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Abstract 

Most low- and middle-income countries face significant public health challenges, 

exacerbated by the lack of reliable demographic data supporting effective planning 

and intervention. In such data-scarce settings, statistical models combining geo-

located survey data with geospatial datasets enable the estimation of population 

counts at high spatial resolution in the absence of dependable demographic data 

sources. This study introduces a Bayesian model jointly estimating building and pop-

ulation counts, combining geolocated survey data and gridded geospatial datasets. 

The model provides population estimates for the Kasaï-Oriental province, Democratic 

Republic of the Congo (DRC), at a spatial resolution of approximately one hectare. 

Posterior estimates are aggregated across health zones and health areas to offer 

probabilistic insights into their respective populations. The model exhibits a –0.28 

bias, 0.47 inaccuracy, and 0.95 imprecision using scaled residuals, with robust 95% 

credible intervals. The estimated population of Kasaï-Oriental for 2024 is approxi-

mately 4.1 million, with a credible range of 3.4 to 4.8 million. Aggregations by health 

zones and health areas reveal significant variations in population estimates and 

uncertainty levels, particularly between the provincial capital, Mbuji-Mayi and the rural 

hinterland. High-resolution Bayesian population estimates allow flexible aggrega-

tion across spatial units while providing probabilistic insights into model uncertainty. 

These estimates offer a unique resource for the public health community working in 

Kasaï-Oriental, for instance, in support of a better-informed allocation of vaccines 

to different operational boundaries based on the upper bound of the 95% credible 

intervals.
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Introduction

The effectiveness of public health programmes in low- and middle-income countries 
is impacted by various factors, including limited financial and human resources, 
logistical constraints, insecurity, and restricted access to healthcare facilities [1]. 
Among these issues, the lack of actionable national and sub-national data on 
population sizes and demographic characteristics is an additional barrier to effec-
tive planning and intervention [2,3]. In particular, the absence of recent, granular 
demographic denominators hampers efforts, such as disease surveillance, vacci-
nation campaigns, and resource allocation in countries that arguably need them 
the most [4]. For instance, the inability to effectively allocate mosquito protection 
measures, such as bed nets, in remote rural areas reduces malaria transmission 
control [5]. Similarly, in densely populated urban slums, the lack of reliable demo-
graphic baselines undermines efforts to monitor tuberculosis outbreaks and provide 
adequate diagnostic and treatment capabilities [6]. Furthermore, during the COVID-
19 pandemic, the lack of robust population data severely hampered the deployment 
of pharmaceutical and non-pharmaceutical interventions, contributing to substantial 
excess mortality [7].

Traditional national and sub-national population and demographic data include 
population censuses, vital statistics systems, administrative records, household 
surveys, community-based monitoring, and local knowledge [8]. In countries where 
these data sources are outdated, unreliable, or non-existent, new approaches have 
emerged that combine geolocated household surveys with geospatial datasets 
derived from satellite imagery and open sources to produce high-resolution popula-
tion estimates [9]. These approaches typically employ Bayesian statistical models to 
produce population estimates together with uncertainty measures within grid cells of 
approximately one hectare, which can be aggregated into larger geographic regions 
[10]. Recent advances have improved model accuracy by integrating settlement and 
building footprint data extracted from satellite imagery [11]. However, despite growing 
concerns about biases in the automatic detection of settlement and building features 
[12], existing Bayesian population models have not explicitly accounted for uncer-
tainty in these crucial data sources [10,11,13].

In this context, the Democratic Republic of the Congo (DRC) faces significant 
public health challenges, exacerbated by the difficulty of reaching its most vulnerable 
populations because of the unavailability of reliable national and sub-national demo-
graphic data [14–16]. In particular, the last national census was completed in 1984, 
and subsequent demographic projections have yielded inconsistent country-level 
population estimates, ranging from 73.7 to 103.5 million [14]. To address this knowl-
edge gap, we developed a Bayesian model for high-resolution population estimation 
in the Kasaï-Oriental province, DRC. The model leverages complete building and 
population counts within small and well-defined enumeration areas, referred to as 
micro-census clusters, to produce up-to-date gridded population estimates across 
the province. Grid-cell posterior distributions are aggregated and summarised within 
health zones and health areas to provide probabilistic insights into their respec-
tive populations. These data, developed in support of a vaccination campaign 
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coordinated by GRID3 [17], offer actionable demographic denominators in support of the public health community working 
in the province.

