
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Efficient Privacy-Preserving Conjunctive Searchable Encryption for Cloud-IoT
Healthcare System

JIADI MA, College of Computer Science, Beijing University of Technology, China

TIANQI PENG, College of Computer Science, Beijing University of Technology, China

BEI GONG, College of Computer Science, Beijing University of Technology, China

MUHAMMADWAQAS∗, School of Computing and Mathematical Sciences, Faculty of Engineering and Science,

University of Greenwich, U.K and also School of Engineering, Edith Cowan University, Australia

HISHAM ALASMARY, Department of Computer Science, King Khalid University, Abha, Saudi Arabia

SHENG CHEN, School of Electronics and Computer Science, University of Southampton, U.K. and Faculty of

Information Science and Engineering, Ocean University of China, China

In cloud-Internet of Things (IoT) healthcare systems, private medical data leakage is a serious concern as the cloud server is not

fully trusted. Dynamic searchable symmetric encryption (DSSE), with necessary forward and backward privacy security properties,

enables doctors to retrieve ciphertexts while guaranteeing data privacy. However, existing forward and backward private DSSE

schemes are not well-suited for cloud-IoT healthcare systems with attribute-value type databases. To this end, we propose an efficient

privacy-preserving conjunctive searchable encryption scheme for cloud-IoT healthcare systems, called PC-SE. It is the first conjunctive

DSSE scheme designed for attribute-value type databases. Specifically, we design flexible search capabilities for PC-SE to address users’

various search requirements. It can not only achieve precise conjunctive search based on keywords but also realize broad attribute

search. Moreover, our scheme achieves fine-grained search for attribute values while maintaining forward and Type-I
−
backward

privacy. This approach reduces the communication burden and minimizes the risk of privacy exposure. To ensure that users with

different authorities can only access the corresponding attribute values, we introduce an attribute access control mechanism in PC-SE.

Finally, security analysis and experimental results demonstrate that PC-SE is secure and effective.

CCS Concepts: • Security and privacy→Management and querying of encrypted data.

Additional Key Words and Phrases: Cloud-IoT healthcare system, dynamic symmetric searchable encryption, forward and backward

security, attribute-value type databases

ACM Reference Format:
JiaDiMa, Tianqi Peng, Bei Gong,MuhammadWaqas, HishamAlasmary, and Sheng Chen. 2025. Efficient Privacy-Preserving Conjunctive

Searchable Encryption for Cloud-IoT Healthcare System. 1, 1 (September 2025), 28 pages. https://doi.org/XXXXXXX.XXXXXXX

Authors’ Contact Information: JiaDi Ma, College of Computer Science, Beijing University of Technology, Beijing, China, 13718021152@163.com; Tianqi

Peng, ptq17812103095@163.com, College of Computer Science, Beijing University of Technology, Beijing, China; Bei Gong, College of Computer Science,

Beijing University of Technology, Beijing, China, gongbei@bjut.edu.cn; Muhammad Waqas, School of Computing and Mathematical Sciences, Faculty

of Engineering and Science, University of Greenwich, London, U.K and and also School of Engineering, Edith Cowan University, Perth, Australia,

engr.waqas2079@gmail.com; Hisham Alasmary, Department of Computer Science, King Khalid University, Abha, Saudi Arabia, alasmary@kku.edu.sa;

Sheng Chen, School of Electronics and Computer Science, University of Southampton, U.K. and and Faculty of Information Science and Engineering,

Ocean University of China, China, sqc@ecs.soton.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Ma et al.

1 Introduction

With the rapid development of Internet of Things (IoT) and cloud computing, integrating these technologies in cloud-IoT

healthcare systems has found widespread applications in real life [1–4]. Wearable IoT devices aggregate collected

patient data into electronic health records (EHRs) and upload them to cloud servers [5]. This not only facilitates doctors’

prompt access to medical data for diagnosis and treatment but also reduces the cost of storing a large number of EHRs

files. However, due to the fact that cloud servers may not always be trusted, the sensitivity and privacy of medical

data impose a challenge for cloud-IoT healthcare systems [6]. The leakage of EHRs can lead to reputation damage and

unnecessary discrimination against patients [7, 8]. A common solution is to encrypt EHRs before uploading them to the

cloud server, but this introduces another problem, i.e., encrypted EHRs cannot be retrieved by users based on keywords.

Symmetric searchable encryption (SSE) was first introduced by Song et al. [9] and can successfully achieve ciphertext

retrieval. To support the dynamic update of databases, Kamara et al. [10] proposed dynamic SSE (DSSE) by introducing

additional leakage. Unfortunately, these additional leakages can severely compromise data privacy in healthcare systems

[11–13]. To this end, Stefanov et al. [14] introduced the concepts of forward and backward (FB) privacy to mitigate

the additional privacy concerns introduced by supporting update operations. Forward privacy severs the connection

between newly added files and previous search queries, ensuring that previous search queries cannot match the newly

added files. On the other hand, backward privacy severs the connection between the current search queries and files

that have been deleted, ensuring that subsequent search queries on keyword w cannot match files that were added

and later deleted. Bost et al. [15, 16] formally defined forward privacy and three types of backward privacy, gradually

decreasing in strength from Type-I to Type-III. Based on [16], Zuo et al. [17] defined backward privacy Type-I
−
, which

is more secure than backward privacy Type-I. Most DSSE schemes have drawn inspiration from and incorporated these

security definitions [18, 20–22, 24–26].

Table 1. EHRs database.

ID

Attribute

Name Age Family History ... Past History Medications

700756 *** 42
Father has

Diabetes
...

Hypertension

(diagnosed in 2015)

Lisinopril (10mg daily)

for hypertension

749939 *** 53 ⊥ ...
Asthma (diagnosed in

childhood), Seasonal allergies

Loratadine for

seasonal allergies

... ... ... ... ... ... ...

739221 *** 60 ⊥ ...
Type 2 Diabetes (diagnosed

in 2016), Hypertension

Metformin (250mg

daily) for diabetes

Single-keyword DSSE scheme with FB privacy has limited expressiveness of queries and is unsuitable for healthcare

systems. A practical DSSE scheme for healthcare systems should support conjunctive search. Patranabis and Mukhopad-

hyay [27] designed an oblivious computation protocol and constructed a practical DSSE scheme for conjunctive search

with FB privacy, named ODXT. Zuo et al. [28] proposed FB-DSSE-CQ, a conjunctive DSSE scheme using an extended

bitmap index. Chen et al. [29] and Guo et al. [30] implemented a conjunctive searchable encryption scheme with FB

privacy using inner product matching and puncturable pseudorandom functions, respectively.

In cloud-IoT healthcare systems, EHRs files follow an attribute-value data format, and a representative resulting

database is shown in Table 1. Each row represents an EHRs file with a corresponding file identifier that contains

several attributes. Each column contains the attribute values for the respective EHRs files. However, existing FB

Manuscript submitted to ACM



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Efficient Privacy-Preserving Conjunctive Searchable Encryption for Cloud-IoT Healthcare System 3

privacy conjunctive DSSE schemes are not directly applicable to cloud-IoT healthcare systems [31]. The reasons are

as follows. Doctors perform various tasks such as diagnosis, research, and statistics based on EHRs. They not only

perform conjunctive searches based on keywords to precisely obtain query results but also search for files containing

a specific attribute. Unlike the former, the latter type of search is not dependent on keywords but rather is a broad

attribute-based search. Existing schemes only support fixed keyword-based search functionality, which fails to meet

users’ various practical query requirements. Second, when applied to attribute-based databases, existing conjunctive

search schemes introduce additional communication burdens and privacy concerns. Specifically, different attributes may

contain the same keywords. When a doctor seeks files with ‘hypertension’ in the ‘past history’ attribute and ‘diabetes’

in the ‘family history’ attribute, the correct result should be the file with ID = 700756. However, using previous DSSE

schemes, the search results would include both ID = 700756 and ID = 739221 files. The file with ID = 739221 also contains

‘hypertension’ and ‘diabetes’, but it is not the required file for the doctor, resulting in unnecessary communication burden

and information leakage. A straightforward solution for exsiting scheme is to flatten the multi-dimensional structure of

attribute-value databases by treating attributes as part of the keyword, that is, by concatenating the attribute name and

the keyword into a single new keyword for search. However, this approach still faces several challenges in terms of both

search granularity and privacy. Specifically, it can only support coarse-grained, document-level search, meaning that

users can retrieve only entire documents containing the matching keyword, rather than specific content under a certain

attribute. In practice, doctors may wish to obtain fine-grained information pertaining to a particular attribute (e.g., "past

history" or "medications") rather than accessing the full EHR. This increases the risk of unnecessary privacy exposure

and also leads to higher communication overhead. Furthermore, in real-world healthcare systems, the attribute values

of EHR files often contain highly sensitive personal information. Different users (e.g., attending physicians, nurses, and

medical interns) should have distinct access rights to specific attribute fields. However, when attributes are embedded

within keyword strings, the system loses the ability to identify and authorize access to individual attributes. As a result,

access control can only be enforced at the keyword level, not at the attribute level. This issue becomes even more

pronounced when attribute names overlap with keyword values, making precise, attribute-level access control even

more difficult to implement. This approach causes DSSE schemes to overlook the need for attribute-level access control

and fine-grained attribute-value retrieval. In summary, designing a FB privacy conjunctive DSSE scheme with flexible

search capabilities and high private security for cloud-IoT healthcare systems remains a challenge.

To address the above challenges, we design PC-SE, a forward and backward (FB) privacy-preserving conjunctive

DSSE scheme specifically tailored for attribute-value structured EHR databases in cloud-IoT healthcare systems. At a

high level, the scheme integrates oblivious computation protocol and symmetric encryption with homomorphic addition

with a structured secure index to support precise conjunctive keyword search across multiple attributes, while enabling

fine-grained attribute-value retrieval instead of returning entire documents. An attribute access mapping mechanism is

further introduced to achieve fast attribute-specific queries and enforce attribute-level access control, ensuring that

users with different roles can only access authorized fields. The scheme supports dynamic updates while preserving

forward privacy and Type-I
−
backward privacy, and is proven secure under the defined security model. Experimental

results demonstrate that PC-SE achieves a practical balance between strong privacy guarantees, expressive query

capabilities, and low computation overhead. Our contributions are summarized as follows.

• We propose the first FB privacy conjunctive DSSE scheme for EHRs file databases. By integrating an oblivious

computation protocol and symmetric encryption with homomorphic addition, the scheme enables precise and

efficient conjunctive keyword search across multiple attributes. Instead of returning full documents, the scheme

Manuscript submitted to ACM



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Ma et al.

allows users to retrieve only specific attribute values that satisfy the query. This enables users to obtain accurate

search results and addresses the widespread issues of additional communication burden and privacy leakage

present in existing schemes.

• To support flexible search, we introduce an attribute access mapping mechanism, which facilitates efficient broad

attribute queries and enforces attribute-level access control. This ensures that users with different roles can

only search and access the attributes they are authorized to see, satisfying fine-grained privacy requirements in

real-world healthcare systems.

• We formally prove that our scheme achieves forward privacy and Type-I
−
backward privacy, the strongest

defined level in existing literature. We also conduct extensive experiments to demonstrate that our scheme

achieves a practical balance between security, search efficiency, and functionality, outperforming related works

in both expressiveness and performance.

