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LLMs serve as black box modules integrated into robot architectures for the purpose of quickly enabling
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five key stakeholder groups in the HRI research process, discuss what information each group needs from
HRI researchers, and identify appropriate mechanisms for conveying that information from HRI researchers
to stakeholders either directly or indirectly. We contribute a set of suggested guidelines regarding what
information should be included when researchers disseminate information about HRI research that uses LLMs.
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1 Introduction

Large Language Models (LLMs) and vision-language models (VLMs) have the power to reshape how
we think about interactive robotic systems, allowing for new capabilities and interactions that were
previously unreachable. LLMs are being applied to supporting human language interactions [48]
and human-robot teaming [55], providing novel methods for robotic planning [19, 89, 102] and
decision-making [62], and allowing new approaches to longstanding problems, such as object
recognition [128] and task and motion planning [26], inter alia. However, the use of LLMs may also
constrain the ways that Human-Robot Interaction (HRI) researchers go about designing interactive
robots, the types of interactions they choose to design, and the types of scientific questions they
choose to investigate. Moreover, LLMs present a wide range of ethical risks that must be safeguarded
against and made transparent when they are used in robot design [117].

While many of these considerations are endemic to the general use of LLMs, the use of LLMs in
robot architectures comes with unique challenges, especially given that that LLMs are often used
as constituent components of robot architectures, responsible for piecemeal tasks as well as for
enabling end-to-end human-robot dialogue. For example, recent work has described how LLMs may
be used as Scarecrows: ““brainless, straw-man black box modules integrated into robot architectures
for the purpose of quickly enabling full-pipeline solutions, much like the use of “‘Wizard of Oz’
(WoZ) and other human-in-the-loop approaches” [118].

Identifying this parallel between LLMs and WoZ techniques helps to illuminate key responsibil-
ities borne by HRI researchers who choose to use LLMs in their robot architectures. Just as the
use of WoZ gives designers the responsibility to report on exactly where, why, and how they use
WoZ in the name of transparency and replicability [91], so too does the use of LLMs give designers
reporting responsibilities. In this paper, we explore these reporting needs, building both on (a)
our previous perspective piece discussing the risks and challenges associated with the use of LLM
Scarecrows in HRI [118], and (b) the results of a workshop held at the 2024 ACM/IEEE International
Conference on Human-Robot Interaction (organized by the first five authors and attended by all
authors) at which preliminary reporting guidelines were discussed.

A key difference in reporting needs relative to WoZ is the range of stakeholders to whom
information about the use of LLMs must be disclosed (see Figure 1). Discussions about transparency
regarding the use of WoZ techniques have been largely focused on transparency to other researchers,
due to the typical use of WoZ as a design and experimental methodology rather than a technical tool
(excepting possible, arguably questionable uses of WoZ-like techniques that fall under the umbrella
of “Artificial Artificial Intelligence” [86]). However, because LLMs are typically used (or envisioned
to be used) on robots deployed in the world and not just constrained to the laboratory, a wider array
of reporting considerations must be made with respect to a broader array of stakeholders who will
interact with robots, enable interactions with robots, or constrain interactions with robots.

In this paper, we identify (1) a set of stakeholder groups to whom researchers owe a reporting
duty, (2) the reasons why each of these types of stakeholders needs information about the use of
LLMs, and (3) the information and mode(s) of presentation best aligned with the reporting needs of
each of those stakeholder groups. These were developed based on the workshop described above.
At this session, invited speakers presented background information about Scarecrows and LLM
use, after which attendees separated into groups and brainstormed entries into a worksheet with
stakeholders, data to be reported, and the reasoning behind those requirements. These worksheets
were shared with attendees and discussed, then synthesized into a consensus table, which the
authors elaborated on based on reporting literature (see table 1). We close with suggested reporting
guidelines for HRI researchers who are incorporating LLMs into their architectures.
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2 Related Work

LLMs have the potential to revolutionize researchers’ approach to HRI, and it has not taken long
for the research community to take advantage of this opportunity. Due to overwhelming interest
in the topic, the focus of our literature review covers work specifically on models and architectures
that are used in direct or indirect interaction with end users.

Using an LLM as a module in a larger architecture is a common approach to the embodied use of
LLMs. Izquierdo-Badiola et al. [42] present a system using an LLM as a module in collaboration
with end users that generates joint plans to be executed with end users. Sun et al. [105] use an LLM
to perform collaborative task planning by interacting directly with a Partially Observable Markov
Decision Process (POMDP). Nwankwo and Rueckert [84] present a collaborative robot that uses
both an LLM and a VLM to capture situational awareness for the rest of the robot architecture.

Likewise, understanding user instructions is a common use case for LLMs. Wu et al. [121, 123]
demonstrate the effectiveness of LLMs as modules for taking instructions and generating effective
behaviors for users in a variety of tasks (e.g., tidying up, or selecting and moving objects based
on instructions). Mahadevan et al. [69] extend previous work in LLMs to accept feedback when
generating code that synthesizes expressive robot behaviors.

Other researchers have used LLMs to handle robot dialogue [1], or to reason in a shallow way
about emotional context [75] and social norms [130]. Finally, some researchers have shown specific
limitations of LLMs in HRI tasks, such as theory of mind [111] and moral reasoning [92]. Due to
more general limitations of LLMs, some researchers have begun to analyze the contexts in which
LLMs should or should not be used [49]. Authors often express the risks to end users by using
LLMs in their architecture, typically found in their discussions (e.g., [92, 111, 130, 131]). Yet other
related areas like stakeholder requirements remain unexplored; for example, none of the papers
we reviewed mention the provenance of the data on which models are trained (cf. [121]). Thus,
there is a significant need for an analysis of the risks of LLMs in HRI and when and how those
risks should be reported.