Materials and methods

Input data

We produced gridded population estimates for Kasaï-Oriental based on administrative boundaries publicly available on 
OpenStreetMap [18]. At the time of this study, the DRC government had not publicly released official boundaries for the 26 
provinces established in 2015, and existing unofficial versions exhibited notable spatial inconsistencies. To address these 
discrepancies, we applied a four-kilometre buffer to the OpenStreetMap boundaries to define our modelling environment. 
As a result, the datasets presented below may also include small portions of the neighbouring provinces.

Micro-census survey data.  We obtained building and population counts for 213 micro-census clusters surveyed 
between 1 March and 30 April 2021 in the GRID3 Mapping for Health project [19,20]. The clusters were selected using 
stratified sampling based on settlement type [21]. The sampling frame was created using the gridEZ algorithm [22], which 
defined clusters comprising approximately 80 building footprints with a maximum extent of six settled hectares. Although 
the number of buildings per micro-census cluster was generally consistent, the spatial extent varied between 1 and 769 
grid cells due to settlement patterns and the aggregation process of the gridEZ algorithm. Additional details on the micro-
census data are available in the supporting information for previous population modelling work [21].

Building counts include permanent freestanding structures within the cluster boundaries, regardless of their use and 
status. Population counts refer to the “de jure” population, where the person either spent at least six of the previous twelve 
months in the household or was expected to stay for the following six months and had spent the previous night in the 
surveyed household. For households where the respondent refused to be interviewed, imputations were performed using 
the average number of residents per household within the micro-census cluster. Six micro-census clusters in the Lomami 
province were added to the 207 in Kasaï-Oriental because they fell within the modelling environment. Fig 1 shows the 
spatial distribution of the observed building and population counts at the micro-census cluster level, categorised by settle-
ment class.

Gridded geospatial datasets.  We retrieved 292 open-access gridded geospatial datasets at a spatial resolution of 3 
arc-seconds, approximately 100m, covering the extent of the modelling environment. Of these, 289 datasets—including 
land use, night-time light intensity, distance to main roads, and distance to healthcare facilities—are traditionally used to 
model population distributions [23]. Some datasets represent the same feature from different providers (e.g., Microsoft, 
Google, and OpenStreetMap), with different spatial properties (e.g., length, area, and number of nodes), summary 
statistics (e.g., average, sum, and empirical standard deviation), and temporal coverage. A complete list of the gridded 
datasets is provided in S1 Table. We also accessed three datasets describing up-to-date settlement characteristics, 
namely building count and area, as well as settlement class. Settlement class data comprised three broad settlement 
classes—urban, peri-urban, and rural—extracted from the Global Human Settlement Model Grid (GHS-MOD) [24]. 
Building count and area data were derived from settlement data produced by the Center for International Earth Science 
Information Network (CIESIN) [25], which combined various data sources (e.g., Microsoft and Google building footprints). 
We used the extent of the settlement data to subset the gridded datasets presented earlier to constrain our model to 
settled grid cells only.

We summarised the gridded datasets within the micro-census cluster boundaries using: i) the mode for the settlement 
class data, ii) the weighted sum based on the fraction of the pixel intersecting the boundaries for building count and area 
from settlement data, and iii) the average for the remaining datasets. These summaries were first compared with the orig-
inal settled subsets using descriptive statistics (i.e., minimum, maximum, average, and empirical standard deviation) to 
detect missing or spurious values. Relationships between the summaries and both log-building counts and log-population 
densities (i.e., people per building) were subsequently assessed using scatterplots and Pearson correlation tests to 
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evaluate their relevance as model covariates. The summaries were checked for cross-correlations using Pearson correla-
tion tests to detect potential multicollinearity. This exploratory analysis enabled us to select five gridded datasets exhibiting 
significant correlations (p < 0.05) with the outcome variables while remaining significantly (p < 0.05) uncorrelated with each 
other. These datasets, shown in Table 1, were included as covariates in the two model components described below.