2 Related Works

Song et al. [9] pioneered the first static SSE scheme in 2000. The search time of the scheme is linearly related to the size

of the database, but its security and expressive power were still lacking. Following this, SSE has attracted extensive

research and attention. Goh et al. [34] and Chang et al. [35] respectively constructed security models for SSE and

designed corresponding SSE schemes. In particular, Goh et al. [34] proposed the first SSE scheme based on inverted

indexing. However, the security models they proposed still had flaws. Curtmola et al. [36] introduced an adaptive

security model and constructed an SSE scheme with sub-linear complexity based on inverted index. However, these

static database-based SSE schemes do not meet the real-time data update requirements in many scenarios.

To enable SSE schemes to support dynamic updates, Kamara et al. [10] proposed the concept of dynamic searchable

symmetric encryption (DSSE) and designed the first DSSE scheme supporting dynamic data updates. A series of

subsequent works focused on enhancing the functionality, efficiency, and security of DSSE schemes. In particular,

leveraging the strong expressiveness of attribute-based encryption (ABE), Li et al. [37] proposed a new attribute-based

encryption scheme (KSF-OABE) that outsources key issuance and decryption to enable keyword search, reducing

computation costs and ensuring the cloud service provider cannot access the plaintext, while proving its security

against chosen-plaintext attacks. Gao et al. [38] and Yu et al. [39] integrated ABE with blockchain technology to achieve

fine-grained search and revocable functionalities. Similarly, Yin et al. [40] proposed a novel secure index based on access

policies and an attribute-based search token, allowing for fine-grained search capabilities along with access control.

While these approaches have successfully minimized the overhead associated with decryption and revocation, DSSE

schemes that rely on ABE still face challenges when applied in resource-constrained network environments. In addition,

some work focused on addressing common query and result pattern leakage in SSE protocols. Li et al. [41] proposed a

verifiable searchable encryption (VSE) scheme that supports conjunctive keyword search while hiding both access and

volume patterns, using additively symmetric homomorphic encryption and private set intersection protocols. Yang et al.

[42] used the oblivious polynomial evaluation (OPE) protocol to construct a verifiable searchable encryption scheme

named OpenSE, to preserve query and result pattern privacy. Ji et al. [43] proposed a leakage-suppressed verifiable

searchable symmetric encryption (VSSE) scheme that hides search, access, and response length patterns, allows the

client to verify the server’s response. Xu et al. [44] introduced the concept of keyword pair result pattern (KPRP) leakage

and proposed a DSSE scheme to address this issue. Chen et al. [45] introduced MFSSE, an SSE scheme that conceals

search patterns by modifying the search trapdoor for each query and introduces random errors to resist access pattern

Manuscript submitted to ACM



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Efficient Privacy-Preserving Conjunctive Searchable Encryption for Cloud-IoT Healthcare System 5

leakage. Jiang et al. [46] leveraged trusted hardware Intel SGX to deploy a new tree-based SSE scheme that hides result

patterns.

There is no doubt that dynamic updates introduce more security threats to the scheme. In particular, Zhang et al. [13]

proposed a file injection attack in 2016 that could easily compromise the security of DSSE. Forward and backward privacy

effectively control leakage in DSSE and resist file injection attacks. These concepts were first introduced by Stefanov

et al. [14]. Bost et al. [16] formally defined forward privacy and three security levels of backward privacy (Type-I to

Type-III) and proposed DSSE schemes with three levels of security. Song et al. [47] designed a state chain structure based

on symmetric cryptographic primitives to construct a fast forward privacy scheme, named Fast. Li et al. [18] adopted a

triple dictionary structure to design a forward privacy scheme for healthcare systems, but the scheme is limited by its

cumbersome update operations. Li et al. [19] proposed a multi-user dynamic searchable symmetric encryption (MDSSE)

scheme for attribute-value type databases. The scheme also uses a triple dictionary structure to support keyword /

attribute-based searches and adopts blind storage to enhance privacy. Although the scheme is practical in dynamic

multi-user settings, it only supports single-keyword / attribute queries and lacks support for conjunctive searches,

backward privacy, and fine-grained access control. Liu et al. [20] and Wang et al. designed a more efficient forward

privacy scheme for both search and update using a hash chain structure. The lack of consideration for backward privacy

still fails to protect privacy security comprehensively. Bost et al. [16] proposed Janus, a DSSE scheme with forward

and Type-III backward privacy, using puncturable encryption. Later, Sun et al. [48] found that the public-key-based

puncturable encryption used in Janus had low update efficiency. As a result, they proposed a symmetric cryptographic

primitive-based puncturable encryption and designed an optimized scheme called Janus++. After analyzing the Type-I

backward privacy proposed by Bost [16], Zuo et al. [17] proposed a more secure Type-I
−
backward privacy and construct

a scheme with both forward and backward privacy using bitmap indexes and homomorphic encryption techniques. In

order to reduce client storage, Demertzis et al. [11] proposed the scheme Qos, which is the first quasi-optimal Type-III

backward privacy scheme as far as we know. Zhao et al. [49] introduced an efficient cumulative commitment verification

structure (AC-VS) with constant-size storage to reduce the search cost of the scheme while ensuring forward and

backward privacy. Dou et al. [50] proposed a robust forward and backward privacy scheme to adapt to more complex

update and query processes. Chen et al. [51] utilized blockchain and hash-proof chain technologies to build a publicly

verifiable DSSE scheme and designed a new data hiding structure that provides both forward and backward privacy.

It is clear that single-keyword search cannot meet the query requirements in real-world systems. The capability

of conjunctive keyword search enhances the application of DSSE schemes in practical scenarios [52]. Cash et al. [53]

introduced the first static conjunctive search scheme, called OXT, which lacks the functionality for data updates.

To this end, Patranabis et al. [27] proposed three dynamic conjunctive searchable encryption schemes: MitraConj ,

BDXT and ODXT. MitraConj is an extension of the single-keyword DSSE scheme Mitra [22]. Its idea is to run single-

keyword searches multiple times and take the intersection to achieve conjunctive search, but its computational and

communication costs are proportional to the number of updates for each keyword in the conjunction. This overhead

is significant when the number of keywords or updates is high. BDXT optimized MitraConj ’s search cost by making

its computational cost only related to the keyword with the least updates, but still has issues with high latency and

multi-round communication. ODXT further improved BDXT by using oblivious computation protocols. It is currently

an effective scheme for conjunctive search with forward and backward privacy. Chen et al. [29] designed a conjunctive

search DSSE scheme DSSE-DC with a revocation mechanism using the idea of inner product matching. Guo et al. [30]

constructed a forward index using a t-puncturable pseudorandom function and combined it with an inverted index

to achieve conjunctive keyword search. Li et al. [54] introduced the notion of an update counter to construct a new

Manuscript submitted to ACM



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Ma et al.

bi-directional index structure, which enables conjunctive queries over bipartite graphs. Their scheme also proposed a

new oblivious data structure to store the bi-directional index and used a semantically secure encryption scheme to

encrypt node information, providing the proposed scheme with forward privacy and Type-I backward privacy. Yuan et al.

[55] introduced the first sub-linear KPRP-hiding conjunctive DSSE scheme with forward and backward privacy, enabled

by a novel cryptographic primitive, Attribute-updatable Hidden Map Encryption (AUHME). Li et al. [56] designed a

highly balanced binary tree data structure called the Indistinguishable Binary Tree (IBtree) to achieve conjunctive

keyword search. In addition, many other works have focused on extending DSSE with various query functionalities

[57–59]. For instance, to enable fuzzy search, Li et al. [57] introduced a two-dimensional inner product relation to

construct a wildcard searchable encryption scheme. Liu et al. [58] proposed a partitioning strategy to implement range

searches on large-scale databases while using order-weighted inverted indexes and bitmap structures to enhance the

efficiency and security of the scheme.

However, as mentioned before, these existing schemes cannot be directly applied to cloud-IoT healthcare systems

based on attribute value-type databases. Table 2 presents a comparison of our scheme with existing advanced DSSE

schemes in terms of security, functionality, and efficiency.

Table 2. Comparison of existing schemes with proposed scheme.

Scheme Query
Type

Atrribute
Search

Fine-grained
Search

User
Update

Attribute
Access Contol

Update
cost

Search
cost

Forward
Privacy

Backward
Privacy

[16] Single ✗ ✗ ✗ ✗ Õ(log
2 P) Õ(aw log P + log

3 P) ✓ I

[16] Single ✗ ✗ ✗ ✗ O(1) O(nwdw) ✓ III

[50] Single ✗ ✗ ✗ ✗ O(|D |) O(aw |D |) ✓ I
−

[24] Single ✗ ✓ ✗ ✓ O(1) O(|D |2) ✓ II

[29] Conjunctive ✗ ✗ ✗ ✗ O(a f ) O(awmin) ✓ I
−

[18] Single ✓ ✓ ✗ ✗ O(P) O(aw) ✓ ✗
[20] Single ✗ ✓ ✓ ✓ O(|s |) O(aw) ✓ ✗
[19] Single ✓ ✗ ✓ ✗ O(P) O(aw) ✓ ✗
[30] Conjunctive ✗ ✗ ✗ ✗ O(1) O(nawmin) ✓ ✗
[54] Conjunctive ✗ ✗ ✗ ✗ O(log P logk P) O(nawmin log P logk P) ✓ I

[44] Conjunctive ✗ ✗ ✗ ✗ O(1) O(nawmin) ✓ II

[27] Conjunctive ✗ ✗ ✗ ✗ O(1) O(nawmin) ✓ II

Ours Conjunctive ✓ ✓ ✓ ✓ O(|s |) O(nawmin) ✓ I
−

P is the number of keyword/document pairs, |D | is the number of total files, and |s | is the number of authorized user. For

keywordw , nw is the number of results currently matchingw , aw is the total number of keyword updates, dw is the number

of deleted operations for w , awmin is the number of the least update keyword in q = (w1 ∧w2∧, · · · , ∧wn ), and n is the

number of keyword in conjunctive query q . af is the number of updates for f . The notion Õ hides polylog factors, and hence

Õ (A) > O (A).

3 Preliminaries

3.1 System Model

Fig. 1 depicts the system model we considered, which consists of four entities: patients, cloud server, doctors and

hospital.

Patients: As data owners, patients upload the EHRs collected through wearable IoT devices to the cloud server. To

protect data privacy and facilitate subsequent search operations by doctors, patients first encrypt the EHRs using a

symmetric encryption algorithm and construct the corresponding encrypted index. Then, they upload the encrypted

files along with the secure index to the cloud server. Finally, when doctors perform search operations, patients share

the relevant keys with the doctors through the hospital.

Manuscript submitted to ACM



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Efficient Privacy-Preserving Conjunctive Searchable Encryption for Cloud-IoT Healthcare System 7

Patient Doctors

Encrypted files

Cloud Server
Encrypted 

index

Search keyword 
and attribute

Trapdoor

Search results

Hospital

Encrypted key Decrypted key

Fig. 1. Cloud-IoT healthcare system model of our proposed scheme.

Doctors: As data users, doctors retrieve EHRs files stored on the cloud server to study and diagnose patients’

conditions. To retrieve the required EHRs, doctors need to generate a search trapdoor and send them to the cloud server.

It is necessary to filter out the unauthorized access portion from the search results locally and prepare for subsequent

fine-grained searches.