One key question to consider is when the reporting guidelines discussed in this paper are specific
to the use of Large Language Models in HRI, as opposed to being more broadly applicable to machine
learning in the field, and fact there is significant overlap. While there are many methodologies to
studying and investigating human-robot interaction, one popular perspective is to use data-driven
approaches to generate interactive, social, safe robotic behavior [46, 78, 98]. These approaches
typically use machine learning to learn policies, behaviors, and speech patterns from sensor data,
animations, and other useful data. However, machine learning is a large field and has many different
practices, some explainable and some not. Historically, machine learning has used a number of
approaches to learn a useful, human understandable representation. Some of these representations
are stochastic in nature [80], while others are inspired by natural neural networks [38] and require
expert inspection to understand how connections impact network output. The breakthrough
work that we are discussing in this paper involves using end-to-end neural networks that use
transformers applied to language without explicitly modeling linguistic phenomena in a more
piecewise fashion [87].

Historically, models in data-driven approaches have involved piecewise learning and optimization
of component parts of an overall behavior architecture. While these pieces are compatible in a
way that allows them to be simultaneously learned, they can be broken apart and inspected for
improvements and feature development. However, when we discuss explainability in transformer-
based neural networks, we are addressing the challenge of understanding the connections between
embeddings that were learned and how they impact overall model outcomes. Focusing on what a
transformer has ‘learned’ has proven challenging to make guarantees about. These types of models
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are somewhat black box in nature, making it hard to generalize what phenomena these models have
learned [64, 134]. While some progress has been made, the lack of guarantees inherent to these
transformer-based models significantly affects the safety and explainability of these models [67],
leading to a need for clear, explicit reporting on how and whether they are to be used. When we
discuss the challenge and lack of explainability in these models, we refer to not only in providing
guarantees but to the models’ opacity [95]. The apparent linguistic capabilities of LLMs make
them particularly tempting to incorporate in human-facing applications in robotics; it is these
transformer-based, language-capable models we specifically refer to in this paper.

3 The “Who?”: Stakeholder Categories

We begin by identifying five key groups of stakeholders to whom researchers incorporating LLMs
might owe reporting duties, either directly on indirectly, depending on the use case. Although
HRI researchers are not the only group that provides information—for example, practitioners who
design robot architectures and build robots will likely provide specification sheets to decision
makers—in this article we focus on information originating from the HRI research process.

Other
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Fig. 1. Human-robot interaction researchers using large language models have a responsibility to communicate
critical information to a variety of stakeholders (Section 3). Each stakeholder group is interested in different
types of information, including: Data and model provenance, or sourcing; whether a system can be reliably
replicated and appropriate information to support such replication; how and whether a system infringes on
user privacy and how that infringement can be managed; what other risks result from using an LLM in an
HRI system, and how to mitigate those risks; and whether and how such systems may lead to user overtrust,
along with suggestions for mitigation. Different stakeholder groups have the ability to shape (affect and
report on) these axes and the information that supports reasoning about them.

We briefly define each stakeholder group before discussing their reporting needs in the following
sections. Figure 1 shows some of the types of information that should be shared between and
among groups of stakeholders.

Researchers in HRI are increasingly using, extending, building, and/or designing LLMs to
meet their research goals. These researchers may determine the possible inputs, outputs, and
underlying model architecture to answer a specific research question. For example, research
questions can be specific to a model training regime or model architecture, and are typically
sensitive to characteristics—such as the transparency and bias in model outputs, key model
limitations, model hardware requirements, model power consumption and environmental
impacts—as well as the larger economic and societal impacts of LLMs. Moreover, researchers
and other members of the broader research community may need to evaluate the ethical risks
of LLMs and their use in robot architectures as part of their interactions with Institutional
Review Boards (IRBs).
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Why do th d
Stakeholder y oo they nee What should be reported, and how?

reporting?

Replicability, Long-term | Technical information on architecture, models, datasets, prompts,
Researchers . . . . .

risk assessment and ethical risks, presented in research paper sections.

Verification, Model dependencies, inputs, and outputs, known failure modes
Engineers Medium-term risk and ethical risks, presented in technical reports and summarized in

assessment model cards.

Near-term risk Influence of LLMs on system behavior and known ethical risks,
End Users assessment (to self and | presented through quick-start guides and tutorials, education and

known others)

tech literacy programs, and transparent interactions.

Decision Makers

Near- and medium-term
risk assessment (to self
and unknown others)

Influence of LLMs on system behaviors and known ethical risks,
presented through model cards, public information/specification
sheets, and formal training and certification programs.

Lawyers and
Regulators
Table 1. Condensed

Community-level risk
assessment and response

Ethical risks and legal considerations, presented through policy
briefs and publicly accessible documentation.

reporting needs for LLMs in Human-Robot Interaction for five major stakeholder groups.
These entries were developed by the authors based on input from the 30+ workshop attendees at the 2024
Conference on Human-Robot Interaction (see section 1 for details).

Engineers build or use existing LLMs, often for a specific use case. Engineers are not usually

the stakeholders that make changes to the models themselves; rather, engineers are interested
in the surrounding technologies necessary for model access, which could mean a software
development access point or a chat interface. Engineers and practitioners are responsible for
implementing and scaling the ideas and capabilities developed by researchers, and depend
directly on reporting by those researchers.

End Users make use of LLM-enabled technologies. End users are less concerned with how the

models work and more concerned with whether a model is useful and what risks it has. End
users include home users, hobbyists, students, and professionals such as K-12 educators.!
In a professional setting, this group of stakeholders may not have complete volition over
whether to use provided tools (e.g., nurses and medication delivery robots). End users depend
on information provided by researchers both directly (through general education efforts and
popular reporting on current science) and indirectly (through implementations provided by
engineers).

Decision Makers are those who choose to acquire a robot for use by themselves or others,

whether in a home environment (e.g., parents acquiring a robot for their children) or a
professional setting (e.g., hospital or school administrators). It is worth noting that this group
may have significant overlap with both end users and with other professional units (e.g.,
approval/acquisitions managers). Decision makers depend partly on data from researchers
filtered through engineers, by way of public data, specification sheets, and marketing material.
Lawyers and Regulators are concerned with legal and societal impacts of LLMs, including
data used for training (e.g., fair-use or copyrighted data), end-user impacts, environmental
impacts, economic impacts, safety and security, as well as sourcing data.? Because this group
takes a higher level view, their dependence on information comes directly from researchers,
from engineers and practitioners, and from population-level education and publicity efforts.

