; Hebert, Ratnasingham, et al., 2003). Also in 2003, Willerslev et al.
established ancient DNA (aDNA) analysis by revealing that permafrost and sediments contained
preserved plant and animal DNA that could be used to characterize the taxonomic diversity of

paleoenvironments(Willerslev et al., 2003).

Initial eDNA metabarcoding relied on the cloning of PCR products prior to Sanger sequencing. In
2004, this expensive and time-consuming cloning step was made unnecessary by the
introduction of next generation sequencing (Shendure & Ji, 2008). At this point eDNA
metabarcoding became a viable approach for a much broader range of research groups, starting
within the field of microbiology (Galand et al., 2009; Petrosino et al., 2009; Roh et al., 2010) and
soon extending to the study of macro-organisms (Ficetola et al., 2008; Thomsen et al., 2012;
Valentini et al., 2009). Single species detection from environmental samples using gPCR also
became commonplace around this time (Dejean et al., 2011; Erdner et al., 2010; Jerde et al.,

2011).
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As sequencing technologies developed, so did sampling technologies. Initial devices such as
the Submersible Incubation Device (SID) and Remote Access Sampler (RAS) were designed to
collect and preserve whole water samples (McKinney et al., 1997; Taylor & Doherty, 1990). Then,
as molecular analysis became more accessible, devices were designed to filter water samples
in-situ, such as the Autonomous Microbial Sampler (AMS) and the Suspended Particulate
Rosette (SUPR; (Breier et al., 2009; Taylor et al., 2006). Further devices such as the In-situ
Filtration and Fixation Sampler (IFFS) and Microbial Sampler-Submersible Incubation Device
(MS-SID) were later designed to both filter and preserve samples in-situ (Bombar et al., 2015;
Wurzbacher et al., 2012). Preserving samples in-situ allows for the preservation of DNA and RNA
before exposing the water sample, and the microbial life within it, to the variable environmental
conditions that occur during retrieval from depth, such as changes in pressure and
temperature, which can affect gene expression profiles (Edgcomb et al., 2016). Now, large
devices such as the Environmental Sample Processor (ESP) can filter, preserve and provide in-
situ molecular analysis such as sandwich-hybridization assays (SHA) and qPCR (Preston et al.,

2009; Robidart, Preston, et al., 2012; Robidart, Shilova, et al., 2012; Scholin et al., 2006, 2009).

In summary, over the last three decades, eDNA analysis has evolved from a tool primarily used
to identify unculturable microbial life, to an effective approach for detecting taxa across the tree
of life. Advances in technology now allow the nucleic acids within an environmental sample to
reveal not only the presence of taxa but also the biological functioning of entire communities.
Additionally, with the adoption of autonomous eDNA sampling technologies, biodiversity can

now be observed at unprecedented spatial, temporal, and taxonomic resolutions.

1.3 The Robotic Cartridge Sampling Instrument

The Robotic Cartridge Sampling Instrument (RoCSI) is an autonomous eDNA sampler developed
by the Ocean Technology and Engineering Group at the National Oceanography Centre,
Southampton, UK. The RoCSlI device filters seawater through commercially available Sterivex™
filters using a peristaltic pump. The Sterivex™ filters are loaded into specially adapted cartridges
with luer-activated valves and stored in a bandolier. The Bandolier is mounted on a rotating
Geneva wheel, which moves the samples from the initial filtration system to the secondary
preservation system (Figure 1). In-line pressure sensors detect if the filters begin to clog; when
this occurs, seawater filtration is halted, and samples are preserved. This mechanism allows

the device to be function across a range of biomass levels.

The RoCSl has been designed for use with mass-produced, commercially available
consumables, reducing reliance on bespoke components and minimising potential supply

chain disruptions. Consumables for the RoCSI device include Sterivex™ cartridges and Flexboy®
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blood bags to store the preservative. Both the filters and blood bags can be interchanged to
meet the specific needs of the research; Sterivex™ filters come in either a 0.22 or 0.45um pore
size; Flexboy® blood bags come in a range of sizes; and the type of liquid preservative can be

interchanged.

Sterivex™ within cartridges
(shown in magazine above)

Rotating Geneva wheel
Needle-less luer lock valves

Injector nozzle connected to
preservative reservoir

Injector nozzle connected to
seawater source

Figure 1 Computer-aided design (CAD) of the commercially available Robotic Cartridge

Sampling instrument (RoCSlI)

1.4  Autonomous eDNA sampling in the UN Decade of Ocean Science

for Sustainable Development

A call for an international network of genomic observatories was first posited in 2012 by Davies
et al. Since then, projects such as Tara Oceans and the Ocean Sampling Day (OSD) have begun
tackling genomic observations at a global scale (Sunagawa et al., 2015; Tragin & Vaulot, 2018).
However, individual projects typically focus sampling efforts along either temporal or spatial
axis. For example, the TARA oceans expedition achieved vast spatial coverage by taking
thousands of samples whilst circumnavigating the globe from 2009-2013, but without repeated
temporal sampling at each location it is difficult to distinguish between temporal or spatial
variability in biodiversity. The OSD, which began in 2014, has addressed this by coordinating
across research groups for a yearly sampling event at midday of the northern hemisphere’s
summer solstice. This has enabled global comparisons of green microalgae using
metabarcoding of the 18S V4 region and the repeated yearly sampling will help to identify
decadal trends (Tragin & Vaulot, 2018). However, seasonal variation is not accounted for when
sampling only once a year. Establishing a network of biodiversity observations using eDNA
needs a coordinated effort much like the OSD but at a much larger scale, utilising a combination
of data sources including autonomous technologies, citizen science and data contributions

from research groups around the world.
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1.4.1 The United Nations Decade of Ocean Science for Sustainable Development

The UN decade of ocean science for sustainable development was declared by the
Intergovernmental Oceanographic Commissions (I0OC) of the United Nations Educational,
Scientific and Cultural Organization (UNESCO) to be held from 2021 -2030, as a way of building
capacity across the UN member states to achieve the United Nations Sustainable Development
Goal 14, ‘to conserve and sustainably manage ocean and marine resources by 2030’. The
decade has an overarching vision to ‘develop scientific knowledge, build infrastructure and
foster relationships for a sustainable and healthy ocean’ and aims to achieve six societal
outcomes: (1) A clean ocean, through identifying and removing sources of pollution; (2) A
healthy and resilient ocean, with mapped and protected marine ecosystems; (3) A predicted
ocean, enabling society to understand current and future ocean conditions; (4) A safe ocean,
protecting people from ocean hazards; (5) A sustainably harvested ocean, providing food and
resources for the blue economy; and (6) A transparent ocean, giving citizens equitable access to

data, information and technologies (Heymans et al., 2020).

Environmental DNA has been highlighted as a key tool for achieving a quantitative
understanding of ocean ecosystems and their functioning throughout the UN decade of ocean
science (Ryabinin et al., 2019). This quantitative approach to assessing ecosystem variables is
needed to advance ecosystem modelling and forecasting, which will contribute to outcome 3 of
ocean decade ‘a predicted ocean, enabling society to understand current and future ocean
conditions’. An emphasis has been put on eDNA methods to assess ecological variables at
temporal and spatial resolutions great enough for ecosystem modelling (Heymans et al., 2020).
This is due to the relatively low cost of sampling and high taxonomic coverage of metabarcoding

and metagenomic approaches.

Ocean observations of physical and chemical parameters have already come a long way
through programs such as Argo, which collect temperature and salinity depth profiles from a
fleet of over 4000 Argo floats covering the world's ocean (Roemmich et al., 2019). The
monitoring of ocean chemistry (CO,, Nutrients, trace metals, etc) has been vastly increased
with the implementation of in-situ sensors deployed on mooring buoys, ship of opportunity,
autonomous underwater vehicles (AUVs), and remote operated vehicles (ROVs)(Beaton et al.,
2012; Rérolle et al., 2018). Collating these global observations in a format that is compatible for
ecosystem modelling is a huge task requiring collaboration across regions and organisations.
Therefore, a number of intergovernmental organisations, including the Ocean Biogeographic
Information System (OBIS) of the IOC, the Global Ocean Observing Systems (GOOS), and the
Marine Biodiversity Observation Network (MBON - the marine node of the Group on Earth

Observations Biodiversity Observation Network (GEO BON)), are working together to establish a
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network of integrated ocean observations using standardised data management that is

accessible to all nations (Miloslavich et al., 2018).

GOOS has established a set of Essential Ocean Variables (EOVs) and GEOBON have outlined a
set of Essential Biodiversity Variables (EBVs) that are needed for ecosystem modelling and
feasible for cost effective global-scale observations (Muller-Karger et al., 2018). Satellite
telemetry data, such as sea surface temperature, colour and altimetry along with in-situ
sensors for subsurface temperature and salinity from Argo floats are already well-established
data streams within the GOOS framework (Whitt et al., 2020). Collectively, these data have led
to a greater understanding of ocean productivity, currents and improved climatic forecasting

(Roemmich et al., 2019).

To increase the complexity and improve current oceanic modelling, future models need to
include high temporal resolution biological variables beyond ocean colour measurements.
Consequently, GOOS and GEOBON are now in the pilot stages of introducing molecular
taxonomy of microbial and invertebrate diversity as both an EOV and an EBV (Goodwin et al.,
2018; Muller-Karger et al., 2018). During this pilot stage small scale projects using eDNA
methods will be expanded to a global scale. To do this a set of standard best practices is
needed to integrate regional and national projects into a global effort. The Global Omics
Observatory Network (GLOMICON) is currently running a project to compare best practices for
the collection and extraction of seawater eDNA across research groups (Buttigieg et al., 2019).
These cross-lab comparisons are beginning to reveal the extent of variation caused by differing
protocols and will help to inform decisions on how to best align practices across research

groups (Zaiko et al., 2022).

However, a careful balance will need to be struck between standardisation and

innovation. Innovative methods and continuous optimisation of current methods can greatly
facilitate eDNA research by reducing costs and/or biases associated with previous methods.
Thus, standardisation risks impeding progress if measures aren’t in place to review and update
best practices (Horstmann et al., 2020; Pearlman et al., 2019). This is particularly relevant to the
field of eDNA, which has already been revolutionised with the introduction of high-throughput
sequencing or next-generation sequencing (NGS) platforms and is likely to see further advances

in sequencing technologies in the near future (Shendure et al., 2017).

Ocean Best Practice Systems (OBPS) is a project with links to GOOS and the International
Oceanographic Data and Information Exchange (IODE), which is currently developing a system
to record, update, disseminate and harmonise best practices within ocean research, with a
working group specifically dedicated to omics & eDNA research (Horstmann et al., 2020;

Pearlman et al., 2019). The OBPS has been adopted by the IOC-UNESCO and as suchisina

25



Chapter 1

unique position to coordinate a global community of omics and eDNA researchers. An OBPS
omics/eDNA working group consisting of 65 participants from across the globe has been tasked
with establishing a system for collating and categorising protocols, so they can be continuously
tested and compared across research groups. This collaborative effort aims to facilitate the
adoption of standard practices across regions and organisations. Establishing a global network
of ocean eDNA observations is essential for identifying global scale patterns in marine

biodiversity and improving ecosystem modelling and forecasting to support ‘a predicted ocean’.

1.4.2 How will RoCSI sampling support the UN Ocean Decade

The RoCSl device will play a role in increasing the temporal and spatial resolution of ocean
eDNA samples during the UN Decade. RoCSl can be deployed at fixed observatories to increase
the temporal frequency of sampling or on ships of opportunity to increase the spatial coverage
of eDNA sampling without the additional costs incurred from additional voyages using
expensive research vessels. Integrating the RoCSI device with AUVs and ROVs will facilitate
sampling at remote locations. Furthermore, integrating the RoCSI device with research vessels
underway systems will enable high frequency sampling, which could be continued throughout
adverse sea states, when sampling would otherwise be postponed for the health and safety of
crew. Automated sampling will free up time for researchers, allowing time for more in-situ

experimentation thus, maximising the total scientific output from a research cruise.

Customisable aspects of the RoCSlI device such as interchangeable preservatives, filter types,
sample volumes and sampling regimes increase the adaptability of RoCSI sampling for an array
of best practice sampling protocols. For example, eDNA water sampling for fish biodiversity
surveys often use 0.45um filters and large volumes of water (>1L)(Mynott & Marsh, 2020;
Thomsen et al., 2012). Whereas coastal multi-marker metabarcoding surveys aiming to capture
bacterial, invertebrate and vertebrate biodiversity tend to use smaller pores size (0.22um) and
smaller water volumes (>400ml) (Djurhuus et al., 2018, 2020; Holman et al., 2019). This
flexibility in sampling protocols with the RoCSlI device, provides scope for the adaptation and
adoption of standard practices that are established through the OBPS throughout the UN Ocean

decade.

1.4.3 Key challenges for RoCSl ocean observations during UN Ocean Decade

1.4.3.1 Technology

During the UN Ocean Decade the RoCSl device will be developed for remote sampling with a LR-
AUV. Systems will be developed for integration with other sensors, to enable smart sampling

regimes based on the data from other remote sensors. For example, integration with a
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fluorometer, could trigger sampling to begin when chlorophyll content crosses a predefined
threshold. Targeted sampling like this enables remote sampling of temporary ocean features
that are typically only sampled opportunistically, such as bloom conditions caused by ocean

gyres or iron seeding events.

To progress toward fully automated genomic sensing the RoCSI device will need to be integrated
with an autonomous nucleic acid extraction unit and an analysis unit. The OTE group at NOC
are developing an extraction unit and the Amplitron device for in-situ quantitative amplification
of target DNA. To increase the flexibility of sampling regimes these units will have a modular
design, so the RoCSlI device can be used either as a sampler or as part of a genomic sensor.
Furthermore, the modular design will provide scope for integration with portable analysis
devices, such as the MinlON sequencer by Oxford Nanopore technologies, for in-situ

metagenomic sequencing.

1.4.3.2 Data Management

A key challenge for coordinating a global scale network for marine biodiversity observations will
be in managing the large quantities of sequencing data and metadata. High quality metadata
will be needed for global meta-analysis to provide meaningful insights into data collected by
multiple research organisations. So far, the omics/eDNA field has a good track record for
making sequence data open access. Itis commonplace for sequence data to be uploaded to
the International Nucleotide Sequence Database Collaboration (INSDC) and many journals
require the submission of data before publication (Karsch-Mizrachi et al. 2011). This means that
a large amount of data is already freely accessible for cross comparisons (Mitchell et al., 2020).
However, detailed and accurate metadata is also needed to increase the contextualisation and

findability of this data to make it suitable for global scale comparisons.

Metadata standards, such as the ‘Minimum Information about any (x) Sequence’ (MIxS) form the
Genomics Standard Consortium (GSC) provide metadata checklists to help to improve and
standardise metadata (Bowers et al., 2017; Yilmaz et al., 2011). However, compliance to these
standards is not universal and mistakes are often made which reduces the findability of the
associated sequences. Platforms such as MGnify have been developed to facilitate the
uploading of sufficient metadata for cross project comparisons of metagenomic data (Mitchell
et al. 2020). The RoCSl automatically records sample metadata. Ensuring compliance with
MGnify and MIxS standards will mean the RoCSlI can further facilitate the process of uploading
sequence data. This capability will allow sequences from RoCSl to be readily accessible for

data mining and well-suited for future meta-analyses.
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Currently, minimum metadata standards only require limited information on the methods used
for eDNA collection, preservation, extraction and analysis. However, each aspect of the
methods used can introduce different biases (Deiner et al., 2015; Gray et al., 2013; McCarthy et
al., 2015; Zaiko et al., 2022). Therefore, metadata needs to include information on the types of
methods used, so that they can be factored into future meta-analysis. This is especially
relevant to the field of eDNA, where the rapid growth in eDNA research, over the last decade,
has led to an array of different protocols being adopted and optimised by individual research

groups.

Involvement in the OBPS community review process will help to align and improve eDNA
methods across research groups. Furthermore, taking part in OBPS discussions and following
the development of best practices will guide the recommendations for autonomous sampling of
eDNA with the RoCSl device. Autonomous sampling devices that adhere to current best
practices will enhance synergy between autonomous and manual sample collection efforts.
Thus, increasing the quantity of samples that are directly comparable and suitable for a network

of global observations.

Another key challenge will be in developing a system for integrating data from other sensors.
Often, when sampling for eDNA, additional measurements are taken for variables such as
temperature, salinity chlorophyll, etc. Many of these variables are also EOVs and/or EBVs.
Therefore, forward planning to take these measurements using GOOS and GEOBON compliant
protocols will make this data suitable for use by other ocean observation communities, thereby
increasing the scientific value of the data. To facilitate this process autonomous systems could
be developed to collate data from multiple sensors and output the data in an interoperable

format.

1.4.3.3 Societal Impacts

Governmental organisations in the UK have shown interest in the adoption of autonomous
eDNA sampling for routine marine biomonitoring, due to the significant decreases in costs when
compared to other labour-intensive monitoring programmes involving morphological
identification of species (Mynott & Marsh, 2020). The RoCSlI device is designed to be easy to
deploy and suitable for use in routine monitoring efforts, without the need for specialist
technicians. However, clear and accessible resources will still be needed to explain how to use
and adjust the device to suit the needs of governmental monitoring programs. Resources for the
RoCSl should also clearly state the limitations of eDNA monitoring as opposed to current visual
monitoring methods. So as not to falsely present eDNA as a cheaper replacement for visual
surveys. Otherwise, key information on the size and life stage of taxa may be lost if visual

surveys are replaced entirely by eDNA.
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Ecological data is complex and cannot easily be interpreted to inform policy (Golumbeanu et
al., 2014). To facilitate the interpretation of eDNA data, ongoing research is focused on
developing standardised measures of ecosystem health through genomic biotic indices, which
simplify complex ecological networks into a single value. (Aylagas et al., 2014, 2017; Cordier et
al., 2017; Pawlowski et al., 2016). This can be done by scoring key indicator species by their
sensitivity/tolerance to pollution then measuring occurrence and/or abundance of these
species. More recently, supervised machine learning has been used to bypass the identification
of taxa, instead identifying non-linear relationships between all ASVs and pollution, using
training datasets which cover a known pollution gradient (Cordier et al., 2017; Cordier, Forster,
et al., 2018; Cordier, Lanzén, et al., 2018; Fruhe et al., 2020; Lanzén et al., 2020). These biotic
indices provide a single value which is easily incorporated into legislative descriptions of ‘High,

Good, Moderate, Poor and Bad’ environmental status (Golumbeanu et al., 2014).

While biotic indices are useful tools for the interpretation of ecological data, the use of
autonomous devices, as well as machine learning, all contribute to the ‘black box’ effect. This
distances end users from the processes involved in producing results and can lead to a mistrust
of the end results. Providing outreach and education about eDNA for stakeholders and the
general public is therefore crucial to shed light on eDNA processes. A general understanding of

eDNA is needed to help to establish trust for legislative decisions made using eDNA data.

Citizen science projects that use eDNA not only support outreach and education but also
generate robust scientific outcomes (Biggs et al., 2015; Deiner, Bik, et al., 2017; Larson et al.,
2020; Miralles et al., 2016; Pocock et al., 2018; Schnetzer et al., 2016). Schnetzer et al. (2016)
found that citizen scientists involved in OSD could collect high quality data comparable to
scientific measurements, plus participants became more engaged in ocean issues showing
more environmental awareness and ocean literacy (Schnetzer et al., 2016). Integrating a marine
citizen science program with autonomous sampling initiatives would help engage and educate
the public about marine biodiversity and eDNA research. Citizen sampling done in parallel with
the RoCSl device, using the same filters, preservatives and sampling regime would generate
vast quantities marine ecological data at a relatively low cost. Furthermore, citizens would have

the opportunity to learn about the eDNA and establish trust for RoCSl derived eDNA data.

1.5 Aims and Objectives

The aim of this PhD thesis is to enhance the usability of the RoCSlI through in-situ testing and
methodological optimisation, thereby improving its application for marine biodiversity

monitoring.
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Objectives:

1. Compare RoCSl-collected samples to those obtained through traditional manual
collection methods.

2. Assess the effectiveness of using the RoCSl for high spatial resolution of marine
biodiversity monitoring.

3. Assess the effectiveness of using RoCSl for high temporal resolution of marine
biodiversity monitoring.

4. Compare sample preservation methodologies for their suitability in long-term
deployments of the RoCSI.

5. Investigate the potential integration of RoCSI with sample analysis technologies to

enable near real-time in-situ monitoring.

1.6 Summary of Work Conducted:

Objectives 1 & 2:

Objectives 1 & 2 were addressed in Chapter 2, where the RoCSI device was configured to
autonomously filter and preserve water samples every hour using the ship's underway system
during the AE1714 research cruise from Bermuda. This enabled high spatial resolution sampling
along the cruise track line (Objective 2). Additionally, manual samples were collected at various
comparable time points to enable a direct comparison between autonomously collected RoCSI

samples and those obtained through traditional manual collection methods (Objective 1).
Objective 3:

Chapter 3 addressed Obijective 3 by deploying the RoCSI dockside in the highly urbanised Solent
Estuary. Over a four day period, bi-hourly samples were collected as part of a pilot study
designed to test the device configuration prior to its planned deployment at the Western
Channel Observatory’s (WCO) L4 buoy. However, due to COVID-19 lockdowns, the WCO L4
deployment was not feasible within the PhD timeframe. Although shorter in duration, the pilot
study samples provided a higher temporal resolution dataset than originally planned for the
WCO L4 deployment. This higher resolution dataset enabled the investigation of diel
fluctuations in eDNA signals, which could influence the interpretation of studies with lower

sampling frequencies.
Objective 4:

In Chapter 4, four liquid preservatives were compared for their suitability in the long-term (2 -

month) preservation of both DNA and RNA. This research was also designed to inform the
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planned L4 WCO deployment, where maintenance trips to the buoy can be delayed for up to two
months due to adverse sea conditions. The preservatives included a laboratory-prepared
Nucleic Acid Preservative, RNAlater® (Inivitrogen), RLT+ buffer (Qiagen), and DNA/RNA Shield
(Zymo Research). This methodological comparison, alongside participation in the Ocean Best
Practice System's Omics and eDNA task team, informed the perspectives on methodological

sharing discussed in Chapter 5.
Objective 5:

Lastly, Objective 5 was addressed in Chapter 6, where the MinlON desktop sequencer was
tested aboard the RRS Discovery during a research cruise to the Porcupine Abyssal Plain. This
work tested the MinlON, exploring its suitability for enabling near real-time in-situ monitoring

with the RoCSI.

1.7 Conclusion

The UN Ocean Decade presents a pivotal moment for advancing marine biodiversity research.
Autonomous samplers, such as the RoCSl device, offer transformative potential by significantly
expanding our capacity to collect high-resolution temporal and spatial data. This thesis outlines
the steps taken to optimise the RoCSl, increasing its suitability for long-term marine biodiversity
monitoring and demonstrating its capacity to generate valuable metadata aligned with emerging
biomolecular standards. Integrating RoCSI sampling into a broader network of research
projects, including citizen science initiatives, can unlock unprecedented insights into marine
ecosystems. Such high-resolution data will be instrumental in informing ecological models and
forecasting, ultimately enabling us to better understand and predict the ocean's future state. As
the Ocean Decade progresses, continued innovation in autonomous sampling technologies like
RoCSl will be crucial for achieving Outcome 3 of the Ocean Decade: “A predicted ocean,

enabling society to understand current and future ocean conditions”.
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2.1 Abstract

Amid the escalating biodiversity crisis, understanding the biodiversity of Anthropocene oceans
is critical for tracking change and evaluating the success of restoration programs. Current
biodiversity surveys frequently rely on visual observations, which are costly and logistically
challenging. This study presents the Robotic Cartridge Sampling Instrument (RoCSl), an
autonomous device designed to automate the collection and preservation of environmental
biomolecules, such as DNA and RNA, in aquatic ecosystems. RoCSl enables high-resolution
biodiversity monitoring and provides insights into how functional traits shape species
distribution.

An initial deployment in the western North Atlantic Ocean evaluated RoCSl's performance
against standard biomolecular manual sampling methods using gPCR and multi-marker
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metabarcoding. RoCSl successfully sampled across a wide range of biomass conditions
without disruption and achieved a highly significant correlation with manually collected
samples (1:0.998, p-value <0.001) for the nifH gene abundances. No significant differences
were detected in microbial and eukaryotic taxa between RoCSIl and manual samples.

These results indicate the RoCSl's potential as a valuable tool for marine research, enabling the
autonomous collection of biomolecular samples even in challenging conditions. By supporting
the exploration of Essential Biodiversity Variables, such as phylogenetic and trait diversity, the
RoCSl enhances our ability to study the often-overlooked variability within marine ecosystems,
thereby advancing ecological monitoring and biodiversity research.

2.2 Introduction

Aquatic ecosystems have played a crucial role in making Earth habitable over geological
timescales (Olejarz et al., 2021). They are vital for oxygen production, carbon sequestration,
nutrient cycling, and provide significant value to national economies and food security for
human populations (Pecl et al., 2017; Zehr, 2011). Despite their importance, our knowledge of
aquatic ecosystem biodiversity remains limited due to the challenges in obtaining
representative ecological samples. While satellite ocean colour imagery has shed light on the
structure of phytoplankton communities (Siegel et al., 2013), in-situ sampling is necessary to
address many Essential Biodiversity Variables (EBVs) and Essential Ocean Variables (EOVs)
such as taxonomic diversity, trait diversity, and species distributions (Miloslavich et al., 2018;
Muller-Karger et al., 2018). Obtaining representative in-situ ecological samples requires high-
resolution sampling that can be prohibitively expensive and logistically challenging. As a result,
long-term (>5 year) biological ocean observing programmes are estimated to only cover
approximately 7% of the ocean surface area, mostly in coastal regions (Satterthwaite et al.,

2021).