Cloud Server: The cloud server is responsible for storing data and performing retrieval operations. Upon receiving

a trapdoor sent by the doctor, the server executes the search protocol based on the secure index and returns the final

search results to the doctor.

Hospital: The hospital is responsible for generating encrypted and decrypted keys and distributing them to patients

and doctors, respectively. Only patients and hospital-authorized doctors can perform encryption and decryption

operations on the files.

Note: Our goal is to design a forward and backward conjunctive DSSE scheme with flexible search capabilities and

high privacy for cloud-IoT healthcare systems. The key point is how to design a secure index architecture for the

attribute-based database in the cloud-IoT health system, so that doctors can implement multiple search functions while

minimizing the privacy leakage of patients during the update and search process. Like all existing DSSE schemes, the

security of our scheme relies on a "strong" assumption that the client’s key can always be protected and will not be

compromised [60]. Therefore, we did not discuss the key distribution and sharing issues in the paper.

3.2 Threat Model

In our scheme, the patients and doctors are legal. To protect private information, they execute the protocol honestly

and never expose the keys to any unauthorized entities. We also assume the hospital is a fully trusted third party. The

hospital’s functions are to generate and distribute keys, authenticate identities, reduce the burden of key storage, and

Manuscript submitted to ACM



365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Ma et al.

provide secure communication within the system. The cloud server is assumed to be honest but curious. This means

the server will perform updates and retrieval operations honestly and return the correct search results to the doctor.

However, it may also attempt to learn more valuable information during these processes.

3.3 Notations

Table 3 introduces the notations used in this paper.

Table 3. Notations and their descriptions.

Notations Descriptions
fi The i-th EHRs file

λ The security parameter

DB The attribute-value-type database

EDB The encrypted database

w The keyword

att The attribute in EHRs file

Watt The set of keywords under the attribute att Watt = {Watt,f1 , · · · ,Watt,fm }

Watt,f The set of keywords under the attribute att in f

W The set of keywordW = {Watt1
, · · · ,Wattv }

|W| The total number of keywords

ATT The set of attributes ATT = {att1, · · · ,attv }
bs The bit string of bitmap index

e The bit string of encrypted bitmap index

Sume The sum of bit strings for encrypted bitmap index

m The maximum number of EHRs files that the database DB can hold

Vf ,att The value of attribute att in file f

q The conjunctive search query q = {(w1 | |att1)∧, · · · ,∧(wn | |attn )}
| | The concatenation of strings

x → X x is uniformly and randomly sampled from X
cw | |att The counter for the update frequency ofw under att
catt The counter for the update frequency of attribute att
C The map stores the counter

T The map stores the secure index and corresponding encrypted file

X The map stores the cross-tag

3.4 Bitmap Index

We use a bitmap index to represent the file identifiers in our scheme. Specifically, within a bit string bs of length l (l is

the maximum number of files the database can support), the ith bit being 1 indicates the existence of file fi , while 0

indicates the file’s absence. Fig. 2 shows an example supporting six files, i.e., l = 6. Fig. 2 (a) shows the initial state of

the bit string bs , which indicates that files f1 and f3 exist. If we wish to add file f0, we need to perform the operation

as shown in Fig. 2 (b). Specifically, we need to generate the bit string for f0, which is 2
0 = (000001)2, and add it to

the initial state of the bit string bs , (001010)2, resulting in an updated state of (001011)2. If we want to delete file f3

from the current state of the bit string, we must perform the operation as shown in Fig. 2 (c). We need to generate the

bit string for f3, which is −2
3 = −(001000)2. Since we are performing a modulo 2

6
operation (the modulus is related

Manuscript submitted to ACM



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Efficient Privacy-Preserving Conjunctive Searchable Encryption for Cloud-IoT Healthcare System 9

Fig. 2. Construction and operation rules of bitmap index.

to the length of the bit string l), −2
3
is converted to 2

6 − 2
3 = (111000)2

1
. Then, (111000)2 is added to the current

state (001011)2. Please note that the addition and deletion operations of the bitmap index can be implemented through

modular addition. The reason for this design is to enable the bitmap index to be encrypted (homomorphically) and

updated (to reflect the addition and deletion of files) using encryption with homomorphic properties.

Remark. In the proposed scheme, we use one bit to indicate whether fi exists. Multiple bits can also be used to

indicate the existence of fi in different applications. For details, please refer to the reference [28].

3.5 Dynamic Symmetric Searchable Encryption (DSSE)

A DSSE scheme Σ runs between the user and the server and consists of one algorithm Setup and two protocols Update,
Search. The specific definitions are as follows.

Setup(λ,DB) ←− (K ,σ ,EDB): The algorithm takes security parameters λ and the original database DB as input and

outputs the secret key K , a local state σ for the user, and an encrypted database EDB stored in the server.

Search(K ,q,σ ;EDB) ←− (σ
′

,R;EDB
′

): The search protocol runs between the user and the server and is responsible

for executing keyword-based search queries on the database. Specifically, the user inputs (K ,q,σ ) and outputs a modified

state σ
′

and a search result R returned by the server, where q is query request. The server takes the encrypted database

EDB as input and outputs a modified database EDB.

Update(K ,σ ,op, in;EDB) ←− (σ
′

;EDB
′

): The update protocol runs between the user and the server and is responsible

for updating the database EDB. Specifically, the user inputs (K ,σ ,op, in) and outputs a modified state σ
′

, where op

1
Modular operations typically return a non-negative result. When dealing with modular operations involving negative numbers, the result can be ensured

to be non-negative by adding the negative number to the modulus and then performing the modular operation.

Manuscript submitted to ACM



469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Ma et al.

denotes the update type and in denotes the update index information. The server takes the EDB as input and outputs a

modified encrypted database EDB
′

.

The adaptive security of a DSSE scheme

∑
= (Setup, Update, Search) is determined by a real-ideal game model. The

real game REAL

Σ

A
(λ) is consistent with the DSSE scheme itself, while the ideal game IDEAL

Σ

A,S(λ) reflects the behavior

of treating the information leaked by DSSE as input to the simulator S. Adversary A can learn the information leaked

by the DSSE scheme through a leakage function L = (LStp ,LUpdt ,LSrch ), where LStp , LUpdt
, and LSrch are used

to capture the leakages in the Setup, Update, and Search protocols, respectively. The definitions of REAL

Σ

A
(λ) and

IDEAL

Σ

A,S(λ) are as follow.

REAL

Σ

A
(λ): It runs Setup when the adversary A chooses a database DB. After A obtains encrypted database EDB,

the game calls Update or Search to respond to the adversary’s queries. Finally, A outputs a bit b ∈ {0, 1}.

IDEAL

Σ

A,S(λ): The simulator S takes LStp as input and executes. When A generates update or search query, S

replies by running LUpdt
or LSrch . Finally, A outputs a bit b ∈ {0, 1}.

Definition 1 (L-adaptive security). A DSSE scheme is L-adaptively-secure, if for any probabilistic polynomial-time

(PPT) adversary, there exists an efficient simulator S contenting��
Pr

(
REAL

Σ
A (λ)=1

)
−Pr

(
IDEAL

Σ
A,S (λ)=1

) ��≤ neдl(λ). (1)

Forward privacy. Zhang et al. [13] proposed a file injection attack against the DSSE scheme. This attack leverages

matching between previous search tokens and leakage about newly added files during the update to recover keywords.

Forward privacy ensures that the newly inserted files cannot be linked with the previous search queries. This means

that the newly added data will not reveal the previous query pattern during the update, and the adversary cannot

infer the query content by correlating the previous and new data. Therefore, a DSSE scheme with forward privacy can

effectively resist file injection attacks.

Definition 2 (Forward privacy). An L-adaptive security DSSE scheme is forward private, if leakage function LUpdt

can be written as following form:

LUpdt (op, (w,bs)) = L
′

(op,bs) (2)

where L
′

is stateless functions, op = {add/del} is operation type.

Backward privacy. Backward privacy ensures that the subsequent search queries cannot match files that have

been deleted previously. That is, subsequent search queries should not reveal the existence or contents of the file that

has already been deleted from the database. There are four types of backward privacy: Type-I
−
, Type-I, Type-II, and

Type-III. The security decreases from Type-I
−
to Type-III [17, 29]. We focus on Type-I

−
backward privacy defined in

[17]. This kind of backward privacy allows the scheme to leak the files currently containing w , the total number of

keyword updates and the timestamp for each update. Based on the leakage of Type-I
−
backward privacy, Type-I and

Type-II additionally leak that the insertion times of matching files, and Type-III further reveals the timestamps of each

deletion operation as well as the corresponding insertion operation. Before formally defining Type-I
−
backward privacy,

we introduce several functions.

For a list of all queries Q , search pattern sp(w) = {t |(t ,w) ∈ Q} reveals the timestamps of all search queries onw ,

where t is the timestamp of the query, and (t ,w) is a search query. rp(w) = {bs} reveals the files containingw that have

not yet been deleted. Time(w) = {t |(t ,op, (w,bs)) ∈ Q} leaks the timestamps of each update forw , where (t ,op, (w,bs))

is update query.

Manuscript submitted to ACM



521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Efficient Privacy-Preserving Conjunctive Searchable Encryption for Cloud-IoT Healthcare System 11

Definition 3 (Backward privacy). An L-adaptive security DSSE scheme is Type-I− Backward private, if leakage

function LUpdt , LSrch can be written as following form:

LUpdt (op, (w,bs)) = L
′

(op) (3)

LSrch (w) = L
′′

(sp(w), rp(w),Time(w)) (4)

where L
′′

is stateless functions.

3.6 Design Goals

To achieve efficient conjunctive searchable encryption for healthcare systems, the following design goals should be met.

Privacy preserving: In cloud-IoT healthcare systems, the privacy preserving is essential. The proposed scheme

should ensure that apart from some necessary leakage, the cloud server cannot learn any additional information during

the update and search. Forward and backward privacy are crucial to prevent the cloud server from inferring whether

newly added files contain previously searched keywords as well as matching files that have been added and subsequently

deleted. Combining forward privacy and backward privacy provides comprehensive protection for data, ensuring that

sensitive information is not leaked during the addition, deletion, and search. Forward privacy and backward privacy are

essential security properties for a DSSE scheme for cloud-IoT healthcare systems.

Flexible searchability: Flexible search capabilities are crucial for practical cloud-IoT healthcare systems. The

proposed scheme should support exact conjunctive search and broad attribute search to meet the various requirements

of users.

• Exact conjunctive search: The scheme allows for precise data retrieval by enabling searches over combinations

of multiple attribute/keyword pairs.

• Broad attribute search: Users can perform a fast attribute search using only the attribute element. This search

mode enables users to obtain a class of data.

• Fine-grained attribute-value search: Based on the above, beyond document-level retrieval, the scheme should

also support fine-grained searches over specific attribute values.

These features should be integrated into the design of the scheme to provide flexibility and privacy protection in

practical data retrieval scenarios.

Dynamic update: The proposed scheme should support dynamic update capabilities so that both EHRs files and

users can be updated.

Access control: Given the sensitivity of EHRs, only authorized doctors with relevant permissions should be able to

access them. Therefore, the proposed scheme should have access control capabilities.

Efficiency: Along with rich functionality and high security, search efficiency is also an important indicator to

evaluate whether a DSSE scheme can be truly applied in practice.