The covariates were centred and scaled based on the average and empirical standard deviation computed at the grid-
cell level. The settlement class informed some of the model parameters presented below. Data processing and covari-
ate selection were conducted in R (4.4.0) [28], using the tidyverse (2.0.0) [29], sf (1.0-17) [30], and terra (1.7-78) [31] 
packages.

Statistical model

We extended existing Bayesian hierarchical models for high-resolution population estimation [10,11,13] by incorporating 
observed building and population counts from micro-census survey data. This approach leverages the flexibility of the 
hierarchical modelling framework to incorporate observational data and propagate model uncertainty through Bayesian 
credible intervals (CIs) from the micro-census model to the gridded predictions and subsequent areal aggregations within 
larger geographic regions.

Micro-census model. 
Population count  We assumed that the observed population count Pi  in the i = 1, . . . , 213 micro-census clusters 

follows a Poisson distribution with rate derived from the product of the modelled building count λ(B)
i  and the modelled 

Fig 1.  Building and population counts observed in the 213 micro-census clusters located within the modelling environment categorised by 
settlement class. Administrative boundaries sourced from OpenStreetMap (https://planet.osm.org) under the Open Database License (ODbL) (https://
www.openstreetmap.org/copyright).

https://doi.org/10.1371/journal.pgph.0005072.g001

https://planet.osm.org
https://www.openstreetmap.org/copyright
https://www.openstreetmap.org/copyright
https://doi.org/10.1371/journal.pgph.0005072.g001
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population density (i.e., people per building) λ(D)
i , as shown in Equation (1). This decomposition allowed us to explicitly 

account for variations in population associated with the modelled building count and modelled population density rather 
than observed data, while incorporating different covariates and distributional assumptions for each component.

	
Pi | λ

(B)
i , λ(D)

i ∼ Poisson
(
λ
(B)
i · λ

(D)
i

)
	 (1)

Building count  Similar to Equation (1), in Equation (2), we modelled the observed building count Bi  in the same 
micro-census clusters using a Poisson distributionλ(B)

i .

	
Bi | λ

(B)
i ∼ Poisson

(
λ
(B)
i

)
	 (2)

To account for overdispersion in the Poisson process, in Equation (3), we modelled λ(B)
i  using a log-normal distribution. 

µ
(B)
i  represents the expected building count on the logarithmic scale, and σ(B)

s  is a settlement-class-specific variance term 
capturing residual variation.

	
λ
(B)
i | µ(B)

i , σ(B)
s ∼ logNormal

(
µ
(B)
i ,σ(B)

s

)
	 (3)

In Equation (4), we defined µ(B)
i  using a linear regression. α(B)

s  represents settlement-class-specific intercepts, X(B)
i  is 

the covariate log-transformed building count derived from settlement data (Covariate A), β(B)
s  denotes settlement-class-

specific effects for the covariate. In this setup, α(B)
s  adjusts for settlement-class-specific additive bias, while β(B)

s  adjusts for 
settlement-class-specific multiplicative bias X(B)

i .

	 µ
(B)
i = α

(B)
s + β

(B)
s · X(B)

i 	 (4)

We specified weakly informative priors for α(B)
s  and σ(B)

s , following a normal distribution for the former and a zero-truncated 
normal distribution for the latter, and a non-informative prior for β(B)

s  as shown in Equation (5). These priors encode mini-
mal prior information about the parameters, allowing the data to dominate posterior inference via the likelihood.

	 α
(B)
s ∼ Normal(0,10)	 (5)

	 σ
(B)
s ∼ Normal+(0,10)	

	 β
(B)
s ∼ Normal(0,∞)	

Table 1.  The gridded geospatial datasets implemented as covariates in the building count and population density model components.

Reference year Model component Label

Building count from settlement data [25] 2024 Building count A

Distance to main roads [18] 2023 Population density B

Average dry matter productivity [26] 2022 Population density C

Distance to violence against civilians [27] 2022 Population density D

Terrain slope [26] 2020 Population density E

https://doi.org/10.1371/journal.pgph.0005072.t001

https://doi.org/10.1371/journal.pgph.0005072.t001
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Population density  Similar to Equation (3), in Equation (6), we modelled population density λ(D)
i  in the micro-census 

clusters using a log-normal distribution. µ(D)
i  represents the expected population density on the logarithmic scale, and σ(D)

s  
is a settlement-class-specific variance term capturing residual variation.