Molecular techniques that capture and identify biomolecules from environmental samples (i.e.,
environmental DNA/RNA or eDNA/eRNA) can provide rapid insight into the presence of keystone
species and functional genes (Robidart et al., 2019), community composition (Holman et al.,
2019), biogeographic patterns (Holman et al., 2021), and the abundance of key taxa (Salter et
al., 2019; Harper et al., 2020). Furthermore, diversity and biotic indices can also be derived from
environmental DNA (eDNA) analyses (Aylagas et al., 2014; Kelly et al., 2016), enabling us to
measure whole-community changes and compare the change of such metrics between
methods. An array of molecular techniques can be employed to assess biological diversity and
functioning when DNA and RNA are simultaneously extracted from an environmental sample

(Kitahashi et al., 2020; Laroche et al., 2017; Pochon et al., 2017; Zaiko et al., 2018). Since very
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low volumes of nucleic acids are used in molecular analyses, a single environmental sample

can potentially generate multiple DNA and RNA datasets (Ficetola & Taberlet, 2023).

Quantitative PCR (gPCR) and metabarcoding are commonly used analysis tools in eDNA studies
(Taberlet et al., 2018). Quantitative data on target taxa and genes can be acquired through
gPCR, providing valuable information on trends in the abundance/biomass of key taxa and
functional genes (Farnelid et al., 2016; Harper et al., 2020; Robidart et al., 2014). Metabarcoding
studies use universal primer sets to amplify highly variable gene regions (barcodes), enabling
the resolution of taxonomic diversity in broad groups such as microbes (16S rRNA) or eukaryotic
phytoplankton (18S rRNA). The vast species lists generated from metabarcoding data provide
deeper insight into the range of species present, making eDNA metabarcoding a valuable tool
for the early detection of invasive and cryptic species (Holman et al., 2019; Rey et al., 2020).
Furthermore, using more than one primer set on a single eDNA sample allows for simultaneous
multi trophic level assessments, which provide insight into cross-trophic level interactions (Liu

& Zhang, 2021; Zhang et al., 2020; Ficetola & Taberlet, 2023).

The utility of biomolecular analyses in providing early warnings of biological hazards has driven
the development of in situ analytical instruments, such as the Environmental Sample Processor
(ESP). The ESP can filter and preserve biomolecular samples and perform in situ analytics
(Scholin et al., 2009; Yamahara et al., 2019). Some samplers are designed to collect and filter
large volumes of water (tens to hundreds of litres) but are limited in the number of samples they
can handle (Govindarajan et al., 2022; Honda & Watanabe, 2007; Winslow et al., 2014). Others
are developed specifically for functional research, with capabilities for in situ incubation (Taylor
and Doherty, 1990; Bombar et al., 2015; Edgcomb et al., 2016). However, there remains a need
for compact, easy-to-deploy automated sampling devices that enable continuous, discrete
sampling for broad-scale biomolecular monitoring without requiring additional in situ analytics

(McQuillan & Robidart, 2017).

This study describes the proof of concept for the latest Robotic Cartridge Sampling Instrument
(RoCSlI) comparing amplicon sequencing and gPCR results from field samples collected and
preserved both using the prototype RoCSl and manually. The RoCSl is a user-friendly
biomolecular sampling and preservation device, which can be utilised alongside standard
physical and chemical sensors without the need for specialist technicians. Sampling
procedures are easily customised via USB connection to any laptop with the custom software
and graphical user interface. The RoCSl is designed to use commercially available consumables
for medical and water quality applications, such as Sterivex™ (Millipore®) cartridges and
standard Flexboy® blood bags (Sartorius AG), to avoid manufacturing bottlenecks that can

occur with custom made consumables. We discuss how the results from this study have led to
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design improvements in the commercially available RoCSI, making it a valuable tool for
monitoring aquatic ecosystems, reducing the reliance on ship-based sampling and helping

achieve net zero.

2.3 Materials & Methods

2.3.1 The Robotic Cartridge Sampling Instrument (RoCSI)

The RoCSl is a fully automated water filtration and biomolecule preservation device capable of
collecting discrete samples continuously throughout a range of aquatic systems, from low
particulate concentrations in oligotrophic waters to high particulate concentrations in coastal
bloom conditions. There are few moving parts, and it is smaller than other commercially
available options that provide more than 30 samples per deployment (Edgcomb et al. 2016;
Scholin et al. 2009; Winslow et al. 2014; Figure 2B & C). It connects to a laptop via USB
connection, allowing users to programme specific missions with software that monitors both
the system’s operation and the working environment. The software logs sample collection data,
such as sample time/volume/duration and uses integrated pressure sensors to recognise

clogging and stop sampling, thus mitigating faults or damages to the samples or system.
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Sterivex™ within cartridges
(shown in magazine above)

Rotating Geneva wheel

Needle-less luer lock valves

Injector nozzle connected to
preservative reservoir
Injector nozzle connected to
seawater source

Figure 2 A Photograph of the prototype RoCSlI used in this study. B Photograph of the
commercially available RoCSI. C Labelled CAD diagram of the commercially

available RoCSI.

RoCSil filters water through commercially available Sterivex™ Cartridges (Millipore), which are
loaded into sample units on a magazine (Figure 2B). The magazine rotates around a geneva
wheel driven by a motor directly coupled to the magazine or remotely using magnetic couplings
to enable underwater operations. The magazine accurately positions a discrete sample unitin

the correct position for the sampler injection system to connect (Figure 2C).

The injection system is driven using a motor directly coupled to the leadscrew, or remotely using
a magnetic coupling for underwater use. The leadscrew has both left-hand and right-hand
threads to allow the simultaneous injection of nozzles to both ends of the sampling unit. The
sampling units have needle free valves fitted to both ends to seal the sample, thus reducing
sample contamination before and after filtration. Once the injection system is engaged the
sample pump is activated by the software and it is driven directly by a motor or via a magnetic
coupling to enable underwater use. The pump activates for a time or volume set by the software
and filtration happens according to the mission directive. After the mission parameter is met,
the injection system is disengaged. The needle free valves ensure the sample is not lost due to

leakage and decreases the risk of contamination (Figure 2C).
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The Geneva wheel activates and places a new sample unit in position to begin sampling, at the
same time the unit containing a sample is indexed to the station that provides an injection of
preservative. An injection system at this station engages and provides a dosage of preservation
fluid (e.g., RNAlater or any equivalent liquid fixative) to preserve the sample. The operation is
repeated for the duration of the mission until the sample quantity is acquired. The Geneva wheel
rotates and can therefore operate continuously by feeding filters into the sampling position. The
number of samples that can be run is therefore unlimited and solely dependent on the space

available to hold the sample units (Figure 2).

During all operations, the system software monitors the actions of the system and the
environmental parameters it operates in. It includes sensors that track magazine and injection
system engagement and continuously measure flow rate and pressure/differential pressure
within the system. The software logs any errors that occur during these operations and can stop
sampling if parameter thresholds are exceeded (e.g., over pressuring during sample filtration).
Sample and system data are stored on a memory card, with the option for RS-232 telemetry for
near real-time data acquisition. The commercially available RoCSI (McLane Research
Laboratories) has been modified to support underwater operation up 6000m depth and has an

additional bleach flushing step for automated decontamination (Table 1).
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Table 1 List of RoCSl specifications compared with the prototype RoCSl specifications

RoCSI prototype

RoCSlI

Functional

Depth rating

Surface for benchtop use

6000m

Samples per mission

Continuous

Continuous/Dependent on
platform capacity

Sample types Filtered water <2 L per Filtered water<2 L per
sample sample
In-situ preserved Sterivex In-situ preserved Sterivex
Pore size 0.22um/0.45um 0.22um/0.45um

Pumping system

Peristaltic pump

Peristaltic pump

Decontamination system

Inlet valves for manual
bleach flushing

Automated in-line bleach
flushing

Weight 10 kg 15.5 kg; 10 kg wet weight
Size 140 mm x 150 mm x 300 170 mm x 180 mm x 530 mm
mm
Materials
RoCSI System Titanium Titanium
Electronics housing Plastic Titanium
Electrical
Power , .
12V DC/ 2A nominal; 16V 12V DC / 2A nominal; 16V
max max
0.4-0.7A currentat12V 0.4-0.7Acurrentat12V
Communication RS-232 with cross-platform  RS-232 with cross-platform
console and graphical user console and graphical user
interfaces interfaces
Control
Operations Set mission prior to Set mission prior to
operations; modify as operations; additional
needed by starting a new capacity to add
mission decontamination runs
between sampling events;
sample termination based
on individual thresholds (i.e.
volume, time, pressure)
2.3.2 Samples collection

The survey was conducted as part of the AE1714 cruise from Bermuda, which took place from

29th July to 7th August 2017. The cruise route covered the waters around Bermuda and the

Northwest Atlantic, moving from Bermuda to Nova Scotia, Canada, then along the United States

coastline to New Jersey, before returning Southeast to Bermuda (Figure 4).
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During the cruise, trace metal free surface seawater (~5 m) was continuously pumped from an
in-situ TowFish (GeoFish, manufactured by University of California Santa Cruz) to the laboratory
aboard the R/V Atlantic Explorer (Tang et al., 2020). A portion of the seawater flow was
redirected to a 100ml flow-through seawater reservoir dedicated to the RoCSl, while another
portion was sampled in parallel using a Masterflex L/S Digital Precision peristaltic pump (Cole-
Parmer, Saint Neots, UK). To decontaminate the equipment, all instruments were cleaned with
10% bleach and rinsed with Milli-Q water. Sample blanks (i.e., samples taken using only Milli-Q

water) were taken at the beginning of the cruise and at regular intervals throughout the cruise.

2.3.2.1 RoCSIl sample collection

The RoCSl was configured to filter seawater from the TowFish for a maximum of 40 minutes
hourly, throughout the cruise (Figure 3). The seawater was filtered through 0.22um PES Sterivex
filters with RNAlater preservative added immediately after each filtration cycle. To prevent
damage to the filter membrane and to avoid cell lysis in high biomass regions, an overpressure
limit of 800 mBar for over 10 seconds was set. If this limit was exceeded, the filtration would
stop and RNAlater would be added to the sample. In high-biomass portions of the transect, the
pressure sensor was turned off and a 30-minute limit for filtration was imposed (Supplementary

Table 1).

The RoCSI sampled hourly for 24 hours. At the end of each day, the RoCSI samples were
collected, the RNAlater was removed from the cartridges via the outlet, and the samples were
frozen at -80°C. Three RoCSl blanks using a Milli-Q water supply were included in the analysis.
Blank 1 was taken before any seawater sampling, while Blanks 2 and 3 were collected between

seawater sam ples.
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Figure 3 A Towfish seawater supply to ships underway system. B Simplified schematic of the

RoCSl, showing seawater and preservative supply.

2.3.2.2 Manual sample collection

Three times daily, samples were collected from the Towfish flow and filtered manually using a
Masterflex peristaltic pump and 0.22um Sterivex filters. Samples were taken to approximately
correspond with RoCSI samples, however filtering speed for the Masterflex pump was
approximately twice as fast as the RoCSlI, resulting in some minor differences in the sample
time (Supplementary Table 1). After filtering, excess water was removed, the Sterivex filters were
sealed with inert clay putty, and samples were flash frozen in liquid nitrogen before being stored
at -80°C. Three manual blanks using the Milli-Q water supply were included in the analysis, each

taken after the standard decontamination procedure between samples.

2.3.3 Nucleic acid purification & quality control

All nucleic acid isolation was performed in a dedicated clean lab, free from cultures and
amplicons. Surfaces and instruments were wiped down with 5% bleach and RNase away for
RNA purification. DNA was extracted using a modified version of the Qiagen All Prep protocol.
Briefly, Sterivex filters were halved and added to autoclaved bead beater tubes, with 0.5 and

0.1mm glass beads and 800ul Qiagen RLT+ buffer for 2 minutes of bead beating at 30Hz before
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on column extraction following the Qiagen All Prep protocol. DNA was eluted in 50ul Qiagen AE

buffer.

DNA, for metabarcoding, was extracted using a modified DNeasy Plant Mini kit (Qiagen). In brief,
the Sterivex filters were halved and added to separate autoclaved bead beater tubes as
previously described. AP1 buffer (400 pl) was added, and the samples underwent three freeze-
thaw cycles: 30 seconds in liquid nitrogen, followed by 3 minutes in a 65°C dry heat block. This
was followed by 2 minutes of bead beating at 30 Hz using the Vortex-Genie (Scientific
Industries) with a horizontal bead-beating attachment. Proteinase-k (45ul) was added to each
sample and incubated sideways in an Eppendorf Thermomixer Compact, at 55°C for one hour at
400rpm. Samples were then processed following the DNeasy Plant kit manufacturer's protocol,

with final elution in 50ul AE buffer.

RNA, for concentration comparisons, was extracted using the RNeasy Mini Kit (Qiagen)
protocol, eluting into 50ul RNase-free water. Followed by RNase-free DNase (Qiagen) treatment
and clean-up using RNA Clean and Concentrator (ZYMO), with final elution into 50ul
DNase/RNase free water. Negative control DNA and RNA extraction blanks were processed in
parallel. For all samples, DNA and RNA concentrations were quantified with Qubit fluorometer

(Thermofisher) and quality was assessed using BioAnalyzer electropherograms (Agilent).

2.3.3.1 Quantitative PCR

Quantitative PCR (gPCR) reactions targeting the nifH gene, coding for a subunit of the key
enzyme for nitrogen fixation (nitrogenase) from Atlelocyanobacteria thalassa (hereafter referred
to as UCYN-A1 for unicellular cyanobacteria group A1), were run in triplicate on each sample. 30
pl reaction mixes contained 1x Accuprime PCR master mix (Invitrogen, CA, USA), 2.5mM MgCl2,
0.4uM UCYN-A nifH F 5’-AGCTATAACAACGTTTTATGCGTTGA-3’ and UCYN-A nifH R 5’-
CGGCCAGCGCAACCTA- 3’, and 0.2uM FAM-labeled probe 5’- TCTGGTGGTCCTGAGCCTGGA-
3’, as described (Robidart et al., 2014; Tang et al., 2020). qPCR reactions, including no template
controls (NTCs), were run in 96-well plates with optical tape (Applied Biosystems, CA, USA) on
the Roche LightCycler 96 (Germany) according to the following conditions: 94°C for 75s, with 45
cycles of 95°C for 15s, 59°C for 30s. Standards and samples were run in triplicate and gPCR

efficiencies calculated from the standard curves ranged from 98.6% to 107.2%.

2.3.3.2 Metabarcoding

The Illumina 168S library preparation protocol was followed for both 16S and 18S rRNA gene
sequencing (Illumina 2013). The forward primer pro341F (5’- CCTACGGGNBGCASCAG - 3’) and
reverse primer pro805R (5’ - GACTACNVGGGTATCTAATCC - 3’) were used to amplify the 16S
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rRNA V3-V4 gene region with an amplicon of 464 base pairs (bp), specific to Bacteria and
Archaea (Takahashi et al., 2014). The 18S rRNA V4 gene region was targeted using forward
primer F-574 (5’ - GCGGTAATTCCAGCTCCAA - 3’) and reverse primer R-952 (5’ -
TTGGCAAATGCTTTCGC - 3’) for a 378bp amplicon, specific to Eukaryota (Hadziavdic et al.,
2014). Primers were modified with overhang sequences and a second, limited cycle PCR was
used to add barcodes and sequencing adaptors, as specified in the Illumina sequencing library
preparation protocol (Illumina, 2013.). Samples were sequenced using the Miseqg-Illumina

platform at the University of Southampton’s Environmental Sequencing Facility.

The raw sequencing data was initially processed by removing adaptor sequences and
sequences with less than 250 bp and deposited at European Nucleotide Archive (accession
number: PRIEB37775). Paired-end joining, denoising and taxonomic assignment was performed
using QIIME2 release 2019.7 (Bolyen et al., 2019). In brief, denoising and pair-end joining were
performed using DADA2 to produce amplicon sequence variants (ASVs). Phylogenetic trees
were built using fasttree and mafft alignment. Taxonomic classification was performed with
Naive Bayes classifier and classify-sklearn method with the SILVA version 132 database,
clustered at 99% sequence similarity as a reference (for full scripts see GitHub

rms1u18/RoCSI_Bermuda_PoC).

2.3.4 Data analysis

Statistical tests and data visualisation for DNA and RNA yield were performed in Rv3.6.3, with
the ggpubr v0.2.5 package. Data was tested for normality with the Shapiro-Wilk test. Pearson’s
correlation was used for normally distributed data and Spearman’s Rank correlation was used

for non-parametric data.

Multivariate analysis and visual comparisons were completed using Primer7 with PERMANOVA+
add-on. Bray-Curtis similarity matrices were constructed using presence/absence ASV data.
Data were visualised using non-metric multidimensional scaling (NMDS) and group average
hierarchical cluster analysis. A two factor PERMANOVA was performed using the sampling

method as a fixed factor and sample region as a random factor.

Taxonomic heat trees were plotted in R using metacoder v0.3.3 (Foster et al., 2017). In brief,
taxa with less than 10 reads or unassigned were removed. Pairwise comparison of taxa in
coastal and offshore groups were calculated using the Wilcoxon test. Node colour was set to
the log ratio of mean taxon abundance in both coastal and offshore groups. The log ratio of
mean taxon abundance was set to 0 when no significant difference was found between coastal

and offshore samples (for full scripts see GitHub rms1u18/RoCSI_Bermuda_PoC).
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24 Results

2.4.1 RoCSlI performance

The RoCSI sampled as expected at hourly intervals in the 10-day cruise, collecting 178 Sterivex
cartridge samples across a range of biomass, from oligotrophic open ocean to coastal bloom
conditions (Figure 4; Supplementary Table 4). The volume of seawater filtered through each
cartridge ranged from 200-2646ml, with an average sample volume of 1246ml (+478SD;
Supplementary Table 4). Nearshore samples had lower filtration volumes due to the termination
of filtration at maximum pressure limits set by the user, in a region where biomass was high and

filtration was more prone to clogging.
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Figure 4 Map showing the AE1714 cruise track (black dashed line). The locations of the sample
collection sites are indicated by labelled circles (a-f), where sample pairs were
obtained for both DNA/RNAyield and metabarcoding analyses, and squares, where
samples were only collected for DNA/RNA yield analysis. The map also includes
log10-scaled chlorophyll-a concentrations, derived from 10-day composite satellite

images for chlorophyll-a during the cruise (as described in Tang et al., 2019, 2020).
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2.4.2 Nucleic acid yield

DNA and RNA yield from RoCSI samples were significantly correlated to manually collected
samples (t=3.276, df =7, p-value =0.014 and t = 4.3, df = 8, p-value = 0.003, respectively). DNA
yields were on average 1.62 times higher in manually collected samples than in ROCSI samples

whereas RNAyields were 1.71 times higher in ROCSI samples than manually collected samples

(Figure 5).
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Figure 5 Scatterplot showing DNA (black) and RNA (grey) yield from RoCSl and manually
collected samples with linear trendline. Significant correlation between RoCSl and
manually collected (MC) DNA yield (R?=0.778, p-value =0.014, y = 0.3741x +
59.514). Significant correlation between RoCS| and MC RNA yield (R*= 0. 835, p-
value =0.003,y=1.7102 x + 39.998)

2.4.3 qPCR

UCYN-A1 nifH gene abundances were highly correlated between RoCSl-preserved samples and
manually collected samples (R?> = 0.9601, p-value <0.001; Figure 6), indicating quantitative
recovery across 6 orders of magnitude of UCYN-A1 abundance relative to traditional sampling.
UCYN-A1 nifH abundance from blank samples collected from RoCSl and on the benchtop

filtration system, as well as qPCR NTCs, were below the limit of detection.

UCYN-A1 were ubiquitous throughout the transect, with higher nifH gene counts near the coast,
reaching record abundances in this region (Tang et al., 2019, 2020). There was a strong gradient
in UCYN-A1 abundances in the coastal-to-offshore transit, sharply declining greater than 3
orders of magnitude, coinciding with chlorophyll concentrations in the transition to the

oligotrophic open ocean (Tang et al., 2019, 2020).
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Figure 6 Significant correlation between UCYN-A1 nifH quantification from the gPCR of ROCSI
and manually collected samples with linear trendline (R = 0.9601, y = 0.9976 x +
0.183, p-value <0.001).

2.4.4 Metabarcoding

Across the 12 samples and 6 blank samples, 16S and 18S rRNA gene sequencing produced over
6.2 million reads, with approximately 3.5 million reads remaining after read merging and quality
filtering. The average number of sequences per sample post-filtering was 75,828 (49,480 SD)
and 141,856 (78,954 SD), for 16S and 18S rRNA genes, respectively. Blank field samples had
an average of 34,049 (+42,463 SD) and 85,421 (104,008 SD) sequences, for 16S and 18S rRNA
genes respectively. DADA2 denoising resulted in 3642 ASVs for 16S rRNA gene and 4845 ASVs
for 18S rRNA gene, from which, 1007 total taxa were identified. Of these, 184 Bacteria and
Archaea were assigned from 16S rRNA gene sequences and 823 Eukaryotes were assigned from

18S rRNA gene sequences.

Samples underwent rarefaction to 36,325 sequences for 16S and 46,142 sequences for 18S,
achieving saturation for both (see Supplementary Figure 11 and Figure 12 for the rarefaction
curves). PERMANOVA revealed no significant differences in community composition for
samples collected with the RoCSI, when compared with manually collected samples in either

18S (p-value = 0.488) or 16S rRNA gene ASVs (p-value = 0.252; see Table 2).

Both RoCSl and manually collected samples were pooled in to ‘Coastal’ or ‘Offshore’ regions.
Coastal regions were defined as less than 200 km from the North American mainland coastline
and Offshore as more than 200km from the mainland coastline. A significant difference was
found between samples collected in the coastal region and open ocean samples, for both 18S

(P=0.011) and 16S rRNA genes (P = 0.019; Table 2).
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Table 2 PERMANOVA results based on Bray-Curtis similarities using presence/absence data for
16S and 18S rRNA gene ASV composition comparing samples collected by different

methods and in different regions.

Factor Df Sum Sq Pseudo-F P-value
18SrRNA  Method 1 3560.1 1.147 0.252
Metazoan  pogion 1 7212.7 1.797 0.019

Residuals 8 32110

Total 11 45987
16SrRNA  Method 1 1380.1 0.813 0.488
Microbial  Region 1 8131.6 3.333 0.011

Residuals 8 19517

Total 11 30725

Df - degrees of freedom; Sum Sq - sum of squares; Pseudo -F - F value by permutation, boldface

indicates statistical significance with P<0.05, P-values based on 9999 permutations
Group average cluster analysis revealed a 4.1% average similarity for 16S rRNA gene and 15.8%
for 18S rRNA gene, excluding NTCs. At 5% average group similarity, 16S rRNA gene ASVs cluster
according to region sampled whereas at 25% average group similarity, 18S rRNA gene ASVs
cluster according to the region sampled (orange coastal vs. blue offshore in Figure 7). In both
16S and 18S rRNA gene datasets, one manually collected sample (pair b) is clustered with the
coastal samples rather than the offshore samples. This sample was taken 5 minutes after the
RoCSl sample (Supplementary Table 4), whilst the ship was underway, and was taken from a
site that was on the border of a chlorophyll front (Figure 4). The 5-minute delay in sample

collection may have coincided with crossing the coastal front.
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Figure 7 Ordination Based on Bray-Curtis Similarities of ASV Presence/Absence. Labels a-f
indicate pairs of RoCSl and MC samples and correspond with the map labels in
Figure 2. A. Non-metric multidimensional scaling (hnMDS) plot of Bacteria and
Archaea ASVs based on 16S rRNA gene metabarcoding, with similarity contours
from group average cluster analysis. B. nMDS plot of Eukaryota ASVs based on 18S
rRNA gene metabarcoding. C. Cluster analysis of Bacteria and Archaea ASVs from
16S rRNA gene metabarcoding with SIMPROF test for significant similarities
between samples (red dashed lines indicate significant similarities). D. Cluster

analysis of Eukaryota ASVs from 18S rRNA gene metabarcoding.

There were no significant differences in the alpha diversity indices for RoCSI and MC samples

(p > 0.05). There were notable differences between coastal and offshore diversity indices, with a
small but significant increase in Pielou’s evenness for coastal samples compared to offshore
samples when examining Bacterial and Archaeal (16S rRNA gene) communities (W=4.34, p-
value=0.037; Table 3; Figure 8). Whereas for Eukaryotes (18S rRNA gene), Pielou’s evenness was
significantly greater in offshore communities compared to coastal communities (W= 4.83, p-
value = 0.028) and Shannon’s diversity was significantly greater in offshore (t=-2.68, p-value =

0.019; Table 3; Figure 8).
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Table 3 Comparison of diversity indices in coastal or offshore regions.
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Coastal Offshore

Index Average SD Average SD t W p-value
16S

No.of ASVs  250.86 124.40 230.88  104.11 0.33 0.744
rRNA

Evenness 0.94 0.01 0.93 0.01 4.34 0.037

()

PD 22.14 6.78 19.61 6.78 0.69 0.501

Diversity 7.38 0.71 7.21 0.64 0.48 0.641

(H)
18S

No.of ASVs  463.14  185.62 633.63  380.03 0.33 0.563
rRNA

Evenness 0.63 0.06 0.75 0.09 4.83 0.028

()

PD 30.69 9.07 42.26 18.98 2.26 0.133

Diversity 5.49 0.86 6.83 1.06 -2.68 0.019

(H)

Significant differences <0.05 in bold. Abbreviations: SD - Standard Deviation; t = student’s t-test; W — Wilcoxon test; J’ - Pielou’s

evenness; PD - Faith’s phylogenetic diversity; H’— Shannon’s diversity
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Figure 8 Comparison of coastal and offshore diversity indices from Bacteria 16S and Eukaryote

18S rRNA gene metabarcoding. Panel A showing the observed Amplicon Sequence

evenness indices, and D showing Faith’s Phylogenetic Diversity (PD). * indicates

Heatmaps generated from 16S and 18S rRNA gene metabarcoding reveal the distribution of the
40 most abundant taxa (Figure 9). In coastal samples, 16S rRNA gene metabarcoding revealed a
high abundance of sequences assigned to Luteolibacter, Pseudomonas, Alphaproteobacteria,
Mesonia, Bacteriodia and Actinobacteria. Whereas offshore samples had a high abundance of
sequences assigned Halomonas, Halomonadacaea, Neosaia chiangmaiensis and Firmicutes

taxa. Rhizobiales were ubiquitous across samples for 16S rRNA gene metabarcoding (Figure 9).