4 PC-SE: Efficient Privacy-preserving Conjunctive Searchable Encryption

In this section, we present our PC-SE, an efficient conjunctive searchable encryption for cloud-IoT healthcare systems.

4.1 Overview of the Proposed Scheme

Before presenting the detailed construction, we briefly outline the main flow of our scheme. In PC-SE, we utilizes

bitmap index as data structure to efficiently support both conjunctive keyword queries and attribute-value queries.

Manuscript submitted to ACM



573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Ma et al.

The workflow begins with the data owner encrypting each EHR file using a symmetric encryption with homomorphic

addition combined with modular addition, which conceals both the access pattern and the update type while preserving

the ability to perform necessary computations directly over encrypted data. Note that in the scheme, we assume that all

key management and distribution are handled by a trusted third-party hospital. Therefore, this issue is not discussed

in the detailed construction. The index design further integrates an oblivious computation protocol to protect query

privacy and incorporates an attribute access mapping to enable efficient attribute-level queries and enforce access

control policies. When a doctor submits a search request, the hospital sends the relevant key to the user and encrypts

the query to generate a search token. The cloud server processes this token to locate encrypted entries in the index and

returns only the matching results. This process supports expressive conjunctive searches across multiple attributes,

such as retrieving records where attribute “past history” contains hypertension and attribute “family history” contains

diabetes, as well as fine-grained attribute-value retrieval, ensuring that only the queried attribute’s content is revealed

while preventing unnecessary exposure of unrelated fields. Access control is enforced throughout the process by the

attribute access mapping, which guarantees that each doctor can only retrieve information from attributes they are

authorized to access, thereby enabling attribute-level restrictions. The scheme also supports secure dynamic updates,

allowing insertion and deletion of EHR files while maintaining forward privacy and Type-I
−
backward privacy. Through

this workflow, PC-SE achieves strong privacy protection, expressive and flexible search capabilities, and practical

efficiency for large-scale cloud-IoT healthcare systems.

4.2 Our Construction

To achieve the design goals presented in Subsection 3.6, our scheme consists of three protocols: Setup, Update and
Search. Among them, Update includes file updates and user updates, while Search includes broad attribute search

and exact conjunctive keyword-attribute search. Before presenting the details of these protocols, we first clarify the

frequently used symbols and functions in the literature.

F1, F2, F3 and Fp are pseudorandom functions (PRFs), H1 and H2 are hash functions. kt ,ks and kui are λ-bit keys

generated for F1, F2 and F3, respectively. kx , ky and kz are keys generated for Fp . Let д be a uniformly sampled

generator for the p = p(λ) order cyclic group G. Setup,Enc,Dec and Add are algorithms in symmetric encryption with

homomorphic addition Π [17, 29]. Specifically,

Π.Setup(1λ): A setup algorithm that takes the security parameter λ as inputs. It produces a message space N , where

N = 2
µ
and µ is the maximum number of files in the database.

Π.Enc(ke , I ,N ): An encryption algorithm that takes the random key ke (0 ≤ ke < N ), message I (0 ≤ I < N ) and a

message space N as inputs. It produces the ciphertext e = ke + I mod N as output, where the key ke can be used only

once and needs to be retained for decryption.

Π.Add(e1, e2,N ): A homomorphic addition algorithm that takes ciphertexts e1, e2 and a message space N as inputs.

It produces Sume = e1 + e2 mod N as output, where e1 = Enc(ke1
, I1,N ), e2 = Enc(ke2

, I2,N ), 0 ≤ ke1
,ke2

< N and

0 ≤ I1, I2 < N .

Π.Dec(ke , e,N ): A decryption algorithm that takes the key ke , ciphertext e and a message space N as inputs. It

produces I = e − ke mod N as output.

Correctness. The correctness of symmetric encryption with homomorphic addition Π means that given two

ciphertexts e1 = ke1
+ I1 mod N and e2 = ke2

+ I2 mod N , one can compute Sume = e1 + e2 mod N . Meanwhile, one

Manuscript submitted to ACM



625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Efficient Privacy-Preserving Conjunctive Searchable Encryption for Cloud-IoT Healthcare System 13

need to know the key
ˆke = ke1

+ ke2
mod N to decrypt Sume . In other words,

Dec( ˆke , Sume ,N ) = Sume − ˆke mod N = I1 + I2 mod N . (5)

It is easy to see that Π achieves perfect security (PS) if each secret key is used only once. In this setting, a fresh secret

key is chosen for every message encryption, which is conceptually analogous to the one-time pad (OTP). As a result,

any ciphertext reveals no information about the corresponding plaintext to an adversary A. The formal definition is

presented below.

Perfect Security [61]. If for any probabilistic polynomial-time adversary (PPT) A, its advantage

AdvPS

Π,A (λ) = |Pr[A(Π.Enc(ke , I0,N )) = 1] − Pr[A(Π.Enc(ke , I1,N )) = 1] (6)

is negligible, then Π is perfectly secure, where N ← Π.Setup(1λ), the key ke (0 ≤ ke < N ) is kept secret andA chooses

I0, I1 s.t. 0 ≤ I0, I1 < N .

Algorithm 1, Algorithms 2-3 and Algorithms 4-5 summarize our proposed protocols for Setup, Update and Search
respectively. Fig. 3 shows the major function of our scheme in high level. The detailed explanations are as follows.

Setup. In this protocol, a patient generates a set of λ-bit keys {ks ,kt ,ku ,kx ,ky ,kz }. Specifically, ks is used to encrypt

keywords and attributes, kt is used to generate secure indexes, ku is used to encrypt user identities and accessible

attributes, and kx ,ky and kz are used to generate elements related to oblivious shared computation. The hospital needs

to generate a symmetric key kv to encrypt/decrypt value in EHRs file. Then, the keyword setWatt of each attribute att

in EHRs is extracted, and each value of EHRs is encrypted by symmetric encryption algorithm Sym.Enc(·). In addition,

the patient initializes four empty maps C,T ,X ,U . Specifically, C is used to store counters for the update frequency

of keyword and attribute, T and X store the secure index, and U keeps access authority (i.e., the bit string of file) for

different users under different attributes, which can support users to quickly complete broad attribute search. Among

them, C is held by the patient locally, and T ,X ,U are maintained by the cloud server.

Algorithm 1 Setup

Input: Security parameter λ, and attribute file database DB.
Output: Security keys ks ,kt ,kx ,ky ,kz , empty maps C,T ,X andU , encrypted file database EDB.

1: ks ,kt ,ku ,kx ,ky ,kz ←− {0, 1}
λ

2: kv ←− Sym.Gen(1λ)
3: for att ∈ DB do
4: for f ∈ DB do
5: Construct keyword setWatt
6: Cipf ,att ←− Sym.Enc(kv ,Vf ,att )
7: end for
8: end for
9: C,T ,X ,U ←− empty map

10: return ks ,kt ,ku ,kx ,ky ,kz ,C,T ,X ,U and {Cipf ,att }

Update. This protocol includes both file and user updates. Algorithm 2 is for file update. When updating an attribute-

keyword/file pair (w | |att , f ), the patient first checks map C and updates the update frequency counters cw | |att , catt

for the keyword-attributew | |att and the attribute att , respectively. Next, the patient runs PRFs F1, F2 and F3 as well as

hash functions H1 and H2. Specifically, F1 with key kt is used to compute the location label for this update. F1 with

key ks is also used to encrypt the keyword w | |att to generate the key kw | |att , and then H1 is used to generate the

Manuscript submitted to ACM



677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Ma et al.

homomorphic encryption key ke1
. Similarly, F2 with key ks is used to encrypt the attribute att to generate the key

k
′

att and the encrypted attribute katt , where k
′

att is used to generate the homomorphic encryption key ke2
, and katt

serves as an identifier for each attribute in the attribute value type database, used to locate specific attribute values in

fine-grained search. F3 with key ku is used to compute the identity s of the authorized user associated with attribute att

and adds it to the set {s} (lines 1-9). Note that si ∈ {s} acts as an index, allowing the server to find the attribute access

authority corresponding to the user when the user issues a search query, and the authority are represented by bit string.

This mechanism enables fine-grained access control without requiring users to store or manage individual versions

of the database. Then, the patient adopts symmetric encryption with homomorphic addition with different keys ke1

and ke2
to encrypt the bit strings bs1 and bs2 of the updated file f , resulting in encrypted entries e1 and e2, where e1

is related to the update frequency of the keyword-attribute cw | |att , and e2 is related to the update frequency of the

attribute catt (line 10-11). Note that bs1 and bs2 are identical, and lbs1
, lbs2

= 2
µ
, where µ is the maximum number of

files the database can support. To implement conjunctive search, the patient also needs to prepare for the subsequent

oblivious computation protocol. The protocol requires the method of blind exponentiation in a cyclic group of prime

order (e.g., based on the Diffie-Hellman oblivious PRF). Specifically, Fp with keys kx ,ky and kz is used to compute the

blinding factor α and cross-tag xtaд so that the cloud server can learn whether the attribute in a fixed file contains

all the keywords in conjunctive query (lines 11-12). Please note that conceptually, α is divided into two parts to be

multiplied, one part is related to the file identifier f , and the other part is related to the keyword-attributew | |att and its

update count cw | |att . The xtaд is also divided into two parts to be multiplied by the exponent of д, one part is related

to the keyword-attribute, and the other part is related to the file identifier. This is a deliberate design choice, the effect

of which will be manifested in the process of conjunctive search.

Upon receiving (label , e1, e2,α ,xtaд, {s}) from the patient, the cloud server stores e1 along with α in T [label] and

sets X [xtaд] to 1 (line 16). Unlike e1, which is related to the keyword-attributew | |att , e2 is only related to the attribute

att . Therefore, for each authorized user si , the cloud server adds the access authority information e2 for the current

update of the attribute att to Sume2
using homomorphic addition. Finally, the cloud server stores the file set Sume2

that

user si currently has access to in mapU [si ].

In addition, attributes serve as classification indicators that help organize database records into meaningful categories

(e.g., patient name, age, disease type). The attribute set is initialized and considered static during the setup phase, meaning

that the structure and types of attributes are predefined and known before the secure index is constructed. While it

is technically possible to update the attribute set, such updates are not handled dynamically like keyword insertions

or deletions. Instead, any addition or removal of attributes would typically occur during system reconfiguration or

reinitialization. This design choice aligns with practical use cases, such as healthcare systems, where the attribute

(e.g., medical record structure) is usually stable once deployed. By treating the attribute set as static, the system avoids

frequent restructuring of secure indexes and ensures consistent query performance.

Algorithm 3 focuses on user update. When the patient needs a new doctorua to search the values of certain attributes

in the EHRs files for diagnosis, the patient needs to send ua ’s user identifier sa for each attribute along with the relevant

access permission information to the cloud server, which is then stored inU . If the doctor ud is no longer responsible

for the patient’s treatment, the patient needs to send ud ’s user identifier sd for each attribute to the server, and then the

server removes the corresponding access authority information fromU .

Search. The search protocol includes broad attribute search and exact conjunctive keyword-attribute search. Al-

gorithm 4 is for attribute search. When the doctor u wants to search for the value of attribute att , he/she needs to

run F3 with key ku to compute the user’s identifier s for att and send it to the cloud server. Then, the server directly

Manuscript submitted to ACM



729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Efficient Privacy-Preserving Conjunctive Searchable Encryption for Cloud-IoT Healthcare System 15

Algorithm 2 Update File

Input: Keywordw , attribute att , file f , bit string of file bs and user ui .
Output: Fresh maps C,T ,X andU .

