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Abstract
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Uni-List Capture-Recapture Approaches, with Uncertainty Quantification,
Performance Analysis and a Meta-Analytic Application

by Layna Charlie Dennett

Meta-analysis is a powerful tool for evaluating numerous studies focused on the same
or similar research question and integrating the results to identify a common parameter.
This well-established methodology is prone to bias, so this thesis proposes the use of
model-based meta-analytic and uni-list capture-recapture approaches, to compute more

reliable estimates, with a focus on count data systematically missing zero counts.

For the meta-analytic approach, traditional methodologies do not adequately address
zero-truncated count data. This thesis develops a model-based approach with zero-
truncated count models which appropriately account for the missing zeroes and an
exposure variable if applicable. From these models, a maximum likelihood approach
is taken with the expectation-maximisation algorithm, used to compute less biased
parameter estimates. Following these approaches, both observed and unobserved
heterogeneity are addressed through covariate modelling and overdispersion modelling

respectively.

As for the uni-list capture-recapture approach, the Horvitz-Thompson, generalised
Chao’s and generalised Zelterman’s estimators are used for population size estima-
tion, allowing for the inclusion of covariate information and an exposure variable.
Also explored is the uncertainty that arises from these estimation methods, with both
approximation-based variance estimation methods and the bootstrap algorithm ad-
dressed. Various approaches to the bootstrap algorithm and methods for accounting for
model uncertainty are developed, in addition to alternative methods of confidence inter-
val construction. The last focus of the thesis addresses the estimators under the presence
of one-inflation, and given the poor performance of many of the existing estimators,
the generalised-modified Chao’s estimator is developed to account for zero-truncation,

one-inflation and covariate information.

The methodologies discussed in this thesis are demonstrated through the use of real-life

case study data, and assessed through a series of simulation studies.


http://www.southampton.ac.uk
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Chapter 1

Introduction

In this chapter, background of the case studies and their motivation are discussed, in
addition to the aims and objectives of the thesis. At the end of the chapter, the structure

of the thesis is outlined.

1.1 Introduction

When dealing with elusive populations, capture-recapture methods are widely used
to estimate the total population size, important information which can be utilised in
a plethora of ways dependent on the context of the data. For example, to accurately
predict and monitor disease outbreaks through knowing the size of the population at
risk in epidemiology, or for efficient planning of government funding and infrastructure
through knowledge of population sizes by area. However, when data is systematically
missing, challenges arise as the rates used in the capture-recapture methods will typically
lead to under- or overestimation of the population sizes if the missing data is not
appropriately accounted for. One method of addressing this missing data is model-
based meta-analysis. Through utilising zero-truncated regression modelling, adjusted
and more accurate rates can be computed in order to find reliable capture-recapture

estimates of the population sizes.

This thesis works through applying these methods to a case study, looking at the
prevalence of completed suicide following bariatric surgery, where studies without at
least one completed suicide were excluded due to the search criteria and hence the
number of zero completed suicides is missing. An additional case study focused on the
captures of snowshoe hares is also used, providing an alternative dataset with different
properties for demonstrative purposes. The final chapter of this thesis introduces the
concept of one-inflation, and to demonstrate the one-inflated methods, a case study
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exploring the prevalence of heroin drug users in the Chiang Mai province of Thailand is
used. More information on this dataset is given in Chapter 7.

1.1.1 Background on the suicide data case study

To gain a deeper understanding of this capture-recapture approach to meta-analysis
when zero-truncated count data is involved, a case study approach is adopted. The sys-
tematic review by Peterhdnsel et al. (2013) forms the basis for this case study, containing
meta-analytic data on 27 studies exploring the prevalence and risk of completed suicide
after bariatric surgery.

Whilst the case study paper does take the missing zeroes into account, they have adopted
a proportional model rather than a rate model for finding their estimates. Utilising a
zero-truncated binomial distribution for finding the estimated rate of completed suicide
after bariatric surgery, with constant probability of “success”, exp (), and the number of
trials given by the person-years, 7;. Whilst the case study found a reasonable estimated
rate of completed suicide, and accounts for the missing studies, taking the person-years
as the number of trials, and the rate as the success probability allows for a non-zero
probability for observing more counts of completed suicide than people in the study.
Given that an individual can complete suicide a maximum of one time, it is a probability
that is impossible in practice. The alternative approaches discussed in this thesis prevent

this unrealistic probability from occurring.

1.1.1.1 Motivation for the systematic review

The global the population is facing an obesity epidemic with, as of 2016, over 2 billion
people being classified as either overweight or obese (Shekar and Popkin, 2020), with
predictions that 17.5% of the world’s population will be classified as obese by 2030
(Lobstein et al., 2022).

Figure 1.1 demonstrates this obesity epidemic, with a clear increasing trend in obesity
rates for both men and women in England, from the years of 1993 to 2019. The percentage
of women classified as obese is consistently larger than the percentage of men classified
as obese. However, for both genders, and therefore the total population, the number of
individuals classified as obese is growing each year, with a more rapid increase in more

recent years.

As a result of growing obese populations, healthcare systems are experiencing increasing
pressures to reduce the prevalence of obesity and the comorbidities of being overweight
which are further burdening healthcare systems. These comorbidities, both physiological
and psychological, include but are not limited to, type-II diabetes, cardiovascular disease,
obesity related cancers, depression, and anxiety disorders (Dixon, 2010).
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FIGURE 1.1: Percentage of the population in England classified as obese for years 1993
to 2019 for the total population and sub-populations of men and women, using data
from NatCen Social Research, University College London (2005-2023).

In an attempt to reduce obesity, with its known success for long term weight loss, many
individuals turn to bariatric surgery as a method for "treating’ obesity, where bariatric
surgery is an umbrella term for weight loss surgeries. These medical procedures work
by restricting food intake, reducing nutrient absorption and/or reducing production of
the hormone ghrelin which regulates appetite (Khwaja and Bonanomi, 2010). Examples
of these surgeries include gastric band, gastric bypass and sleeve gastrectomy. These
surgeries are also used for the reduction of the severity of many obesity-related health
conditions (Choban et al., 2002). Whilst an effective treatment, the risk of various long-
term side effects mean that bariatric surgery is not a suitable option for everyone. To
minimise the damaging consequences, certain measures can be taken by the health
clinics performing the procedures. For example, appropriate screening of patients
should always be conducted, highlighting potential patients who may be predisposed
to mental health issues which increase the risk of suicide, as well as providing ample

support afterwards, for those patients who do have the surgery.

Independent of bariatric surgery, completed suicide is one of the leading causes of death
and is on the rise. According to the World Health Organisation, more than 700,000
individuals die by suicide annually, leading to an age-standardised rate of 9.0 per
100,000 population (World Health Organisation, 2021), with many more unsuccessful
attempts. There are many reasons as to why people to turn to suicide as a solution to
their problems, including financial struggles, job insecurity, health issues and family

problems.
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After bariatric surgery, the apparent risk of completed suicide increases comparative
to those who have not undergone the surgery (Peterhdnsel et al., 2013) as a result of
additional possible triggers for mental health issues. Additionally, complications during
and after surgery are relatively common, burdening the patient with further health
problems and possible financial strain, particularly in countries such as the USA, where
there is no universal healthcare. These complications can lead to the contemplation of
suicide for many. The dramatic change in lifestyle required can also impact the mental
health of the patients. Many individuals struggle after surgery with the restriction of
their diet required, particularly with the lack of the typical comfort foods which lead
many individuals to requiring bariatric surgery in the first place. The negative impact
of these changes can increase the pressure on the patients mentally, and often leads to

suicidal ideologies.

Globally, the age-standardised rate of completed suicide is 2.3 times higher for males
(12.6 per 100,000 population) than for females (5.4 per 100,000 population) (World
Health Organization, 2019; Nock et al., 2008). This variation is often as a result of the
societal pressures placed upon men to be strong, both physically and mentally, worsened
by suicide being perceived as taboo and the resulting lack of mental health support
surrounding it (Nock et al., 2008). Consequently, investigating whether these rates are
reflected within the population of individuals post-bariatric surgery is vital to aid in
ensuring there is not the same neglect from general society upon men’s well-being as
there is in the pre- and post-surgery support. Investigating whether the proportion of
women in each study, hence also the proportion of men, has a significant impact on
the rate of completed suicide is a simple method to explore this. If the studies with a
lower proportion of women have a significantly higher rate of completed suicide, there
is reason to believe that the rate of completed suicide of men is higher after bariatric
surgery also. However, whilst it is important to explore whether the suicide rate in men
after bariatric surgery reflects that of the general population, it is also important that
(if the proportion of women has a significant impact on the rate of completed suicide)
it is explored whether the risk of suicide by gender after bariatric surgery is different
from the baseline. If the rate of suicide for women after bariatric surgery is greater than
that of men, it should be investigated further as to why there is this difference from the
general population in order to reduce the rate.

Exploring whether the country of origin of a study has a significant impact upon the rate
of completed suicide is of great importance as rates vary considerably between countries,
from less than 5/100,000 person-years (including but not limited to Greece, Egypt,
Brunei and Honduras) to over 30/100,000 person-years (Guyana) in 2016 (World Health
Organization, 2019). Addressing the varying rates by country is important, particularly
as they can be caused by cultural, economical and environmental differences. These
include things like an increase in completed suicide during the polar night in parts of
Sweden, Finland and Canada, where seasonal affective disorder is widespread, or in
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the USA where financial issues particularly surrounding the lack of public healthcare
and the opioid epidemic cause an increase in suicide. These differences in causes by
country can impact upon the treatment received by patients of bariatric surgery, so any
significant findings could provide an insight as to where additional support or changes
are required, in order to reduce the rates. Possible interactions with gender should be
explored, with the treatment of men and women varying by country and the rates of
completed suicide potentially varying by gender.

1.1.1.2 Suicide data

Table 1.1 displays the 27 observed studies which are included in the systematic review
from Peterhdnsel et al. (2013), with Table 1.2 summarising the frequencies of the counts
of completed suicides. Study 21, Kral 1993, reports its country of origin to be both USA
and Sweden. For the purposes of modelling and inference, this is changed to be solely
USA, given that it is both listed first and the mode country of origin. Also, study 24,
Smith 2004, does not report a proportion of women. In order to compare models which
include proportion of women as a covariate to models without, there are two possible
options for dealing with this. Firstly, the study can simply be removed from the dataset.
However, the more studies included in the dataset, the more accurate and reliable the
model inferences are likely to be. Consequently, the second option, being to impute the
missing proportion of women from the observed data, is the favourable option. A linear
imputation model is fitted to the dataset using backwards stepwise model selection by
Bayesian information criterion (BIC) (Davison, 2003), where the preferred model has
main effects for person-years and the country of origin as well as their interaction. The
resulting imputed value for the proportion of women is vp4 1 = 0.823. It is worth noting
that a sensitivity analysis was conducted for this imputation, investigating whether
the imputed value affected the results compared to models without Study 24. It was
found that the imputed value did not significantly change the results, and is beneficial to
include Study 24 with its imputed value for proportion of women in the analysis given
that the sample size is already small. Additionally, it is found that proportion of women
as a covariate is not significant in the model, so this imputed value is not utilised, but
the models can use all 27 observed studies for the modelling and estimation, rather than
only 26. Both this change to the proportion of women and the change to country of
origin for study 21 are given in Table 1.1, with the changes indicated by italics.

The main issue with the case study data, is the lack of studies which experience a total
of zero completed suicides due to the search criteria for papers facing selection bias,
requiring for at least one completed suicide to be observed in the study and Peterhénsel
et al. (2013) noting that ”studies that reported suicide attempts or suicidal ideation
by bariatric patients were not included.” If not taken into account, the missing data

can lead to the rate of completed suicide after bariatric surgery being overestimated,
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TABLE 1.1: Meta-analytic data from n = 27 observed studies from Peterhdnsel et al.
(2013) numbered and ordered by decreasing size of person-years, with corresponding
number of total patients, proportion of women, country of origin of study and count
of completed suicides. Study 24. Smith 2004 is missing the proportion of women but
the unknown value is imputed to be 0.823. The country of origin for 21. Kral 1993 is
reported as “USA /Sweden” but changed to USA for model fitting and analysis. Both
changes seen distinguished by italics.

Study Person- Number Proportion Country Count of
years of total of women of origin completed

patients suicide

1. Adams 2007 77,602 9,949 0.860 USA 21
2. Marceau 2007 10,388 1,423 0.720 Canada 6
3. Marsk 2010 8,877 1,216 0.000 Sweden 4
4. Pories 1995 8,316 594 0.832 USA 3
5. Carelli 2010 6,057 2,909 0.684 USA 1
6. Busetto 2007 4,598 821 0.753 Italy 1
7. Smith 1995 3,882 1,762 0.889 USA 2
8. Peeters 2007 3,478 966 0.770  Australia 1
9. Christou 2006 2,599 228 0.820 Canada 2
10. Giinther 2006 2,244 98 0.837 Germany 1
11. Capella 1996 2,237 888 0.822 USA 3
12. Suter 2011 2,152 379 0.744 Switzerland 3
13. Suter 2006 1,639 311 0.865 Switzerland 1
14. Van de Weijgert 1634 200 0.870 Netherlands 1

1999

15. Cadiere 2011 1,362 470 0.834 Belgium 1
16. Mitchell 2001 1,121 85 0.847 USA 1
17. Himpens 2011 1,066 82 0.902 Belgium 1
18. Naslund 1994 799 85 0.812 Sweden 2
19. Forsell 1999 761 326 0.761 Sweden 1
20. Powers 1997 747 131 0.847 USA 1
21. Kral 1993 477 69 0.812 USA 1
22. Naslund 1995 457 142 0.592 Sweden 1
23. Powers 1992 395 100 0.850 USA 1
24. Smith 2004 354 779 0.823 USA 1
25. Nocca 2008 228 133 0.677 France 1
26. Svenheden 1997 166 91 0.791 Sweden 1
27. Pekkarinen 1994 146 27 0.704 Finland 1

TABLE 1.2: Frequency table for number of suicides from Peterhénsel et al. (2013) where

frequencies for number of suicides between 7 and 20 are zero.

Count of completed suicides, x 0
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Frequency, f
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increasing the apparent risk which may impact upon both the medical professionals and

the patients themselves.

If the risk of completed suicide is perceived to be higher, it is likely that many prospec-
tive patients will be unnecessarily rejected from having the bariatric surgery, potentially
detrimentally affecting their lives and mental state, resulting in further damage. Addi-
tionally, the perceived higher risk means that the estimated rate of completed suicide
is higher than the true value. If this is the case, it can be assumed that many medical
centres unknowingly have an average rate of completed suicide after bariatric surgery
higher than the true (average) rate of completed suicide, but under the estimated rate of
completed suicide when the missing zero counts are ignored. With this, it would appear
that they are below average, when they are not in fact, and should be working to reduce
their rates further. Consequently, there is the risk of these medical centres unknowingly
neglecting to perform the required pre-screenings, and providing post surgery support
to an adequate level. However, adjusting the estimated rate of completed suicide for
overcount using capture-recapture methods would allow for these centres to be brought
to attention and possibly reduce their rates through exploration of what causes the

increase, saving lives as a result.

1.1.2 Background on the snowshoe hares case study data

Snowshoe hares (Lepus americanus) are a species of nocturnal hare that reside in North
America, characterised by their large hind feet, reminiscent of snowshoes, allowing
them to hop and walk on the snow in their climate without sinking. Snowshoe hares
have adapted to their climate through camouflage, having white coats to blend in with

the snow in winter and a rusty brown coat in summer for when the snow clears.

Runways are trails (or routes) that snowshoe hares create and use all year round,

meticulously clearing any stems and leaves that block the trail as they grow.

Live trapping is the process of trapping or capturing live animals without injuring them,
and is often an important method of sourcing information on populations, such as the

structure, size and distribution of the animal populations.

1.1.2.1 Hares data

Keith and Meslow (1968) provide live trapping data on snowshoe hares between the
years of 1962 and 1967 with the number of captures and recaptures included from three
different seasons, (mid)winter, spring and summer, and six different study areas. The
distribution of total captures of the adult snowshoe hares is given in Table 1.3 with the

overall frequency distribution of captures of snowshoe hares given in Table 1.4.
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TABLE 1.3: Distribution of total captures of adult snowshoe hares within different
yearly trapping periods between 1962 and 1967 and different study areas.

Square mile study area Five small study areas
fx  Midwinter Spring Summer Midwinter Spring Summer
0 - - - - - -
1 72 109 184 53 67 168
2 19 45 55 23 26 42
3 2 19 14 6 18 16
4 1 5 4 10 7 1
5 1 3 4 2 4 0
6 0 0 0 0 3 0
7+ 0 0 0 0 0 0
Total 95 181 261 94 125 227

TABLE 1.4: Frequency table of the captures of snowshoe hares in Keith and Meslow
(1968).

Count of captures,x 0 1 2 3 4 5 6 7+
Frequency, f - 653 210 75 28 14 3 O

1.2 Aims and objectives

The main aim of this thesis is to address the existence of systematically missing studies in
count data through developing meta-analytic models and capture-recapture estimators
which appropriately account for the zero-truncation of the data. In order to achieve this,
the following objectives are required.

1. Examine the count data and its origin to investigate whether the data is in fact

zero-truncated.

2. Motivate the study through exploring the use of traditional meta-analytic ap-
proaches such as the inverse-variance method and regression modelling and

demonstrate their poor performance in the case of zero-truncated count data.

3. Develop zero-truncated count models and investigate the covariate effects, ad-
dressing observed heterogeneity, as well as unobserved heterogeneity through
overdispersion modelling with the negative-binomial model.

4. Explore the comparative suitability of the models using information criterion and
assess goodness-of-fit with fitted frequencies and ratio plots.

5. Demonstrate the unsuitability of the zero-truncated binomial distribution model
proposed by the case study through a simulation study.

6. Develop an Expectation-Maximisation algorithm that accounts for exposure and

zero-truncation.
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7. Develop population size estimators which account for exposure, zero-truncation

and covariates, and allow both whole and sub-population sizes to be computed.

8. Explore the performance of each capture-recapture population size estimator via a
simulation study.

9. Investigate uncertainty by developing approximation-based variance estimation
methods for each of the estimators used for estimating the event rate and popula-

tion size.

10. Develop non-parametric, semi-parametric and parametric bootstrap algorithms
which account for model uncertainty in different ways, and use percentile confi-
dence intervals to investigate the uncertainty.

11. Explore alternative methods of constructing confidence intervals to correct for
bias resulting from the bootstrap algorithms and compare the performance of the
different methods.

12. Demonstrate the impact of the existence of one-inflation in zero-truncated count
data on the estimation methods, and develop an estimator which accounts for

zero-truncation, one-inflation and covariate information to deal with this.

13. Explore the performance of this novel population size estimator for zero-truncated

and one-inflated and compare it to the existing estimators via a simulation study.

1.3 Thesis outline

This thesis comprises eight chapters, with the first chapter introducing the research,
providing background on the case studies, and outlining the aims and objectives of the
thesis.

A literature review of the principal methodologies that form the foundations of this
research is provided in Chapter 2. In particular, the background, traditional approaches
and their limitations are discussed for meta-analysis, capture-recapture and regression
modelling. Additionally, some applications to case study data are included for the
different approaches.

In Chapter 3, the construction of zero-truncated count distributions is detailed, with
model evaluation and comparison methods discussed. Count distributions, including
the Poisson, negative-binomial, geometric and binomial distributions, are given with
applications to the case study datasets to illustrate the methods given in the chapter.
A simulation study is conducted in the final section of this chapter for demonstrative
purposes, illustrating that the binomial distribution is not an appropriate model in the

given circumstances.
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Chapter 4 explores various estimation methods, with the Expectation-Maximisation
algorithm developed for the zero-truncated Poisson and geometric models to find the
maximum likelihood estimate of the rate parameter. Additionally, capture-recapture
population size estimators are explored, specifically the Horvitz-Thompson, Chao’s and
Zelterman’s estimators, with generalised versions of Chao’s and Zelterman's estimators
to account for covariate information and exposure. Further development of the esti-
mators is included to allow for the assumption of a geometric mixture kernel, instead
of the default Poisson mixture kernel. Each of the estimation methods discussed are
implemented using case study data, with both whole and sub-population sizes and rates
calculated for the Horvitz-Thompson estimator, allowing for a more in depth analysis.
A simulation study is utilised in this chapter to explore the comparative performance of
the capture-recapture estimators in different data scenarios for understanding which
estimator should be used for best and most reliable results.

Uncertainty is unavoidable when estimating parameters and population sizes. There are
two main approaches to quantifying this uncertainty available and discussed in Chap-
ters 5 and 6. Firstly, the (normal) approximation-based variance approach developed in
Chapter 5 is used for a Wald-type interval for the rate parameter estimation, and the use

of conditioning for the population size estimators.

Chapter 6 develops approaches to uncertainty quantification that utilise resampling in or-
der to estimate the variance and confidence intervals. Non-parametric, semi-parametric
and parametric bootstrap algorithms are developed for the estimated rate parameter and
each of the capture-recapture population size estimators with sub-population specific
confidence intervals provided for the rate estimates and Horvitz-Thompson estimates.
Within each bootstrap approach, three different methods of accounting for model uncer-
tainty are developed, exploring various ways of fitting models and resampling in order
to quantify the uncertainty within the estimation methods. Additionally, alternative
confidence interval construction methods are explored in Chapter 6 given that the stan-
dard percentile confidence interval construction method is prone to bias and skewness.
Bias-corrected percentile intervals, bias-corrected and accelerated percentile intervals
and median absolute deviation confidence intervals are developed to reduce this bias
and skewness, and increase the reliability of the resulting conclusions. Finally, this
chapter includes a series of simulation studies, investigating the performance, namely
the precision, coverage, and robustness of the bootstrap algorithms and the different

confidence interval construction methods.

Various methods covered in this thesis are reintroduced in Chapter 7, but with one-
inflation present in the dataset. For this, a new dataset with excess singletons present
is introduced and utilised to demonstrate the ineffectiveness of the methods when
the data is one-inflated. To circumvent the issues that arise from using these meth-
ods, the modified Chao’s estimator is explored, with a generalised-modified Chao’s

estimator developed to allow for the inclusion and accountability for zero-truncation,
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covariate information and one-inflation, with the development of the corresponding
approximation-based variance estimation methods. This chapter ends with a simulation
study that compares the performance of various capture-recapture estimators included
in this work, under the presence of one-inflation.

Lastly, Chapter 8 provides concluding remarks and potential work for future research.
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Chapter 2

Overview of Key Methodologies

This chapter provides background information on meta-analysis, regression modelling
and capture-recapture. Section 2.1 describes the methods traditionally used for meta-
analysis and the corresponding limitations of these methods which make them unsuit-
able when data is zero-truncated and certain assumptions are not met. As a model-based
meta-analysis approach is taken, regression modelling is discussed in Section 2.2, specif-
ically regarding count data with covariate information available to account for observed
heterogeneity and the exposure variable. The Poisson, negative-binomial, geometric and
binomial distributions are provided given the type of data, followed by the application of
these models by example of the case studies. Additionally, the limitations and problems
associated with this modelling are provided. To end, Section 2.3 explores the history
and background of capture-recapture approaches and the required assumptions. The
different data structure types are also explained, and a brief description of the estimators
which are applicable for estimating the population size of the zero-truncated count data

is included.

2.1 Meta-analysis

Meta-analysis (see Borenstein et al., 2021, for more information) can be simply described
as a methodology for evaluating multiple independent studies with a focus on the same
or similar research question, combining the results in order to find an overall statistic and
trend. The resulting overall statistic can be described as a weighted average, with larger
studies possessing more influence for the statistic than studies with smaller sample sizes.

The process for meta-analysis can be described in 5 steps:

1. Identify the research question of interest and propose a hypothesis.

2. Compose the systematic review. It is crucial to include quality studies which are

relevant to the research question of interest and to consider a range of studies
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in order to reduce the risk of selection bias. Additionally, it is important not
to automatically disregard any studies which show negative findings in order
to reduce the risk of bias. Composing a systematic review can be done by the
following steps:

(a) Develop the protocol which will state the objectives and methods of the
research.

(b) Conduct a search for any literature which will be applicable to the research

question through titles and abstracts.

(c) Narrow the list of possible literature down and select the studies which are
appropriate through reviewing the full texts of the studies.

(d) Assess the quality of the chosen studies.

3. From the chosen studies in the systematic review, extract the appropriate data and

compute summary measures of each study, typically the effect sizes.

4. Analyse the extracted data by compiling the individual effects and creating a
pooled, weighted estimate for the effect of interest from the research question.

5. Interpret the results from analysis.

The inverse-variance method is the conventional approach for fixed effects meta-analysis,
where the study-specific weighted averages are chosen to be the inverses of the variance
for each estimate (Borenstein et al., 2021; Egger et al., 2008; Cooper et al., 2019; Stangl
and Berry, 2000). Studies with a larger population size typically have smaller standard
errors and therefore larger inverse-variances. As a result of this, the larger studies are

given more weight in the summary measure.
The weighted average summary measure on the log-scale is then given as

Y4 wilog (%)

Z?:l wij ’

where w; are study-specific weights, X; are study-specific counts and 7; are study-specific
exposure variables.

Using the Poisson assumption Var(X;) = E(X;), the expected value is then estimated
as X;. The study specific inverse-variances of the log-rates can be used as weights and
calculated as

1 B 1 N E(X;)?
Var <log (%)) ~ Var(log(X;)) - Var(X;)

= E(XZ) ~ Xi/
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leading to the summary measure on the log scale

o Y Xilog (%)
7= 2?:1 Xi '

Alternatively, an approach on the rate scale can be used, still following the Poisson
assumption above (Barendregt et al., 2013). Assuming a homogeneous rate, exp(;y),
for each of the independent studies to obtain the inverse-variance for each study, the

inverse-variances are equal to the corresponding weights, calculated as

1 7T T;
wi

~var (%) Var(X) T explnn - exp(n)’

such that the summary measure on the rate scale is

These common approaches have their issues, including the reliance on asymptotic
normality and the Poisson assumption seen in the variance calculations. However, the

most prominent issue arises in the case of taking zero counts into account.

For the suicide case study data, the two approaches respectively result in rates of

completed suicide per 100,000 person-years of 45 and 60.

In the case of rare events, meta-analysis can be particularly useful as it is common for
studies with rare outcomes to be under-powered. Using meta-analysis to collaborate the
studies means a smaller sample is needed, leading to both a reduction of costs of the
studies themselves and a pooled statistic with greater overall power comparative to the
individual studies. Options for meta-analysis methods are limited for situations with
rare outcomes due to the reliance on large sample sizes for approximations for many
methods. In order to avoid the computational errors and use the methods available,
correction methods can be utilised, but often results in unwanted bias and misleading
conclusions.

Meta-analysis and systematic reviews are prone to selection bias (e.g. Kulinskaya et al.,
2008, Chapter 15) with the exclusion of studies with no result or zero counts common
practice, although this exclusion removes the need for correction methods. Through
excluding studies however, problems involving missing data arise with it assumed the
given data is complete for meta-analysis. There are 4 main methods for dealing with
missing data as follows:

1. Ignore the missing data and analyse only that which is available. This is common

for systematic reviews and typically results in inaccurate estimates.
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2. Use the observed data to impute the missing data. Another common approach,
but results in confidence intervals which are narrow as a result of not considering

uncertainty.

3. Accounting for uncertainty in the imputation of the missing data. This is less used
due to increased difficulty, but provides more reliable estimates.

4. Use the available data to make assumptions about the relationship of interest and

use regression modelling to account for the missing data.

Whilst it is common for systematic reviews to analyse only the observed studies, if
the missing studies are those which have zero counts, then the estimates are likely
to be grossly overestimated. These misleading results can have detrimental impacts,
particularly in medical situations with patients lives at risk, highlighting the importance
on ensuring the estimates are as accurate as possible. Whilst traditional modelling
provides more accurate estimates, it is not applicable for when the data is zero-truncated

as the results will face the same issue of overestimation.

Assuming constant risk of outcome among the different studies is also cause for problems
to arise. In practice, this assumption is often not met for an array of reasons, including
the unpredictability of human behaviour and health, difference in demographics and
difference in trials. The statistical methods available for rate data are also less developed
comparable to other data types, leaving limited methods for analysis if problems arise.
Consequently, it is not always appropriate to use traditional meta-analytic methods
for rate data and alternative methods need to be used. Poisson, negative-binomial and
geometric regression can be used for count and rate data, allowing for the consideration
of varying time at risk for individuals for each study through the addition of an exposure

variable.

2.2 Regression modelling

A generalised linear model (see Dobson and Barnett, 2018, for more information) can
be described as a regression model comprised of a random component, a systematic
component and a link function. For the index i = 1,2,---,n, where n is the total
number of observed individuals, the random component is the response variable, y;.
Additionally, the linear predictor, 17; = h(v;)TB, is the systematic component, connected
to the random component by the link function g(u;). Here, h(-) is a regression function
for implementing the different covariates v; and the associated parameter vector, B.
Within regression models, covariates are measured, uncontrolled variables which can
be included to increase the accuracy of the response variable. Whilst typically not of
direct interest in the study, in cases where there is unexplained variance, inclusion of

information from covariates in the regression model can reduce both the error and
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the variance of the results. For the suicide case study data, the covariates that will
be considered are the proportion of women, and the country of origin of the study.
Covariate information for age is available in the dataset but it of poor quality, and is
therefore not included in the regression modelling. For completeness, analysis of this
covariate information is included in Appendix A.1. For the hares case study data, the
covariates that will be considered are the season in which the captures took place and
the type of study area.

Dependent on the situation and model, different link functions exist. However, as count
data is the focus, there is the requirement to be non-negative, so the link function chosen
is necessitated to ensure that the fitted values are non-negative. Therefore, there are two

commonly used options, either to use a square root link function as follows

g(ui) = /i = T x h(v;))"B,

where T; is the exposure variable, or more commonly, to use a log-link function, which

can be seen in Equation 2.1 and will be used going forward.

g(pi) =log(p;) = log(w) +h(v,)" B, 2.1)

where T; is the exposure variable. Equivalently, Equation 2.1 can be written as:

pi = T exp(1;),
where 7; = h(v;)TB.

A log-link function ensures that the fitted values are non-negative, which is a necessity

for count data, and is the link function used in this work.

2.2.1 Distributions
2.2.1.1 Poisson

The Poisson distribution is commonly used for count data due to being integer-valued.
Additionally, it can be used as an approximation of the binomial distribution when there
is a large number of observations and rare events (small probability), or as a special
case of the negative-binomial distribution when the number of successes is large. (See
Appendix A.2)

The density of the standard Poisson distribution is

pe(p) = P(X = x|p) = exp(—p) (2.2)

xl’

where p; = exp(1;) fori=1,2,- -, n.
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2.2.1.2 Negative-binomial

The negative-binomial distribution, in this case derived from the Poisson-gamma mix-
ture, is often used as an alternative to the Poisson distribution. This is often the case
when the Poisson assumption is not met, meaning that the mean is significantly greater
or smaller than the variance, known as under- or overdispersion (Xekalaki, 2014). The
negative-binomial distribution addresses the under- or overdispersion with the addition
of a dispersion parameter 6, allowing for more flexibility with the parameters. The

density of the standard negative-binomial distribution is

_ B ~ T(6+x) i\ 0\’
(i 0) = P(X = xlpi,8) = £ 731 gy (yi+9> <Vi+9> ’

where y; = T exp(1;).

2.2.1.3 Geometric

The geometric distribution is a special case of the negative-binomial distribution when
f = 1, comprised of the number of x Bernoulli trials required for the first success to

occur. The density of the standard geometric distribution is

1 \* 1
(i) =P(X =x|p;)) = (1- ,
px(ui) = P(X = x|p;) ( 1+yi> T

where p; = T exp(1;).

2.2.1.4 Binomial

When there are only two possible outcomes, success or failure, with respective proba-
bilities p; and 1 — p;, the binomial distribution describes the probability of x successes
(events), for a given number of Bernoulli trials. For the standard binomial distribution, in
this application the number of Bernoulli trials is given by the population size. However,
to account for the varying exposure in the suicide case study, the number of Bernoulli
trials is given by the exposure variable, 7;, leading to a pseudo-binomial distribution.

This pseudo-binomial distribution has density

‘-Ci X T—X
prlpum) = POX = sl ) = ()1 — ),

where p; = [1 4 exp(—7)] .
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In the suicide case study, Peterhénsel et al. (2013) assume a constant success probability
p, not accounting for each of the sub-populations, but we extend the binomial approach
to account for covariates, giving a variable success probability p; for each of the studies.

Application: Suicide data

For the case study data, the expected response, exp(#;), is rate of completed suicide,
the response variable, y;, is expected count of completed suicide and the exposure
variable, T;, is the number of person-years, for each studyi = 1,2, --- ,27. Additionally,
v = (vj1,v)7 is the vector of covariates considered where v;; is the proportion of
women and vj; is an indicator variable for the country of origin, where

1 if country of origin is USA,
Uip =
0 otherwise,

fori=1,2,---,27.

The different linear predictors under consideration for this data are seen in Table 2.1.

TABLE 2.1: Linear predictors under consideration with corresponding regression func-
tions for the suicide data.

Linear Proportion Country Regression

predictor of women of origin Interaction function

j U1 U V102 h]-(v)

1 No No No hi(v) =1

2 Yes No No hy(v) = (1,01)7

3 No Yes No h3(v) = (1,02)7

4 Yes Yes No hy(v) = (1,01,02)7

5 Yes Yes Yes hs(v) = (1,01,02,0102)7

Results from five generalised linear models assuming a Poisson distribution, using each
of the linear predictors in Table 2.1 are seen in Table 2.2. The same models assuming a
negative-binomial distribution can be computed, but the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC), discussed in Section 3.2, do not
improve upon the Poisson models providing no evidence of overdispersion. Therefore,
the negative-binomial models approximate the Poisson with an additional parameter to
penalise. The linear predictor which minimises both the AIC and BIC is linear predictor
3, suggesting that the country of origin of the study influences the rate of completed
suicide. The sub-populations of USA and Other have corresponding estimates of the
rate of completed suicide of 34.6 and 68.1 respectively (both per 100,000 person-years),
showing a notable difference when the country of origin is USA, having a rate of almost
half of the other countries collectively. Whilst not the best fitting model, the intercept-

only model with linear predictor 1 produces an estimated rate of completed suicide
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of 47.9 per 100,000 person-years which is comparable to that following the method
proposed by Barendregt et al. (2013) using standard meta-analysis.

TABLE 2.2: Values for the suicide data of AIC and BIC for each linear predictor used
in a Poisson generalised linear model, with the minimum AIC and BIC values and
corresponding linear predictor in bold.

Linear predictor AIC  BIC

1 104.8 106.1
2 106.5 109.1
3 99.79 102.4
4 101.0 104.9
5 103.0 108.2

However, these models fitted do not take the missing studies with zero counts into
consideration, leading to an overestimation of the rate of completed suicide. This leads
to the requirement for alternative approaches to be considered. One such approach
is capture-recapture, allowing for the excluded studies to be considered, with zero-
truncated modelling producing more accurate estimates. Additionally, this method
enables the computation of population and sub-population size estimation, hence the
number of unobserved studies can be estimated.

Application: Hares data

For the hares case study data, the expected response, exp(#;), is the rate of capture and
v = (vj1,v;)7 is the vector of covariates considered where v; is a categorical variable
for the season with levels

1 captured in Midwinter,
Vi1 = {2 captured in Spring,

3 captured in Summer,

and v;; is a dummy variable for the study area size, where

1 if five smaller study areas,
Ui =
0 if study area is one square mile,

fori =1,2,---,983. For the hares case study data, there is no exposure variable, 7;. The

different linear predictors under consideration for this data are seen in Table 2.1.

Given that the data is count data, Poisson, negative-binomial and geometric distributions
are under consideration. Covariate effects are accounted for though testing models with
each of the linear predictors given in Table 2.3 for each of the given distributions.
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TABLE 2.3: Linear predictors under consideration with corresponding regression func-
tions for the hares data.

Linear Study Regression

predictor Season area  Interaction function

j v 3 V102 h;(v)

1 No No No hi(v) =1

2 Yes No No hy(v) = (1,01)7

3 No Yes No h3(v) = (1,02)7

4 Yes Yes No hy(v) = (1,01,02)7

5 Yes Yes Yes hs(v) = (1,01, 02, 0102)7

As with the suicide case study data, fitting these linear predictors with standard re-
gression modelling won't take the missing zero counts into consideration and therefore
other approaches are required.

2.3 Capture-recapture

2.3.1 Introduction to capture-recapture

Traditionally used for elusive wildlife populations in ecology, the capture-recapture
approach was developed as a better, alternative method to the census approach, which
does not accurately measure the total target population size if a complete census cannot
be obtained. The applications of capture-recapture methods are evolving, with it being
used in numerous fields including epidemiology for estimating prevalence of diseases,
social science for estimating the size of drug user populations and criminology for
estimating the number of people violating laws among other applications (see Bohning
et al., 2018, for further examples).

The general idea of capture-recapture is that on one occasion a sample of a population is
captured, the individuals are counted and identified, then released to reintegrate with
the population as a whole. On a second occasion, another sample is taken, wherein
the individuals captured are counted and identified again, and individuals who have
previously being identified are noted. In the basic example, there are two trapping
occasions, but can be repeated for m occasions. The number of times individuals are
identified at each occasion, fy, where x =1,-- -, m, form the observed frequencies (and

the unobserved frequency of zero) seen in Table 2.4.

TABLE 2.4: Frequency distribution.

x 0 1 2 3 ... m
fx fo A f2 f3 oo fum
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The total number of times individuals are observed is
m
X — Z .xfx,
x=0

where fj is unobserved and hence requires estimation. Also using the frequencies in

Table 2.4, the target population size is found through summing each of the frequencies

as
N= fo +fa+ftfot -+ fu
N~
unobserved observed (23)
= fo+n,

where the observed population size is } i~ fx = n.

2.3.2 Assumptions

* Closed system: the target population remains constant, there are no births or
deaths.

* Independence between captures: the captures in the different samples do not affect

one another.

¢ Independence between subjects: there is no dependence between subjects, the

capture of one subject does not impact or is impacted by another subject.

* Homogeneity of capture probability: each subject has equal probability of being

captured.
¢ Subjects are correctly identified and recorded.

* Once identified, subjects do not lose their record of identification.

2.3.3 Data structure

There are two main types of capture-recapture data, one where there are repeated
captures (multiple mark) and another where there are different data sources which can

overlap (different sources).

Multiple mark

Table 2.5 displays the structure of data obtained by repeated captures. For occasions
x = 1,2,---,m and individuals i = 1,2,---,N, I;, is an indicator variable which

identifies whether individual i was observed on occasion x, where

1 individual i was observed on Occasion x,

0 otherwise.
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TABLE 2.5: Capture-recapture multiple-mark data structure for repeated captures.

Occasion, x

Individual, i 1 2 3 ... m Total
1 L Lo Ly ... DL Xy
2 Iy Ir» I3 .. I, X5
3 I31 I3 Ly ... Iam X3
n I Inp Ing ‘.- L Xy
n+1 Livip iy w1z oo Lipim Xona
N In In2  Insg ... Inm  Xn

For each individual, the sum of the indicator variables is the total number of times each
individual, i, is identified, also known as the marginal frequency count, X; = Y7 ; L.
Given that individualsi = 1,2,--- ,nare observedandi =n+1,-- -, N are unobserved,
I, =X;=0fori=n+1,---,N.