In this work, we exclude people in the vicinity of LLM-using robots who are not direct users, for example, bystanders near
a museum kiosk robot. While such users have potentially relevant concerns (e.g., privacy), they fall outside the scope of our

present discussion.

2For example, Resolution 604 adopted by the American Bar Association: https://www.americanbar.org/content/dam/aba/
directories/policy/midyear-2023/604-midyear-2023.pdf
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These groups are presented in Table 1, along with a summary of the information that should be
reported to each group, and some suggestions as to what reporting media might be appropriate to
each group. We elaborate upon these suggestions in the following section.

4 The “Why?” and The “What?”: Transparency and Types of Information to be Provided

Having delineated five key groups of stakeholders, we consider why each group needs transparency
in the use of LLMs in robot architectures for HRI. For some groups, this may be related to the
unique goals of the group, for which transparency is needed to adequately fulfill. For other groups,
this may be the unique sources of risk to which that group is vulnerable, for which transparency is
necessary to avoid. Figure 1 shows some possible areas of concern that may need to be addressed
by researchers and various stakeholders.

Having considered why stakeholders might need transparency into the use of LLMs in robot
architectures, we also make suggestions as to what types of information would help each stakeholder
group to meet their unique goals or avoid their unique sources of risk, and how those types of
information should be presented.

4.1 Researchers

Researchers must provide clarity about their use of LLMs for three key reasons: (1) to improve
replicability and scientific integrity, (2) to avoid overtrust, and (3) to ensure an understanding of
the costs associated with the research.

To assess the rigor and maturity of the research presented, transparency is critical. Therefore,
to understand the context in which work was carried out as well as to replicate the findings, key
information needs to be provided by the researchers to other researchers. This includes, for example,
the prompts used, the model version number used, the date at which the evaluation was carried
out, and information about parameters and context; for a suggested list of what details should be
provided, see Section 7. However, given the non-deterministic nature of LLMs, we acknowledge that
a replication producing the same results might not be guaranteed even when details are provided.

Beyond strengthening and advancing the quality of research, transparency is vital to minimize
the risks that arise from robot overtrust. By understanding the limitations and capabilities of a
system and the research conducted on/with it, risks to the integrity of the research community can
be minimized, as well as the risk to potential future users of the developed systems.

Lastly, working with LLMs—whether via a browser, a smartphone, an API, or a robot—is a costly
endeavor. Estimates have been made that indicate that the slightest performance improvement to
translation tasks costs around $150,000 in additional training costs [7]. By disclosing information
on the complexity of the trained model (e.g., what data was used or how many parameters), it
becomes possible to estimate financial and environmental costs and impacts.

In addition to the need for clarity in reporting on their own research, researchers and members
of the broader research community need to fulfill roles as members of Institutional Review Boards
(IRBs). Because IRBs are charged with providing ethical and regulatory oversight of research
involving human subjects, IRB members need to have a comprehensive understanding of what
LLMs are involved in the research or development processes, how those LLMs are used, and
what potential impacts this might have on research participants. This understanding can help IRB
members to establish and refine LLM-related institutional regulations to prevent negative outcomes
(as well as misconduct) during the experimentation or development process.

How to provide transparency among researchers. Researchers using LLMs as part of robot architec-
tures need to disclose a variety of information to ensure replicability of their work:
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(1) First and foremost, researchers should disclose the larger architectural context within which
LLMs were used, and the specific locations and temporal dynamics of use of those LLMs.

(2) Because the behavior of LLMs is largely determined both by the data on which LLMs were
trained and tested, as well as by the prompts provided to them, researchers should also report
at a minimum (1) information available (e.g., relevant datasheets [34]) about the data on
which their chosen LLM was trained, as well as the nature and origin of any supplemental
data the researchers used for fine-tuning; and (2) both the exact prompts used for testing,
and the history of prompts that preceded those testing queries.

(3) Because the capabilities and limitations of LLMs are constantly changing, researchers should
report not only the version number of the LLM(s) they use, but also the date on which queries
were given to those LLMs, and the LLM seed specified, if any. (Although additional reliability
measures are desirable, these are frequently difficult with black box systems; authors should
consider additional methods for capturing system performance under different parameters.)

(4) Researchers who use LLMs in their overall system should also report the range of inputs,
as well as the modifications to the outputs that allow those outputs to be useful for the
downstream users of the LLMs.

(5) Researchers reporting in scientific papers on their use of LLMs should be clear about the
known ethical risks of those LLMs, including privacy, economic, environmental, and social
justice concerns, and how those risks were/were not mitigated through the researchers’
technical approach. In doing so, researchers should be clear not only about the types of risks
raised by their use of LLMs, but also the likelihood, severity, and timescale of those risks.

While the risks associated with LLMs can impact anyone, research participants in human-robot
interaction studies involving LLMs can be uniquely vulnerable because they are the first ones
exposed to these technologies while they are under development; planning to report on the above
points will help researchers explicitly consider such risks. This information should all be reported in
research papers (distributed as appropriate across “Technical Approach” and “Discussion” sections
of those papers), and reported in IRB applications. For example, the following details might be
presented in a paper’s “Technical Approach” section:

“All evaluations performed in this work leveraged OpenAI’s gpt-4-0613, a text-only LLM with a 8,192 token
context window. All queries were given to this model between 04/01/2024 and 04/30/2024. No seed was
specified, and a temperature of 0.5 was used. One-shot prompts were used, with no prior chat conversation
provided. Each natural language instruction verbally provided by the user to the Softbank Pepper (described
in Section X) in the context of interaction (described in Section Y) was translated from speech to text using
the PocketSphinx 5.0.3 Automatic Speech Recognition Model, and then fed to the LLM, with the prompt:

I AM GOING TO GIVE YOU A SENTENCE. YOU WILL RETURN THE LOGICAL REPRESENTATION OF THE
UTTERANCE, WITH NO EXPLANATION OR ANYTHING BEYOND THE LOGICAL REPRESENTATION. [Here, the
authors would provide the examples they are using to enable in-context learning, which we have omitted
for readability.]