Patient:
1: cw | |att ←− C[w | |att], catt ←− C[att]
2: cw | |att ←− cw | |att + 1, catt ←− catt + 1

3: label ←− F1(kt ,w | |att | |cw | |att )

4: kw | |att ←− F1(ks ,w | |att), katt | |k
′

att ←− F2(ks ,att)

5: ke1
←− H1(kw | |att , cw | |att ), ke2

←− H2(k
′

att , catt )
6: {s} ←− ∅
7: for all user ui can access this attribute do
8: si ←− F3(kui ,ui | |att)), {s} ←− {s} ∪ si
9: end for
10: e1 ←− Enc(ke1

,bs1, lbs1
), e2 ←− Enc(ke2

,bs2, lbs2
)

11: α ←− Fp (ky , f ) · (Fp (kz ,w | |att | |cw | |att ))
−1

12: xtaд←− дFp (kx ,w | |att )·Fp (ky,f )

13: C[w | |att] ←− cw | |att , C[att] ←− catt
14: Send (label , e1, e2,α ,xtaд, {s}) to cloud server

Cloud Server:
15: T [label] ←− (e1,α), X [xtaд] ←− 1

16: for si ∈ {s} do
17: Sume2

←− Add(U [si ], e2, lbs2
)

18: U [si ] ←− Sume2

19: end for

Algorithm 3 Update User

Input: User ud to be deleted and user ua to be added.

Output: Updated mapU .

Patient:
1: {del}, {add}, {Sume } ←− ∅

2: for att ∈ ATT do
3: sd ←− F3(kud ,ud | |att)), {del} ←− {del} ∪ sd
4: sa ←− F3(kua ,ua | |att)), {add} ←− {add} ∪ sa
5: Generates bit string bsatt of the file that can be accessed, and encrypt it to obtain Sumeatt
6: {Sume } ←− {Sume } ∪ Sumeatt
7: end for
8: Send {add}, {del}, {Sume } to cloud server

Cloud Server:
9: for sa ∈ {add}, Sumeatt ∈ {Sume } do
10: U [sa ] ←− Sumeatt
11: end for
12: for sd ∈ {del} do
13: RemoveU [sd ]
14: end for
15: returnU

Manuscript submitted to ACM



781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Ma et al.

Algorithm 4 Attribute Search

Input: Search attribute att and user u.
Output: The attribute value Cipfi ,att .
Doctor:

1: s ←− F3(ku ,u | |att))
2: Send s to cloud server

Cloud Server:
3: Sume2

←− U [s]
4: Send Sume2

to doctor

Doctor:
5: Sumke

2

←− 0, katt | |k
′

att ←− F2(ks ,att)

6: for i = 1 to catt do
7: ki ←− H2(k

′

att , i)
8: Sumke

2

←− Sumke
2

+ ki mod lbs2

9: end for
10: bs2 ←− Dec(Sumke

2

, Sume2
, lbs2
)

11: Send bs2,katt to cloud server

Cloud Server:
12: for f ∈ bs2 do
13: Intersection of the row in database located by file identifier of fi and the column in database located by encrypted

attribute katt is the search value Cipfi ,att
14: end for
15: return Cipfi ,att

retrieves the encrypted entries Sume2
fromU [s] and returns it to the doctor (lines 3-4). Next, the doctor computes the

key Sumke
2

based on the counter catt and the hash function H2, and runs F2 to obtain the encrypted attribute katt .

He/She uses Sumke
2

to decrypt the encrypted entries Sume2
and obtain the access authority information bs2 (lines

5-11). To perform fine-grained search, upon receiving (bs2,katt ) from the doctor, the server uses the file identifiers

contained in bs2 to locate the corresponding rows in the EHRs database and uses the encrypted attribute katt to locate

the corresponding column in the EHRs database (refer to Table 1). The intersection of these rows and this column in

EHRs database is the search value Cipfi ,att (lines 12-14). Finally, the cloud server returns the encrypted value to doctor

(line 15), and the doctor can decrypt it with symmetric key kv locally.

Algorithm 5 is for exact conjunctive keyword-attribute search. When doctor u issues a search query q = (w1 | |att1) ∧

(w2 | |att2) ∧ · · · ∧ (wn | |attn ), he/she first identifies the keyword-attribute with the least update frequency in the query

q based on map C . Assuming that (w1 | |att1) fulfill this condition, for each update involving (w1 | |att1), the doctor

first runs F1 with key kt to obtain the corresponding updated location labeli and adds it to the set {label}. Then,

to support the cloud server in completing the subsequent oblivious shared computation protocol, the doctor runs

Fp with keys kx and kz to obtain the cross-token xtokeni, j of the remaining keyword-attribute pairs in the query q

for this update and stores them in the set {xtokeni } (lines 1-10). The doctor also runs F3 with key ku to obtain the

user’s identifier associated with each attribute in q, and adds them to the set {s} one by one. Finally, the doctor sends

({label}, {xtokeni }i=1, · · · ,cw
1
| |att

1

, {s}) to the cloud server.

Upon receiving the search trapdoor, the server performs the oblivious shared computation protocol to implicitly

determine whether each update of (w1 | |att1) contains the other terms from the query q. Specifically, the server first

retrieves the corresponding encrypted entry e1 and blinding factor αi from map T based on each update location

Manuscript submitted to ACM



833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Efficient Privacy-Preserving Conjunctive Searchable Encryption for Cloud-IoT Healthcare System 17

label of (w1 | |att1). To determine whether the each update of (w1 | |att1) involves other terms in q, the cloud server

performs an exponential operation on the cross-token xtokeni, j along with the blinding factor αi to obtain the cross-tag

xtaдi, j . Note that this operation allows the cloud server to obliviously compute the xtaд that may have appeared

during the file update, without learning the file identifier and the keyword-attribute. Whether the xtag exists in the

map X will determine the search results. If X [xtaдi, j ] = 1, it means that the current update of (w1 | |att1) contains

(w j | |attj ) ∈ q,j=2, · · · ,n and the corresponding counter cnti will also be updated. Then, for the updates with cnti = n, the

server adds the corresponding encrypted entry to Sume1
using homomorphic addition and adds the update timestamp

to the set Num (lines 16-27). The server also retrieves the corresponding access authority information from U based

on the user’s identifier si from {s} and returns (Sume1
,Num, {Sume2

} to the doctor (lines 28-31). Finally, the doctor

decrypts Sume1
and Sume2

to obtain Res and bsi , where Res represents the search results in response to query q, and bsi

represents the files that are accessible for each attribute in q. To restrict to only the files that the user is authorized to

access, it is also necessary to perform intersection operations on Res and bsi locally (lines 32-43). To obtain the values

corresponding to any attribute in q within the EHRs database, the subsequent fine-grained search interaction follows

the same process as described in lines 11-15 of Algorithm 4.

Algorithm 5 Conjunctive Keyword-Attribute Search

Input: Search query q = {(w1 | |att1) ∧ (w2 | |att2)∧, · · · ,∧(wn | |attn )} and user u.

Output: The attribute value.
Doctor:

1: Assume (w1 | |att1) with the least updates

2: cw1 | |att1
←− C[w1 | |att1], {label} ←− ∅

3: {xtoken1}, · · · , {xtokencw
1
| |att

1

} ←− ∅

4: for i = 1 to cw1 | |att1
do

5: labeli ←− F1(kt , w1 | |att1 | |i), {label } ←− {label } ∪ labeli
6: {label } ←− {label } ∪ labeli
7: for j = 2 to n do
8: xtokeni, j ←− дFp (kx ,wj | |attj )·Fp (kz ,w1 | |att1 | |i )

, {xtokeni } ←− {xtokeni } ∪ xtokeni, j
9: end for
10: end for
11: for i = 1 to n do
12: si ←− F3(ku, u | |atti )), {s } ←− {s } ∪ si
13: end for
14: Send ({label }, {xtokeni }i=1, ··· ,cw

1
| |att

1

, {s }) to server

Cloud Server:
15: Sume1

←− 0, Num, {Sume2
} ←− ∅

16: for i = 1 to | {label } | do
17: cnti ←− 1, labeli ←− {label }[i], (e1i , αi ) ←− T [labeli ]

18: for j = 2 to n do
19: xtokeni, j ←− {xtokeni }[j], xtaдi, j ←− (xtokeni, j )αi

20: if X [xtaдi, j ] = 1 then
21: cnti ←− cnti + 1

22: end if
23: end for

Manuscript submitted to ACM



885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Ma et al.

24: if cnti = n then
25: Sume1

←− Add (Sume1
, e1i , lbs1

), Num ←− Num ∪ i

26: end if
27: end for
28: for i = 1 to | {s } | do
29: Sume2i

←− U [si ], {Sume2
} ←− {Sume2

} ∪ Sume2i

30: end for
31: Send (Sume1

, Num, {Sume2
} to doctor

Doctor:
32: Sumke

1

, Sumke
2

←− 0

33: for i = 1 to |Num | do
34: ki ←− H1(kw1 | |att1

, Num[i]), Sumke
1

←− Sumke
1

+ ki mod lbs1

35: end for
36: Res ←− Dec(Sumke

1

, Sume1
, lbs1

)

37: for i = 1 to | {Sume2
} | do

38: for j = 1 to catti do
39: ki, j ←− H2(k

′

atti , j), Sumke
2

←− Sumke
2

+ ki, j mod lbs2

40: end for
41: bsi ←− Dec(Sumke

2

, Sume2i
, lbs2

)

42: Res ←− bsi ∩ Res

43: end for
44: ∀att ∈ q run Algorithm 4 (lines 11-15)

Fig. 3. The major function of PC-SE.

4.3 Suitability of IoT Devices

In our system model, wearable IoT devices play a supporting role by collecting patient data and uploading it to the cloud

server. The configuration of IoT devices does not impact the core search performance of our scheme, but discussing

their suitability could affect the practical deployment of the scheme. We can analyze the suitability of the proposed

Manuscript submitted to ACM



937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Efficient Privacy-Preserving Conjunctive Searchable Encryption for Cloud-IoT Healthcare System 19

scheme on IoT devices from the perspectives of storage, communication, and computational overhead during the data

update.

The patient’s IoT device stores the doctor’s key kui to compute for different doctors ui who have access to authorized

attributes att , si = F3(kui ,ui | |att). We use AES-128 to implement a pseudo-random function F3(·) in this process, so the

key kui size is 128 bits. According to the literature [62] and data published by the World Health Organization [63], the

number of medical staff in a large general hospital averages between 2500-4000. Based on this data, the maximum key

storage space required is only 39.1KB to 62.5KB. This storage requirement is minimal and well within the capabilities

of modern IoT devices, which can easily handle this load. For computational, the primary tasks during data updates

involve executing AES-128 algorithm, homomorphic encryption algorithm and group exponentiation operation. By

selecting an efficient elliptic curve and using fixed-base exponentiation, the computational cost of group exponentiation

is feasible for databases of a certain scale [27]. AES-128 algorithm and homomorphic encryption algorithm are designed

based on symmetric cryptographic primitives, ensuring high efficiency and minimal computational overhead. They also

have a computational complexity ofO(1), and due to its speed and simplicity, it is ideal for real-time data encryption and

decryption on IoT devices. The lightweight nature of these operations ensures that our protocol can be implemented

on a wide range of IoT devices without significant performance degradation. For communication, the patient’s IoT

device uploads the update trapdoor to the cloud server, which includes the secure index, ciphertext, and user identifier.