Different sources

Different trapping occasions that may overlap can be treated as different sources of
the data. In this structure, the composition of the data can get more complex the
more occasions/sources that exist. The simplest structure of this kind is that of the
Lincoln-Petersen (Alpizar-Jara and Pollock, 1996), where there are only two occasions
for sourcing data. Over the two occasions, individuals are categorised as identified on
both occasions, only one occasion (specifying which one) or neither occasion. Those
who were not identified on either occasion are not observed cannot be counted so the
total population size is found through dual systems estimation.

TABLE 2.6: Contingency table for two occasions.

Occasion 2
1 0
] 1 fuu fio m
Occasion 1
0 fo foo
ny N

Figure 2.1 illustrates the union of these two occasions, with the same information
provided as a contingency table in Table 2.6, where

* foo denotes the frequency of unobserved individuals.
* fio denotes the frequency of individuals identified only once and at occasion 1.
* fo1 denotes the frequency of individuals identified only once and at occasion 2.

* f11 denotes the frequency of individuals identified at both occasions.
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¢ 11, denotes the total number of individuals identified at occasion x, where x = 1, 2.

Target population, N

Joo

n

Occasion 1 Occasion 2

FIGURE 2.1: Venn diagram for two sources of data, Occasion 1 and Occasion 2, with
frequencies of identification and total population sizes.

The target population size, N, is given as N = foo + fi0 + fo1 + fi1. However, as fyo
is unobserved, the total population size requires estimation. Assuming independence
between occasions, the frequency of individuals unobserved during both occasions
can be estimated given that the odds ratio is approximately equal to one (Brittain and
Bohning, 2009). Therefore,

fiifoo ~1
fiofo1 ’

p _ fufu
foo = i’

which can be used to estimate the target population size, leading to the Lincoln-Petersen

SO

estimator as follows.

I (2.4)
fn

Equivalently, this estimator can be derived using the assumption of independence
between individuals, leading to Occasion 1, ”—1\}, equalling the proportion of individuals
identified at Occasion 2, % However, the estimator also requires the assumption that
the occasions have no overlap, which is not always the case. If no overlap exists, fi; = 0,
a modification to the Lincoln Petersen estimator developed by Chapman (1951) and
shown by Wittes (1972) to have reduced bias can be used to estimate the population size
(Brittain and Bohning, 2009) can be used. Using Chapman’s estimator, the unobserved
frequency is

: _ fiofo

foo =+~

fuu+1
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Target population, N

fi)OO

n L
Occasion 1 : n,
Occasion 2

IS

Occasion 3

FIGURE 2.2: Venn diagram for three sources of data, Occasion 1, Occasion 2 and
Occasion 3, with frequencies of identification and total population sizes.

with corresponding target population size estimate

R(CcPm) _ (m+1m2+1) 1L
fir+1

Whilst often not met in application, the estimates rely on the assumption of inde-
pendence between occasions. Dependence between occasions can be due to either
heterogeneity between the individuals within the population, or local dependence. The
latter being prevalent in ecology where, for example, an animal may get comfortable
or traumatised with the capture process and respectively, can get trap-happy or trap-
shy, creating dependence between occasions due to the animal either wanting to be
recaptured or doing everything possible to avoid recapture. An increase in dependence
between occasions directly correlates to an increase in the bias of the Lincoln-Petersen
and Chapman estimators (Chao, 2001; Braeye et al., 2016), leading to the need for alter-
native methods for when independence cannot be assumed. One of these alternative

methods is to use log-linear Poisson models, first proposed by Fienberg (1972).
For the case where there are three occasions, the data structure takes the form of that

seen in Figure 2.2 and Table 2.7, where

* fo = fooo denotes the frequency of unobserved individuals.

* f1 = fi00 + foio + fom denotes the frequency of individuals identified only once.
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* fo = fi10 + fim + fou1 denotes the frequency of individuals identified twice.
* f3 = fi11 denotes the frequency of individuals identified at each occasion.

* n = f1+ fo + f3 denotes the total number of observed individuals.

TABLE 2.7: Contingency table for three occasions.

Occasion Frequency
2 3 f123
fi1
fi10
fio1
foun
f100
foto
foo1
fooo

1
1
1
1
0
1
0
0
0

QO = Ol O =
Ol O Ol = O -

The target population size is then given as

N = fooo -+ fioo + foio + foor + fi1o + fio1 + four + fi11,

unobserved observed

=fo+th+t+fs
= fo+mn,

which is equivalent to that in Equation 2.3, where alternative estimation methods are
required such as the Horvitz-Thompson estimator seen in Section 4.2, and can be used
for data with more sources than 3.

2.3.4 Estimators

To estimate the size of the elusive target populations, various methods are available
for different situations. For the case of two source capture-recapture data, the Lincoln-
Petersen (Alpizar-Jara and Pollock, 1996) and Chapman (Chapman, 1951) estimators
can be used, but for more complex data, in particular when there are covariates present
resulting in heterogeneity of the capture probabilities of different sub-populations. Max-
imum likelihood estimation, the Expectation-Maximisation algorithm and the Horvitz-
Thompson estimator (Horvitz and Thompson, 1952) are used in Chapter 4 for estimation
of the target population size. Additionally, Chao’s lower bound (Chao, 1987) and Zelter-
man’s estimator (Zelterman, 1988) are provided in Chapter 4, alongside the generalised
forms (see Bohning et al., 2013b; Bohning and van der Heijden, 2009) which allow for
covariates. In instances where there are excess counts of one in the data, the modified

Chao’s estimator (Bohning et al., 2019) is explored, with the development of the novel



2.3. Capture-recapture 27

generalised-modified Chao’s estimator to account for both covariate information and
one-inflation in Chapter 7.

Uncertainty arises with estimation, with the amount of uncertainty quantified through
finding standard errors and confidence intervals for the figures calculated. Smaller errors
and narrower confidence intervals correspond to estimates with less uncertainty and
estimates that are therefore considered more precise. There is importance in quantifying
the uncertainty in order to find more robust, reliable and accurate estimates of the
parameters of interest. This is explored more in Chapters 5 and 6.
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Chapter 3
Zero-Truncated Modelling

Given that typical regression modelling does not accurately represent data with missing
zeroes, this chapter discusses alternative methodology that can be utilised to better suit
the data. Section 3.1 explores how the proposed distributions can be modified in order
to account for the missing zero counts, with Section 3.2 providing methods for model
comparison to find the best fitting model, and goodness-of-fit analysis for the selected
model with application to the case study data. Lastly, in cases where it is realistically
impossible for more counts of events to occur than the number of participants, the
binomial distribution is not applicable as it gives a non-zero probability of this occurring.

Section 3.3 demonstrates this through use of a simulation study.

3.1 Zero-truncated distribution

With elusive animal populations in particular, it is common for some individuals to
go unobserved, so whilst those individuals exist, they lead to unobserved counts of
zero, and are hence missing as seen in the hares case study data. However, this missing
data does not just occur within ecology. Within meta-analysis, selection bias is common.
Often studies with no result are not included within the analysis and lead to missing
data, as seen in the suicide case study data where there is a lack of counts of zero counts,

leading to zero-truncated data.

Given a chosen baseline model to represent the data, adjustment is required in order
to take the lack of zeroes into consideration and avoid overestimating the rate. Using
the zero-truncated distribution (Bohning and Friedl, 2021) in Equation 3.1, the chosen
baseline distribution can be adjusted, given that p,(y;) is the density of the baseline
distribution.

px (1) if x 0
pe(u)t = Tl 70 (3.1)
0 ifx=0,
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where p; = T7;exp(y;) is the given parameter for index i, and 17; = h(v;)TB.

3.1.1 Poisson

Applying the baseline formula for zero-truncation from Equation 3.1 to the Poisson

distribution gives the density

where y; = T exp(1;).

3.1.2 Negative-binomial

Zero-truncating the negative-binomial distribution using Equation 3.1 leads to the

density

(i, )+ = I'(6+x) (efpﬁ)x (G-E%‘): )
e+ ) (1- (o))

where p; = T exp(1;).

3.1.3 Geometric

Zero-truncating the geometric distribution using Equation 3.1 leads to the following

<'>+—<1— ! )H ! (52)
. T+u) 1+ '

density.

where p; = T exp(1;).

3.1.4 Binomial

The zero-truncated binomial density using Equation 3.1 is

)= (Dpr (1 —pi)te)
1—(1—p)% ’

px(0i, Ti
where p; = [1 + exp(—;yi)]f1 is the success probability and T; is the exposure variable
for index i.

The suicide case study utilises a zero-truncated binomial distribution to model the
data and estimate the rate of completed suicide after bariatric surgery. Whilst this
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approach accounts for the missing data, it allows for a non-zero probability of the
count of completed suicide, X;, being greater than the number of patients in study i
fori = 1,2,---,n. In practice, this is impossible, as individuals can only complete
suicide one time. Consequently, the binomial model is not appropriate for this situation,
however, it is compared to the Poisson, negative-binomial and geometric models for

completeness.

3.2 Model evaluation

3.2.1 Likelihood function

When estimating unknown parameters or evaluating the fit of different models, the
likelihood function, Ly(y;), is a key component. For example, to compute the maxi-
mum likelihood estimate (MLE) of a parameter, which can be used in the Expectation-
Maximisation (EM) algorithm or to compare models using the information criterion.
For a given distribution’s density, px(;), the observed data likelihood is calculated as
follows.

Ly(ii) = ﬁpxw.

Depending on the distribution, manipulating the likelihood to find parameter estimates
can become challenging. As a result, it is typically easier to work with the log-likelihood,

as seen in Equation 3.3.

Co(pi) = élog(px(w))- (3.3)

The likelihood and log-likelihood functions require adjustment for applications within
capture-recapture to account for the frequency of counts, f;,, from the data. For estima-
tion of missing studies, the untruncated, complete data (log-)likelihood is considered
(see Bohning et al., 2018; McCrea and Morgan, 2014; Borchers et al., 2002).

In the more general case, when the data comes from only one source or there are no
unique individuals, so X; = X and f;, = f, the complete data likelihood is

ITr:(w),
x=0

with corresponding log-likelihood

fofx log(px(10).
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However, if there are multiple sources of data (such as in the suicide data) or if there are
multiple unique individuals (such as in the hares data), the complete data likelihood is

I H (i),
i=1x=
with corresponding log-likelihood

2 Y fiulog(px(ju)). o

=1x=0
The 4 models under consideration are the Poisson, negative-binomial, geometric and

the binomial distribution. Using Equation 3.4, the complete data log-likelihoods are as
follows.

for the Poisson distribution,

(pi) o 121 i fix [xlog(pi) — i, (3.5)
x(pi,0) o Z Zfzx [xlc)g ( ”ly ) flog (9+

=1x=0
0
, 3.6
i=1x= Vl):l (3.6)

for the negative-binomial distribution,

n o m

Cx (i) o ; ;)fz-x [log(pi) + xlog(1 — )], (3.7)

for the geometric distribution, and

n o m

(0, 1) & Y Y fix [xlog(pi) + (T — x) log(1 — p;)], (3.8)

i=1x=0

for the binomial distribution.

3.2.1.1 Maximum likelihood estimation (MLE)

Through maximising the (log-)likelihood function, the value of the unknown parameter
within a regression model which maximises the probability of obtaining the observed
data, and therefore best fits the data, can be found. Maximisation occurs by differentiat-
ing the (log-)likelihood with respect to the unknown parameter, setting equal to zero
and re-arranging to make the unknown parameter the subject. The resulting parameter
estimate is the maximum likelihood estimate (Scholz, 1985). However, the standard
approach assumes completeness of the data which is not the case when the data is

zero-truncated. The same concept can be used but with using zero-truncated regression
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models instead of the standard regression models in order to account for this missing
data. Following this approach with the use of a statistical programming language, the
maximum likelihood values can be found very efficiently. Alternative methods such
as the EM algorithm can also be used to account for the missing data and achieves the
same results. Section 4.1 explains the EM algorithm further, however, the MLE approach
using the zero-truncated models is typically simpler, more flexible, and more efficient to

use, especially in the case where covariates are included.

3.2.2 Information criterion

Information criterion estimate the quality of each model proportionally to the other
models fitted to the same dataset. For this method, the models are not required to be
nested, provided the data modelled itself is the same, and can be calculated by taking
both the general fit of the model to the data, and its complexity into consideration,
where its complexity can be described as a penalty term derived from the number of
parameters in each model. Factoring both these elements into the calculation leads to
a bias-variance trade-off, minimising total error to find the best fitting model. Whilst
increasing the number of parameters improves a model’s overall fit through reducing
the bias with smaller differences between true and estimated values, there exists a
possibility of over-fitting, leading to a larger variance. On the other hand, a model
with fewer parameters will be prone to under-fitting and smaller variance, but greater
bias comparatively. Through inclusion of the penalty term, additional parameters are
allowed for improving the fit whilst discouraging over-fitting, balancing the bias and
variance to minimise the total error of the model.

The generalised information criterion is given by
IC = —20 + penalty term,

where 7 is the log-likelihood for a model and the model with the smallest IC is preferred.

3.2.2.1 Akaike information criterion (AIC)

The Akaike Information Criterion (AIC) is a prediction based criterion, assessing the
quality of predictions, selecting the preferred model by identifying which model has
the lowest AIC value out of those under consideration. As the number of observations
increase, the power of the test increases and type II error rate decreases. Type I error
rate for AIC is consistent however (Dziak et al., 2020). Therefore, for small numbers
of observations, it is important to consider simpler models which can achieve more

accurate estimates of the model parameters. The AIC can be calculated by

AIC = =20 +2d,
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where d is the number of parameters in the model.

3.2.2.2 Bayesian Information Criterion (BIC)

The Bayesian information criterion (BIC) penalises the model for the number of parame-
ters more than AIC for n > 8, due to the logarithm term. This means that, in particular
for small 7, the BIC is more likely to under-fit. As n increases, whilst at a slower rate
than with AIC, the rate of type Il errors decreases, and unlike with the AIC, the type I
error rate also decreases. Therefore, often the calculated risk of under-fitting the model
in order to increase the chances of choosing the true model, defined as being the smallest,
correct model, is worthwhile (Dziak et al., 2020). The BIC can be calculated by

BIC = —20 +dlog(n),

where d is the number of parameters in the model and 7 is the number of observed

individuals (or studies).

When using the BIC statistic with meta-analytic data, there is a possibility of over-
penalising the value of n, which is typically the number of studies. For instance, if one of
the studies from the systematic review is split into two, the value of n increases by 1, and
the BIC value also increases as a result. However, given that no data has been changed,
the overall statistics computed from the data, such as the prevalence rate, would remain
the same. Whilst the BIC statistic can be used with meta-analytic data, the choice of n
should be done carefully and it can be used alongside the AIC statistic, given that the
AIC is computed independently of the choice of n.

3.2.3 Likelihood ratio testing

If two models are hierarchically nested, the likelihood ratio test can be used to assess the
goodness-of-fit of the models in order to aid the decision of which model best describes
the data. Using the likelihoods of the two models, an asymptotically Xil— 4, test statistic
can be calculated as

2 x (?(model 2) — ?(model 1)),

where model 1 is a special case of (nested in) model 2, where some parameters are set to
0. Respectively, model 1 and model 2 have degrees of freedom d; and d», where d; > d.

The null hypothesis (Hp) is that the nested model fits the data at least as well as the larger
model, and is tested against an alternative hypothesis. If the corresponding p-value for
the test statistic is less than some pre-defined significance level (typically 0.05), then
there is not significant evidence to reject Hy, and the result is statistically significant.
Otherwise, the null hypothesis is rejected.
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3.2.4 Fitted frequencies

Comparison of fitted frequencies given a chosen model to observed frequencies is a
method for assessing goodness-of-fit, with the fitted frequencies calculated using the
work of Holling et al. (2016) in Equation 3.9.

fx = pr(Ti eXp(ﬁ))+. (3.9
i=1

Informally, the smaller the difference between the fitted and observed frequencies, the
better the fit of the chosen model. Formally, goodness-of-fit can be assessed using a x>
test with the test statistic found using Equation 3.10.

A

X = i e 1) (3.10)
x=1 fx

3.2.5 Ratio plots

Statistical graphs can be a useful tool for analysing data, with ratio plots developed in
Bohning et al. (2013a) used as a diagnostic tool for exploring the validity of distributional
assumptions. Through multiplying ratios of the neighbouring probabilities by the
inverse ratios of their coefficients, the following ratio used in the ratio plots can be

found.
re = ax Px+1

- 4
Ax+1 Px

where for different distributional assumptions, the associated coefficient is given as

% if Poisson assumed, or
Ay = :
1 if geometric assumed.

The theoretical quantity p, can be approximated by %, given that whilst N is unknown,

when substituted into the ratio, the unknown value of N cancels itself out. This then

leads to the following estimate of the probability ratio.

ax fx+1

P = :
g Ax+1 fx

If the ratios in the plot follow a horizontal line, it can be assumed that the given distri-
butional assumption is valid, with ratios not following the pattern of a horizontal line

giving evidence for the distributional assumption being invalid.
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Application: Suicide data

The zero-truncated Poisson, negative-binomial, geometric and binomial models are all
under consideration as intercept-only models. However, as there are the covariates of
proportion of women and country of origin available in the case study data, main effects
and interaction models are also considered for each distribution. To account for these
possible covariate effects, 5 linear predictors are under consideration whose forms are
seen in Table 2.1, where linear predictor 1 is the intercept-only model. Country of origin
as a categorical variable has many levels where only few occur more than once. To aid
in modelling and analysis, country of origin is collapsed to have only two levels; "'USA’
and 'Other’.

The values of the maximised log-likelihoods, number of parameters, AIC and BIC for
each of these models are shown in Table 3.1, with BIC weights given for the Poisson and
negative-binomial distributions. The BIC weights (Wagenmakers and Farrell, 2004) are
treated as conditional probabilities for model selection in Chapter 6 and are calculated

as
exp [—3A;(BIC)]

i1 exp [3M(BIC)]
where A;(BIC) = BIC; — min(BIC) is the difference in BIC value for each model and
the best candidate model. This is further developed in Section 6.4.

wl(BIC) =

The difference between the Poisson, negative-binomial and binomial log-likelihoods is
negligible, showing little preference of a preferred model. Whilst the differences between
the Poisson and binomial models are also negligible for the information criterion, the
Poisson is favoured due to the non-zero probability of more suicides occurring than total
participants in the study seen in the binomial models. The geometric distribution has
AIC and BIC values that are much larger than the other distributions for the respective
linear predictors, indicating that it the geometric distribution is not a good fit for the data.
Therefore, BIC weights are not given for the geometric distribution. As for the Poisson
and negative-binomial models, the value of the dispersion parameter 6 is estimated to
be very large, resulting in the variance in the negative-binomial models approximately
equalling the mean. This leads to the negative-binomial models approximating the
Poisson distribution. However, there are differences in the information criterion, with
those from the Poisson models being slightly smaller due to one less parameter, hence
the Poisson distribution is favoured.

Using the information criterion in Table 3.1, there is evidence that the intercept-only
model is favoured for each of the distributions, and whilst not necessary, likelihood
ratio testing can be used to provide additional evidence to support this. Table 3.2 shows
test statistics and corresponding p-values for comparing the models with covariates
(main effects and interaction models) against the intercept-only model for the Poisson
distribution, since the information criterion have already shown this to be the best fitting
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TABLE 3.1: Values of the maximised log-likelihood, number of parameters, AIC and
BIC for the models under consideration for the suicide case study data. Values of BIC

weights are included for the Poisson and negative-binomial models under consideration.

The geometric distribution fits the data poorly so BIC weights are not given. The
binomial distribution is not suitable for this situation so BIC weights are not given.

Linear Maximised ~Number of BIC

Distribution predictor log-likelihood parameters AIC  BIC  weights

1 -23.73 1 4945 5075 0.4813

2 -23.37 2 5074 5344 0.1251
Poisson 3 -23.03 2 50.05 5264 0.1863

4 -22.97 3 5193 5592 0.0362

5 -22.65 4 5329 5856 0.0097

1 -23.73 2 5145 54.04 0.0926
Negative- 2 -23.37 3 5274 5674 0.0241
binomial 3 -23.03 3 5205 5594 0.0359

4 -22.97 4 5393 5922 0.0070

5 -22.65 5 5529 6186 0.0019

1 -26.03 1 54.07 55.37 -

2 -25.97 2 5594 5854 -
Geometric 3 -26.03 2 56.06 58.65 -

4 -25.97 3 5794 61.83 -

5 -25.52 4 59.04 6423 -

1 -23.72 1 4945 50.75 -

2 -23.37 2 50.74 53.25 -
Binomial 3 -23.03 2 50.05 52.64 -

4 -22.96 3 5193 5570 -

5 -22.64 4 5329 58.32 -

TABLE 3.2: Values for likelihood ratio testing for each of the zero-truncated Poisson
models with covariates compared to the nested intercept-only model for the suicide
case study data.

Linear predictor Likelihood ratio

comparedtoj=1 d; dp test statistic p-value
2 26 25 0.6017657 0.2598355
3 26 25 1.3975182  0.5027981
4 26 24 1.4172376  0.2985008
5 26 23 2.0732480 0.2777114

distribution. The null hypothesis of “Hy : the nested model fits the data at least as well as the

larger model”, should not be rejected as there are no p-values less than the pre-defined

level of significance of 0.05, so there are no statistically significant results. Therefore, it

can be assumed that the best fitting model is the intercept-only zero-truncated Poisson

regression model. This model leads to an estimated rate of 31.8 completed suicides per

100,000 person-years, which to the same degree of accuracy, is the same estimate from

the intercept-only models from the negative-binomial and binomial distributions.

Given that there is a clear preference for the Poisson distribution using the information

criterion, and only a small number of counts observed within the suicide case study

data, the use of a ratio plot is not the most suitable method for assessing distributional
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FIGURE 3.1: Plot of the observed frequencies and the fitted frequencies using the
Poisson distribution assuming the intercept-only model for the suicide case study data.

assumptions. However, for assessing the goodness-of-fit assuming the Poisson distribu-
tion for this case study data with linear predictor 1 can be done using fitted frequencies.
Therefore, the adequacy of the intercept-only zero-truncated Poisson regression model
is considered by calculating the fitted frequencies and comparing to the observed fre-
quencies of counts of completed suicide where the fitted frequencies are calculated

as
x

_ vy (wexp(h))
o= Botmon) = ¥

Table 3.3 displays the fitted and observed frequencies of counts of completed suicide,

where those with counts equal to 5 and above are grouped into one category.

TABLE 3.3: Frequency distribution for observed and fitted count of completed suicide,
with the frequencies of more than or equal to 5 counts grouped into one category.

Count of completed suicide, x
Frequency type 0 1 2 3 4 5+
Observed, f - 18 3 3 1 2
Fitted, fx - 1835 449 171 080 1.65
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It can be seen that the fitted frequencies of the counts are very close and approximately
equal to the observed, in particular for the frequency of one count of completed suicide.
For formally assessing the goodness-of-fit of the model, a x? test statistic with 2 degrees
of freedom can be computed using Equation 3.10, where m = 5. For the null hypothesis,
"Hy : the chosen model is adequate for the data”, there is no evidence to suggest that the model
is inadequate for the data as the test statistic of 1.593945 is larger than the corresponding
critical value of 0.4506914, so the null hypothesis should not be rejected.

Sensitivity analysis

It is important to note that the suicide data follows an exponential pattern, seen in
the plot of person-years vs the rate of completed suicide per 100,000 person-years in
Figure 3.2 (left). A log-linear regression model transforms the relationship between the
explanatory and response variables into one which is more linear, seen in Figure 3.2
(right), likely leading to an increase in the reliability of predictions.

300 400 500 600 700
Il 1 | 1 1
[ ]
L
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1

100
1
[ 4

Rate of completed suicide per 100k person-years
Log-rate of completed suicide per 100k person-years

0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000

Person-years

FIGURE 3.2: Side-by-side scatter-plot of rates and log-rates of completed suicide per

100,000 person-years in ascending order of person-years (Peterhédnsel et al., 2013). An x-

axis limit has been added to exclude values which are very large for better visualisation
of the trends.

Setting an exposure variable for the logarithm of person-years results in the implication
that the rate of completed suicide is constant over time, implying a linear relationship not
the exponential relationship seen. To assess the validity of these underlying assumptions,

a sensitivity analysis can be conducted (the same sensitivity analysis is not required for
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the hares data, given that there is no exposure variable included in the zero-truncated

models for this case study data).

Given the difference in the person-years for each of the studies, it needs to be accounted
for. However, given that including the logarithm of person-years implies that there is a
linear relationship which is not seen in Figure 3.2, the first approach of the sensitivity
analysis is to include person-years in the model as a binary variable, vy, rather than as
an exposure variable. If the resulting model fits the data better than the model with
the exposure variable, then there is evidence to suggest that person-years shouldn’t be
included as an offset. If the model with the exposure variable is preferred however, then
there is evidence to support the underlying assumption of constant rate of suicide over
time, and the logarithm of person-years should still be included in the final model as an

exposure variable.

Including person-years in the model as a binary variable can be done through categoris-
ing the person-times values into either “low” or "high” categories, using the median
value to decide the cut off for the two groups. The full model (main effects for person-
years, proportion of women and country of origin with all interaction terms) can be fitted
with the best fitting model selected using backwards stepwise regression. The resulting
preferred model takes the following form, assuming a negative-binomial distribution.

X; ~ negbin(p;, ),

where a is the overdispersion parameter and

i = Tiexp(Bo + P11 + Bav2 + P3vs + Bax1xz).

The AIC and BIC statistics corresponding to this preferred model are 68.3 and 76.1 respec-
tively, values which are greater than those of the zero-truncated intercept-only Poisson
model with person-years as an exposure variable seen in Table 3.1. Therefore, there is
evidence that the original model is preferred and person-years should be included as an

exposure variable.

An alternative approach to, the sensitivity analysis exploring whether the rate is constant
across the population is to utilise a zero-truncated J-component Poisson model (Bohning
etal., 2011), where it is assumed that there are at least two sub-populations (J > 2) with
differing rates of completed suicide (if ] = 1 then there is no heterogeneity and the model
is the same as the original preferred model). This approach allows for the exploration
of possible unobserved heterogeneity coming from any underlying sub-populations
within the dataset. The J-component model can then be given as follows.
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J
ph(ui) ™ =Y wipx(u)*,
j=1
where the weight, wj, corresponds to the size of the cluster and

exp(—pj) ;'

pi ) = S

Applying this two-component model with | = 2 to the suicide case study data results
in AIC and BIC values of 53.4 and 57.3 respectively. As with the first approach to the
sensitivity analysis, these information criterion values are greater than those of the
preferred zero-truncated intercept-only Poisson model with person-years included as an
exposure variable and no heterogeneity (AIC of 49.5 and BIC of 50.7). Therefore, there is
evidence that the original model with no heterogeneity is preferred, and it is reasonable
to assume that the rate of completed suicide is constant over time.

Application: Hares data

TABLE 3.4: Values of the maximised log-likelihood, number of parameters, AIC and
BIC for the models under consideration for the hares case study data.

Linear Maximised =~ Number of
Distribution Predictor log-likelihood parameters AIC BIC
1 -985.21 1 197242 1977.32
2 -966.43 2 1938.86 1953.53
Poisson 3 -982.03 2 1968.06 1977.84
4 -962.46 3 193293 1952.49
5 -958.16 4 192432 1943.88
1 -963.80 2 1931.60 1941.39
Negative- 2 -950.14 3 190827 1927.84
binomial 3 -961.53 3 1929.06 1943.73
4 -947.72 4 190543 1929.89
5 -944.23 5 1898.46 192291
1 -963.99 1 192998 1934.87
2 -950.17 2 1906.33 1921.00
Geometric 3 -961.64 2 1927.28 1937.06
4 -956.56 3 1903.67 1923.24
5 -940.45 4 189291 1922.25

Table 3.4 provides the values of the maximised log-likelihoods, number of parameters,
AIC and BIC values for each of the linear predictor and distribution combinations under
consideration for the hares case study data. The negative maximised log-likelihood, AIC
and BIC values are notably larger for the Poisson distribution for the respective linear
predictors compared to the other distributions, indicating that it is not the preferred
distribution. Whilst there is little difference between the log-likelihood values for the

negative-binomial and geometric distribution, the AIC and BIC values are larger for
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the respective linear predictors for the negative-binomial model, indicating that the
negative-binomial distribution is also not preferred, and hence there is evidence that
the geometric distribution is the best fitting distribution for the data. The BIC statistic
values for the geometric models with linear predictors 2 and 5 have very little difference,
with only a slight preference for the full model. However, the log-likelihood and AIC
values have more notable differences, with the values indicating a stronger preference
for the geometric model with linear predictor 5. Therefore, there is evidence that the full
geometric model fits the data best.

TABLE 3.5: Values of the estimated probability ratios for the Poisson and geometric
distributions for the hares case study data.

Count of captures of hares, x

Distribution 1 2 3 4 5
Poisson . 622 840 10.71 10.00 28.00
Geometric ' * 311 280 268 200 4.67

30
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FIGURE 3.3: Ratio plot for both Poisson and geometric distributions for the hares case
study data.

Table 3.5 gives the probability ratios for the snowshoe hares capture data for both
the Poisson and geometric distributions. The corresponding ratio plots are given in
Figure 3.3, supporting the conclusions from the likelihoods and information criterion
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FIGURE 3.4: Plot of the observed frequencies and the fitted frequencies using the
geometric distribution assuming the full model for the hares case study data.

that the geometric distribution fits the data better than the Poisson, with the probability
ratios for the geometric distribution following a more horizontal pattern.

TABLE 3.6: Values of the observed frequencies and the fitted frequencies using the
geometric distribution assuming the full model for the hares case study data.

Count of captures of hares, x
Frequency type 0 1 2 3 4 5 6+
Observed, fy - 653 210 75 28 14 3
Expected, f, - 651 216 74 26 10 6

Table 3.6 and Figure 3.4 provide the values of the observed frequencies of snowshoe
hare captures, in addition to the fitted frequencies using the geometric model with linear
predictor 5 (the full model). It can be seen in both the table and the figure that the fitted
frequencies closely follow the pattern of the observed frequencies, suggesting that the
full model is indeed a good fit for the snowshoe hares dataset.
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3.3 Simulation study

For the suicide case study data, the zero-truncated Poisson distribution approximates
the zero-truncated binomial distribution, leading to approximately equal parameter
estimates. However, with there being a non-zero probability of count of completed
suicides being greater than the number of participants, this is not always going to
be the case. As a result, the binomial distribution is not suitable for this application,
demonstrated by the following simulation study, which shows that the Poisson is the
better choice of model.

For this simulation study, there are 3 cases. The first case assumes that the observation
period for each study is 1 unit, hence person-times is equal to the number of patients
observed, whereas both Cases 2 and 3 assume that the observation period varies between
studies.

For each case, given the number of studies, N, and the mean number of total patients, f,
the size of each study is randomly sampled from the Poisson distribution, t; ~ Poisson(f).
Assuming a constant rate of A, and observation period for each study, O;, the count
of events is randomly sampled from a binomial distribution, X; ~ Binomial(N, 1),
where 7; = A x O;. Sampling in this way prevents the simulated data from being
biased to either the Poisson or binomial distributions, which would give misleading and
unreliable results if biased. Counts of zero are truncated from this sampled data to make
a zero-truncated dataset, with updated size of each study, t7, observational periods, O},
and counts, X;. From this updated dataset, the intercept-only zero-truncated Poisson
and binomial models are applied as in Section 3.1, to calculate the MLE for the rate of
events. This process is repeated S times. The summary statistics are calculated using the
mean of the rates over each of the S simulated samples. For each of the cases, there are 3
models used to calculate the MLE of the rate,

i the zero-truncated Poisson intercept-only model with parameter t; O,
ii the zero-truncated binomial intercept-only model with parameter t7, and

iii the zero-truncated binomial intercept-only model with parameter t;O;,

where (ii) is the model which Peterhénsel et al. (2013) assumes.

Case 1: Assume the observational period is equal to one unit for all studies, so O; = 1 for
i=12---,N.

Case 2: The observational period for each study, O;, is randomly sampled from a Bernoulli
distribution where

0 — 1 with probability 0.5,
" |5 with probability 0.5,



3.3. Simulation study 45

fori=1,2,---,N.

Case 3: In application, it would be unlikely that the observation period for each study
is discrete as seen in Case 2, so for Case 3, the observational period is assumed
to be log-normally distributed. For each simulated sample, the observational
period is sampled from a log-normal distribution, O; ~ LogNormal(vy,o). For
the simulated study, to produce a dataset reflective of the suicide case study data,
v = 1.5and ¢ = 0.8, leading to the results seen in Table 3.7.

For Case 1, as the observational period is assumed to be equal to 1 for each study, models

(ii) and (iii) are equal, so only (ii) is performed.

TABLE 3.7: Average (mean) estimated rate of event occurring per 100,000 person-years

from the simulation study, where the true rate is 100 occurrences per 100,000 person-

years, with 95% percentile confidence intervals given in (brackets). Values given for

each of the models under consideration for Cases 1, 2 and 3, assuming S = 1000,
A =0.001, N = 150 and f = 1000.

Model
Case (i) (ii) (it)
1 99.80 (74.48,125.13) 99.74  (74.42,125.05) - -
2 99.90 (90.14,109.66) 358.37 (311.12,405.63) 99.90 (90.14, 109.66)
3 9999 (93.39,106.59) 657.05 (69.74,1244.35) 99.99 (90.23, 109.75)

The aim of this simulation study is to determine which combinations of model and
case produce estimated rate of events close to the true rate, with reasonable confidence
intervals, where the true rate of event occurring is set to 100 events per 100,000 person-
years. Table 3.7 shows the results from the simulation study. For Case 1, the rates
and corresponding confidence intervals have negligible difference for both model (i)
and (ii), with the estimated rates approximately equalling the true rate of 100 per
100,000 person-years. This is expected given that the observation period is simply 1
for each study, making the parameters for both models equal. However, for Cases 2
and 3, these two models do not result in the same estimate. Model (i) produces an
estimate of the rate which is approximately equal to the true rate, but model (ii), which
Peterhdnsel et al. (2013) proposes, produces an estimate of the rate 3 times the true value
for Case 2 and 6 times the true value for Case 3, demonstrating the model’s lack of
suitability and accuracy for this situation. For comparison, model (iii) is also a binomial
model, but assumes the same parameter as the Poisson model, taking into consideration
the observation period. Whilst Section 3.1.4 explains why the binomial model is not
an appropriate choice, models (i) and (iii) produce approximately equal results with
negligible difference, demonstrating the importance of taking the observation period
into consideration which Peterhdnsel et al. (2013) does not do adequately.
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Chapter 4

Estimation Methods

Estimation methods are required to find more accurate rates in cases where counts of
zero events are systematically missing, which can then be used to approximate the true
population size. Adjusted rate values can be estimated through using the Expectation-
Maximisation (EM) algorithm in Section 4.1, which also estimates the number of missing
studies. However, the EM algorithm is not always used to find the MLE, so alternative
population size estimators are required in situations where the population size isn’t
estimated as a by-product of the rate estimation. These alternative population size
estimation methods developed include the Horvitz-Thompson, Chao’s and Zelterman’s
estimators, with the corresponding generalised versions for the latter two, covered in
Sections 4.2 to 4.6. Finally, Section 4.7 explores the performance of the capture-recapture

estimators in different data scenarios via use of a simulation study.

4.1 Expectation-Maximisation algorithm

One approach to account for missing data when finding the local maximum likelihood
parameters is the Expectation-Maximisation (EM) algorithm, first discussed by Orchard
and Woodbury (1972) and named by Dempster (1977). Each iteration consists of two
main steps, the E-step (expectation step) imputes the missing data, then the the M-step
(maximisation step) estimates the parameter. These two steps are repeated and iterated
between until convergence if two consecutive log-likelihoods. For capture-recapture
specifically, iterate the steps in Algorithm 1 to find the maximum likelihood estimator,

using the works of Bohning et al. (2005).
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Algorithm 1 Expectation-Maximisation algorithm

Step 1: Let s = 0 and choose a start value for y;.

Step 2: For the E-step, evaluate the conditional expectation for the log-likelihood of
the complete data, Q(p;).

The total number of individuals for each covariate combination is given by

Ni= fio+ fa+ fo+ -+ fin
m
= fio + fo
x=1
:ﬁ0+nir

and estimated as
N; = n; + fi,

where the unobserved frequency is estimated as

ﬁ'O = ELin|fi1/fi2/" : /fin/',”i]

fio = Nipo(pi)
) fio = (ni+ fio)po(pu:) 4.1)
fio(1 = po(pi)) = nipo(pi)
fio = m—Polb)
1—po(pi)

The value of this estimated unobserved frequency can then be substituted into Q(y;).
Step 3: For the M-step, maximise Q(;) from the E-step in Step 2 to find the maximum
likelihood estimate (MLE) of y; by making % equal to zero and make exp(7;) the
subject.

Step 4: Return to Step 2, let s = s + 1 and update the parameter estimate.

Step 5: Repeat Steps 2 to 4 until convergence of the zero-truncated log-likelihood,
hence

ﬁ(yfs);xl,- c X)) — E(yfsfl);xll. cx) <€,

where the convergence level, €, is suitably small.

If a Poisson distribution is assumed, the expectation and maximisation steps of Algo-
rithm 1 can be altered to reflect this assumption as follows.

Step 2: For the E-step, the conditional expectation of the log-likelihood of the complete
data is evaluated. Applying this to the zero-truncated Poisson distribution, using

the complete data log-likelihood in Equation 3.5 as follows

n m

Q(pi) o< 3 ) fix [xlog(pi) — pil
s . (4.2)

= - ;fioﬂi +)  fi [xlog (i) — 1] -

i=1x=
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In the case where only one individual is observed for each covariate combination,
nj=1fori=1,2,---,n,and po(p;) = exp(—p;) is substituted into Equation 4.1,
leading to
: exp(— i)
0= nj—————————, 4.3
flO nll —eXp(—ﬁi) ( )
which can be substituted into Equation 4.2 as

n

-Y oyl+2 Zﬁx [xlog(fi;) — fii] - (4.4)

i=1 i=1x=1

Step 3: For the M-step, estimating the maximum likelihood estimate (MLE) of y; re-
quires maximisation of Q(]/tl) given in Equation 4.4, where the maximum is

( dQ (i)

found through equating to zero and making exp(#) the subject, where
ui = Texp(n;), as follows It is important to note that given that each study
only reports one value for the count of completed suicides, Y1 ; fiy = 1, for

i=1,2,--,n

i—1x=1 Hi
n R n m n m xﬁx
=0=—) fo—) ) fut) } =
i—1 i=1x=1 i—1x=1 Hi
n R n om xflx
=0=- o+1)+
; <f0 ) ;; T exp(7;)
- 7 Zﬂ:1 ZTZl xfix
= il fio+1) ===
ET (fo ) exp(7)

Y1 a1 Xfix .
Eia T (fo+1)

Here, the numerator does not depend on f;y and hence does not change with each

= exp(]) =

iteration of the algorithm, but the denominator updates each iteration.

Alternatively, if a geometric distribution is assumed, the EM algorithm can be developed
to reflect this through altering the expectation and maximisation steps of Algorithm 1 as
follows.

