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Abstract:
To identify genetic variants that influence myeloproliferative neoplasm (MPN) phenotype, we
undertook a two-stage case-only genome-wide association study using cohorts from the UK (including
UK Biobank), Spain, Germany and Italy. MPN subtype [essential thrombocythemia (ET); polycythemia
vera (PV)] were compared to each other, to healthy controls and stratified analyses was performed
based on chromosome 9p aberrations, JAK2 V617F mutation burden and sex. The ET versus PV analysis
identified known associations: (i) at HBS1L-MYB that increased ET risk (PMETA=7.93x10-6, OR=1.28)
and reduced PV risk (PMETA=9.43x10-5, OR=0.81) and (ii) at GFI1B-GTF3C5 that predisposed to PV only
(PMETA=1.43x10-9, OR=1.38). Two further linked intronic SNPs, rs2425786 and rs2425788, at
CDH22/CD40 were significant in females only (PMETA=2.67x10-8) with predisposition to PV
(PMETA=0.0006, OR=1.3) and reduction of ET risk (PMETA=7.82x10-5, OR=0.75). Associations with JAK2,
TERT, ATM, TET2, PINT, GFI1B and SH2B3 were confirmed (PMETA<5x10-8) and nine further loci were
replicated (PMETA<0.05). A polygenic risk score consisting of 48 SNPs from 31 loci demonstrated
moderate discriminative performance for ET and PV (AUC=0.718) and was improved by optimization for
disease subtype (AUCET=0.724 and AUCPV=0.755). Overall, our results reveal that multiple germline
variants influence MPN phenotype with HBS1L-MYB and a novel sex-specific association with
CDH22/CD40 being the strongest determinants.
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GENETIC DETERMINANTS OF MPN SUBTYPE 

. 

Conclusion: Multiple germline variants influence MPN phenotype, including a novel 
female-specific association with CDH22/CD40. 

Tapper et al. DOI: 10.xxxx/blood.2025xxxxxx 

Context of Research 
Some patients who acquire JAK2 V617F develop 

polycythemia vera but others develop essential 

thrombocythemia. The reason for this phenotypic 

difference is incompletely understood 

Aim of This Study 
To identify genetic variants that influence 

myeloproliferative neoplasm (MPN) phenotype, including 

variants that have gender-specific effects 

Findings 
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Key Points 

Genetic variation at HBS1L-MYB and CDH22/CD40 are the strongest determinant of MPN phenotype, 

but the latter is only seen in females 

Polygenic risk scores for MPN are improved when optimised for disease subtype 

 

Abstract  

To identify genetic variants that influence myeloproliferative neoplasm (MPN) phenotype, we 

undertook a two-stage case-only genome-wide association study using cohorts from the UK 

(including UK Biobank), Spain, Germany and Italy. MPN subtype [essential thrombocythemia (ET); 

polycythemia vera (PV)] were compared to each other, to healthy controls and stratified analyses 

was performed based on chromosome 9p aberrations, JAK2 V617F mutation burden and sex. The ET 

versus PV analysis identified known associations: (i) at HBS1L-MYB that increased ET risk 

(PMETA=7.93x10-6, OR=1.28) and reduced PV risk (PMETA=9.43x10-5, OR=0.81) and (ii) at GFI1B-GTF3C5 

that predisposed to PV only (PMETA=1.43x10-9, OR=1.38). Two further linked intronic SNPs, rs2425786 

and rs2425788, at CDH22/CD40 were significant in females only (PMETA=2.67x10-8) with 

predisposition to PV (PMETA=0.0006, OR=1.3) and reduction of ET risk (PMETA=7.82x10-5, OR=0.75). 