The 18S rRNA metabarcoding revealed a high abundance of sequences assigned to Cyclopodia,
Centropages typicus, Pseudoperkinsidae, Prymnesiales, Braarudosphaera bigelowii,
Bathycoccus, Mamiellales. Whereas Syndiniales group V was the only taxa consistently in high

abundance in the offshore samples. Emiliania huxleyi CCMP1516 and Syndiniales group Ill were
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ubiquitous across 18S rRNA metabarcodes (Figure 9).
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Figure 9 Heat maps of the top 40 most abundant taxa with colour scales representing relative
abundance of sequence reads. Taxonomy assignments on the y-axis assigned to
the lowest common ancestor. Individual samples along the x-axis grouped by
collection method. Samples collected in offshore and coastal regions were
illustrated by the blue and orange bars under the sample letters. A Shows Bacteria
identified through 16S rRNA gene metabarcoding. B. Shows Eukaryota identified
through 18S rRNA gene metabarcoding.

The 16S rRNA gene heat tree shows Bacteria with significantly greater proportion of reads in
coastal samples included Mesonia, a flavobacteria associated with coastal blooms; Pirellula, a
genus with global distribution; Methylophilus, methanol-utilizing bacteria; Coxiella;
Chitinophagagales and Luteolibacter. Bacteria with significantly greater proportions of reads
offshore included Bdellovibrionaceae, a heterotrophic bacterium; Halomonas, a saline tolerant

genus; Roseburia and Phycisphaerae (Figure 10).

The 18S rRNA heat tree shows the Eukaryotic taxa that had a significantly greater proportion of
reads in coastal regions including; the coastal Chlorophytes Trebouxiophyceae, Ostreococcus,
Bathycoccus, Micromonas (Mamiellales), Pycnococcus, and Pterosperma; the coastal diatoms

Thalassiosira and Guinardia; the ciliate Oligotrichia; and the radiolaria Arthracanthida.
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Eukaryotic taxa with proportionally greater reads in offshore samples were more diverse.
Several of these taxa are associated with coral endosymbiotic dinoflagellates (Symbiodinium
genus), harmful algal blooms (Alexandrium, Gonyaulax and Kareniaceae genus); and parasitic

lifestyles (Scuticociliatia genus) (Figure 10).

165 rRNA 185 rRNA A
d
Amoetiophryd Prypgeshlss x
Syndiniales.
Prymnesiophyceae
Flavobagteriaceas ~ Bagteroidia ~* Protalveolata
Flavobacteriales - \ SAR Haptophyia
Bacteroidetes 7 Archaea
- f":—’ Alveolata Eukaryota
Bacteria -+ . . »
Oxypmtnb;:tgna :‘aes Opisthokonta A
: Holozoa o
Proteobacteria 2 Nodes . E Nodes
Alphaproteobacteria § ~10.00 10 g -1oo 1.0
Gammaproteobacteria g 599 N g 444 848
% -1 260 3 Dinollagellata g -1 %60 3
E om —s0 S %4 by Al E oo —760 S
o
111 9430 = - 111 13400 &
2 2 o
T 444 1470.0 ° v 2 f A B 444 2100.0
o 10,00 ¥ 21200 o 10,00 % 3020.0
o =
S 3

Figure 10 Taxonomic heat tree showing the pairwise comparisons of coastal and offshore
communities. The colour of each taxon represents the log-2 ratio of median
proportion of reads observed in each region. Only significant differences are
coloured. Taxa coloured blue are enriched in offshore communities and taxa in
orange are enriched in coastal communities A Shows Bacteria and Archaea
identified through 16S rRNA gene metabarcoding. B. Shows Eukaryota identified
through 18S rRNA metabarcoding. (Detailed view in Supplementary Figure 14)

2.5 Discussion

During this cruise, the RoCSI was managed by one crew member who replaced cartridges once
daily and manually decontaminated the system. This allowed for more time to be allocated to
on-board experimentation and other projects. Furthermore, as long as the pump remained
submerged, samples could be safely collected throughout periods of rough sea conditions,
increasing overall scientific productivity during research cruises and reducing the risks

associated with at-sea research.

The RoCSl successfully filtered and preserved water samples across a range of biomass, from
low biomass oligotrophic open ocean to high biomass coastal bloom conditions. However, the
automated overpressure protocol, set to stop filtration when inline pressure exceeded 800
mBar for 10 seconds, had to be overridden in high-biomass regions. Instead, the filtration time
was limited to 30 mins. Exceeding this overpressure threshold may have cause some cells to
lyse, but the impact of cell lysis on metabarcoding results remains unclear. No damage to the

tubing or pump components was observed after this safety mechanism was overridden.
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Molecular analysis of these samples provided valuable insights into the microbial ecology of the
region, and these findings were consistent with results obtained through conventional manual
collection methods, as well as with previous studies conducted along the same transect (Tang

etal., 2019; Wang et al., 2021).

2.5.1 Nucleic acid yield

DNA and RNA yields from manually collected samples both showed significant positive
correlation with RoCSI methods (1:0.4 and 1:1.7, respectively). Although DNA yields were
generally higher in manual samples, all samples still had sufficient DNA yield for metabarcoding
(>2ng/ul). Conversely, RNA yields were lower in manually collected samples compared to RoCSI
samples. RNA is less stable than DNA, therefore obtaining high enough yields for laboratory
analysis can be challenging (McGrath et al., 2008). Consistent with previous finding (Ottesen et
al., 2011), these results indicate that immediate stabilisation with RNAlater using an
autonomous device improves recovery of RNA when compared to manually collected samples

that are flash frozen after filtration.

The co-purification kit used in this study, Qiagen AllPrep DNA/RNA Mini Kit, allows both DNA
and RNA analyses to be run on a single sample, maximising scientific output. In recent years,
studies have been using both eDNA and eRNA to determine the living proportion of DNA reads
(Cristescu, 2019; Guardiola et al., 2016; Keeley et al., 2018; Laroche et al., 2017; Pawlowski et
al., 2016; Pochon et al., 2017; Wood et al., 2020). To fully utilise the RoCSlI collected samples, it
is important to consider the best preservation fluid for both DNA and RNA. In this study and
others, the preservative RNAlater was highly effective at preserving the RNA from filter samples
(Edgcomb et al., 2016). However, DNA yields were typically lower than manually collected flash
frozen samples. Further research is needed to identify the most effective preservative for both
RNA and DNA, particularly for the long-term preservation of DNA and RNA at ambient
temperatures, which would be necessary for long-term deployments of the RoCSlI. Preservative
for the RoCSl is stored in FlexBoy blood bags (Sartorius) and can be easily exchanged, allowing

for future optimization of preservation methods.

2.5.2 Quantitative PCR of UCYN-A1 nifH

UCYN-A1 is a unicellular cyanobacterium that fixes nitrogen (Moisander et al., 2010) and forms
a symbiotic relationship with the Prymnesiophyte, Braarudosphaera bigelowii (Thompson et al.,
2012). Inthe sample survey region during the summer months, there is frequently a strong
gradient in UCYN-A1 nifH counts, with high abundances nearshore, corresponding with high

rates of nitrogen fixation and high chlorophyll-a concentrations, and lower abundance offshore
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(Mulholland, 2007; Tang et al., 2020; Figure 4). We saw these expected trends across this
gradient, demonstrating that RoCSlI can collect samples that deliver comparably quantitative
molecular data relative to manually filtered samples, despite wide ranges in biomass. Further,
the blank samples (filtered Milli-Q water on RoCSl and on the bench), had undetectable nifH
abundances, an indication of the suitability of the autosampler to deliver samples with low

contamination when measured by targeted techniques.

2.5.3 16S & 18S rRNA gene metabarcoding

The results from metabarcoding show that neither 16S or 18S rRNA gene community
composition significantly differs between the RoCSI sampler and best practice manually
collected samples. We observed a sharp transition between open ocean and coastal
communities, reflecting the transition observed in satellite-derived chlorophyll-a observations.
Coastal and offshore sites have distinct community profiles (Clarke, 1940; Stefanni et al., 2018;
Zorz et al., 2019) and this is reflected in our results, which revealed significant differences in
Bacteria, Archaea and Eukaryotes communities when comparing coastal and offshore samples.
Furthermore, taxa recovered from 16S and 18S rRNA gene metabarcoding across the transect
samples are similar to those recovered from a separate CTD Niskin based survey from the same

cruise (Wang et al., 2021).

Several of the Eukaryotic taxa that had a significantly greater proportion of reads in coastal
samples included the diatoms Thalassiosira and Guinardia, the ciliate Oligotrichia, the protozoa
Arthracanthida, and several genera of green algae, including Ostreococcus, Bathycoccus, and
Micromonas (Figure 10). The presence of these coastal taxa is supported by previous studies
that have described their association with coastal regions in the northwest Atlantic (Decelle et
al., 2013; Doherty et al., 2010; Hernandez-Becerril, 1995; Marin & Melkonian, 2010; Prasad et
al., 2011).

In addition to the Eukaryotic taxa, the Bacterial taxa Flavobacteriales, Pirellula, and
Methylophilus were also found to have a significantly greater proportion of reads in the coastal
samples, in line with previous studies that have linked these taxa to coastal blooms (Georges et
al., 2014; Morris et al., 2006). The harmful algal species Aureococcus anophagefferens, known
to form blooms on the US mid-Atlantic shelf, was also present in high abundance in our sample
set and confirmed to be blooming during the cruises in a separate study (Wang et al., 2021). The
presence of the symbiotic host of UCYN-A1, the coccolithophore Braarudosphaera (Hagino et
al., 2013), was also high in the coastal region, where UCYN-A1 nifH counts reached record

abundances (Wang et al., 2021).
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In contrast, the heat trees (Figure 10) revealed a higher proportion of taxa associated with
harmful algal blooms (HABs) in the offshore samples. This same pattern is not seen in the
heatmap, where Gymnodinium is among the 40 most abundant taxa. It might therefore be
artificially attributed to a bias in HAB taxa representation in the database used, as the filtering
process for visualising taxa in a heat tree involves excluding unknown and unnamed taxa which
are more abundant offshore. Additionally, offshore communities were found to be more diverse,
with a greater evenness between taxa, which could have led to an increase in the proportion of

ubiquitous taxa with low read counts in communities with greater evenness.

Results from this study have highlighted the need for additional decontamination stepsin
subsequent models of the RoCSI. While sequences from three of the Milli-Q blank samples
clustered separately from the coastal and offshore communities, 16S rRNA gene sequences
from one RoCSl blank clustered with the coastal communities and 18S rRNA gene sequences
from two RoCSl blanks clustered with the coastal communities (Figure 7). The most likely
source of contamination is the water remaining in the lines from the previous sample (approx.
10ml) and/or biofilm build up on the tubing. Accordingly, subsequent models of the RoCSI
prototype have been designed to include bleach rinse and flushing steps to reduce these
sources of contamination. Contamination is difficult to avoid even whilst using manual
sampling methods and the 18S rRNA sequences from one of the manually-collected blank
samples also clustered with coastal communities (Figure 7). This contamination may be
residual within the tubing of the peristaltic pump, or a result of carry over during library

preparation or sequencing (Sepulveda et al., 2020).

Group average cluster analysis with SIMPROF tests showed that while RoCSl and MC samples
clustered into coastal and offshore communities, they did not all link by pairs. This is likely due
to the patchiness of phytoplankton communities, similar to patchiness previously identified in
high resolution chlorophyll measurements (Gennip et al., 2016). Satellite chlorophyll imaging
showed that the outlier RoCSl sample from pair b (Figure 7), was filtered whilst the ship was
underway and crossing a chlorophyll front (Figure 4). This highlights an opportunity for
autonomous eDNA samplers to explore this smaller scale variability in community composition

and functionality and examine the interplay with biogeochemistry on fine scales.

254 Applications

The RoCSl offers versatile applications for enhancing marine ecological research and
conservation efforts. These devices can be deployed in various settings to improve sample

collection efficiency, expand the scope of biological observations, and provide comprehensive
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data for ecological modelling, as well as contribute to net-zero science goals. Below, we

summarise the key applications and benefits of using the RoCSlI:

CTD Rosette Samplers: Integration with CTD rosette samplers enables in-situ filtration
and preservation at various depths, minimising the time between sample collection and
preservation thereby reducing nucleic acid degradation. This approach also captures
more accurate gene expression patterns by preserving samples before the pressure and
temperature changes associated with sample retrieval can alter gene expression

(Edgcomb et al., 2016).

Autonomous Vehicles: The RoCSI can be mounted on Autonomous Underwater
Vehicles (AUVs) and Surface Vehicles, facilitating biological observations in remote or
difficult-to-access areas like deep seas and underneath ice sheets. This capability can
support conservation and sustainable use goals of the Biodiversity Beyond National

Jurisdiction treaty through autonomous eDNA surveys.

Long-term Sampling Stations: Deploying the RoCSI at these stations can generate
continuous biological datasets, undisrupted by adverse weather events that would
otherwise prevent ship-based sampling. Enriching our understanding of marine
ecosystems' responses to climate change and anthropogenic pressures. Furthermore,
co-deployment with additional biological, chemical, and physical sensors creates
metadata-rich ecological observations invaluable for ecological modelling and

forecasting.

Ships of Opportunity: Utilising commercial and other non-research vessels for
deploying RoCSl presents a cost-effective method for collecting data without the need
for dedicated research cruises. This strategy reduces costs and emissions, echoing the

Continuous Plankton Recorder's approach (Suter et al., 2021).

The integration of the RoCSl enhances the temporal and spatial resolution of biological
observations, allowing for the exploration of global-scale patterns with a detail comparable to
chemical and physical data. By pairing with low-power sensors, RoCSI can concurrently record
chemical, physical, and biological data, crucial for developing and validating ecological models.
These models can provide early warnings for phenomena like harmful algal blooms, enabling

proactive management strategies to mitigate their impact on marine ecosystems.

Additionally, the widespread adoption of the RoCSI and similar eDNA samplers would
substantially increase the number of environmental samples available for biobanking,
supporting future 'futuromics' research. By biobanking eDNA samples, researchers can re-

analyse past collections using advanced sequencing and omics techniques, enabling the
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application of improved protocols and maintaining continuity in biological observations (Jarman

etal., 2018).

In conclusion, this proof-of-concept study demonstrates that the RoCSl is an effective
autonomous biomolecular sampling device. Continued changes in oceanic physical, chemical,
and biological parameters driven by anthropogenic pressures underscore the importance of
innovative monitoring tools like the RoCSI. With its low-effort and high-specificity approach,
eDNA analysis offers a transformative method for ecological monitoring, enabling a significant
upscaling in the resolution of biological observations across global oceans. By reliable
collecting and preserving samples, the RoCSl represents a significant step forward in our ability

to observe and manage marine ecosystems effectively.
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Appendix A Supplementary Material

Table 4 Sample volumes, DNA and RNA yields. Vol, Volume; RoCSlI, Robotic Cartridge Sampling
Instrument; MC, Manually Collect; NAY, Nucleic Acid Yield.

ID Start Time Vol(ml) RoCSI/MC MetaBPair  NAY DNA RNA
ID PairlD  (ug/L) (ug/L)
2500 29/07/2017 07:24 686 RoCSI Blank_1 - 13.05  Too Low
2800 29/07/2017 09:05 700 MC Blank_1 - 9.21  TooLow
2508/9  29/07/201720:00 4012 RoCSI a 1 72.66 29.66
2804/5  29/07/201720:41 5500 MC a 1 251.82  24.91
2539/40  31/07/201705:14 1941 RoCSI b 2 9.58 136.27
2823 31/07/2017 06:20 4000 MC b 2 372.50  25.00
2570 01/08/2017 00:00 800 RoCSI Blank_2 - 42.19 83.13
2833 01/08/2017 00:00 1000 MC Blank_2 - 20.85  TooLow
2579/80  01/08/201719:40 1827 RoCSI c 3 645.87  569.24
2840 01/08/201720:36 2000 MC c 3 1505.00  357.50
2852 02/08/2017 12:42 2000 MC - 4 770.00  740.00
2594/5  02/08/201713:00 1864 RoCSI - 4 751.07  1174.89
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proportion of reads observed in each region. Only significant differences are
coloured. Taxa coloured blue are enriched in offshore communities and taxa in

orange are enriched in coastal communities.
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Chapter 3 Diel fluxes in prokaryotic and eukaryotic
microbial communities in a highly

urbanised tidal estuary

3.1 Abstract

Environmental DNA (eDNA) is increasingly recognised as a key tool for biodiversity monitoring
due to its ease of sampling and capacity to detect organisms ranging from microbes to
megafauna. Estuaries play a crucial role in life histories of many species, but their tidal and
photosynthetic cycles have the potential to influence eDNA results if not properly accounted
for in sampling protocols. This study aimed to characterise diel fluctuations in prokaryotic and
eukaryotic planktonic communities within a highly urbanised tidal estuary using high-temporal-
resolution eDNA time-series data.

Bi-hourly water samples were collected over four days using the Robotic Cartridge Sampling
Instrument (RoCSI). Community composition was analysed through 16S and 18S rRNA gene
metabarcoding. Both prokaryotic and eukaryotic communities showed significant short-term
variability. Prokaryote alpha diversity correlated primarily to barometric pressure, while beta
diversity correlated with water temperature and barometric pressure. Eukaryotes alpha and
beta diversity correlated with water temperature, but not tidal height. Notably, the
hydrocarbonoclastic bacterium Oleispira sp., associated with oil pollution, bloomed in the
latter part of the study, suggesting its potential as an indicator of oil spills in harbours.

High-temporal-resolution monitoring, such as this, remains costly for long-term studies.
However, short-term pilot studies can guide the design of more cost-effective, lower-resolution
monitoring. This approach identifies optimal sampling strategies, reducing bias and improving
the accuracy of ecological trend assessments. This research demonstrates RoCSl’s
practicality for high-resolution temporal monitoring and underscores the value in
understanding the real-world impacts of anthropogenic activities on marine ecosystems.

3.2 Introduction

Estuaries are diverse habitats providing numerous ecosystem services. They serve as nurseries
and feeding grounds for marine life (Gernez et al., 2023), and they play a crucial role in nutrient
cycling, improvement of water quality, flood protection, and carbon sequestration (Watson et
al. 2020). Despite these benefits, estuarine ecosystems are prime locations for urbanisation
and economic development (Barbier, 2017; French 2002). Highly urbanised estuaries, such as
the Solent, UK, support a wide range of economic activities such as shipping, fishing,

aquaculture, tourism, and renewable energy production as well as bioremediation services
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estimated at £1.1 billion (Watson et al., 2020). Economic activities and ecosystem services are
intrinsically connected. Therefore, balancing economic and social prosperity with ecological

health is vital for resilient and sustainable coastal cities.

Biomonitoring is essential to gauge on-going ecological health, especially in estuarine and
marine environments where much of the biodiversity remains hidden beneath the surface. The
composition and functionality of microbial planktonic communities are significantly influenced
by both urbanisation and fluctuations in physical and chemical conditions (Macé et al., 2024).
For example, changes in bacterial community composition have been associated with
variations in light intensity (Piwosz et al., 2020), temperature, nutrient availability (Fuhrman et
al., 2015), physical mixing, and differing sources of dissolved organic matter (Bruhn et al., 2021;
Fuhrman et al., 2015; Piwosz et al., 2020; Zhao et al., 2023). In urbanised estuaries, the
planktonic community composition can also be influenced by increased contaminants
associated with stormwater drainage or discrete pollution events (Kottuparambil et al., 2023;
Macé et al., 2024; Varkey et al., 2018). Temporal monitoring of the ecological impacts from
anthropogenic stressors is essential to provide evidence to inform adaptive management
strategies. Such evidence is required to balance the ecological value of estuaries with their

economic and social value, to ensure their long-term sustainability.

A key challenge in biomonitoring is determining the optimal sampling strategy. High resolution
sampling frequency from weekly, to daily, or even hourly intervals enhances our ability to
interpret data for long-term trend analysis (Fischer et al., 2021). Higher resolutions offer a more
detailed understanding of fine-scale temporal dynamics within an estuary and provide valuable
insights into the short-term effects of specific events. In contrast, lower-frequency sampling,
such as monthly, seasonal, or annual, is less effective at detecting significant trends because
causative factors and their impacts are typically decoupled at these frequencies (Fischer et al.,
2021). Understanding temporal trends in ecological health, including declines in key species or
the introduction of invasive species, is crucial for informed management decisions. However,
obtaining high resolution temporal monitoring, needed to detect these trends, is primarily

constrained by the financial cost of fieldwork.

Photosynthesis, providing carbon for food webs in surface oceans, changes on day-to-night
cycles. Similarly, tidal change, the dominant physical driver in estuarine environments
(Nascimento et al. 2021), has a diel periodicity. Sampling every two hours offers sufficient
resolution to observe the influence of diel fluctuations, helping to identify these primary drivers

of ecological change. However, sampling using manual collection and visual identification
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methods is impractical at these frequencies, requiring out of hours working and morphological
taxonomy expertise. Autonomous biomolecular sampling with the Robotic Cartridge Sampling
Instrument (RoCSI) can facilitate this scale of high-resolution sampling. With the RoCSI, water
samples for biomolecular analysis can be filtered and preserved autonomously. The mission
parameters, including sampling frequency, can be set at the start and filter cartridges can be
exchanged at convenient daily, weekly or monthly intervals depending on the sampling
frequency. Samples can be processed and sequenced in batches allowing for a relatively quick

turnaround between sample collection and data output.

This study explores use of the RoCSI for autonomous high-resolution biomolecular sampling.
By collecting water samples every two hours over four days, we investigated the fine-scale
fluctuations in microbial and eukaryotic planktonic communities and correlated these with
environmental variables routinely collected at the port, such as water temperature, tide height,

and meteorological variables.

3.3 Methods

Over a four-day period from November 11th to 15th, 2019, time series data were collected
outside the National Oceanography Centre (NOC) in the Empress Dock of the Solent Estuary.
Water samples were taken to analyse the prokaryotic and eukaryotic community compositions
using the RoCSI prototype. Additional environmental data, including air temperature, wind
speed, barometric pressure, and tide height, were acquired from the Southampton Dockhead
Weather Station (50°53'00.6"N 1°23'39.6"W), located approximately 400 meters due south of
the water sampling site. Water temperature data from alongside the sampling station were
obtained from a temperature sensor mounted on the hull of the RV Calista, a research vessel

operated by the University of Southampton and docked at the NOC.

3.3.1 Sample Collection

The RoCSI prototype was mounted in a waterproof housing above an outside seawater tank at
the NOC, Southampton, UK (Figure 16). The RoCSI was configured to filter and preserve 500ml
samples of seawater every two hours. Seawater was filtered through a 0.22pum Sterivex™ (Merck
Millipore), with RLT+ buffer (Qiagen) added to the cartridge immediately after filtration.
Seawater supply to the tank was approximately 200ml/second from 1m depth at the National
Oceanography Centre pontoon, a 5mm net pre-filter prevented larger detritus from entering.

The tank contained approximate 800L of seawater, with a residence time of approximately 1
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hour 7 minutes. Sample collection began on 2019-11-11 at 12:26 and ended on 2019-11-15 at

08:26. The cartridges were removed from the device every 24 hour and stored at -80°C, except

for the final sample 56 which remained in the device for 2 weeks prior to freezing at -80°C. A

blank sample (500ml of molecular grade water) was taken with the RoCSlI prior to sampling.

e

Waterproof
housing

Preservative

Sample 4
Sample 3
Sample 2

Sample 1

Seawater Tank

Out

.

Dock seawater supply

S

Figure 16 RoCSI dockside configuration, with seawater supply from a dockside seawater tank.
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3.3.2 Nucleic acid purification

DNA was purified using a modified protocol for the Qiagen AllPrep DNA/RNA Mini Kit, (For full
protocol see Appendix B.1). DNA yields were measured using Qubit High Sensitivity DNA Assay
Kits.

3.3.3 Metabarcoding

The 16S rRNA gene barcode region was amplified using 515F-Y (5'-
GTGYCAGCMGCCGCGGTAA) forward and 926R (5'-CCGYCAATTYMTTTRAGTTT) reverse primers
(Parada et al., 2016). The 18S rRNA gene barcode region was amplified using 1391F (5'-
GTACACACCGCCCGTC) forward and EukBr (5'-TGATCCTTCTGCAGGTTCACCTAC) reverse
primers (Amaral-Zettler et al. 2009). Primers were modified with overhang sequences and a
second, limited cycle PCR was used to add barcodes and sequencing adaptors, as specified in
the lllumina sequencing library preparation protocol (Illumina, 2013). PCR indexing, rt-PCR and

sequencing was completed at Exeter Sequencing Facility (For full protocol see Appendix B.1).