HERE IS THE SENTENCE: “PUT THE BOX ON THE LARGE TABLE IN THE KITCHEN”.

Results returned by the LLM were then provided to the natural language understanding system as
described in Section Z.”

The following text might similarly appear in the paper’s “Discussion” section and/or as part of
the research project’s initial IRB application.

The use of LLMs comes with a number of privacy, economic, environmental, and social justice concerns
that may be propagated through the use of LLM-based methods. Our use of GPT4 to parse interactants’
utterances means that those utterances are implicitly provided to OpenAl; a risk with high likelihood
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but low severity, that will occur once per interactant utterance. Other researchers hoping to use this
technique should make this privacy risk transparent to users, request a Zero Data Retention endpoint
from OpenAl or use an LLM that does not present this privacy risk.

Our use of GPT4 also presents several economic risks, due to the water and electricity consumption
of LLMs, and the reliance of LLMs and other Al systems on toxic mining practices. Each GPT4 query
is estimated to consume 0.3kWh, and at least as much water (17ml) as GPT3. These high energy costs
mean that this type of model may be unsuited to domains where a high rate of interaction is required
over long periods of time.

Finally, the use of GPT4 presents social justice concerns. Some of these concerns, such as the tendency
of LLMs to center and normalize White, Western, masculine voices and perspectives (a manifestation of
roboticists’ power in the cultural domain [115]), are mitigated through our limited use of GPT4 to only
effect relatively straightforward transformations of text into logical representation. Other concerns, like
the reliance of OpenAT’s ethical guardrails on practices of data colonialism, where Kenyan workers are
subjected to psychologically and economically exploited conditions to benefit American tech companies,
are not similarly mitigated. While further damage is not inflicted upon repeated uses of GPT4 within our
architecture, this nevertheless presents hidden costs that may limit the ability of our model to ethically
be transitioned into use cases beyond the laboratory, unless a different LLM is used.

This text explains where LLMs are used, how the use of LLMs might affect outcomes, what risks
LLMs present to users or experimental participants, how those risks are bounded by the way they
are used in the robot architecture. When used in the context of an IRB application, researchers
should supplement this type of explanation with a further explanation of when and how these
risks would be disclosed to experimental participants.

4.2 Engineers

Engineers and robotics practitioners require insight into the capabilities, failure modes, and mech-
anisms of LLM-based systems for several reasons. First and foremost, in designing and building
robots for deployment, they must decide whether, how, and how frequently to use large models
and systems that depend on them, with an emphasis on building systems that perform safely and
as intended. As a matter of responsible engineering conduct, professional engineers must build
systems that do not behave unethically or support unethical behavior. They also require trans-
parency into the use of LLMs in robot architectures in part because they have associated reporting
burdens to their own stakeholders, and in part to support understanding and debugging their own
systems. Ultimately, engineers are responsible for the overall design, verification, performance,
and maintenance of a robotic system—tasks they cannot perform without clear information from
researchers who design the underlying models.

How to provide transparency to engineers. The use of an LLM provides many of the same opportu-
nities [11, 39] and challenges [81] that come with scaling experimental systems for deployment.
Understanding the risks and limitations of LLMs will allow engineers to provide guarantees that an
LLM does not introduce critical flaws to a robot architecture that would prevent safe deployment
to the end user. This is important both for good engineering practice, and so that engineers can
report costs and risks to their own stakeholders. Engineers will also need to report known flaws in
the system and, where possible, remediate these flaws from occurring, in part via careful prompt
engineering [99]. Prompt engineering has been a popular method of introducing LLMs into a much
larger robot architecture. Using LLMs as components requires extensive knowledge of fault and
failure cases in prompt engineering, such that the details used in researcher experiments provide
valuable insights to preventing these flaws from occurring in the first place. It is worth noting that,
while “guardrails” are a major resource for engineers to manage risks and flaws [33, 79, 113, 129],
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current guardrail technology is insufficient for deployed systems that incorporate LLMs [20]. This
insufficiency can be observed through LLM’s continued tendency to engage in sexist or otherwise
hateful speech [37, 124], and to engage in ‘bullshitting’ [119, cf.] and other actions that present
risks to democracy [22]. Moreover, guardrails on their own are insufficient to address the cultural
and ethnic homogenization of LLM-driven robot speech [18] (although cp. [93]), and in some cases
may even reinforce such homogenization (due to the ways that rule-driven guardrail systems
inherit from racist philosophies that equate morality with White standards of behavior [74]) [116, p.
121-124]. Finally, because guardrails are often enabled using Reinforcement Learning from Human
Feedback, they naturally encode the biases of those providing feedback, meaning that current
guardrail-based ethic systems will likely encode and reinforce White supremacist and patriarchal
behavioral expectations [116, p. 87].
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and what model details should be discussed.

While these mechanisms for communicating informa-
tion can often provide a helpful resource about model
details and training regimens, they may be limited in
their ability to communicate more scientific components of trained models. For instance, how
models are used may typically not be found on model cards but are important details for engineers.
Many times, training parameters are only available via paper reporting or via websites, such as
Hugging Face or Neptune. On the other hand, risks, user evaluations, and model transparency
details are frequently still lacking from these sources. For this reason, it is still recommended that

Fig. 2. Sample Nutrition Label, generated
through https://nutrition-facts.ai.
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researchers provide as much supplementary materials as is possible and necessary to address the
needs of engineers.

4.3 End Users

End users are not a monolithic group, and HRI researchers need to consider the possible character-
istics of different user groups when providing information (further discussed in Section 6.4). As an
example, some populations do not have an obligation to interact with robotic systems, such as most
users of social companion robots, who are in a position to determine when to opt out of two-way
communication or to opt out of use entirely. These decisions can only be made in the presence of
sufficient information about the system’s behavior and data flow patterns. The needs of this group
may vary from, for example, those of professional end users, for whom robots exist in workplaces
and serve professional functions (e.g., nurses who interact with medication-dispensing robots in
hospitals). For this group, technology use may not be a matter of choice, changing the nature of
their interaction with those technologies [10]. As such, these users must be provided with enough
information to understand the nature of the interactions, allowing them to understand possible
risks and avoid overtrust/overreliance on the technology [52].