Associations with JAK2, TERT, ATM, TET2, PINT, GFI1B and SH2B3 were confirmed (PMETA<5x10-8) and 

nine further loci were replicated (PMETA<0.05). A polygenic risk score consisting of 48 SNPs from 31 

loci demonstrated moderate discriminative performance for ET and PV (AUC=0.718) and was 

improved by optimization for disease subtype (AUCET=0.724 and AUCPV=0.755). Overall, our results 

reveal that multiple germline variants influence MPN phenotype with HBS1L-MYB and a novel sex-

specific association with CDH22/CD40 being the strongest determinants. 
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Introduction  

Common, low penetrance genetic variants contribute to the risk of developing MPN and also 

phenotypic pleiotropy in these disorders1-10. In a prior genome-wide association study (GWAS), we 

found that genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to JAK2-unmutated 

MPN11. Targeted analysis of these four variants demonstrated that rs9376092 at HBS1L-MYB and the 

JAK2 46/1 haplotype specifically influence whether JAK2 V617F mutated cases present with PV or ET. 

It is likely that variation at other loci influence MPN phenotype and the primary aim of this study was 

to identify inherited genetic factors on a genome-wide basis that influence whether JAK2 V617F 

positive MPN patients present with polycythemia vera (PV) or essential thrombocythemia (ET). 

Secondary aims were to explore gender effects and the efficacy of phenotype-specific polygenic risk 

scores.   

 

Methods 

We performed a two-stage case-only GWAS with 556 ET and 556 PV patients at stage 1, all JAK2 

V617F positive. Selected SNPs were tested for replication in four independent JAK2 V617F positive 

stage 2 cohorts (ET, n=703; PV, n=715) plus MPN cases from UK Biobank (ET, n=322; PV, n=506) 

(Supplementary Table 1). ET or PV cases were compared to healthy controls and stratified analyses 

was performed based on chromosome 9p aberrations, JAK2 V617F variant allele frequencies (VAF) 

and sex. Final effect sizes and significance levels were estimated by meta-analysis. Detailed methods 

and expanded results are in the Supplementary Material.  

 

Results and Discussion 

After quality control, a total of 7,267,872 SNPs (658,066 observed, 6,609,806 imputed) and 1069 

patients (535 ET and 534 PV) remained for analysis at stage 1 (Supplementary Figure 1,  

Supplementary Table 1). ET and PV cases were compared using logistic regression and the first five 

principal components from multidimensional scaling to correct for population stratification 

(Supplementary Figure 2). Twenty nine genome-wide significant SNPs were identified (P<5x10-8), 

however all but two were linked to the 46/1 JAK2 haplotype8 (Supplementary Figure 3). 

 

We selected 93 SNPs for replication in a case only analysis using binary logistic regression to 

compare ET and PV; final significance levels and effect sizes were determined by a fixed effects 

inverse variance-weighted meta-analysis which combined evidence from the two stages. Two linked 

SNPs (r2=0.91) with genome-wide significance were identified in the HBS1L-MYB intergenic region, 

rs9399137 (Pmeta=2.28x10-10) and rs9376092 (Pmeta=4.35x10-9). SNPs at four additional loci (ZBTB7C-
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CTIF, ADORA1, GFI1B-GTF3C5, LINC02398) were identified with suggestive levels of significance 

(Table 1, Supplementary Table 2). 

 

To determine if these six SNPs associate with MPN subtype, we compared ET or PV cases from stage 

1 and UK Biobank against healthy controls from the WTCCC2 (n=5,195) and UK Biobank (n=326,027) 

and combined the evidence using a fixed effects meta-analysis. As summarised in Table 1, the two 

HBS1L-MYB SNPs and ADORA1 SNP were associated with an increased risk of ET and reduced risk of 

PV. In contrast, variation at GFI1B-GTF3C5 was only associated with an elevated risk of PV and, 

consistent with this finding, was significantly associated with 9p chromosome aberrations and JAK2 

V617F VAF (see Supplementary Material). Finally, variation at LINC02398 and ZBTB7C-CTIF was 

associated with an increased risk of PV, with the latter also associated with a reduced risk of ET. 

These findings indicate a multifactorial genetic influence of constitutional genotype on MPN 

phenotype. The most significant association for each SNP is summarised in Figure 1.  