Step 2: For the E-step, the conditional expectation of the log-likelihood of the complete
data is evaluated. Applying this to the zero-truncated geometric distribution,
using the complete data log-likelihood in Equation 3.7 as follows

) Z Zfzx [log(pi) + xlog(1 — p;)]
i=1x= (45)

= Zfzolog 1i) "‘i iflx [log( 1i) +log(1 — p; )]

i=1x=1
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In the case where only one individual is observed for each covariate combination,

=1fori=1,2,---,n and po(p;) = 11"%_ is substituted into Equation 4.1,

leading to
fi
a T+
fio = ni—"—, (4.6)
T+

which can be substituted into Equation 4.2 as

) Zfzo log(pi) + Z Z fix [log(1 — p;) + xlog ()] - (4.7)

= i=1x=1

Step 3: For the M-step, estimating the maximum likelihood estimate (MLE) of y; re-
quires maximisation of Q(yz) given in Equation 4.7, where the maximum is

( i)

found through equating to zero and making exp(7) the subject, where

ui = T exp(n;), as follows

i=1 i=1 i=1x=1 i=1x=1 i=1x=1

= Zfloﬁl+22ﬁxﬁz+zzxﬁxﬁzzz AlO"i_ZZflx

i=1 i=1x=1 i=1x=1 =1 i=1x=1

noo n om nom no n om

=) fouexp(i) + ) ) futiexp(fi) + ) ) xfutiexp(i) =) fo+ ), ) fir

i=1 i=1x=1 i=1x=1 i=1 i=1x=1
:>eXP ZfZOTl—’_ZZﬂxTZ—’_ZZXfZXTI :ZAZO"_Z fix

i=1x= i=1x= =1 i=1x=1

;izl fio + Xi Xy fir
Yiiq fioTi + Xty Yy (x + 1) fir T

= exp(f) =

Here, the numerator does depend on f;y so does change with each iteration of the
algorithm along with the denominator.

Application: Suicide data

For convergence level set to 10e-9, it takes 12 iterations for the EM algorithm reach
convergence for the case study data assuming a Poisson distribution, resulting in an
estimated rate of completed suicide, exp(7), of 0.00031752. This is the same rate com-
puted using the function zerotrunc from the package countreg in R which models the

zero-truncated Poisson regression model with person-years as an exposure variable
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seen in Section 3.2.5. In context, this can be described as a rate of completed suicide
of 31.8/100,000 person-years, which is considerably lower than the rates computed in
Section 2.1. Given that the rate computed here is the same as found through using the
more flexible and efficient zero-truncated regression models to find the MLE, the EM
algorithm is not necessarily the best approach for finding the prevalence rate, especially
if the preferred model were to have covariate information included. Since the EM algo-
rithm is not helpful in this situation, taking a long time to code, inflexible for covariate
information and less efficient compared to other approaches, it is not recommended to
use the EM algorithm for for estimating the prevalence rate, and instead use a likelihood
approach such as those taken in the zerotrunc and vglm functions in R, which are more

flexible and less computationally intensive.

Application: Hares data

Unlike with the suicide case study, the prevalence rate is not the focus for the snowshoe
hares dataset, instead the total number of snowshoe hares both observed and unobserved
is the quantity of interest to estimate. The focus of the EM algorithm is to compute
the maximum likelihood estimate value for the parameter exp(#), but given that the
unobserved frequency of zero counts is estimated in the E-step of the algorithm, the

total number of snowshoe hares can be estimated through using this method.

Assuming a geometric distribution with a convergence level of 10e — 9, the EM algorithm
takes 15 iterations to reach convergence, resulting in an estimated total number of
snowshoe hares of 2077. However, given that the focus of the EM algorithm is not the
total population size, and that there is more flexibility in using estimation methods
which relying on modelling that can fit the data better, alternative methods such as the

Horvitz-Thompson estimator below are better for estimating the population size.

4.2 Horvitz-Thompson estimator

The estimated number of studies with zero counts of completed suicide for each covariate
combination is calculated from the EM algorithm (in the E-step), as a by-product, but is
of interest itself. To find this value, alternative methods of finding the MLE to the EM
algorithm can be used. One possible method for estimating the total number of studies,
N, that can be used was proposed by Horvitz and Thompson (1952). Given an indicator

variable, I;, fori = 1,2,--- , N, where

1 study iis observed,

0 otherwise,
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the observed population size can be written as n = YN, I, with expectation
E (Zfil L-) = E(n) = n. Additionally, the probability of a study being unobserved is
po(f1;). Therefore, the probability of a study being observed (the inclusion probability)
is 1= po(fii), so, E(L) = (1 — po(fus)).

Following the work of Horvitz and Thompson (1952), the population total, T = Y, y;,
where y; is a measurement associated with element i fori =1,2,..., N, can be estimated
as

N
T = Z Liw;yi,

where w; is a constant that acts as a weight whenever the ith element is observed.

Il
—

T is required to be an unbiased estimator, so
E(T)=T,

leading to

™=z

N
(1= po(pi))wiyi = Y yi,
i1

i=1
hence, w; = (1 - po(#1:)) " as E(I;) = (1 — po(fti))-

Therefore,

PO Liy;

Ty
i; 1 — po(fu)

n yl

;‘ 1—po(fti)’

is the Horvitz-Thompson estimator for estimating the population size.

(4.8)

The population size which is estimated depends on the value of y;, where there are 3
cases, seen in Overton and Stehman (1995), fori = 1,2,--- , N as follows:

Casel: T = N, the total number of units when, y; = 1. Note that if the expected count
value is constant across all i, the estimated total number of elements is calculated

as
N
1—po(ft)

Case2: T = Ny, the number of units in sub-population A when,

1 forie A,
Yi=
0 fori¢g A.
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Case3: T = Ny,, the total of y in sub-population A when,

y; foric A,
Yi=
0 fori¢ A

Therefore, for estimating the total number of missing individuals (units), Case 1 is
applied, leading to the Horvitz-Thompson estimator seen in McCrea and Morgan (2014,
Chapter 3) and Borchers et al. (2002, Chapter 11) as follows

n
~ 1
NHT) = Z —
=1- po(fLi)

for the Poisson and geometric distributions, and

n
~ 1
NHT) = E vy
=1- po(fii, 0)

for the negative-binomial distribution, where fi; = 7, exp (h(vi)TB) and 0 is the over-

dispersion parameter.

Assuming a Poisson distribution, where po(f1;) = exp(—f;) and fi; = T;exp (h(vi)TB),
the applied Horvitz-Thompson estimator (see van der Heijden et al., 2003, for more
information) is

RHT) _ 2 1

S1—exp(—fu)

Whilst not preferred for the either the suicide or hares case study data, the negative-
binomial model can be assumed for the Horvitz-Thompson estimator, where po(fi;, 0) =

0 .
(ﬁ) and fl; = T exp (h(vi)Tﬁ> (see Cruyff and van der Heijden, 2008, for more
information), leading to

n

NCE 1

— 3"
i 0
=11 — (ﬁﬁ-e)

If a geometric distribution is assumed for the hares case study data, the Horvitz-

Thompson estimator is given as

- 1
SHT
NI =)
i=1 T+

Given that N = n + fo, and let M = fo, the number of missing studies, ]\71, is estimated
as
M=N—n.
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Sup-population specific population sizes can also be estimated given that the Horvitz-
Thompson estimator allows for covariates to be included using Case 2. Therefore, the
estimated size of sub-population A, given linear predictor j, is calculated as

G(HT) _ !
N E R po (wexp (W(vi)7B)))’

for the Poisson or geometric distributions, and

S(HT) 1
A ical—po (Ti exp (hj(vi)Tﬁj) ,9) ’

for the negative-binomial distribution, where 0 is the dispersion parameter.

Additionally, the number of missing studies for each sub-population is estimated by
My = Na—na,

where 14 is the observed population size for sub-population A.

Application: Suicide data

For the case study data, the number of missing studies found using the Horvitz-
Thompson estimator assuming the Poisson distribution is estimated to be MHT = 107
as NT) = 134 and n = 27.

Additionally, for the suicide case study data, eight sub-populations are considered,
defined by the combination of country of origin being either USA or other and the
proportion of women being in [0,0.75), [0.75,0.80), [0.80, 0.85) or [0.85, 1], where these
intervals are defined by the approximate quantiles of the variable.

TABLE 4.1: Estimates for the number of missing studies in the eight sub-populations

with the number of observed studies shown in [square brackets] for the suicide case
study data.

Proportion of women
Country of origin  [0,0.75) [0.75,0.80) [0.80,0.85) [0.85,1]  Total

USA 0[1] 01[0] 2216] 8[3]  30[10]
Other 42 [6] 23 [4] 7 [4] 513  77[17]
Total 4217 23 [4] 29 [10] 13[6] 107 [27]

Table 4.1 displays the estimated number of missing studies overall as well as the num-
ber of missing studies for each of the eight sub-populations, assuming the preferred
intercept-only zero-truncated Poisson model. Sub-population specific estimates of the

number of missing studies show that it is unlikely that many of the missing studies
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which have a proportion of women less than 80% originate from the USA. This is reason-
able given that only 10% of observed studies from the USA have a proportion of women
less than 80% compared to 59% in observed studies originating from outside the USA.
Consequently, it is also reasonable that it is more likely for missing studies that originate
from outside the USA to have a proportion of women less than 80%.

Application: Hares data

For the hares case study data, the number of missing snowshoe hares, is estimated using
the Horvitz-Thompson estimator assuming the geometric distribution to be M1 = 2140
as N(T) = 3123 and n = 983.

TABLE 4.2: Estimates using the Horvitz-Thompson estimator for the number of missing

snowshoe hares in the sub-populations with the observed number of snowshoe hares
trapped shown in [square brackets].

Season
Study area Midwinter ~ Spring ~ Summer Total
Square mile area 301 [95] 298 [181] 614[261] 1212[537]
Five small areas 121[94]  137[125] 669 [227] 927 [446]
Total 422 [189] 435[306] 1283 [488] 2140 [983]

Table 4.2 displays the estimated number of missing snowshoe hares overall as well as the
number of observed hares for each of the six sub-populations, assuming the preferred
geometric model with both covariate effects and an interaction effect.

4.3 Chao’s Lower Bound estimator

Capture-recapture methods have been in common use for estimating the population
size and investigating the dynamics of biological populations for a long time. Prior to
Chao (1987) however, many of the previous works relied on the equal-probability-of-
capture assumption, which is often deemed as unattainable in biological populations
(Carothers, 1973). To deal with this unobserved heterogeneity arising from unobserved
differences in factors such as the mental health of an individual or the proficiency of a
medical professional, Chao’s Lower Bound estimator is a capture-recapture approach
for estimating the lower bound of a target population’s size (Chao, 1987, 1989).

In application, unpredictability exists, which leads to variation in the capture proba-
bilities, typically rendering the simple model, p.(u), insufficient given that it is not
flexible enough to adequately represent this variation. Instead, a more flexible mixture

probability density can be utilised to model the population heterogeneity as follows.

ki(p) = /OOO px()g(p)dp, (4.9)
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exp(—p)p*

— is the Poisson mixture kernel

where q(u) is the mixing density, px(y) =
(Bohning et al., 2013b), and py(p) = (1 — p)*p is the geometric mixture kernel (Niwit-
pong et al., 2013). Here, the mixing density g is unknown so the lower bound approach
is taken through estimation as without knowing the value of the density, the mixture
probability density cannot directly be used in modelling to estimate pg to use in the

Horvitz-Thompson (or other) estimator for population size estimation.

Using the mixture from Equation 4.9, the ratios of neighbouring probabilities, g, and

the corresponding (known) coefficients, a,, have the following relationship.

ax qx+1
- =u, 4.10
e ! (4.10)
with the following monotonicity
Fe < Fei1 (4.11)

The ratio in Equation 4.10 can be adjusted to provide the ratio of the mixtures as

Oy ki1
ry = ———,
A1 ky
which can be approximated as
ax f&+1
Ty = , 412
X aerl fx ( )

by substituting the sample estimates f—l\’} for the theoretical quantities of the mixtures, k.

Applying Equations 4.12 and 4.11 leads to the following inequality.

wfi _af

a1 fo ~ ax fi
2

apan
fO 2 Tfill
a7 fa

hence the lower bound of the frequency of zeros can be estimated as

2
; _ A0d2 fi
0= — 7 (4.13)
f ﬂ% f2
where the value of the corresponding coefficients, a, are dependent on the distribution
and given as

L if Poisson, or
ay = ' (4.14)
1 if geometric.
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Alternatively, an estimate for the lower bound of the frequency of zero counts can be
found using the Cauchy-Schwarz inequality, leading to

</0w eXp(-V)M(ﬂW)

in the case of a Poisson mixture kernel and

</000(1 - ﬂ)uq(u)du>

in the case of a geometric mixture kernel.

2

oo

S/O.weXp(—ﬂ)q(u)dyx/(; exp(— ) p2q(u)du.  (4.15)

2 o0 [e)e]
< /O uq(p)du X /O (1= p)?ug(p)dp. (4.16)

Therefore, the inequality in Equation 4.15 (Poisson) can be given by ki (1) < ko(p) x
2k, () and Equation 4.16 (geometric) can be given by k(1) < ko(u) X ka(u) using
theoretical probabilities. Given that p, has the sample estimate f—l\’}, Equations 4.15 and
4.16 can also be given in terms of frequencies by

2
Zfl if Poisson mixture kernel, or
f{Z (4.17)
“L if geometric mixture kernel,

f2

providing an estimated lower bound for the frequency of zero counts, where f, is the

>

o
v

frequency of exactly x counts and supporting the values of the corresponding coefficients

given in Equation 4.14.

Given that N = 1 + fy, the estimated total population size is found by

fi

n + = if Poisson mixture kernel, or
N© = JZCJ;Z 4.18)
1

n+ 3 if geometric mixture kernel.
2

Application: Suicide data

Using the case study data and Equation 4.18 assuming the Poisson mixture kernel, the

total population size can then be estimated as

182

N© =27 -
+2><3

81,

which is much smaller than the estimate provided by the Horvitz-Thompson estimator
in Section 4.2 as this conventional method does not allow for the inclusion of covariates
and that Chao’s estimator is a lower bound. For example, in this case study application,

person-years is not considered which leads to an underestimation of the population size.
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This exclusion of covariates also increases the bias of the estimator and does not allow

for sub-population sizes to be estimated.

Application: Hares data

Using the hares case study data, the total number of snowshoe hares can then be
estimated using the conventional Chao’s estimator assuming a geometric mixture kernel
as )
N© = o83+ 2% _ 3013519 ~ 3014,
210
which is slightly lower than the total estimate of N(HT) = 3123 provided by the Horvitz-
Thompson estimator. This finding is understandable, given that the conventional Chao’s

estimator is a lower bound estimator.

4.4 Generalised Chao’s estimator

Bohning et al. (2013b) developed a generalised form of Chao’s estimator to allow for
covariate information. It is a generalised form as if there are no covariates available,

then it is identical to the conventional form of Chao’s estimator.

Assuming the Poisson regression with ; = 7; exp(h(v;)TB), the population heterogene-
ity modelled in Equation 4.9 can be accounted for. Truncating all counts besides X =1
and X = 2 leads to the associated truncated Poisson model as follows.

p1(pi) =1 —gq;and pa(p;) = qi, (4.19)

Giventhatq; = (1—¢),q2 =qganda, = % for the Poisson mixture kernel, Equation 4.10

becomes
_nq2

= —o 1
a1 1—q’
Replacing p» (1) = g with its sample estimate % where N = (f1 + f») makes y equivalent

_, RIAth) _,f

"R/ TR

verifying that the ratios in Equations 4.10 and 4.12 are equal.

to

Rearranging for 4 results in

>

2
Il
N
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making the probabilities in Equation 4.19 equivalent to

and pa () = =

The associated truncated Poisson likelihood is

fith 2 fin i fiz
L - X ! 7
E <2+w> <2‘|‘ﬂi>

equal to the standard binomial logistic likelihood

fith
L=T[ (- g x (@)=,
i=1
Given that the likelihood of the truncated Poisson model is equal to that of the normal
binomial logistic, a logistic regression model can be utilised to find the associated
maximum likelihood estimates. Hence,

‘S)
Il
N
ESY

qi’
fori=1,2,---,(f1+ f2), where §; are the fitted values of the logistic regression model.

The estimated frequency of zero counts can be found using the maximum likelihood
estimates as follows.

fith
R 1+ f
fo= Z V{ Z:L y{ /22 (4.20)

Given that N = 1 + fo, the estimated total population size is found by

fith
1 + 1
NCO = p 4 Z Vfir {/22 (4.21)

where NGC > NC.

However, assuming the geometric mixture kernel with u; = exp(h(v;)’B), the popula-
tion heterogeneity modelled in Equation 4.9 can be accounted for following the same
approach as assuming the Poisson mixture kernel.

Truncating all counts except the singletons and doubletons leads to the following associ-
ated truncated geometric model.

p1(pni) =1 —gq;and pa(p;) = qi, 4.22)

Given that g1 = (1 —¢), g2 = g and a, = 1 for the geometric mixture kernel, Equa-

tion 4.10 becomes
_mq_ 4

g 1—g
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Replacing pa (i) = g with its sample estimate % where N = (f; + f») makes y equivalent

f/(fitf) _ f

IR/ ) A

verifying that the ratios in Equations 4.10 and 4.12 are equal.

to

Rearranging for § results in
=1
1+pu’

making the probabilities in Equation 4.22 equivalent to

and pa () Fi

The associated truncated geometric likelihood is

fitf 1 fa i fi2
L: X L 7
E (Hw) <1+w>

equal to the standard binomial logistic likelihood

fith
L= TT =g x (g
i=1
Given that the likelihood of the truncated geometric model is equal to that of the normal
binomial logistic, a logistic regression model can be utilised to find the associated

maximum likelihood estimates. Hence,

gi
1-4;

fli =
fori=1,2,---,(f1 + f2), where §; are the fitted values of the logistic regression model.

The estimated frequency of zero counts can be found using the maximum likelihood

estimates as follows.

R —f1+f2E[f. o ]_f1+f2 po() (Fat fa)
Jo = 1; olfie: fio, 11 = l; p1(fi) + pa (i) fat fo
_ fio+ fio
1 1y (4.23)
(1_1+ﬁi>+<1_1+ﬁi>
fir + fi2

N 1 1 )
1-— 2 —
( 1+ﬁi>< 1+ﬁi>
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Given that N = 1 + fy, the estimated total population size is found by

ftf
fio + fio 4.24
"t ; 1-4)2-8) 429

where éi = 1J:ﬁi =1—4;and NGC > NC.

Application: Suicide data

Applying the generalised Chao’s estimator assuming the Poisson mixture kernel using
Equation 4.24 to the suicide case study data leads to the estimated population size

=27+ Z f“ +{1/2 = 172.659 ~ 173,
which is much larger than the estimate using the conventional form of 81 total studies.
This is expected given that the conventional Chao’s estimator is a lower bound estimator
and doesn’t account for the covariate information available. However, this is also much
larger than the estimate found from the Horvitz-Thompson estimator in Section 4.2
of 134. This difference may be as a result of the small sample size of the suicide data
which is utilised in the generalised Chao’s estimator, leading to a possible reduction in
accuracy. This difference motivates the use of the simulation study later in this chapter,

comparing the performance of the different capture-recapture estimators.

Application: Hares data

Applying the generalised Chao’s estimator to the hares case study data assuming
the geometric mixture kernel using Equation 4.24 leads to the following estimated
population size.

N(GO) = 983 + Sf fn+ fi

SG+(2

= 3890.141 ~ 3890,

which is considerably larger than that found through the conventional approach, an
expected result given that covariate information is now included and the conventional
approach being a lower bound estimator. As with the suicide data, the generalised
Chao’s estimate is also larger than the Horvitz-Thompson estimate (N(HT) = 3123). This
difference and common trend motivates the use of the simulation study in Section 4.7 to
assess the performance of the different estimators and check the accuracy of the Horvitz-
Thompson estimator to ensure that it does not underestimate the total population size.
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4,5 Zelterman’s estimator

In many situations, the assumption that the the entire range of observed counts follow
the chosen distribution cannot be met, leading to unrepresentative and unreliable
estimates. For the Horvitz-Thompson estimator, the chosen distribution is assumed to
be the Poisson distribution, where large count values in particular are more susceptible
to deviation. An alternative approach developed by Zelterman (1988) relaxes this
assumption by instead assuming that only a small range of count values follow the
Poisson distribution, similarly to Chao’s estimator. Two consecutive frequencies (fy and

fx+1) are used to estimate the count value as

o (xtDfen
Hx = fx .

Typically x = 1, as the frequencies f; and f; are in close proximity to fo, the target value
needing predicting. Additionally, in the majority of cases, fi and f, have the highest
frequencies for the data (Bohning and van der Heijden, 2009). Setting x = 1 leads to the
case where all counts are truncated except X = 1 and X = 2 with the corresponding

truncated Poisson distribution probabilities

and g, = 21}{

‘11:2_’_#

The truncated Poisson distribution leads to a binomial likelihood (Bohning et al., 2013b),
as seen in Section 4.4, with log-likelihood

¢ = filog(q1) + f2log(q2),

which is maximised as

ta - Ath

Therefore, Zelterman (1988) proposes that the estimated count is calculated as

) 2
‘u_fll

and used in the Horvitz-Thompson estimator given in Section 4.2 as

A(Z) _ n _ n .
1—po(ft) 1—exp(—f)

The standard Zelterman’s estimator relies on the assumption that a small range of
consecutive counts follow the Poisson distribution. To adjust Zelterman’s estimator

to reflect the assumption that a small range of consecutive counts follow a geometric
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instead, the ratio of neighbouring zero-truncated geometric probabilities can be used as

follows, given the zero-truncated geometric density in Equation 3.2.

prri(p) (L —pi)*pi

pe(p) (1= i)
= (1— ).

The probabilities can be replaced with the corresponding sample estimates f—l\’}, leading

to the following estimate.
f x+1 N
X1 g,
fo ol

where u; = po(u;).

Therefore, the estimated probability of zero given y; is given as

PM%)Zl—fgy

As with the standard Zelterman’s estimator, given that the frequencies f; and f, are
in close proximity to fy, these consecutive frequencies are chosen to estimate the total
probabilities. The estimate of the probability of zero counts is then given by

po(fii) = —2-

Therefore, using the Horvitz-Thompson estimator as with the standard Zelterman’s
estimator, the adjusted Zelterman’s estimator based on the geometric distribution is

given as follows.

gz - "
1 — po(fii)
o n
o _(1_F
1-(1-%)
_nha
fa’

Application: Suicide data

For the suicide case study data, assuming a Poisson distribution, the estimated count

value is calculated as
_2x3 1

o118 3
leading to an estimated total number of studies of

A

. 27
N@) — 95.24861 ~ 95.

11— exp(—%)
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This is much smaller than the estimated target population size provided by the Horvitz-
Thompson estimator in Section 4.2. However, as with the conventional Chao’s Lower
Bound estimator, the conventional Zelterman'’s estimator does not account for person-

years or covariates, which can lead to an inaccurate estimated population size.

Application: Hares data

For the hares case study data, the estimated total number of snowshoe hares using

Zelterman’s estimator assuming the geometric distribution is given as

7 983 x 653

(2) = 662 ~ 3057.
N 20 3056.662 ~ 305

This is notably larger than the Horvitz-Thompson estimate, however, only slightly larger

than the conventional Chao’s estimator.

4.6 Generalised Zelterman’s estimator

The generalised approach to Zelterman’s estimator developed by Bohning and van der
Heijden (2009) accounts for covariates, in order to estimate the target population size
more accurately. Through some modification to the model specification, the generalised

Zelterman’s estimator can also account for an exposure variable.

As in Section 4.4, truncating all counts besides X = 1 and X = 2 leads to the truncated
Poisson likelihood being equivalent to the binomial logistic likelihood as follows.

le ReL 2 fa ) fo  Ath
Hl > = . fil . fiZ

x - 1 R X 1 Vi
i=1 <2+}4i> <2—i—yi Iizll (1—a:) (i)

where

P R o mexp(n)
24w 14pi/2 14+ texp(n;)

The maximum likelihood estimates are found using a logistic regression model, resulting

in the generalised Zelterman'’s estimator for the MLE as follows.
fli = 27 exp(7;), (4.25)

fori=1,2,---,n.

Given that 7; = h(v;)"B, Equation 4.25 allows for both an exposure variable and
covariates to be accounted for in the calculation for the expected count values. As

with the conventional Zelterman’s estimator, the Horvitz-Thompson estimator seen in
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Section 4.2 is used with the generalised Zelterman’s estimator to estimate the target

population size as follows.

~ n 1
NeD =y
LT ep( 7
1
1 —exp(—27exp(f;))

=

—_

i=

The existing generalised Zelterman'’s estimator can be altered to allow for the assumption
of the geometric distribution, instead of the Poisson distribution as above, through

following the same key steps.

As seen in Section 4.4, truncating all counts besides the singletons and the doubletons

leads to the following associated truncated geometric model.

p1(pi) = (1= pi)ui =1 —giand pa (i) = (1 — i) *pi = g

The resulting truncated geometric likelihood is then equal to the binomial logistic

likelihood as follows.

fitfo 1 fi i fio  Ath ; :
I I o = 1—g;)/" x (g;)2,
i1 <1+Vz‘> (1+yi> g< g:)"" x (4:)

where
T, exp(17;)
1+ T7exp(n;)

1—|—}41'

Using a logistic regression model to find the maximum likelihood estimates, the gener-

qi and g; =

alised Zelterman’s estimator is given as
,ﬁi =T exp(ﬁi), (4.26)

fori=1,2,---,n.

As with the approach for assuming the Poisson distribution, given that 7; = h(v;)" 8,
Equation 4.26 allows for both an exposure variable and covariates to be accounted for in
the calculation for the expected count values, unlike with the conventional approach
to Zelterman’s estimator. To estimate the total population size, the Horvitz-Thompson
estimator seen in Section 4.2 can be used used with the generalised Zelterman'’s estimator



66 Chapter 4. Estimation Methods

to estimate the target population size as follows.
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Alternatively, the generalised Zelterman’s estimator, assuming a geometric distribution,

can be written as

N©7) =y

n
i=1

1
1-¢

- 1 A A
where (; = ﬂ for Hi = Tiexp(yli)'
i

Application: Suicide data

Applying the generalised Zelterman’s estimator to the suicide case study data, assuming
a Poisson distribution, leads to an estimated total number of studies of

27
N2 =y ! = 175.1877 ~ 175.

21— exp(—27exp(7;))

The resulting estimate is comparable to the results from the generalised Chao’s estimator
but much higher than the conventional Zelterman'’s estimator without covariates, and
the estimate using the Horvitz-Thompson estimator in Section 4.2 which assumes that
all counts follow the Poisson distribution.

Application: Hares data

Applying the generalised Zelterman’s estimator to the hares case study data, assuming

a geometric distribution, leads to an estimated total number of snowshoe hares of

983 A

~ 1 ;

N2~y ;_“l — 3601.666 ~ 3602.
i=1 !

Whilst the difference between the generalised Chao’s and generalised Zelterman’s
estimates is not large, the generalised Zelterman’s estimate is slightly smaller than the
generalised Chao’s estimate. However, it is notably larger than the results from the
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Horvitz-Thompson estimator as seen with the suicide case study data. This difference
between the generalised Zelterman’s and Horvitz-Thompson estimators is due to the
more relaxed distributional assumption seen in the development of the generalised

Zelterman’s estimator.

4.7 Simulation study

4.7.1 Definitions

It is important to consider the performance of each population size estimators to under-
stand which estimator to utilise in different situations, where the performance measures
are accuracy, precision, coverage and robustness, given formally in Definitions 4.1, 4.2,
4.3 and 4.4.

Definition 4.1 (Accuracy). A type of observational error computed as
median(|N — N|),

where N is the true population size and N = (N, . .., Ns) are the estimated population
sizes for each iterations = 1,..., S of the simulation study.

Definition 4.2 (Precision). The degree of random error affiliated with the population
size estimate computed as
median(CIy — CIp),

where CI, = (Clps,...,Clps) and CIy = (Cly s, . .., Cly g) respectively are the lower
and upper confidence intervals for each iteration s = 1,...,S of the simulation study.
For this work, 95% percentile confidence intervals are used to compute the upper and

lower confidence interval limits.

Definition 4.3 (Coverage). The probability that the true population size, N, is contained
within the confidence interval computed as

1 S
x Y I x 100%,
s=1

95

where I, is an indicator variable fors = 1, ..., S defined as

1 ifCI, < N < Clys,

0 otherwise.

Definition 4.4 (Robustness). Tukey (1960), Huber (1964) and Hampel (1971) formed
the foundations of robust statistics, where robustness is defined as the resilience of an
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estimator to outliers. In this case determined by the comparison of values of accuracy,

precision and coverage of estimators applied to data with and without outliers.

For computing the performance measures, the median is used in favour of the mean.
Through preliminary work of performing simulation studies on a smaller scale, it was
found that there was not a difference in the overall results when comparing using
the mean versus the median. The median is favoured in this work for giving less
weight to the extreme values, whilst still capturing the variation in results. For example,
in Section 4.7.3, the Figures illustrate the large variation in results for the Horvitz-
Thompson estimator, where the median is used for the computation of the accuracy
and precision values. In the preliminary work, the mean was also used for these same
measures, and produced the same results, but with wider confidence interval ranges
due to the number of extreme values in the Horvitz-Thomson estimator’s results, having
the same impact on the overall conclusions. Therefore, it was not seen that using the

median as the chosen measure of centrality would be an issue for the final results.

4.7.2 Methodology

As in Section 3.3, the following variables are required to simulate the data set that mimics
the characteristics of the suicide case study data.

N: total number of studies.
e f: mean number of individuals per study.

e AC: constant rate of event.

v: logarithm of the mean for the observation period.

o: logarithm of the standard deviation for the observation period.

Section 3.3 does not include covariates in the simulation study, so to simulate covariates
reflective of those in the suicide case study data additional information is required. The
covariates of the case study data are numeric for the proportion of women, and binary

for the country of origin. Therefore, the additional information required is as follows.

¢ «: shape parameter for the beta distribution to simulate proportion variable.
* B: shape parameter for the beta distribution to simulate proportion variable.

* p: success probability for the Bernoulli distribution to simulate binary variable.

Given the above variables, the data can be simulated as follows.

e Size of each study is sampled from the Poisson distribution, t; ~ Poisson(f).
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¢ Observation period of each study is sampled from the log-normal distribution,
O; ~ lognormal(y,o).

¢ Count of events for each study is sampled from the binomial distribution,
X; ~ binomial(t;, A®), where 7; = t; x O;.

¢ Covariate for proportion for each study is sampled from the beta distribution,
vy ~ beta(a,B).

¢ Binary covariate for each study is sampled from the Bernoulli distribution,
vip ~ Bernoulli(p).

To create a zero-truncated data set, counts of zero are truncated from the simulated data,
from which the Horvitz-Thompson, generalised Chao’s and generalised Zelterman'’s
population size estimates can be calculated. The respective analytical variances for
each of the population size estimators, used in constructing the confidence intervals,
can be computed utilising a normal approximation approach, discussed further in
Sections 5.3, 5.4 and 5.5. This process is repeated S times, with the resulting estimates
and corresponding variances enabling the assessment of the various reliability measures.
To compute the averages for accuracy and precision, the median is used as it gives less

weight to outliers compared with the mean.

Given that the number of completed suicides is equal to the rate of completed suicide
multiplied by the exposure variable for each study, outlier values of the counts can be
simulated using outlier rates and sampled person-years. Outlier rates are sampled from
the uniform distribution to allows for variability in rates across studies as seen in real
data scenarios. Thus, in order to sample the outlier rates, a range from which to sample
from requires specification, where the observed data is used to define what counts are

classified as outliers. The lower bound is given by
AF = Q3 +3 xIQR, (4.27)

where Q3 is the third quartile of the observed rates, IQR is the inter-quartile range and
the IQR is multiplied by 3 to ensure the rates are clearly defined outliers. The upper
limit is defined as

AT =12x Ak,

such that the range of rates is wide enough to allow for variation but not to provide
unrealistic or highly improbable outliers.

To convert the outlier rates into outlier counts, the sampled rates are multiplied by

sampled person-years, which are not sampled as outliers.



70 Chapter 4. Estimation Methods

400 500 600
| | |

Frequency
300
|

200
L

100
|

Count

FIGURE 4.1: Histogram of simulated counts with N=1000 and 0.1% outliers
4.7.3 Results

A histogram of simulated counts with 0.1% outliers can be seen in Figure 4.1, illustrating
that the outliers are not necessarily obvious, and that they can look like they fit the trend

of the non-outlier counts.

TABLE 4.3: Values for the reliability measures of accuracy, precision and coverage for

the capture-recapture population size estimators of Horvitz-Thompson, generalised

Chao’s and generalised Zelterman'’s, where S = 1000, N = 1000, = 900, A€ = 0.0004,

AL 2 0.0071, AY 2 0.0085, v = 1.5, 0 = 0.8, « = 36, B = 8.5 and p = 0.4 for various
proportions of outliers.

Proportion of Outliers

Measure Estimator 0.0%  0.1% 0.5% 1.0%  2.0% 10.0%
Horvitz-Thompson 16 26 133 287 845  2.56e+07
Accuracy Generalised Chao’s 25 28 27 27 26 26
Generalised Zelterman’s 29 32 31 32 32 52
Horvitz-Thompson 95 99 118 149 345 6.7e+08
Precision Generalised Chao’s 162 163 163 162 162 154
Generalised Zelterman’s 181 181 185 184 187 205

Horvitz-Thompson 95.5% 76.9%  3.3% 0.0% 0.0% 99.4%
Coverage Generalised Chao’s 96.4% 96.0% 964% 96.7% 957%  96.0%
Generalised Zelterman’s  95.7% 94.7% 95.8% 96.7% 94.8% 89.5%

Table 4.3 gives the values of accuracy, precision and coverage for the Horvitz-Thompson,
generalised Chao’s and generalised Zelterman’s estimators when N = 1000 for propor-

tions of outlier counts varying from 0% to 10%.

It can be seen that when all counts follow the distributional assumption, there is negligi-
ble difference between the values for coverage for each estimator, and each value being

preferable at over 95%. However, there are notable differences in the values for accuracy
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FIGURE 4.2: Box plots with the (individual) population size estimates from the sim-

ulation study, with a dotted line illustrating where the true value lies for illustrating

the accuracy of the different capture-recapture estimators for different proportions of
outliers when N = 1000 and A;, = Q3 + 3 x IQR.
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FIGURE 4.3: Box plots showing the precision of the confidence intervals for the capture-
recapture estimators for different proportions of outliers when N = 1000 and A} =
Q3+ 3 x IQR.
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and precision, with the Horvitz-Thompson estimator having the narrowest confidence

intervals and estimates closest to the true values on average.

The preference for the Horvitz-Thompson estimator shifts once outliers are included
in the data. At only 0.1% of counts being outliers, whilst the precision remains the
lowest, the coverage is reduced to around 77% and accuracy reduced (the higher the
value, the lower the accuracy itself) to have little difference from the other estimators.
As more outliers are included in the data, the performance of the Horvitz-Thompson
estimator worsens, with the distance between the estimated values and the true values
growing further apart. Whist the width of the confidence intervals do not increase much
overall until 2% outliers, given the inaccuracy of the Horvitz-Thompson estimator with
outliers, the coverage decreases to 0%, meaning that by % outliers, none of the resulting
confidence intervals contain the true value. It is important to note that whilst the
coverage of the Horvitz-Thompson estimator is very high when there are 10% outliers, it
is only due to the fact that the confidence intervals are very wide making it very unlikely
that the resulting confidence interval wouldn’t contain the true value. Therefore, this
coverage value is misleading as the estimates are incredibly inaccurate and confidence
intervals so wide that no useful conclusions could be made from them.

Throughout the varying proportions of outliers, the generalised Chao’s and generalised
Zelterman’s estimators both perform well consistently. For the smaller proportions of
outliers, and no outliers, there is very little difference between the performance of these
two estimators, however, past 2% outliers, there is a clear preference for the generalised
Chao’s estimator. This preference is easy to see when there are 10% outliers, where the
generalised Chao’s estimator performs no differently to the other proportions of outliers,
whereas the generalised Zelterman'’s performance declines slightly. At 10% outliers, the
generalised Zelterman's estimator still outperforms the Horvitz-Thompson estimator,
however, the resulting estimates are further from the true value, with wider confidence
intervals and worse coverage. The findings reflect those of Bohning (2010), where it as
found that whilst the conventional Chao’s estimator and standard Zelterman'’s estimator

perform similarly, there is a preference for the conventional Chao’s estimator.

These results, looking at the impact of the varying proportions of outliers in the accuracy
and precision of the capture-recapture estimators are given visually in Figures 4.2 and 4.3
respectively. In Figure 4.2 can be seen that there is no visual difference in the median
accuracy of the generalised Chao’s and generalised Zelterman’s estimators, and the
spread of the accuracy values remain consistent. However, as the proportion of outliers
increase for the Horvitz-Thompson estimator, the median value grows further from
the true value, and the spread of the accuracy values also increase, indicating that it
is not a robust estimator in terms of accuracy. Similar results are seen in Figure 4.3,
where the median precision values, and the spread of these values, are very consistent
for the generalised Chao’s and generalised Zelterman's estimators across the different
proportions of outliers. In contrast, the Horvitz-Thompson estimator is not resilient to
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outliers, as when the proportion of outliers increases, the median width of the confidence
intervals and the spread of these values increase.

TABLE 4.4: Values for the reliability measures of accuracy, precision and coverage for

the capture-recapture population size estimators of Horvitz-Thompson, generalised

Chao’s and generalised Zelterman’s, where S = 1000, N = 500, f = 900, AC = 0.0004,

AL 2~ 0.0071, AY 2 0.0085, v = 1.5, = 0.8, a = 36, B = 8.5 and p = 0.4 for various

proportions of outliers. Number of outliers required to be integers so values for the
proportion of 0.1% outliers are not given.

Proportion of Outliers

Measure Estimator 0.0% 01% 0.5% 1.0%  2.0% 10.0%
Horvitz-Thompson 11 - 48 141 398  9.77e+06
Accuracy Generalised Chao’s 19 - 19 18 19 18
Generalised Zelterman’s 21 - 22 21 22 28
Horvitz-Thompson 67 - 79 107 232 3.22e+08
Precision Generalised Chao’s 116 - 116 115 113 109
Generalised Zelterman’s 130 - 131 130 130 143
Horvitz-Thompson 94.8% - 35.0% 05% 0.0%  100.0%
Coverage Generalised Chao’s 96.9% - 96.3% 96.7% 95.5%  95.7%
Generalised Zelterman’s 94.6% - 95.9% 95.7% 95.0% 95.0%

Given that there is an importance in assessing the performance of the capture-recapture
population size estimators in different data scenarios, a simulation study is also con-
ducted when the total population size is chosen to be N = 500. These results are given
in Table 4.4. As for when N = 1000, the values in Table 4.4 show that the Horvitz-
Thompson estimator is the preferred method when there are no outlier counts in the
data, but performance of the estimator declines once outliers are included, even when
the proportion of outliers is very small. Additionally, the generalised Chao’s and gener-
alised Zelterman’s estimators demonstrate their resilience to outliers with no notable
changes in performance between the proportions of outliers of 0% to 2%. As with
the previous simulation study for when N = 1000, the generalised Chao’s estimator
remains resilient to outliers, even at 10% outliers, however, the performance of the
generalised Zelterman’s estimator does decline at 10% outliers, indicating a preference

for the generalised Chao’s estimator.

Whilst the outlier counts generated using the definition in Equation 4.27 are not nec-
essarily obvious in comparison to the rest of the simulated counts, there is interest in
exploring whether these conclusions hold under a smaller lower bound for the outlier
rate, and therefore resulting in more subtle outlier counts. To do this, the following

formula for the lower bound of outlier rates can be utilised,
AL = Q3+ 15 x IQR,

where the upper bound for the outlier rate is still given by Ay = 1.2 x A, but with this
updated value of Ay.



74

Chapter 4. Estimation Methods

TABLE 4.5: Values for the reliability measures of accuracy, precision and coverage for

the capture-recapture population size estimators of Horvitz-Thompson, generalised

Chao’s and generalised Zelterman'’s, where S = 1000, N = 1000, = 900, AC = 0.0004,

AL~ 0.0046, AY 2 0.0055, v = 1.5, 0 = 0.8, a = 36, B = 8.5 and p = 0.4 for various
proportions of outliers.