	
λ
(D)
i | µ(D)

i , σ(D)
s ∼ logNormal

(
µ
(D)
i ,σ(D)

s

)
	 (6)

In Equation (7), we modelled µ(D)
i  using a linear regression, similar to Equation (4). α(D)

s  denotes settlement-class-specific inter-
cepts, X(D)

i  represents the covariates distance to main roads, average dry matter productivity, distance to violence against civil-
ians, and terrain slope (Covariates B-E), and β(D) indicates fixed effects for the covariates. Although settlement-class-specific 
effects were initially considered, they were ultimately discarded due to convergence issues.

	 µ
(D)
i = α

(D)
s + X(D)

i · β(D)
	 (7)

In Equation (8), we specified weakly informative priors following a normal distribution for α(D)
s  and a zero-truncated normal 

distribution for σ(D)
s , as well as a non-informative prior for β(D), reflecting the considerations in Equation (5).

	 α
(D)
s ∼ Normal(0,10)	 (8)

	 σ
(D)
s ∼ Normal+(0,10)	

	 β(D) ∼ Normal(0,∞)	

Gridded predictions.  We leveraged the parameters α, σ, and β estimated at the micro-census-cluster level along with 
the gridded datasets to predict the population count Pj  for the j = 1, . . . , 81, 446 settled grid cells across Kasaï-Oriental. 
In Equation (9), Pj  is drawn from a Poisson distribution, with the rate parameter defined by the product of predicted 
building count Bj  and predicted population density Dj, as shown in Equation (1).

	
Pj | λ

(B)
j ,λ(D)

j ∼ Poisson
(
λ
(B)
j · λ(D)

j

)
	 (9)

Similar to Equation (3), in Equation (10), we drew λ(B)
j  from a log-normal distribution. Here, µ(B)

j  represents the predicted 
expected building count per grid cell, and σ(B)

sj  is the settlement-class-specific variance term estimated at the micro-
census-cluster level for each settled grid cell j .

	
λ
(B)
j | µ(B)

j , σ(B)
sj ∼ logNormal

(
µ
(B)
j ,σ(B)

sj

)
	 (10)

In Equation (11), we predicted µ(B)
j  using the estimated intercept term α(B)

sj , the building-count-related covariate (Covariate 
A) X(B)

j , and the estimated settlement-class specific effects β(B)
sj  for each settled grid cell j .

	
µ
(B)
j = α

(B)
sj + β

(B)
sj · X

(B)

j 	 (11)
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In Equation (12), we drew the predicted population densities λ(D)
j  from a log-normal distribution, where µ(D)

j  is the pre-
dicted expected population density, and σ(D)

sj  represents the estimated settlement-class-specific variance term for each 
settled grid cell j .

	
λ
(D)
j | µ(D)

j , σ(D)
sj ∼ logNormal

(
µ
(D)
j , σ(D)

sj

)
	 (12)

In Equation (13), we predicted µ(D)
j  using the estimated settlement-class-specific intercepts α(D)

sj  and the four 
population-density-related covariates X(D)

j  (Covariates B-E) for each settled grid cell j , and the corresponding estimated 
fixed effects β(D).

	 µ
(D)
j = α

(D)
sj + X(D)

j · β(D)
	 (13)

Areal aggregations.  We aggregated the grid-cell level population count Pj  predictions across larger operational health 
boundaries, such as health zones and health areas [32], and the province boundaries approximated by the modelling 
environment. In Equation (14), PA represents the predicted population count for the area A, and the summation runs over 
all grid cells within it.

	
PA =

∑
j∈A

Pj
	 (14)

Since PA retains the posterior distributions of Pj , the aggregated estimates also allow for uncertainty quantification, condi-
tioned on the observed data under the model assumptions. For this purpose, we assessed the posterior distributions using 
different summary statistics, such as the mean of the posterior distribution and lower and upper 95% CIs representing the 
2.5th and 97.5th percentiles. We also computed a standardised measure of model uncertainty representing the difference 
between the upper and lower 95% CIs divided by the mean estimate.