 

To investigate the possibility of sex differences in SNP-disease associations, ET and PV cases from 

stage 1 and UK Biobank were stratified by gender and analysed against each other and controls. Two 

linked SNPs (r2=1.0) within CDH22, rs2425786 in intron 5 and rs2425788 in intron 4, were identified 

with genome-wide significance (rs2425786 Pmeta=2.67x10-8, rs2425788 Pmeta=3.45x10-8) (Table 1, 

Supplementary Figure 4). In comparison with healthy female controls, these SNPs were associated 

with a reduced risk of ET (rs2425786 Pmeta=7.82x10-5, OR=0.75; rs2425788 Pmeta=0.0001, OR=0.75) 

and an elevated risk of PV (rs2425786 Pmeta=0.0006, OR=1.30; rs2425788 Pmeta=0.0006, OR=1.29). 

While sex-related differences have previously been reported in MPN12,13 this represents the first 

instance of a sex-specific genetic association with phenotypic predisposition. 

 

CDH22 encodes cadherin 22, which is essential for maintaining the structure and function of several 

tissues, including the hematopoietic microenvironment14. However, CDH22 does not appear to be 

expressed in hematopoietic cells and eQTL analysis indicates that rs2425786 is associated with 

increased expression of the neighbouring gene CD40 (P=3.80x10-7; Supplementary Material and 

Supplementary Table 3). CD40 is expressed in hematopoietic cells and encodes a cell surface 

receptor belonging to the tumour necrosis factor receptor superfamily. Consequently, it is a 

potential candidate that merits further investigation. 

 

The mechanism underlying the female-specific effect of rs2425786 is unclear, but it may involve 

hormonal influences, differential gene regulation, or sex-specific immune modulation. We used data 
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from UK Biobank to evaluate whether the effects of the CDH22/CD40 SNPs were mediated by or 

interacted with hormonal biomarkers (sex hormone binding globulin [SHBG] and testosterone [TT]) 

or the inflammatory biomarker C-reactive protein (CRP). The SNPs were associated with a reduced 

risk of ET (rs2425786 PCRP=0.0016, OR=0.69; rs2425786 PTT=0.0051, OR=0.68) and an increased risk of 

PV (rs2425786 PCRP=0.0264, OR=1.32; rs2425786 PTT=0.0459, OR=1.31), independently of CRP 

(Supplementary Table 4) and testosterone (Supplementary Table 5), with no evidence of significant 

interactions. Adjustment for SHBG did not attenuate the SNPs associations for ET versus PV 

(rs2425786 PSHBG=0.0017, OR=0.56) and ET versus controls (rs2425786 PSHBG=0.0065, OR=0.71), and 

no significant interactions were observed (Supplementary Table 6). A similar trend towards 

increased risk of PV was shown, although it did not reach nominal significance (rs2425786 

PSHBG=0.0656, OR=1.27).   

 

To further investigate potential sex-linked biological pathways, we reviewed phenome-wide 

association study results which revealed a significant association between rs2425786 and 

complications of labour and delivery (OR=0.95, P=1.48x10-4)15, suggesting a possible link to female-

specific physiological processes. Some genes are differently regulated in males and females due to 

differences in the epigenetic landscape. Interestingly, aberrant demethylation of the promoter 

region of CD40LG, which encodes the CD40 ligand, on the inactive X chromosome can lead to 

biallelic expression in females. This abnormal expression pattern has been linked to a higher 

prevalence of immune-related diseases16,17 and elevated levels of IgM in females18. This female-

specific mechanism may be relevant to the observed association between CDH22/CD40 SNPs and 

increased risk of PV in women, and we plan to explore this using bulk and single cell 

methylation/expression analysis in relation to rs2425786 genotype and MPN phenotype 

 

To estimate an individual’s genetic risk for developing MPN, and specifically ET or PV, we calculated 

three polygenic risk scores (PRSMPN, PRSET, PRSPV) using 48 SNPs (Supplementary Table 7). The PRSMPN 

exhibited moderate performance in UK Biobank, achieving an AUC value of 0.635 which increased to 

0.718 when covariates for age, sex and ancestry (first 10 principal components) were included 

(Figure 2). Individuals with scores in the highest decile were estimated to have a 4.88-fold increased 

risk of MPN versus those in the lowest decile. The PRSET and PRSPV showed a slight improvement 

with an AUC of 0.724 for ET and 0.755 for PV, respectively, when adjusting for covariates. The 

relative risk of disease associated with scores in the top versus bottom decile were 5.78 for ET and 