Proportion of Outliers

Measure Estimator 0.0% 01% 0.5% 1.0%  2.0% 10.0%
Horvitz-Thompson 16 20 69 133 294 3693

Accuracy Generalised Chao’s 25 28 27 27 26 26

Generalised Zelterman’s 29 32 31 32 32 51
Horvitz-Thompson 95 97 106 115 147 2192

Precision Generalised Chao’s 162 163 163 162 162 155

Generalised Zelterman's 181 181 185 184 187 204

Horvitz-Thompson 95.5% 90.2% 29.9% 1.6% 0.0% 3.9%
Coverage Generalised Chao’s 96.4% 96.0% 964% 96.7% 95.8% 96.3%
Generalised Zelterman’s  95.7% 94.7% 95.8% 96.6% 94.8% 90.1%
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FIGURE 4.4: Box plots with the (individual) population size estimates from the sim-

ulation study, with a dotted line illustrating where the true value lies for illustrating

the accuracy of the different capture-recapture estimators for different proportions of
outliers when N = 1000 and A; = Q3 + 1.5 x IQR.
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FIGURE 4.5: Box plots showing the precision of the confidence intervals for the capture-
recapture estimators for different proportions of outliers when N = 1000 and A} =
Q3+1.5x IQR.

TABLE 4.6: Values for the reliability measures of accuracy, precision and coverage for

the capture-recapture population size estimators of Horvitz-Thompson, generalised

Chao’s and generalised Zelterman’s, where S = 1000, N = 500, = 900, AC = 0.0004,

AL~ 0.0046, AY 2 0.0055, v = 1.5, 0 = 0.8, & = 36, B = 8.5 and p = 0.4 for various

proportions of outliers. Number of outliers required to be integers so values for the
proportion of 0.1% outliers are not given.

Proportion of Outliers

Measure Estimator 0.0% 01% 05% 1.0% 2.0% 10.0%
Horvitz-Thompson 11 - 25 65 142 1873
Accuracy Generalised Chao’s 19 - 19 18 19 19
Generalised Zelterman'’s 21 - 22 21 22 28
Horvitz-Thompson 67 - 72 82 103 1337
Precision Generalised Chao’s 116 - 116 115 113 109
Generalised Zelterman’s 130 - 131 130 130 143
Horvitz-Thompson 94.8% - 69.9% 16.5% 02% 12.9%
Coverage Generalised Chao’s 96.9% - 96.3% 96.7% 95.6% 95.9%

Generalised Zelterman’s 94.6% - 95.9% 95.6% 95.0% 95.2%
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Tables 7.10 and 4.6 provide the results from this simulation study for N = 1000 and
N = 500 respectively, where it can be seen that despite the outlier counts being more
subtle within the dataset, the results are very similar. Up to 2% outliers, the generalised
Zelterman’s estimator performs well, with adequate performance at 10% outliers. How-
ever, the generalised Chao’s estimator performs consistently well for all proportions of
outliers tested, with no notable change in performance across the different proportions

of outliers.

Similarly, the results for the Horvitz-Thompson estimator follow the same trends as
for when the outlier counts are generated using Equation 4.27, though the decline in
performance is less dramatic. As the proportion of outlier counts in the data increase,
the median distance between the true value and the estimated values grows, with
the median width of the confidence intervals also growing. What makes the Horvitz-
Thompson estimator particularly poor in this data scenario when there are outlier
counts involved however, is the coverage. Even for a small number of subtle outliers,
the coverage rapidly falls to where for when there are only 5 outlier counts in the dataset,
only (approximately) 70% of the resulting confidence intervals contain the true value,
decreasing to around 17% by 10 outliers. making the majority of the confidence intervals

ineffectual.

The results for both accuracy and precision for when N = 1000 are given visually via
box plots in Figures 4.4 and 4.5 respectively. In these plots, there is very little noticeable
difference for the generalised Chao’s and generalised Zelterman'’s estimators across the
different proportions of outliers, testifying to their robustness. However, for the Horvitz-
Thompson estimator, the plots for accuracy illustrate how sensitive the estimator is to
outliers, with not only the spread of the values growing as the proportion of outliers
grows, but the estimated values also get further from the true value. By 1% outliers, the
minimum estimated population size from the simulation study is greater than the true
value. The results in the precision box plots do not look as damaging for the Horvitz-
Thompson estimator, since the precision values even at 2% outliers are still smaller than
those for the generalised Chao’s and generalised Zelterman'’s estimators. That being
said, these plots also illustrate the lack of robustness of the Horvitz-Thompson, as both
the spread of the precision values and the precision values themselves are getting larger

as the proportion of outliers grow in the dataset.

Overall, these simulation studies indicate that for this type of data, if there are guaran-
teed no outliers included in the data, the Horvitz-Thompson estimator is a very good
estimator. In real life situations, however, data can be unpredictable with outliers being
a common occurrence. Given this, the generalised Chao’s and generalised Zelterman’s
estimators are preferred as they not only perform well when outliers are included in
the data, but also when they are not, with the generalised Chao’s estimator performing
marginally better overall, particularly when there are a higher proportion of outliers

present in the data.
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Chapter 5

Uncertainty Quantification:
Approximation-Based Variances

To some degree, error is inevitable when using estimation methods, leading to uncer-
tainty. In this chapter, approximation-based methods for quantifying this uncertainty
are discussed for both the prevalence rate estimates and population size estimates,
specifically the Wald-type interval and variance by conditioning.

5.1 Introduction

7

Mathematician John Allen Paulos describes uncertainty as “the only certainty there is”
(Paulos, 2007). In the context of capture-recapture, uncertainty is the error and variability
that arises from the various estimation methods. Given the nature of capture-recapture,
the issue of uncertainty is very prevalent, but is often overlooked. Quantifying the
level of uncertainty is crucial for model credibility in order to make reliable inferences
from parameter estimates in addition to assessing the reliability of population estimates
from capture-recapture methods. Estimates with higher amounts of uncertainty may be
deemed untrustworthy, leading to the possibility of misinformed conclusions which can
have negative implications, including financial and physical implications, especially in

medical settings.

5.2 Wald-type interval for rate estimation

One of the most basic forms of uncertainty quantification is the Wald-type interval, a
widely accepted confidence interval in practice based on the Wald statistic and relies on

a normal approximation of the binomial distribution. The end-points of the (1 — «)100%
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interval for the rate are calculated as

exp [ £z1_4/28.e.(7)],

where 7 = h(v)TB, z1_, 5 is the (1 — &/2)th quantile of the standard normal distribution
and s.e.(]) is the standard error of j (Brown et al., 2001).

Application: Suicide data

Applying this approach to the suicide case study data, under the Poisson intercept-only
model, a 95% confidence interval for the rate of completed suicide of (23.3,43.2) per
100,000 person-years is obtained. For context, the global rate of completed suicide,
independent of whether the individuals have had bariatric surgery or not, as of 2019 is 9
per 100,000 person-years (World Health Organization, 2019). This rate is much lower
than the estimated rate of completed suicide after bariatric surgery of 31.2 per 100,000
person-years but is also much smaller than the lower bound of the 95% confidence
interval. Given that the global rate of completed suicide is not contained within the
confidence interval of completed suicide rates after bariatric surgery, there is evidence
to suggest that compared to the general population, individuals who have had bariatric
surgery are at a notably higher risk of completed suicide, and is something that should
be looked into further to reduce the difference between the two rates.

Similarly, neither of the rates computed through using the traditional meta-analytical
approaches of 45 and 60 per 100,000 person-years are included in the 95% confidence
interval above for the rate of completed suicide after bariatric surgery. This highlights the
importance of accounting for the missing zero counts when computing the prevalence

rate from a meta-analysis.

The Wald test statistic from the intercept-only zero-truncated Poisson model fails to
monotonically increase as a function of its distance from f = 0, the null value, an
aberration first observed by Hauck and Donner (1977), known as the Hauck-Donner
effect (Yee, 2022). This effect can lead to the inference from the Wald test statistic, and
hence the Wald confidence interval, being unreliable, in addition to the approach not
accounting for model uncertainty, hence the interval is likely to underestimate the
uncertainty. To take this uncertainty into consideration, resampling methods like the
bootstrap algorithm can be used.

5.3 Horvitz-Thompson estimator variance by conditioning

Quantifying the uncertainty of population estimates can be done through calculating the
variance of the corresponding estimator. Bohning (2008) finds the estimated variance of
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the Horvitz-Thompson estimator to be

Uao( N (HT)\ _ po(p)

Var(N'"") =n A= pol))E (5.1)
However, for zero-truncated data, the probability of observing a count of zero events is
unknown. This probability then requires estimation which leads to additional variance
which will not be accounted for making Equation 5.1 unsuitable. To solve this problem,
variance estimation by conditioning can be used, with the theoretical formula proposed
by van der Heijden et al. (2003, page 314) given below.

—

Var(NHD) = E[Var(NHD| ;)] 4 Var(E[NHT | L)), (5.2)

where
| {1 study i is observed,
i =

0 otherwise.

Whilst this method typically assumes that the data follows a Poisson distribution, the
same approximation methods used for this assumption can be adjusted to develop a
variance for data assumed to follow a geometric distribution.

The first term demonstrates the sampling variance in the zero-truncated Poisson distri-

bution, and the second term demonstrates the variance in the observed sample.

To approximate each of the terms in Equation 5.2, the é-method (see Powell, 2007;
Oehlert, 1992, for more detail) can be used (e.g. Bishop et al., 2007, page 481). Following
the work of van der Heijden et al. (2003), the first term is approximated by

E[Var(NHD|1)] ~ Var(NHT) L),
where Var(N(1T)| ;) is also estimated using the §-method as

oy (a1 N (Na 1
VN =\ L hag ) P\ B S )

where (W(B)) is the the observed information matrix

and let
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For the Poisson distribution,
po(fi) = exp(—pi) = exp(—exp(h(vi)" B)m),

hence

91 exp(log() =)y T _ o a
9B 1 —pol(fu) (1—exp(—))2 h(vi)" = VG(ilB)-

Alternatively, for the geometric distribution,

hence

Therefore,

T
Var(NHD| 1) = (ZVG )Cov <ZVG ) (5.3)

As for the second term, using the 6-method, the expectation can be approximated as

= 1=ro
- % o)
£
- i 1 forgf&)m

Given that N is unobserved, the above variance requires estimation. Using only the
observed studies, an unbiased estimator for Var(E[N(HT)|;]) is given by

Var(E[NHD|1]) = Y PO(ﬁi)‘
: (5.4)
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If the Poisson distribution is assumed

/\

1 exp(—#;)
var ,Z (1 —exp(—f))*

therefore, Equation 5.2 is then given by the sum of Equations 5.3 and 5.4, given as

T
va\r(ﬁwﬂ):(zvewis)) Cov( (ZVG )*Z T
i—1 ! l
(5.5)
where

217 exp(log (i) — fli) o \7
G(ai|B) = — —5-h(v;)".
(111 B) (1—exp(—;bli))2 (vi)
Alternatively, if a geometric distribution is assumed,

A
—

Var(NHT)) = Y.

i—1 (1 - .ﬁi

and Equation 5.2 is given as

—

T A
Var(NHT)) = (Z VG(MB)) Cov(p (Z VG(fi; B) Z(l_@z (5.6)
i=1 1

where

G(plB) = = s v

for {; = g and i = exp(7).

Application: Suicide data

Applying Equation 5.5 to the suicide case study data results in a variance of 1676.53
with a corresponding standard error of 40.95 leading to a 95% confidence interval for
NHT) of
NHT) +1.96 x 1/ Var(N(HT)) = 134.03 + 1.96 x v/1676.53
= (54.78,214.28)

~ (54,214).

In context, this confidence interval means that there should have likely been between
54 and 214 studies included in the systematic review total, and between 27 and 187 of
those studies should report zero counts of completed suicide.
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Application: Hares data

Applying Equation 5.6 to the case study data results in a variance of 249655.6, with a
corresponding standard error of 499.66, leading to a 95% confidence interval for N(HT)
of

NHT) +1.96 x 1/ Var(NHT)) = 3122.67 + 1.96 x 1/249655.6

= (2143.37,4101.98)
~ (2143,4102).

5.4 Generalised Chao’s estimator variance by conditioning

The conditioning technique proposed by van der Heijden et al. (2003, page 314), seen
in Equation 5.7, with the addition of the J-method (Powell, 2007; Oehlert, 1992), can be
used to find the standard error of the generalised Chao’s estimator, following the work
of Bohning et al. (2013b).

—

Var(N(¢©)) = E[Var(N©)|L,)] + Var(E[NC)|L)). (5.7)

For the first term, an estimator for the variance is developed as

~(GO) fitf 1
Var(N'\"%|I;) ~ Var [ n + P
z'; pit 7 /2

f1+f2 1
= Var — |,
i; ﬁi+ﬁ?/2>

G(fiilB).

Where — - =
i+ fi2/2

Using the multivariate -method, the variance is estimated as
oo fith ) T . [(hth )
Var(NCO|L) = | Y, VG(lB) | Cov(B) | Y. VG(nilB) |,
i=1 i=1

where for y; = exp(h(vi)TB)Ti,
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For the second term, the expectation is

E[N©O|L = E

where w; = 1+ po(pi)/pi with po(p;) = exp(—w;) and p; = p1(wi) + p2(pi) =
exp(— i) pi + exp(—pi) i /2.

The indicator variable I; is binary with expectation
E[L] = pi,

and variance

Var(l;) = pi(1 —pi).

Therefore, the second term of Equation 5.7 is

N N
ar (Z Il-wl-) = Z pz(l — pl)w
i=1 i=1

and estimated by
RN N 1.
Var(E[N©)|1]) = Y jPi(l — pi)wy

i=1

Y (1420 ’”)Z.
i—1 pi

Therefore, Equation 5.7 is given by
fitf fitf
Var(N Z VG(f Cov(p Z VG(f
f1+f2
Z (1- p)( + - ) .
1=

It is important to note that this variance formula is for when a Poisson mixture kernel is
assumed. In the case where a geometric mixture kernel is assumed, the variance formula

is altered as follows. The variance in the first term is given as

N fith 1

f1+f2 1
— Var < 1121: (1 _gi)(z—Ci)) ,
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1 and 1
T+ pi 1-)2-0)

Using the multivariate 6 —method, the above variance can be estimated as

fith r fith
Var(N(C9)|L;) = (ZVG )Cov (ZVG )

where for 71; = exp(h(v;)TB) 1,

- 1 (447
VG(B) = (7~ g
S R T o T

As for the second term, the expectation is given as

G(ilB)-

where {; =

E[N©CO|] =E

N I;
*Z =03 'L’]

Mz

wl/
i=1
wherewl—1+pr(f)wﬁhp(y) 1_iyland

1 1 1
i = i i) = 1= 2- :
pi = pa(p) + p2(pi) 1+,ui( 1+]/‘i>< H%)

As in the Poisson case, I; is a binary indicator variable with expectation E[I;] = p; and
variance Var(I;) = p;(1 — p;).

Therefore, the second term is equal to

N
(le) = ; pi(1— piw?,

which is estimated as

(5.8)

where {; = T
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Therefore, Equation 5.7 is given by

. fith A\
Var(N1¢)) = ( ). VG(ﬁilﬂ)> Cov(
i=1

fitfa N 1 2
L 05 (1 e

=
VR
=~
1=
el
<
«©
F)
>
N———
+

(5.9

Application: Suicide data

Assuming a Poisson mixture kernel and applying Equation 5.4 to the suicide case study
data leads to a variance of 12707.05 with a corresponding standard error of 112.73 and
95% confidence interval for N(GC) of

N{(C®) +1.96 x \/Var(N(GC)) = 172.66 4 1.96 x v/12707.05
— (—48,394)
~ (27,394).

The lower limit for this confidence interval shows that this is not an appropriate interval,
given that the total population size cannot be negative and the total population size
also has a minimum value of 27, given that 27 studies were observed. The suicide
case study data itself is a small dataset, but even smaller for the generalised Chao’s
estimator given that only frequencies of ones and twos are not truncated, this is likely
the cause of the large variance computed using the analytical approach which leads to
the inappropriate confidence interval. The simulation study in Section 3.3 utilises this
analytical approach to variance computation for constructing the confidence intervals,
where the results indicate that when the (total) population size is larger (for example,
N =500 and N = 1000), this approach leads to reasonably wide confidence intervals,
that when centred around the total population size, do not result in negative lower
limits. Additionally, the resulting intervals have excellent coverage, suggesting that if
the observed population size is relatively large, then this approach is suitable.

As the problems with the analytical approach arise as a result of the small population size
of the data, there is incentive to use the bootstrap algorithm discussed in Section 6, since
this algorithm does not rely on the size of the observed sample and instead iteratively
resamples in order to achieve a large number of samples to compute intervals from.

Application: Hares data

Applying Equation 5.9 and assuming a geometric mixture kernel to the hares case study
data leads to a variance of 204151.3 with a corresponding standard error of 451.83,
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leading to a 95% confidence interval for N(GO) of

N(©) +1.96 x /Var(N(GC)) = 3890.14 + 1.96 x 1/204151.3
— (3004.57,4775.71)
~ (3005, 4776).

Unlike with the suicide case study data, the lower limit for this confidence interval is
not only greater than 0, but also greater than the observed number of hares, leading to
a confidence interval which is appropriate for the data. This is likely due to the larger
sample size, given that the observed number of hares (n = 983) is much greater than the
observed number of studies in the suicide data (n = 27), truncating all counts besides the
singletons and doubletons does not leave only a small number of individuals to model
and compute a confidence interval from. This is supported by the simulation study in
Section 3.3, where when the (total) population size is large, the resulting confidence
intervals constructed using this analytical approach are of reasonable width (that does
not lead to a negative lower limit when centred around the total population size) with

excellent coverage.

5.5 Generalised Zelterman’s estimator variance by conditioning

As with Sections 5.3 and 5.3, the conditioning technique in Equation 5.10 proposed by
van der Heijden et al. (2003), can be used to find the standard error of the generalised
Zelterman’s estimator, following the work of Bohning and van der Heijden (2009).

Var(N(¢?)) = E[Var(N(¢?)|1,)] + Var(E[N¢?)|L,]). (5.10)

Given that the generalised Zelterman’s estimator utilises the Horvitz-Thompson esti-
mator, the steps and methods used in Section 5.3 to find the variance of the Horvitz-
Thompson estimator are used here to find the variance of the generalised Zelterman’s
estimator. Therefore, when a Poisson distribution is assumed, the first term is as follows.

E[Var(N¢?)|L,)] ~ Var(N(¢%))
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where

VG(lB) = ~ TP n v

The second term of Equation 5.10 is then estimated as

N
—~ I
EfNCOI N~y — 1
NI ; 1—exp(—pi)
where using the independence assumption, the variance is calculated as
< I; L exp(—p)
Var v ) = —1,
<§ 1 —eXp(—ui)) 1221 1 —exp(—pui)
with the unbiased estimator
(X I; N exp(—pi)
Var . — I
(2 1—exp(—pu ; "(1—exp(—wi))?

iexp)

S (L—exp(—w))*

The variance of the generalised Zelterman'’s estimator seen in Equation 5.10 is as follows.

T
\7a\r(N<GZ>):<2VG(ﬁi|B)> Cov(B (ZVG )

Z exp(—H;)

2 (1 —exp(—w))*

(5.11)

When a geometric distribution is assumed, the variance formula is different, where the
first term is given as follows.

E[Var(N(¢?)|I;] ~ Var(N(¢%))

= Var i ﬁ),
i=1

where L1 _ G(f:|B)-

Ui

Using the multivariate -method, the variance is estimated as

T
Var(N(®2)|[;) = (zvc )Cov <zvc ) (5.12)
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A

where for u; = exp(h(v;)Tp,

For the second term, the expectation is given as

Fien

E[N©CY|) = E
iz M

where using the independence assumption, the variance is calculated as

N1/ + )
( ) Z:1—1/(1+yz)

with the unbiased estimator

——— N
Var ;
i=1

A 1/(1+ )
1 )‘?f(l—l/(lm))

L 1/(14+ ;)
LA-1/a+mp

"1/ + )
= Z ——
i=1 ]’li

(5.13)

Therefore, summing Equations 5.12 and 5.13 leads to the estimated variance of the
generalised Zelterman’s estimator when a geometric distribution is assumed as follows.

T
Var(N(¢2)) = (_Zvc(m]ﬁ) Cov(p <ZVG )

(5.14)
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Application: Suicide data

Applying Equation 5.11 to the suicide case study data results in a variance of 13425.49
with corresponding standard error 115.87 and 95% confidence interval

N{(6Z) £1.96 x 1/ Var(N(G2)) = 175.19 + 1.96 x \/13425.49
— (—52,402)
~ (27,402).

As with the confidence interval for the generalised Chao’s estimator in Section 5.4, this
confidence interval is not appropriate for the data given that the lower limit is negative
and the population size must be both non-negative and has a minimum of 27 given
the number of observed studies. Similarly, these results motivate the use of both the

bootstrap algorithm for computing the variance and confidence intervals instead.

Application: Hares data

Applying Equation 5.14 to the hares case study data results in a variance of 57003.52,
with corresponding standard error 238.75, resulting in the 95% confidence interval

N(6?) £1.96 x \/Var(N(G2)) = 3601.67 4+ 1.96 x 1/57003.52
— (3133.72,4069.62)
~ (3134,4070).

As with the interval for the generalised Chao’s estimator, this interval is of reasonable
width, with the lower limit being both greater than zero and greater than the observed
number of hares in the dataset. This differs to when the analytical approach is applied to
the suicide case study data, where the observed dataset is much smaller in size, leaving a
very small number of singletons and doubletons to use in the modelling and estimation
processes. These results, supported by the simulation study in Section 3.3, suggest that
the analytical approach is appropriate to use when there is a large sample size available,
and if there is not, then the bootstrap algorithm approach may be more suitable.
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Chapter 6

Uncertainty Quantification:
Bootstrap Algorithms

6.1 Introduction

The bootstrap algorithm (see Efron, 1979, 1981a, 1985; Efron and Tibshirani, 1993) is
a resampling method utilised for uncertainty quantification. Data is sampled and
resampled iteratively with replacement in to create a sampled dataset to estimate the
rate and target population size from and calculate the corresponding variance of the
bootstrap samples. Using capture-recapture methods, the level of uncertainty of the
estimated number of studies can be computed (see Buckland and Garthwaite, 1991;
Zwane and van der Heijden, 2003; Efron, 1981a), using bootstrapping. The standard
approach for the bootstrap algorithm is to take a non-parametric approach, where
each bootstrap sample has size equal to that of the observed data (e.g. Nock et al.,
2008, Method 1), seen in Section 6.2. However, the non-parametric approach risks
underestimating the variance as it does not account for the uncertainty in sampling
n out of N, which the semi-parametric, imputed approach developed in Section 6.3
does account for through randomly sampling the elements from the complete dataset
made up of both the observed and unobserved elements. Both the non-parametric
and the semi-parametric approaches randomly sample the studies to use for modelling
risking creating a sample which is unrepresentative of the data, especially with the
small observed sample size. This is a particular issue when accounting for model
uncertainty, where correlation between covariate combinations has the potential to give
inflated results. A parametric approach to bootstrapping can help avoid this, where
instead of resampling the studies themselves, the response variable is sampled from a
given distribution to create a more reliable sampled dataset. This approach is seen in
Section 6.4.
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A summary of the different bootstrapping approaches discussed in this section are as

follows:

Approach 1:

Approach 2:

Approach 3:

Non-parametric bootstrap algorithm - sample from only the observed data at
random with replacement and model the sampled data using a chosen model.
Compute desired statistics from chosen model.

Semi-parametric bootstrap algorithm - sample from the imputed complete data
at random with replacement and model the sampled data using a chosen model.

Compute desired statistics from chosen model.

Parametric bootstrap algorithm - use AIC or BIC weights to choose a distribution
from the models under consideration to sample counts from, create a new dataset
with the observed explanatory variables. Model the sampled data using a chosen
model. Compute desired statistics from chosen model.

To model the sampled data and account (or not account) for model uncertainty, the

chosen model can be selected using one of 3 methods:

Method 1:

Method 2:

Method 3:

(Full) In each bootstrap iteration, fit each of the competing models to the sampled
data and select the preferred model using AIC or BIC statistics (see Silverman
et al., 2024, for similar work). This method (fully) accounts for model uncertainty
but risks high correlation between the covariate combinations as a result of models
with covariates having the lowest AIC or BIC value being selected but leading to

inflated estimates and wide confidence intervals.

(Partial) Use an additional bootstrap algorithm, fitting the models to the sampled
data and recording the frequency of each model being preferred according to the
AIC or BIC statistic. Use the linear predictor and distribution combination which
is preferred the majority of the times in the main bootstrap algorithm. This method

(partially) accounts for model uncertainty.

(None) Use the same linear predictor and distribution combination that is preferred
for the observed data. This method does not account for model uncertainty, risking
underestimation of the variance.

Constructing confidence intervals aid in the quantification of the level of uncertainty of

an estimate from the bootstrap data. Introduced by Efron (1979), the widely accepted

percentile method is one way of constructing confidence intervals. For a given value of

w, the (100 — &) % confidence interval limits are computed by finding the § and 1 — 5

percentiles of the bootstrap statistics ordered numerically lowest to highest. Therefore,

the (100 — &) % percentile confidence intervals for the bootstrap estimates of the rate of

completed suicide and population sizes are as follows.
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[eXp (M iower - €XP (ﬁ)upper} = [eXp (ﬁ?%xg)) ,exp (ﬁz((l—%)xB))} :
[Nlowerfﬁupper} - {N{ng)rN&pg)xB)} ’

where B is the number of bootstrap samples.

6.2 Approach 1: Non-parametric

The non-parametric approach randomly resamples with replacement from the observed
data only, resulting in each bootstrap sample being of size n. Given a chosen combination
of linear predictor and distribution, the sampled data is modelled and the desired
statistics computed from the results. This process is repeated B times.

6.2.1 Method 1: Full

Formally, the non-parametric bootstrap algorithm using Method 1 for model selection is
as follows in Algorithm 2.

Algorithm 2 Bootstrap Approach 1, Method 1

Step 1: Letb = 1.

Step 2: Build a bootstrap sampled dataset, {(7], v{,x}),..., (7, v}, x;;)}, through
drawing n observations from the original dataset, {(7,v1,x1),..., (T, Vi, Xs)}, at
random and with replacement.

Step 3: Fit the competing models to the bootstrapped data and select the preferred
model using either the AIC or BIC. Estimate the rate or total population size using the
methods discussed in Chapter 4.

Step 4: If b = B, stop. Otherwise, return to Step 2 with b := b + 1.

Application: Suicide data

For quantifying the rate uncertainty, six sub-populations are defined by the combination
of covariates observed. Specifically, the combinations of the country of origin of the
study being either USA or other, and the proportion of women in the study being either
0.75, 0.8 or 0.85, where the proportions are approximately the three quartiles of the
observed data. Additionally, eight sub-populations are considered for assessing the
level of uncertainty when estimating the target population size. These sub-populations
are defined by the various combinations of the country of origin of each study and
the respective proportion of women. Country of origin is either USA or Other, and
the proportion of women for each study lies in one of the following intervals, [0,0.75),
[0.75,0.80), [0.80,0.85) and [0.85,1], where the cut-off points are three approximate

quartiles for the observed data.
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To formulate the non-parametric bootstrap algorithm to compute the rate and Horvitz-

Thompson population size estimates, Step 3 of Algorithm 2 can be modified as follows.

Step 3:

The

Fit the ten competing models given by each of the linear predictors in Table 2.1
for both the zero-truncated Poisson and negative-binomial distributions. Let j =
1,---,5 be the linear predictor and D € {Poisson (P), negative-binomial (NB)} be
the distribution that minimises the BIC with corresponding maximum likelihood

estimates B]ED) of ﬁj for the respective model. If D = (NB), let § be the estimate of
the dispersion parameter.

Rate: Given v; = (0.75,1)T, v, = (0.75,0)T, v3 = (0.8,1)7, vs = (0.8,0)7,
= (0.85,1)T, and ¥ = (0.85,0)7, the sub-population specific estimated rate of
completed suicide is calculated as

exp (1) = exp [h (%) B;D)]

fork=1,...,6.

Horvitz-Thompson: The estimated target population size for studies with the

same person-years and covariates as study i fori = 1,2, --- ,n is calculated as
1 N

ifD=P

_ T (P) ’
R = 1= po(wep (w3 )
1
! 2 7 if D = NB,
1—po (Tlexp[ (vi)T B; ] )

where the number of studies in sub- population Ais NZSZIT =Yica I/\\IélHT)* and

the estimated total number of studies is N =Y, HT)*

TABLE 6.1: Sub-population specific 95% percentile confidence intervals for the rate
of completed suicide (per 100,000 person-years) using the non-parametric bootstrap
samples.

Proportion of women

Country of origin 0.75 0.80 0.85
USA (9.9,54.8) (13.7,51.9) (17.7,50.1)
Other (19.6,58.4) (15.3,57.1) (15.8,57.0)

95% percentile confidence intervals can be calculated from the bootstrap samples

for both the rate of completed suicide and population sizes. The confidence intervals for

the rate of each of the six sub-populations can be seen in Table 6.1, where each of the

intervals are approximately centred at the estimated rate of 31.8 completed suicides per

100,000 person-years. Comparing the widths of the confidence intervals to assess the

degree of uncertainty show that for studies originating from the USA, the rate estimates
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are less uncertain for higher proportions of women. Given that the more data used for
estimation, the more accurate the estimate typically is and hence has less uncertainty, this
conclusion is plausible. For studies originating from the USA, only 10% of studies have
a proportion of women lower than 0.80, so the sub-population with a higher proportion
of women has more data and hence a more accurate estimate. However, this trend of the
higher proportion of women leading to lower uncertainty does not continue for studies
originating from countries besides the USA. With only 18% of studies from outside the
USA having a proportion of women greater than 0.85, 41% greater than 0.80 and 65%
greater than 0.75, the widths of the intervals don’t differ in size greatly. Therefore, for
countries outside of the USA, the level of uncertainty is relatively constant for different
proportions of women included in the study.
TABLE 6.2: Values of 95% percentile confidence intervals for the suicide case study

data using the Horvitz-Thompson population size estimates from the non-parametric
bootstrap samples for the eight sub-populations, marginal totals and overall total.

Proportion of women
Country of origin ~ [0,0.75)  [0.75,0.80) [0.8,0.85) [0.85,1] Total

USA (1,3) (0,0) (19,52)  (8,18)  (28,75)
Other (23,70)  (16,51) (7,20)  (519)  (57,230)
Total (24,1842)  (16,51)  (27,115) (14,134) (91,7059)

Table 6.2 provides 95% percentile confidence intervals using the Horvitz-Thompson
population size estimates from the non-parametric bootstrap algorithm. For each of the
sup-populations, the estimates of the total number of studies from the bootstrap data
are highly correlated, leading to inflated upper limits of the confidence intervals. This
can be seen in the confidence interval of the marginal totals, where the upper limits
are exceptionally large in comparison to the summation of the individual upper limits
for the sub-populations. In particular, the confidence interval for the total number of
studies indicates that there is a lot of uncertainty with a very wide interval, which may

not be the case if model uncertainty is taken into consideration using Method 2.

For the generalised Chao’s and generalised Zelterman’s estimators, Step 3 of the non-

parametric bootstrap algorithm can be modified as follows.

Step3: If }.' 1 (x; =1) =0or /L (xf = 2) = 0, return to Step 2. Otherwise, truncate
bootstrap dataset for all counts except X = 1 and X = 2. Fit competing binomial
logistic regression models for linear predictors j = 1,--- ,4 in Table 2.1. Let j =
1,---,4 be the linear predictor which minimises the BIC, § be the corresponding
fitted values and ,[A%]v be the corresponding maximum likelihood estimates of B;.

Generalised Chao’s: Let

o i

fi =295
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fori =1,2,---, fi + fo, then the estimated target population size is calculated as

fith
NGO _ oy Jatfio
b Z% Vl 2/2

Generalised Zelterman’s: Let

fi = 2texp(h(vi)" B;),

wherei =1,2,---,n, then the estimated target population size for studies with

the same person-years and covariates as study i fori = 1,2,- - - ,n is calculated as

S(GZ)x 1
N = T ()

where Nb(GZ)* =Y, N}gicz)*

For the generalised Chao’s and generalised Zelterman'’s estimators, in the bootstrap
algorithms only linear predictors 1, 2, 3 and 4 are fitted due to the interaction term in
linear predictor 5 leading to predicted values of either 0 or 1 when the binomial logistic
regression model is fitted to the truncated data, suggesting that there are issues with the

model.

As with the Horvitz-Thompson estimator, the total population size estimates confidence
intervals for the generalised Chao’s and generalised Zelterman’s population size estima-
tors are very wide with a large upper limit. Respectively, the 95% percentile confidence
intervals for the two estimators are (67, 10870), and (67, 9625864000). Similarly, this
inflated upper limit of the confidence interval is as a result of the high correlation be-
tween covariate combinations, leading to large population size estimates and confidence
intervals which provide no useful information. Utilising an alternative approach for
accounting for model uncertainty within the non-parametric bootstrap algorithm with a

lower risk of this high correlation may lead to a more appropriate confidence interval.

Application: Hares data

The sub-populations for the hares case study dataset are defined by the combination of
covariates observed, specifically the different seasons and study areas. Given that the
AIC is used for model selection for the observed data, the AIC is used in the bootstrap
algorithm for consistency. Additionally, only the geometric distribution is assumed
in the bootstrap algorithm due to the large disparity in the AIC, BIC and likelihood
statistics for the geometric models to the Poisson and negative-binomial models.

To formulate the non-parametric bootstrap algorithm to compute the Horvitz-Thompson

population size estimates, Step 3 of Algorithm 2 can be modified as follows.
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Step 3: Fit the five competing models given by each of the linear predictors in Table 2.3 for
the zero-truncated geometric distribution. Let ]~ =1,---,5Dbe the linear predictor
that minimises the AIC with corresponding maximum likelihood estimates 'B]T of

B, for the respective model.
Horvitz-Thompson: The estimated target population size for snowshoe hares with

the same covariates as harei fori = 1,2, - - ,n is calculated as

QUHT)* _ ! ’
Ny, 1—po (eXp [hj(vl)T‘Bﬂ>

where the number of snowshoe hares in sub-population A is

NISZIT)* = Yica NISIHT)* and the estimated total number of snowshoe hares is

7 (HT)* S(HT)*
Né "= ?:1Nb(z’ )

TABLE 6.3: Values of 95% percentile confidence intervals for the hares case study
data using the Horvitz-Thompson population size estimates from the non-parametric
bootstrap samples for the six sub-populations, marginal totals and overall total.

Season
Study area Midwinter  Spring Summer Total
Square mile area  (279,339)  (533,643)  (770,925)  (1319,1575)
Five small areas  (275,336)  (368,445)  (670,806)  (1589,1898)
Total (557,671)  (904,1083) (1443,1724) (2910,3467)

Table 6.3 provides the 95% percentile confidence intervals for each sub-population,
marginal totals and the overall total estimated population size, using the Horvitz-
Thompson estimator from the non-parametric bootstrap algorithm. Given that the
upper limits of the confidence intervals are not inflated, like with the suicide case study
data, estimates of the number of hares for each sub-population are not highly correlated.
Additionally, the 95% percentile confidence interval for the overall number of hares is
approximately centred around the corresponding Horvitz-Thompson population size
estimate for the observed data, however, the sub-population intervals are not all centred
around their corresponding estimates for the observed data. Overall, the intervals are
relatively narrow, indicating that there is not a high quantity of uncertainty, which is to
be expected in comparison to the suicide data given that the size of the data is much

larger and the more data available the less uncertainty with estimation.

For the generalised Chao’s and generalised Zelterman’s estimators, Step 3 of the non-

parametric bootstrap algorithm can be modified as follows.

Step3: If Y/ 1 (xf =1) =0or L' (xj =2) = 0, return to Step 2. Otherwise, truncate
bootstrap dataset for all counts except X = 1 and X = 2. Fit competing binomial

logistic regression models for linear predictors j = 1,--- ,5 in Table 2.1. Let j =
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1,---,5Dbe the linear predictor which minimises the AIC, 4 be the corresponding
titted values and .Bj be the corresponding maximum likelihood estimates of §;.

Generalised Chao’s: Let

S o pz/2
Generalised Zelterman’s: Let

fi = exp(h(vi)"B;),

wherei =1,2,-- - ,n, then the estimated target population size for hares with the
same covariates as study i fori = 1,2, - - ,n is calculated as

5(GZ)x* 1
Ny =,
¥ 1 —exp(—fi)
where ngcz)* =Y, NZS?Z)*

The resulting 95% percentile confidence interval for the overall number of snowshoe
hares using the generalised Chao’s estimator is (2994, 3954). As for the generalised
Zelterman’s estimator, the resulting 95% percentile confidence interval for the over-
all number of snowshoe hares is (3218, 4268). Both intervals contain the respective

population size estimates of the observed data and are approximately centred at these
estimates.

6.2.2 Method 2: Partial

Given that accounting for model uncertainty through using Method 1, sampling from
the best fitting competing model for each bootstrap iteration, leads to high correlation
between the covariate combinations and hence very wide confidence intervals, an
alternative approach should be considered. This alternative of Method 2 requires an
additional bootstrap algorithm to find out which of the competing models fits the
data best the majority of times. Formally, this additional bootstrap is as follows in
Algorithm 3.

From the results from the additional bootstrap, compute the proportion that each
combination of (j, D) is selected as the best. Use this linear predictor and distribution
combination to model the bootstrap data in the non-parametric bootstrap algorithm for
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Algorithm 3 Bootstrap Approach 1, Method 2, Additional Bootstrap

Step 1: Let b = 1.

Step 2: Build a bootstrap sampled dataset, {(7;,v],x}), -, (T:, v}, x;,) }, through
drawing n observations from the original dataset, {(7i,v1,x1),...,(Tu, Va, Xu)}, at
random and with replacement.

Step 3: Fit the competing models to the bootstrap data. Let (s, Dp) be the linear
predictor and distribution combination that minimises the AIC or BIC.

Step 4: If b = B, stop. Otherwise, return to Step 2 with b := b + 1.

computing the desired estimates. Formally, the non-parametric bootstrap algorithm is
then as follows in Algorithm 4.

Algorithm 4 Bootstrap Approach 1, Method 2

Step 1: Let b = 1.

Step 2: Build a bootstrap sampled dataset, {(t}, v}, x}),..., (7, v}, x;)}, through
drawing n observations from the original dataset, {(71,v1,x1),...,(Th, Va, Xu)}, at
random and with replacement.

Step 3: Fit the model with linear predictor and distribution combination (j, D) found
using Algorithm 3 and estimate the rate or total population size using the methods
discussed in Chapter 4.

Step 4: If b = B, stop. Otherwise, return to Step 2 with b := b + 1.

Application: Suicide data

Step 3 of Algorithm 3 can be modified as follows to find the proportion of times each
linear predictor and distribution combination is preferred for the rate and Horvitz-
Thompson population size estimates to use in the non-parametric bootstrap algorithm.

Step 3: Fit the ten competing models given by each of the linear predictors in Table 2.1
for both the zero-truncated Poisson and negative-binomial distributions. Let j, =
1,---,5 be the linear predictor and D, € {Poisson (P), negative-binomial (NB)}
be the distribution that minimises the BIC. Record the combination (j,, Dy).

Additionally, Step 3 of Algorithm 4 can be modified as follows to estimate the rate and
Horvitz-Thompson population size estimates.