The communication load is proportional to the size of the user identifier O(|s |), where |s | is the number of users. With

128-bit user identifiers and a hospital staff size of up to 4000, the communication load for each update is approximately

62.5KB. This is well within the communication capacity of typical IoT devices used in healthcare settings.

Based on the above analysis, our scheme can be well deployed on modern IoT devices, from low-power wearable

health monitors to more powerful mobile medical devices, making it an ideal choice for healthcare systems.

4.4 Security Analysis

According to the definitions of security [17], our PC-SE scheme achieves forward and Type-I
−
backward privacy.

Specifically, the cloud server learns (label , e1, e2,α ,xtaд, {s}) during the update. Due to the pseudorandomness of the

PRF F and the distinct inputs for each update, the values of label , e1, e2 and xtaд are indistinguishable from random

values. In addition, the cloud server cannot obtain the information about the updated files through {s}. Therefore,

our scheme leaks no useful information during the update, thereby ensuring forward privacy. For backward privacy,

the cloud server learns a series of locations set {label} related to (w1 | |att1) during the search. These locations were

observed by the server in the previous update, enabling it to obtain the timestamp of each update for (w1 | |att1). In

addition, for each update (w1 | |att1, f ), once the server computes xtaд observed in the previous updates, it can obtain

the number of updates and corresponding timestamp for eachwi | |atti , i = 2, · · · ,n in the file f . Apart from the above

leakage, the server cannot learn any other valuable information. Therefore, our scheme achieves Type-I
−
backward

privacy defined in [17].

We use the leakage function L = (LStp ,LUpdt ,LSrch ) defined in section 2.5 to describe the leakages as mentioned

above. After the leakage is captured, the formal definition of our scheme’s leakage functions are as follows:

LUpdt (op, (w,bs)) = (⊥),

LSrch (q) = (sp(q), rp(q),Time(q)) (7)

Manuscript submitted to ACM



989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Ma et al.

According to Definition 2 of forward privacy and Definition 3 of backward privacy, our scheme achieves forward

privacy and Type-I
−
backward privacy.

Formally, we have the following theorem for PC-SE security.

Theorem 1. (Security of PC-SE) Assume that F1, F2 and F3 are secure PRFs, the decisional Diffie-Hellman (DDH) assump-

tion [27] holds over the group G, and H1,H2 are hash functions. The leakage functions LStp = (⊥), LUpdt (op, (w,bs)) =

(⊥) and LSrch (q) = (sp(q), rp(q),Time(q)), where sp(q) = {i |(i,w)w ∈q } and rp(q) = {bs} are two common leakages in

most existing schemes, known as search pattern and result pattern, while Time(q) = {i |(i, (w,bs)w ∈q )} denotes the update

timestamps leaked during the search. The proposed PC-SE is an L-adaptive-secure [16] SSE scheme with forward and

backward privacy.

Proof. We prove Theorem 1 using a real-ideal game model. This model starts with the real game REAL(λ) and

reaches an ideal game IDEAL(λ) by constructing a series of slightly different games. We need to demonstrate the

indistinguishability between adjacent games in the sequence to show that the real game and the ideal game are also

indistinguishable.

Game1: The difference between Game1 and the real game REAL(λ) is that Game1 uses random functions G1, G2, G3,

Gx ,Gy andGz , instead of the PRFs F1, F2, F3 ,Fp (kx , ·), Fp (ky , ·) and Fp (kz , ·), to generate the relevant transcripts. Since

the adversary cannot distinguish between the PRFs and the truly random functions, Game1 and the real game are

indistinguishable.

Game2: The difference between Game2 and Game1 is that Game2 uses a random oracle, instead of hash functions

H1 and H2, to generate keys ke1
and ke2

. Taking H1 and ke1
as an example, ke1

is randomly generated from {0, 1}λ

and stored in map L during the update. Then, H1[kw | |att | |cw | |att ] ←− L[kw | |att | |cw | |att ] is executed during the search,

where H1 is the table for random oracle. Since H1 is not updated in time before the search query, if the adversary

accesses H1[kw | |att | |cw | |att ] at this point, it will obtain a random value k∗e1

generated by H1, which is different from

ke1
. When the adversary queries H1[kw | |att | |cw | |att ] again after the search query, it will obtain ke1

. Receiving different

responses for two identical queries would make the adversary realize that it is in Game2. However, the probability

of this situation is negligible. Specifically, the adversary does not know the λ-bit key kw | |att , and the probability of

guessing it correctly is
1

2
λ + neдl(λ), where neдl(·) is negligible function. Assuming a probabilistic polynomial-time

(PPT) adversary can make at most p = poly(λ) queries, where poly(·) is polynomial function, the probability of guessing

correctly is p( 1

2
λ + neдl(λ)), which is negligible. H2 and ke2

are similarly processed in this game. Therefore, Game2 and

Game1 are indistinguishable.

Game3: The difference between Game3 and Game2 is that Game3 changes the way to generate xtoken during the

search. Specifically, the challenger first collects update information aboutw1 | |att1 from the history of update queries

issued by the adversary. Then, it computes xtaд and α of the remainingwi | |atti ∈ q for each update operation. Finally,

it obtains xtoken = xtaд1/α
. In Game2, xtoken = дGx (·)·Gz (·)

. It is clear that the distribution of each xtoken value in

Game2 is identical to the distribution of each xtoken value inGame3. Therefore,Game3 andGame2 are indistinguishable.

Game4: The difference between Game4 and Game3 is that Game4 changes the way to generate α during the update.

Specifically, the challenger generates blinding factor from Z∗p using random sampling, i.e., α
$

→ Z∗p . In Game3, α is

computed byGy (·) and the inverse ofGz (·), whereGy (·) andGz (·) are also uniformly sampled from the set of all random

functions on Z∗p . Therefore, Game4 and Game3 are indistinguishable.

Game5: The difference betweenGame5 andGame4 is thatGame5 changes the way to generate xtaд during the update.

Specifically, the challenger computes cross-tag as xtaд = дγ , where д is an uniformly sampled generator for the group

Manuscript submitted to ACM



1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Efficient Privacy-Preserving Conjunctive Searchable Encryption for Cloud-IoT Healthcare System 21

G and γ
$

→ Z∗p . In Game4, xtaд = дGx (·)·Gy (·)
. Since the DDH assumption holds in the group G, the probability of

a PPT adversary distinguishing xtaд = дGx (·)·Gy (·)
from xtaд = дγ is negligible. Therefore, Game5 and Game4 are

indistinguishable.

Game6: The difference between Game6 and Game5 is that Game6 changes the way to compute label during the

update and search. Specifically, the challenger uses G1(t) to compute label , instead of G1(w | |att | |cw | |att ) in Game5,

where t is the timestamp of update operation. Noting that the counter cw | |att and timestamp t are both monotonically

increasing, the value ofG1 is computationally indistinguishable inGame6 andGame5. Therefore,Game6 andGame5

are indistinguishable.

Game7: The difference between Game7 and Game6 is that Game7 replaces bs with an all 0 bit string. Because of the

perfect security of symmetric encryption with homomorphic addition, Game7 and Game6 are indistinguishable.

Simulator S: S simulates the ideal game IDEAL(λ), but unlike Game7, it generates a view based on the leakage

functions L = (LStp ,LUpdt ,LSrch ). Specifically, S cannot gain any information about the update operations based

onLUpdt
and generates a series of variables in the sameway as inGame7. In the search phase,S first uses q̂ ←− min sp(q)

to denote the first timestamp of search query q, and then it obtains the information leaked by rp(q) and Time(q). Note

that the view generated by S using the above information is indistinguishable from the view in Game7.

This completes the proof. □

4.5 Emergency

Our scheme aims to provide a more efficient and flexible search mode for medical staff in their daily work while

ensuring patient privacy. That said, the scheme is not specifically designed for real-time emergency response. However,

particularly urgent or severe situations are common in hospitals. Therefore, we propose some additional strategies to

address emergencies.

• When a patient’s life is at risk, the proposed scheme can also operate in a degraded mode. Specifically, we supports

doctors to perform single-keyword searches on a small set of critical data (e.g., patient vitals or emergency

records). By omitting resource-intensive operations such as group exponentiation and oblivious computation

protocols, this method significantly reduces computational overhead, ensuring faster data retrieval during critical

moments. This degraded mode strikes a good balance between maintaining security and achieving real-time

response.

• For some critical data attributes (e.g., recent medical history, allergies, prescriptions), they can be pre-cached on

edge devices or IoT devices to ensure rapid retrieval when communication with the cloud is limited. Once the

network is restored, the devices will automatically sync data with the cloud. This approach reduces reliance

on real-time encrypted searches in the cloud, thereby minimizing delays and allowing the system to continue

functioning effectively in cases of network constraints or outages, ensuring timely access to critical medical

information.

5 Performance Evaluation

In this section, we evaluate the efficiency of our scheme on a simulated dataset, in comparison with existing state-of-

the-arts.

Manuscript submitted to ACM



1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Ma et al.

5.1 Implementation Details

To evaluate the efficiency of PC-SE, we implement it in Python 3.10 using the PyCrypto library
2
and Sagemath library

3

for symmetric cryptographic operations and group-based operations. Specifically, we use AES-128/256 as PRF, SHA-256

as the hash function, and the elliptic curve Curve25519 [64] for group operations. For the implementation of oblivious

computation protocols, we referred to the code provided by the authors of [27].
4
In addition, we reconstructed schemes

in [18] and [20], which are forward-private DSSE schemes designed for cloud-IoT healthcare systems. Both schemes

have the ability to perform fine-grained retrieval based on attribute type databases, and scheme in [18] can also achieve

fast attribute retrieval. We compared them in terms of conjunctive search efficiency, attribute search efficiency, and

update efficiency.

Platform and Dataset. The goal of our scheme is to enable efficient and privacy-preserving ciphertext retrieval,

data updates, and access control on the cloud. IoT devices act as auxiliary roles to collect and upload patient data, and

their configuration does not affect the core search performance of our scheme. All experiments are run on workstations

configured with CPU Intel(R) Core(TM) i7-14700K 3.40 GHz RAM 32GB and 16GB, and the operating system is Windows

11 (64-bit), which are used to simulate cloud servers, users, and IoT devices.

We extended a larger simulated attribute base database based on the Indian Liver Patient Dataset (ILPD).
5
The ILPD

database includes 583 instances and 11 attributes. We increased the number of attributes to 20 to test the performance

of each scheme on a larger database. All the experiments are repeated 10 times and the results are averaged over the

ten runs.

5.2 Efficiency of conjunctive search

(a)w2 | |att2 updates fixed to 2
10

(b)w1 | |att1 updates fixed to 2
3

Fig. 4. Comparison of the efficiency for two-terms conjunctive search.