Model implementation.  We implemented the model using Stan (2.32.2) [33] with the R interface package rstan 
(2.32.6) [34] using three Markov chain Monte Carlo (MCMC) chains and 5,000 iterations per chain, with 500 warm-up 
iterations discarded. Standard diagnostics, such as the number of iterations that ended with divergence, the number of 
iterations that saturated the maximum tree depth, and the estimated Bayesian Fraction of Missing Information (EBFMI) 
for each MCMC chain, were complemented by an assessment of the Bulk Effective Sample Size across the model 
parameters using rank normalised draws and the visual inspection of trace plots. We also examined in- and out-of-sample 
goodness-of-fit using stratified leave-p-out cross-validation with an 80–20% split. For in- and out-of-sample predicted 
building and population counts, we extracted posterior means to evaluate bias (i.e., the mean of residuals), imprecision 
(i.e., the standard deviation of residuals), inaccuracy (i.e., the mean of absolute residuals), R2 values (i.e., the squared 
Pearson correlation coefficient among the residuals) consistently with existing Bayesian hierarchical models for high-
resolution population estimation [10]. We also computed mean absolute error (MAE—i.e., the average absolute difference 
between the predicted values and the actual values) and root mean squared error (RMSE—i.e., the square root of the 
average squared differences between predicted and actual values), together with the percentage of observations falling 
within the 95% CIs [35]. We also assessed spatial autocorrelation in the model residuals using global and local Moran’s I 
tests [36].

Ethics approval

This study was approved by the Faculty Ethics Committee of the University of Southampton (ERGO II 89997). Written 
consent was obtained by survey respondents.
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Results

Model parameters

We developed a Bayesian model estimating population count at high spatial resolution in Kasaï-Oriental, DRC, integrating 
building and population counts retrieved from micro-census surveys. The model achieved a minimum Bulk Effective Sam-
ple Size of 2,270.96 across the parameters from both models, indicating reliable posterior estimates. In the first compo-
nent, presented in Equations (2–5), we modelled building count leveraging the relationships between observed building 
count and those derived from settlement data (Covariate A) across different settlement classes. Fig 2 (top) shows that the 
model parameters vary substantially across settlement classes, although they maintain a similar direction and order of 
magnitude. Notably, variations in the intercept α(B)

s  suggest greater bias in the settlement data for rural settlements rather 
than urban ones. Rural settlements also exhibit a substantially higher variance σ(B)

s  and a weaker covariate effect β(B)
s , 

Fig 2.  Posterior density distributions and boxplots for the parameters estimated in the building count (top) and population density (bottom) 
model components on a logarithmic scale. The intercept α and variance σ are estimated independently by settlement class s. The multiplicative 
effects β are applied to the covariate building count from settlement data (A) by settlement class. Covariates B to E represent the fixed, global multiplica-
tive effects for the covariates distance to main roads (B), average dry matter productivity (C), distance to violence against civilians (D), and terrain slope 
(E).

https://doi.org/10.1371/journal.pgph.0005072.g002

https://doi.org/10.1371/journal.pgph.0005072.g002
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indicating looser relationships with observed building count. Peri-urban areas show a broader parameter spread, reflecting 
the heterogeneous nature of this transitional zone.

We modelled population density in a dedicated component presented in Equations (6–8). Fig 2 (bottom) shows that 
the population density parameters follow distinct yet consistent patterns across settlement classes. The intercept α(D)

s  
suggests that mean population densities are higher in urban areas, followed by peri-urban, and rural areas, while vari-
ance σ(D)

s  remains similar. Although covariate selection was based on correlations with log-population densities, the fixed 
multiplicative effects β(D) indicate minimal influence from most covariates. The strongest effect is observed for distance 
to main roads (Covariate B), where increased distance is associated with lower population densities. Average dry matter 
productivity (Covariate C) shows no distinct impact, likely due to varying relationships between population densities and 
ecosystems. Distance to violence against civilians (Covariate D) has a negative but weak influence on population density, 
potentially reflecting the push-pull effects of violence. Similarly, terrain slope (Covariate E) shows a negative but weak 
impact, suggesting that rugged relief is generally associated with lower population densities.