Step 3: Fit the zero-truncated model with linear predictor and distribution combination
( ;, ﬁ) to the sampled dataset. Let B](;D) be the corresponding maximum likelihood
estimates of B; and 0 be the estimate of the dispersion parameter if D= (NB).

Rate: Given v; = (0.75,1)7, v, = (0.75,0)7, v3 = (0.80,1)7, 4 = (0.80,0)7,
vs = (0.85,1)T, and v = (0.85,0)7, the sub-population specific estimated rate of
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completed suicide is calculated as

exp(s) = exp [ ()" B,

fork=1,...,6.

Horvitz-Thompson: The estimated target population size for studies with the

same person-years and covariates as study i fori = 1,2, --- ,n is calculated as

1
1— po (Tz exp {hJ(Vz)TB]gP)D
bi = 1
1—po (TzeXP [h (vi) 'B]E ] A)

where the number of studies in sub-population Ais ﬁ (HT) =Yica N;SIHT)* and

the estimated total number of studies is N =Y HT)

TABLE 6.4: Proportion of times each linear predictor and distribution combination has
lowest BIC statistic from the non-parametric bootstrap algorithm for computing the
rate and Horvitz-Thompson estimator for the suicide case study data.

Linear Predictor
Distribution 1 2 3 4 5
Poisson 782% 153% 4.5% 0.3% 1.7%
Negative-binomial 0.0%  0.0% 0.0% 0.0% 0.0%

Table 6.4 displays the proportions that each linear predictor and distribution combina-
tion has the lowest BIC statistic from the non-parametric bootstrap algorithm. Given
that the intercept-only zero-truncated Poisson model is chosen as the best fitting model
for approximately 80% of the bootstrap iterations, the linear predictor and distribution
combination to use in the bootstrap algorithm for computing the 95% confidence inter-
vals for the rate of completed suicide and Horvitz-Thompson population size estimator
is (f, D) = (1, P). The 95% percentile confidence intervals for the rate and population
size utilising this linear predictor and distribution combination are (8.1, 66.0) per 100,000
person-years and (74, 411) respectively. The interval for the rate is notably wider than
that of the Wald-type interval, likely due to the fact that the Hauck-Donner effect results
in the uncertainty being underestimated. Given that there are no covariates included
in the favoured model, the confidence intervals are for the total population rather than
for sub-populations as with the alternative approach to accounting for model uncer-
tainty. However, the confidence interval for the rate of completed suicide computed
using only the intercept-only zero-truncated Poisson model is narrower than the sub-
population confidence intervals seen in Table 6.1. Similarly, the confidence interval for
the Horvitz-Thompson population size is narrower than the confidence interval for the
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total population size seen in Table 6.2 as a result of the reduction in bias from not fitting
each of the competing models to each iteration.

As the generalised Chao’s and generalised Zelterman’s estimators utilise a binomial
logistic regression model on a truncated dataset rather than the Poisson or negative-
binomial distributions that the Horvitz-Thompson estimator utilises, Step 3 in the
additional bootstrap algorithm, Algorithm 3, requires further modification. This is done

as follows.

Step3: If ). 1 (x; =1) =0or /L (xf = 2) = 0, return to Step 2. Otherwise, truncate
bootstrap dataset for all counts except X = 1 and X = 2. Fit competing binomial
logistic regression models for linear predictors j = 1,- - - ,4 in Table 2.1. Record
the linear predictor which minimises the BIC, f;,.

The linear predictor with the highest proportion of times selected, f, is used in the
bootstrap algorithm to compute the generalised Chao’s and generalised Zelterman’s

population size estimates by modifying Step 3 as follows.

Step3: If }.' 1 (x; =1) =0or /L (xf = 2) = 0, return to Step 2. Otherwise, truncate
bootstrap dataset for all counts except X = 1 and X = 2. Fit the binomial logistic
regression model with linear predictor 7 to the sampled truncated dataset. Let 4 be
the corresponding fitted values and f be the corresponding maximum likelihood

estimates of B;.

Generalised Chao’s: Let

wherei =1,2,---,n, then the estimated target population size for studies with

the same person-years and covariates as study i fori = 1,2, --- ,n is calculated as

S(GZ)x 1
Noi = T exp ()’

where Nb(GZ)* =Y ngicz)*.
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TABLE 6.5: Proportion of times each linear predictor has lowest BIC statistic from
the non-parametric bootstrap algorithm for computing the generalised Chao’s and
generalised Zelterman's estimators for the suicide case study data.

Linear Predictor
Distribution 1 2 3 4
Binomial 702% 6.1% 18.0% 5.7%

Table 6.5 displays the proportions for the linear predictors being selected as the best
titting model for the non-parametric bootstrap algorithm. Utilising the intercept-only
binomial logistic regression model for computing the generalised Chao’s and gener-
alised Zelterman’s population size estimators in the bootstrap algorithm, given that
linear predictor 1 has the highest proportion at 70%, leads to 95% percentile confidence
intervals of (64, 697) and (63, 712) respectively.

These intervals are comparable to one another, but are wider than the interval computed
using the Horvitz-Thompson estimator, suggesting that for at least smaller sample sizes,
the generalised Chao’s and generalised Zelterman’s estimators have a higher level of
uncertainty, and that the total number of studies estimate of 134 using the Horvitz-
Thompson estimator is less uncertain than the estimates of 173 and 175 computed by

the generalised Chao’s and generalised Zelterman’s estimators respectively.

Using this approach for accounting for model uncertainty in the bootstrap algorithm
provides much less biased and skewed confidence intervals which are also narrower,
enabling more inferences to be made. Given that for each bootstrap, the model pre-
ferred the highest proportion of times is the same model as preferred for the observed
dataset, Method 2 of model selection is the same as Method 3, not accounting for model
uncertainty at all and simply using the model preferred for the observed data so this
additional bootstrap algorithm is not required. Additionally, for each of the population
size estimators, the linear predictor (and distribution) preferred the highest proportion
of times is the same as for the observed data, meaning these confidence intervals are the

same as for if no model uncertainty was considered.

Application: Hares data

Step 3 of Algorithm 3 can be modified as follows to find the proportion of times each
linear predictor is preferred for the Horvitz-Thompson population size estimates to use
in the non-parametric bootstrap algorithm.

Step 3: Fit the five competing models given by each of the linear predictors in Table 2.3 for
the zero-truncated geometric distribution. Let fb =1,---,5Dbe the linear predictor
that minimises the AIC. Record the value of Jj,.
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Additionally, Step 3 of Algorithm 4 can be modified as follows to estimate the Horvitz-
Thompson population size estimates.

Step 3: Fit the zero-truncated geometric model with linear predictor f to the sampled

dataset. Let B] be the corresponding maximum likelihood estimates of §;.
Horvitz-Thompson: The estimated target population size for snowshoe hares with

the same covariates as harei fori = 1,2, - - ,n is calculated as

NHD* _ 1 ’
T e (ew [y

where the number of snowshoe hares in sub-population A is
Néfﬂ Y= Yiea NélHT) “ and the estimated total number of snowshoe hares is

N}EHT)* _ Z?:1 Z/\\]b(iHT)*

TABLE 6.6: Proportion of times each linear predictor and distribution combination has
lowest AIC statistic from the non-parametric bootstrap algorithm for computing the
Horvitz-Thompson estimator for the hares case study data.

Linear Predictor
Distribution 1 2 3 4 5
Geometric 0% 1% 0% 2% 97%

Table 6.6 provides the proportions that each linear predictor has the lowest AIC statistic
from the non-parametric bootstrap algorithm. The full model is selected as the best
titting model 97% of times, therefore, the zero-truncated geometric model with linear
predictor f = 5 is the model used in the bootstrap algorithm to compute the 95%
percentile confidence intervals for the Horvitz-Thompson population size estimates.

Additionally, the preferred model for the observed data, the full model, is the same
model that is preferred the highest proportion of times in the simulated data. As a result
of this, Methods 2 and 3 of accounting for model uncertainty for the snowshoe hares
dataset are equal. Therefore, the confidence intervals computed using Method 2 are the

same as for if no model uncertainty was considered.

TABLE 6.7: Values of 95% percentile confidence intervals for the hares case study
data using the Horvitz-Thompson population size estimates from the non-parametric
bootstrap samples for the six sub-populations, marginal totals and overall total.

Season
Study area Midwinter  Spring Summer Total
Square mile area  (278,341)  (534,644)  (771,925)  (1320,1579)
Five small areas  (275,336)  (367,445)  (669,805)  (1592,1898)
Total (557,671)  (906,1084) (1445,1725) (2916, 3469)
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Table 6.7 provides the 95% percentile confidence intervals of the Horvitz-Thompson
population size estimates using the non-parametric bootstrap algorithm, only fitting
the full model in each iteration. The results from using Method 2, fitting only the full
model each iteration, and the results from using Method 1, fitting all competing models
each iteration, are highly comparable, with only small changes in the intervals. This
small difference is to be expected given that the full model is preferred 97% of the time,
indicating that in Method 1, the full model is fitted in the vast majority of iterations.
Therefore, for the hares case study data, there is little benefit in accounting for the
additional model uncertainty through using Method 1.

Given that the generalised Chao’s and generalised Zelterman'’s estimators use a different
regression model to the Horvitz-Thompson estimator, Step 3 in Algorithm 3 requires
additional modification as follows.

Step3: If }.' 1 (x; =1) =0or /. (xf = 2) = 0, return to Step 2. Otherwise, truncate
bootstrap dataset for all counts except X = 1 and X = 2. Fit competing binomial
logistic regression models for linear predictors j = 1,---,5 in Table 2.3. Record

the linear predictor which minimises the AIC, ﬁ,.

The linear predictor with the highest proportion of times selected, 7, is used in the
bootstrap algorithm to compute the generalised Chao’s and generalised Zelterman'’s

population size estimates by modifying Step 3 as follows.

Step3: If }.' 1(x7 =1) =0or Y. (xf = 2) = 0, return to Step 2. Otherwise, truncate
bootstrap dataset for all counts except X = 1 and X = 2. Fit the binomial logistic
regression model with linear predictor f to the sampled truncated dataset. Let 4 be
the corresponding fitted values and f be the corresponding maximum likelihood
estimates of f;.

Generalised Chao’s: Let
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wherei =1,2,---,n, then the estimated target population size for snowshoe hares

with the same covariates as hareifori = 1,2,--- ,n is calculated as

S(GZ)x 1
AR gy

where N;EGZ)* =Y, NISIGZ)*.

TABLE 6.8: Proportion of times each linear predictor and distribution combination has

lowest AIC statistic from the non-parametric bootstrap algorithm for computing the

generalised Chao’s and generalised Zelterman’s estimators for the hares case study
data.

Linear Predictor
Distribution 1 2 3 4 5
Binomial 271% 33.4% 4.9% 5.3% 29.3%

Table 6.8 provides the proportion of times that each linear predictor is preferred using
the AIC statistic for the non-parametric bootstrap algorithm. The model with linear
predictor 2 was preferred more times than the other linear predictors, but unlike with
the proportions given in Table 6.6 for the geometric regression models, there is no clear
preference for one linear predictor over another with the proportions for linear predictors
1,2 and 5 being very close to each other. The resulting 95% percentile confidence intervals
for the generalised Chao’s and generalised Zelterman'’s estimators respectively are (2979,
3873) and (3194, 4196), however, given that there was no clear preference for one linear
predictor, it can be assumed that Method 2 of the non-parametric bootstrap algorithm is

not the most suitable method.

6.2.3 Method 3: None

Method 3 for the bootstrap algorithm does not account for model uncertainty, instead it
tits only the preferred model for the observed data. Formally, this bootstrap is given in
Algorithm 5.

Algorithm 5 Bootstrap Approach 1, Method 3

Step 1: Let b = 1.

Step 2: Build a bootstrap sampled dataset, {(7}, v}, x]),..., (T, vy, x;)}, through
drawing n observations from the original dataset, {(7,v1, x1),..., (T, Vi, Xs)}, at
random and with replacement.

Step 3: Fit the preferred model for the observed data to the bootstrapped data and
estimate the rate or total population size using the methods discussed in Chapter 4.
Step 4: If b = B, stop. Otherwise, return to Step 2 with b := b + 1.
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Application: Suicide data

Given that for Method 2, the linear predictor and distribution combination preferred the
majority of times for the bootstrap data is the same as preferred for the observed data,
the results from the non-parametric bootstrap algorithm using Method 2 are the same as

the results from using Method 3.

Application: Hares data

Similarly to the suicide case study data, the preferred model for the bootstrap data for the
Horvitz-Thompson estimator is the same as for the observed data. Therefore, the results
from Methods 2 and 3 for the non-parametric bootstrap algorithms are equal. However,
for the generalised Chao’s and generalised Zelterman'’s estimators, the preferred linear
predictor for the observed data, j = 1, is not the same as the preferred linear predictor
for the bootstrapped data, j = 2. Therefore, the results from Methods 2 and 3 will vary.
To perform Method 3 of the non-parametric bootstrap algorithm, Step 3 of Algorithm 5
can be modified as follows.

Step 3: Let j be the linear predictor that is preferred for the observed data, 4 be the
corresponding fitted values and B; be the corresponding maximum likelihood

estimates of f;.

Generalised Chao’s: Let

Generalised Zelterman’s: Let

A

fii = exp(h(v))"B),

wherei =1,2,-- - ,n, then the estimated target population size for snowshoe hares

with the same covariates as study i fori = 1,2, -- - ,n is calculated as

S(GZ)*x 1
N = T e (<)’

where NZSGZ)* =Y, Néicz)*.

Using Method 3 for the non-parametric bootstrap algorithm results in the 95% percentile

confidence intervals for the total number of snowshoe hares (2926, 3750) and (3153,
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4092) for the generalised Chao’s and generalised Zelterman’s estimators respectively.
These estimates are comparable to those found using Method 1 for accounting for model
uncertainty, although slightly narrower due to the the model uncertainty not being
accounted for, and hence less variation was taken into consideration. Given that it is
seen in Table 6.8 that there is no clear preference for one model, and that the preferred
model for the observed data is only selected approximately one third of the time, there
is evidence that Method 3 is not appropriate for this data when using the generalised
Chao’s and generalised Zelterman’s estimators.

6.3 Approach 2: Semi-parametric

Given that a non-parametric approach samples only from the observed data, there is a
risk of underestimating the variability of the target population size, as mentioned by
Norris and Pollock (1996). This risk occurs as the approach relies on the data being
observed and doesn’t consider the variance comes from the sampling of n from N and
estimating fo from n. To avoid this, the parametric bootstrap approach by Zwane and
van der Heijden (2003) and Method 3 by Norris and Pollock (1996) can be modified to
form an semi-parametric bootstrap algorithm. This approach samples from the total
population, made up of the observed data used in the non-parametric approach and
the unobserved data which has length equal to the imputed number of missing studies.
Through sampling from the complete data, the number of observed studies, #, is treated
as a random quantity, and the population size is estimated using a capture-recapture

estimator and rounded to the nearest integer.

6.3.1 Method 1: Full

Formally, the semi-parametric bootstrap algorithm accounting for model uncertainty
using Method 1 through fitting the competing models in each iteration using Method 1,
is as follows in Algorithm 6.

Application: Suicide data

To formulate the semi-parametric bootstrap algorithm to compute the rate and Horvitz-
Thompson population size estimates, Step 4 of Algorithm 6 can be modified as follows.

Step 4: Fit the ten competing models given by each of the linear predictors in Table 2.1
for both the zero-truncated Poisson and negative-binomial distributions. Let j =
1,---,5be the linear predictor and De {Poisson (P), negative-binomial (NB)} be
the distribution that minimises the BIC with corresponding maximum likelihood
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Algorithm 6 Bootstrap Approach 2, Method 1

Step 1: Let b = 1.

Step 2: Build a bootstrap sampled dataset, { (77, v}, x}), ..., (75, v, x5 ) }, through
drawing N observations from the complete data, {(Tl, vy, xl), ..., (TN, V5, Xg) }, at
random and with replacement. Given that for the complete data, studies i = n +
1,---, N are unobserved, T; and v; are unknown, but x; = 0 as the unobserved data
are the missing counts of zero events.

Step 3: Truncate studies with a count of events of zero, x; = 0fori =1,2,---, N. As
these studies are truncated, the unknown values of the covariates, v}, and person-
years, T;, are also truncated, so it is unimportant that there is missing covariate
information. The sampled observed number of studies is then denoted by ;.

Step 4: Fit the competing models and estimate the rate or total population size using
the methods discussed in Chapter 4.

Step 5: If b = B, stop. Otherwise, return to Step 2 with b := b + 1.

estimates ﬁJED) of B; for the respective model. If D = (NB), let § be the estimate of
the dispersion parameter.

Rate: Given v; = (0.75,1)7, v, = (0.75,0)T, v3 = (0.80,1)7, v, = (0.80,0)7,
= (0.85,1)T, and ¥ = (0.85,0)7, the sub-population specific estimated rate of
completed suicide is calculated as

exp (1) = exp [(hj (Vk)TB}D)] ,

fork=1,...,6.

Horvitz-Thompson: The estimated target population size for studies with the

same person-years and covariates as study i fori = 1,2, --- ,n is calculated as

1 £ —p,
1—p0(Tzexp[ (v;) [AS]E D o=y

bi = X N
1—P0(Tlexp[ (V) B]g ] A) if D= NB,

where the number of studies in sub—population Ais NéfT " =Yica Nb(iHT)* and

the estimated total number of studies is N =y, HT)*

TABLE 6.9: Sub-population specific 95% percentile confidence intervals for the rate
of completed suicide (per 100,000 person-years) using the semi-parametric bootstrap
samples.

Proportion of women
Country of origin 0.75 0.80 0.85
USA (9.6,56.0) (13.2,52.8) (17.7,51.2)
Other (17.5,59.2) (12.5,57.7) (10.6,57.7)
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Table 6.9 displays the 95% percentile confidence intervals for the estimated rate of com-
pleted suicide from the semi-parametric bootstrap data for the six sub-populations. The
width of these intervals show that there is less uncertainty for studies which originate in
the USA and for studies which have a higher proportion of women. These conclusions
are expected given that there are more studies from the USA, hence more informa-
tion to estimate from, and more studies which have a higher proportion of women, in
particular for those also originating from the USA. The intervals in Table 6.1 from the
non-parametric bootstrap approach are very close to the semi-parametric intervals and
also support these conclusions. Given that the intervals are comparable, it suggests that
the variance that comes from sampling 7 from N is not important to the rate estimation
and hence either the non-parametric or semi-parametric approaches to the bootstrap
algorithm are appropriate for the data.
TABLE 6.10: Values of 95% percentile confidence intervals for the suicide case study

data using the Horvitz-Thompson population size estimates from the semi-parametric
bootstrap samples for the eight sub-populations, marginal totals and overall total.

Proportion of women

Country of origin ~ [0,0.75) [0.75,0.80) [0.8,0.85) [0.85,1] Total
USA (1,4) (0,0) (18,54)  (5,18)  (27,79)
Other (22,78) (16,60)  (7,26)  (524)  (56,312)
Total (24,10215)  (16,61)  (27,135) (14,182) (90,28913)

As with the non-parametric bootstrapping approach, high correlation in the bootstrap
estimates of the number of studies for the individual sub-populations from randomly
resampling the studies to create the new datasets, gives inflated upper limits for the 95%
percentile confidence intervals. As a result of this, any interpretations made from these
confidence intervals would not be reliable. The additional uncertainty that comes from
sampling n from N that is accounted for in the semi-parametric approach makes this
correlation increase, with these intervals being much wider than those seen in Table 6.2.

To formulate the semi-parametric bootstrap algorithm for the generalised Chao’s and
generalised Zelterman’s estimators, Step 4 can be modified as follows.

Step 4: If ZE 1(xf=1)=0or ZE 1(xj =2) =0, return to Step 2. Otherwise, truncate
bootstrap dataset for all counts except X = 1 and X = 2. Fit competing binomial
logistic regression models for the linear predictors in Table 2.1. Let ]~ =1,---,5be
the linear predictor which minimises the BIC, § be the corresponding fitted values

and Bf be the corresponding maximum likelihood estimates of B;-

Generalised Chao’s: Let

fori =1,2,---, fi + f», then the estimated target population size is calculated as
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S(GO)x _ +f1§r2 fin+ fix
5 pi+pz/2

Generalised Zelterman’s: Let

A

fi =2t exp(h(v))"B),

wherei =1,2,---,n, then the estimated target population size for studies with

the same person-years and covariates as study i fori = 1,2, - - - , n is calculated as

S(GZ)x 1

Noi = T exp ()’

where Nh(GZ)* =Y, KIZSiGZ)*

Similarly to the results from the Horvitz-Thompson estimator, the estimated popula-
tion size confidence intervals for the generalised Chao’s and generalised Zelterman'’s
estimators are very wide through experiencing bias from the high correlation between
covariate combinations. For the generalised Chao’s estimator, N =173, leading to the
95% percentile confidence interval of (61, 11872). This is also slightly wider than than the
respective interval from the non-parametric bootstrap, given the additional uncertainty
from treating the observed number of studies as a random variable. The change in width
for the 95% percentile confidence interval from the generalised Zelterman’s estimator is
even larger. Using N = 175, the resulting interval is (57, 7483018000), illustrating that
there is a high level of uncertainty with the generalised Zelterman’s using this bootstrap
approach, and hence may not be the best approach to take.

Application: Hares data

To formulate the semi-parametric bootstrap algorithm to compute the Horvitz-

Thompson population size estimates, Step 4 of Algorithm 6 can be modified as follows.

Step 4: Fit the five competing models given by each of the linear predictors in Table 2.3 for
the zero-truncated geometric distribution. Let j = 1, - - -, 5 be the linear predictor
that minimises the AIC with corresponding maximum likelihood estimates Bj of

B, for the respective model.
Horvitz-Thompson: The estimated target population size for snowshoe hares with
the same covariates as harei fori = 1,2, - - ,n is calculated as
S(HT)x 1
Ny = T
1—po (exp [h;(vi) ﬁ]D
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where the number of snowshoe hares in sub-population A is

Néfn* = Yiea N}EiHT)* and the estimated total number of snowshoe hares is
HT)x*

(HT)* 5
N}S ey, ngz'

TABLE 6.11: Values of 95% percentile confidence intervals for the hares case study
data using the Horvitz-Thompson population size estimates from the semi-parametric
bootstrap samples for the six sub-populations, marginal totals and overall total.

Season
Study area Midwinter Spring Summer Total
Square mile area  (279,478)  (527,641)  (763,920)  (1278,1564)
Five small areas  (255,333)  (337,438)  (664,804) (1581,1970)
Total (542,790)  (871,1074) (1432,1720) (2865,3510)

Table 6.11 provides the 95% percentile confidence intervals for each sub-population,
marginal totals and the overall total estimated population size, using the Horvitz-
Thompson estimator for the semi-parametric bootstrap algorithm. Comparatively to
the results from the non-parametric bootstrap algorithm (Approach 1), the intervals for
the semi-parametric bootstrap algorithm are more centred around the corresponding
Horvitz-Thompson estimates for the observed data. Similarly to the non-parametric
approach however, the intervals are relatively narrow, indicating that there is minimal
correlation between the covariates and a small amount of uncertainty, likely due to the
large size of the data.

To formulate the semi-parametric bootstrap algorithm for the generalised Chao’s and

generalised Zelterman’s estimators, Step 4 can be modified as follows.

Step 4: If Zﬁ (xf =1)=0o0r Zﬁ 1(xf =2) =0, return to Step 2. Otherwise, truncate
bootstrap dataset for all counts except X = 1 and X = 2. Fit competing binomial
logistic regression models for the linear predictors in Table 2.3. Letj =1, -+ ,5 be
the linear predictor which minimises the AIC, § be the corresponding fitted values

and 8 7 be the corresponding maximum likelihood estimates of B;.

Generalised Chao’s: Let

S o pz/2
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wherei =1,2,---,n, then the estimated target population size for snowshoe hares
with the same covariates as hareifori = 1,2,--- ,n is calculated as

S(GZ)x 1
AR gy

where N;EGZ)* =Y, NISIGZ)*.

Using Method 1 for the semi-parametric bootstrap algorithm results in the 95% percentile
confidence intervals for the total number of snowshoe hares (2957, 3988) and (3184,
4304) for the generalised Chao’s and generalised Zelterman’s estimators respectively.
These intervals are comparable to the non-parametric intervals also using Method
1, indicating that there is not a notable difference in using Approaches 1 or 2 to the
bootstrap algorithm. This result is different to the suicide dataset, where the intervals
for the different approaches vary considerably, likely due to the large difference in size

of the overall observed dataset.

6.3.2 Method 2: Partial

Alternatively, model uncertainty can be accounted for using Method 2, through an
additional bootstrap algorithm to assess which model is preferred the majority of the
time. Formally, the additional bootstrap algorithm for comparing the competing models
is as follows in Algorithm 7.

Algorithm 7 Bootstrap Approach 2, Method 2, Additional Bootstrap

Step 1: Let b = 1. R
Step 2: Build a bootstrap sampled dataset, N studies { (], v}, x}),..., (T8, v x5) },
from the complete data, {(Tl, v, x1), ., (T VR, Xg) }, at random and with replace-

ment. Given that for the complete data, studiesi =n+1,-- -, N are unobserved, T;
and v; are unknown, but x; = 0 as the unobserved data are the missing counts of zero
events.

Step 3: Truncate studies with a count of events of zero, x; = 0fori =1,2,---, N. As
these studies are truncated, the unknown values of the covariates, v}, and person-
years, T, are also truncated, so it is unimportant that there is missing covariate
information. The sampled observed number of studies is then denoted by #;.

Step 4: Fit the competing models to the bootstrap data. Let (j,, D;) be the linear
predictor and distribution combination that minimises the AIC or BIC.

Step 5: If b = B, stop. Otherwise, return to Step 2 with b := b + 1.

Compute the proportion that each combination of (], D) is selected as the best using the
results from the additional bootstrap. Use this linear predictor and distribution combi-
nation in the semi-parametric bootstrap algorithm to compute the rate and population
size estimates. Formally, the semi-parametric bootstrap algorithm is then as follows in
Algorithm 8.
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Algorithm 8 Bootstrap Approach 2, Method 2

Step 1: Let b = 1.

Step 2: Build a bootstrap sampled dataset, { (7}, v}, x}),..., (TZ%, v, x}]) }, through
drawing N observations from the complete data, {(Tl, Vi, X1), 0 (TR VR XR) }, at
random and with replacement. Given that for the complete data, studies i = n +
1,---, N are unobserved, T; and v; are unknown, but x; = 0 as the unobserved data
are the missing counts of zero events.

Step 3: Truncate studies with a count of events of zero, x; = 0fori =1,2,---, N. As
these studies are truncated, the unknown values of the covariates, v}, and person-
years, T, are also truncated, so it is unimportant that there is missing covariate
information. The sampled observed number of studies is then denoted by ;.

Step 4: Fit the model with linear predictor and distribution combination (j, D) found
using Algorithm 7 and estimate the rate or total population size using the methods
discussed in Chapter 4.

Step 5: If b = B, stop. Otherwise, return to Step 2 with b := b + 1.

Application: Suicide data

Step 4 of Algorithm 7 can be modified as follows to find the proportion of times each
linear predictor and distribution combination is preferred for the rate and Horvitz-

Thompson population size estimates to use in the semi-parametric bootstrap algorithm.

Step 4: Fit the ten competing models given by each of the linear predictors in Table 2.1
for both the zero-truncated Poisson and negative-binomial distributions. Let j, =
1,---,5 be the linear predictor and D, € {Poisson (P), negative-binomial (NB)}
be the distribution that minimises the BIC. Record the combination (j,, Dy).

Additionally, Step 4 of Algorithm 8 can be modified as follows to estimate the rate and

Horvitz—Thompson population size estimates.

Step 4: Fit the zero-truncated model with linear predictor and distribution combination
( f, 15) to the sampled dataset. Let B](@D) be the corresponding maximum likelihood
estimates of §; and 0 be the estimate of the dispersion parameter if D= (NB).
Rate: Given v; = (0.75,1)T, v, = (0.75,0)T, ¥5 = (0.80,1)T, v, = (0.80,0)7,
v5 = (0.85,1)7, and v4 = (0.85,0)7, the sub-population specific estimated rate of
completed suicide is calculated as

« 14D
exp (1) = exp [(h];(vk)T ]< >],

fork=1,...,6.
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Horvitz-Thompson: The estimated target population size for studies with the

same person-years and covariates as study i fori = 1,2, - - -, n is calculated as

1

fD=p,
I E e e
bi = 1 z

1—po (TZ exp[ 5(v;) B]E ] A)

where the number of studies in sub—population Ais NéfT T =Yica Nb(iHT)* and

the estimated total number of studies is N =Y HT)*

TABLE 6.12: Proportion of times each linear predictor and distribution combination
has lowest BIC statistic from the semi-parametric bootstrap algorithm for computing
the rate and Horvitz-Thompson estimator for the suicide case study data.

Linear Predictor
Distribution 1 2 3 4 5
Poisson 782% 15.3% 3.4% 1.3% 1.7%
Negative-binomial 0.1%  0.0% 0.0% 0.0% 0.0%

Table 6.12 displays the proportions that each linear predictor and distribution combi-
nation has the lowest BIC statistic from the semi-parametric bootstrap algorithm. As
with the non-parametric bootstrap approach, the intercept-only zero-truncated Poisson
model is preferred for approximately 80% of the iterations. Therefore, using the linear
predictor and distribution combination ( f, f)) = (1, P), the 95% percentile confidence
intervals for the rate and total population size from the Horvitz-Thompson estimator
are (24.9, 50.2) and (91,166) respectively. The interval for the rate is similar to that using
the original approach, but the interval for the population size is much narrower as a

result of the reduction of bias from the correlation between covariate combinations.

Whilst the Horvitz-Thompson estimator above uses either the Poisson or negative-
binomial distribution, the generalised Chao’s and generalised Zelterman’s estimators
use binomial logistic regression, so Step 4 of Algorithm 7 can be modified as follows.

Step 4: If Zlﬁ:l(x;* =1) =0or Zfil(x;k = 2) = 0, return to Step 2. Otherwise, fit
competing binomial logistic regression models for the linear predictors in Table 2.1.
Record the linear predictor, j,, which minimises the BIC.

Additionally, Step 4 of Algorithm 8 can be modified as follows to estimate the generalised
Chao’s and generalised Zelterman’s population size estimates.

Step 4: If Zfil(xj‘ =1)=0or Zﬁl(x;‘ = 2) = 0, return to Step 2. Otherwise, truncate
bootstrap dataset for all counts except X = 1 and X = 2. Fit the binomial logistic
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regression model with linear predictor f to the sampled truncated dataset. Let 4 be
the corresponding fitted values and B f be the corresponding maximum likelihood

estimates of f;.

Generalised Chao’s: Let

A

A~ qi
i=2 =
fi=2"5

fori =1,2,---, fi + f», then the estimated target population size is calculated as
R(COx _ +f1+f2 fir+ fi2
h = =,
= it ig/2
Generalised Zelterman’'s: Let

A

fi = 2t exp(h(v;)"B),

wherei =1,2,---,n, then the estimated target population size for studies with

the same person-years and covariates as study i fori = 1,2, - -- ,n is calculated as

S(GZ)x 1
Noi = T exp ()’

S(GZ2)x  wn G(GZ)x
where N, = Y1 Np;
TABLE 6.13: Proportion of times each linear predictor has lowest BIC statistic from the

semi-parametric bootstrap algorithm for computing the generalised Chao’s estimator
for the suicide case study data.

Linear Predictor
Distribution 1 2 3 4
Binomial 67.5% 7.6% 202% 4.6%

TABLE 6.14: Proportion of times each linear predictor has lowest BIC statistic from
the semi-parametric bootstrap algorithm for computing the generalised Zelterman'’s
estimator for the suicide case study data.

Linear Predictor
Distribution 1 2 3 4
Binomial 67.5% 8.3% 20.1% 4.2%

Proportions that each linear predictor is preferred for the binomial logistic regres-

sion models for the generalised Chao’s and generalised Zelterman’s from the semi-

parametric bootstrap algorithm are displayed in Tables 6.13 and 6.14 respectively, where

the intercept-only model is preferred the majority of times. Therefore, linear predic-

tor 1 is utilised for computing the estimates for each bootstrap iteration in order to
find the 95% confidence intervals of (59, 727) and (54, 750) respectively. As with the

non-parametric approach, these intervals are comparable to one another, but are much
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narrower than the respective intervals computed through fitting each of the competing
models for each iteration

Application: Hares data

Step 4 of Algorithm 7 can be modified as follows to find the proportion of times each
linear predictor is preferred for the Horvitz-Thompson population size estimates to use
in the non-parametric bootstrap algorithm.

Step 4: Fit the five competing models given by each of the linear predictors in Table 2.3 for
the zero-truncated geometric distribution. Let fb =1,---,5Dbe the linear predictor
that minimises the AIC. Record the value of Jj,.

Additionally, Step 4 of Algorithm 8 can be modified as follows to estimate the Horvitz-
Thompson population size estimates.

Step 4: Fit the zero-truncated geometric model with linear predictor 7’(0 the sampled

dataset. Let B] be the corresponding maximum likelihood estimates of §;.
Horvitz-Thompson: The estimated target population size for snowshoe hares with

the same covariates as harei fori = 1,2,- - - ,n is calculated as

R = —,
1= po (exp [i(v) By )

where the number of snowshoe hares in sub-population A is

Néfn* = Yiea NéiHT)* and the estimated total number of snowshoe hares is
N(HT)* _yn N(HT)*_
b i=1-""pi

TABLE 6.15: Proportion of times each linear predictor and distribution combination
has lowest AIC statistic from the semi-parametric bootstrap algorithm for computing
the Horvitz-Thompson estimator for the hares case study data.

Linear Predictor
Distribution 1 2 3 4 5
Geometric 0.0% 0.6% 0.0% 21% 97.3%

Table 6.24 provides the proportions that each linear predictor has the lowest AIC statistic
from the semi-parametric bootstrap algorithm. As with the non-parametric bootstrap
algorithm, the full model is preferred 97% of the time, and therefore the zero-truncated
geometric model with linear predictor f = 5 is used in the bootstrap algorithm to
compute the 95% percentile confidence intervals for the Horvitz-Thompson population
size estimates.
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TABLE 6.16: Values of 95% percentile confidence intervals for the hares case study
data using the Horvitz-Thompson population size estimates from the semi-parametric
bootstrap samples for the six sub-populations, marginal totals and overall total.

Season
Study area Midwinter ~ Spring Summer Total
Square mile area  (279,475)  (529,640)  (763,922)  (1275,1561)
Five small areas  (253,334)  (336,437)  (665,804)  (1584,1965)
Total (541,786)  (872,1072) (1432,1722) (2865,3509)

The 95% percentile confidence intervals for the Horvitz-Thompson population size
estimates using the semi-parametric bootstrap algorithm are provided in Table 6.16.
Similarly to the non-parametric bootstrap Method 2, the results in Table 6.16 are compa-
rable to the results using the semi-parametric bootstrap with Method 1 for accounting
for model uncertainty, due to the full model being preferred such a high proportion of
times. Given the similarity between methods for model uncertainty accountability, it is
reasonable to say that there is little benefit in fitting each of the competing models and

the increase in computational time associated with the method.

Additionally, the preferred model for the observed data (the full model) is the same
model that is preferred the highest proportion of times in the simulated data. As a result
of this, Methods 2 and 3 of accounting for model uncertainty for the hares case study
data are equal. Therefore, the confidence intervals computed using Method 2 are the

same as for if no model uncertainty was considered.

Given that the generalised Chao’s and generalised Zelterman’s estimators use a different
regression model to the Horvitz-Thompson estimator, Step 4 in Algorithm 7 requires

additional modification as follows.

Step 4: If Zﬁl(x;‘ =1) =0or Zﬁl(xj‘ = 2) = 0, return to Step 2. Otherwise, fit
competing binomial logistic regression models for the linear predictors in Table 2.1.

Record the linear predictor, j,, which minimises the BIC.

The linear predictor with the highest proportion of times selected, 7, is used in the
bootstrap algorithm to compute the generalised Chao’s and generalised Zelterman’s

population size estimates by modifying Step 4 of Algorithm 8 as follows.

Step 4: If Zfil(x;‘ =1)=0or Zfil(x;‘ = 2) = 0, return to Step 2. Otherwise, truncate
bootstrap dataset for all counts except X = 1 and X = 2. Fit the binomial logistic
regression model with linear predictor f to the sampled truncated dataset. Let 4 be
the corresponding fitted values and f be the corresponding maximum likelihood

estimates of f;.



118 Chapter 6. Uncertainty Quantification: Bootstrap Algorithms

Generalised Chao’s: Let

wherei =1,2,-- - ,n, then the estimated target population size for snowshoe hares

with the same covariates as study i fori = 1,2, -- - ,n is calculated as

G(GZ)x _ 1
. 1—exp(—p)’

where Nh(GZ)* =Y KIZSiGZ)*

TABLE 6.17: Proportion of times each linear predictor has lowest AIC statistic from the
semi-parametric bootstrap algorithm for computing the generalised Chao’s estimator
for the hares case study data.

Linear Predictor
Distribution 1 2 3 4 5
Binomial 23.7% 35.0% 4.9% 6.5% 29.9%

TABLE 6.18: Proportion of times each linear predictor has lowest AIC statistic from
the semi-parametric bootstrap algorithm for computing the generalised Zelterman's
estimator for the hares case study data.

Linear Predictor
Distribution 1 2 3 4 5
Binomial 25.1% 344% 5.0% 6.0% 29.5%

As with the results from Method 2 of Approach 1, the binomial logistic regression model
with linear predictor 2 is preferred the most amount of times for both the generalised
Chao’s and generalised Zelterman’s estimators. Another similarity is that there is no
clear preference for a singular linear predictor using this method, with linear predictors
2 and 5 being preferred a similar amount of times. Using the semi-parametric bootstrap
algorithm with only the model with linear predictor 2 fitted in each iteration leads to
the 95% percentile confidence intervals (2937, 3892) and (3154, 4215) for the generalised
Chao’s and generalised Zelterman’s estimators respectively. However, whilst the results
are comparable to the intervals from alternative approaches and methods, given that
there is no clear preference for a singular linear predictor, there is evidence that Method

2 is not the most appropriate method for the snowshoe hares dataset.
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6.3.3 Method 3: None

Method 3 for the bootstrap algorithm fits only the preferred model for the observed data
to each iteration and consequently does not account for model uncertainty. Formally,

this bootstrap is given in Algorithm 9.

Algorithm 9 Bootstrap Approach 2, Method 3

Step1: Letb = 1.

Step 2: Build a bootstrap sampled dataset, {(7], v{,x7),..., (7, v}, x;;)}, through
drawing n observations from the complete data, { (11, v1,%1),- -, (TN, Vi, xN)}, at
random and with replacement. Given that for the complete data, studies i = n +
1,---, N are unobserved, T; and v; are unknown, but x; = 0 as the observed data are
missing the counts of zero events.

Step 3: Truncate studies with a count of events of zero, x; =0fori=1,2,---, N. As
these studies are truncated, the unknown values of the covariates, v}, and person-
years, T, are also truncated, so it is unimportant that there is missing covariate
information. The sampled observed number of studies is then denoted by #;.

Step 4: Fit the preferred model for the observed data to the bootstrapped data and
estimate the rate or total population size using the methods discussed in Chapter 4.
Step 5: If b = B, stop. Otherwise, return to Step 2 with b := b 4 1.