Some users may also play the role of a mediator of technology—for example, a patient in a hospital
receiving medication from a robot, whose introduction to and questions about the technology
will likely be handled by the nurses who work with it. In this situation, a clear understanding of
the robot technology will affect technological understanding and appropriate use patterns [21] by
these secondary users. All end users require a clear understanding of the actual capabilities of the
robot and to what degree these systems should be trusted (described below), as either under- or
over-trust can lead to system misuse [52].

How to provide transparency to end users. Users frequently have relatively little control over and
minimal visibility into the nature of the technology underlying robots and related technologies
(e.g., voice-activated assistants [43]). Accordingly, information that should be made available to
end users is frequently distinct from the information engineers and researchers need to exchange.
This information can be difficult to formalize, because “end users” is a heterogeneous category
whose members may require different kinds of information. Nonetheless, providing the following
information should be considered a baseline.

First, researchers and engineers should make it clear to users when interactions are generated in
part by an LLM, using general terminology and readily understandable examples. This should be
paired with disclaimers that the system may not be reliable, and that any information or suggestions
made by the system may be incorrect. Because LLMs are frequently used for back-end tasks as
well as direct interaction, this will likely involve providing samples of possible failure modes. It
may also be useful to convey the concept of “guardrails” with explanations of their weaknesses
(although this may convey information about how to subvert those safety measures).

Users should also be made aware of the potential privacy failures and data leakage associated
with use of online models or other advanced features, such as personalized agents. Specifically,
personalization mechanisms deployed on LLMs often rely on retaining users’ conversation history
and historical behaviors [109, 133]. These data pipelines should be explained, making clear what
data will be retained, who may have access to user-supplied data, and how users can opt out of
those features. Conveying privacy information successfully is nontrivial [9, 35, 53] and may not be
desirable to the providers of technology [132], meaning that this is both an important requirement
and difficult to actualize. Developers of user-facing technologies should therefore be aware of best
practices in providing privacy explanations ([12, 13, 100], inter alia), and avoid “dark patterns” in
presenting information (e.g., presenting risk information only in jargon-filled license agreements).
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Similarly, users should be made aware of mechanisms for and associated implications of declining
the use of LLM-based technology.

These types of information could be provided to users in at least two forms. First, some informa-
tion could be provided to users who are the “first line” of robot deployment through quick-start
guides and tutorials integrated into the unboxing and setup process. These guides and tutorials
could provide an point of intervention where users can be sure to be exposed to key information
about the design and limitations of robots’ software architectures before they are able to use those
robots. Second, some information could be provided by robots themselves through modalities, such
as natural language, either during introductions or over the course of interactions. In the same way
that ChatGPT might caveat some dialogue turns with a statement of its limitations as a language
model, LLM-enabled robots might find opportunities to indicate where and how LLMs are used as
part of relevant interactions.

4.4 Decision Makers

While many end users may have little decision making power as to when, where, and how robots
are deployed in their contexts of use, some users and non-users will have decision making capability.
We define decision makers as those with the power to decide to purchase and deploy LLM-enabled
robots; as such, this group requires a clear understanding of these systems not only to determine
how to use robots in a variety of settings, but whether or not to do so—deciding whether to buy
robots, whether to deploy them, how they should be used, and how frequently to activate them. This
group relies on researchers, technology vendors, and others to make information broadly available
so that decisions can be made in an informed way. “Decision makers” here loosely incorporates
or overlaps with such professional groups as acquirers, approvers, managers, lab leaders, and
administrators, but also non-professionals, such as parents.

This group requires information about how LLMs affect overall performance of the system under
consideration (e.g., what capabilities are enabled, and also what risks are introduced), but must
also consider their significant ethical implications [40, 107]. Of particular note are the privacy
implications of deploying LLM-using robots; concerns about the privacy implications of modern
smart automation [29, 71] already represent an (often well-founded) barrier to adoption [41, 97],
and physical agents with sensors have the potential to compound both real and perceived privacy
risks. Additionally, LLMs have been demonstrated to produce social dependency behaviors [85, 125]
and can lead to over-reliance among some users [57], which may be exacerbated by the human
tendency to over-trust physically embodied agents [2, 112].

It is also worth noting that decision makers may be responsible for making decisions for others—
including vulnerable groups (e.g., children, whose parents may make decisions regarding robots in
their environment), or groups that do not have a choice about whether to use robots (e.g., when tool
use is required in a workplace setting). The ability of these stakeholders to make decisions about the
appropriateness of robot systems at a broader scale implies the need for even more transparency
with respect to the pros, cons, risks, and rewards of those systems.

How to provide transparency to decision makers. Many of the types of information that should be
provided to those who will make decisions regarding the purchase and deployment of LLM-enabled
robots are similar to those that should be provided to end users; however, this group has additional
needs and requires different mechanisms for conveying information. Notably, it is necessary to
convey information about the specific risks posed before decisions are made about when and whether
to acquire and deploy these tools; this includes providing information about not only possible failure
modes (e.g., acting from a biased perspective, hallucinating factual information, and contributing
to harmful outputs), but also about possible longer-term costs (e.g., cultural homogenization and
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environmental impacts [107]). Decision makers may also have a significant need to more deeply
understand the possibility of data leakage, in which queries and interactions are fed back into the
system as training data, making it possible both to retrieve those interactions [6, 14, 16, 135] and to
draw inferences about the querent and their environment [103].