We compare our PC-SE with the schemes [18, 20], which are advanced DSSE schemes designed for healthcare

systems. Fig. 4 and 5 compare the conjunctive search efficiency of the three schemes for q = {(w1 | |att1) ∧ (w2 | |att2)}

2
https://pycryptodome.readthedocs.io/en/latest/

3
http://www.sagemath.org/

4
https://github.com/appmonster007/dsse-odxt-implementation

5
http://archive.ics.uci.edw/ml/index.php

Manuscript submitted to ACM



1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Efficient Privacy-Preserving Conjunctive Searchable Encryption for Cloud-IoT Healthcare System 23

(a)wi | |atti , i = 2, 3, 4, updates fixed to 2
10

(b)w1 | |att1 updates fixed to 2
3
,wi | |atti , i = 3, 4, updates

fixed to 2
10

Fig. 5. Comparison of the efficiency for four-terms conjunctive search

and q = {(w1 | |att1) ∧ · · · ∧ (w4 | |att4)}, respectively, wherew1 | |att1 has the least updates. Specifically, Fig.4 (a) shows

the impact ofw1 | |att1 update frequency on search efficiency, by fixingw2 | |att2 update frequency to 2
10
, while Fig.4 (b)

investigates the influence ofw2 | |att2 update frequency on search efficiency, by fixingw1 | |att1 update frequency to 2
3
.

Similarly, Fig. 5 (a) illustrates the effect ofw1 | |att1 update frequency on search efficiency, when the update frequencies

of w2 | |att2, w3 | |att3 and w4 | |att4 are fixed at 2
10
, while Fig. 5 (b) depicts the impact of w2 | |att2 update frequency on

search efficiency, whenw1 | |att1 update frequency is fixed at 2
3
, and the update frequencies ofw3 | |att3 andw4 | |att4 are

fixed at 2
10
.

The results of Figs. 4 and 5 reveal that our scheme significantly outperforms the schemes of [18] and [20] in most

cases. For example, for the two-terms conjunctive search given w1 | |att1 update frequency 2
3
and w2 | |att2 update

frequency 2
10
, our scheme takes about 2.2ms, while the scheme [20] takes 65.5ms and the scheme [18] requires 123.8ms.

Moreover, for the four-terms conjunctive search withw1 | |att1 update frequency fixed to 2
3
andwi | |atti , i = 3, 4, update

frequencies fixed to 2
10
, our PC-SE is 21 to 32 times faster than the scheme [20] and 40 to 61 times faster than the

scheme [18]. Only in some extreme and rare query cases whenw1 | |att1 has a very high update frequency orw2 | |att2

has a very low update frequency, the schemes of [18] and [20] may match to or slightly outperform our scheme. This

is because the burden generated by the group exponential computation of our scheme becomes evident in the above

extreme cases. However, in extreme scenarios, we can enhance the performance of PC-SE by executing single keyword

search for each keyword in the conjunction in parallel.

5.3 Efficiency of attribute search

Since the scheme [20] lacks attribute search, we only compare the attribute search efficiency with the scheme [18].

Fig. 6 (a) depicts the efficiency of attribute search for our PC-SE and the scheme [18]. It is evident that the search time

of our scheme is 5 to 10 times faster than that of the scheme [18]. For example, when the number of matching files is

500, our scheme takes about 4.3ms, while the scheme [18] takes 45.5ms. Fig. 6 (b) shows the search performance of our

scheme when the database contains different numbers of attributes, where the different colored bars represent different

Manuscript submitted to ACM



1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Ma et al.

(a) Comparison of two schemes (b) PC-SE for different number of attributes

Fig. 6. Efficiency of attribute search.

numbers of matching files. It can be observed that when the number of matching files is fixed, increasing the number of

attributes has almost no affect on the search efficiency of the proposed scheme.

5.4 Efficiency of update

Fig. 7 (a) shows the update time of our scheme as the function of the number of keywords when the number of attributes

is fixed, given three different numbers of updated files. As expected, the update time increases with the number of

keywords or the number of files. Fig. 7 (b) shows the impact of the number of attributes on the update time when

the number of keywords is fixed. The results of Fig. 7 (b) indicates that changing the number of attributes only has

a slight effect on update time. This is due to the fact that the update operation cannot be performed when there are

only attributes but lacking keywords. Fig. 7 (c) shows the efficiency of user update as the function of the number of

users, given four different numbers of attributes/numbers of files. It is evident that update time scales linearly with

the number of users, and both changing the number of attributes and changing the number of files have a significant

impact on update time.

6 Conclusions and Future Works

In this work, we explore how to design a DSSE scheme suited for cloud-IoT healthcare systems. We proposed the first

conjunctive DSSE scheme based on attribute-value type database, named PC-SE. Our scheme not only can performs

conjunctive keyword search and attribute search based on users’ requirements, but also can maintain forward and

backward privacy. To further address the additional communication burden and privacy concerns in attribute-value

type databases, which widely existed in the previous DSSE scheme, our scheme also supports fine-grained search.

Moreover, we realize the access control mechanism in PC-SE. The experimental results indicate that, compared to other

latest DSSE schemes, PC-SE is effective and reliable.

Regarding future work, we aim to enhance the security and adaptability of DSSE schemes in more practical settings.

First, after reviewing the latest and previous literature on SSE, we found that existing SSE schemes are all based on the

assumption that the client key is always secure, and do not consider the security issues in key sharing between the

client and the user. This is lacking in practical application scenarios. If the client’s key is exposed, the adversary can

Manuscript submitted to ACM



1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Efficient Privacy-Preserving Conjunctive Searchable Encryption for Cloud-IoT Healthcare System 25

(a) given three numbers of updated files (b) given three numbers of updated files

(c) given four numbers of attributes/numbers of files

Fig. 7. The efficiency of updates for our scheme.

easily compromise the encrypted database and observe the update and search process. Second, existing SSE schemes

focus on how to reduce access pattern leakage without considering the impact of keyword guessing attacks that often

appear in public key searchable encryption (PEKS) schemes on SSE schemes. Third, we will continue improving the

flexibility of the search functionality, including the integration of fuzzy attribute-based search, as discussed in Section

3.6. Supporting partial attribute matching and wildcard queries will further enhance usability in real-world cloud-IoT

healthcare scenarios. Finally, further research and optimization of DSSE’s degraded mode in emergency situations

will help the scheme handle more complex healthcare scenarios, making the proposed scheme an ideal choice for

deployment in cloud-IoT healthcare systems.

These directions will help build a more practical, secure, and flexible DSSE framework for cloud-IoT healthcare

systems.

Manuscript submitted to ACM



1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Ma et al.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this

work through Large Groups Project under grant number RGP.2/637/46.

References
[1] Y. Zhang, et al., “HealthDep: An efficient and secure deduplication scheme for cloud-assisted eHealth systems,” IEEE Trans. Industrial Informatics,

vol. 14, no. 9, pp. 4101–4112, Sep. 2018.

[2] G. Yang, et al., “A health-IoT platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box,” IEEE
Trans. Industrial Informatics, vol. 10, no. 4, pp. 2180–2191, Nov. 2014.

[3] X. Fu, L. T. Yang, J. Li, X. Yang and Z. Yang, “A Searchable Symmetric Encryption-Based Privacy Protection Scheme for Cloud-Assisted Mobile

Crowdsourcing,” IEEE Internet of Things Journal, vol. 11, no. 2, pp. 1910–1924, 15 Jan, 2024.
[4] M. Waqas, S. Tu, Z. Halim et al, “The role of artificial intelligence and machine learning in wireless networks security: principle, practice and

challenges,” Artificial Intelligence Review , vol. 55, pp. 5215–5261, Feb. 2022.

[5] Q. Wang. Q. Jiang, Y. Yang and J. Pan, “The burden of travel for care and its influencing factors in China: An inpatient-based study of travel time, in

Journal of Transport & Health, vol. 25, pp. 101353, 2022.
[6] B. Gong et al., “SLIM: A Secure and Lightweight Multi-Authority Attribute-Based Signcryption Scheme for IoT,” in IEEE Transactions on Information

Forensics and Security, vol. 19, pp. 1299-1312, 2024.
[7] J. Shu, X. Jia, K. Yang, and H. Wang, “Privacy-preserving task recommendation services for crowdsourcing,” IEEE Trans. Services Computing, vol. 14,

no. 1, pp. 235–247, Jan.-Feb. 2021.

[8] C. Zhang, et al., “Location privacy-preserving task recommendation with geometric range query in mobile crowdsensing,” IEEE Trans. Mobile
Computing, vol. 21, no. 12, pp. 4410–4425, Dec. 2022.

[9] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted data,” in Proc. 2000 IEEE Symp. Security and Privacy (Berkeley,

CA, USA), May 14-17, pp. 44–55, 2000.

[10] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable symmetric encryption,” in Proc. CCS 2012 (Raleigh, NC, USA), Oct. 16-18, pp. 965–976,
2012.

[11] I. Demertzis, J. G. Chamani, D. Papadopoulos, and C. Papamanthou, “Dynamic searchable encryption with small client storage,” in Proc. NDSS 2020
(San Diego, CA, USA), Feb. 23-26, pp. 1–17, 2020.

[12] S. F. Sun, et al., “Practical non-interactive searchable encryption with forward and backward privacy,” in Usenix Network and Distributed System
Security Symposium 2021. The Internet Society. Feb. 21-25, 2012, pp. 1–18.

[13] Y. Zhang, J. Katz and C. Papamanthou, “All your queries are belong to us: The power of file-injection attacks on searchable encryption,” in Proc. 25th
USENIX Conf. Security Symp. (Austin, TX, USA), Aug. 10-12, 2016, pp. 707–720.

[14] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable encryption with small leakage,” in Proc. NDSS 2014 (San Diego, CA, USA),

Feb. 23-26, pp. 1–15, 2014.

[15] R. Bost, “

∑
oϕoξ : Forward secure searchable encryption,” in Proceedings of ACM SIGSAC Conference on Computer and Communications Security

(Vienna, Austria), Oct. 24-28, pp. 1143–1154, 2016.

[16] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward private searchable encryption from constrained cryptographic primitives,” in Proc.
CCS 2017 (Dallas, TX, USA), Oct. 30-Nov. 3, pp. 1465–1482, 2017.

[17] C. Zuo, et al., “Dynamic searchable symmetric encryption with forward and stronger backward privacy,” in Proc. ESORICS 2019 (Luxembourg),

Sep. 23-27, pp. 283–303, 2019.

[18] S. Li, et al., “Efficient data retrieval over encrypted attribute-value type databases in cloud-assisted ehealth systems,” IEEE Systems Journal., vol. 16,
no. 2, pp. 3096–3107, Jun. 2022.

[19] S. Li, C. Xu, Y. Zhang, and X. Wen, “Multi-user Dynamic Symmetric Searchable Encryption for Attribute-Value Type Database in Cloud Storage,” in

Security and Privacy in Digital Economy. SPDE 2020. Communications in Computer and Information Science, Springer, vol. 1268, 2020.
[20] Y. Liu, et al., “Achieving privacy-preserving DSSE for intelligent IoT healthcare system,” IEEE Trans. Industrial Informatics, vol. 18, no. 3, pp. 2010–2020,

Mar. 2022.

[21] K. Wang, et al., “Forward privacy preservation in IoT-enabled healthcare systems,” IEEE Trans. Industrial Informatics, vol. 18, no. 3, pp. 1991–1999,
Mar, 2022.

[22] J. G. Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili, “New constructions for forward and backward private symmetric searchable

encryption,” in Proc. CCS 2018 (Toronto, ON, Canada), Oct. 15-19, pp. 1038–1055, 2018.
[23] Li et al., “Towards Efficient Verifiable Boolean Search Over Encrypted Cloud Data,” IEEE Transactions on Cloud Computing, vol. 11, no. 1, pp. 839–853,

2023.