Application: Suicide data

As with Approach 1, the preferred model for the observed data is the same model found
to be preferred the majority of times for use in Method 2. Therefore, the linear predictor
and distribution combination used in the semi-parametric bootstrap algorithm with
Method 2 is the same that would be used for Method 3 and the results will be identical.

Application: Hares data

Similarly to the suicide case study data, the linear predictor preferred the majority of
times for the semi-parametric bootstrap algorithm with the Horvitz-Thompson estimator
is the same as is preferred for the observed data. Therefore, the results from Methods
2 and 3 for the semi-parametric bootstrap algorithms are equal. The preferred models
for the generalised Chao’s and generalised Zelterman’s estimators are not however the
same for the observed data as found in the bootstrap in Method 2. As a result, Step 4 of

Algorithm 9 can be modified as follows.

Step 4: Let | be the linear predictor that is preferred for the observed data, 4 be the
corresponding fitted values and ,Bf be the corresponding maximum likelihood
estimates of f;.
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Generalised Chao’s: Let

fori =1,2,---, fi + f», then the estimated target population size is calculated as

R fith o :
NéGC)* =n+ %
i At pg/2

Generalised Zelterman’s: Let

A

fii = exp(h(vy)"B),

wherei =1,2,-- - ,n, then the estimated target population size for snowshoe hares

with the same covariates as hareifori = 1,2,--- ,n is calculated as

S(GZ)x 1
N =9 exp(—fii)’

where N}EGZ)* =Y, ﬁéicz)*.

Using Method 3 for the semi-parametric bootstrap algorithm results the 95% percentile
confidence intervals for the total number of snowshoe hares of (2890, 3785) and (3113,
4128) for the generalised Chao’s and generalised Zelterman’s estimators respectively,
intervals which are comparative to those found through both Approaches 1 and 2 and
different methods for accounting for model uncertainty. However, whilst the intervals
are comparable to others found through alternative methods, given that there is no clear
preference for a single model as found in the bootstrap in Method 2, there is evidence
that Method 3 is not appropriate for this case study.

6.4 Approach 3: Parametric

For the parametric approach, response variable values are sampled from a given dis-
tribution in order to create a dataset that can be used for modelling as with the other
methods. Fitting the ten competing models to the observed data and calculating the
corresponding AIC or BIC weights of each of the models gives the probability that each
model is selected as the best candidate model (Wagenmakers and Farrell, 2004), where

the AIC or BIC weights are calculated respectively as

exp [—3A,(AIC)]
Y1 exp [—3A1(AIC)]

where A;(AIC) = AIC; —min(AIC) and A;(BIC) = BIC; —min(BIC) are the difference
between the either the AIC or BIC value for each model respectively, and the best

—IA/(BIC
and w;(BIC) = exp[ 20 )]

AIC) = = '
w; (AIC) Yio1 exp [—38(BIC)]

6.1)
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candidate model for/ = 1,2, - - - , ], where ] is the total number of linear predictors under
consideration. Sampling [* from {1,2,---, ]}, where each value has corresponding
probability {wy, w,,--- ,w;}, gives the linear predictor and distribution pair (j*, D*)
used to sample the response variables.

6.4.1 Method 1: Full

Formally, the parametric bootstrap algorithm using Method 1 for model selection is as
follows in Algorithm 10.

Algorithm 10 Bootstrap Approach 3, Method 1

Step 1: Fit the competing models to the observed data.

Step 2: For each model, compute the AIC or BIC weights, w;, using Equation 6.1,
where the AIC or BIC weight of each model, /, can be seen as the probability of model
| being selected as the best candidate model (Wagenmakers and Farrell, 2004).

Step 3: Letb = 1.

Step 4: Sample [* from {1,2,---, ]}, where | is the number of models under con-
sideration and the values have respective probabilities {wq,wy, - - - ,w]} of being
sampled.

Step 5: Sample n counts from the model given by the linear predictor distri-
bution pair (j*,D*). Use these sampled counts x} to create a sampled dataset
{(t,v1,x7), ..., (Tu, Vu, x;;) }, where 7; and v; are the observed person-years and co-
variates respectively fori = 1,2,---,n. Sample x7 from the distribution given by
(j*, D*) with probability function

{p; (mexp by (v) 7B )]) i D* = (P),
pt (wep [he(v) "B ]L677) i D* = (NB),

where if D* = (NB), 9}3 " is the estimated dispersion parameter.

Step 6: Fit the competing models and estimate the rate or total population size using
the methods discussed in Chapter 4.

Step 7: If b = B, stop. Otherwise, return to Step 4 with b := b + 1.

Application: Suicide data

Using the same 6 sub-populations for the covariate combinations defined in Section 6.2,
the parametric bootstrap algorithm for computing the rate and Horvitz-Thompson esti-
mator, accounting for model uncertainty using Method 1 through fitting the competing
models in each iteration, is given by modifying Step 6 of Algorithm 10 as follows.

Step 6: Fit the ten competing models given by each of the linear predictors in Table 2.1
for both the zero-truncated Poisson and negative-binomial distributions. Let j =
1,---,5 be the linear predictor and D € {Poisson (P), negative-binomial (NB)} be
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the distribution that minimises the BIC with corresponding maximum likelihood
estimates B]ED) of B; for the respective model. If D = (NB), let § be the estimate of
the dispersion parameter.

Rate: Given ¥; = (0.75,1)T, v, = (0.75,0)T, v53 = (0.80,1)T, v, = (0.80,0)7,
vs = (0.85,1)7, and v¢ = (0.85,0)T are the covariates for each of the 6 sub-

populations, the sub-population specific estimated rate of completed suicide is
calculated as

* "(D)
exp (1) = exp [h (Vk)Tﬂj ] ’
fork=1,...,6.

Horvitz-Thompson: The estimated target population size for studies with the

same person-years and covariates as study i fori = 1,2, --- ,n is calculated as

1 s
1_p0(1-1exp[ e B}E D ifD=0P,

bi - 1

1—po (Tlexp{ A(vi)T B}E ] A)

if D = NB,

where the number of studies in sub-population Ais ﬁb(;n C=Yica NéFT)* and

the estimated total number of studies is N =Y, HT)*.

TABLE 6.19: Sub-population specific 95% percentile confidence intervals for the rate of
completed suicide (per 100,000 person-years) using the parametric bootstrap samples.

Proportion of women

Country of origin 0.75 0.80 0.85
USA (175,42.6) (189,426) (19.7,42.6)
Other (15.2,57.7) (16.3,59.2) (16.4,59.2)

Using this parametric bootstrap, 95% percentile intervals for the six sub-populations
can be calculated as seen in Table 6.19. Each of the intervals are approximately centred
at the estimated rate of 31.8 completed suicides per 100,000 person-years, calculated
using regression modelling and analytical methods in the previous chapter. As in
Section 6.2, the confidence intervals for USA are narrower for higher proportions of
women given that there is more data available for these covariate combinations, reducing
the level of uncertainty. Additionally, whilst there is some decrease in uncertainty as
the proportion of women increases for studies originating outside of the USA with the
corresponding confidence intervals narrowing slightly, it is not as significant of a change
given that in studies originating outside of the USA, the proportion of women varies
more comparatively to the inside the USA. There is also increased uncertainty for studies
originating outside of the USA with a proportion of women of 0.85 given that there
are more studies observed from the USA with this covariate combination. The reverse
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is true, where for covariate combinations with reduced proportion of women, there is
more uncertainty with wider confidence intervals for those originating in the USA as
there are fewer corresponding studies observed.

TABLE 6.20: Values of 95% percentile confidence intervals for the suicide case study data

using the Horvitz-Thompson population size estimates from the parametric bootstrap
samples for the eight sub-populations, marginal totals and overall total.

Proportion of women
Country of origin  [0,0.75) [0.75,0.80) [0.8,0.85) [0.85,1] Total

USA (1,2) (0,0) (22,42)  (9,16)  (32,60)
Other (29,124)  (16,50) (7,19)  (5,15)  (58,223)
Total (30,156)  (16,50)  (31,59) (15,29) (101,280)

The 95% percentile confidence intervals are also calculated for the estimated population
sizes, as seen in Table 6.20. Model uncertainty is accounted for through allowing for
various linear predictors in the model selection of the resampled data. However, unlike
in Sections 6.2 and 6.3, the resampled dataset is not created at random but instead using
a distributional model representative for the observed data, creating a more reliable
dataset to model from. This reduces the unexpected correlation between the covariates
seen in Tables 6.2 and 6.10, giving much more reliable confidence intervals that are better
centred around the corresponding population size estimates from the observed data,

suggesting that a parametric approach to the bootstrap algorithm is most suitable.

To formulate the semi-parametric bootstrap algorithm for the generalised Chao’s and

generalised Zelterman’s estimators, Step 6 of Algorithm 10 can be modified as follows.

Step6: If }.' ;(x; =1) =0or Y. (xf =2) =0, return to Step 4. Otherwise, truncate
bootstrap dataset for all counts except X = 1 and X = 2. Fit competing binomial
logistic regression models for the linear predictors in Table 2.1. Let j = 1,- - - ,4 be
the linear predictor which minimises the BIC, § be the corresponding fitted values

and B]’ be the corresponding maximum likelihood estimates of B;-

Generalised Chao’s: Let
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wherei =1,2,---,n, then the estimated target population size for studies with
the same person-years and covariates as study i fori = 1,2,--- ,n is calculated as

S(GZ)x 1
A exp(—fi)’

where ﬁécz)* =Y, ﬁlsicz)*

As for the generalised Chao’s and generalised Zelterman'’s estimators, the respective
95% percentile confidence intervals are (62, 1081) and (61, 9846). Whilst these intervals
are much narrower than the non-parametric and semi-parametric bootstrap approaches,
hence having less uncertainty, the intervals still much wider than the interval for the total
population size using the Horvitz-Thompson estimator and the parametric bootstrap.
This is a trend seen for each of the bootstrap approaches, and is to be expected given that
the generalised Chao’s and generalised Zelterman’s estimators utilise only the counts
of one and two from the dataset. Given that the number of observed studies is already
small at 27, leading to more uncertainty compared to if there was a higher number
of observed studies, once truncated for use of the generalised Chao’s and generalised
Zelterman’s estimators, this observed number of studies gets even smaller leading to

more uncertainty.

Application: Hares data

To formulate the semi-parametric bootstrap algorithm to compute the Horvitz-
Thompson population size estimates, Step 6 of Algorithm 10 can be modified as follows.

Step 6: Fit the five competing models given by each of the linear predictors in Table 2.3 for
the zero-truncated geometric distribution. Let f =1,---,5Dbe the linear predictor
that minimises the AIC with corresponding maximum likelihood estimates B] of
,Bj for the respective model.

Horvitz-Thompson: The estimated target population size for snowshoe hares with

the same covariates as harei fori = 1,2,-- - ,n is calculated as

Q(HT)* _ 1 ,
H e (ow 8]

where the number of snowshoe hares in sub-population A is

NZSIZT)* = Yica NzSIHT)* and the estimated total number of snowshoe hares is
(HT)* n G(HT)x*

Nb = Li=1 Nbi

Table 6.21 contains the 95% percentile confidence intervals from the parametric bootstrap

algorithm for the sub-populations, sub-totals and total number of snowshoe hares.
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TABLE 6.21: Values of 95% percentile confidence intervals for the hares case study data
using the Horvitz-Thompson population size estimates from the parametric bootstrap
samples for the six sub-populations, marginal totals and overall total.

Season
Study area Midwinter  Spring Summer Total
Square mile area  (235,525) (391,537) (789,1134) (1204,1569)
Five small areas  (194,319) (242,333) (686,1045) (1521,1969)
Total (472,740)  (666,821) (1575,2030) (2829,3405)

The interval is comparable to the results from Method 1 Approach 1 to the bootstrap
algorithm, and slightly narrower than Method 1 Approach 2 to the bootstrap algorithm.
Given the comparability to the other approaches, and that the interval is approximately
centred at the estimated total number of snowshoe hares from the observed data, there
is evidence that this 95% percentile confidence interval is appropriate and reliable for
the given data.

To formulate the parametric bootstrap algorithm for the generalised Chao’s and gener-
alised Zelterman’s estimators, Step 6 can be modified as follows.

Step 6: If Zﬁ [(xf=1)=0or Zﬁ 1(xf = 2) =0, return to Step 2. Otherwise, truncate
bootstrap dataset for all counts except X = 1 and X = 2. Fit competing binomial
logistic regression models for the linear predictors in Table 2.3. Letj =1, -- ,5 be
the linear predictor which minimises the AIC, § be the corresponding fitted values

and 8 7 be the corresponding maximum likelihood estimates of B;.

Generalised Chao’s: Let

A

~ qi
i=2 —,
fi =20

fori =1,2,---, fi + f», then the estimated target population size is calculated as
(COx _ +f1+f2 fir + fio
! S it pi/2
Generalised Zelterman’s: Let
fi = exp(h(v))"B),

wherei =1,2,---,n, then the estimated target population size for snowshoe hares

with the same covariates as hareifori =1,2,--- ,n is calculated as

S(GZ)x 1

Noi = T exp ()’

where Nb(GZ)* =Y ngicz)*.
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Using Method 1 for the parametric bootstrap algorithm results in the 95% percentile
confidence intervals for the total number of snowshoe hares of (3015, 4027) and (3224,
4324) for the generalised Chao’s and generalised Zelterman’s estimators respectively.
These intervals are comparable in width to the corresponding intervals for the non-
parametric and semi-parametric bootstrap algorithms, however, both the upper and
lower limits of each are higher.

6.4.2 Method 2: Partial

Similarly to the other bootstrap approaches, using an alternative approach to account
for the model uncertainty may reduce the level of uncertainty seen in the confidence
intervals. The additional bootstrap algorithm for computing the proportions each model

is preferred is given as follows in Algorithm 11

Algorithm 11 Bootstrap Approach 3, Method 2, Additional Bootstrap

Step 1: Fit the competing models to the observed data.

Step 2: For each model, compute the AIC or BIC weights, w;, using Equation 6.1,
where the AIC or BIC weight of each model, /, can be seen as the probability of model
| being selected as the best candidate model (Wagenmakers and Farrell, 2004).

Step 3: Letb = 1.

Step 4: Sample [* from {1,2,---, ]}, where | is the number of models under con-
sideration and the values have respective probabilities {wq,wy, - - - ,w]} of being
sampled.

Step 5: Sample n counts from the model given by the linear predictor and distribution
pair, (j*, D*), given by the sampled value of I*. Use these sampled counts, x}, to create
a sampled dataset {(71,v1,x]),..., (Tu, v, x;;) }, where 7; and v; are the observed
person-years and covariates respectively fori =1,2,--- ,n.

Step 6: Fit the competing models to the bootstrap data. Let (j, D) be the linear
predictor and distribution combination that minimises the AIC or BIC.

Step 7: If b = B, stop. Otherwise, return to Step 4 with b := b + 1.

Compute the proportion that each combination of (], D) is selected as the best using
the results from the additional bootstrap. Use this linear predictor and distribution
combination in the parametric bootstrap algorithm to compute the rate and population
size estimates. Formally, the parametric bootstrap algorithm is then as follows in
Algorithm 11.

Application: Suicide data

Step 6 of Algorithm 11 can be modified as follows to find the proportion of times each
linear predictor and distribution combination is preferred for the rate and Horvitz-
Thompson population size estimates to use in the parametric bootstrap algorithm.
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Algorithm 12 Bootstrap Approach 3, Method 2

Step 1: Fit the competing models to the observed data.

Step 2: For each model, compute the AIC or BIC weights, wj, using Equation 6.1,
where the AIC or BIC weight of each model, [, can be seen as the probability of model
| being selected as the best candidate model (Wagenmakers and Farrell, 2004).

Step 3: Letb = 1.

Step 4: Sample I* from {1,2,---,]}, where ] is the number of models under con-
sideration and the values have respective probabilities {wq,wy,---,w;} of being
sampled.

Step 5: Sample n counts from the model given by the linear predictor distri-
bution pair, (j*,D*). Use these sampled counts x; to create a sampled dataset
{(m1,v1,x7),...,(Tu, Vn, x;;) }, where 7; and v; are the observed person-years and co-
variates respectively fori =1,2,--- ,n.

Step 6: Fit the model with linear predictor and distribution combination (j, D) found
using Algorithm 11 and estimate the rate or total population size using the methods
discussed in Chapter 4.

Step 7: If b = B, stop. Otherwise, return to Step 4 with b := b + 1.

Step 6: Fit the ten competing models given by each of the linear predictors in Table 2.1
for both the zero-truncated Poisson and negative-binomial distributions. Let j, =
1,---,5 be the linear predictor and D, € {Poisson (P), negative-binomial (NB)}
be the distribution that minimises the BIC. Record the combination ( f, D).

Additionally, Step 6 of Algorithm 12 can be modified as follows to estimate the rate and
Horvitz-Thompson population size estimates.

Step 6: Fit the zero-truncated model with linear predictor and distribution combination
(f, ﬁ) to the sampled dataset. Let B](;D) be the corresponding maximum likelihood
estimates of B; and 0 be the estimate of the dispersion parameter if D= (NB).
Rate: Given ¥; = (0.75,1)7, v, = (0.75,0)7, v5 = (0.80,1)T, v, = (0.80,0)7,
vs = (0.85,1)7, and ¥ = (0.85,0)7, the sub-population specific estimated rate of
completed suicide is calculated as

« _ 14D
exp (1) = exp [(h];(vk)T ]< >],

fork=1,...,6.

Horvitz-Thompson: The estimated target population size for studies with the

same person-years and covariates as study i fori = 1,2, --- ,n is calculated as

: 2

fD="P,

N(HT)* 1— Po (Ti exp [hf(vl)TBJEP)}> ifD=P
bi = 1 |

1-po (Ti exp {h]@(vi)TB](?NB)] 'é>
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where the number of studies in sub-population A is ﬁb(;n)* =Yica NzngT)* and

the estimated total number of studies is NISHT) =y, Z/\\IlEZ.HT)*

TABLE 6.22: Proportion of times each linear predictor and distribution combination
has lowest BIC statistic from the semi-parametric bootstrap algorithm for computing
the rate and Horvitz-Thompson estimator for the suicide case study data.

Linear Predictor
Distribution 1 2 3 4 5
Poisson 780% 99% 82% 21% 1.0%
Negative-binomial 0.7% 0.1% 0.0% 0.0% 0.0%

The proportions of each linear predictor and distribution combination having the lowest
BIC statistic from the parametric bootstrap algorithm are given in Table 6.22. For over
80% of the iterations, the intercept-only zero-truncated Poisson model is preferred,
as with both the non-parametric and semi-parametric approaches. Using the linear
predictor and distribution combination ( f, f)) = (1, P) to compute the 95% percentile
confidence intervals for the rate and total population size from the Horvitz-Thompson
estimator leads to the intervals of (22.2, 41.9) and (106, 185) respectively. As with the
other bootstrap approaches, the rate interval is not notably impacted by the change in
approach of accounting for model uncertainty, but there is a notable decrease in the

width of the population size confidence interval from the reduction in bias.

Step 6 of the parametric bootstrap algorithm is modified as follows to reflect Method 2 to
account for model uncertainty using the generalised Chao’s and generalised Zelterman'’s

estimators is.

Step6: If ) /' ;(xf =1) =0o0r Y ;(xf =2) = 0, return to Step 4. Otherwise, truncate the
bootstrap dataset for all counts except X = 1 and X = 2. Fit competing binomial
logistic regression models for the linear predictors in Table 2.1. Let j, = 1, - - ,4
be the linear predictor which minimises the BIC.

Additionally, Step 6 of Algorithm 12 can be modified as follows to estimate the gener-
alised Chao’s and generalised Zelterman’s population size estimates.

Step6: If }.' 1 (x; =1) =0or /L (xf = 2) = 0, return to Step 4. Otherwise, truncate
bootstrap dataset for all counts except X = 1 and X = 2. Fit the logistic regression
model with linear predictor 7 to the sampled truncated dataset. Let § be the
corresponding fitted values and Bf be the corresponding maximum likelihood

estimates of f;.

Generalised Chao’s: Let
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fori =1,2,---, fi + fo, then the estimated target population size is calculated as

fith
NGO _ oy Jatfio
b Z% Vl 2/2

Generalised Zelterman’s: Let

A

fi = 2texp(h(v;)"B),

wherei =1,2,---,n, then the estimated target population size for studies with

the same person-years and covariates as study i fori = 1,2, --- ,n is calculated as

(GZ)x 1
Noi ™ = 1= exp(—fi)’

where N =Y",N )*.

TABLE 6.23: Proportion of times each linear predictor has lowest BIC statistic from
the semi-parametric bootstrap algorithm for computing the generalised Chao’s and
generalised Zelterman's estimators for the suicide case study data.

Linear Predictor
Distribution 1 2 3 4
Binomial 81.0% 9.0% 8.2% 1.8%

Table 6.23 provides the proportions that each linear predictor is preferred for the paramet-
ric bootstrap algorithm. As with the non-parametric and semi-parametric approaches,
the intercept-only binomial logistic model is preferred the majority of the times (over
80%). Using this model in the parametric algorithm then leads to the 95% percentile
confidence intervals for the generalised Chao’s and generalised Zelterman'’s estimators
of (61, 573) and (59, 580) respectively, where both intervals are narrower than the respec-
tive intervals found using the alternative approach of accounting for model uncertainty
of Method 1.

Application: Hares data

Step 6 of Algorithm 11 can be modified as follows to find the proportion of times each
linear predictor and distribution combination is preferred for the Horvitz-Thompson

population size estimates to use in the parametric bootstrap algorithm.

Step 6: Fit the five competing models given by each of the linear predictors in Table 2.3 for
the zero-truncated geometric distribution. Let j, = 1, - - -, 5 be the linear predictor

that minimises the AIC. Record the value of jj,.
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Additionally, Step 6 of Algorithm 12 can be modified as follows to estimate the Horvitz-

Thompson population size estimates.

Step 6: Fit the zero-truncated geometric model with linear predictor f to the sampled
dataset. Let B] be the corresponding maximum likelihood estimates of §;.

Horvitz-Thompson: The estimated target population size for snowshoe hares with
the same covariates as harei fori = 1,2, - - ,n is calculated as
S(HT)+ 1
Ny - ral)’
1= po (exp [y 7By )

where the number of snowshoe hares in sub-population A is N}EZIT)*
Yica NISFT)* and the estimated total number of snowshoe hares is ﬁéHT)* =

i=1 Nbi :

TABLE 6.24: Proportion of times each linear predictor has lowest AIC statistic from the
parametric bootstrap algorithm for computing the Horvitz-Thompson estimator for
the hares case study data.

Linear Predictor
Distribution 1 2 3 4 5
Geometric 0.0% 13% 0.0% 2.0% 96.7%

Table 6.24 provides the proportion of times each linear predictor is preferred for the
parametric bootstrap algorithm for the Horvitz-Thompson estimator. Linear predictor 5,
the full model, is preferred 97% of the time, the vast majority of occasions and therefore
is the linear predictor to be used in the modelling within each iteration for the parametric
bootstrap algorithm.

TABLE 6.25: Values of 95% percentile confidence intervals for the hares case study data

using the Horvitz-Thompson population size estimates from the parametric bootstrap
samples for the six sub-populations, marginal totals and overall total.

Season
Study area Midwinter  Spring Summer Total
Square mile area  (255,383) (515,648) (716,938)  (1173,1474)
Five small areas  (168,218) (294,358)  (683,934)  (1535,1896)
Total (439,577)  (831,977) (1460,1791) (2791,3253)

Table 6.25 contains the values of the 95% percentile confidence intervals for the Horvitz-
Thompson estimates using the parametric bootstrap algorithm. The results from this
bootstrap algorithm are comparable to the alternative approaches, however, the interval
corresponding to the total number of studies is not centred around the estimated value

using the Horvitz-Thompson estimator for the observed data. Possibly indicating that
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this method and approach combination is not as suitable for this dataset as Method 1 for

accounting for model uncertainty.

As with Approaches 1 and 2 to the bootstrap algorithm with Method 2 for accounting for
model uncertainty, the preferred model for the observed data, the full data, is the same
model that is preferred the highest proportion of times in the simulated data. Therefore,
Methods 2 and 3 for accounting for model uncertainty with the parametric bootstrap

algorithm will produce identical results.

Given that the generalised Chao’s and generalised Zelterman'’s estimators use a binomial
regression model compared to the geometric regression model used for the Horvitz-
Thompson estimator, Step 6 in Algorithm 11 requires additional modification as follows.

Step 6: If Zﬁl(xj‘ =1)=0or Zﬁl(x;“ = 2) = 0, return to Step 4. Otherwise, truncate
the bootstrap dataset for all counts except X = 1 and X = 2. Fit the competing
binomial logistic regression models for the linear predictors in Table 2.3. Let
f =1,---,5Dbe the linear predictor which minimises the BIC.

The linear predictor that is preferred the highest proportion of times, f, is used in the
bootstrap algorithm to compute the generalised Chao’s and generalised Zelterman’s
population size estimates by modifying Step 6 of Algorithm 12 as follows.

Step 6: If Zﬁl (xf =1)=0or Zﬁl(xj‘ = 2) = 0, return to Step 4. Otherwise, truncate the
bootstrap dataset for all counts except X = 1 and X = 2. Fit the binomial logistic
regression model with linear predictor f to the sampled truncated dataset. Let 4 be
the corresponding fitted values and f be the corresponding maximum likelihood

estimates of f;.

Generalised Chao’s: Let

fori =1,2,---, fi + fo, then the estimated target population size is calculated as

fitfe fz‘l"’fiZ

N©CO* =y ¢ 2l
b = opitp2/2

Generalised Zelterman’s: Let

A

fi = exp(h(vi)"B),

wherei =1,2,-- - ,n, then the estimated target population size for snowshoe hares

with the same covariates as study i fori = 1,2, - - - ,n is calculated as

S(GZ)x 1
N = T ()
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where Nb(GZ)* =Y, N}gicz)*

TABLE 6.26: Proportion of times each linear predictor has lowest AIC statistic from the
parametric bootstrap algorithm for computing the generalised Chao’s and generalised
Zelterman's estimators for the hares case study data.

Linear Predictor
Distribution 1 2 3 4 5
Geometric 0.0% 99.1% 0.0% 0.0% 0.9%

Table 6.26 provides the proportions that each linear predictor has the lowest AIC statistic
from the parametric bootstrap algorithm. As with the other approaches to the bootstrap
algorithm with Method 2 for accounting for model uncertainty, linear predictor 2 is
preferred the majority of times, however, in this case it is preferred 99% of times, a clear

majority that is not seen in the alternative approaches.

Fitting only models with linear predictor 2 in the parametric bootstrap algorithm results
in the 95% percentile confidence intervals of (2952, 3797) and (3166, 4115) for the gener-
alised Chao’s and generalised Zelterman’s estimators respectively. These intervals are
both comparable to the intervals computed using alternative methods and approaches
and approximately centred at the corresponding estimates of the total number of snow-
shoe hares from the observed data. Given this and that there is a clear preference for
linear predictor 2, there is evidence that there is little benefit in the additional compu-
tational time that is required for Method 1 of accounting for model uncertainty for the
snowshoe hares dataset, and Method 2 can be used instead.

6.4.3 Method 3: None

As with the other approaches to the bootstrap algorithm, method 3 only fits the preferred
model for the observed data to each iteration and therefore does not account for model

uncertainty. Formally, this bootstrap is given in Algorithm 13.

Application: Suicide data

As with the other approaches, the model preferred the majority of times using Method 2
is the same model as is preferred for the observed data. Therefore, Methods 2 and 3 for
accounting for model uncertainty with the parametric bootstrap algorithm will return
the same results.
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Algorithm 13 Bootstrap Approach 3, Method 3

Step 1: Fit the competing models to the observed data.

Step 2: For each model, compute the AIC or BIC weights, w;, using Equation 6.1,
where the AIC or BIC of each model, /, can be seen as the probability of model / being
selected as the best candidate model (Wagenmakers and Farrell, 2004).

Step 3: Letb = 1.

Step 4: Sample I* from {1,2,---,]}, where ] is the number of models under con-
sideration and the values have respective probabilities {wq,wy,---,w;} of being
sampled.

Step 5: Sample n counts from the model given by the linear predictor distri-
bution pair, (j*,D*). Use these sampled counts x; to create a sampled dataset
{(m1,v1,x7),...,(Tu, Vn, x;;) }, where 7; and v; are the observed person-years and co-
variates respectively fori =1,2,--- ,n.

Step 6: Fit the model that is preferred for the observed data and estimate the rate or
total population size using the methods discussed in Chapter 4.

Step 7: If b = B, stop. Otherwise, return to Step 4 with b := b + 1.

Application: Hares data

Similarly to the non-parametric and semi-parametric bootstrap algorithms, the preferred
model for the Horvitz-Thompson estimator using Method 2 for accounting for model
uncertainty is the same model that is preferred for the observed data, and therefore
Methods 2 and 3 will return the same results. However, linear predictor 2 is preferred the
majority of times using Method 2 for the generalised Chao’s and generalised Zelterman'’s

estimators. Therefore, Step 6 of Algorithm 13 can be modified as follows.

Step 6: let j be the linear predictor that is preferred for the observed data, 4 be the corre-
sponding fitted values and B} be the corresponding maximum likelihood estimates

of B;.
Generalised Chao’s: Let
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wherei =1,2,---,n, then the estimated target population size for snowshoe hares
with the same covariates as hareifori = 1,2,--- ,n is calculated as

S(GZ)x 1
AR gy

where N;EGZ)* =Y, NISIGZ)*.

The 95% percentile confidence intervals from the parametric bootstrap algorithm using
Method 3 for accounting for model uncertainty for the generalised Chao’s and gen-
eralised Zelterman’s estimators respectively are (2997, 3886) and (3203, 4203). These
results are comparable to the intervals found using the alternative approaches, and are
approximately centred at the estimated total number of hares from the observed data.
However, whilst the intervals are comparable, model 5, the preferred model for the
observed data, is very rarely preferred as seen in Table 6.26, so in this case, Method 3
may not be the most appropriate method to use.

6.5 Alternative methods of constructing confidence intervals

Section 6 uses the standard percentile method to construct the 95% confidence intervals
used to quantify the level of uncertainty of the estimated rate of completed suicide
and the estimated population sizes from the bootstrap data. However, the percentile
method does not perform well in every case, particularly in cases with small sample
sizes, as discussed in Hall and Martin (1989). This is also seen in Section 6, with the
inflated upper limits of the estimated population size confidence intervals as a result of
the biased and skewed bootstrapped data.

6.5.1 Bias-corrected and accelerated percentile method

The poor performance of the standard percentile method in certain situations is discussed
by Efron (1981a; 1981b; 1982, Chapter 10; 1987) and Hall (1988), and they provide
alternative approaches including the improved methods of bias-corrected (BC) percentile
and bias-corrected and accelerated (BC,) percentile methods. These improved methods
both correct for bias through using the estimated proportion of bootstrap parameter
estimates that are less than the original parameter estimate, also known as the bias-

correction factor, Zy. This bias-correction factor for the estimated population size is

20 = P! <Z£_1(Nb = N)> ,

calculated as follows.

B

where @ is the standard normal cumulative distribution function.
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For the bias-corrected percentile method, the bias-corrected significance level values for
the adjusted confidence interval limits are then

W= (220 i z(%)>

(X; =0 (220 +Z(1_%)> ,
where z(4) is the 100 x 3 percentile of a standard normal distribution.

The (100 — &) % bias-corrected (BC) percentile confidence interval is then

[NlowerrNupper} = [N(*szXB)' N(*a;xB) :

Using the jackknife resampling algorithm developed by Quenouille (1949), estimated
population sizes Nz-(j aCk), wherei =1,2,---,n, are calculated for the bias-corrected and
accelerated percentile method. Whist the simulation study in Section 4.7 suggests that
the generalised Chao’s estimator is the superior capture-recapture estimator for the data
types covered in this thesis, the jackknife resampling algorithm is formally provided
below for the Horvitz-Thompson estimator in Algorithm 14, followed by the jackknife
resampling algorithm for both the generalised Chao’s and generalised Zelterman'’s

estimators in Algorithm 15.

Algorithm 14 Jackknife resampling: Horvitz-Thompson estimator
Step 1: Seti = 1.
Step 2: Remove the ith row from the observed dataset to create the jackknife sampled
dataset {(t1,v1,x1), .-, (Ti1, Vi1, Xi—1), (Tix1, Vie1, Xic1), - - - (T, Vi, Xn) }-
Step 3: Fit the chosen regression model to the sampled dataset. Let 1) be the
maximum likelihood estimate of B.
Step 4: The estimated target population size is calculated as

Horvitz-Thompson:

jack) 1
Ni - Al ’
]

where ] =1,---,i—1,i+1,--- ,n.
Step 5: If i = n, stop. Otherwise, return to Step 2 with i := i+ 1.

These estimated population sizes allow for the computation of an acceleration constant,
4, used to correct for skewness as it is proportional to the skewness of the data (Efron,
1987), calculated as

where
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Algorithm 15 Jackknife resampling: Generalised Chao’s and generalised Zelter-

man’s estimators
Step 1: Seti = 1.
Step 2: Remove the ith row from the observed dataset to create the jackknife sampled
dataset {(t1,v1,x1), .-, (Ti1, Vi1, Xi—1), (Ti1, Vid1, Xit1), - - -, (T, Vi, Xn) }-
Step 3: Truncate the jackknife sampled dataset for all counts except X = 1and X = 2.
Fit the competing logistic regression models and select the model with the lowest AIC
value. Let 4 be the corresponding fitted values and j3 7 be the corresponding maximum
likelihood estimates of B; from the chosen regression model.
Step 4: Compute the estimated target population size as

Generalised Chao:

N ]ack +f1§r2 fkl +fk2

]/lk + :uk / 2
where R
2 k ~ if Poisson distribution assumed,
A — qk
Hie = Gk . e L
-4 if geometric distribution assumed,
— k

fork=1,---,i—=1,i+1,---,f1+ fo.
Generalised Zelterman:

S (jack) 1 1
N‘ i 5/ AN/
S O ey

where

-
=

- J2ncexp(fx) if Poisson distribution assumed,
Teexp(fx)  if geometric distribution assumed,

fork=1,---,i—1,i+1,---,n
Step 5: If i = n, stop. Otherwise, return to Step 2 with i := i + 1.

n n 2
ry = 12 (Z’\\]i(jack) _ (1 I/\\]i(jack)>> .
3 3

The bias-corrected and accelerated significance level values for the adjusted confidence

and

interval limits are then calculated as
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leading to the (100 — a*)% bias-corrected and accelerated (BC,) percentile confidence

interval

~ ~

[Nlowgr,ﬁupper} = [N(*aTxB)'N(*a;XB) )

Note that if 2 = 0 then this confidence interval is equal to that of the bias-corrected

percentile method.

Application: Suicide data

Table 6.27 provides the 95% confidence intervals for Horvitz-Thompson population size
estimates for the three approaches to the bootstrap algorithm discussed in Section 6 using
the standard percentile approach in addition to the BC and BC, approaches. It is clear to
see that for the non-parametric and semi-parametric approaches, correcting for the bias
arising from the high correlation between the bootstrap estimated population sizes for
the various sub-populations produces much more appropriate confidence intervals that
are more comparable to the confidence interval from the parametric bootstrap which
observes less bias. Additionally, bias correcting and accelerating improves intervals
from each of the bootstrap approaches with the upper limits being less inflated and
more appropriate for the given data. These results are depicted visually in Figure 6.1.

TABLE 6.27: Values for 95% confidence intervals for the Horvitz-Thompson popula-

tion size estimates for the non-parametric, semi-parametric and parametric bootstrap

algorithms accounting for uncertainty by comparing models each iteration, using the

standard, bias-corrected and bias-corrected and accelerated percentile methods applied
to the suicide case study data.

Percentile interval method

Approach Method Standard BC BC,
MT: Full (91,7059)  (89,230)  (76,157)
Al: Non-parametric  M2: Partial (74,441)  (77,488)  (66,372)
M3: None  (74,441) (77,488)  (66,372)
MIL: Full  (91,28913)  (88,303)  (75,157)
A2: Semi-parametric M2: Partial (91,166)  (91,166)  (80,155)
M3: None  (91,166)  (91,166)  (80,155)
MT: Full (101,280) (100,260)  (88,185)
A3: Parametric M2: Partial ~ (106,185) (109,191) (100,173)
M3: None (106,185) (109,191) (100,173)
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FIGURE 6.1: Histograms of the results from the three bootstrap approaches with method

1 discussed in Section 6 for the Horvitz-Thompson estimator applied to the suicide case

study data, with standard percentile confidence intervals in addition to BC and BC,

percentile confidence intervals, each with 95% significance. Each approach has two

plots, one to display the bootstrap data itself and another with smaller x-axis limits to
better display the histogram given the large range of the data.

Application: Hares data

TABLE 6.28: Values for 95% confidence intervals for the Horvitz-Thompson popula-

tion size estimates for the non-parametric, semi-parametric and parametric bootstrap

algorithms accounting for uncertainty by comparing models each iteration, using the

standard, bias-corrected and bias-corrected and accelerated percentile methods applied
to the hares case study data.

Percentile interval method

Approach Method Standard BC BC,
M1: Full (2994,3954) (3580,4653) (3602,4654)
Al: Non-parametric ~M2: Partial (2978, 3797) (3479, 4644) (3503, 4654)
M3: None  (2926,3750) (3243,4261) (3286, 4328)
M1: Full (2967,3973) (3584,4918) (3584,4919)
A2: Semi-parametric M2: Partial (2937,3892) (3443, 4661) (3474, 4701)
M3: None (2890, 3785) (3221,4213) (3272,4516)
M1: Full (3015,4027) (3683,4962) (3699,4934)
A3: Parametric M2: Partial (2952, 3797) (3358, 4311) (3390, 4335)
M3: None (2997, 3886) (3545,4499) (3565, 4499)
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6.5.2 Median absolute deviation

Figure 6.1 shows that the bootstrapped data is heavy tailed and asymmetric, leading
to percentile intervals that are biased and not centred around the median of the data.
The BC and BC, approaches to the percentile method correct for this bias and skewness
to an extent, but an alternative approach of constructing confidence intervals which
reduces bias should be explored. Median absolute deviation (MAD), popularised by
Hampel (1974), utilises the median of the data to give less weight to outliers and heavy
tails, has the highest breakdown point possible (50%) (Rousseeuw and Croux, 1993),
and includes a consistency constant that enables the MAD to be an unbiased and robust

estimator of the standard distribution.

The median absolute deviation is given by Huber (1981) as
MADj3 = Cp x median{|N; — median{Nj }|},

whereb =1, - -, B and C is the consistency constant.

The 95% confidence interval for the estimated population size is then calculated as

N —1.96 x MAD, N + 1.96 x MAD| .

Typically, the data is assumed to follow a normal distribution, disregarding abnor-
malities arising from outliers, leading to the consistency constant of Cp = 1.4826. If
the underlying distribution is not the normal distribution, the consistency constant
can be found as Cg = [®~1(2)] 7!, where ®1(3) is the 2th quantile of the underlying
distribution Leys et al. (2013).

Application: Suicide data

Table 6.29 provides the 95% confidence intervals for the total population size using the
Horvitz-Thompson estimator, constructed with the median absolute deviation for each
combination of approach and method for the bootstrap algorithm, applied to the suicide
case study data. For comparison purposes, the 95% (standard) percentile confidence

intervals are also provided in the table.

It can be seen that for each approach, the bias seen in the intervals associated with
Method 1 of accounting for model uncertainty is notably reduced, particularly for
Approaches 1 and 2 where the upper limits for the standard percentile confidence
intervals are very inflated. However, for Methods 2 and 3 (which for the suicide data
produce identical results) there is less of a difference between the standard percentile

method and the median absolute deviation.
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TABLE 6.29: Values of the 95% confidence intervals constructed with the standard

percentile method using the Horvitz-Thompson estimator and the median absolute

deviation for each bootstrap approach and method combination applied to the suicide
case study data.