Again, this information should be conveyed clearly and in a fashion tailored to the specific use
case, using examples as appropriate. However, to make informed decisions, one must weigh risks
and trade-offs when choosing whether and how to use a system. Many of the mechanisms for
informing users prior to system use (e.g., unboxing videos, introductory tutorials, and reviews)
do not present risks and trade-offs in a meaningful manner. Like engineers, this population may
benefit from reporting in the form of model cards, and, like end users, public information efforts
are key. However, they additionally require the existence of public information, such as clear, easily
interpreted product information and specification sheets, made available via mechanisms such as
web sites. Groups or companies that provide LLM-enabled robots should make every effort to make
such information publicly available.

In addition to general community awareness programs, decision-makers in professional settings
may also benefit from more formal training and certification programs. While such programs would
not provide sufficient transparency about individual models, they could provide professionals
with awareness of the types of risks and considerations they should be attentive towards when
considering the use of particular models.

4.5 Lawyers and Regulators

Lawyers, policy makers, and regulators must design, enact, and enforce laws, guidelines, and
specifications to promote the responsible, accountable, and sustainable design of robotic systems.
HRI researchers should support this group in obtaining a comprehensive but less technical under-
standing of the processes involved in designing, developing, deploying, and using physical systems
in day-to-day life, including in situations where those systems incorporate LLMs. Policy makers
must be aware of how LLMs in such systems have the potential to adversely affect individuals,
communities, society, and the environment, so that they can make effective decisions.

There are multiple axes of transparency regarding what information policy makers should be
aware of (at some level of abstraction). LLMs are varied as well as complex, but policy makers
should be consistently be made aware of at least the sourcing of training data, the collection and
utilization of user data and associated privacy implications, and the probability and implications
of hallucinations and other failures. The source and usage of training data for large models is
important because it determines the behavior of those models; however, for policy makers they
are particularly important because there are significant controversies surrounding the ownership
of that data—numerous lawsuits have been filed, and different jurisdictions have varying rules
regarding the use of publicly available data for training [3]. Many of the largest providers of LLM
models, such as OpenAl and Google, do not reveal exactly what data their models are trained
on, and it is difficult to reverse engineer whether a particular source is included [70], arguably
exacerbating the need for oversight and regulation.

Policy makers also need to be aware of how LLMs interact with user data and the associated
extensive privacy implications [63]. Large models hosted by developers almost universally take user
inputs as additional training data, despite the fact that these models can be induced to repeat training
data [15, 17] and can infer surprisingly detailed personal information from interactions [103].
Regulatory privacy frameworks such as the European General Data Protection Regulation (GDPR)
and the European Al Act struggle to address opaque, closed-source systems, which frequently use
data in ways not conceived of by these laws [30, 56, 65]. These and related concerns necessitate a
holistic, rigorous regulation mechanism in the development of LLM-backed robotic applications.
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For policy makers, clear information should emphasize the unique challenges posed by LLM-
powered robotic systems, which may arise due to the embodiment and physical presence of the
robots delivering LLM-related output [106, 122]. These challenges include, but are not limited to,
the epistemological, the ecological, and the economic.

Epistemologically, LLMs can affect society by shaping knowledge practices and peoples’ under-
standing of themselves and their societies. Associated threats include the spread of misinformation
and disinformation [5, 83], as LLMs in physical systems are in a uniquely persuasive position [66]
to disseminate incorrect or false information with or without human intent, as well as generate
biased content that favors specific viewpoints [27, 127].

Ecologically, LLM-based robots have real consequences on the environment and the planet at
large. The substantial computational resources required to train and operate these robots contribute
to skyrocketing energy consumption [104], and the consumption of cold freshwater for cooling
large data centers [61].

Economically, data cleaning and annotation crowd work involves a vast network of people,
often with unfair compensation rates [45]. Privacy concerns also arise from the collection and use
of personal data in LLM training datasets without explicit consent or awareness [120, 126]; these
concerns are exacerbated by the physical presence of robots in human spaces [117].

How to provide transparency to policy makers. Overall, the risks policy makers must consider stem
from the combination of the data, algorithms, and physical presence of the robot in human spaces.
These risks are partially associated with challenges in ensuring the quality and appropriateness of
training data and algorithms used to fine-tune LLMs—which imply the need for data and algorithmic
regulations [32, 54, 101]—and partially result from the fact that language-using physical agents pose
additional risks [117]. This is particularly true given peoples’ tendency to overestimate systems
that seem capable in a particular area [47].

HRI researchers should therefore work toward transparently informing regulatory stakeholders
about the risks associated with robotics platforms that rely on language and, in particular, on large
pre-trained models. This includes providing information about the nature and whereabouts of data
used for training [34]; for example, regulators might need to know whether an LLM-backed robot
uses data from the Internet, which might not be accurate, confidential, free, or representative, and
whether the data curation of an LLM involves fair treatment of data cleaners or annotators behind
the scenes [82]. They also need to understand some of the risks associated with physical systems
in terms of their influence over people, privacy implications, and effects on perceived identity (e.g.,
perpetuating gender stereotypes [96]), and to be informed of possible immediate and downstream
failure modes of such robots.

In addition to supporting the regulation process, the Artificial Intelligence (AI) research commu-
nity should engage with supporting the regulation of algorithms that are used to train LLMs and
apply them to physically situated problems. While regulatory bodies do not need to understand the
sophisticated implementations of algorithms, they should be informed of overall mechanisms and
how LLMs can go wrong when embedded into robot architectures. Researchers might also consider
creating tools or frameworks for algorithm and behavior inspection [88].

This information could be reported in the form of policy briefs and publicly accessible documen-
tation. The Colorado AI Act [23], for example, requires developers to provide (1) disclosures and
documentation of model risks and data use to deployers; (2) statements of the purpose, intended use,
and means of operation to consumers; and (3) statements regarding high-risk use of Al available for
public inspection. HRI researchers should make these types of information available both so that
developers building off their work can easily accommodate legally mandated reporting guidelines,
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and so that lawyers, policymakers, and regulators can effectively monitor the advances being made
by the research community and the legally relevant effects those advances may have.

Although the research community will necessarily iterate on the best mechanisms for providing
transparency, the suggestions in the preceding section are intended to establish a baseline level of
information appropriate for the stakeholders discussed here. To make the discussion more concrete,
we next present a brief example of a fictional research project and associated reporting.