[24] H. Li, et al., “Achieving secure and efficient dynamic searchable symmetric encryption over medical cloud data,” IEEE Trans. Cloud Computing, vol. 8,
no. 2, pp. 484–494, Apr.-Jun. 2020.

Manuscript submitted to ACM



1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Efficient Privacy-Preserving Conjunctive Searchable Encryption for Cloud-IoT Healthcare System 27

[25] S. Tu, M. Waqas, A. Badshah, M. Yin and G. Abbas, “Network Intrusion Detection System (NIDS) Based on Pseudo-Siamese Stacked Autoencoders in

Fog Computing,” in IEEE Transactions on Services Computing, vol. 16, no. 6, pp. 4317-4327, Dec. 2023.
[26] X. Wu, B. Zou, C. Lu, L. Wang, Y. Zhang and H. Wang, “Dynamic Security Computing Framework With Zero Trust Based on Privacy Domain

Prevention and Control Theory” in IEEE Journal on Selected Areas in Communications, vol. 43, no. 6, pp. 2266-2278, 2025.
[27] S. Patranabis and D. Mukhopadhyay, “Forward and backward private conjunctive searchable symmetric encryption,” in Proc. NDSS 2021, Feb. 21-25,

2021, pp. 1–18.

[28] C. Zuo, et al., “Forward and backward private dynamic searchable symmetric encryption for conjunctive queries,” Cryptology ePrint Archive,
Paper 1357, pp. 1–13, 2020.

[29] L. Chen, J. Li and J. Li, “Toward Forward and Backward Private Dynamic Searchable Symmetric Encryption Supporting Data Deduplication and

Conjunctive Queries,” in IEEE Internet of Things Journal, vol. 10, no. 19, pp. 17408-17423, 1 Oct.1, 2023.

[30] C. Guo, W. Li, X. Tang, K. -K. R. Choo and Y. Liu, “Forward Private Verifiable Dynamic Searchable Symmetric Encryption with Efficient Conjunctive

Query,” IEEE Trans. Dependable and Secure Computing, 2023.
[31] P. Hao, Z. Yan and H. Wen, “Privacy-Preserving NILM: A Self-Alignment Source-Aware Domain Adaptation Approach,” in IEEE Transactions on

Instrumentation and Measurement, vol. 74, pp. 1-12, 2025.
[32] Y. Gong, H. Yao, X. Liu, M. Bennis, A. Nallamathan, Z. Han, “Computation and Privacy Protection for Satellite-Ground Digital Twin Networks”, in

IEEE Transactions on Communications, vol. 72, no. 9, pp. 5532-5546, 2024.
[33] S. Tu, A. Badshah, H. Alasmary and M. Waqas, “EAKE-WC: Efficient and Anonymous Authenticated Key Exchange Scheme for Wearable Computing,”

in IEEE Transactions on Mobile Computing, vol. 23, no. 5, pp. 4752-4763, May 2024.

[34] E. J. Goh, “Secure Indexes,” Cryptology ePrint Archive, 2003. https://eprint.iacr.org/2003/216
[35] Y. C. Chang and M. Mitzenmacher, “Privacy preserving keyword searches on remote encrypted data,” in Proc. ACNS 2005 (New York, NY, USA),

Jun. 7-10, pp. 442–455, 2005.

[36] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric encryption: Improved definitions and efficient constructions,” J. Computer
Security, vol. 19, no. 5, pp. 895–934, Sep. 2011.

[37] J. Li, X. Lin, Y. Zhang and J. Han, “KSF-OABE: Outsourced Attribute-Based Encryption with Keyword Search Function for Cloud Storage,” IEEE
Transactions on Services Computing, vol. 10, no. 5, pp. 715-725, 2017.

[38] H. Gao, H. Huang, L. Xue, F. Xiao and Q. Li, “Blockchain-Enabled Fine-Grained Searchable Encryption With Cloud–Edge Computing for Electronic

Health Records Sharing,” IEEE Internet of Things Journal, vol. 10, no. 20, pp. 18414-18425, 2023.
[39] J. Yu, S. Liu, M. Xu, H. Guo, F. Zhong and W. Cheng, “An Efficient Revocable and Searchable MA-ABE Scheme With Blockchain Assistance for C-IoT,”

IEEE Internet of Things Journal, vol. 10, no. 3, pp. 2754-2766, 2023.
[40] H. Yin, W. Zhang, H. Deng, Z. Qin and K. Li, “An Attribute-Based Searchable Encryption Scheme for Cloud-Assisted IIoT,” IEEE Internet of Things

Journal, vol. 10, no. 12, pp. 11014-11023, 2023.
[41] J. Li, L. Ji, Y. Zhang, Y. Lu and J. Ning, “Response-Hiding and Volume-Hiding Verifiable Searchable Encryption With Conjunctive Keyword Search,”

IEEE Transactions on Computers, vol. 74, no. 2, pp. 455-467, 2025.
[42] Y. Yang et al., “OpenSE: Efficient Verifiable Searchable Encryption With Access and Search Pattern Hidden for Cloud-IoT,” IEEE Internet of Things

Journal, vol. 11, no. 8, pp. 13793-13809, 15 April15, 2024.
[43] L. Ji, J. Li, Y. Zhang and Y. Lu, “Verifiable Searchable Symmetric Encryption Over Additive Homomorphism,” IEEE Transactions on Information

Forensics and Security, vol. 20, pp. 1320-1332, 2025.
[44] C. Xu, R. Wang, L. Zhu, C. Zhang, R. Lu and K. Sharif, “Efficient Strong Privacy-Preserving Conjunctive Keyword Search Over Encrypted Cloud

Data,” IEEE Transactions on Big Data, vol. 9, no. 3, pp. 805-817, 2023.
[45] D. Chen et al., “MFSSE: Multi-Keyword Fuzzy Ranked Symmetric Searchable Encryption With Pattern Hidden in Mobile Cloud Computing,” in IEEE

Transactions on Cloud Computing, vol. 12, no. 4, pp. 1042-1057, Oct.-Dec. 2024.
[46] Q. Jiang, E. Chang, Y. Qi, S. Qi, P. Wu and J. Wang, “Rphx: Result pattern hiding conjunctive query over private compressed index using Intel SGX,”

IEEE Transactions on Information Forensics and Security, vol. 17, pp. 1053–1068, 2022.
[47] X. F. Song, et al., “Forward private searchable symmetric encryption with optimized I/O efficiency,” IEEE Trans. Dependable and Secure Computing,

vol. 17, no. 5, pp. 912–927, Sep.-Oct. 2020.

[48] S.-F. Sun, et al., “Practical backward-secure searchable encryption from symmetric puncturable encryption,” in Proc. CCS 2018 (Toronto, ON, Canada),
Oct. 15-19, 2018, pp. 763-780.

[49] C. Zhao et al., “Efficient Verifiable Dynamic Searchable Symmetric Encryption With Forward and Backward Security,” IEEE Internet of Things Journal,
vol. 12, no. 3, pp. 2633-2645, 2025.

[50] H. Dou et al., "Dynamic Searchable Symmetric Encryption With Strong Security and Robustness," in IEEE Transactions on Information Forensics

and Security, vol. 19, pp. 2370-2384, 2024.

[51] B.Chen, T. Xiang, D. He, H. Li and K. -K. R. Choo, “BPVSE: Publicly Verifiable Searchable Encryption for Cloud-Assisted Electronic Health Records,”

IEEE Transactions on Information Forensics and Security, vol. 18, pp. 3171-3184, 2023.
[52] M. Zhang, E. Wei, R. Berry and J. Huang, “Age-Dependent Differential Privacy” in IEEE Transactions on Information Theory, vol. 70, no. 2, pp.

1300-1319, 2024.

Manuscript submitted to ACM

https://eprint.iacr.org/2003/216


1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Ma et al.

[53] D. Cash, et al., “Highly-scalable searchable symmetric encryption with support for Boolean queries,” in Proc. CRYPTO 2013 (Santa Barbara, CA, USA),
Aug. 18-22, 2013, pp. 353–373.

[54] M. Li, C. Jia, R. Du and W. Shao, “Forward and Backward Secure Searchable Encryption Scheme Supporting Conjunctive Queries Over Bipartite

Graphs,” IEEE Transactions on Cloud Computing, vol. 11, no. 1, pp. 1091-1102, 2023.
[55] Y. Dandan, et al. “Result-pattern-hiding conjunctive searchable symmetric encryption with forward and backward privacy,” Proceedings on Privacy

Enhancing Technologies, 2023.
[56] R. Li and A. X. Liu, “Adaptively Secure and Fast Processing of Conjunctive Queries Over Encrypted Data,” IEEE Transactions on Knowledge and Data

Engineering, vol. 34, no. 4, pp. 1588-1602, 2022.
[57] Y. Li, J. Ning and J. Chen, “Secure and Practical Wildcard Searchable Encryption System Based on Inner Product,” IEEE Transactions on Services

Computing, vol. 16, no. 3, pp. 2178-2190, 1 May-June 2023.

[58] F. Liu et al., “Volume-Hiding Range Searchable Symmetric Encryption for Large-Scale Datasets,” IEEE Transactions on Dependable and Secure
Computing, vol. 21, no. 4, pp. 3597–3609, July-Aug. 2024.

[59] X. Mande, et al., “A novel verifiable chinese multi-keyword fuzzy rank searchable encryption scheme in cloud environments,” Future Generation
Computer Systems, 153 (2024): 287–300.

[60] T.Chen, P.Xu, S.Picek, B.Luo, W.Susilo, H.Jin, and K. Liang, “The power of bamboo: On the post-compromise security for searchable symmetric

encryption,” in Proc. NDSS 2023, (San Diego, California, USA), February27 -March 3, 2023.

[61] C. Castelluccia, E. Mykletun and G. Tsudik, “Efficient aggregation of encrypted data in wireless sensor networks,” in Proc. The Second Annual
International Conference on Mobile and Ubiquitous Systems: Networking and Services, San Diego, CA, USA, pp. 109-117, 2005.

[62] C. R. Butler et al., “Staffing crisis capacity: a different approach to healthcare resource allocation for a different type of scarce resource.” Journal of
medical ethicsvol. 50, 9 647-649, 2024.

[63] Global Health Workforce statistics database - World Health Organization. https://www.who.int/data/gho/data/themes/topics/health-workforce

[64] D. J. Bernstein, “Curve25519: New diffie-hellman speed records,” in Proc. PKC 2006 (New York, NY, USA), Apr. 24-26, 2006, pp. 207–228.

Manuscript submitted to ACM


	Abstract
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 System Model
	3.2 Threat Model
	3.3 Notations
	3.4 Bitmap Index
	3.5 Dynamic Symmetric Searchable Encryption (DSSE)
	3.6 Design Goals

	4 PC-SE: Efficient Privacy-preserving Conjunctive Searchable Encryption
	4.1 Overview of the Proposed Scheme
	4.2 Our Construction
	4.3 Suitability of IoT Devices
	4.4 Security Analysis
	4.5 Emergency

	5 Performance Evaluation
	5.1 Implementation Details
	5.2 Efficiency of conjunctive search
	5.3 Efficiency of attribute search
	5.4 Efficiency of update

	6 Conclusions and Future Works
	Acknowledgments
	References