3.3.4 Bioinformatic Processing

The raw sequencing data was initially processed by removing adaptor sequences and
sequences less than 250 bp (raw sequence data available at European Nucleotide Archive
(accession number: PRJEB83250; Martin 2011). Paired-end joining, denoising and taxonomic
assignment was performed using QIIME2 release 2022.2 (Bolyen et al., 2019). In brief, denoising
and pair-end joining were performed using DADA2 to produce amplicon sequence variants
(ASVs; Callahan et al., 2016). Phylogenetic trees were built using fasttree and mafft alignment
(Bolyen et al. 2019; Katoh & Standley, 2013; Price et al., 2010). Taxonomic classification was
performed with Naive Bayes classifier and classify-sklearn method with the SILVA version 138.1
database, clustered at 99% sequence similarity as a reference (Bokulich et al., 2018; Bolyen et
al., 2019; Gurevich et al., 2013; Pedregosa et al., 2011; Pruesse et al., 2007; Rognes et al.,
2016). For full scripts see GitHub rms1u18/RoCSI_Soton.

3.3.5 Data Analysis

Data analyses were performed using QIIME2 version 2022.2 and R version 4.3.2 (2023-10-31).
Alpha diversity metrics were derived from rarefied sequence data in QIIME2. Sequences were

rarefied to 61,400 for prokaryotes and 16,744 for eukaryotes (see Appendix B.2 for rarefaction

91



Chapter 3

curves). Data from QIIME2 was read into R using the giime2r package version 0.99.6 (Bisanz,

2018).

Alpha diversity and environmental time series bar plots were created using the lubridate v1.9.3,
xts v0.12.2, ggplot2 v3.4.4, and ggpubr v0.6.0 packages (Grolemund & Wickham 2011; Ryan &
Ulrich 2024; Wickham 2016; Kassambra 2023). Correlations between alpha diversity and
environmental variables were calculated using Spearmans rank correlation in QIIME2 (Bolyen et
al., 2019). Correlations between beta diversity and environmental variables were calculated in
R using Mantel tests with Spearman’s rank correlation between Bray-Curtis dissimilarity
matrices for ASV abundance and Euclidean distance matrices for environmental parameters

with the vegan package version 2.6.4 package (Oksanen et al., 2024).

Non-metric multidimensional scaling (nMDS) analysis was based on Bray-Curtis dissimilarities
from Wisconsin double transformed data. Significantly correlated environmental parameters
were plotted using vector lines on each nMDS axis. The nMDS plots and stacked line plots for
the ten species with highest rarefied sequence counts across the dataset were visualised using
the vegan version 2.6.4, ggplot2 version 3.4.4, viridis version 0.6.4 and ggpubr version 0.6.0
packages (Oksanen et al. 2022; Wickham 2016; Garnier et al. 2023; Kassambra 2023).

Correlations between the ten most abundant Prokaryotic/Eukaryotic species and
environmental variables were calculated using Spearman’s rank correlations and tabulated
using sjPlot v2.8.15 package (Lidecke et al. 2023). For full scripts see GitHub
rms1u18/RoCSI_Soton.

3.4 Results

During the mission, the target was for the RoCSl to collect 56 samples. Out of these, 39
samples were successfully processed, each acquiring the intended seawater volume of 500ml
and subsequent addition of RLT+ (Qiagen) preservative. However, sample number 38 only
reached 486ml before the maximum pressure limit was exceeded; despite this, the preservative
was successfully added, and the sample was considered valid for final analysis. An issue with
the pressure sensor resulted in the next seven samples (nos. 39-45) only collecting 9ml of
filtered seawater, leading to their exclusion from further analysis. To circumvent the sensor
issue and continue the project, a manual override was implemented for the overpressure limit
for samples 46 through 56. This adjustment ensured each of these samples successfully

achieved the intended 500ml volume.
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Samples were removed from the RoCSl once a day and stored at -80°C. However, the final
sample (no. 56) remained in the device for two weeks before being stored at -80°C, due to a
water leak that prevented RoCSl operations. Previous investigation has revealed that the RLT+
(Qiagen) buffer can preserve eDNA for up to 1 month (Chapter 4), therefore sample no. 56 was

included in the final analysis.

Metabarcoding of the 16S rRNA gene targeting prokaryotes initially identified 6,049,413
sequences. After bioinformatic processing, 3,712,438 sequences (61.4%) were retained. From
these, 132 taxonomic assignments were Archaea, 3,834 were Bacteria, and 26 were
Eukaryotes. Sequences attributed to Eukaryotes were excluded from the subsequent analysis
of the 16S rRNA gene metabarcoding data. Metabarcoding of the 18S rRNA gene targeting
Eukaryotes, initially yielded 1,274,266 sequences, with 1,114,251 (87.4%) remaining post
bioinformatic processing. These resulted in 658 taxonomic assignments to Eukaryotes, with an
incidental capture of 20 sequences assigned to Bacteria and 2 to Archaea. These non-target

sequences were removed from downstream analysis of the 18S rRNA metabarcoding data.

Water temperature in the Solent declined with the rapid transitions over the four days, while air
temperature, barometric pressure and winds fluctuated independently (Figure 17 A).
Prokaryotic and Eukaryotic diversity also varied across the study (Figure 17 B & C). For
prokaryotes, the average number of ASVs was 1,332 (range: 1,018 - 1,738), compared to 467 for
eukaryotes (range: 254 - 602). The average Shannon diversity index was 6.9 for prokaryotes
(range: 6.4 - 7.1) and 6.5 for eukaryotes, which showed greater variability (range: 2.1 - 7.3).
Pielou’s evenness averaged 0.66 for prokaryotes (range: 0.64 - 0.69), and 0.73 for eukaryotes,
again with greater variability (range: 0.26 - 0.81). Shannon’s diversity and Pielou’s evenness are
plotted on identical axes in Figure 17 B and C to highlight this contrast in variability. Faith’s
phylogenetic diversity was 260 for prokaryotes (range: 165 - 361) and 66.8 for eukaryotes (range:
43.9 - 99.0).

Spearman’s rank correlation revealed significant correlations between environmental factors
and alpha diversity measures. For prokaryotes, Pielou’s evenness was negatively correlated
with wind speed (rs =-0.352, p = 0.028). Barometric pressure was also negatively correlated
with prokaryotic ASVs (rs =-0.318, p = 0.048), Shannon’s diversity (rs =-0.357, p = 0.026), and
Faith’s phylogenetic diversity (rs = -0.459, p = 0.003). For eukaryotes, ASVs increased with the
elapsed time since sampling began (rs = 0.349, p = 0.030). Water temperature was negatively

correlated with eukaryotic ASVs (rs = -0.544, p < 0.001), Shannon’s diversity (rs =-0.327, p =
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0.043), and Faith’s phylogenetic diversity (rs =-0.325, p = 0.044). Similarly, air temperature was
negatively correlated with eukaryotic ASVs (rs =-0.361, p = 0.024; see Table 5).
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Figure 17 A Environmental time series, with all data plotted using 15-minute rolling averages. B
Time series for prokaryotic alpha diversity measures. C Time series of Eukaryotic

alpha diversity. Abbreviations: Tide (m) — Tide height (m); Water (°C) - Water
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temperature (°C), Air (°C) - Air temperature (°C); P, (mbars) — Barometric pressure

(millibars); Wind (knots) — Wind speed (knots); ASVs — Number of amplicon

sequence variants; Diversity — Shannon’s diversity; Evenness — Pielou’s evenness;

and Faith PD - Faith’s phylogenetic diversity.

Table 5 Correlation between alpha/beta diversity and environmental variables with correlation

coefficient r values above and significant p-values in brackets below. Statistically

significant results in bold. Alpha diversity measures (including ASVs, Shannon’s

Diversity, Pielou’s Evenness, and Faith PD) were calculated using Spearman’s rank

correlation. Correlations between beta diversity and environmental variables were

calculated using Mantel tests with Spearman’s rank correlation between Bray-

Curtis dissimilarity matrices for ASV abundance and Euclidean distance matrices

for environmental parameters.

Time since  Tide Water Air Wind Barometric

start height temp temp speed pressure
Prokaryotes

-0.075 -0.072 -0.132 -0.172 0.017 -0.318
ASVs

(0.65) (0.66) (0.42) (0.30) (0.92) (0.048)
Shannon’s -0.233 -0.219 0.008 0.023 -0.132 -0.357
Diversity (0.15) (0.18) (0.96) (0.89) (0.42) (0.026)
Pielou’s -0.274 -0.221 0.28 0.262 -0.352 -0.182
Evenness (0.09) (0.18) (0.09) (0.11) (0.028) (0.27)

-0.025 -0.15 -0.155 0.015 0.094 -0.459
Faith PD

(0.88) (0.36) (0.34) (0.93) (0.57) (0.003)

0.5896 0.01872 0.3094 0.02901 0.06955 0.2172
Beta Diversity

(<.001) (0.30) (<.001) (0.28) (0.16) (0.005)
Eukaryotes

0.349 -0.079 -0.544 -0.361 -0.166 -0.22
ASVs

(0.030) (0.64) (<.001) (0.024) (0.31) (0.18)

0.278 -0.02 -0.327 -0.249 -0.22 0.108
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Diversity

Pielou’s

Evenness

Faith PD

(0.09)

0.305
(0.06)
0.048
(0.77)

0.151

Beta Diversity

(0.01)

(0.90)

0.046
(0.78)
-0.001
(1.00)
-0.01736

(0.61)
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(0.043)

-0.246
(0.13)

-0.325
(0.044)
0.2309

(0.003)

(0.13) (0.18) (0.51)
-0.151 -0.202 0.157
(0.36) (0.22) (0.34)
-0.151 0.097 -0.232
(0.36) (0.56) (0.16)
0.02534 0.132 0.1275
(0.33) (0.08) (0.09)

Prokaryotic beta diversity was positively correlated with the time elapsed since the start of

sampling (rs = 0.59, p < 0.001) and with water temperature (rs = 0.309, p < 0.001). Additionally,

prokaryotic beta diversity was positively correlated with barometric pressure (r: =0.217,p =

0.005; see Table 5; Figure 18A). Eukaryotic beta diversity was positively correlated with water

temperature (rs =0.231, p = 0.003; see Table 5; Figure 18B).
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Figure 18 Non-metric multidimensional scaling (hnMDS) based on Bray-Curtis dissimilarities of

Wisconsin double transformed data. Each circle represents one sample, circle

colour scale based on the number of hours since the start of sampling, and vector

lines for environmental parameters weighted by their p values with each NMDS
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axis. Only significantly correlated environmental parameter were plotted. A
Prokaryotic community composition with stress of 0.189. Vectors lines for water
temperature (Temp) and barometric pressure (Pb). B Eukaryotic community

composition with stress of 0.187. Vectors line for water temperature (Temp).

Figure 19A highlights the ten prokaryotic taxa with greatest sequence abundance across the
dataset. Among these, Alphaproteobacteria SAR11 Clade la (also known as
Pelagibacteraceae), Cryomorphaceae NS3a marine group, and Candidatus Puniceispirillum, all
displayed highly significant negative correlations with time since the start of sampling (rs= -
0.512, p=0.001; rs=-0.657, p<0.001; rs =-0.655, p <0.001; rs=-0.532, p <0.001, respectively).
These taxa also showed significant positive correlations with water temperature (rs =0.371, p =
0.021;rs=0.456, p=0.004; rs=0.472, p = 0.003; rs = 0.338, p = 0.035, respectively).
Planktomarina was correlated positively with wind speed (rs = 0.367, p = 0.021) and barometric
pressure (rs = 0.456, p = 0.003). The Thioglobaceae SUPO05 cluster was negatively correlated
with time since the start of sampling (rs =-0.411, p = 0.01) and positively correlated with wind
speed (rs = 0.386, p = 0.015) and barometric pressure (rs =0.437, p = 0.005). The
Flavobacteriaceae NS5 marine group did not exhibit significant correlations with any
environmental variable. Oleispira showed a highly significant positive correlation with time
since the start (rs = 0.695, p < 0.001) and highly significant negative correlation with barometric
pressure (rs = 0.495, p = 0.001), water temperature (rs = -0.486, p = 0.002), and wind speed (rs = -
0.348, p = 0.03). The Methylophilaceae OM43 clade was negatively correlated with time since
the start of sampling (rs =-0.362, p = 0.024). Lastly, Glaciecola had a highly significant negative
correlation with time since the start (rs =-0.496, p = 0.001) and a significant positive correlation

with barometric pressure (rs = 0.333, p = 0.038). See Table 6 for the full list of correlations.

Figure 19B illustrates the ten eukaryotic taxa with the highest sequence counts across the
dataset. Among these, Capitellida was positively correlated with water temperature (rs = 0.353,
p = 0.28). Cryptophyta sp. was negatively correlated with water temperature (rs = -0.455, p =
0.004). Calanoida was highly significantly positively correlated with water temperature (rs =
0.52, p=0.001), positively correlated with tide height (r, = 0.372, p = 0.02), and negatively
correlated with time since the start of sampling (rs =-0.339, p = 0.035). The remaining top ten
taxonomic assignments did not show any significant correlations with environmental variables

(See Table 7 for a full list of correlations).
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Figure 19 Stacked line plots with rarefied sequences count for the 10 most abundant species

across the time series dataset. A Prokaryotic species rarefied to 61400. B

Eukaryotic species rarefied to 16744.
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Table 6 Correlations between the 10 most abundant Prokaryotic species and environmental variables with correlation coefficient r values above and

significant p-values in brackets below. Statistically significant results in bold.

Time Tide Water Air Wind Barometri

since start height temp temp speed C pressure
Bacteria; Proteobacteria; Alphaproteobacteria; -0.512 -0.018 0.371 0.223 -0.069 0.054
SAR11_clade;Clade_l; Clade_la; NA (0.001) (0.91) (0.021) (0.17) (0.67) (0.74)
Bacteria; Proteobacteria; Alphaproteobacteria; Rhodobacterales; -0.004 -0.109 -0.013 -0.041 0.367 0.456
Rhodobacteraceae; Planktomarina; NA (0.98) (0.51) (0.94) (0.81) (0.021) (0.003)
Bacteria; Bacteroidota; Bacteroidia; Flavobacteriales; -0.657 -0.29 0.456 0.091 0.253 0.282
Cryomorphaceae; uncultured; NA (<.001) (0.07) (0.004) (0.58) (0.12) (0.08)
Bacteria; Proteobacteria; Gammaproteobacteria; -0.411 0.226 0.244 0.059 0.386 0.437
Pseudomonadales; Thioglobaceae; SUPO5_cluster; NA (0.01) (0.17) (0.14) (0.72) (0.015) (0.005)
Bacteria; Bacteroidota; Bacteroidia; Flavobacteriales; -0.306 0.062 0.187 -0.129 -0.13 0.201
Flavobacteriaceae; NS5_marine_group; NA (0.06) (0.71) (0.25) (0.44) (0.43) (0.22)
Bacteria; Proteobacteria; Gammaproteobacteria; 0.695 0.031 -0.486 -0.125 -0.348 -0.495
Pseudomonadales; Saccharospirillaceae; Oleispira; NA (<.001) (0.85) (0.002) (0.45) (0.030) (0.001)
Bacteria; Proteobacteria; Gammaproteobacteria; -0.362 0.184 0.177 -0.027 -0.054 0.038
Burkholderiales; Methylophilaceae; OM43_clade; NA (0.024) (0.26) (0.28) (0.87) (0.74) (0.82)

99



Bacteria; Bacteroidota; Bacteroidia; Flavobacteriales;

Flavobacteriaceae; NS3a_marine_group; uncultured_bacterium

Bacteria; Proteobacteria; Gammaproteobacteria;

Enterobacterales; Alteromonadaceae; Glaciecola; NA

Bacteria; Proteobacteria; Alphaproteobacteria; Puniceispirillales;

SAR116_clade; Candidatus_Puniceispirillum
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-0.655
(<.001)
-0.496
(0.001)
-0.532

(<.001)

(0.06)
-0.161
(0.33)

0.112

(0.50)

0.472
(0.003)
0.272
(0.09)
0.338

(0.035)

0.01
(0.95)
-0.081
(0.62)
-0.146

(0.38)

0.12
(0.47)
0.279
(0.09)
0.131

(0.43)

0.15
(0.36)
0.333
(0.038)
0.274

(0.09)

Table 7 Correlations between the 10 most abundant Eukaryotic species and environmental variables with correlation coefficient r values above and

significant p-values in brackets below. Statistically significant results in bold.

Time Tide Water Air Wind Barometri

since start height temp temp speed C pressure

-0.05 0.14 0.159 0.118 0.021 -0.247
Eukaryota; NA

(0.76) (0.39) (0.33) (0.47) (0.90) (0.13)

0.168 0.185 -0.155 0.046 -0.001 0.033
Eukaryota; Arthropoda; Maxillopoda; NA

(0.31) (0.26) (0.34) (0.78) (1.00) (0.84)

-0.314 -0.078 0.353 0.133 0.028 -0.121
Eukaryota; Annelida; Polychaeta; Capitellida; NA

(0.05) (0.64) (0.028) (0.42) (0.87) (0.46)
Eukaryota; Dinoflagellata; Dinophyceae; NA -0.195 -0.088 0.115 0.08 0.078 0.294
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Eukaryota; Diatomea; Mediophyceae; Thalassiosira; NA

Eukaryota; Protalveolata; Syndiniales_Group_l;
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Eukaryota; Arthropoda; Maxillopoda; Calanoida;

uncultured_eukaryote

Eukaryota; Incertae_Sedis; Telonema_antarcticum
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(0.23)
0.309
(0.06)
-0.028
(0.86)
0.209
(0.20)
0.225
(0.17)
-0.339
(0.035)
0.031

(0.85)

(0.59) (0.48)
0.025 -0.455
(0.88) (0.004)
0.069 0.111
(0.68) (0.50)
0.215 -0.121
(0.19) (0.46)
0.113 -0.008
(0.49) (0.96)
0.372 0.52

(0.020) (0.001)

0.238 0.053

(0.14) (0.75)

(0.63)
-0.288
(0.08)
0.03
(0.86)
-0.093
(0.57)
0.17
(0.30)
0.262
(0.11)
-0.039

(0.81)

(0.64)
-0.043
(0.80)
0.036
(0.83)
-0.107
(0.52)
-0.22
(0.18)
-0.082
(0.62)
-0.144

(0.38)

(0.07)
0.041
(0.80)
-0.095
(0.56)
-0.132
(0.42)
-0.313
(0.05)
0.079
(0.63)
-0.105

(0.53)
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3.5 Discussion

The RoCSl operated continuously and unattended overnight, enabling the safe sample
collection during less favourable working hours. After installation, a single operator could easily
program the system and load new cartridges. The RoCSl reliably injected preservative to all
samples, ensuring DNA stability for up to two months (Chapter 4). This preservation kept

samples viable for analysis even when transfers to the long-term freezer storage were delayed.

Previous high-resolution biomolecular time-series studies with daily sampling have identified
cohesive, short-lived coastal plankton communities (Martin-Platero et al., 2018). In the highly
dynamic, macrotidal Solent estuary, we hypothesised that the signal from daily eDNA sampling
could be influenced by tidal mixing of riverine waters, as has been observed with water quality
measures (Nascimento et al. 2021). Such mixing could confound short-lived communities with
Lagrangian cohesive communities associated with tidal water movement. However, in this four-
day neap-tide time-series, we observed no significant correlation between plankton

communities and tidal height.

These results suggest that long-term biomolecular time-series with daily sampling at a fixed
time of day in a macrotidal estuary are unlikely to be biased by the stage of the tidal cycle during
neap tides. However, further research involving high-resolution (bi-hourly) sampling over a full
lunar cycle, encompassing both spring and moderate tides, is needed to determine whether this

finding holds true during other tidal phases.

3.5.1 RoCSI Operations

The RoCSl prototype used in this study was designed solely for demonstration purposes and
later retrofitted into a waterproof housing for this mission. Consequently, two issues associated
with the retrofitted waterproof housing arose during the time-series. The pressure sensor, used
to prevent clogging of filter membranes, malfunctioned resulting in six samples being excluded
from the analysis. The fault was identified during the daily sample exchange, and the maximum
pressure limit was manually overridden to continue the project. Exceeding the 800 mbar
pressure threshold may have caused lysis of some microbial cells. However, the impact of cell
lysis during metabarcoding sample collection remains unclear. Notably, consistent
metabarcoding results have been reported from citizen science eDNA sampling, where filtration
pressures will vary between participants (Tattrup et al. 2021). This suggests that the effect of

“overpressure” samples on metabarcoding outcomes is likely to be minimal. However, further
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testing is needed to determine the maximum pressure the RoCSI system can withstand without

causing damage to its tubing and pump components.

Additionally, water infiltrated the retrofitted waterproof electronic housing at the end of the
mission, causing damage to the circuit board and memory card. Consequently, the final sample
could not be removed from the preservative engagement position, as the fault prevented
operations. In contrast, the commercially available RoCSI model has a submersible electronics
housing and has been pressure-tested to 6000 meters to avoid such leaks. This incident
highlighted the need for RoCSI to incorporate either a setting that would rotate the Geneva
wheel after the preservative has been added to the final sample, or a mechanical fix enabling
the user to manipulate the Geneva wheel manually. Implementing this fail-safe would allow for
the retrieval of all samples independently of laptop connectivity, a significant advantage in
remote or difficult operating environments. However, when using a bandolier to load cartridges
with this setting, it may be necessary to insert one or two dummy cartridges after the final

sample to ensure that the bandolier remains in place after the final sample has been released.

Due to the RoCSI malfunction at the end of the mission it was not possible to retrieve a final
blank sample from the device. A final blank sample is essential for characterising potential
contamination between samples, which can occur from residual water left in the lines between
samplings (approximately 10 ml). This type of contamination has been observed in previous
deployments of the RoCSlI prototype (Chapter 2). Consequently, the commercially available
RoCSI now includes an optional bleach flushing step specifically designed to mitigate such

contamination.

3.5.2 Drivers of biodiversity in high-resolution

An initial exploration of the dataset indicated that barometric pressure, although consistently
low throughout the time series, was significantly correlated with both alpha and beta diversity of
marine prokaryotes. This finding contrasts with other research in coastal microbial communities
such as (Trombetta et al., 2022), which reported no significant correlations between air
pressure and alpha or beta diversity in coastal microbial communities. Wind speed was
significantly negatively correlated with Pielou’s evenness among prokaryotes, with recorded
speeds ranging from light air to near gale on the Beaufort Wind Scale (1 - 31 knots). This is
supported by previous observations of decreased Pielou's evenness in coastal microbial
communities after hurricane events in the North Atlantic (Garrison et al., 2022). However,
associations between meteorological measures and marine ecology are less frequently
explored compared to water environmental variables, such as salinity, chlorophyll, and nutrient

concentrations.
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Eukaryotic alpha and beta diversity measures showed significant negative correlations with
water temperature. While temperature is widely recognised as an important driver of estuarine
communities (Lo et al., 2023; Nakane et al., 2008; Trombetta et al., 2022), the direction and
magnitude of its effect vary by region, time of year, and taxa involved. In macrotidal estuarine
environments such as the Solent, temperature covaries with salinity, turbidity and dissolved
oxygen due to mixing between freshwater and seawater (Gomez-Castillo et al., 2023; Onabule
et al., 2020). Therefore, the fluctuations in alpha and beta diversity may be impacted by a range

of independent or autocorrelated variables not measured in this study (Downie et al. 2024).

Differences in how environmental variables influence prokaryotic and eukaryotic alpha and beta
diversity may stem from difference in growth rates between the two groups. Prokaryotes
typically grow faster than eukaryotes (Lynch et al., 2022; Zubkov, 2014), allowing them to
respond more rapidly to short-term environmental fluctuations and making shifts in abundance
easier to detect. In contrast, eukaryotic populations adjust more slowly, so physical mixing
processes may contribute more to their observed dynamics. Moreover, such broad taxonomic
divisions likely encompass diverse and complex responses to environmental factors.
Subdividing these groups into functional groups may provide a clearer understanding of the

complex interactions at play.

No significant correlations were found between tidal height and diversity indices, and only one
of the most abundant taxa, Calanoida, showed a significant positive correlation (rs=0.372, p =
0.020). We initially expected high tide to strengthen the marine pelagic eDNA signal and low tide
to reflect more freshwater or benthic signals through sediment resuspension. Consistent with
this expectation, Calanoida, a predominantly pelagic group, exhibited a weak but significant
positive correlation with tidal height. Overall, however, tidal height was not a major driver of
variation in the eDNA signal, contrary to initial assumptions. In contrast, water temperature
correlated significantly with both prokaryotic and eukaryotic community composition,
suggesting that water mass properties have a greater influence. Given the complexity of
estuarine mixing, salinity observations may provide a more accurate proxy for tracking water

mass origin and its effect on the eDNA signal than tidal height alone.

The composition of the most abundant prokaryotes remained relatively consistent throughout
the study, except for Oleispira, which appeared to bloom in the latter half of the time series.
Oleispira is an obligate hydrocarbonoclastic bacterium, specializing in the metabolism of
hydrocarbons, and is known to bloom following pollution events (Gregson et al., 2020). Oleispira
populations can expand to comprise 80-90% of the total microbial community post-pollution
events (Harayama et al., 1999; Kasai et al., 2002). Ports interested in monitoring their

environmental impact may find these short-lived Oleispira blooms to be effective biological
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indicators of incoming ships with oil leaks or poor environmental practices, though the current
study has limited environmental contextual information to evaluate the likelihood of a local

pollution event.

The composition of the most abundant eukaryotes demonstrated more variability throughout
the time series. The observed spike in calanoid sequences might be attributed to partial or
entire calanoids being trapped on the filter. Despite efforts to remove visible organisms from
filters before DNA extraction, some filters accumulated a considerable amount of detritus due
to water turbidity, consequently some whole or large fragments of organisms may have
inadvertently been included. Even though calanoids are small, their multicellularity means that
their genetic material can disproportionately dominate sequence data compared to the marine
microbiome. To avoid this, the feasibility of using a pre-filter or a series of filters could be

explored in future iterations of the RoCSlI.