5 Reporting Example for Researchers

In this example, we consider a research project in which a robot/person dyad are performing a
manipulation task together. The robot is providing additional manipulation capabilities, serving
as a “third hand” The user provides spoken instructions describing what the robot should be
doing, which may be simple (e.g., “move the part down a couple of inches”), or arbitrarily complex
(e.g., “finish assembling this while I hold it”), with no predefined constraints on the language’s
level of abstraction. The system performs language understanding and interpretation by sending
commercial LLM a sequence of images of the interaction and the human’s spoken instructions, and
prompting for what action(s) the robot should take (so it may return, for example, “move gripper
20cm left”). When reporting on this work, the researcher should answer the following questions:

(1) What model are you using, and what version of that model?

(2) Why are you using an LLM, and why that particular model?

(3) How is the LLM component evaluated? Is there a separate subsystem evaluation of perfor-
mance, or is it part of the evaluation of the overall system?

(4) Are you using the LLM as a Scarecrow (i.e., as a “brainless” module in which the LLM
provides a stopgap solution rather than a theoretically principled, empirically justified, and
safe solution), or are you advocating for its use as part of a deployable solution?

(5) What role is the LLM serving in the architecture, and how is it integrated into that architec-
ture?

(6) What are the ethical implications stemming from your choice to use an LLM, and from the
specific way in which you are using that LLM? In particular, those using LLMs should clearly
acknowledge the environmental and sociological impacts, the privacy and reliability risks,
and the ways those risks specifically manifest and are accentuated or ameliorated within the
research context being explored.

The inset box shows how the answers to these questions might be included in a publication.

The system described in this work depends on the use of a Large Vision and Language Model for
interpreting human instructions and selecting robot actions based on those inputs. The VLM was a
separate API that was queried to find a mapping from human instructions to possible actions. For the
implemented system, we used OpenAlI's GPT, specifically model gpt-40-2024-08-06. No fine-tuning
was performed, and no seeds were specified. This model was selected based on its accessibility and
performance on a range of queries obtained during a Wizard of Oz pilot study. We performed all queries
during December 11-15, 2024. We prompt the model with the following (example instruction included):

PROMPT: You are an interpreter of human instructions for basic tasks. You are
working with a human to jointly perform a simple collaborative task. In this task
you are a robot working with a human to build a slot together model. For a given
statement determine if the statement is directed to the robot, is not a request or is
not an action. If it is a request or action directed to the robot, return the action
the robot should take as a python dictionary. The dictionary has one key: "action":
A list of the actions that the robot should take, taken from the actions list. For a
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given statement determine what actions the robot should take. Return only a single
object from the list of objects provided. Resume using the following instruction and
the objects in the provided image.

"instruction": 'Okay, now hand me the red part.'
"objects" = [FrontPiece, BackPiece, LegsFront, LegsBack, Head]
"actions" = [MOVERIGHT, MOVELEFT, MOVEUP, MOVEDOWN, MOVEFORWARD, MOVEBACKWARD,

TILTUP, TILTDOWN, ROTATELEFT, ROTATERIGHT, PICKUP, OPENHAND, CLOSEHAND, OTHER]

Because the information being sent to the model includes both the human instructions and an image
of the workspace, we arranged the camera to show only participants’ hands and arms. There are still
privacy implications in the transmission of (transcribed) human speech. However, since the task involves
only language about joining pieces of a toy, there is no reason for participants to provide sensitive
information, and experimenters were prepared to intervene in any case in which they did so. The overall
system evaluation included questions such as “I felt like the robot understood what I wanted,” but did
not include a separate assessment of the VLM’s performance.

From a social justice perspective, we identify two possible sources of risk. First, the model is receiving
images that include participants’ hands and arms, and skin tone may affect model behavior [8, 58, 59].
Participant instructions may also convey demographic information in a way that affects the system’s
performance [24, 50]. To minimize these risks, the prompts were designed to be task-oriented and focus
on the objects in the workspace. GPT was prompted to focus on the human instructions and not the
instructors. Transcribing speech to text may also reduce the impact of acoustic features such as accents.

Environmentally, although detailed figures are difficult to obtain, a conservative estimate is that
each of our GPT inferences is responsible for approximately 0.047 kilowatt-hours of electricity [68]. As
our study had 20 participants who issued an average of 16.3 instructions each, we estimate that the
electricity usage of our study was roughly 15.3 kWh. Our proposed deployment model is to evaluate
the type of instructions participants tend to use and transition to a smaller, local model tuned for those
specific use cases, reducing both environmental costs and privacy concerns.

Without the use of a vision and language model, this work—which does not focus primarily on
the development of an NLP interface—would have relied on simpler linguistic interactions, possibly
with the use of a fixed lexicon of commands, reducing the participants’ freedom to convey a variety of
requirements to the robot helper. It is intuitive to expect that users would have ended up using simpler
commands in this case; however, ablation studies were not performed.

Sample report on LLM usage in a hypothetical research project.

6 Next Steps

In this paper, we explored the “why?” and the “how?” of the ways researchers depend on and can
provide transparency about the uses of LLMs in robot architectures for five key user groups to whom
researchers owe an informative reporting responsibility: other researchers, engineers, decision
makers, lawyers/regulators, and end users. However, there are a number of related considerations
that must also be discussed to make clear the boundaries of our analysis.

6.1 Transparency for Additional Stakeholders

The need to be transparent does not only apply to the HRI research community. Frequently, the
ultimate goal of HRI research is to understand how to build robots that can be deployed in a variety
of situations in which they might supply assistance, provide work, or otherwise contribute to
meeting the needs of people. Successful deployments require pipelines of programmers, engineers,
manufacturers, marketers, and support personnel, among others. It is unrealistic to expect that
every person involved in such an endeavor will be fully informed about the technical underpinnings
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of a developed system. However, the goal is that every person involved will understand the shape of
the technological solution and the risks that may be involved. As such, it becomes necessary
to identify what information should be provided to whom, and what information may be expected
to be passed through to other stakeholders to meet their own information needs. As an example,
sales personnel need to understand enough about how LLM-based systems work and what the
associated risks are that they can convey this information to potential customers.