Model fit

The model parameters presented above are used to estimate building and population counts within the 213 micro-
census clusters. Fig 3 contrasts these estimates with the values observed in the respective clusters to provide a visual 
indication of the model goodness-of-fit. Both predicted building and population counts generally align with the respective 
observed values, with the 95% CIs typically overlapping the respective one-to-one relationship lines. Fig 3 (left) shows 
that observed building counts per cluster typically fall between 25 and 200 for all the settlement classes with a few out-
liers, particularly for clusters within rural settlements. In these clusters, the predicted building counts deviate from the 
one-to-one relationship line, but the 95% CIs successfully capture the observed building counts. As shown in Fig 3 (right), 
the range of observed population counts is wider, typically between 100 and 600 people per cluster. Outliers mainly 
emerge for higher population counts, reaching 1,050 people in one micro-census cluster. While the 95% CIs capture these 
extreme values, the mean predicted population counts consistently fall below the one-to-one relationship line. Distinct 

Fig 3.  Observed versus predicted building (left) and population (right) counts with 95% credible intervals (CIs) classified according to the 
respective settlement classes. The diagonal black lines show a one-to-one relationship between observed and predicted values.

https://doi.org/10.1371/journal.pgph.0005072.g003

https://doi.org/10.1371/journal.pgph.0005072.g003
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settlement-class-specific patterns also highlight the stronger impact of the hierarchical structure, compared to the covari-
ates, as illustrated in Fig 2 (bottom).

Table 2 presents goodness-of-fit metrics for building and population counts based on the in-sample posterior 
predictions. The results show that, in both cases, approximately 95% of the observations fell within the respective 
95% CIs indicating that the model structure is robust. Estimated building and population counts exhibit slight neg-
ative bias resulting in an average overprediction of 1.05 buildings and 2.24 people per cluster, respectively. Simi-
larly, imprecision and inaccuracy are larger for estimated population counts than for estimated building counts. Both 
estimates show an analogous R2 value of 0.52, indicating that slightly over 50% of the variance in the observed 
building and population counts is explained by the respective mean estimates. The residuals for both building and 
population counts exhibited significant (p < 0.05) but reduced spatial autocorrelation (I = 0.15) using the Moran’s I 
test carried out for different distance classes. This result was observed only for the smallest distance class (0.05) 
and linked to systematic model underpredictions in three remote clusters located in the western part of the province. 
This analysis produced similar results for cross-validated out-of-sample predictions, with detailed results available 
on a public Zenodo repository [37], suggesting the absence of model overfitting. These results are presented in two 
separate files for in‑sample (*_full) and out‑of‑sample (*_crossValidation) data in the directory population_model/
model_evaluate.

Grid-cell predictions and areal aggregations

Grid-cell-level model predictions were performed by linking the model parameters presented above with the covari-
ates and settlement classes derived from the geospatial gridded datasets. This procedure resulted in 13,500 pos-
terior predictions for each of the 81,446 settled grid cells in the modelling environment. Fig 4 shows the geographic 
distribution of the mean gridded population estimates across Kasaï-Oriental (left) with a zoom-in of the provincial 
capital of Mbuji-Mayi (right). The figure shows well-defined geographic patterns informed by the distribution of the 
settled grid cells. In most of the province, the estimated population counts per grid cell are low, with values generally 
below 100 people per grid cell. However, these values tend to be higher in urban areas, particularly in Mbuji-Mayi, 
with mean estimated values reaching up to 488 people per grid cell. The population patterns across health zones 
and health areas show notable differences. For instance, the health zone of Kabeya Kamwanga, located in the pre-
dominantly rural eastern part of the province, covers approximately 2,579 km2, with a large but scattered estimated 

Table 2.  Analysis of residuals for building and population counts based on in-sample posterior 
predictions.