Moreover, the variability observed in the eukaryotic data may be partly due to insufficient
sample volumes, as larger volumes are generally required for effective analysis of metazoans
(Ohnesorge et al., 2023). To address this, the sampling regime could be adjusted to allow for
consecutive filtration of multiple samples until the required volume is reached, with the filters
subsequently combined during downstream sample processing. Alternatively, switching from
0.22 pm to 0.45 pum Sterivex™ filters could facilitate the collection of larger volumes, particularly

when targeting larger taxa such as fish.

Much of our understanding of anthropogenic impacts on marine ecology has been derived from
micro- and mesocosm experiments, which often fail to accurately represent natural
communities (Reiber et al., 2022). To understand the real-world consequences of activities such
as pollutant release or alterations in water conditions, it is essential to monitor the marine
environments where these activities most frequently occur. Long-term, routine monitoring of
highly urbanised marine environments can provide the data needed to explore the cumulative
effects of anthropogenic activities. This study serves as a preliminary investigation into this
high-resolution temporal dataset, but there are many more potential avenues for data
exploration. For example, network analysis could be used to explore species co-occurrence
networks (Djurhuus et al., 2020), or wavelet analysis could be applied to explore the

periodicities and trends with the environmental variables(Martin-Platero et al., 2018).

When analysing long-term time series data from eDNA datasets, it is important to distinguish
short-term variability driven by tidal or diurnal cycles from broader longer-term trends.
Standardising sampling to the same time each day controls for diurnal effects but not tides,

while sampling at the same tidal stage controls for tides but not daily cycles. Therefore, high-
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resolution datasets such as this, carried out over a full lunar cycle can provide an opportunity to

disentangle these short-term dynamics and better interpret long-term trends.

3.6 Conclusion

Continuous monitoring of microbial communities in highly urbanised estuaries can yield crucial
insights into the effects of emerging anthropogenic stressors. Before the development of
autonomous samplers like the RoCSl, exploring this type of variability was impractical. Now it is
more feasible to include high-resolution temporal datasets to characterise short-term
dynamics, during the design phase of longer-term monitoring strategies. These preliminary
investigations can help determine the optimal sampling regime for biomolecular observatories,
which in turn would provide the evidence base for adaptive management strategies capable of

responding dynamically to environmental change.
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Appendix B  Supplementary Materials

B.1

Laboratory protocols

Modified AllPrep DNA extraction- QIAGEN w/ bead-beating:

Extract the RLT+ preservative from the Sterivex cartridge into labeled bead-beating tubes
with beads (2 per Sterivex sample).

Cut the Sterivex filter in half and put half into each labeled tube.

Bead beat for 1 min at 30 Hz. Repeat.

Use clean tweezers to squeeze liquid out of filters and throw them out. Spin tubes if the
beads aren’t at the bottom.

Transfer the homogenized lysate to an AllPrep DNA spin column. Centrifuge for 30 s at =
8000 x g.

Place the AllPrep DNA spin columnin a new 2 ml collection tube.

Add 500 pl Buffer AW1 to the AllPrep DNA spin column. Close the lid gently, and
centrifuge for 15 s at 2 8000 x g. Discard the flow through.

Add 500 pl Buffer AW2 to the spin column. Close the lid gently, and centrifuge for 2 min
at full speed to wash the spin column membrane. Carefully remove the AllPrep DNA spin
column from the collection tube.

Place the AllPrep DNA spin columnin a new 1.5 ml collection tube. Add 100 ul Buffer EB
directly to the spin column membrane. Incubate for 10 min at 65°C. Centrifuge for 1 min
at = 8000 x g to elute the DNA.

Repeat with the eluate. Incubate for 2 min at room temperature. Centrifuge for 1 min at=
8000 x g to elute the DNA.

Sequencing - Exeter Sequencing Facility completed the PCR indexing for the 16S rRNA and

18S rRNA gene amplicons as follows:

16S rRNA:

515F-Y-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGYCAGCMGCCGCGGTAA
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926R -GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCGYCAATTYMTTTRAGTTT

18S rRNA:

1391F-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTACACACCGCCCGTC

EukBr-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGATCCTTCTGCAGGTTCACCTAC

Table 8 First round PCR amplification conditions

16S 18S

Temperature |[Time Repeat Temperature |Time Repeat
Initial 98°C 30s 1 98°C 30s 1
Denaturation
Denaturation |98°C 10s 30 98°C 10s 35
Annealing 54°C 30s 30 69°C 30s 35
Extension 72°C 30s 30 72°C 30s 35
Final Extension | 72°C 5 min 1 72°C 5 min 1
Hold 4°C hold 1 4°C hold 1

Primer mix:

12.5ul NEB NEXT ULTRA I QS

S5ul F primer 1uM

S5ul R primer 1uM

2.5ultemplate DNA/RNA ~4nM

PCR2 indexes

This step attaches dual indices and lllumina sequencing adapters using the Nextera XT Index Kit

(IWlumina #FC-131-1002, £597.99) Four identical reactions for each sample,

DNA 1l
Water 14 pl
Nextera XT Index Primer 1 (N7xx) 5pul
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Nextera XT Index Primer 2 (S5xx) 5pul
2x NEBNext PCR reaction mix 25 ul
Total 50 ul

Gently pipette up and down 10 times to

mix.

Cover the plate with Microseal 'A'’

Centrifuge the plate at 1,000 x g at 20°C for 1 minute.

Perform PCR on a thermal cycler using the following program:

95°C 3min

95°C 30seconds

55°C 30seconds 4 cycles
72°C 30seconds

72°C 5min

4°C Hold

PCRcleanup 2:

Bring the AMPure XP beads to room temperature for 30 minutes before use.

Centrifuge the plate at 280 x g at 20°C for 1 minute to collect condensation.

Vortex the AMPure XP beads for 30 seconds.

Add 35 pl of AMPure XP beads to each well.

Gently pipette mix up and down 10 times.

Incubate at room temperature without shaking for 5 minutes.

Place the plate on a magnetic stand for 2 minutes or until the supernatant has cleared.

Remove and discard the supernatant.
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Wash the beads with freshly prepared 80% ethanol as follows:

Add 200 pl of freshly prepared 80% ethanol to each sample

well.

Incubate the plate on the magnetic stand for 30 seconds.

Carefully remove and discard the supernatant

Do a second Ethanol wash.

Allow the beads to air-dry for 3 minutes

Remove the plate from the magnetic stand.

Add 27.5 pl of 10 mM Tris pH 8.5 to each well of the plate.

Pipette mix up and down 10 times until beads are fully resuspended, changing tips after each

column.

Incubate at room temperature for 2 minutes.

Place the plate on the magnetic stand for 2 minutes or until the supernatant has cleared.

Transfer 25 pl of the supernatant to a new 96-well PCR plate.

Check on Glowmax

Use 2ul of library
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B.2 Rarefaction curves
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Figure 20 Prokaryotic rarefaction curves for observed features and choa1 index. Black dashed

line indicates that samples were rarefied to 61400 sequences.
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Chapter4 Comparison of liquid preservatives for the long-

term (2-month) preservation of nucleic acids

4.1 Abstract

Autonomous biomolecular samplers, such as the Robotic Cartridge Sampling Instrument
(RoCSl), rely on liguid preservatives to stabilize biomolecules, such as DNA and RNA, for
subsequent ex-situ analysis. In this study, we compare four liquid preservatives, RNAlater®
(Inivitrogen), RLT+ buffer (Qiagen), DNA/RNA Shield (Zymo Research), and Nucleic Acid
Preservative (NAP), against samples that were flash-frozen and subsequently stored at -80°C.

Results showed that both DNA and RNA can be preserved for two months with liquid
preservatives, revealing comparable community composition and alpha diversity measures to
flash frozen samples. DNA/RNA Shield (Zymo Research) was the only preservative to
successfully preserve both DNA and RNA with yields sufficient for metabarcoding analysis.
DNA/RNA Shield (Zymo Research) also produced the highest DNA yields and ASV counts from
DNA metabarcoding. However, ASV counts from RNA metabarcoding were lower with DNA/RNA
Shield (Zymo Research) compared to both RNAlater® (Qiagen) and NAP, with significant
differences in beta diversity. This indicates that when RNA is the primary focus of an
investigation, RNAlater® (Qiagen) or NAP may be preferable to DNA/RNA Shield (Zymo Research)
for long-term (two-month) preservation.

Understanding the temporal limits of liquid preservation methods is essential to maximize the
utility of biomolecular samplers. This knowledge allows for extended intervals between sample
exchanges, enabling sampling throughout challenging conditions, such as adverse weather
events, remote locations, or outside normal working hours. Thereby, greatly increasing our
capacity for consistent, high-resolution temporal and spatial biological observations.

4.2 Introduction

DNA and RNA are the building blocks of life and analysing them helps to reveal the structures
and functions of environmental microbial and metazoan communities. Environmental DNA
(eDNA) is used to identify and quantify the presence of different organisms within a sample
(Deiner et al., 2017; Taberlet et al., 2018). While environmental RNA (eRNA), provides insight
into gene expression and the metabolic activities of these organisms (Carradec et al., 2018;
Tang et al., 2020). It has also been proposed that additional metabarcoding of eRNA can help in
distinguishing the most recent or live proportion of a community (Cristescu, 2019; Jo, 2023;
Veilleux et al., 2021), with one study finding that eRNA analyses better correlates with

morphological indices of diversity when compared with eDNA (Pochon et al., 2017).

Liquid preservation of environmental DNA and RNA is crucial for maintaining the integrity of

these biomolecules in fieldwork where access to frozen storage is lacking (Edgcomb et al.,
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2016; Gray et al., 2013). Autonomous technologies such as the Robotic Cartridge Sampling
Instrument (National Oceanography Centre) and the Environmental Sample Processor
(Monterey Bay Aquarium Research Institute) utilise liquid nucleic acid preservatives to minimise
degradation, denaturation, and oxidation of eDNA and eRNA (Chapter 2; Truelove et al., 2022;
Wang et al., 2021; Yamahara et al., 2019). In situ preservation immediately after filtration
ensures the most accurate molecular data by stabilising biomolecules before the
environmental changes that occur during sample retrieval, such as depressurisation and
warming (Edgcomb et al., 2016). There are several commonly used preservative methods that
can be used for the preservation of eDNA and eRNA, each with its own set of benefits and

limitations.

Flash-freezing in liquid nitrogen or dry ice is commonly used as a best practice for rapidly
preserving DNA and RNA, effectively preventing degradation (Lépez-Escardd et al., 2018; Pratte
& Kellogg, 2021). However, this technique is not intended for long-term preservation and
requires subsequent storage at -80°C in cryogenic facilities. Additionally, flash-freezing is
impractical for most in-situ environmental research and is incompatible with autonomous
technologies. Alternatively, liquid nucleic acid preservatives are often more practical for fixing

and preserving nucleic acids in-situ.

RNAlater® (Invitrogen) is a widely used preservative, that can stabilize both RNA and DNA in a
single solution (Camacho-Sanchez et al., 2013; Gorokhova, 2005; Preston et al., 2024; Truelove
et al., 2022). RNA is a more labile molecule than DNA and is considered more difficult to
preserve (Littlefair et al., 2022). While RNAlater® (Invitrogen) is specifically designed to preserve
RNA from tissue samples and cultured cells (Life Technologies Corporation 2012), many studies
have found that RNAlater® (Invitrogen) is also suitable for DNA preservation (Miya et al., 2016;
Truelove et al., 2022; Yamahara et al., 2019). The high stability of RNA in RNAlater® (Invitrogen)
make it an attractive option for metatranscriptomics studies, which seek to understand gene
expression within environmental samples. However, RNAlater® (Invitrogen) is not designed for
long-term sample storage and has previously been found to be insufficient for long term storage

between 10-50 weeks (Wietz et al., 2022).

Autonomous eDNA sampling devices can significantly enhance biodiversity monitoring by
improving both temporal and spatial resolution, particularly when deployed at long-term time-
series stations. Given the remoteness of some monitoring stations and limited maintenance
access opportunities, liquid preservatives must be suitable for extended periods. However,
most commercial liquid nucleic acid preservatives are recommended for use within a short
duration of up to two weeks, presenting a challenge for long-term, autonomous eDNA

monitoring.
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In this study, we evaluated the efficacy of four liquid nucleic acid preservatives for long-term
(two-month) preservation of eDNA and eRNA, comparing their performance against flash-frozen
samples. The samples were filtered and preserved on Sterivex™ (Merck Millipore) cartridges,
then stored submerged in the preservative within custom-designed leur lock cartridges. These
cartridges are specifically designed for autonomous deployments of the RoCSI eDNA
autosampler. We analysed the samples for total nucleic acid recovery and measures of alpha-

and beta-diversity.

4.3 Material and methods

4.3.1 Preservatives

RNALlater® (RL): An Invitrogen reagent designed to stabilize RNA in tissue samples for 1 day at
37°C, 1 week at 25°C, 1 month at 4°C, or indefinitely at -20°C (Sigma-Aldrich, 2016)

Buffer RLT Plus (RLT): A Qiagen lysis buffer containing guanidine-isothiocyanate, which is
designed to denature biological samples inactivating DNases and RNases (Qiagen, 2024). The

buffer is the initial lysis buffer for use with the RNeasy and AllPrep extraction kits.

DNA/RNA Shield (Shield): A Zymo Research reagent designed to preserve nucleic acids in a
range of biological sample types. It is specified to stabilize RNA for at least 1-month in ambient
temperatures (4°C- 25°C) and DNA for at least 2 years in ambient temperature (4°C- 25°C), with

indefinite DNA and RNA stabilisation when frozen (<-20°C; Zymo Research International, 2024).

Nucleic Acid Preservative (NAP): A buffer consisting of EDTA disodium salt dihydrate, sodium
citrate trisodium salt dihydrate, and ammonium sulphate, that has been proven effective at
preserving RNA and DNA in tissue samples for 2 months at ambient temperature. The NAP
buffer was prepared in an amplicon and culture free molecular lab following Camacho-Sanchez

et al. (2013) and autoclaved prior to use. (See full protocol in Appendix C.1)

4.3.2 Sample Collection

On November 14, 2019, at 14:02, a 15-liter sample of seawater was collected from a seawater
tank on the dock of the National Oceanography Centre, Southampton, UK. Seawater supply to
the tank was approximately 200ml/second from 1m depth at the National Oceanography Centre
pontoon, with a 5mm net pre-filter to prevent larger detritus. Samples were filtered in an
amplicon and culture free molecular lab on site within 4 hours of collection. Each replicate

sample had 500 ml of seawater filtered through 0.22pum Sterivex™ filters, using a peristaltic
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pump. Prior to filtration, the seawater underwent thorough mixing by inversion, and throughout
the filtration process, the container was agitated every 5 minutes to prevent settling. All
equipment was either UV cleaned or soaked with 10% bleach and rinsed with milli-Q water prior

to use.

4.3.3 Sample Preservation

Each sample had 4ml of preservative added immediately after filtration. The RL, Shield, RLT and
NAP preservatives were added to 5 replicate Sterivex™ filter samples and stored in RoCSI
cartridges in a ziplock bag in the laboratory at room temperature (17°C -21°C) for 2 months
before being stored at -80°C. The five control group samples were flash frozen immediately after

filtration in liquid nitrogen and stored at -80°C.

4.3.4 Nucleic acid purification

DNA and RNA were simultaneously purified from FF, RL, RLT and NAP samples using a modified
protocol for the Qiagen AllPrep DNA/RNA Mini Kit, which included an additional Trizol-
chloroform RNA extraction prior to the RNeasy on-column extraction (For full protocol see
Appendix C.1). Shield-preserved samples were extracted using the ZymoBIOMICS DNA/RNA
Miniprep Kit, according to manufacturer recommendations. DNA and RNA yields were

measured using Qubit High Sensitivity DNA and RNA Assay Kits.

4.3.5 Metabarcoding

Prior to amplification two of the control group FF samples were lost due to laboratory error. For
RNA extracts, cDNA was synthesised using the LunaScript® RT SuperMix Kit (E3010) kit (for full
protocol see Appendix C.1). For both DNA and cDNA, the 16S rRNA and the 16S rRNA gene
region was amplified using 515F-Y (5'-GTGYCAGCMGCCGCGGTAA) forward and 926R (5'-
CCGYCAATTYMTTTRAGTTT) reverse primers (Parada et al., 2016). The 18S rRNA gene region was
amplified using 1391F (5'-GTACACACCGCCCGTC) forward and EukBr (5'-
TGATCCTTCTGCAGGTTCACCTAC) reverse primers (Amaral-Zettler et al., 2009). Primers were
modified with overhang sequences and a second, limited cycle PCR was used to add barcodes
and sequencing adaptors, as specified in the Illumina sequencing library preparation protocol
(IWlumina, 2013). PCR indexing, RT-PCR and sequencing was completed at Exeter Sequencing

Facility (For full protocol see Appendix C.1).
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4.3.6 Bioinformatic Processing

The raw sequencing data was initially processed by removing adaptor sequences and
sequences with less than 250 bp (Martin, 2011), raw sequence data are available at European
Nucleotide Archive (accession number: PRIEB97124). Paired-end joining, denoising and
taxonomic assignment was performed using QIIME2 release 2022.2 (Bolyen et al., 2019a). In
brief, amplicon sequences variants (ASVs) were produced using DADA2 denoising and pair-end
joining (Callahan et al., 2016). Phylogenetic trees were built using fasttree and mafft alignment
(Bolyen et al. 2019; Price et al. 2010; Katoh et al. 2013). Taxonomic classification was performed
with Naive Bayes classifier and classify-sklearn method with the SILVA version 138.1 database,
clustered at 99% sequence similarity as a reference (Bokulich et al., 2018; Bolyen et al., 2019b;
Gurevich et al., 2013; Pedregosa et al., 2011; Pruesse et al., 2007; Rognes et al., 2016). For full

scripts see GitHub rms1u18/RoCSI_Preservatives.

4.3.7 Data Analysis

All data analysis were conducted in Rv4.3.2 (2023-10-31). The ggplot2 v3.5.0 (Wickham, 2016)
and ggpubr v0.6 (Kassambara, 2023) packages were used to produce boxplots to visualise
difference in nucleic acid yields and alpha diversity measures between preservative groups. The
Kruskal-Wallis test for non-parametric data was used to test for significant differences between
preservatives for both the nucleic acid yields and alpha diversity measures, with the Wilcoxon

rank sum test for pairwise comparison between each preservative group.

To visualise beta diversity, ASV data were rarefied and PCoAs were plotted based on weighted
UniFrac distance matrices using the phyloseq v1.46.0 package (McMurdie & Holmes, 2013).
PERMANOVA and pairwise comparisons were also based on the weighted UniFrac distances of
the rarefied ASV data with Bonferroni corrected p-values to test for significant differences in
community composition between preservatives, using the vegan v2.6.4 package (Oksanen et
al., 2024). Taxonomic heatmaps and barplots were produced using the giime2r v0.99.6 package

(Bisanz, 2018). For full scripts see GitHub rms1u18/RoCSI_Preservatives.

4.4 Results

4.4.1 Nucleic Acid Yield

After two months preservation at room temperature, the preservative with highest DNA yields
was Shield with an average of 6.19 ng/ul (+0.49 SD), followed by RLT (0.94ng/ul +0.47 SD), then
FF (0.59ng/pl £0.16 SD). RNAlater and NAP had very low yields (0.08 ng/ul £0.02 SD and 0.07
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ng/ul £0.04 SD, respectively) that were insufficient for further DNA metabarcoding. The
preservative with highest RNA yield was NAP with an average of 3.09 ng/ul (+0.14 SD), followed
closely by RNAlater (3.04 ng/ul £0.47 SD), then FF (1.33 ng/pl £0.23 SD) and Shield (0.92 ng/pl
+0.14 SD). No detectable RNA was preserved in the RLT samples (see Table 9).

Table 9 Average DNA and RNA yields with * standard deviation (+SD), for each preservative type.

DNA RNA
Preservative Average (ng/ul) +SD Preservative Average (ng/ul) +SD
Shield 6.19 0.49 NAP 3.09 0.14
RLT 0.94 0.47 RNAlater 3.04 0.47
FF 0.59 0.16 FF 1.13 0.23
RNAlater 0.08 0.02 Shield 0.92 0.14
NAP 0.07 0.04 RLT 0.00 0.00

There was a significant difference for both the DNA and RNA yields between preservative
groups. Pairwise comparisons using the Wilcoxon rank sum test revealed significant pair wise
difference between the DNA yields for all preservative pairs except the FF - RLT groups (p-value
=0.278) and NAP - RNAlater groups (p-value = 0.917; Figure 22; Table 10). However, the
interpretation of these results should be treated with caution as the Kruskal-Wallis is desighed
to test for significant differences between groups with a minimum of 5 replicates and the FF
group only contained 3 replicates for DNA and 2 replicates for RNA. All other preservative

groups contained 5 replicates.
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Figure 22 Box plots showing DNA yields in red and RNA yields in blue.
Table 10 Results from Kruskal-Wallis test results showing differences in nucleic acid yields
between preservative groups, with pairwise comparisons performed using Dunn's

test. Significant differences (p < 0.05) are highlighted in bold.

DNA RNA
Kx?=19.329, df = 4, p-value = K x*=18.678, df = 4, p-value =
0.0006 0.0009
FF NAP RLT RNAlater FF NAP RLT RNAlater
NAP 0.045 - - - 0.119 - - -
RLT 0.278 0.016 - - 0.050 0.016 - -
RNAlater 0.045 0.917 0.016 - 0.119 0.690 0.016 -
Shield 0.045 0.016 0.016 0.016 0.212 0.016 0.016 0.016

4.4.2 Alpha Diversity

Observed number of ASVs: Kruskal-Wallis tests showed no significant difference in observed

no. of ASVs from 16S or 18S rRNA gene metabarcoding (DNA; Figure 2A) or from 16S or 18S rRNA
metabarcoding (RNA; Figure 2B).

Shannon’s diversity: Initial Kruskal-Wallis test found a significant difference in Shannon’s

diversity between preservative groups (K =9.40, df = 2, p=0.009) from 16S rRNA gene
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metabarcoding (DNA). Further pairwise testing revealed that the significant difference was due
to a significant difference between the RLT and Shield groups (p=0.048; Figure 2A). No other
significant differences in Shannon’s diversity were identified from 18S rRNA gene (DNA; Figure

2A) or 16S and 18S rRNA (RNA) metabarcoding (Figure 2B; Table 11).

Simpson’s evenness: Initial Kruskal-Wallis test also revealed a significant difference in
Simpson’s evenness between preservative groups (K =8.3341, df =3, p = 0.0155) from 16S rRNA
gene (DNA) metabarcoding. Subsequent pairwise testing also revealed a significant difference
between RLT and Shield samples (p=0.048; Figure 2A). Akin to Shannon’s diversity, no
significant differences were identified from 18S rRNA gene (DNA; Figure 2A) or 16S and 18S
rRNA (RNA) metabarcoding (Figure 2B; Table 11).

124



Chapter 4

A ° Observed Shannon Simpson
5 2200 .
§ 5.4- 0.982
= ‘ 0.981 =
> 2000 534 e o
G ‘ 0.980 - . w
: ==
2 i 0.979 1
0 1800+ B ;
g < ' ' ' S11 % J ; 0.977 : ; !
P
0 ° Observed Shannon Simpson
= o4 L ] [
a 750 5.0 — I
« 0.95 1
2 7001 - [y
454 i
> 0.90 %
2 650
q>) 4.0 0.854
a .
o 6004 0.80
< 3.54 L4 I
2 S Sl SR S I T
m o) g_) m sl w m D w
T T LT
z = a
B © Observed Shannon Simpson
§ 600 4 5.0 I 0.98 - * *
] 4.54
= * 0.96 1 . [y
> 4001 ol * a
] .
§ 0.94
8 2004 3.5 wmfjem
2 . 3.0 0921
< % [ ] L] [ ]
=
-4 Observed Shannon Simpson
£ 2000
2 0.9900 1
2 > =
= 15001 0.9875 =
: &
[Z] o
S 53 0.9850 1 !
2 10001
* 5.1 0.9825
2 o
U — —— . S I
= 5§ 2 2 T 5 2 2 T s 2 2
e = @ o = @ T > @
=] a o [=% o a
g ) g
Preservative B FF E3 RLT I shield B NAP B RNAlater

Figure 23 A Box plots indicating the alpha diversity measures (observed number of ASVs,
Shannon’s diversity, and Simpson’s evenness) from 16S and 18S rRNA gene
metabarcoding (DNA). B Box plots indicating the alpha diversity measures
(observed number of ASVs, Shannon’s diversity, and Simpson’s evenness) from 16S
and 18S rRNA metabarcoding (RNA).

Table 11 Results from the Kruskal-Wallis test for significant differences in alpha diversity

measures between preservative groups, based on metabarcoding of the 16S and
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18S rRNA gene (DNA) and 16S and 18S rRNA (RNA), with pairwise comparisons

using Dunn’s test. Bold text indicates significant differences (p < 0.05).