Even before deployment, some of the same requirements apply to smaller-scale commercial
efforts; for example, a startup trying to develop a robot system for hospital use should be aware
of, sensitive to, and transparent about questions of privacy and information flow. At the opposite
end of the spectrum, large companies that are responsible for developing, training, and publicizing
very large models should be aware of the potential uses discussed in this article, and should make
every effort to be as transparent as possible for the sake of avoiding problems such as test data
contamination [4, 60].

6.2 Beyond Transparency

Despite the importance of transparency, it is equally critical to note the limitations of (and ethical
inculpability provided by) simply providing information about a system. In practice, technical
information may be difficult to understand, while excessive information may be impossible to absorb
usefully [90]. At best, poorly presented information may not allow users to provide informed consent
to the use of LLMs [28]; at worst, such documentation may be used as a form of “transparency-
washing,” in which technology providers use tools such as end-user license agreements primarily
to exculpate themselves of responsibility for user understanding [31]. Designers of robotic systems
(LLM-enabled or not) must take advantage of best practices in current digital consent
research to ensure that key information is communicated effectively. The communication tools
described in this article are intended as a starting point towards this practice.

6.3 The Need for Robotics and Al Literacy Efforts

This need to move beyond transparency highlights the information needs of stakeholders like end
users, decision makers, and law and policy experts. Not only do these stakeholders need “reporting”
from roboticists before they make decisions as to when and how to regulate, purchase, and use
LLM-enabled robots, but they moreover need a solid base of knowledge about the nature of these
robots, and the broad space of opportunities and risks they present. This broad base of knowledge
might thus be best enabled not only through “reporting” as traditionally construed, but also through
population-level education and tech literacy efforts.

Efforts like AI4K12 [108] (see also [94, 114]) have emphasized the importance of integrating
awareness of ethical risks into K-12 AI education; Duke’s Cultural Competence in Computing
(3C) program trains educators in how to develop coursework related to issues of identity and
computing [25]; Ko and colleagues’ textbook on Critically Conscious Computing seeks to center
societal and ethical issues in the course of secondary computing education [51]; and the AAAS’s
Project 2061 [72] has presented guidelines for technology literacy efforts, which have been taken
up by HRI researchers like Mott and Williams [77]. Our analysis in this paper presents not only a
set of guidelines that HRI researchers should follow, but also a call to action to work with educators
and education researchers to develop and disseminate these types of curricula.

An interesting extension of the concept of general education that came from our workshop was
the idea of licensure for LLMs and robotics, in which practitioners (researchers and/or engineers)
would receive formal training and licensing in these systems. Such licensing might take two forms:
(1) voluntary certifications, which could serve to demonstrate expertise in the uses and risks of
LLM-backed robots; and (2) professional licensing, in which such expertise would be considered a
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professional expectation. Licensing has the advantages of incorporating the legal system to hold
practitioners accountable and provide more transparency, and could build trust in an organization
dedicated to researching and using such systems. However, it also has the challenges of requiring
both time and effort, making it disproportionately harder for small businesses and individuals to
get involved or gain accreditation.

6.4 Expanding Reporting Guidelines for Diverse Robot Types and Human Populations

In this paper, we proposed foundational reporting guidelines for the general use of LLMs in
HRI research. While the guidelines presented are broadly applicable, we acknowledge that HRI
encompasses a wide range of robotic applications, each with unique ethical, safety, and operational
considerations. As such, this paper serves as a starting point rather than a comprehensive framework
addressing every potential use case.

For example, different robot types (e.g., anthropomorphic vs. non-anthropomorphic robots) will
likely require tailored approaches to reporting and ethical considerations. Moreover, the diversity
of human populations interacting with robots further highlights the need for specialized reporting
frameworks; for example, children, older adults, and individuals with special needs may have
distinct vulnerabilities that necessitate careful consideration.

We propose that future research expand upon the foundational guidelines outlined in this paper
to explore these specific contexts in greater detail. Investigating how reporting requirements should
vary based on different robot types (e.g., humanoids vs. non-humanoids) and different human
populations (e.g., children, older adults, or people with special needs) is a critical next step. By
doing so, the HRI community can ensure that the ethical, safety, and operational needs of diverse
applications are adequately addressed.

7 Conclusion & Reporting Guidelines

As seen across this paper, there are a wide array of stakeholders who deserve targeted communica-
tion about the use of LLMs in robot architectures. Each of these stakeholder groups has their own
motivations for such reporting, their own reporting needs, and their own ideal forms of reporting.
However, we wish to end this paper by providing, as a primary takeaway, a succinct summary of
the most important information that HRI researchers using LLMs should report to other researchers
in the context of their scientific papers.

As a first step towards meeting the broad range of reporting guidelines described across this
paper, we recommend that HRI researchers, at minimum, report, in research papers that leverage
LLMs as part of larger robot architectures, the answers to the six questions listed in Section 5,
which we repeat here for clarity:

(1) What model are you using, and what version of that model?

(2) Why are you using an LLM, and why that particular model?

(3) How is the LLM component evaluated? Is there a separate subsystem evaluation of perfor-
mance, or is it part of the evaluation of the overall system?

(4) Are you using the LLM as a Scarecrow (i.e., as a “brainless” module in which the LLM
provides a stopgap solution rather than a theoretically principled, empirically justified, and
safe solution), or are you advocating for its use as part of a deployable solution?

(5) What role is the LLM serving in the architecture, and how is it integrated into that architec-
ture?

(6) What are the ethical implications stemming from your choice to use an LLM, and from the
specific way in which you are using that LLM? In particular, those using LLMs should clearly
acknowledge the environmental and sociological impacts, the privacy and reliability risks,
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and the ways those risks specifically manifest and are accentuated or ameliorated within the
research context being explored.

By making this minimal set of information available to other HRI researchers, we can start
creating a culture of appropriate and mutual transparency toward the range of stakeholders to
whom the field of HRI owes a reporting burden.
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