4.66 for PV.      
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In a recent study, Guo et al 202419 showed that a PRS for platelet traits in healthy individuals (pct 

and plt) were associated with ET and that a PRS for red blood cells (hgb, hct, rbc and mchc) were risk 

factors for PV. An additional PRS consisting of MPN-associated SNPs also increased the risk of ET and 

PV, but to a lesser extent. We computed PRS for the six blood cell traits using all available SNPs 

(Supplementary Table 8) and our tailored PRS (PRSET and PRSPV) and assessed their relationship with 

ET and PV in UK Biobank. We confirmed the association of platelet traits with ET (PRSpct Pfdr=7.16x10-

17, OR=1.63; PRSplt Pfdr=6.08x10-14, OR=1.54) and red blood cell traits with PV (PRShgb Pfdr=5.09x10-16, 

OR=1.47; PRShct Pfdr=1.58x10-13, OR=1.42; PRSrbc Pfdr=7.01x10-11, OR=1.38; PRSmchc Pfdr=1.17x10-3, 

OR=1.18) using univariable logistic regression (Supplementary Table 9). However, our tailored PRS 

had the strongest association with a diagnosis of ET (PRSET P=1.92x10-16, OR=1.58) and PV (PRSPV 

P=7.62x10-18, OR=1.48) using multivariable logistic regression and correcting for either platelet traits 

with ET or red blood cell traits with PV along with age, sex, JAK2 V617F VAF and 10 principal 

components (Supplementary Table 10). 

 

According to the per allele odds ratio and minor allele frequency, rs2425786 (CDH22/CD40) is 

estimated to account for the largest proportion of the population attributable fraction (19.6%) 

followed by rs9399137 (HBS1L-MYB; 9.7%). The intergenic SNP between GFI1B and GTF3C5, 

rs3011271, accounts for a further 6.3% of the PAF. Based on a multiplicative model without 

interaction, these three genetic risk factors are estimated to have a combined PAF of 32% 

(Supplementary Table 11) indicating that they play a substantial role in influencing MPN phenotype. 

 

Our findings highlight the importance of considering the possibility of gender-specific effects in 

studies that explore the connection between genetic variation and patient phenotype, and this may 

extend beyond presenting features to clinical management issues such as adverse events and 

outcomes following treatment.  
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Table 1. Summary of the most significant SNPs following meta-analysis. 

Locus, HGNC gene symbol with flanking genes shown for intergenic SNPs; SNP, rs identifier from dbSNP; Fixed effect meta-analysis was used to generate 

significance levels (P) and effect sizes (OR or BETA) except for 9p aUPD/CNG which was only available in the stage 1 case control cohort. Comparative 

groups or trait investigated are shown by column titles and the number of independent cohorts used for meta-analysis is shown in parentheses. ⴕrs8087061 

and rs3766568 failed replication QC (HWE P<1E-10 and call rate <90% respectively) while the CDH22 SNPs (rs2425786 and rs2425786) were not selected for 

replication genotyping. As a result, these SNPs are only tested in two cohorts for the ET vs PV analysis and one cohort for association with JAK2 V617F. The 

most significant P-value across all analyses is highlighted in bold. Odds ratios (OR) in bold highlight the most significant subtype-specific associations in 

comparisons of either ET or PV cases with controls. SNPs associated with both subtypes have two bolded ORs, while those associated with only one subtype 

have a single bolded OR. Numbers in brackets indicate the number of cohorts tested for each comparison. 