DNA RNA
16S 18S 16S 18S
Kruskal-KW 5.4945 2.9363 Kruskal-KW 3.902 7.5098
df 2 2 df 3 3
p 0.0641 0.2304 p 0.2722 0.05731
FF-RLT 0.57 0.57 FF vs NAP 0.29 0.57
g
§ FF-Shield 0.11 0.57 FF vs RNAlater 0.29 0.19
o]
@)
RLT-Shield 0.23 0.45 FF vs Shield 0.76 0.86
NAP vs RNAlater 0.84 0.83
NAP vs Shield 0.84 0.17
RNAlater vs Shield 0.84 0.17
Kruskal-KW 9.3978 2.3209 Kruskal-KW 6.2392 5.4902
df 2 2 df 3 3
p 0.009105 0.3133 p 0.1005 0.1392
FF-RLT 0.071 0.38 FF vs NAP 0.27 0.38
S FF-Shield 0.054 0.38 FF vs RNAlater 0.27 0.29
o
RLT-Shield 0.048 1 FF vs Shield 0.38 0.29
NAP vs RNAlater 0.27 0.84
NAP vs Shield 0.27 0.46
RNAlater vs Shield 0.27 0.5
§ Kruskal-KW 8.3341 4.8352 Kruskal-KW 4.6745 8.0745
o
=
n df 2 2 df 3 3
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p 0.0155 0.08914 p 0.1972 0.0445
FF-RLT 0.25 0.11 FF vs NAP 0.69 0.14
FF-Shield 0.054 0.11 FF vs RNAlater 0.45 0.14
RLT-Shield 0.048 1 FF vs Shield 0.57 0.14
NAP vs RNAlater 0.45 0.84
NAP vs Shield 0.57 0.14
RNAlater vs Shield 1 0.18

4.4.3 Beta diversity

DNA: Initial PERMANOVA revealed a significant difference in community composition between
16S and 18S rRNA gene metabarcoding of DNA samples. However, pairwise testing revealed no
significant differences between any preservative groups after using Bonferroni adjusted p values

(Figure 24A & B; Table 12).

RNA: PERMANOVA test for significant differences in community composition revealed a
significant difference between preservative groups from both 16S and 18S rRNA metabarcoding.
Further, the pairwise testing of the 16S ASVs showed that the RL and Shield preservative groups
had significantly different community composition (p = 0.048). Pairwise testing for the 18S ASVs
revealed significant differences in the community composition between both NAP and Shield

(p=0.048) and RNAlater and Shield (p = 0.038; Figure 24C & D; Table 12).
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Figure 24 Principal coordinate analysis based on weighted UniFrac distances between samples
using rarefied data from metabarcoding of A the 16S rRNA gene (DNA), B the 18S
rRNA gene (DNA), C the 16S rRNA (RNA), and D the 18S rRNA (RNA).

Table 12 Results from PERMANOVA test for significant difference in beta diversity between
preservative groups, with pairwise comparisons and Bonferroni adjusted p values.

Bold text indicates significant p-values (p<0.05).

Df SumOfSqs R2 F Pr(>F) p.adjusted

DNA 16S Preservative 2 3.9E-05 0.54 5.93 0.007

Residual 10 3.3E-05 0.46
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Total 12 7.3E-05 1.00
FF-RLT 1 3.3E-05 0.65 11.33 0.019 0.057
FF-Shield 1 2.8E-05 0.57 8.10 0.027 0.081
RLT-Shield 1 2.7E-06 0.09 0.77 0.510 1.000
18S Preservative 2 29E-04 047 452 0.003
Residual 10 3.2E-04 0.53
Total 12 6.2E-04 1.00
FF-RLT 1 2.2E-04 0.60 8.90 0.019 0.057
FF-Shield 1 1.6E-04 0.43 4.60 0.018 0.055
RLT-Shield 1 7.6E-05 0.21 2.10 0.063 0.198
RNA 16S Preservative 3 1.2E-02 0.65 7.31 0.004
Residual 12 6.6E-03 0.35
Total 15 1.9E-02 1.00
FF-NAP 1 9.2E-04 0.19 1.14 0.267 1.000
FF-RNAlater 1 6.1E-04 0.33 2.43 0.094 0.564
FF-Shield 1 5.1E-03 0.76 12.62 0.067 0.400
NAP-RNAlater 1 1.2E-03 0.20 2.02 0.100 0.600
NAP-Shield 1 6.0E-03 0.53 7.90 0.025 0.150
RNAlater-Shield 1 9.3E-03 0.79 25.87 0.008 0.048
18S Preservative 3 2.0E-03 0.37 2.54 0.001
Residual 13  3.4E-03 0.63
Total 16  5.4E-03 1.00
FF-NAP 1 6.6E-04 0.33 2.46 0.043 0.258
FF-RNAlater 1 5.3E-04 0.27 1.89 0.057 0.342
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FF-Shield 1 7.8E-04 0.33 2.42 0.057 0.270

NAP-RNAlater 1 2.2E-04 0.11 1.01 0.444 1.000

NAP-Shield 1 9.4E-04 0.32 3.80 0.008 0.048

RNAlater-Shield 1 8.3E-04 0.29 3.25 0.006 0.036

Heatmap from the DNA extracts show very similar abundance across the 30 most abundant
features for both 16S and 18S rRNA gene metabarcoding (Figure 25A & B), except for the
polychaete Sabella spallanzanii which was low abundance in Shield samples and variable

abundance in FF and RLT samples (Figure 25B).
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Figure 25 Heatmaps based on rarefied data from A 16S rRNA gene metabarcoding and B 18S
rRNA gene metabarcoding of DNA samples.

Heatmaps from the RNA samples show more variability in the abundance of the top 30 most
abundant 16S features, with shield samples appearing the most dissimilar (Figure 26A). In
contrast, the 18S features from RNA samples show very similar patterns in abundance across
preservative groups, apart from Diatoms which had lower abundances in the FF samples (Figure

26B).
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Figure 26 Heatmaps based on rarefied data from A 16S rRNA metabarcoding and B 18S rRNA

metabarcoding of RNA samples.

4.5 Discussion

Liquid preservation of biological samples facilitates rapid stabilisation, thereby limiting the
degradation of nucleic acids. This is particularly crucial in warm climates or in environments
with high microbial productivity, such as coastal seas, where degradation rates of nucleic acids
are known to be elevated (Collins et al., 2018). The RoCSl applies a liquid preservative
immediately post-filtration to circumvent sample degradation and the Sterivex™ (Merck
Millipore) samples containing preservative, are secured within custom luer lock cartridges,
which were found to be suitability for long-term storage. No leakage or reduction in preservative

volume was observed after storage at 17-21°C for two months.
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Among various liquid preservative methods tested, only the Shield preservative yielded DNA and
RNA quantities sufficient for metagenomic sequencing (Figure 22). The ZymoBiomic extraction
kits streamlined the nucleic acid purification process, as no additional phenol-chloroform
modification were necessary to attain adequate RNA yields for sequencing. However, RNA
extracts preserved with Shield preservative exhibited more variability in high-abundance
bacterial taxa compared to those preserved by flash-freezing, RNAlater, and NAP methods
(Figure 26A). Manufacturer guidelines suggest that the Shield preservative maintains RNA at
ambient conditions for up to one month and DNA for at least two years (Zymo Research
International, 2024). While there were no significant differences in alpha diversity measures
between preservative groups for RNA samples (Figure 23B; Table 11), there were significant
differences in beta diversity (Figure 24C & D; Table 12). Our findings suggest caution in
exceeding one month for RNA preservation, especially when metabarcoding 16S rRNA, although
it remains a viable and easy-to-use option for shorter (S1month) deployments requiring both

DNA and RNA.

Both RLT buffer and Shield preservative were effective in preserving DNA extracts for up to two
months. These methods yielded higher DNA concentrations than flash-frozen samples, with
Shield averaging 5.6 ng/ul more and RLT averaging 0.35 ng/ul more than flash-frozen samples
(Figure 22; Table 9). Flash-frozen samples were preserved less than 30 minutes after
preservative addition to the liquid preservative samples, which is unlikely to account for the
observed degradation observed between Shield and flash-frozen samples. Consequently, we

recommend using the Shield preservative for long term (two-month) preservation of DNA.

The RLT buffer was also suitable for two-month preservation of DNA. However, the yields were
not as high as those obtained with the Shield preservative (Figure 22; Table 9). Furthermore,
although RLT acts as both a lysis buffer and preservative, any time saved by combining these
step was offset by the need to incorporate an additional trizol-chloroform step to the AllPrep

extraction protocol to produce sufficient yields for DNA sequencing.

RNAlater and NAP samples had insufficient DNA yields for sequencing (<0.1 ng/ul). These
findings corroborate Wu & Minamoto (2023) who also found that using the Qiagen ATL buffer
was preferential to using RNAlater for DNA preservation. The Qiagen ATL and RLT+ buffers are
both initial lysis buffers for the Qiagen DNeasy and AllPrep extraction kits, respectively. Using
these lysis buffers as preservatives offers cost and time efficiencies, eliminating the cost of
additional preservative solutions and time required for pre-extraction removal of the

preservative (Wu & Minamoto, 2023).
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For DNA extracts, high-abundance taxa exhibited consistent trends across various preservation
methods in both 16S and 18S rRNA gene metabarcoding. This aligns with (Gray et al., 2013), who
also found no clear difference between liquid preservatives for DNA preservation. No significant
pairwise differences in community composition were noted with Bonferroni-adjusted p-values,
however differences were observed prior to this adjustment (Table 12). PCoA plots suggest
minor differences between samples, warranting further investigation with additional replicates
to enhance the robustness of these findings (Figure 24A & B). Presently, we can infer that
reliable comparisons can be made between high-abundance taxa across datasets preserved
using Shield or RLT preservatives. However, caution is advised in interpreting differences in low-
abundance taxa between preservative groups due to the need for more replicates to ascertain

the authenticity of observed differences.

RNAlater and NAP preservatives resulted in higher RNA yields than flash freezing (Figure 22).
Although RNAlater is recommended for use at 25°C for up to one week (Sigma-Aldrich Co.
2016), Ottesen et al. (2011) found that RNAlater yielded high-quality RNA after 30 days at room
temperature. Furthering this, our results indicate that RNA of sufficient quality for sequencing
remains intact after two months at room temperature (17-21°C). NAP buffer also demonstrated
similar performance to RNAlater, with no significant differences in RNA yield (Figure 22; Table
10) or community composition (Figure 24C & D; Table 11). Therefore, NAP may be a feasible
alternative for projects with limited resources, requiring large preservative volumes, if the

necessary laboratory infrastructure is available.

However, RNAlater, NAP, Shield, and flash-frozen samples displayed variability in high-
abundance taxa for 16S rRNA metabarcoding of RNA extracts (Figure 26A), while 18S rRNA
metabarcoding results were more consistent (Figure 26B). This variability in 16S rRNA
metabarcoding results might be attributable to sample degradation, suggesting that exceeding
the 30-day RNA preservation period observed by Ottesen et al. (2011) should be approached
with caution, particularly when using longer barcode regions like the 16S marker (~563bp),
which are more susceptible to degradation (Wei et al., 2018; Perry et al., 2024). Further research
with additional time points is needed to establish the upper limit for RNA preservation with

liquid preservatives.

The enhanced RNA yields from liquid preservation when compared to flash freezing align with
Edgcomb et al. (2016), concluding that in-situ liquid RNA preservation is preferred over flash
freezing. In situ liquid preservation via autonomous collection devices like the Microbial
Sampler-Submersible Incubation Device and the RoCSI enables immediate nucleic acid

stabilisation, thereby mitigating the impact of environmental changes encountered during
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sample collection, such as pressure and temperature fluctuations, which can affect RNA

expression (Edgcomb et al., 2016; Feike et al., 2012).

Some larger eukaryotes, such as Sabella spallanzanii and the class Maxillopoda, showed
greater variability across DNA samples (Figure 25B), which may be due to the presence of tissue
fragments retained on the filter. This variability appeared less pronounced for Maxillopoda in
RNA samples (Figure 26B), potentially due to the faster degradation of RNA within these

fragments. However, additional replicates are needed to confirm this trend.

Interestingly, heatmaps of the 30 most abundant taxa suggest that diatoms may be
underrepresented in both RNA and DNA samples that are flash frozen without a liquid
preservative (Figure 25B & Figure 26B). The cause is unclear but considering that diatoms are a
major group frequently detected by visual methods, these results highlight the importance of

adding a liquid preservative to ensure their detection.

The findings from this study are limited to inshore Coastal Observatories such as the Western
Channel Observatory (WCO), which are generally accessible but may become unreachable
during periods of adverse sea conditions. Further research is needed to assess the
effectiveness of liquid preservatives beyond two months, particularly for open ocean moorings
that are only serviced annually (e.g. Porcupine Abyssal Plain; PAP-SO). Future studies should
incorporate more replicates and samples extracted at multiple time points to better define the
temporal limits of liquid nucleic acid preservation. Additionally, liquid preservatives are typically
tested under stable temperature conditions, but autonomous sampling devices experience
fluctuating environmental conditions such as temperature and pressure. Understanding the
impact of these variables on eDNA/RNA integrity and recovery will improve the reliability of

biomolecular analyses from autonomously collected samples.

4.6 Conclusion

This study demonstrates the effectiveness of liquid preservation methods for stabilising nucleic
acids in environmental samples. The Leur-lock cartridges designed for the RoCSlI provided
secure containment for up to two months. Among the preservatives tested, Shield was the most
effective for DNA preservation, offering high DNA yields and ease of use, while RNAlater and
NAP were the best suitedfor RNA preservation. However, variability in high-abundance bacterial
taxa detected via16S rRNA metabarcoding indicate that two months may be approaching the
temporal limit for RNA preservation, particularly for longer barcode regions. Therefore, when
both RNA and DNA are required from the same sample, we recommend using the shield

preservative and limiting the preservation time to one month prior to freezing, in line with
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manufacturer guidelines. Selecting the optimal liquid preservation strategy, based on the
nucleic acid type, storage duration before freezing, and, potentially, barcode length, ensures
data reliability. Taking these steps to ensure reliable data from autonomously collected
samples also supports net-zero science goals by enabling longer deployments and reducing

reliance on ship-based sampling for biodiversity observations.
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Appendix C Supplementary Material

C.1

Laboratory protocol

Modified AllPrep DNA/RNA extraction- QIAGEN w/ bead-beating

Add 700 pl RLT (with B-ME) and beads to labeled bead-beating tubes (2 per sterivex
sample).

Cut the Sterivex filter in half and put half into each labeled tube.

Bead beat for 1 min at 30 Hz. Repeat.

Use clean tweezers to squeeze liquid out of filters and throw them out. Spin tubes if the
beads aren’t at the bottom.

Transfer the homogenized lysate to an AllPrep DNA spin column. Centrifuge for 30 s at =
8000 x g.

Place the AllPrep DNA spin column in a new 2 ml collection tube (supplied), and store at
room temperature (15-25°C) or at 4°C for later DNA purification. Use the flow-through
for RNA purification

RNA

Add 600 pl Trizol to the flow through, cap tube tightly and vortex for 30 seconds.
Centrifuge for 10 min at 12000 x g at 4°C. RNA remains in the aqueous phase.

Transfer agueous phase (~60% of TRI volume used in the lysis) to a new tube.

Add 1/5 of the volume of chloroform™ (without isoamyl alcohol). Vortex for 15 sec.
Incubate at room temperature for 5-10 min.

BE CAREFUL with chloroform. It drips from the pipette tip so keep tube close to the bottle opening when
adding.

Centrifuge for 10 min at 12000 x g at 4 °C. RNA remains in the aqueous phase. DNA and
proteins are in the interphase and organic phase.

Transfer agueous phase (~60% of TRI volume used in the lysis) to a new tube.
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e Add 1/2 volume of the aqueous phase 100% ethanol. Vortex immediately at maximum
speed for 5 seconds to avoid RNA precipitation.

On-column extraction

e Transfer 700 pl of the sample to the RNeasy spin column. Centrifuge for 15 s at = 8000 x
g. Discard the flow-through. Repeat for the rest of the sample volume

e Add 700 pl Buffer RW1 to the RNeasy spin column (BE SURE to pipette against the walls
of the column!). Centrifuge for 15 s at 2 8000 x g to wash the spin column membrane.
Carefully discard the flow-through completely.

e Add 500 pl Buffer RPE to the RNeasy spin column (BE SURE to pipette against the walls
of the column!). Close the lid gently, and centrifuge for 15 s at = 8000 x g to wash the
spin column membrane. Discard the flow-through.

e Add 500 pl of 80% ethanol and centrifuge for 2 min at= 8000 x g

o Transfer the Filter Cartridge to a new collection Tube. Centrifuge for 5 min at full speed
to dry the membrane

e Place the columninanew 1.5 mlcollection tube. Add 50 pl of RNase-free water to the
filter column. Incubate at room temperature for 1 min and centrifuge for 1 min ats at=
8000 x g.

e Repeat using the eluate.

DNA

e Add 500 pl Buffer AW1 to the AllPrep DNA spin column. Close the lid gently, and
centrifuge for 15 s at 2 8000 x g. Discard the flow through.

e Add 500 pl Buffer AW2 to the spin column. Close the lid gently, and centrifuge for 2 min
at full speed to wash the spin column membrane. Carefully remove the AllPrep DNA spin
column from the collection tube.

e Place the AllPrep DNA spin columnin a new 1.5 ml collection tube. Add 100 pl Buffer EB
directly to the spin column membrane. Incubate for 10 min at 65°C. Centrifuge for 1 min
at = 8000 x g to elute the DNA.

e Repeat with the eluate. Incubate for 2 min at room temperature. Centrifuge for 1 min at=
8000 x g to elute the DNA.

cDNA synthesis

Protocol for LunaScript® RT
SuperMix Kit (E3010)

1. Mix components briefly and spin

down if necessary.

2. Prepare cDNA synthesis reaction as

described below:
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20 pl
COMPONENTS REACTION FINAL CONCENTRATION
LunaScript RT SuperMix (5X) 4l 1X
RNA Sample 8 ul (upto 1 pg)*
Nuclease-free Water 8 ul
20 ul
For no-RT control reaction, mix the
following components:
20 pl
COMPONENTS REACTION FINAL CONCENTRATION
No-RT Control Mix (5X) 4 ul 1X
RNA Sample 0
Nuclease-free Water to 20 pl
*Up to 1 pgtotal RNA, 1 uyg mRNA or
100 ng specific RNA can be used in a
20 plreaction.
For no template controls, mix the
following components:
20 pl
COMPONENTS REACTION FINAL CONCENTRATION
LunaScript RT SuperMix (5X) 4 ul 1X
Nuclease-free Water to 20 pl
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Incubate reactions in a thermocycler

with the following steps:

CYCLE STEP TEMPERATURE TIME CYCLES
Primer Annealing 25°C 2 minutes 1

cDNA Synthesis 55°C 10 minutes

Heat Inactivation 95°C 1 minute

Sequencing

Exeter Sequencing Facility completed the second stage of PCR indexing for the 16S rRNA and
18S rRNA gene amplicons from the DNA samples and both PCR barcode amplification and PCR
indexing for the 16S and 18S rRNA from RNA samples before sequencing.

Nextera Transposase Adapters

515F-Y
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGYCAGCMGCCGCGGTAA
926R
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCGYCAATTYMTTTRAGTTT
1391F
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTACACACCGCCCGTC
EukBr

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGATCCTTCTGCAGGTTCACCTAC
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16S 18S
Temperature Time Repeat Temperature |[Time Repeat

Initial 98°C 30s 1 98°C 30s 1

Denaturation

Denaturation | 98eC 10s 30 98°C 10s 35

Annealing 54°C 30s 30 69°C 30s 35

Extension |72°C 30s 30 72°C 30s 35

Final 72°C 5 min 1 72°C 5 min 1

Extension

Hold 4°C hold 1 4°C hold 1
Primer mix:

12.5pul NEB NEXT ULTRA I QS

S5ul F primer 1uM

S5ul R primer 1uM

2.5ultemplate DNA/RNA ~4nM

PCR2 indexes

This step attaches dual indices and lllumina sequencing adapters using the Nextera XT Index Kit

(IWlumina #FC-131-1002, £597.99) Four identical reactions for each sample,

DNA 1l

Water 14 pl

Nextera XT Index Primer 1

(N7xx) 5pul

Nextera XT Index Primer 2

(S5xx) 5pul
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Total

Gently pipette up and down 10 times to

mix.

Cover the plate with Microseal 'A'’

Centrifuge the plate at 1,000 x g at 20°C for 1 minute.

Perform PCR on a thermal cycler using the following program:

95°C

95°C

55°C

72°C

72°C

4°C

Pcrcleanup 2

3min

30seconds

30seconds

30seconds

5min

Hold

4 cycles

Bring the AMPure XP beads to room temperature for 30 minutes before use.

Centrifuge the plate at 280 x g at 20°C for 1 minute to collect condensation.

Vortex the AMPure XP beads for 30 seconds.

Add 35 pl of AMPure XP beads to each well.

Gently pipette mix up and down 10 times.

Incubate at room temperature without shaking for 5 minutes.

Place the plate on a magnetic stand for 2 minutes or until the supernatant has cleared.

Remove and discard the supernatant.
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Wash the beads with freshly prepared 80% ethanol as follows:

Add 200 pl of freshly prepared 80% ethanol to each sample

well.

Incubate the plate on the magnetic stand for 30 seconds.

Carefully remove and discard the supernatant

Do a second Ethanol wash.

Allow the beads to air-dry for 3 minutes

Remove the plate from the magnetic stand.

Add 27.5 pl of 10 mM Tris pH 8.5 to each well of the plate.

Pipette mix up and down 10 times until beads are fully resuspended, changing tips after each

column.

Incubate at room temperature for 2 minutes.

Place the plate on the magnetic stand for 2 minutes or until the supernatant has cleared.

Transfer 25 pl of the supernatant to a new 96-well PCR plate.

Check on Glowmax

Use 2ul of library
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Figure 27 Taxa bar plots based on rarefied data from A 16S rRNA gene metabarcoding and B 18S

rRNA gene metabarcoding of DNA samples
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Chapter 5 Towards a Global Public Repository of
Community Protocols to Encourage Best
Practices in Biomolecular Ocean Observing

and Research
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5.1 Abstract

Biomolecular ocean observing and research is a rapidly evolving field that uses omics
approaches to describe biodiversity at its foundational level, giving insight into the structure and
function of marine ecosystems over time and space. It is an especially effective approach for
investigating the marine microbiome. To mature marine microbiome research and operations
within a global ocean biomolecular observing network (OBON) for the UN Decade of Ocean
Science for Sustainable Development and beyond, research groups will need a system to
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effectively share, discover, and compare “omic” practices and protocols. While numerous
informatic tools and standards exist, there is currently no global, publicly supported platform
specifically designed for sharing marine omics [or any omics] protocols across the entire value-
chain from initiating a study to the publication and use of its results. Toward that goal, we
propose the development of the Minimum Information for an Omic Protocol (MIOP), a
community-developed guide of curated, standardized metadata tags and categories that will
orient protocols in the value-chain for the facilitated, structured, and user-driven discovery of
suitable protocol suites on the Ocean Best Practices System. Users can annotate their
protocols with these tags or use them as search criteria to find appropriate protocols.
Implementing such a curated repository is an essential step toward establishing best practices.
Sharing protocols and encouraging comparisons through this repository will be the first steps
toward designing a decision tree to guide users to community endorsed best practices.

5.2 Introduction

The term “omics” generally means studying anything holistically, and here we take a broad view
of biomolecular omics that includes, but is not limited to: quantitative target gene amplification
(e.g., gPCR, gNASBA etc.), (meta)barcoding, (meta)genomics, (meta)transcriptomics,
(meta)proteomics, and metabolomics; and field collection approaches that target organisms or
parts thereof, including single-celled organisms (microorganisms), as well as environmental
DNA (eDNA). In the marine realm, omic techniques are used to assess and monitor biodiversity,
reveal population structure and gene flow, and discover new compounds with applications in
medicine and industry. Rapid advances in omic research, and the declining cost of high-
throughput sequencing technologies (Wetterstrand, 2020) support the increasing application of

omics in marine microbiome research.

The recent expansion in marine omics has led to a proliferation of protocols specific to multiple
applications. However, these protocols are rarely shared publicly with sufficient detail to
reliably reproduce a study (Dickie et al., 2018). While the omics community has already
achieved high standards for sharing sequence data through the International Nucleotide
Sequence Database Collaboration, these data often lack sufficient metadata and provenance
information on the protocols used (Dickie et al., 2018), undermining efforts to implement the
Findable, Accessible, Interoperable and Reusable (FAIR) data principles (Wilkinson et al., 2016).
These limitations create challenges for marine microbiome research and operations from
individual labs up to global (meta)data analysis efforts such as MGnify (Mitchell et al., 2019),
which must identify data collected using comparable methods, in order to integrate and re-use
data for meta-analysis (Berry et al., 2020). Moreover, a lack of protocol-sharing impedes the
identification of comparable methods needed for global monitoring efforts aiming to
understand, and sustainably manage the changing marine ecosystem (Aylagas et al.,

2020; Berry et al., 2020; Makiola et al., 2020).
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Many projects are looking to develop best practices for omics research: standards
organizations, such as the Genomic Standards Consortium’s (GSC) Genomic Biodiversity
Interest Group, the Biodiversity Information Standards (TDWG) and the Biocode Commons are
working collaboratively toward standards specifications for genomic observatories (Davies et
al., 2012, 2014). Large campaigns, such as the Earth Microbiome Project (Gilbert et al.,

2014; Thompson et al., 2017), TARA Oceans (Sunagawa et al., 2020), and the Australian
Microbiome Initiative (AM; Bissett et al., 2016; Brown et al., 2018; doi:
10.4227/71/561¢c9bc670099), have already developed standardized practices, and innovative
software enterprises, such as protocols.io, are providing powerful solutions for sharing
protocols. Yet there is currently no global, publicly supported infrastructure developed explicitly
for encouraging the exchange and harmonization of omic protocols, so these valuable

contributions remain fragmented and underutilized.