Approach Method Standard Percentile = MAD
M1: Full (91, 7059) (81, 182)
Al: Non-parametric ~M2: Partial (74, 441) (15, 265)
M3: None (74, 441) (15, 265)
M1: Full (91, 28913) (81, 182)
A2: Semi-parametric M2: Partial (91, 166) (99, 168)
M3: None (91, 166) (99, 168)
M1: Full (101, 280) (92, 176)
A3: Parametric M2: Partial (106, 185) (97,171)
M3: None (106, 185) (97,171)

Application: Hares data

Table 6.30 provides the 95% median absolute deviation confidence intervals for the
total population size using the generalised Chao’s estimator for each combination of
approach and method for the bootstrap algorithm, applied to the hares case study data.
For comparison purposes, the 95% (standard) percentile confidence intervals are also
provided in the table.

TABLE 6.30: Values of the 95% confidence intervals constructed with the standard

percentile method using the generalised Chao’s estimator and the median absolute

deviation for each bootstrap approach and method combination applied to the hares
case study data.

Approach Method Standard Percentile MAD
M1: Full (2994, 3954) (2931, 3887)
Al: Non-parametric ~M2: Partial (2978, 3797) (2928, 3817)
M3: None (2926, 3750) (2884, 3701)
M1: Full (2967, 3973) (2984, 3909)
A2: Semi-parametric M2: Partial (2937, 3892) (2899, 3851)
M3: None (2890, 3785) (2855, 3743)
M1: Full (3015, 4027) (2966, 3914)
A3: Parametric M2: Partial (2952, 3797) (2922, 3743)
M3: None (2997, 3886) (2957, 3824)

Unlike with the suicide case study data, there is little difference in the corresponding
intervals using the two confidence interval construction methods due to the reduced
bias and therefore reduced extreme values present in the Hares data, which the MAD
approach aids in correcting. The width of the respective intervals are approximately the
same, with the upper and lower bounds of the MAD intervals being slightly reduced,
due to any extreme values present being given less weight. Given the small different in
the results and the lack of difference in computational burden of the two approaches,
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to decide which method returns the best results and hence which approach should
be used for confidence interval construction, a simulation study will be conducted in
Section 6.6.3.

6.6 Simulation study

For each of the simulation studies conducted in this section, to ensure that the results
are comparable, the same methods are used to simulate the data itself. These methods
are also the same as those utilised in Section 3.3, starting by specifying the values of the

following variables.

N: total number of studies.
e F: mean number of individuals per study.

e AC: constant rate of event.

7: logarithm of the mean for the observation period.

o: logarithm of the standard deviation for the observation period.

* u: shape parameter for the beta distribution to simulate proportions.

B: shape parameter for the beta distribution to simulate proportions.

* p: success probability for the Bernoulli distribution to simulate binary variable.

Once the above variables are specified, the simulation study can be conducted, starting
with simulating the size of each study, the observation period of each study, the count
of events for each study, a proportion covariate for each study and a binary covariate
for each study, each simulated from the same distributions as given in Section 3.3. The
resulting data is then zero-truncated through removing the studies with a count of zero
and the chosen bootstrap algorithm is conducted, treating the simulated zero-truncated
dataset as the “original” dataset, recording the width of the resulting confidence intervals
and whether they contain the true value of N. This process is repeated S times to conduct

the simulation study and obtain the results of performance.

For the simulation studies below, the values of the variables are given as follows.

e 5 =1000
e N = 1000
* =900

e A€ =0.0004
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e v=15
e =038
* x =236
* =85
e p=04

6.6.1 Bootstrap algorithm

Whilst the results from the bootstrap algorithms suggest that Approach 3, the parametric
approach, is the preferred approach due to the reduction in bias as a result of the issue
of multicollinearity, it is important to properly assess whether the performance of this
approach is actually better than the alternatives. Similarly, it is important to explore the
performance of the different methods for accounting for, or not accounting for, model
uncertainty within the algorithms. To adequately assess this performance, simulation
studies can be conducted in a similar way to as in Sections 3.3 and 4.7. Accuracy is not
a criteria since the purpose of the bootstrap algorithms is to quantify the uncertainty
through computing confidence intervals, rather than producing an estimate for the
parameter of interest. Therefore, the only criteria for the performance of each bootstrap
algorithm is the precision and coverage of the resulting confidence intervals.

For completeness, to properly assess the performance of each of the methods and
approaches, a simulation study should be conducted for each combination, resulting
in 9 simulation studies in total. Additionally, the generalised Chao’s estimator is used
for estimating the total population size within the bootstrap algorithms, given that the
simulation study in Section 4.7 shows that it is the best capture-recapture population
size estimator overall out of those tested.

TABLE 6.31: Simulation study results for the performance of each combination of ap-

proach and method with the bootstrap algorithm with the generalised Chao’s estimator
used for population size estimation, where N = 1000.

Approach Method Precision Coverage
M1: Full 142.47 89.4%
Al: Non-parametric ~M2: Partial ~ 136.40 89.2%
M3: None 136.24 89.1%
M1: Full 154.85 93.9%
A2: Semi-parametric M2: Partial ~ 153.40 94.0%
M3: None 150.19 93.9%
M1: Full 126.69 98.6%
A3: Parametric M2: Partial ~ 126.97 98.5%
M3: None 126.77 98.5%

Table 6.31 provides the precision and coverage results from the simulation studies ex-

ploring the performance of each combination of approach and method for the bootstrap
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algorithms. It can be seen that there is very little difference between the different meth-
ods of accounting for, or not accounting for, model uncertainty, for both the precision
and the coverage. This suggests that there is very little benefit, if any, of the additional
computational time required for Method 1 over the other methods. Whilst there is little
difference in the coverage and precision between Method 2 and Method 3, as a result
of the small difference in computational burden between these methods, Method 2 is
the preferred method as it better accounts for the differences between datasets and how

they are modelled.

The differences between the performance of each of the approaches is much larger.
Whilst the coverage of the non-parametric approach is almost 90%, and with the coverage
of the semi-parametric approach being above 90%, but below 95%, there is a clear
preference for the parametric approach, where approximately 98.5% of the confidence
intervals found with these bootstraps contain the true value. There is also a benefit
with Approach 3 that the confidence intervals are slightly narrower and therefore more
precise, potentially aiding in making more accurate and informative conclusions from
the resulting intervals. These conclusions support the findings from the bootstrap
algorithms themselves in this chapter, where there was a preference for the parametric
approach to the bootstrap algorithm given that it produced samples with reduced bias
from the lack of a multicollinearity issue, unlike with Approaches 1 and 2.

Taking these results into consideration, it is recommended to use the (fully) parametric
bootstrap algorithm for quantifying uncertainty, and if there is a clear preference for
a single model, utilising Method 2 (partial) for accounting for model uncertainty. If
there is no clear preference, then Method 1 (full) should be used. Computationally,
the non-parametric bootstrap algorithm is less intense than the other two approaches.
However, at 10,000 bootstrap iterations, there was negligible difference between the
different approaches to the bootstrap algorithm (when the same method of accounting
for model uncertainty was utilised. Method 1 (full) of accounting for model uncertainty
with 10 competing models, across all bootstrap approaches, took between 10 and 30
minutes on average, depending on the computer’s processing speed and number of
cores utilised (working in parallel takes the time down to 10 to 15 minutes on average).
However, the final bootstrap algorithm when Method 2 (partial) of accounting for model
uncertainty, or Method 1 (none) is used takes less time with the algorithm running
in 5 to 15 minutes on average (on the lower end when parallelisation is used in the
code). Taking these timings into consideration, the combination of Method 2 (partial)
of accounting for model uncertainty and the (fully) parametric bootstrap algorithm (or
Method 1 if there is no clear preference for a single model) is recommended for use.

For demonstrative purposes, the same simulations are repeated, however, using the
Horvitz-Thompson estimator for estimating the population size within each bootstrap
algorithm instead. The results for these simulations are given in Table 6.32, where it can
be seen that overall, the performance of the bootstrap algorithms is very poor. There is
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TABLE 6.32: Simulation study results for the performance of each combination of ap-
proach and method with the bootstrap algorithm with the Horvitz-Thompson estimator
used for population size estimation.

Approach Method Precision Coverage
M1: Full 61.66 77.4%
Al: Non-parametric =~ M2: Partial 62.10 77.7%
M3: None 61.66 77.8%
M1: Full 90.96 94.0%
A2: Semi-parametric M2: Partial 91.10 94.4%
M3: None 90.95 94.0%
M1: Full 36.12 54.8%
A3: Parametric M2: Partial 36.16 55.1%
M3: None 36.08 54.6%

still very little difference in performance between each of the methods, and the coverage
of the intervals found using Approach 2 are comparable to when the generalised Chao’s
estimator is used, however, the coverage for the other approaches is no longer ideal. The
precision for both Approach 1 and Approach 2 is smaller, particularly for the parametric
approach. The narrower intervals likely contribute to the reduced coverage values,
wherein for the parametric approach, only just over half of all intervals contain the true
value, a result which is far less desirable than the corresponding 98% of intervals found
when the generalised Chao’s is used. Taking the performance values into consideration,
along with the results from the simulation study in Section 4.7, there is considerable
evidence to suggest that the generalised Chao’s estimator should be used in estimating
the total (or missing) population size instead of the more commonly used Horvitz-
Thompson estimator.

6.6.2 Bias-corrected and bias-corrected and accelerated

As with the standard bootstrap approaches, it is important to explore the performance of
the bias-corrected and the bias-corrected and accelerated percentile confidence intervals.
To do this, similar simulation studies to those conducted in Sections 6.6.1 and 6.6.3, are
conducted but using the BC and BC, approaches to confidence interval construction.

Table 6.33 provides the results from the simulation study exploring the performance of
the bias-corrected percentile confidence intervals when the generalised Chao’s estimator
is used for estimating the total population size. It can be seen throughout that the
results are much less consistent within each approach, with greater differences between
methods, particularly with Approach 3. Additionally, each of the coverage values
are lower compared with those of the standard percentile confidence intervals (in the
standard bootstrap algorithms), indicating that the bias-corrected percentile method is
inferior to the standard approach, especially with the additional computational burden

required to compute the BC intervals.
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TABLE 6.33: Simulation study results for the performance of the bias-corrected per-
centile confidence intervals for each combination of approach and method with the
bootstrap algorithm with the generalised Chao’s estimator used for population size

estimation.
Approach Method Precision Coverage
M1: Full 141.97 87.8%

Al: Non-parametric =~ M2: Partial 135.14 88.2%
M3: None 134.27 88.0%
M1: Full 155.09 91.7%
A2: Semi-parametric M2: Partial = 135.15 88.2%
M3: None 148.89 92.3%
M1: Full 141.97 87.8%
A3: Parametric M2: Partial 103.67 65.9%
M3: None 103.67 65.7%

Despite the bias-corrected percentile confidence intervals performing poorly in compari-
son to the other approaches, for completeness, the bias-corrected and accelerated interval

approach will also be used in a simulation study in order to assess its performance.

TABLE 6.34: Simulation study results for the performance of the bias-corrected and ac-

celerated percentile confidence intervals for each combination of approach and method

with the bootstrap algorithm with the generalised Chao’s estimator used for population
size estimation.

Approach Method Precision Coverage
M1: Full 140.52 86.6%
Al: Non-parametric =~ M2: Partial ~ 135.15 88.2%
M3: None 132.30 86.8%
M1: Full 153.49 89.9%
A2: Semi-parametric M2: Partial  135.15 88.2%
M3: None 147.06 90.6%
M1: Full 140.52 86.6%
A3: Parametric M2: Partial ~ 103.47 66.6%
M3: None 103.47 66.4%

6.6.3 Median absolute deviation

Similarly to as with the bias-corrected and bias-corrected and accelerated intervals, it is
important that the performance of the median absolute deviation confidence intervals
is explored. To do this, the same methods are utilised as for the simulation study
in Section 6.6.1, however, instead of constructing the standard percentile confidence
intervals after each bootstrap algorithm, the median absolute deviation is used for
constructing the confidence intervals.
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Given that the generalised Chao’s is the favoured capture-recapture estimator out of
those considered, it will be used in the simulation study for testing the performance of
the median absolute deviation.

TABLE 6.35: Simulation study results for the performance of the Median Absolute

Deviation for each combination of approach and method with the bootstrap algorithm
with the generalised Chao’s estimator used for population size estimation.

Approach Method Precision Coverage
M1: Full 142.06 91.3%
Al: Non-parametric M2: Partial ~ 137.64 90.8%
M3: None 136.99 90.6%
M1: Full 159.12 94.5%
A2: Semi-parametric M2: Partial ~ 157.14 94.6%
M3: None 153.47 94.8%
M1: Full 129.04 98.8%
A3: Parametric M2: Partial ~ 129.34 98.7%
M3: None 127.67 98.6%

Table 6.35 provides the findings from the simulation study for exploring the performance
of the median absolute deviation as a method for constructing confidence intervals in
the different bootstrap algorithms when the generalised Chao’s estimator is used for
estimating the total population size. The results are very similar to when the standard
percentile interval is used for confidence interval construction for the simulations of the
bootstrap algorithms in Section 6.6.1. However, across each of the bootstrap algorithms,
the coverage is higher than when the standard percentile approach is used. The coverage
increases by approximately 1.5 for the non-parametric bootstrap algorithm, an increase
of approximately 1 for the semi-parametric bootstrap algorithm and an increase of
approximately or the semi-parametric the increase is approximately 1 and for the for
the parametric bootstrap algorithm. The coverage is considerably higher for each of the
approaches compared to when either the bias-corrected or bias-corrected and accelerated

percentile confidence intervals are used.

Similarly, the difference between the precision values for when the standard percentile
method is used compared to the median absolute deviation is very small, with a slight
increase in width of confidence intervals for when the median absolute deviation is

used.

Given that using the median absolute deviation does not add to the computational
burden of performing the bootstrap algorithms comparatively to using the standard
percentile method, the results from the simulation studies indicate a preference for the
MAD. Additionally, despite the difference in coverage being small, since the complexity
of the methods are comparable, it is logical to use the MAD when the bootstrap data is
normally distributed and be able to obtain slightly better intervals when possible. If the
bootstrap data is not normally distributed, an alternative consistency constant should
be used.
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Chapter 7

Methods under presence of

one-inflation

This chapter discusses the methods covered and developed in previous chapters with
an application to zero-truncated one-inflated count data. In many situations, there is a
presence of excess singletons in count data, often to individuals getting trap-shy with
the consequences act as a deterrent. For example, in arrest data, there is often excess
singletons with a high number of individuals only getting arrested or going to jail once,
due to many people not wanting to experience it again. Another cause for one-inflation
is that if a "treatment’ proves successful, for example, in the heroin case study data used
in this chapter, there may be an increase in the number of singletons due to people not
needing to return, with the treatment for drug addiction being successful. Nonetheless,
no matter what the reason for excess singletons, it is important to use estimation methods
which appropriately account for one-inflation to avoid having inflated population size
estimates which in turn, may affect conclusions and decisions made based on those
estimates. To do so, this chapter develops the generalised-modified Chao’s estimator
to appropriately account for the excess singletons, with application to a case study to
demonstrate the impact one-inflation can have on population size estimation. Finally, a
simulation study is developed to explore the performance of the generalised-modified
Chao’s estimator to ensure that it performs to an appropriate level, and to demonstrate
why the existing methods are not appropriate to use in this situation.

7.1 Background

Heroin, also known as diacetylmorphine or diamorphine, is a semi-synthetic, highly ad-
dictive, illegal drug used for the euphoric effect it has when taken (National Institute
on Drug Abuse website, 2021). The recreational drug is synthesised from morphine,

an opiate used as an analgesic (painkiller), extracted from opium poppies. Use of pure
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heroin typically takes the form of smoking or snorting, but impure heroin that is created
from crude processing methods is typically administered intravenously (injected into
the veins), intramuscular (injected into the muscles) or subcutaneously (injected under
the skin) after being dissolved and diluted into a liquid (National Institute on Drug
Abuse website, 2021).

As with many illegal drugs, heroin is “cut” with various additives for different uses.
Some additives such as starch and powdered milk are added to the heroin for the pur-
pose of increasing the weight of the heroin before selling, cutting costs by reducing
the percentage of actual heroin in the drug. However, other additives such as fentanyl,
another illicit drug, are added to the heroin to make the drug more potent. This contam-
ination of the heroin can make it much more dangerous, particularly if the user does not
know what the heroin is contaminated with given that fentanyl is much stronger than

heroin and takes only a small amount of the drug to cause an overdose.

Many factors can impact the effect heroin has on an individual, including the dosage
taken, age of the user, frequency of use, duration of use, method of drug use, environ-
ment, pre-existing medical conditions (physical and mental) and whether any other
drugs were also consumed (for example, alcohol, herbal, over-the-counter or recre-
ational) (The Centre for Addiction and Mental Heatlh). The short-term effects of the
drug include the “rush” of euphoria that many users enjoy, along with nausea, dry
mouth, drowsiness, clouded mental function, slowed heart rate and slowed breathing.
Sometimes, the slowed breathing can be so severe that it is life-threatening, potentially
causing brain damage or resulting in a coma (National Institute on Drug Abuse website,
2021). Other more serious risks include the risk of overdose, made worse when the user
does not know the dosage they are taking, with varying levels of impurities making it
hard to know what is a "safe’ dosage along with unknown contaminants increasing the
potency of the drug. Additionally, there is the risk of infection when the drug is injected,
particularly since many drug users do not reliably have access to clean and new needles
for each injection. This has historically been a very large issue as drug users who inject
themselves have increased risks of HIV, tuberculosis (TB), and viral hepatitis B and C
(HBV and HCV) (World Health Organisation).

Thailand has had a long and complex history with its population and drug abuse. For
several decades, it was one of the major sources of illicit opium production (Windle,
2015), making heroin a popular drug of choice for a long time. However, in the late
1990s and early 2000s, the production of illicit opium was suppressed in the country
through intervention with the opium farmers. As a result of this and other factors,
whilst it is still a widespread problem with many individuals still abusing the drug,
heroin is no longer the most popular drug in Thailand, "yaa baa’ (methamphetamine) is
instead. In 2003, the then prime minister started a "'war on drugs’ that lasted for three
months (Vongchak et al., 2005)with an aim to shift focus from imprisonment of drug
abusers to rehabilitation, and to stop the problem of drug trafficking in the country, but
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instead thousands were killed, with over half of the 2800 killed having no connection
to drugs. In addition to the killings, thousands more were forced into "treatment” for
their addiction, wherein if they did not go voluntarily, they were forced into detention
centres run by the military (Windle, 2015).

Panyalert and Lanamteng (2020) provide information on the number of heroin users by
both age and gender that contacted the Thanyarak Chiang Mai hospital, Thailand, for
treatment for their drug addiction between 2013 and 2018. In this data, the number of
heroin users in the area that did not seek treatment help at least once is unknown, leading
to zero-truncated data. In this instance, it is important to know the total (estimated)
number of heroin users in the province for proper and effective resource allocation
among other reasons.

TABLE 7.1: Distribution of counts of heroin users in Chiang Mai, Thailand by age.

Age fo i o fs fa fs fo fr fs fo fo fu fiz fi3 fu
< 40 - 309 100 53 24 11 7 5 7 0 1 1 0 0 1
> 40 - 228 52 27 10 4 1 1 1 0 0 0 0 0 0
Total - 537 152 80 34 15 8 6 8 0 1 1 0 0 1

TABLE 7.2: Distribution of counts of heroin users in Chiang Mai, Thailand by gender.

Gender fo fAi o f3s fa fs fo fr fs fo fio fu fiz fiz fu
Male - 482 134 73 30 13 7 5 7 0 1 1 0 0 1

Female - 55 18 7 4 2 1 1 1 0 0 0 0 0 0
Total - B37 152 80 34 15 8 6 8 0 1 1 0 0 1

7.1.1 Modelling

For the heroin case study data, the expected response, exp(1;), is the rate of contact to
the treatment centre. Whilst there is information available on two covariates, age and
gender, the information is not at the individual level. Therefore, both the age and gender
of each individual is not known, only the overall distribution of people by age and the
overall distribution of people by gender. As a result of this, the covariates cannot be
modelled together. Instead, two datasets will be explored where the overall counts for
each dataset is the same. The first dataset explores the counts of contact with treatment
centres with age as a covariate, with the second exploring the counts of contact with
treatment centres with gender as a covariate. In the age dataset, v;; is the covariate for
the binary variable indicating the age range of the individual where fori =1,2,-- -, 843,

0 if below 40 years old, and
U1 =
l 1 if greater than or equal to 40 years old.
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For the other dataset, the gender dataset, v;; is the covariate for the binary variable
indicating the gender of the individual where

0 if male, and
Up =
1 if female,

fori=1,2,---,843.

TABLE 7.3: Linear predictors under consideration with corresponding regression func-

tions.
Linear Regression
predictor Age Gender function
j (1 23 h;(v)
1 No No hi(v) =1
2 Yes No hy(v) = (1,01)T
3 No Yes h3(v) = (1,02)7

As with the hares case study data, there is no exposure variable, 7, for the heroin case
study data. Since there is only one covariate available for each dataset, only two models
are considered for each. For both datasets, the intercept-only model is identical, overall
there are only three unique models, the intercept-only model, a main effect model for
age and a main effect model for gender. The linear predictors for these different models
are given in Table 7.3. Given that the heroin case study data is count data, the Poisson,
negative-binomial and geometric models are all under consideration. Table 7.4 provides
the values of the maximised log-likelihoods, number of parameters, AIC and BIC values
for each of the linear predictor and distribution combinations under consideration from

the zero-truncated regression modelling.

TABLE 7.4: Values of the maximised log-likelihood, number of parameters, AIC and
BIC for the models under consideration.

Linear Maximised =~ Number of
Distribution Predictor log-likelihood parameters AIC BIC
1 -1113.67 1 2229.34 2234.07
Poisson 2 -1096.91 2 219721 2206.69
3 -1113.62 2 2231.24 224071
Negative- 1 -993.54 2 1990.90 2000.38
binomial 2 -985.18 3 1976.36 1990.57
3 -993.43 3 1992.86 2007.07
1 -1012.32 1 2026.64 2031.37
Geometric 2 -1000.82 2 2005.65 2015.12
3 -1012.29 2 202857 2038.04

The results from Table 7.4 indicate that the addition of the age covariate improves the
tit of the model given that for each of the three distributions under consideration, the
addition of age reduces the values of the negative log-likelihood, AIC and BIC statistics.
The results also indicate that there is a preference for the negative-binomial distribution.
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FIGURE 7.1: Observed and fitted frequencies for the heroin dataset with the geometric
model with age as a covariate assumed.

7.1.2 Fitted frequencies

Table 7.5 provides the values of the observed and fitted frequencies of counts of heroin
users contacting the treatment centre in Chiang Mai, Thailand, assuming the geometric

model with age as a covariate.

TABLE 7.5: Frequency distribution of the captures of heroin users

Count of heroin users, x

Frequency type 0 1 2 3 4 5 6 7 8 9+
Observed, fx - 537 152 80 34 15 8 6 8 3
Fitted, fx - 48 203 8 38 17 8 3 2 3

7.1.3 Estimation

Whilst the negative-binomial main effects for age model is the best fitting for the data
out of the models under consideration, when using this model in the Horvitz-Thompson
estimator, the resulting total population size estimate of NHT) — 4,048,078 is very
large and spurious. In fact, this estimated total number of heroin users in Chiang Mai
is approximately 3 times greater than the estimated population size of the city itself
(1.3 million) (NASA Earth Observatory, 2024). This poor result is in part due to the
commonly seen boundary problem demonstrated in Bohning (2015). Therefore, despite
having the lowest information criterion values, the negative-binomial distribution is not
a suitable choice for this dataset.
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FIGURE 7.2: Ratio plot comparing the validity of the Poisson and geometric mixture
kernel assumptions

Instead, the geometric distribution will be used, given that the fit of the geometric model
with a main effect for age is a better fit than the Poisson, with it still being a good fit for

the data as seen in the ratio plot in Figure 7.2.

7.1.3.1 Horvitz-Thompson estimator

For the heroin case study data when age is included as a covariate and the zero-truncated
geometric distribution is used, the total population size using the Horvitz-Thompson
estimator is given as N(HT) = 2036. Given the observed population size, the total
number of heroin users who didn’t seek treatment in the Chiang Mai province is found
to be M = 1193.

7.1.3.2 Chao’s lower bound estimator

Using the heroin case study data, the total number of heroin users can then be estimated

using the conventional Chao’s estimator assuming a geometric mixture kernel as
g gag

2
N© =n+ i
f2

5372

= 843 + 152

= 2740,

which is much larger than the total estimate of N(HT) = 2036 provided by the Horvitz-

Thompson estimator.
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It is important to note that this estimate may be higher than expected given that there
is a possibility for one-inflation, and since Chao’s estimator relies completely on the
singletons and doubletons in the data, having excess singletons in the data would lead
to an inflated population size estimate. This will also be true for the other estimators
(including the Horvitz-Thompson estimator) that do not appropriately account for
excess singletons, however, given that the Horvitz-Thompson relies on other counts
besides just the singletons and doubletons like Chao’s and Zelterman’s estimators do
(and their generalised counterparts), it is likely that the Horvitz-Thompson estimator
will be slightly more robust to one-inflation.

7.1.3.3 Generalised Chao’s estimator

Table 7.6 provides the BIC values and the generalised Chao’s estimates for each of the
three models under consideration, assuming a geometric mixture kernel.

TABLE 7.6: Estimated total number of heroin users in Chiang Mai, Thailand for each

linear predictor under consideration using the generalised Chao’s estimator, assuming

a geometric mixture kernel, with corresponding AIC and BIC values for each linear
predictor.

Linear predictor AIC BIC N(GC)

1 729 734 3402
2 728 737 3457
3 731 740 3406

It can be seen that the preferred binomial logistic regression model is that of the model
with age as a covariate (using the AIC as the chosen information criterion), with a

corresponding total population size estimate of N(GC)

= 3457, an estimate that is consid-
erably larger than the existing estimates using the Horvitz-Thompson and conventional

Chao’s estimators.

7.1.3.4 Conventional Zelterman’s estimator

Assuming a geometric distribution, the conventional Zelterman'’s estimator for the
heroin case study data is given as follows.

§@ _h
f2
843 x 537
152

= 2978,

which is much larger than the Horvitz-Thompson and conventional Chao’s estimator
but approximately equal to the generalised Chao’s estimate.
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7.1.3.5 Generalised Zelterman’s estimator

The same binomial logistic regression models are fitted to the heroin case study data to
estimate the total population size using the generalised Zelterman’s estimator as with
the generalised Chao’s estimator. Therefore, the same intercept-only binomial logistic
regression model is preferred, leading to an estimate of the total number of heroin users
of N(GZ) = 3420. This estimate is larger than all of the existing estimates, however, it
is possible that the large difference is due to one-inflation, given that the generalised
Zelterman’s estimate relies heavily on the singletons in the dataset, and assumes the
counts of 1 and 2 follow the given distributional assumption. Whilst a robust estimator,
if there are excess singletons, the generalised Zelterman’s estimator is no longer robust
given that the important assumption is not met. To test whether this is the case, a
likelihood ratio test can be used to explore whether there is in fact excess singletons in
this dataset that are impacting the capture-recapture estimates.

7.2 Likelihood ratio testing

The existence of one-inflation can be explored by testing if the number of singletons
is compatible with the baseline model chosen. This is done via a likelihood ratio test,
testing the null hypothesis model of no one-inflation against the alternative hypothesis
model of one-inflation. The likelihood ratio statistic (Bohning and van der Heijden, 2019)
is given as

A =2[log L1 —logLy]
=2[f1log(f1/n) + n1log(l — f1/n) +logLy, —logL,].

Application: Heroin data

Assuming a geometric baseline distribution, a likelihood ratio test can be conducted to
identify whether there is excess singletons in the heroin dataset. First, the zero-truncated
density is required for the null hypothesis model, given as

1\ ! 1
+ 1—
pe() < 1+Hi> 1+ pi’

forx =1,2,---, with the corresponding log-likelihood

1 1
log Ly = S1log (1 - 1—l—y> +nlog (W‘) ,

with the maximum likelihood estimate fiy = W where §1 = Y i fa(x — 1).
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The zero-one-truncated density is then required for the alternative hypothesis model,

given as
(1 _ L)" 1
1+pu 1+pu
++ —
pe(W)"" = —— N
1—-1 _(1—--L1L)_1
1+p ( 1+y> 1+p
for x = 2,3, - - -, with the corresponding zero-one-truncated likelihood given as

1 1
log L++ = 52 log (1 - 1_’_11) + nq log <1—|—],[> ’

with the maximum likelihood estimate I = m where S, = Y, fr(x —2).

The likelihood ratio test statistic can then be given as follows.

A = 2[537 log(537/843) + 306 log (1 — 537/843)

1 1
1 1

= 36.71,

with a corresponding x? p-value of 1.37¢ — 9 ~ 0, providing strong evidence that the
heroin case study data is one-inflated. Therefore, under the assumption that the data
is one-inflated, an alternative approach to the existing capture-recapture estimators is
required in order to appropriately account for the excess singletons in the estimation of
the total number of heroin users in Chiang Mai, Thailand.

7.3 Modified Chao’s estimator

As previously mention, an excess of often singletons occur in count data, leading to
one-inflation. An example of this occurring can be seen in ecology when individuals
become trap-shy and avoid being trapped again after the first occasion. Another example
of cause for one-inflation is where there is a small probability of recurrence, such as
readmission to hospital for for cancer in epidemiological data or rearrest in criminology
data.

Bohning et al. (2019) developed a modified version of the standard Chao’s lower bound
estimator to account for this inflation in count data, using methods of substitution to
eliminate the need for singletons in the calculations. Instead, doubletons and tripletons
are utilised for estimating the total population size. However, the estimated frequency
of zero counts given in Equation 4.13 relies on the singletons following the given

distribution. To circumvent this, additional ratios can be constructed to estimate the
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frequency of singletons for substitution as follows.

np _mfs
ax f1 ~ a3 fa
; mazfy

= f1 = .
f 2 f

Substituting f; into Equation 4.13 gives

2
sMc) _ agap 1 (ﬂlﬂs f22>

fO - T%fz ﬁﬁ"
:%@1C@%%
a2 fo\ ai f3
_ apa3 f3
3 f3

If a Poisson mixture kernel is assumed, ag = 1/1! =1,a, =1/2!'=1/2and az = 1/3! =

1/6, and the estimated frequency of zero counts is

fwo_%%ﬁ

8 f
_1x1/36f3
T8 A
_2f

o3

and modified Chao’s estimator is then computed as

o), 25
9 /3

Alternatively, if a geometric mixture kernel is assumed, a, = 1 and the frequency of zero

counts is then estimated as s
smMc)  1x 12 &

fo
vg
_5
f3
leading to the estimated total population size
3
MO — 4 2

f3
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Application: Heroin data

Assuming a geometric mixture kernel, the total population size using the modified
Chao’s estimator for the heroin case study data can then be estimated as follows.

3
NMO) — v f%
f3

1523

=843+ —

* 802

=1392.

This estimate is considerably smaller than the estimates computed from the capture-
recapture estimators when the excess singletons are not accounted for. This is to be
expected given that the one-inflation present in the data leads to higher than expected

estimates for the total population size.

7.4 Generalised-modified Chao’s estimator

Given that only the frequency of counts is utilised in the computation for the total
population size for the modified Chao’s estimator, any available covariates, including
exposure variables, are not accounted for. Using the work of Bohning et al. (2013b), the
modified Chao’s estimator can be generalised, first through truncating all counts besides

X; = 2 and X; = 3, which leads to the following associated truncated Poisson model.

expl—u; 2 expl—Uu; 13
pa(pi) = p(zy)yl = (1—g;) and p3(p;) = p(6y)y = g;. (7.1)

Given that g, = (1 — g) and g3 = g, Equation 4.10 becomes

az g3 q
=221 _g3 . 7.2
PP s (7.2)
Replacing the value of p3(y) = g with its sample estimate f—ﬁ where N = (f2 + f3),
makes y equivalent to

_g St fs) LS

T m et ) R

verifying that the ratios in Equations 4.10 and 4.12 are equal.

Rearranging Equation 7.2 for 4 results in

.
(R
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making the probabilities in Equation 7.1 equivalent to

Hi .
3+ u;

p2(pi) = = and p3(pi) =

3+ u;

Therefore, the associated truncated Poisson likelihood is

fotfs 3 fi2 . fis
=TT () (535)

equal to the standard binomial logistic likelihood

fatfs
L=T]Q-a)=@)"

i=1

resulting in the standard binomial logistic log-likelihood

t = frlog(1—q)+ f3log(q).

The maximum likelihood of g can be found as

a_ o _fs
dg 1—q q
o= 2 B

1-q 4

= 0= fod— f5(1—49)
= 0= fof — f3+ fa]

f3
frtfs

= 4=

Following Bohning et al. (2013b), the estimate for the frequency of zero counts can be
computed using the conditional expectation as

A(GMC) _ po(f1)
f [fo‘f2/f3l ]_ 12 (#)_’_p ( )(f f3)

= W(fZ f3)

ao

- 3(f2+f3)

= (0) o (:7)

ao

:@@g)m4ygyﬁfm
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Top T

however, this does not allow for covariates to be accounted for, hence it is equal to the
estimated frequency of zeroes for the modified Chao. The frequency of zero counts
can instead be computed through using the fitted values from the binomial logistic
regression model to estimate the value of y with Equation 7.2, leading to the following

estimate for the frequency of zero counts.

o TrfIF 1 po(fu) .
fio = Elfoolfir, f13, pi] = o2 () + pa(A) (fo + fi3)

exp(—fk)
- i+ fi
exp(—i) 7 /2! + exp(—p;) ] /3! (fi2 + fia)

1

= m(ﬁz + fi3),

therefore, the generalised and modified Chao’s estimator is given as

N
N(GMC) =n+4+ Zflo
i=1

fotf3 1 (7'3)

=n+ Yy —
L a1/

However, if a geometric mixture kernel is assumed, the estimated frequency of zero

counts is given as

e Elfalf, fu ] = — POlB) L f
flO - E[ﬂ0’ﬂ2/fl3/]’ll] - pZ(ﬁi)‘f'PZ%(,ﬁi) (le +fl3)

2

— Gi | |

L)+ G- (fi2 + fia)
1

— (1 — éi)Z(Z _ él) (fz2 +fi3)~

Therefore, the generalised and modified Chao’s estimator assuming a geometric mixture

kernel is given as

N
NEME) = + Y fo
= (7.4)
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where {; =

T4+

Application: Heroin data

Once all counts besides those of the doubletons and tripletons are truncated from the

heroin case study data, a binomial logistic regression model can be fitted.

TABLE 7.7: Estimated total number of heroin users in Chiang Mai, Thailand for each

linear predictor under consideration using the generalised-modified Chao’s estimator,

assuming a geometric mixture kernel, with corresponding AIC and BIC values for each
model

Linear predictor AIC BIC N(GMO)

1 301 304 1227
2 303 310 1227
3 302 309 1231

Table 7.7 provides the AIC and BIC values for the models under consideration, where
there is very little difference between the AIC values for the intercept-only model and
the models with covariates. Given that the difference is very small, it is not surprising
that there is very little difference between each of the total population size estimates for
the different models. However, as expected, the estimates are much smaller than those
found through using the other capture-recapture estimators which do not account for
the excess singletons appropriately.

7.5 Uncertainty quantification

7.5.1 Variance by conditioning

The theoretical formula proposed by van der Heijden et al. (2003, page 314) for variance
estimation by conditioning is altered to be used for the generalised-modified Chao’s

estimator, given in Equation 7.5,

—

Var(N(CMO)y = E[Var(N(CMO)|[,)] + Var(E[N(CMO)|1)]). (7.5)
An estimator for the variance in the first term is developed as

S(GMC) fotfa 1
Var(N L) =V n+ _
N =N L e

fotfs 1
:V _— ,
" ( ; #?/2+ﬂ?/6)
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where m = G(uilB)-

The above variance can be estimated using the multivariate- /-method as

fatfs T f2tfs3
Var(N(EMO)| 1) = Z VG(fi Cov(B Z VG(a ,

where for y; = exp(h(Vi)TB)Ti/

1 pr+p?/2 T
. h(v;
(B = (2 3+ 3770
The expectation for the second term is given as
I;
E[N©CMO L] = E I

~
~

Liw;,

M=

N
Il
—_

where w; =1+ % with po(p;) = exp(—u;) and

pi = pa(pi) + p3(ui) = exp(—pi)ui /2 + exp(—pui) 3 /6.

The indicator variable I; is binary with expectation
E[L] = pi,
and variance
Var(Ii) = pl(l — Pl)
Hence the second term of Equation 7.5 is given by

N N
ar <Z Iiwl) = Zpi(l
i=1 I;

which is estimated as
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Therefore, Equation 7.5 is given by
GMC fotfs T . [fths R
Var(N( < Y. VG(nilB > Cov(B) ( Z VG(;M[Z)) +
Ya-p (14 22CR)Y)
i=1

It is important to note that this variance formula is when a Poisson mixture kernel is
assumed. In the case where a geometric mixture kernel is assumed, the variance formula

is altered as follows.

The variance in the first term is given as

i=1

Var(N(EMO) | 1) = Var | n +f2i{3 !
= (1-30)*(2-0)

v fatfs 1
= var ; (1—€l>2(2—€1)>,
where {; = ! and ! G(uilB)-

1—1-“1/!1' (1_&) (2 gz)

Using the multivariate 6 —method, the above variance can be estimated as

fatfs T fatf3 R
Var(N(EMO)| 1) = (ZVG ) Cov(B (Zvcgg)

where for 71; = exp(h(v;)TB) 1,

s 3(1— fi;)? 1+ ;)3 (1 + 23 4 647
G(,uz|ﬁ): A( A]’zl) A3_( V)A( Azy A3;211) h( i)T'
L+ + iy + 243 (1+ i + iy + 2727)

As for the second term in Equation 7.5, the expectation is given as

E[ GMC|I]_E

I;
”*Z == a)“l’]

N
~ Z Iiwi,

where w; =1+

Pof()ﬂ i) with po
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As in the Poisson case, I; is a binary indicator variable with expectation E[I;] = p; and
variance Var(I;) = p;i(1 — p;).

Therefore, the second term in Equation 7.5 is

N N
Var (Z Iiwi) = Z pi(1— pi)w?,
i=1 i=1
which is estimated as

Var (E[N(OMO)| 1)) =

1
1+ﬁi.

where {; =

Therefore, Equation 7.5 is given by
. fatfi )
Var(N(OME)) = {3, VG (7lB)
i=1

~
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Q
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Application: Heroin data

Assuming the binomial logistic regression model with gender as a covariate, Equation 7.6
leads to an estimated variance of 21406 with a corresponding standard error estimate of
146 and 95% confidence interval for N(CMC) of

N(EMO) 4 1.96 x /Var(N(GMO)) = 1227 + 1.96 x /21406
= (940,1514).