 

Locus SNP Fixed effect meta-analysis* 

ET vs PV 
(6) 

ET vs controls 
(2) 

PV vs controls 
(2) 

ET/PV vs controls 
(2) 

9p aUPD/CNG vs 
controls (1) 

JAK2 V617F  
VAF (3) 

ET vs PV 
females (2) 

ET vs control 
females (2) 

PV vs control 
females (2) 

P OR P OR P OR P OR P OR P BETA P OR P OR P OR 

HBS1L-
MYB 

 

rs9399137 2.28x10
-10

 1.47 7.93x10
-6

 1.28 9.43x10
-5

 0.81 0.2967 1.04 0.2928 0.90 0.0025 -0.111 1.99x10
-7

 1.78 0.0001 1.31 0.0002 0.71 

rs9376092 4.35x10
-9

 1.41 2.27x10
-7

 1.32 0.0049 0.86 0.1609 1.06 0.5493 0.95 0.0043 -0.102 1.75x10
-6

 1.67 1.08x10
-5

 1.36 0.0089 0.80 

ZBTB7C-
CTIF 

rs8087061 
ⴕ
1.67x10

-6
 0.54 0.0028 0.74 0.0005 1.31 0.6180 1.03 0.0431 1.32 

ⴕ
0.0658 0.151 0.0086 0.61 0.0137 0.72 0.3855 1.12 

ADORA1 rs3766568 
ⴕ
3.99x10

-5
 1.34 0.0030 1.17 0.0031 0.86 0.8722 0.99 0.9935 1.00 

ⴕ
0.02302 -0.056 0.0042 1.34 0.0203 1.17 0.0719 0.86 

LINC02398 rs2244740 7.06x10
-5

 0.61 0.1106 0.80 0.0013 1.38 0.2538 1.10 0.0715 1.38 0.0721 0.133 0.1017 0.66 0.1938 0.80 0.3226 1.18 

GFI1B-
GTF3C5 

rs3011271 4.77x10
-5

 0.78 0.7076 1.02 1.43x10
-9

 1.38 3.57x10
-6

 1.21 3.44x10
-9

 1.71 2.35x10
-8

 0.207 0.0086 0.73 0.8167 1.02 0.0004 1.35 

rs520812 0.0111 0.83 0.8614 0.99 1.22x10
-6

 1.34 0.0007 1.18 1.28x10
-6

 1.63 0.0002 0.159 0.0251 0.73 0.5725 0.95 0.0317 1.24 

FAM135B rs12550019 0.0419 0.90 0.9332 1.00 2.48x10
-5

 1.22 0.0018 1.12 0.0009 1.31 0.2214 0.039 0.1703 0.87 0.7929 1.02 0.0494 1.16 

CDH22 rs2425786 
ⴕ
3.93x10

-5
 0.75 0.0364 0.89 0.0024 1.15 0.3591 1.03 0.0998 1.15 

ⴕ
0.3328 0.045 2.67x10

-8
 0.56 7.82x10

-5
 0.75 0.0006 1.30 

rs2425788 
ⴕ
4.60x10

-5
 0.75 0.0333 0.89 0.0030 1.15 0.3968 1.03 0.1124 1.14 

ⴕ
0.3667 0.042 3.45x10

-8
 0.56 0.0001 0.75 0.0006 1.29 
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Figure legends 

 

Figure 1. Forest plot and meta-analysis for the most significant SNPs. Forest plots showing the odds 

ratios, 95% confidence intervals (CI), percentage weight contributed to the overall meta-analysis and 

p-value for each SNP with or approaching a genome-wide level of significance. The most significant 

association for each SNP with a genome-wide or suggestive level of significance is shown. Odds 

ratios greater than 1 for the ET vs PV comparison indicate an increased risk of PV while those less 

than 1 increase the risk of ET. The SNP subtotals show the OR and CI for a fixed-effects meta-analysis; 

Cochran’s Q test and I2 statistics showed that for each SNP there was no evidence of heterogeneity 

between cohorts. Each SNP is significant in at least one of the replication cohorts tested and  has 

evidence for the same trend in the remaining populations. GWAs significant P-values are highlighted 

in bold.  

 

Figure 2. Evaluation of PRS optimised for disease subtype. Panels represent PRS optimised for ET 

and PV cases (A) ET cases (B) and PV cases (C). Density plots compare the distribution of Z-scaled PRS 

in cases and controls. Receiver operating characteristic curves showing the predictiveness of the PRS 

alone or with covariates (age, sex and first 10 principal components). Decile plots of relative disease 

risk in each decile versus the lowest decile. 
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