For marine ecosystems, the Intergovernmental Oceanographic Commission’s Ocean Best
Practices System (OBPS) provides a public repository for all ocean research methodological
documentation that can interlink protocols, standard specifications, and other guidelines. The
OBPS seeks to support continuous convergence of methods as they undergo community
refinement to become best practices (Horstmann et al., 2021). In collaboration with the broader
omics community, through the Omic BON initiative (Buttigieg et al., 2019), we propose to
develop a best practice system specific to marine omics research, leveraging the framework of

the OBPS to curate a global repository for marine omics protocols.

As part of the omics/eDNA session at the 4th OBPS workshop, we discussed recommendations
and community needs for an omics/eDNA specific best practices system. Recognizing an urgent
need for the ocean omics community to get organized as the UN Decade of Ocean Science for
Sustainable Development starts, we identified the demand for publishing protocols into a user-
friendly decision tree framework. With such a framework we would aim to support protocol
selection, increase protocol findability and improve recognition for protocol developers. In a
series of focused follow-up meetings, we identified that an omics decision tree would require a
library of constituent parts (the protocols) and framework to: (1) locate where the protocol fits
within the entire omics workflow (outlined in section “Ocean Omics Methodology Categories”),
and (2) organize protocols using focused descriptive terms (metadata tags), based on what the
protocol does and how/why it is used (outlined in section “Essential Metadata for Omics

Protocols”).
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Ocean Omics Methodology Categories

The typical omics workflow involves a series of protocols, which take a project from ideation,

through to publication, and on to societal use. Protocols from each step in the omics workflow

hold valuable information for different groups. For example, sample collection protocols may be

most relevant to scientists/technicians in the field, whereas local stakeholders and indigenous

communities may primarily engage with aspects of how the project and resulting data address

and impact important ethical, legal, and societal issues (Nagoya Protocol, 2010; Carroll et al.,

2020). Documenting details and provenance for the entire marine omics workflow requires input

from multiple parties, as each step of the workflow may be conducted by different individuals or

groups. The omics OBPS therefore needs to identify these key methodological categories, to

allow protocols and accompanying metadata to be uploaded in modules that link together to

form the entire workflow.

We propose twelve protocol categories (Figure 29A) for ocean omics research and operations.

Protocols and guidelines are assigned into these categories according to the purpose they

serve'. Categories 5-12 outline methodological categories for operational activities used in the

AM Initiative (van de Kamp et al., 2019). Categories 1-4 were identified to additionally cover

cross-cutting documentation in the omics workflow: (1) Society, (2) Sampling/observational

design, (3) Ethics and law, and (4) Data management.

Society—All workflows should begin and end with society; societal needs inform the
question or purpose behind the research, and societal impacts show the value in the
research once it has been completed.

Design and logistics—This category covers the practical logistics for implementing
ocean omics research and operations, including the experimental/observational design
formulated to address the societal priorities outlined in 1.

Ethics and law—A survey of workshop participants highlighted a need for guidance on
sharing data and complying with important ethical and legal requirements (Simpson et
al., 2021). This category will include information on permits and permission required to
obtain samples and release data. Collating and publishing this information will firstly
provide examples for how previous projects have adhered to legal requirements/ethical
principles and secondly stimulate discussion on how to facilitate adherence to these
requirements and principles, perhaps through checklists, templates, or training
materials.

Data management—The data management plan (DMP) is designed to support all the
downstream steps according to the ethics, legalities and societal needs identified in (1-

3), while making sure that the (meta)data flows to the right stakeholders in society that
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we need to interface with. DMPs should be drafted prior to data collection and referred
to throughout the workflow to ensure that quality assurance and quality checks take
place, and that detailed information on (meta)data requirements for both short and
long-term (meta)data storage is given. There is a growing body of tools and best
practices surrounding DMPs, including principles for making them more machine-
actionable, that should be leveraged in omic protocols and associated infrastructure
(see Miksa et al., 2019). Publishing documentation on omics specific DMPs will increase
transparency for funders by providing direct links to the protocols they refer to.
Furthermore, collating examples of omics specific DMPs will provide insight into what

the community needs from omics specific data management tools.
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1. Society Documenting societal inputs and outputs (e.g. mission statements (linked to broadly accepted societal priorities e.g. SDGs
EOVs, EBVs. efte), stakeholder consultation outputs, associated publications/media, links to relevant data repositories,
educational materials associated with the workflow).

Documenting plans for the experimental/observational design (e.g. cruise schedules/reports, deployment regimes, statistical
replication, logistics, costing/resources/material lists)

Documenting permits, permissions and guidelines for obtaining samples and release data. (e.g.. Intermtionally Recognized
Certificate of Compliance (IRCC) code for sampling, or relevant Due Diligence docunentation if an IRCC code is not
required, for countris that have signed and ratified the Nagoya protocol (Nagoya Protocol, 2010)) checklists showing
compliance to ethical principle (e.g. OCAP) for ethical sampling on indigenous lands, etc

Protocols for data and quality management. This will include data management plans with quality assurance and quality
check measures to be undertaken throughout the workflow, as well as checklists and guidance documents for the compliance
with FAIR/CARE data standards; and links to all data repositories to which the omics study (meta)ata should be uploaded.

Protocols for the physical collection of samples to be used in omics research. Including both environmental samples (e.g.
walter, sediments, biofilms) and organismal samples (e.g. gut contents, bulk plankton, sponge).

6. Contextual Metadata Protocols used for the measurement of additional parameters (e.g. temperature, salinity, pH, chlorophyll etc.)
Analytical Procedures

Protocols for the extraction and purification of biological molecules (e.g. DNA, RNA, Proteins) from environmental and/or
organismal samples.

Protocols for squencing nuclek acids. This stage may contain sub-stages that occur during the sample extraction and
purification stage, if so, links between the two stages should be provided.

Bioinformatics pipeline for processing sequence data. This can include links to github, docker ete.

10, Quantitative Protocols for the quantitative amplification of DNA and RNA. Including quantitative PCR (qPCR), reverse transcriptase
e s quantitative PCR (rt-qPCR), nucleic acid sequence-based amplification (NASBA). Recombinase Polymerase Amplification
amplification (RPA) et

Protocols for analysis of data. This will include scripts for statistical tests, modelling and data visualisations.

12. Sample Protocols for archiving physical samples at all stages of laboratory processing (e.g whole environmental/organismal samples,
DNA/RNA/protein extracts and/or amplicons)
archiving/biobanking
B
Question/Purpose

Publication &
dissemination of
results

Sample
Curation/Storage

Contextual Metadata ]
Analytical Procedures J

A J

Figure 29(A) Proposed methodology categories to enhance exchange of ocean omics analysis
knowhow. Protocols, guidelines, and other methodologies in some of these
categories (such as Sample archiving/biobanking, Data Management, and Society)
are cross-cutting and may apply at multiple points in the workflow. (B) Example
workflow for a DNA metabarcoding project. Colors correspond to the methodology
categories outlined in panel (A) and arrows indicate the order of the workflow.
Square boxes show essential steps in a metabarcoding workflow, whereas rounded
boxes indicate non-essential steps. Data management and QA/QC are required

throughout the entire workflow.
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In Figure 29B, we give an example of a DNA metabarcoding workflow, where the colour of each
step corresponds to a methodology category in Figure 29A. Protocols uploaded to OBPS can be
assigned (tagged) to the relevant omics categories. The granularity of protocols uploaded to the
OBPS may include individual uploads for sub-stages (i.e., Tagging/Enrichment within 4, Omics
sequencing procedures), or single documents spanning multiple methodology categories (i.e.,
7, Sample extraction and purification, through to 9, Bioinformatics). To accommodate these
levels of granularity, each upload could be tagged with single or multiple methodology category
and linked to those protocols pre- and succeeding it. The granular use of methodology
categories will increase modularity within the omics workflow and facilitate the mixing and

matching of methods from various projects.

The interplay between the activities within and across the steps within a workflow—and how
they bring value to the community and society—is complex and beyond the scope of this article;
however, we have provided an initial perspective on this using the Porter’s value chain approach

(Porter, 1985; Supplementary Figure 30).

54 Essential Metadata for Omics Protocols

The targeted discovery and reuse of protocols can be improved if protocols are effectively
described using standardized metadata terms on upload to OBPS and other platforms. Terms
and checklists to standardize metadata about primary sequence or biodiversity data already
exist [GSC’s Minimum Information about any (x) Sequence checklist (MIxS; Yilmaz et al., 2011)
and TDWG’s Darwin Core standard (Wieczorek et al., 2012)]; however, no such standards have

thus far been published for metadata about omics protocols.

Here we present initial suggestions for the Minimum Information for an Omic Protocol (MIOP), a
set of ten metadata categories which could correspond to ten key decision tree questions asked
to identify the relevant protocol for any project. The ten MIOP categories (Table 1) consist of five
novel categories (methodology category, purpose, resources, analysis, target) and five
categories already used in the GSC’s MIxS (project, geographic location, broad-scale
environmental context, local environmental context, and environmental medium). Each
category is linked to a set of predefined keywords (metadata terms) from existing vocabularies
or ontologies; except for the “project” category, which contains project names, affiliations, and
contact details and the “methodology category” outlined in section “Ocean Omics Methodology
Categories” (Figure 29A). Omics users would then select the most appropriate keywords for
each category, assigning the terms as metadata for the protocol. This will improve the FAIRness

of our protocol data, by allowing consequent users to search the protocol database using the
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same set of keywords; thereby, limiting the proliferation of descriptive keywords (e.g., mapping

synonyms) and increasing the findability of protocols.
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Table 14 Description of keyword categories for protocol metadata and the terminologies

(controlled vocabularies, thesauri, and ontologies) containing the relevant

keywords.
Categories Terminology/ Description
ontology
Methodology ~ Methodology ~ Methodology category which the uploaded
category category (see  protocol belongs to. This links to the associated
Figure 1A) methodology categories which precede and
succeed it in the workflow, to facilitate the
linking of protocols into entire workflows, while
keeping granularity and flexibility. This will
enable the mixing and matching of protocol
modules from various uploaded workflows.
Project N/A Details about the project (e.g., Name, Affiliation,
website). May also includes a field for tagging
any projects that protocols are compliant with
(e.g., Earth Microbiome Project/TARA Oceans).
Once submitted the relevant Pl may be notified
and could choose to endorse or reject the
protocol as compliant with their project.
Purpose EFO, OBI Terms to describe the purpose of the omics
research. [e.g., time series design
(OBI:0500020) or taxonomic diversity
assessment by targeted gene survey
(OBI:0001960)]
Resources EFO, NCIT Terms to identify the key resources needed to
complete the protocol [e.g., llumina MiSeq
(EFO:0004205), centrifuge (OBI:04001086)]
Analyses EFO, OBI, and Terms to describe the types of analyses used in
NCIT the protocol [e.g., amplicon sequencing assay
(OBI:0002767) or polymerase chain reaction
(OBI:0002692)]
Geographic GAZ Geographic location/s in which the protocol has
Location been used [e.g., Hawaii Ocean Time-series Site
(GAZ:00187530), Western English Channel
Sampling Stations (GAZ:00187525)]
Broad-scale ENVO Biome/s in which the protocol was successfully
environmental used [e.g., oceanic epipelagic zone biome
context (former (ENVO:01000033)]
Biome)
Local ENVO, Environmental feature/s targeted using the
environmental  UBERON protocol [e.g., seasonal thermocline
context (former (ENVO:01000107)]
Feature)
Environmental  MIxS Identify the environmental or organismal
medium (former environmental — material from which the biological molecule
Material) packages; (e.g., DNA/RNA/Protein) was extracted [e.g.,
ENVO ocean water (ENVO:00002151)]
Target NCIT, Identify the target taxa, gene and/or molecule
NCBITaxon, for the protocol [e.g., Polaribacter
and EFO (NCBITaxon:1642819), 16S Mitochondrial

Ribosomal RNA (NCIT:C131261)].

Terms would be added at upload and additional metadata would accumulate as the
protocols are used in different settings (e.g., Geographic Locations, in the discus-
sion see the section “Learning From Failed Practices”).

EFO, Environmental Factor Ontology; OB, Ontology for Biomedical Investigations;
NCIT, NCI Thesaurus; GAZ, Gazetteer; ENVO, Environment Ontology; UBERON,
Uber-anatomy ontology; NCBITaxon, NCBITaxon ontology.
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5.5 Discussion

Ocean Best Practices System provides a neutral, global public repository for ocean community
practices. Itis a stable and persistent foundation that can host protocols themselves, or link to
other protocol tools and functionalities that can (and should) continue to be developed by other
organizations including the private sector. The primary function of Omics OBPS would be to
publish and archive omics protocols to enhance their global visibility and discoverability, and
provide stable links to the entire workflow of protocols. Expanding and improving the
functionality of the OBPS for omics protocols will help the community mature by providing a
structured system in which context-based best practices can be discovered and identified. A
transparent and structured process for handling our omics protocols will be an essential step

toward operationalizing omics observing.

Increasing protocol transparency, through detailed publication on OBPS, also means that
simple cited protocol strings can become a core component of methods sections in
publications. Those strings can then be harvested by machines to generate a graph of “what
came before” and “what came after.” When used with the decision tree recommendations this
process could point out the most recent protocol development to users and would essentially
provide the decision-tree resource we are aiming for. Such an approach enables “practices”
(which might be defined as “protocol strings”) to emerge from how protocols are actually being
used in the community. Assessment of which of these practices represent a “best” practice in a
given context is a distinct challenge, but not a unique one in knowledge sectors. Peer
endorsement and citation metrics are two commonly employed ranking mechanisms that could

also be applied here.

5.5.1 Learning From Community Preferences

Community-use metrics offer a way to capture the community’s preference for certain
protocols. We suggest that metrics such as times cited, user upvotes, and number of
associated data records all be recorded and used to rank lists of relevant protocols. Combined
with the MIOP-based grouping into methodology categories, this process will help accelerate
the identification of potential best practices within each category. Narrowing down the list of
relevant protocols will additionally provide the basis for more targeted and rigorous scientific
comparisons between multiple potential best practices for a given scientific endeavor. Outputs
of such comparisons may offer further information about the superiority of certain protocols,
and could be considered in addition to the more general community-use metrics?. Furthermore,
focusing on these community driven best practices will help to reveal protocols that are

effective and convenient for a broad range of research facilities. This in turn can reduce
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literature biases toward novel state of the art practices, which may not be feasible for

mainstream use.

5.5.2 Learning From Failed Practices

During the initial workshop, participants outlined a desire for a best practice system to include
“failed practices” and flag when a protocol may limit or eliminate a range of downstream
applications. While this type of functionality would not be immediately addressed by
implementing MIOP metadata, there would be potential for users to provide feedback for
protocols using MIOP metadata and Boolean operators. For example, if a protocol, originally
designed for seawater, was used with freshwater samples, the user could upload additional
MIOP metadata using “AND freshwater” if the protocol was successful or “NOT freshwater” if
unsuccessful. Thereby, broadening the findability of successful protocols and documenting
potential limitations to be aware of. Documenting these failed attempts has the potential to

save both time and resources.

5.5.3 Promoting Collaborative Omic Networks

Minimum Information for an Omic Protocol may additionally promote collaboration between
groups. For example, the “Project” category is an administrative metadata field that will
describe the project (study or program) for which the protocol was developed, including contact
details and affiliated institution. To create links between similar projects and facilitate
collaboration, it would be possible to introduce an option to tag a protocol as compliant with
pre-existing projects. In such cases, a notification could be sent to the Pl of the lead project,
allowing them to add or reject the protocol to their list of compliant protocols. Protocols linked
this way could form overarching protocol concepts, which may contain a variety of versions and
accepted, cross-comparable protocols that include minor adaptations to make them suitable in

different circumstances.

An endorsement process for a global observation network has already been developed by
Global Ocean Observing System (GOOS) in cooperation with OBPS, to encourage standardized
methods for global observations and for reporting on GOOS’ Essential Ocean Variables (EOVs)
(Miloslavich et al., 2018; Hermes, 2020). To gain this endorsement, protocols will have to
undergo a rigorous community review process that will be strengthened if there is a large source
of omics protocols to compare with on the OBPS. Standardized practices and official
endorsements are likely to become increasingly valuable as countries begin to use legislation to
make biodiversity targets legally binding. Any omic method used to measure biodiversity

impacts will need to undergo legal scrutiny if it is used as evidence of a country/organization
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meeting or failing to meet biodiversity targets. Therefore, protocols officially endorsed through
international programmes, such as GOQOS, are likely to hold more sway legally. Broad
participation from the omics community in open sharing and reviewing of protocols on the OBPS
will help to ensure that community endorsed best practices are representative of the wider

community needs and not only focused on expensive state of the art methodologies.

5.5.4 Machine Readability

Machine readable tracking of protocol versions presents an opportunity to visually map the
progression of protocols by linking all versions to a “concept,” as implemented in Zenodo and
GitHub. Like software, omic protocols may be updated, corrected, and improved necessitating
forms of version control and tracking, such as the use of semantic versioning (Hérstmann et al.,
2020; Preston-Werner, 2021). Implementing this would help to increase recognition for the
scientists/technicians/students involved in protocol development through citable

documentation of their contributions.

Machine-readable and machine-actionable protocols are becoming more important as
autonomous technologies evolve. Devices such as the Environmental Sample Processor (ESP)
and the Robotic Cartridge Sampling Instrument (RoCSl) are currently being used and developed
for autonomous collection, preservation, and /n7 s/t analysis of omics samples (Yamahara et
al., 2019; National Oceanography Centre, 2021). Eventually, smart sensing platforms using
these technologies will be able integrate data from various sensors and satellites to implement
adaptive sampling regimes or extraction protocols based on real-time environmental
observations (Whitt et al., 2020). To reach this goal a variety of protocols will need to be
translated into a machine actionable format using common workflow language. A systematic
review of protocols will help to devise such machine actionable formats and protocol templates
may help to bridge the gap between lab-based protocol development and /7 s/t autonomous

use.

5.6 Conclusion

Multiple groups within the omics community are actively developing best practices for their
field. To ensure that all these efforts are effectively utilized, a concerted and community wide
effort will be needed to gather and organize these practices. By harnessing the OBPS
infrastructure and further developing the MIOP metadata we can: (1) allow protocols to be
searched for within a decision tree framework; (2) establish a system that encourages the
systematic review of protocols; and (3) reveal community preferences through the

accumulation of community use data. Taking these steps toward a structured and global public
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repository of omics protocols will increase transparency and streamline biomolecular ocean
observing research to foster the collaborative networks needed to achieve global scale

biodiversity observations.
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5.14 Footnotes

~ Currently, the protocol categories focus on genomics and transcriptomics but we expect this
list to expand with further input from the broader omics community, particularly in areas such
as proteomics and metabolomics.

2 In certain cases (e.g., for contributing to a standardized global sampling scheme) it may not be
about which method is “best,” but about which method delivers reliable results while being
applicable throughout all regions of the ocean and inclusive of lower capacity research
activities.
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Appendix D Supplementary Material

D.1

Supplementary Figures

-

=

INPUTS
Assessment of
current knowledge
and
societal/stakeholder
priorities; transport
logistics of (external)
samples, personnel,
consumables,
equipment; third-
party data and
software access

Ocean Omics Value Chain

Applying Porter’s value chain concept to ocean omics research can help to systematically identify activities that will
increase the value of ocean omics research to society at large: A well-functioning ocean omics value chain will generate
more downstream value than the costs needed to operate it. This is the basis of justifying increases or decreases in
investment in any activity along or across the chain. We believe such mechanisms will help the omics community
coherently reflect on the activities needed to advance our methods while ensuring a healthy cost/benefit ratio,
especially as we interface with other ocean communities and their own value chains. For example, when considering
the uptake of new technologies (e.g. new sequencing technologies), value chain analysis helps to consider whether
uptake is worth the disruption to the continuity of long-term ocean omics observatories. The process helps to evaluate
what value is compromised (i.e. Are the time series broken? Are the POST notes valid anymore?) and what needs co-
investment to mitigate it (e.g. intercalibration across space and time). Essentially answering “is it worth it?” atscale, or
should it be a more isolated test by a smaller community (e.g. a scientific team/pilot study).

COMMUNITY INFRASTRUCTURE

HUMAN RESOURCE MANAGEMENT

the coordination of citizen science efforts.

TECHNOLOGY DEVELOPMENT

systems.

PROCUREMENT / RESOURCING

OPERATIONS
Sampling/survey
design, method
development and
adaptation,
stakeholder
consultation,
sample/(meta)data
collection, sample
processing (e.g. DNA
extraction and
sequencing)
intercalibration,
QA/QC, (meta)data
workup,
bioinformatics,
analysis and
knowledge
generation (e.g.
generation of
scientific
publications)

consumables.

etc

OUTPUTS
(meta)data archived
in community
databases (e.g.
INSDC), sending
remaining samples
to biobanks or to
other research
facilities for further
analysis, reporting
methods and code,
data visualisations,
publication of
scientific literature,
grey literature, and
policy-orientated
documents (e.g.
POST notes)

PROMOTION &
UPTAKE
Science-focused:
Increasing
awareness of
(meta)data
holdings,
publications, sample
availability, services,
and methods
Society-focused:
Promoting
published outputs
through public /
social media.
Science
communication
activities for the
general public and
policy makers

~

Intangible infrastructure: Programmes and collaborative networks to enable global ocean omics observations.
Examples include the GOOS Network, OBON UN Ocean Decade programme, Omic BON, GEO BON, and the INSDC
Tangible infrastructure: The observatories, major sampling equipment (e.g. research vessels), laboratories, digital
infrastructures (servers, etc) and other concrete infrastructures within and around them, operated by members of

the networks noted above.

Includes recruitment, training, and management of scientists, technicians, engineers, data stewards, etc; potentially

Methodological: Development of skills and techniques to enhance range, accuracy, quality, etc
Tool-based: e.g. advancement and deployment of new sequencing technologies, autonomous systems, and digital

Procurement: Purchasing of external services (e.g. sequencing), samples, physical standards, equipment, data and

Resourcing: Securing grants, funding from statutory monitoring programs, private funds, philanthropic donations,

MARGIN
The societal
SERV.ICES value of
Integration and .
ocean omics

synthesis of omics
data, running
sample archiving,
access, and sharing
services; Open and
accessible databases
for (meta)data,
provenance,
protocols and
methods, etc; expert
consultation for
external
stakeholders;
review, build
interfaces to other
research/operations
communities;
educational
initiatives

-

Supplementary Figure 30. We frame part of our perspective in an adaptation of Porter’s (1985)

value chain, where a product passes through all portions of the chain, gaining value
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from each activity. The language used in Porter’s value chain relates to commercial
business activities, this adaptation gives examples for the types of omic research
activities that could apply to each category. Category headings have been adapted
to fit omics operations and research, as follows: Firm infrastructure > Community
infrastructure, Procurement > Procurements / Resourcing, Inbound logistics >
Inputs, Outbound logistics » Outputs, Marketing & Sales » Promotion & Uptake
(note that original headings would be appropriate for omics-focused businesses). It
should also be noted that value within omics operations and research does not only
refer to monetary transactions (for example, procurement may be facilitated by

credit on scientific publications).
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6.1 Abstract

During the DY103 cruise aboard the RRS Discovery, we tested the suitability of the MinlION
sequencing platform (Oxford Nanopore Technologies) for near real-time, on-board
metagenomic sequencing. To enable this, we used a modified DNA extraction protocol tailored
for shipboard DNA purification. Here, we present results from shotgun sequencing of an
environmental DNA sample collected from the oxygen minimum zone (OMZ) at the Porcupine
Abyssal Plain Sustained Observatory (PAP-SO). Sequencing was completed entirely onboard,
using the MinlON platform. The metagenome consisted of 43,820 sequences with an average
length of 1,683 bps and average GC content was 39%. Taxonomic annotations revealed that
93% of taxa assigned to bacteria and archaea and 60% of function annotations assigned to
metabolic functions, reflecting the expected characteristics of OMZ microbial communities. We
found that MinlON sequencing onboard a research vessel is feasible and doing so allows
ecological data to be visualised in near-real-time. Having this metagenomic data available at
sea will create an opportunity for adaptive sampling strategies to maximise scientific outputs
based on the current ecological conditions.

6.2 Introduction

The Porcupine Abyssal Plain sustained observatory (PAP-SO) is located in the Northeast Atlantic
(49°N 16.5°W) at a water depth of 4800 m. PAP-SO is an open-ocean multidisciplinary
observatory that has produced high-resolution datasets integrating environmental and
ecologically relevant variables from the surface to the seabed since mid-1980’s (Hartman et al.
2012). The observatory now consists of a full-depth mooring, with autonomous sensors
measuring temperature, salinity, chlorophyll-a fluorescence, nitrate, and pCO, and a surface
buoy, for simultaneous meteorological and ocean variable monitoring (Hartman et al. 2012).

PAP-SO is the longest running sustained observatory in the oceans around Europe and has
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played an integral role in the long-term monitoring of both essential climatic variables (ECVs)

and essential ocean variables (EOVs; Hartman et al. 2012).

Incorporating genomics data into the global sustained observatory network has garnered
considerable interest as a means to increase the temporal, spatial, and taxonomic resolution of
biodiversity monitoring (Goodwin et al. 2018; Miloslavich et al. 2018; Djurhuus et al. 2020).
Historically, biodiversity monitoring has lagged behind the monitoring of physical and
biogeochemical properties, primarily due to the time and expense of carrying out ecological
surveys based on traditional morphological identification(Muller-Karger et al. 2018). Genomic
approaches to assessing marine biodiversity offer a promising solution to reduce this gap, as
they can be carried out rapidly using sequencing technologies that are becoming increasingly

more affordable and portable (Tyler et al. 2018).