Building count Population count

Bias –1.05 (–0.12) –2.24 (–0.28)

Imprecision 27.52 (0.44) 133.38 (0.95)

Inaccuracy 19.47 (0.27) 98.76 (0.47)

R2 0.52 0.52

RMSE 27.48 133.09

MAE 19.47 98.76

Observed within 95% CIs 96.24% 93.43%

Bias represents the mean of the residuals, imprecision the standard deviation of residuals, inaccuracy the 
mean of absolute residuals, R2 the squared Pearson correlation coefficient among the residuals, and the 
percentage of observations falling within the 95% credible intervals (CIs). Residuals are computed as  
the observed values minus the posterior means. The metrics in parentheses are standardised using scaled 
residuals (residuals/posterior means).

https://doi.org/10.1371/journal.pgph.0005072.t002

https://doi.org/10.1371/journal.pgph.0005072.t002
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Fig 4.  Mean gridded population estimates across Kasaï-Oriental (left) with a zoom-in of the provincial capital of Mbuji-Mayi (right). Fully 
overlapping health zones (labelled) and health areas (unlabelled) are overlayed. Administrative boundaries sourced from OpenStreetMap (https://planet.
osm.org) under the Open Database License (ODbL) (https://www.openstreetmap.org/copyright). Health zone and health area boundaries sourced from 
GRID3 (https://data.grid3.org/) under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1371/journal.pgph.0005072.g004

population. Conversely, the health zone of Lubilanji, in Mbuji-Mayi, covers an area of 4 km2, with a smaller but 
densely distributed estimated population.

Fig 5 provides probabilistic insights into the population of the province, as well as its health zones and health 
areas resulting from the aggregation of the grid cell posterior distributions. The size of the largest circle indicates 
the mean population estimate for Kasaï-Oriental, as approximated by the modelling environment, which is likely to 
count 4.1 million people, with the respective 95% CIs with a 95% probability that the population is between 3.4 and 
4.8 million, resulting in an uncertainty level of 34.30%. Health-zone aggregates confirm that the most populated, 
namely the Kasana (434,113 mean population estimate) and Kabeya Kamwanga (411,389 mean population estimate) 
health zones, feature the largest geographic extent. The opposite is generally true for the smallest health zones in 
Mbuji-Mayi, with the notable exception of the Kabinda health zone (22,960 mean population estimate) in the eastern 
part of the province, which is partly falling outside of the modelling environment. Fig 5 also shows how uncertainty 
varies across levels of aggregation, from the health area to the health zone and the province, with uncertainty levels 
typically increasing with granularity. For instance, the Tshilenge health zone exhibits an overall uncertainty level of 
46.7%, with its health areas exceeding 46.67% and reaching a maximum of 148.52%. Other health zones feature 
more complex uncertainty patterns underscoring the need for individual assessments of the posterior distribution 
aggregates.

The input data and scripts used to develop the modelled gridded population estimates, as well as the grid-cell posterior 
distributions and scripts to aggregate them within user-defined geographic boundaries are available on a public Zenodo 
repository [37].

https://planet.osm.org
https://planet.osm.org
https://www.openstreetmap.org/copyright
https://data.grid3.org/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1371/journal.pgph.0005072.g004
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Discussion

This study introduced a Bayesian model jointly estimating building and population counts at high spatial resolution in 
the Kasaï-Oriental province, DRC. The model integrated building and population counts from micro-census data with 
geospatial datasets to estimate population counts within approximately one-hectare grid cells across the province. It 
enhanced existing Bayesian population models [10,11,13] by explicitly addressing uncertainties in building footprint data, 
a previously unaccounted-for source of error [11]. Consistent with earlier modelling efforts in the DRC and other countries 
in sub-Saharan Africa, the results underscore the advantages of a hierarchical model structure, where key parameters—
such as variance, intercept, and covariate effects—are estimated for each settlement class [10,11,13]. In prior studies, this 
approach enabled to successfully estimate population counts at high spatial resolution beyond the surveyed regions [10].

The model demonstrated strong goodness-of-fit, showing minimal bias, imprecision, and inaccuracy compared to simi-
lar Bayesian population models [10,11,13]. However, we detected significant but limited spatial autocorrelation in the model 
residuals using Moran’s tests, which is unlikely to lead to substantial underestimation of uncertainty in aggregate estimates. A 
key innovation was the building count model component, driven by covariate building count from settlement data and parame-
ters estimated by settlement class, underscoring greater bias in settlement data for rural areas compared to urban areas [38]. 
This previously unaddressed source of uncertainty was successfully integrated into the population count model component 
implemented in other modelling work in the DRC [11,21]. In this component, the impact of the parameters is mostly associated 
with the settlement-class parameters rather than the effects of the covariates related to population density, similar to exist-
ing studies [10]. Because these covariates explain relatively small additional variation beyond the settlement‑class specific 
intercepts, the posterior estimates of population density tend to shrink toward those intercepts. In this regard, our analysis 
underscored the limited number of gridded datasets exhibiting significant correlations with log-population densities, emphasis-
ing the need for further research into alternative spatial datasets in data-scarce contexts. As a result of this shrinkage towards 
settlement-class specific population densities, predicted population counts feature reduced variability, particularly in urban 
areas. However, approximately 95% of the observed building and population counts fell within the respective 95% CIs.