Unlike some of the intervals constructed in earlier chapters using conditioning for vari-
ance estimation with the suicide case study data, this interval appears reasonable given
that it is of adequate width such that useful conclusions may be made. Additionally, the
lower limit is not only greater than 0, but it is also greater than the observed population
size, which was not the case for the generalised Chao’s and generalised Zelterman'’s

intervals for the suicide case study data in Chapter 5.
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7.5.2 Bootstrap algorithm

Whilst the simulation study in Section 6.6.1 suggests that the parametric bootstrap
algorithm should be used for optimal results, the semi-parametric bootstrap algorithm
still performs well, with over 90% coverage. In the case of count data that is both
zero-truncated and one-inflated, the parametric bootstrap algorithm becomes much
more computationally intensive, and it was shown in Section 6.6.1 that there was
little benefit of the parametric bootstrap algorithm over the semi-parametric bootstrap
algorithm. Furthermore, if the median absolute deviation is utilised for constructing the
confidence intervals, the coverage for the semi-parametric bootstrap algorithm increases
to approximately 95%, as seen in Section 6.6.3, and is therefore used here (with Method
1 for accounting for model uncertainty) for quantifying the uncertainty of the estimates
found using the generalised-modified Chao’s estimator.

Application: Heroin data

The semi-parametric bootstrap algorithm with Method 1 for accounting for model
uncertainty (fully accounting for it) is given in Algorithm 6. To apply this algorithm to
the Heroin data with the generalised-modified Chao’s estimator, Step 4 of the algorithm
can be adjusted as follows.

Step 4: If Zﬁ (xf =2)=0o0r Zﬁ ,(xj =3) =0, return to Step 2. Otherwise, truncate
bootstrap dataset for all counts except X = 2 and X = 3. Fit competing binomial
logistic regression models for the linear predictors in Table 7.3. Let j = 1,- - - ,3 be
the linear predictor which minimises the AIC, § be the corresponding fitted values

and Bf be the corresponding maximum likelihood estimates of B;.
Generalised-modified Chao’s: Let

gi

ho—13 ,
]’ll 1_ql

fori =1,2,---, fo + f3, then, assuming a geometric mixture kernel, the estimated
target population size is calculated as

S(GMC)+ PP ot fis
o (1-30)22-4)

1
T

where {; =
This bootstrap algorithm results in a 95% confidence interval of (1144,1461), which is
narrower than the interval computed through using conditioning in Section 7.5.1, and
still contains the estimated total population size of N = 1227. For the heroin case study
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data, both the variance by conditioning approach and the bootstrap algorithm approach
work well for quantifying the uncertainty of the population size estimate, likely due in
part to the observed population being reasonably large. However, it is worth noting that
the variance by conditioning approach does not always perform well, seen in Chapter 5,
where for the suicide case study data, the lower limits on multiple confidence intervals
were negative. In this situation, the bootstrap algorithm is preferable given that it
reduced the bias and resulted in confidence intervals of reasonable widths that contained
the estimated value and had a lower limit greater than the observed population size. The
variance by conditioning approach is less computationally intensive than the bootstrap
algorithm, but returns wider confidence intervals in this scenario, and should the
resulting interval be inappropriate (such as a negative lower limit for the estimated total
population size when there is a positive observed population size), then the bootstrap
algorithm should be used for the uncertainty quantification.

7.6 Simulation study

The results from the generalised-modified Chao’s estimator appear reasonable, for
example the total population size is notably greater than the observed population
size with the missing zero counts but not as large as the alternative capture-recapture
estimators which result in a very large number of zero counts. Additionally, the resulting
estimated variance with corresponding confidence interval appears reasonable since
the lower bound of the interval is both greater than zero and the observed population
size. However, given that the true total population size is unknown, through applying
the estimator to this dataset, the actual performance of the estimator is not known.
Therefore, there is motivation for a simulation study to test whether the estimator not
only performs well but is a better choice than the alternative, existing capture-recapture
estimators in the case of one-inflated data. The simulation study will follow the same
structure as used for testing the performance of the existing capture-recapture estimators,
exploring the accuracy, precision, coverage and robustness of the generalised-modified
Chao’s estimator.

Table 7.8 displays the results from the simulation study when the true population size is
N = 1000. The proportion of outliers in the simulated data ranges from 0% to 10%, with
approximately 1/5 of the counts being additional singletons. It is clear to see that when
there are no outliers, for accuracy and coverage in particular, the generalised-modified
Chao’s is preferred. Whilst the precision for each of the estimators is not very large, for
the Horvitz-Thompson, generalised Chao’s and generalised Zelterman'’s estimators, that
their accuracy is poor resulting in a coverage value of 0%. This means that none of the

simulated confidence intervals contain the true population size.



166 Chapter 7. Methods under presence of one-inflation
TABLE 7.8: Values for the reliability measures of accuracy, precision and coverage for
the capture-recapture population size estimators of Horvitz-Thompson, generalised
Chao’s, generalised Zelterman’s and generalised-modified Chao’s when the counts
are one-inflated, where S = 1000, N = 1000, f = 900, A€ = 0.0004, AL ~ 0.0071,
AY % 0.0085, 7 = 1.5,0 = 0.8, a = 36, B = 8.5 and p = 0.4 for various proportions of

outliers.
Proportion of Outliers
Measure  Estimator  0.0% 0.1% 0.5% 1.0% 2.0% 10.0%
HT 370 7.36e+07 8.44e+07 9.37e+07 1.06e+08 1.06e+08
Accurac GC 663 800 801 786 781 793
y GZ 751 1226 1223 1220 1232 1254
GMC 49 231 216 220 216 218
HT 189 4.96e+09 539%e+09 5.66e+09 5.70e+09  5.67e+09
Precision GC 464 542 544 534 537 541
easio GZ 539 770 774 770 780 789
GMC 278 628 609 612 602 606
HT 0% 98.3% 99.8% 100.0% 99.9% 99.8%
Cover GC 0% 0% 0% 0% 0% 0%
OverBe Gz 0% 0% 0% 0% 0% 0%
GMC 94.9% 94.4% 94.3% 95.1% 93.5% 95.1%
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FIGURE 7.3: Box plots showing the accuracy of the population size estimates (left)
and the precision of the resulting confidence intervals (right) for the capture-recapture
population size estimators when the data is one-inflated, A; = Q3 4+ 3 x IQR and
N = 1000.




7.6. Simulation study 167

These results are illustrated in Figure 7.3, where the box plot on the left provides the
population size estimates for each capture-recapture estimator (accuracy), and the box
plot on the right provides the precision values for the resulting confidence intervals for
each capture-recapture estimator. It can be seen that the estimated population sizes for
the generalised-modified Chao’s estimator are not only centred around the true value
(N = 1000), but they are also much closer than the estimates for the other three capture-
recapture estimators, demonstrating how much more accurate the generalised-modified
Chao’s estimator is for one-inflated data. The box plot for the precision values looks
very similar to Figures 4.3 and 4.5, where the Horvitz-Thompson estimator has the most
precise confidence intervals, and there isn’t a large difference in the performance of
the generalised Chao’s and generalised Zelterman'’s estimators. However, given that
these estimators are inaccurate, the relatively narrow confidence intervals result in poor
coverage and are therefore ineffective intervals for inference. As for the generalised-
modified Chao’s estimator, the precision values are centred at a reasonable width,
between the Horvitz-Thompson estimator and the other two estimators, however, the
spread of the precision values is much greater. This indicates that the results are quite
inconsistent, however, given that the coverage is good, and the majority of the precision
values result in narrow confidence intervals, useful conclusions can still be made from
these intervals.

Once outliers are introduced, the preference for the generalised-modified Chao’s estima-
tor becomes even clearer. The accuracy and precision values for the Horvitz-Thompson
estimator get very large with the coverage value also going to near 100%. This coverage
value does not indicate that the Horvitz-Thompson estimator is a good choice as it is
only so high as a result of the very wide confidence intervals. As for the generalised
Chao’s and generalised Zelterman’s estimators, for the simulated data with outliers, the
performance values are very consistent as with the simulation for non-one-inflated data
in Chapter 4. The coverage and accuracy differ greatly, with 0% coverage and very inac-
curate estimates (with N=1000 and accuracy of around 800 and 1200 for the estimators
respectively, these estimates are approximately double that of the true value). These

estimators are therefore not appropriate in the case where the counts are one-inflated.

When applying the generalised-modified Chao’s estimator to the simulated data with
both one-inflation and outliers, whilst the results are not as good as for the case with
no outliers, the results are very consistent and still much better outcomes than with the
alternative estimators. The coverage remains around 93-95% which is a very desirable
amount of coverage, and the median distance from the true value is much smaller than
for the alternative estimators. Lastly, whilst the median width of the confidence intervals
does approximately double once outliers are introduced into the data, the width remains
constant for all proportions of outliers and is a reasonable width comparatively to the
intervals constructed with the Horvitz-Thompson estimator.
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FIGURE 7.4: Box plots showing the accuracy of the population size estimates for the
capture-recapture estimators when the data is one-inflated for different proportions of

outliers when A = Q3 + 1.5 x IQR and N = 1000.
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FIGURE 7.5: Box plots showing the precision of the confidence intervals for the capture-
recapture estimators when the data is one-inflated for different proportions of outliers

when A; = Q3+ 1.5 x IQR and N = 1000.
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Figures 7.4 and 7.5 provide box plots show the accuracy and precision of the capture-
recapture estimators respectively, visually illustrating the results from Table 7.8. A
y-axis limit has been put in place due to very large Horvitz-Thompson estimator values,

resulting in these values not being visible in the plots.

As for the other estimators, the generalised Chao’s, generalised Zelterman’s and
generalised-modified Chao’s estimated population sizes are all very consistent no matter
the proportion of outliers, further providing evidence to their robustness. The gener-
alised Chao’s and generalised Zelterman'’s estimated population sizes are all very far
from the true value, with many of the resulting estimates being almost double that of the
true value, testifying that these estimators should not be used when there is evidence of
one-inflation present in the data. The generalised-modified Chao’s estimator performs
well on the other hand. Whilst it is not as accurate as when there are no outliers included
in the data, the estimated values are only about 200 units away from the true value,
which is a notable improvement over the other estimators available. As seen previously
in Figure 7.3, the precision values for the generalised-modified Chao’s estimator are very
spread out, but given the substantial improvement in both the coverage and the accuracy
in comparison to the alternative estimators, and that the majority of the precision values
are below around 700, it is still a good estimator to use and useful inference may be

made from the resulting conclusions.

TABLE 7.9: Values for the reliability measures of accuracy, precision and coverage for

the capture-recapture population size estimators of Horvitz-Thompson, generalised

Chao’s, generalised Zelterman’s and generalised-modified Chao’s when the counts

are one-inflated, where S = 1000, N = 500, f = 900, AC = 0.0004, AL ~ 0.0071,

AU 2 0.0085, v = 1.5,0 = 0.8, & = 36, B = 8.5 and p = 0.4 for various proportions of
outliers.

Proportion of Outliers

Measure  Estimator 0.0% 0.1% 0.5% 1.0% 2.0% 10.0%
HT 184 - 2.14e+07 2.83e+07 3.21e+07 3.21e+07
Accuracy GC 333 - 402 396 396 396
GZ 377 - 625 618 620 626
GMC 33 - 120 108 117 105
HT 134 - 1.86e+09 1.99e+09 1.99¢+09 1.98e+09
Precision GC 330 - 387 384 383 383
GZ 382 - 554 552 558 556
GMC 194 - 445 425 433 416
HT 0% - 97.5% 99.2% 99.6% 99.9%
Coverage GC 0% - 0% 0% 0% 0%
GZ 0% - 0% 0% 0% 0%
GMC 93.3% - 99.7% 99.9% 99.8% 99.6%

Table 7.9 provides the same information as Table 7.8 but for a true population size of
N = 500 instead of N = 1000. It is important to note that for the proportion of outliers of
0.1%, there are no results given that 0.1% of 500 is 0.5 which is not an integer and rounds
to either 0 or 1, where the results for 0 outliers is already provided in the table. The
results for this smaller total population size follow the same trends as already discussed.
Since the trends are consistent across both smaller and larger population, there is
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evidence to suggest that in the presence of one-inflation, the generalised-modified
Chao’s estimator is a reliable estimator that performs notably better than the Horvitz-
Thompson, generalised Chao’s or the generalised Zelterman’s estimators.

As discussed in Section 4.7, using the outlier rate lower bound defined in Equation 4.27
(AL = Q3+ 3 x IQR) to determine the lower bound of the outlier rate can create clear
outliers. However, outliers are not always clear and obvious in a dataset and therefore
there is interest in using a less obvious outlier rate. The same simulation study as
above is conducted, but using a smaller lower (and upper) bound for the outlier rate,
determined by the following.

AL = Q3+ 15 x IQR,

where the upper bound is still given by Ay = 1.2 x A, but with this updated value of
AL

TABLE 7.10: Values for the reliability measures of accuracy, precision and coverage for

the capture-recapture population size estimators of Horvitz-Thompson, generalised

Chao’s, generalised Zelterman’s and generalised-modified Chao’s when the counts

are one-inflated, where S = 1000, N = 1000, f = 900, A€ = 0.0004, AL ~ 0.0046,

AU 2 0.0056, v = 1.5, 0 = 0.8, « = 36, B = 8.5 and p = 0.4 for various proportions of
outliers.

Proportion of Outliers

Measure  Estimator  0.0% 0.1% 0.5% 1.0% 2.0% 10.0%
HT 370 742e+07 7.73e+07 8.04e+07 8.58e+07 8.64e+07
Accuracy GC 663 802 797 794 787 800
GZ 751 1227 1227 1226 1237 1243
GMC 49 223 228 231 219 230
HT 189 4.94e+09 5e+09 5.89e+09 4.98e+09 5.04e+09
Precision GC 464 546 540 538 540 543
GZ 539 776 772 774 782 785
GMC 278 628 620 618 615 626
HT 0% 97.6% 98.7% 99.6% 99.7% 99.9%
Coverage GC 0% 0% 0% 0% 0% 0%
GZ 0% 0% 0% 0% 0% 0%

GMC 94.9% 93.8% 93.7% 94.4% 94.2% 94.6%

The results from this simulation study are given in Tables 4.5 and 4.6 for total population
sizes of N = 1000 and N = 500 respectively. Despite the outliers being smaller and
therefore more subtle in the datasets, the results remain the same. The generalised Chao’s
and generalised Zelterman's estimators have reasonably wide confidence intervals, but
due to very poor accuracy, they have 0% coverage consistently, and therefore should
not be used when one-inflation is present in the data. Similarly, the Horvitz-Thompson
estimator is not appropriate when there are excess singletons in the data, as whilst
the coverage is above 95% when outliers are introduced, this is only due to the very
wide confidence intervals, from which no reasonable conclusions can be made. For all
proportions of outliers, the generalised-modified Chao’s estimator performs well, with

coverage over 90%, reasonably wide confidence intervals and good accuracy, and the
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TABLE 7.11: Values for the reliability measures of accuracy, precision and coverage for
the capture-recapture population size estimators of Horvitz-Thompson, generalised
Chao’s, generalised Zelterman’s and generalised-modified Chao’s when the counts
are one-inflated, where S = 1000, N = 500, f = 900, AC = 0.0004, AL ~ 0.0046,
AU 2~ 0.0056, vy=150=08,a =236 =8.5and p = 0.4 for various proportions of

outliers.

Proportion of Outliers

Measure  Estimator 0.0% 0.1% 0.5% 1.0% 2.0% 10.0%
HT 184 - 2.32e+07 2.39e+07 2.68e+07 2.70e+07
Accuracy GC 333 - 403 394 392 393
GZ 377 - 618 612 609 618
GMC 33 - 115 117 120 110
HT 134 - 1.82e+09 1.76e+09 1.82e+09 1.84e+09
Precision GC 330 - 385 378 379 382
GZ 382 - 550 546 546 551
GMC 194 - 431 439 445 416
HT 0% - 97.6% 98.2% 99.9% 99.3%
Coverage GC 0% - 0% 0% 0% 0%
GZ 0% - 0% 0% 0% 0%
GMC 93.3% - 99.9% 100.0% 99.9% 99.8%

majority of confidence intervals contain the true value. Therefore, if there is evidence

that the data is one-inflated, the generalised-modified Chao’s estimator should be used.
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Chapter 8

Conclusion and Future Work

This chapter provides the conclusions of the thesis and a discussion of potential future

work.

8.1 Conclusion

Meta-analytic methods are widely accepted for computing an overall weighted-average
from the findings of numerous independent studies focused on the same or similar
research question. Traditional meta-analysis and regression modelling are not always
appropriate however, such as in the case for this thesis where the focus was on counts
of zero systematically missing from the data. In this instance, the traditional methods
do not address the missing zero counts and typically result in an overestimation of the

prevalence rate parameter and inaccurate total population sizes.

This thesis proposed a novel model-based approach to meta-analysis in Chapter 3,
utilising zero-truncated count modelling to better estimate the prevalence, and more
accurately model the data available. Using this approach, observed heterogeneity is
addressed through investigation into covariate effects, enabling the prevalence rates to
be stratified by the covariate information. Unobserved heterogeneity was also addressed,
through overdispersion modelling, however, neither the suicide case study data or the
hares case study data were not overdispersed, and for the suicide case study data, the
zero-truncated intercept-only Poisson regression model was preferred, leading to an

overall rate of completed suicide and no evidence of residual heterogeneity.

The model-based approach developed in Chapter 3 enables the estimation of both total
and sub-population sizes in Chapter 4, using the Expectation Maximisation algorithm
and the Horvitz-Thompson estimator. Alternative capture-recapture estimators were
also explored in Chapter 4, the generalised Chao’s and generalised Zelterman’s estima-

tors, providing more robust estimates of the total population sizes through their relaxed
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distributional assumptions comparative to those of the Horvitz-Thompson estimator.
The existing estimators were adjusted to allow for the inclusion of an exposure variable,
the person-years, for the suicide case study data, for more accurate estimation. Addi-
tionally, each of the estimators were developed to allow for the geometric distribution,
rather than the default Poisson distribution. This additional development allowed for
more reliable application of all three capture-recapture estimators to the hares case study
data.

The resulting population size is dependent on the capture-recapture estimator used,
and this difference in results motivated the development of a simulation study to assess
various performance measures for each estimator. The Horvitz-Thompson estimator
was first developed multiple decades before the generalised Chao’s and generalised
Zelterman’s estimators, so it is unsurprising that this estimator is typically the most
used method. Although it is used more frequently, the alternative estimators performed
notably better in certain situations, particularly the generalised Chao’s estimator. The
simulation study revealed that if there are no outliers in the data and the data therefore
perfectly follows the given distributional assumption, the Horvitz-Thompson estimator
is the superior estimator, providing more accurate results with more precise confidence
intervals. However, with real data, this assumption is often not met with outliers
being common. Once outlier counts were introduced to the simulated data, in various
proportions and degrees, the accuracy, precision and coverage of the Horvitz-Thompson
estimator all decrease, whereas the performance measures for the generalised Chao’s
and generalised Zelterman’s estimators remain consistent and overall, perform well,
and hence are more robust estimators for real data. However, given that the generalised
Chao’s and generalised Zelterman’s estimators both truncate the data further, the sample
size of the data should be taken into consideration when choosing which estimator to
use, as using a smaller dataset in estimation may lead to less accurate results. If there
is adequate data available, then the results from the simulation study indicate that the
generalised Chao’s estimator is the preferred method of estimating the total population

size.

Chapters 5 and 6 both investigate methods of uncertainty quantification for the preva-
lence rate and population size estimation. Approximation-based variance estimation
approaches were developed in Chapter 5 and applied to both the suicide and hares case
study data. Through the application of these methods to the data, it was found that the
analytical approach to uncertainty quantification is not always appropriate, possibly due
to the limited data size of the suicide data. In the application to the suicide case study
data, the intervals for the generalised Chao’s and generalised Zelterman’s estimators
contained negative lower limits, and given that in this instance, you cannot have a
negative total population size, nor a total population size lower than what is observed
(27), these intervals were not appropriate. The analytical approach to uncertainty quan-
tification returned appropriate confidence intervals for the hares case study data, which
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is notably larger in size than the suicide case study data. Taking the potential for the
resulting confidence intervals into consideration, alternative approaches to quantifying
uncertainty are required. Additionally, the analytical approaches risk underestimating
the amount of uncertainty given that model uncertainty is not accounted for, motivating
the development of various bootstrap algorithms in Chapter 6.

Various designs of the bootstrap algorithm were developed in Chapter 6, each with a
different combination of approach, being either non-parametric, semi-parametric or
parametric, and method for accounting for model uncertainty. Each approach and
method combination of the bootstrap algorithm was applied to both the suicide case
study data and the hares case study data, which aided in identifying which combination

to use.

When applying the bootstrap algorithms to the hares case study data, it could be seen
that there was little difference between each of the resulting intervals. However, when
the semi-parametric approach was utilised, the width of the intervals was increased, a
trend that was seen in the intervals for each of the population size estimators. Addition-
ally, the intervals found through using Method 1 for accounting for model uncertainty
were slightly wider than the intervals found using the other methods. This difference is
to be expected, given that Method 1 accounts for the most model uncertainty out of the
three methods, investigating each of the competing models in each iteration, rather than
assuming the model preferred the majority of times for the observed data was suitable

for each iteration or not accounting for model uncertainty at all.

These trends were much more visible when each of the bootstrap algorithms were
applied to the suicide case study data, where the available sample sizes are much
smaller. For this application, the resulting intervals for Method 1 were very wide, no
matter which population size estimator was used. These wide confidence intervals were
particularly notable for the non-parametric and semi-parametric approaches, where
high correlation between covariate combinations led to bias and intervals which are not

useful for inference.

Out of the three approaches, the parametric approach, Approach 3, resulted in the most
appropriate intervals overall. These findings were seen in both datasets, but on a much

less notable scale for the hares case study data.

Overall, these results indicate that, particularly for smaller datasets, the parametric ap-
proach to the bootstrap algorithm should be used, namely due to the reduction in bias in
the intervals compared to the other approaches. As for accounting for model uncertainty,
provided that there is a clear preference for a single model, Method 2 returns the most
appropriate intervals with less bias and computational time compared to Method 1.
However, if there is not a clear preference for a single model, Method 1 is preferred,
given the importance for accounting for model uncertainty to not underestimate the
variation. This was the case for the hares case study data in Approaches 1 and 2 to
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the bootstrap algorithms when the generalised Chao’s and generalised Zelterman’s
estimates were used.

These conclusions are supported by the simulation study in Section 6.6, where the inter-
vals found using Approach 3 was both the most precise and have the highest coverage
at 98%. Whilst the simulation study indicates that Method 1 is the preferred method,
based on the results alone, the difference between the three methods is negligible (0.28
difference in the precision and 0.1% difference in the coverage between Methods 1 and
2), so taking the computational time into account, if there is a clear preference for a
single model with the observed data, Method 2 with the parametric bootstrap algorithm
should be used.

Alternative methods of confidence interval construction explored revealed that whilst
the standard percentile method performs very well, it is susceptible to bias and skewness
and therefore it is not always the best option. The bias-corrected and bias-corrected
and accelerated percentile methods returned less biased and skewed intervals, but the
simulation study in Section 6.6 revealed that the coverage reduces to around 92% and
90% respectively, despite the width of the intervals increasing. Therefore, unless there
is significant bias, as with Approach 2 of the bootstrap algorithm with the suicide case
study data, the standard percentile method is preferred.

Median absolute deviation was also investigated, where it was found to be a very slight
improvement over the standard percentile method, with similar precision values and
a slight increase in coverage (from 98.6% to 98.8% coverage). Given that there is no
notable difference in the computational intensity of the two methods, and that the
median absolute deviation is more resilient to bias and skewness since it gives less
weight to extreme values, provided that the results from the bootstrap are approximately
normally distributed. the median absolute deviation should be used for confidence

interval construction.

The final chapter of this thesis introduced the concept of one-inflation and explored the
failings of the current methodologies. The methods discussed previously in this thesis
fail to account for the excess singletons that are present in one-inflated data, leading
to grossly overestimated population sizes, and the modified Chao’s estimator does not
allow for covariate information which can limit the accuracy of the resulting population
size estimates. The novel generalised-modified Chao’s estimator was developed to
account for both the available covariate information and excess singletons. Application
of these methods to the newly introduced heroin case study data illustrated the impact
of not appropriately accounting for one-inflation and a simulation study conducted at
the end of Chapter 7 provided evidence that the generalised-modified Chao’s estimator
performs not only better than the existing capture-recapture estimators but also performs

well overall, including when outliers are included in the data. Therefore, if there is
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evidence that there is one-inflation present in a dataset, and covariate information

available, the generalised-modified Chao’s estimator should be used.

8.2 Future work

This section outlines some areas which can be expanded or worked on in the future to
expand the methodologies covered in this thesis.

¢ Expand the simulation study work to include other data scenarios with different

parameters, number of covariates and population sizes.

¢ Explore a Bayesian approach to capture-recapture parameter estimation (see Lee
and Chen, 1998; King et al., 2009, for examples of Bayesian capture-recapture
approaches) and compare the reliability of this approach to the reliability of the
frequentist approach taken in this thesis so far.

¢ Explore the iterated bootstrap algorithm and the percentile-t method.

¢ Find more meta-analytic data to apply the methodologies explored in this thesis
to, particularly another one-inflated dataset with covariate information.

¢ Explore the Turing estimator and investigate whether it can also be generalised to

allow for covariate information.

¢ Expand on the application of the bootstrap algorithm application to one-inflated
data further.

¢ Explore the impact of the alternative methods of confidence interval construction
(namely the MAD approach) on one-inflated data via a simulation study.

8.2.1 Iterated bootstrap algorithm and the percentile-t method

As discussed in Section 6.5.1, the traditional percentile method for confidence inter-
val construction is prone to bias. An alternative approach that can be utilised is the
percentile-t method, proposed by Efron (1979), a more computationally complex ap-
proach compared to the standard approach but leads to intervals with comparatively
less bias.

Given N, the estimated value of the total population size N, and its standard error,

~

s.e.(N), the percentile-t method utilises the pivotal statistic in Equation 8.1 to construct
the interval.
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r=N=N (8.1)
s.e.(N)

The estimated total population size and the corresponding standard error are computed
using the bootstrap algorithms seen in Section 6. However, a problem arises with the
pivotal statistic in that the standard bootstrap approaches discussed prior, only one
pivotal statistic can be computed. Using the work of Efron (1979), the percentile-t
interval is given as

(N —t1-%5.e.(N),N — I¥se.(N)),

where #* is the 100ath percentile of t. Therefore, if only one value of ¢ is to be computed,

no percentiles can be extracted and the interval cannot be constructed.

To circumvent the issue of only one value of t being computed and incorporate the
percentile-t method into the bootstrap algorithm, Hall et al. (1989) suggested use of the
iterated bootstrap first introduced by Hall (1986) and Beran (1987). This iterated, or
‘double’, bootstrap results in percentile-t intervals with high coverage, stable lengths
and accurate endpoints in both complex situations and in situations where the sample

size is small (DiCiccio et al., 1992).

Following the same steps as developed in the bootstrap algorithms in Section 6, the
iterated can be constructed with the addition of an internal bootstrap from which the

parameter of interest is estimated and corresponding standard error computed.

Given these estimates, the number of bootstrap samples of the external bootstrap, b; =
1, -+, By, and the number of bootstrap samples of the internal bootstrap, b, =1, - - , By,
the standard error of the estimated population size is calculated as

1 1 &

2
- - 1 &
se(Nj)=—=\5—= ) [Ny —— )Y N7 | .
Yoo yn\ Ba—1,= > B2,= 7
Using this standard error, an estimated pivotal statistic can be computed as

N -N

f - T~
h s.e.(Ny)

7

where N{fl is the estimated population size from bootstrap sample by, N is the esti-
mated population size using the original data and s.e.(ﬁg‘l) is the standard error of the

population size from bootstrap sample b;.

The resulting percentile-t confidence interval is then given by

~

(N — f0-956 (N),N — f(“)s.e.(ﬁ)) ,
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where £(*) is the 100ath percentile of f and

1 1 &

2
- . IR
se.(N) = — ) (Ng‘—ZNg‘) .
vn\ B1—1 b1 1 Bl e R

In Section 6, comparison of the non-parametric, semi-parametric and parametric boot-
strap algorithm approaches indicates that the parametric approach is favoured, and
hence this approach is utilised for the iterative bootstrap method.

For the capture-recapture population size estimator, E, where

HT for Horvitz-Thompson,
E =< GC for generalised Chao’s, or

GZ for generalised Zelterman’s,

the iterated bootstrap algorithm is given formally as follows in Algorithm 16.

The choice of B, impacts the heavy computational burden that is a disadvantage for
the percentile-t approach, with the larger the number of internal bootstrap replications
the larger the computational burden. Given that the internal bootstrap is used to
find the standard error, the burden can be minimised by setting B, to be considerably
smaller than the number of bootstrap replications required to give reliable confidence
intervals. Efron and Tibshirani (1993, page 52) suggests that for computing the standard
error, B, = 50 is typically large enough to produce a good estimation, with it being
a rare occurrence that B, > 200 is required for standard error estimation. From this,
letting 50 < B, < 200 will aid in reducing the computational burden whilst still giving
acceptable results.

Section 8.2.1 contains some application of these methods to the suicide case study used
throughout this thesis. Future work for this section includes expanding the application
turther to include more datasets, such as the hares case study data, which have a larger
sample size and investigate whether this has a positive impact on the results.

Additionally, a simulation study could be conducted to explore the performance of
the approach to confidence interval construction, as is done in Section 6.6, looking
at the precision and coverage of the confidence intervals. Preliminary investigations
into this performance indicated that the coverage was very low, approximately 50-70%
depending on which approach and method for the bootstrap algorithm was used. Given
the increase in computational intensity of this method, along with a likely decrease in
coverage, future work could also include working on the iterated bootstrap algorithm to

improve its performance.
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Algorithm 16 Iterated Bootstrap

Step 1: Fit the ] competing models to the observed data.

Step 2: For each model, calculate the BIC weights using Equation 6.1, where the BIC
weight of model I can be seen as the probability of model / being selected as the best
candidate model (Wagenmakers and Farrell, 2004).

Step 3: Let by = 1.

Step 4: Sample I* from {1,2,--- , ]}, where J is the number of competing models and
the values have respective probabilities {wq, wy, - - - ,w;} of being sampled.

Step 5: Sample n counts from the model given by the linear predictor distri-
bution pair, (j*,D*). Use these sampled counts x; to create a sampled dataset
{(t,v1,x7), ..., (Tu, Vu, x;;) }, where 7; and v; are the observed person-years and co-
variates respectively fori = 1,2,--- ,n. Sample x7 from the distribution given by
(7%, D*) with probability function

Px (Ti exp [hj*(vi)Tﬁ;P*)}) if D* = (P),
pe (wexp by (v) B |, 6)) e D* = (NB),

where if D* = (NB), é]’f " is the estimated dispersion parameter.

Step 6: Estimate the total population size ﬁéE) * for a given capture-recapture estimator
E using the methods discussed in Chapter 4.

Step 7: Let b, = 1.

Step 8: Create an internal bootstrap dataset by repeating steps 4-6 B2 times using the
dataset created in Step 5, computing Néf)** forb, =1,---,B2.

Step 9: Compute the pivotal statistic as

o _ B R
! se.(ﬁéf)*)

where

B B 2
S(E)ey 1 1 2 [ SE)sx 1 G S(E)
s.e.(N, ") = ﬁ\l B, 1 Zl (sz B N, :

by=1

Step 10: If b; = B1, stop. Otherwise, return to step 4 with by := by + 1.

Application: Suicide data

For B; = 100 external bootstrap replications and B, = 50 internal bootstrap replications,
the iterated bootstrap results in a 95% percentile-t confidence interval for the Horvitz-
Thompson estimator of (95, 156), which is narrower than that of the standard percentile
approach (for Approach 1, Method 2) seen in Section 6 of (106, 185). This percentile-
t interval is also narrower than both the bias-corrected and the bias-corrected and
accelerated intervals seen in Section 6.5.1, suggesting that the percentile-t approach may
lead to a larger reduction in bias. The interval is slightly narrower than the same interval
constructed using the median absolute deviation approach of (97, 171), suggesting a
further reduction in bias.
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For any larger of a value of B1, the bias gets higher and the confidence interval gets very
wide. Similarly for the other capture-recapture estimators, the confidence interval is too
wide to make any reliable conclusions from the results, with some very large outlier
estimates of the total population size. For the other estimators however, this poor result

occurs for any number of replications.

Given that the inclusion of model uncertainty through model testing and selection pro-
cesses in each bootstrap iteration leads to high correlation between the sub-populations
in addition to high bias, resulting in wide and ineffectual confidence intervals, model
uncertainty can be accounted for through testing which model and distribution com-
bination is favoured the majority of times, where only the resulting combination is
used in the iterated bootstrap algorithms. In Section 6, testing of which model and
distribution combinations indicates that for each bootstrap algorithm method and es-
timator, the intercept-only model is preferred, with the Poisson distribution for the
Horvitz-Thompson estimator and binomial logistic for the generalised Chao’s and gen-
eralised Zelterman’s estimators. The results from using these model and distribution

combinations in the iterated bootstrap algorithm are given in Table 8.1.

TABLE 8.1: Values of the 95% percentile-t confidence intervals for the suicide data

using the non-parametric, semi-parametric and parametric approaches to the iterated

bootstrap algorithm using Method 2 to account for model uncertainty for the Horvitz-

Thompson, generalised Chao’s and generalised Zelterman’s estimators when B; = 500
and B, = 200.

Capture-recapture estimator

Bootstrap Horvitz- Generalised Generalised
algorithm Thompson Chao’s Zelterman'’s
Non-parametric (129, 138) (72,198) (70,202)
Semi-parametric (120, 146) (116,185) (63,198)
Parametric (123,140)  (114,193)  (116,197)

The values in Table 8.1 indicate that there is little reduction in bias, if any, when using
the percentile-t approach to confidence interval construction compared to the median
absolute deviation. Given that the percentile-t approach is very computationally inten-
sive, and the differences between the percentile-t intervals and the MAD intervals are
very small, there may not be a benefit in using the percentile-t approach, especially if
there is a reduction in coverage. Preliminary exploration of coverage through using
similar simulation studies as in Section 6.6.1 indicate that the coverage of the percentile-t
approach is between 50 and 75%, much lower than that of the other confidence interval
construction methods, particularly MAD where the coverage is at almost 99%. This can
be explored further in the future, with formal simulation study testing, and possibly
development of the percentile-t approach to improve its coverage.
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TABLE A.1: Meta-analytic data from n = 27 observed studies from Peterhénsel et al.
(2013) numbered and ordered by decreasing size of person-years. The table includes the
number of person-years, the proportion of women, the country of origin, the average
age of participants at the start of study and the number of completed suicides for each
study. The proportion of women for 24. Smith 2004 is unknown but is imputed to
be 0.823. The country of origin for 21. Kral 1993 is reported as “USA/Sweden” but
changed to USA for model fitting.

Study Person- Proportion Country  Age Number of

years  of women of origin completed suicides
i Tj i1 Ui Vi3 X
1. Adams 2007 77602 0.860 USA 395 21
2. Marceau 2007 10388 0.720 Canada  40.1 6
3. Marsk 2010 8877 0.000 Sweden - 4
4. Pories 1995 8316 0.832 USA 373 3
5. Carelli 2010 6057 0.684 USA 44.63 1
6. Busetto 2007 4598 0.753 Italy 38 1
7. Smith 1995 3882 0.889 USA - 2
8. Peeters 2007 3478 0.770 Australia  47.1 1
9. Christou 2006 2599 0.820 Canada 42 2
10. Glinther 2006 2244 0.837 Germany 32 1
11. Capella 1996 2237 0.822 USA 37 3
12. Suter 2011 2152 0.744 Switzerland 394 3
13. Suter 2006 1639 0.865 Switzerland 38 1
14. Van de Weijgert 1999 1634 0.870 Netherlands 34 1
15. Cadiere 2011 1362 0.834 Belgium 41 1
16. Mitchell 2001 1121 0.847 USA 568 1
17. Himpens 2011 1066 0.902 Belgium 50 1
18. Naslund 1994 799 0.812 Sweden 37 2

( To be continued)
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Study Person- Proportion Country  Age Number of

years  of women of origin completed suicides
i T i1 Ui Vi3 X
19. Forsell 1999 761 0.761 Sweden 40 1
20. Powers 1997 747 0.847 USA 394 1
21. Kral 1993 477 0.812 USA 38 1
22. Néslund 1995 457 0.592 Sweden  39.3 1
23. Powers 1992 395 0.850 USA 3838 1
24. Smith 2004 354 0.823 USA 395 1
25. Nocca 2008 228 0.677 France 41.57 1
26. Svenheden 1997 166 0.791 Sweden - 1
27. Pekkarinen 1994 146 0.704 Finland 36 1

Peterhénsel et al. (2013) includes information on the average age of participants in the
studies, also provided in Table A.1, however, this covariate information has issues with
its quality. Firstly, not all of the studies included in the systematic review report an
average age, only 24 of the 27 studies report this information. The suicide case study
data is already small, so reducing its size by another three studies in order to include age
as a covariate may have a detrimental effect on the accuracy of the results. Of these 24
studies, three studies are split into two groups, meaning that they report two different
average ages. Additionally, the measure of centrality chosen for the 24 studies which
report an average age varies, with two studies reporting the median age, six studies
reporting the mean age and 16 studies that do not report which measure of centrality
they utilise. Finally, the observational or follow-up periods of the 24 studies varies from
several months to multiple decades. This can lead to problems with interpreting the
results from a model with the age covariate included as the average age of that study
may no longer be relevant. For example, for a study which reports the median age at the
start of their study to be 40, but their suicides occurred 20 years later, then the reported

age of 40 would no longer be reliable and any inference made would also be inaccurate.

Despite this poor quality of the covariate information, the ages that are reported will be
explored as a covariate in the modelling process for completeness. Where studies give
two average ages, the midpoint of the two ages given will be used for the overall age of
the study, and the three studies which did not report an average age will be excluded
from the model. It is important to note that since the dataset has now changed, with
24 not 27 observed studies, any AIC or BIC values resulting from the models cannot be
compared to the existing models in Section 3.2, and therefore those models are refitted

with the remaining 24 data points.

Each of the linear predictors with the explored covariate combinations are given in
Table A.2, where v; refers to the proportion of women, v, refers to the country of
origin and v3 refers to the average age of the participants. The results here support the

conclusions made in Section 3.2 with the complete dataset, where the zero-truncated
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TABLE A.2: Linear predictors used to fit the zero-truncated Poisson and negative-

binomial (NB) models and the corresponding BIC values, where Y indicates that the
main effect or interaction is included in the model and N otherwise.

Linear Poisson NB
Predictor v vy ©v3 ©vi1Xp U103 VU3 V10203 BIC BIC
1 N N N N N N N 44.6 47.8
2 Y N N N N N N 47.1 50.3
3 N Y N N N N N 46.7 499
4 N N Y N N N N 46.7 499
5 Y Y N N N N N 49.8 53.0
6 Y N Y N N N N 485 51.6
7 N Y Y N N N N 489 520
8 Y Y Y N N N N 51.6 54.8
9 Y Y N Y N N N 51.5 54.7
10 Y N Y N N N N 50.1 53.3
11 N Y Y N N Y N 495 527
12 Y Y Y Y Y N N 53.4 56.6
13 Y Y Y Y N Y N 53.2 564
14 Y Y Y N Y Y N 51.2 55.3
15 Y Y Y Y Y Y N 549 58.0
16 Y Y Y Y Y Y Y 60.3 63.5

intercept-only Poisson model is preferred, and including age as a covariate in the model

only increases the BIC value. Therefore, there is evidence that the age covariate should

not be included in the modelling.

A.2 The Poisson as a limiting case of the negative-binomial

For mean of negative-binomial distribution: y = @, and variance: o2 = “1¢)
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The mean can be rearranged in terms of 6
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which can be described as X ~ Poisson(u). The value of « determines the deviation of
the negative-binomial from the Poisson distribution so for large &, using the negative-

binomial distribution as an approximation of Poisson is robust.
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