Genomic analysis can provide in depth data on taxonomy and gene functionality, helping to
unravel some of the complexities of biogeochemical cycling (McCarren et al. 2010).
Consequently, metagenomic data is now recognised as an essential biodiversity variable (EBV)
(Muller-Karger et al. 2018). Recent developments in ecogenomic sensors make it possible to
collect near real-time ecological data with in-situ genetic assays, such as in-situ gPCR and
sandwich hybridization assays (Ussler et al. 2013; Bowers et al. 2017; McQuillan and Robidart
2017). ltis likely that portable sequencing devices, such as Oxford Nanopore Technology’s
MinlON, will soon be integrated into in-situ ecogenomic sensors as well. The combination of
these technologies has the potential to trigger a step-change in the quantity of metagenomic

data collected at ocean observatories.

For the last 5 years eDNA samples have routinely been collected from the water column and
sediments at PAP-SO, with sample processing and sequencing completed post cruise. Survey
designs are typically planned in advance, although some refinements can be made in response
to the depth profiles from physical and biogeochemical sensors deployed alongside the CTD
Rossette. Onboard sequencing during the cruise enables near-real-time visualisation of
ecological data, supporting adaptive sampling strategies informed by current ecological
conditions, as well as physical, and biogeochemical conditions. The MinlON sequencing
platform (Oxford Nanopore Technologies) makes onboard sequencing feasible due to its low
cost, compact size, and portability (Tyler et al. 2018). This dataset was collected as an initial

test of onboard sequencing feasibility during PAP-SO research cruises.
Methods

The water sample was collected on 24" June 2019 by CTD rosette cast. Sample DY103-002-N16
(N 49.0001°, W -16.5004°, Figure 31) collected at 850m from the oxygen minimum zone (OMZ;
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Figure 32) was selected for sequencing as it had the largest volume (15L) remaining after all
other on-board chemical analyses were complete. The sample was filtered through a 0.22pym
Sterivex cartridge filter using a Masterflex L/S Digital Precision peristaltic pump (Cole-Parmer,
Saint Neots, UK). DNA was extracted on board using a modified version of the Qiagen AllPrep
DNA extraction kit. The addition of f-mercaptoethanol (B-ME) was omitted from the initial lysis
step; B-ME is used to denature ribonucleases and is therefore only necessary for the extraction
of RNA. Centrifuge times were tripled to compensate for the reduced centrifugal force of the low
power, portable mini centrifuge available for use onboard. DNA concentration and purity were

quantified onboard with a NanoDrop Nanovue Plus.
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Figure 31 Location map of the Porcupine Abyssal Plain Sustained Observatory (PAP-SO). The
depth contours shown are 200, 1000, 2000, 3000, and 4000 m (image from Hartman
etal. 2012)
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Figure 32 CTD depth profiles from station DY103-002 showing (A) temperature measured by the
SBE 11Plus CTD, (B) salinity analysed on board using a Guildline Autosal 8400B, and
(C) dissolved oxygen measured with an SBE 43 sensor. Red dashed line: sequencing

sample depth (850 m).

The standard Rapid Sequencing Kit protocol (SQ-RAD004) was followed to generate a
sequencing library for onboard MinlON sequencing. Sequence reads were annotated using the
MG-RAST pipeline (Meyer et al. 2008, 2018) with a minimum alignment length of 30, a minimum
e-value of 1-e°, minimum percentage identity at 60% and a minimum abundance of 1, following
the recommendations outlined in Randle-Boggis et al. (2016). Taxonomy was assigned to genus
level using the RefSeq database (Pruitt et al. 2007) and functional annotations were made using
KEGG orthologous groups (KO) database (Kanehisa and Goto 2000). Krona plots were used to

interactively visualise hierarchical taxonomy and functional classifications (Ondov et al. 2011).

6.3 Results

DNAyield was approximately 45 ng/ul with a 260/280 and 260/230 ratio of 1.6 and 0.3
respectively. DNA quality was lower than recommended for MinlON sequencing; therefore,
optimization of a suitable onboard DNA extraction protocol is recommended. None the less,
MinlON sequencing ran for 15 hours and produced a dataset consisting of 43,820 sequences

totalling 73,751,445 base pairs with an average length of 1,683 bps. Average GC content was
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39%. A total of 646 sequences (1%) contain ribosomal RNA genes, 8,610 sequences (20%)
contain predicted proteins with known functions, and 34,564 sequences (79%) contain
predicted proteins with unknown function. Of the sequences that could be assigned to a single
taxonomic entity across the entire length of the sequence, 3,540 were assigned a taxonomic
classification of Bacteria, 1,346 were assigned to Archaea, 897 to Eukaryota, and 15 to viruses
(Figure 33A). Of the 4655 functional annotations, 2801 related to metabolism, 1134 to Genetic
Information Processing, 411 to Environmental Information Processing, 181 to cellular

processes, 97 to human diseases and 31 to organismal systems (Figure 33B).
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Figure 33 Hierarchical display metagenomic shot-gun sequencing of eDNA from the oxygen
minimum zone at the Porcupine Abyssal Plain. A Taxonomic sequence

classification to class level. B Functional gene annotations to two levels.

6.4 Discussion

MinlON sequencing revealed a diverse microbial community, with 93% of taxa assigned to
bacteria and archaea. Annotated functional genes were predominantly (60%) assigned to
metabolism. The diverse microbial communities and metabolic approaches identified here are
typical of oxygen minimum zones (Wright et al. 2012). OMZs occur when detritus, formed of
predominantly dead organisms, phytodetritus, and faecal matter, sink down from a productive
euphotic zone. This downward flux of organic matter is colonised by diverse microbial
communities which aerobically metabolise the organic matter and respire oxygen in the

process, resulting in lower ambient oxygen concentrations.

Metagenomic sequencing with the MinlON sequencer enables onboard characterisation of
community composition and gene functionality. Access to this near real-time ecological data,
makes it possible to adjust sampling strategies at sea and maximize scientific outputs.
Furthermore, the compact design of the MinlON sequencer presents a promising opportunity to

incorporate the device into existing ecogenomic sensors to enable remote in situ sequencing.

Currently, genetic assays used in ecogenomic sensors only target specific taxa or functional
genes. Incorporating broad-range sequencing to the suite of genetic analyses available for
ecogenomic sensors would expand the scope of ecological monitoring by providing additional
non-targeted data. This additional data could enhance our ability to detect rare taxa and

understand community dynamics across trophic levels.

However, the use of non-targeted sequencing data at sea presents some technical and ethical
challenges. In this study, a small number of spurious taxonomic assignments were observed,
including reads classified as Monotremata (n=7) and Anura (n=2). These are likely resulting from
sequencing errors or limitations in the reference databases, which are particularly limited for
open-ocean species (Yang et al. 2024). Furthermore, long-read sequencing can inadvertently
capture human DNA, presenting potential privacy and ethical concerns (Whitmore et al. 2023).
This dataset included 17 reads assigned to primates, presumably human contamination.
Current best practices encourage the submission of all raw reads to public repositories, such as
the INSDC. However, due to the potential for sensitive information to be included
unintentionally, additional data screening steps will be necessary before submission. For this

reason, this dataset has not been uploaded to the INSDC.
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The development of devices capable of remote in situ sequencing has the potential to increase
the spatial and temporal resolution of EBVs. By integrating metagenomic data collection into
routine monitoring of physical and geochemical measurements, we can begin to bridge the data

gap between ecological and environmental datasets.
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Chapter 7 Conclusion: Autonomous eDNA sampling

for UK Marine Biomolecular Monitoring

7.1 Introduction

On land, ecological changes are often visible or audible: we might notice a new bird species
frequenting our garden or notice fewer insects on our car compared to a decade ago. These
sensory observations spark curiosity and drive the scientific investigation to explore their
underlying causes. In the marine realm, however, such direct perception is far more limited, and
many ecological shifts may go unnoticed. Environmental DNA (eDNA) monitoring provides a
means to detect these hidden ecological changes, providing insights into marine biodiversity

and ecological trends that would otherwise remain invisible.

Traditionally, our understanding of anthropogenic impacts on marine ecology has come from
micro- and mesocosm experiments, which do not accurately represent natural communities or
their rates of change (Reiber et al., 2022). To understand the real-word consequences of
combined effects of anthropogenic impacts, place-based monitoring is required to observe

their cumulative effects. Empirical observations are needed to evidence the effects of adaptive
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management strategies. Achieving this requires high-resolution spatial and temporal ecological
datasets, obtained through long-term monitoring in a variety of representative marine locations

(Wisz et al., 2013, 2020).

This scale of marine biodiversity monitoring is currently prohibitively expensive and often
hazardous using direct human observation. Since 2008/09, UK biodiversity monitoring has seen
a 42% real-term decrease in public funding (JNCC, 2023). Most biodiversity monitoring is also
sporadic, dependant on short-term funding. While this approach can yield high-quality data, the
inconsistency limits our ability to derive local-scale trends, which are essential for an

evidenced-based approach to marine management (Wilding et al., 2017; IPBES, 2019).

Autonomous eDNA filtration and preservation technologies, such as the Robotic Cartridge
Sampling Instrument (RoCSl), offer a safe solution to achieve consistent and long-term
biomolecular monitoring necessary to identify ecological changes in the marine environment.
Establishing a network of autonomous eDNA samplers requires considerable initial investments
but once in place, it can generate consistent, low-cost biodiversity data. Additionally, storing
samples in biobanks allows analysis to occur as and when funding is available, mitigating the
effects of fluctuating funding. This approach circumvents the issues involved with inconsistent

collection of biodiversity data.

Throughout this NEXUSS doctoral training programme, | have explored how biomolecular
monitoring and autonomous technologies, such as the RoCSl, can enhance the spatial and
temporal resolution of marine biodiversity monitoring.

e Chapter 2 describes how the RoCSIl can autonomously filter and preserve samples using
the ship’s underway system, significantly enhancing the spatial resolution of
biomolecular sampling (Objective 2). A comparison between the RoCSl-collected and
manually collected samples demonstrated that the RoCSl can produce comparable
results (Objective 1). This chapter also highlights the need for high-resolution sampling
in open ocean environments, where patchiness in planktonic communities may obscure
ecological patterns at coarser spatial scales.

e Chapter 3 demonstrates how the RoCSl can capture high temporal resolution datasets
from a highly urbanised estuary (Objective 3). The findings reveal that short-lived
microbial community shifts may serve as indicators of small-scale pollution events
typical in urbanised environments. This highlights the potential of using the RoCSI for
near real-time environmental monitoring in dynamic urban coastal systems.

e Chapter 4 compares a range of liquid nucleic acid preservatives to optimise the RoCSlI
for long-term (2-month) deployments at ocean observatories (Objective 4). The results
support the use of ZymoBIOMICS DNA/RNA Shield, for 2-month preservation. However,
for RNA preservation of the same sample, the manufacturers limit of 1 month should
only be exceed with caution. If only RNA is required from the sample, Qiagen’s RNAlater
or lab-prepared NAP buffer were better suited, though the results indicate that two
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months may be approaching the upper limit for RNA stability with these preservatives as
well.

e Chapter 5 examines strategies to improve data management in biomolecular research,
enabling RoCSI-produced datasets to contribute to a global network of biomolecular
observations. This chapter arose from challenges encountered while reviewing methods
sections to identify extraction protocols for different preservatives. The frequent lack of
methodological detail prompted co-leading the Ocean Best Practice System (OBPS)
Workshop on protocol sharing for Omics and eDNA. Discussions from this workshop,
and subsequent OBPS Task Team, informed the data management approach outlined in
this chapter.

e Chapter 6 tests the use of the portable MinlON sequencing platform onboard the RRS
Discovery, employing a modified DNA extraction protocol for use at sea. The MinlION
successfully generated 43,820 sequences with an average length of 1,683 bp. These
results demonstrate the feasibility of integrating such a device with the RoCSI system for
near real-time in-situ metagenomic analysis. However, the findings also highlight
several ethical and technical challenges, such as data privacy and sequencing
accuracy, that must be addressed as this technology develops.

e Additionally, during an internship with Natural England’s DNA team, | explored the
implementation of eDNA monitoring for national biodiversity assessments. | produced
internal guidance for using DNA methods to monitor inshore fish and created a template
for Natural England’s staff and contractors to record taxonomic data and metadata from
metabarcoding studies. This work aimed to improve methodological transparency and
ensure compatibility with global data repositories such as the National Biodiversity
Network Atlas (NBN Atlas), Global Biodiversity Information Facility (GBIF), and the
International Nucleotide Sequence Data Centre (INSDC).

7.2 Increasing the temporal and spatial resolution of marine

biomolecular observations with RoCSI

Ecological datasets often contain missing data (Lopucki et al., 2022), particularly in marine
environments when adverse sea conditions can hinder data collection. Collecting high spatial
resolution data throughout a cruise often involves out-of-hours work, and at least two personnel
for safety. Chapter 2 demonstrated that the RoCSI prototype can provide high resolution spatial
data with only one operator reloading samples and decontaminating the system at convenient
daily intervals. Autonomous devices reduce personnel time, increase safety, and generate
consistent high-resolution datasets. Such data also enable comparisons with satellite
observations, facilitating exploration of taxonomy within short-lived or moving oceanographic

features like eddies, gyres, and coastal fronts.

High-resolution spatial datasets can also be captured in three dimensions by deploying the
RoCSI on autonomous underwater vehicles (AUVs). Since the completion of Chapter 2, the
commercially available RoCSlI has also been successfully deployed on remotely operated

vehicles (ROVs) and Autosub-AUVs, enabling high-resolution sampling across various regions,
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with a maximum depth reached of 4,719 meters. Extending the capacity for deep-sea sampling

in difficult-to-reach environments.

Chapter 3, demonstrated the suitability of the RoCSI device for high-resolution time-series
monitoring. Sampling manually every two hours is prohibitively labour-expensive. However, this
type of high-resolution dataset can be useful to understand the frequency of sampling needed
to address specific science questions in highly dynamic environments, such as estuaries. For a
long-term monitoring programme, it is important to interpret eDNA-based ecology within the
context of diel variation. Understanding these nuances can help when developing long-term

sampling regimes, to ensure that the sampling is unbiased by the tidal or diurnal cycles.

To optimise the RoCSl for long-term biomolecular monitoring Chapter 4 compares different
liquid preservatives for their effectiveness in preserving DNA and RNA over a two-month period.
The preservative DNA/RNA shield (Zymo Research) could preserve both DNA and RNA at room
temperature for the entire two months. However, the homemade Nucleic Acid Preservative
(NAP) and RNAlater (Qiagen) proved to be more effective at preserving the RNA within a sample.
Understanding the limits of various nucleic acid preservatives is crucial for planning RoCSI
missions, enabling the RoCSI to operate autonomously for extended periods. This capability is
particularly valuable for long-term deployments at offshore monitoring stations when harsh
storm conditions might prevent the safe retrieval of cartridges for extended periods throughout
the winter months. Moreover, minimising visits to offshore sites required to exchange samples
can contribute to achieving net-zero science goals through reduced fuel consumption (NZOC,

2022)

7.3 Integrating autonomous biomolecular monitoring with other

environmental observations

7.3.1 Physical and chemical observations

Integrating biomolecular observations with satellite data and physio-chemical information
gathered from sensor-rich oceanographic and meteorological monitoring stations can reveal
the underlying mechanisms driving ecological changes. The results presented in both Chapter 2
and Chapter 3 provide examples of this integrated monitoring approach through the co-
deployment of various sensors and comparisons with satellite data. This combination of
parameters can significantly enhance the assessment of marine ecosystem conditions (Smit et
al., 2021). Moreover, considering the ecological interplay between physical and chemical

parameters is likely to improve long-term meteorological forecasting (Tagliabue, 2023).
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Additionally, the potential consistency of data obtained through autonomous eDNA sampling

helps mitigate issues related to missing data in ecological models (Lopucki et al., 2022).

7.3.2 Ecological observations

One of the key advantages of autonomous DNA monitoring is that samples can be collected
consistently, ensuring continuous data streams that facilitate the analysis of trends within
datasets. These trends, along with target species identifications can then guide confirmatory
and targeted research using traditional visual monitoring methods. For example, Holman et al.
(2019), detected the invasive Arcuatula senhousia (Asian date mussel) through eDNA analysis,

which was subsequently confirmed through targeted visual surveys.

However, as highlighted in Chapter 3, eDNA from larger, more mobile eukaryotes, such as
Arthropoda, interacting with sampling equipment can disrupt the temporal signal by shedding
disproportionately more DNA to an individual sample. Therefore, autonomous biomolecular
monitoring should not be viewed as a replacement for manual sampling or visual/acoustic
biomonitoring surveys but rather as a complimentary tool that can direct high-confidence and
more labour-intensive methods, like visual surveys, towards sites with the highest-likelihood of

relevant findings.

7.3.3 Citizen science observations

Citizen science observations complement autonomous biomolecular monitoring by offering
excellent spatial resolution at a single time point, while autonomy ensures consistent data
collection over time. For instance, in the national-scale Danish BioBlitz, 100 sites were sampled
simultaneously across two seasons, providing a valuable snapshot of coastal biodiversity
across multiple locations (Agersnap et al., 2022). Autonomous sampling, on the other hand,
allows for the collection of higher-resolution data on temporal fluctuations, including sampling

through the night or adverse sea conditions, which would be challenging for citizen scientists.

Beyond the advantage of higher resolution data, combining autonomous sampling with citizen
science offers a valuable opportunity for knowledge exchange between coastal communities
and scientists. The Danish BioBlitz engaged 360 citizen scientists over two surveys, providing an
opportunity to explain the science behind eDNA monitoring and potentially increasing trustin
the data produced (Agersnap et al., 2022). This engagement also allows scientists to gain
insights into local trends that may warrant further investigation within the eDNA datasets. For
example, if citizens report sightings of new species or declines in certain local species, these

observations can guide targeted analysis in the eDNA data. This collaborative approach to
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science has a proven track record of delivering real-world benefits to society (Baker et al., 2023;

Nichols et al., 2019).

7.4 National Biomolecular Observatory

To fully harness biomolecular data from diverse sources, whether from autonomous samplers
like RoCSl or citizen scientists, a national-scale infrastructure is essential. This requires the
development of standardised practices for sample processing, bioinformatics, and data and
metadata management, as well as the establishment of central repositories for long-term data

and sample storage.

At present, biomolecular data is underutilised in ocean biogeochemical models, which typically
rely on biological indicators such as nutrient or chlorophyll concentrations (Tagliabue, 2023).
This underutilisation is largely due to the complexity of genomic data and the challenges
associated with integrating data from various sources that employ different methodologies. A
national data repository for ocean biomolecular data, collected through standardised practices,
would reduce uncertainties arising from methodological variability and simplify the often-time-
consuming data wrangling required to merge datasets. This approach would promote the reuse
of biomolecular data, enabling the exploration of broader ecological trends across multiple

projects.

Maintaining this consistent biomolecular data and associated metadata will facilitate the
extension of biogeochemical models to include genomic diversity. This is a huge task to tackle
over the next decade, but incorporating this complexity into future models has the potential to

greatly improve both climate and species distribution forecasting (Keck et al., 2023).

7.4.1 Standard Practices

A national biomolecular data repository that uses standard practices for key universal primer
sets such as 12S rRNA for vertebrates, 16S rRNA for prokaryotes, 18S rRNA for eukaryotes, CO1
forinvertebrates, and ITS for fungi, would enable monitoring across the tree of life. Many
organisations see the benefit of standard practices and are beginning to establish their own best
or standard practices (De Brauwer et al., 2023; Nature Metrics 2022; Minamoto et al. 2021).
However, in general, eDNA methods are becoming more diverse as the field expands

(Hakimzadeh et al., 2024).

The process of selecting standard practices for a national repository could be contentious as
the selection of a standard practice could be misconstrued as an endorsement of the practice

as the best practice. While a standard practice must be high quality and thoroughly tested, it
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should also meet practical requirements for use on a national scale. Therefore, practices that
have lower costs, less specialist equipment, and utilise fully open-source software may be
preferential to more state-of-the-art practices. As stated by Stepien et al. (2024) in a

commentary on the US National Workshop on Environmental DNA,

“Itis time to stop letting perfect be the enemy of good and to focus future efforts on

method harmonization and a national strategy towards method adoption”.

Stepien et al., 2024

As research continuously builds upon and improves methodologies, the best practice at any
point in time will inevitably be improved upon. Consequently, standard practices should not be
perceived as completely static and resistant to change or updates. Rather, they serve as a
starting point that requires regular review and adaptation to evolving research. Assessing the
efficacy of new methods becomes challenging when numerous diverse 'old' methods are in use.
In contrast, evaluating a single standardised method against various new approaches is more

manageable.

Standard practices can also improve biomolecular literacy by simplifying the learning process.
Learning resources focused on a single set of standardised methods can reduce the complexity
and time investment required to understand the full breadth of biomolecular processes involved
in acquiring a dataset, from sample collection through to bioinformatics. This streamlined
approach makes it feasible for a greater number of people to understand the underlying
techniques, ultimately facilitating a deeper and more widespread understanding of

biomolecular data collection and analysis.

7.4.2 Data Management

Developing standard practices includes standard practices for data management, to increase
the Findability Accessibility Interoperability and Reusability (FAIR) of data (Wilkinson et al.,
2016). Initiating projects with a clear understanding of how and where the data and metadata
will be shared and stored throughout the project lifetime, streamlines data sharing and

decreases the risk of data loss that arises when data is handled across multiple parties.

Effective data management requires knowledge of the appropriate data repository for storing
and sharing data at the conclusion of a project. For instance, repositories like NBN Atlas and
GBIF are suitable for DNA-derived species data (NBN Trust, 2024; Abarenkov et al., 2023), while
the INSDC is designed for storing raw sequence data (Arita et al., 2021). Methods
documentation can be housed in the Ocean Best Practices Systems repository or on platforms

like protocols.io (Pearlman et al., 2019; Teytelman et al., 2016). Each of these repositories

184



Chapter 7

requires data in certain formats with key metadata requirements. Chapter 5 highlights the
benefits of sharing biomolecular observation methods through the OBPS platform (Samuel et

al., 2021).

Developing standardised data management practices is essential to ensure that all necessary
metadata and data are collected throughout the project's lifespan in the correct format for
repository submission (Thompson & Thielen, 2023). Without such practices, sharing data via
these platforms can become an arduous task, which is often overlooked at the end of a project
when funding and resources are limited. With the RoCSlI, this process could be automated
through software that syncs RoCSl data outputs with ship-derived geolocation data, ensuring

compatibility with repository upload formats.

7.4.3 Biobanks

Another key piece of infrastructure that will greatly facilitate ocean biomolecular monitoring is
the establishment of national biobanking facilities for the storage of physical samples (Jarman
et al., 2018). With autonomous monitoring devices such as the RoCSlI, surplus samples can be
easily collected and stored and used later for targeted research of historical reference samples.
Replicate samples can also be re-analysed with future technologies to facilitate the transition
between old and new standard practices. Biobanks can also ensure consistency in long term
monitoring projects throughout uncertain financial circumstances, enabling samples to be

stored until funding becomes available to analyse them.

7.5 Future technology development

Since the start of this PhD and the development of the RoCSlI prototype, new compact samplers
similar in size and shape to the RoCSI have been developed, such as the DOT eDNA sampler.
The DOT sampler, like RoCSlI, includes features such as self-cleaning and in-situ preservation
butis limited to nine discrete samples per deployment (Hendricks et al., 2023). In contrast, the
commercially available RoCSlI can collect up to 48 samples per deployment, with the potential
for more through custom sample storage configurations. This allows greater flexibility for
deployments at offshore long-term monitoring stations where access, and therefore
opportunities, for sample exchange is limited. This advantage is particularly significant given
that several liquid preservatives tested in Chapter 4 were found to effectively preserve nucleic

acids for up to two months.

Future developments in RoCSI technology may include additional modular components to

support in-situ sample analysis. For example, incorporating devices for in-situ amplification,
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such as the Amplitron (Wilson, 2020), would enable in-situ detection of key species like
Oleispira sp as potential early warning of pollution events (Chapter 3), or for hazardous species,
like Chiropsoides buitendijki (box jellyfish), that pose public health risks in regions reliant on

coastal recreation activities (Osathanunkul, 2024).

Additionally, integrating technology to prepare samples for analysis with portable sequencers
like the MinlON would enable near real-time sequencing in the field. This capability would allow
for adaptive sampling regimes, where areas of interest are identified in situ, enabling the
tracking of endangered species and guiding decisions on when and where to conduct more
intensive sampling efforts. As demonstrated in Chapter 6, MinlON sequencing has already been
incorporated into offshore observatory maintenance cruises. If samples are collected and
processed on first arrival at the observatory, before maintenance operations begin, sequencing
and preliminary interpretation can be completed within 24 hours. This could enable the
adoption of adaptive sampling strategies based on the taxa or functional annotations identified

in the initial samples.

At the time of writing Chapter 6, MinlON technology was error-prone and unreliable for eDNA
monitoring. However, recent advancements in the Oxford Nanopore Technologies’ R10.4 flow
cell have achieved a modal read accuracy of over 99%, making the MinlON a much more viable

tool for near-real time biomolecular monitoring (Ni et al., 2023; Sereika et al., 2022).

7.6 Conclusion

Autonomous biomolecular sampling is an emerging technology that offers a comprehensive
approach to monitoring marine ecosystems on a large scale. It serves as a valuable
complement to existing biodiversity monitoring methods and is particularly well-suited for
sentinel monitoring of diverse taxa, providing rapid and consistent data that can guide when and
where to deploy more resource-intensive observational methods. As long-term biomolecular
time series expand, the value of broadscale autonomous monitoring will continue to grow. To
fully realise the potential of this technology, standard practices and robust data management is
required to support a national scale ocean biomolecular observatory. Developing this
infrastructure would improve our capacity to predict and respond to ecological changes.
Ultimately, the detailed ecological insights provided by biomolecular monitoring are essential

for evidence-based decision-making to ensure the sustainability of marine environments.
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