Fig 5.  Mean population count estimates and uncertainty levels for Kasaï-Oriental, its health zones (labelled) and health areas (unlabelled). The 
size of the circles represents the mean population estimate while the colour scale represents the uncertainty level computed as the difference between 
the upper and lower 95% CIs divided by the mean estimate.

https://doi.org/10.1371/journal.pgph.0005072.g005

https://doi.org/10.1371/journal.pgph.0005072.g005
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Central to this modelling effort was the availability of actionable micro-census survey data. The definition and selection 
of these small areas were designed to provide an accurate and unbiased representation of Kasaï-Oriental’s population, 
while capturing differences in demographic characteristics and context. The data were collected in approximately two 
months, arguably, at a fraction of the cost of a complete enumeration. Moreover, the insecurity and natural hazards that 
affected the logistical implementation of the micro-census survey underscore the challenges of carrying out complete 
enumeration over larger areas, particularly those that are difficult to access. Although a similar micro-census survey is 
unlikely to be replicated in the near future, the integration of routinely collected health data [39] or available digital traces 
[40] could enable subsequent model updates capturing population dynamics also across unsurveyed provinces [10].

The flexible aggregation of the gridded population estimates with operational public health boundaries demonstrated 
the ability to transfer uncertainty horizontally across health areas and vertically between health areas and health zones. 
These aggregations are made possible by the consistency of the gridded framework, which effectively addresses spatial 
misalignment between administrative and operational health boundaries [41]. At the province level, the 34.30% uncertainty 
around the 4.1 million mean population estimate encompassed the available population sources for the Kasaï-Oriental 
province, including the governmental estimates of 3.4 million for 2021 [14]. The results confirmed that uncertainty typically 
increases with granularity [10], with an exceptional uncertainty level of 148.52% detected in a health zone with a mean 
population estimate of 10,949, and 95% CIs ranging from 5,026–21,289. These health zone and health area estimates 
provide an opportunity to inform probabilistic scenarios, enabling the public health community to improve planning and 
intervention [15,16]. For example, upcoming polio vaccination campaigns in Kasaï-Oriental could benefit from allocating 
resources based on the upper 95% credible intervals to ensure optimal coverage.

This study highlights the potential of Bayesian models for estimating population counts at high spatial resolution in 
data-scarce settings where uncertainties in available demographic datasets can be substantial [2]. However, several criti-
cal challenges must be addressed to foster the adoption of these methods within the public health community. First, future 
work should focus on building the necessary skills and technical capacity to understand, implement, and interpret Bayes-
ian models effectively [3]. While the required effort varies by context, recent initiatives have demonstrated notable suc-
cesses, with the Colombian National Administrative Department of Statistics successfully generating Bayesian population 
estimates for hard-to-reach regions of the country [42]. Second, Bayesian posterior distributions should be integrated with 
relevant ancillary datasets, such as existing population pyramids, to estimate the sizes of critical population subgroups 
(e.g., under-one and under-five) [11]. Lastly, operational relevance should be improved by expanding existing tools allow-
ing for the seamless application of probabilistic approaches to gridded population estimates and area aggregates in health 
system planning [43]. Ensuring that Bayesian high-resolution population estimates are accessible, relevant, and easy to 
use will be critical to addressing public health data gaps and supporting accurate planning and intervention.

Supporting information

S1 Table.  Gridded Geospatial Datasets. The table provides an overview of the gridded geospatial datasets tested in the 
population count model. The Name column provides the dataset name, Description a succinct description, Year indicates 
the reference year, Summary outlines the type of processing applied, and Source identifies the dataset origin. All datasets 
have been processed by WorldPop at the University of Southampton.
(PDF)
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