The University of Southampton
University of Southampton Institutional Repository

Deep reinforcement learning based beamforming codebook design for RIS-aided mmWave systems

Deep reinforcement learning based beamforming codebook design for RIS-aided mmWave systems
Deep reinforcement learning based beamforming codebook design for RIS-aided mmWave systems

Reconfigurable intelligent surfaces (RISs) are envisioned to play a pivotal role in future wireless systems with the capability of enhancing propagation environments by intelligently reflecting the signals toward the target receivers. However, the optimal tuning of the phase shifters at the RIS is a challenging task due to the passive nature of reflective elements and the high complexity of acquiring channel state information (CSI). Conventionally, wireless systems rely on pre-defined reflection beamforming codebooks for both initial access and data transmission. However, these existing pre-defined codebooks are commonly not adaptive to the environments. Moreover, identifying the best beam is typically performed using an exhaustive search that leads to high beam training overhead. To address these issues, this paper develops a multi-agent deep reinforcement learning framework that learns how to jointly optimize the active beamforming from the BS and the RIS-reflection beam codebook relying only on the received power measurements. To accelerate learning convergence and reduce the search space, the proposed model divides the RIS into multiple partitions and associates beam patterns to the surrounding environments with low computational complexity. Simulation results show that the proposed learning framework can learn optimized active BS beamforming and RIS reflection codebook. For instance, the proposed MA-DRL approach with only 6 beams outperforms a 256-beam discrete Fourier transform (DFT) codebook with a 97% beam training overhead reduction.

2331-9860
1020-1026
IEEE
Abdallah, Asmaa
86b80268-48be-4bc8-9577-c989e496e459
Celik, Abdulkadir
f8e72266-763c-4849-b38e-2ea2f50a69d0
Mansour, Mohammad M.
d26c1cf6-ff88-4871-9999-624781b0de3b
Eltawil, Ahmed M.
5eb9e965-5ec8-4da1-baee-c3cab0fb2a72
Abdallah, Asmaa
86b80268-48be-4bc8-9577-c989e496e459
Celik, Abdulkadir
f8e72266-763c-4849-b38e-2ea2f50a69d0
Mansour, Mohammad M.
d26c1cf6-ff88-4871-9999-624781b0de3b
Eltawil, Ahmed M.
5eb9e965-5ec8-4da1-baee-c3cab0fb2a72

Abdallah, Asmaa, Celik, Abdulkadir, Mansour, Mohammad M. and Eltawil, Ahmed M. (2023) Deep reinforcement learning based beamforming codebook design for RIS-aided mmWave systems. In 2023 IEEE 20th Consumer Communications and Networking Conference (CCNC). vol. 2023-January, IEEE. pp. 1020-1026 . (doi:10.1109/CCNC51644.2023.10060056).

Record type: Conference or Workshop Item (Paper)

Abstract

Reconfigurable intelligent surfaces (RISs) are envisioned to play a pivotal role in future wireless systems with the capability of enhancing propagation environments by intelligently reflecting the signals toward the target receivers. However, the optimal tuning of the phase shifters at the RIS is a challenging task due to the passive nature of reflective elements and the high complexity of acquiring channel state information (CSI). Conventionally, wireless systems rely on pre-defined reflection beamforming codebooks for both initial access and data transmission. However, these existing pre-defined codebooks are commonly not adaptive to the environments. Moreover, identifying the best beam is typically performed using an exhaustive search that leads to high beam training overhead. To address these issues, this paper develops a multi-agent deep reinforcement learning framework that learns how to jointly optimize the active beamforming from the BS and the RIS-reflection beam codebook relying only on the received power measurements. To accelerate learning convergence and reduce the search space, the proposed model divides the RIS into multiple partitions and associates beam patterns to the surrounding environments with low computational complexity. Simulation results show that the proposed learning framework can learn optimized active BS beamforming and RIS reflection codebook. For instance, the proposed MA-DRL approach with only 6 beams outperforms a 256-beam discrete Fourier transform (DFT) codebook with a 97% beam training overhead reduction.

This record has no associated files available for download.

More information

Published date: 17 March 2023
Venue - Dates: 20th IEEE Consumer Communications and Networking Conference, CCNC 2023, , Las Vegas, United States, 2023-01-08 - 2023-01-11

Identifiers

Local EPrints ID: 505762
URI: http://eprints.soton.ac.uk/id/eprint/505762
ISSN: 2331-9860
PURE UUID: 28b64af2-55ae-4463-b446-ed7e8bccd8d4
ORCID for Abdulkadir Celik: ORCID iD orcid.org/0000-0001-9007-9979

Catalogue record

Date deposited: 17 Oct 2025 16:47
Last modified: 18 Oct 2025 02:18

Export record

Altmetrics

Contributors

Author: Asmaa Abdallah
Author: Abdulkadir Celik ORCID iD
Author: Mohammad M. Mansour
Author: Ahmed M. Eltawil

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×