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The comparatively recent advent of Large Language Models (LLMs) has resulted in a wide array of new

capabilities and components relevant to Human-Robot Interaction (HRI) researchers. LLMs are being applied

to vision, manipulation, planning, reasoning, learning, and HRI problems, frequently as “Scarecrows,” in which

LLMs serve as black box modules integrated into robot architectures for the purpose of quickly enabling

full-pipeline solutions. However, despite this explosion of applications, general questions remain about the

best ways to incorporate LLMs into robot architectures, appropriate safety and guardrail considerations,

and, critically, how to report properly on HRI research that involves LLMs. In this article, we explore the

question of reporting guidelines for HRI researchers who utilize Scarecrows in robot architectures. We identify

five key stakeholder groups in the HRI research process, discuss what information each group needs from

HRI researchers, and identify appropriate mechanisms for conveying that information from HRI researchers

to stakeholders either directly or indirectly. We contribute a set of suggested guidelines regarding what

information should be included when researchers disseminate information about HRI research that uses LLMs.
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1 Introduction
Large Language Models (LLMs) and vision-language models (VLMs) have the power to reshape how

we think about interactive robotic systems, allowing for new capabilities and interactions that were

previously unreachable. LLMs are being applied to supporting human language interactions [48]

and human-robot teaming [55], providing novel methods for robotic planning [19, 89, 102] and

decision-making [62], and allowing new approaches to longstanding problems, such as object

recognition [128] and task and motion planning [26], inter alia. However, the use of LLMs may also

constrain the ways that Human-Robot Interaction (HRI) researchers go about designing interactive

robots, the types of interactions they choose to design, and the types of scientific questions they

choose to investigate. Moreover, LLMs present a wide range of ethical risks that must be safeguarded

against and made transparent when they are used in robot design [117].

While many of these considerations are endemic to the general use of LLMs, the use of LLMs in

robot architectures comes with unique challenges, especially given that that LLMs are often used

as constituent components of robot architectures, responsible for piecemeal tasks as well as for

enabling end-to-end human-robot dialogue. For example, recent work has described how LLMs may

be used as Scarecrows: “‘brainless,’ straw-man black box modules integrated into robot architectures

for the purpose of quickly enabling full-pipeline solutions, much like the use of ‘Wizard of Oz’

(WoZ) and other human-in-the-loop approaches” [118].

Identifying this parallel between LLMs and WoZ techniques helps to illuminate key responsibil-

ities borne by HRI researchers who choose to use LLMs in their robot architectures. Just as the

use of WoZ gives designers the responsibility to report on exactly where, why, and how they use

WoZ in the name of transparency and replicability [91], so too does the use of LLMs give designers

reporting responsibilities. In this paper, we explore these reporting needs, building both on (a)

our previous perspective piece discussing the risks and challenges associated with the use of LLM

Scarecrows in HRI [118], and (b) the results of a workshop held at the 2024 ACM/IEEE International

Conference on Human-Robot Interaction (organized by the first five authors and attended by all

authors) at which preliminary reporting guidelines were discussed.

A key difference in reporting needs relative to WoZ is the range of stakeholders to whom

information about the use of LLMs must be disclosed (see Figure 1). Discussions about transparency

regarding the use of WoZ techniques have been largely focused on transparency to other researchers,
due to the typical use of WoZ as a design and experimental methodology rather than a technical tool

(excepting possible, arguably questionable uses of WoZ-like techniques that fall under the umbrella

of “Artificial Artificial Intelligence” [86]). However, because LLMs are typically used (or envisioned

to be used) on robots deployed in the world and not just constrained to the laboratory, a wider array

of reporting considerations must be made with respect to a broader array of stakeholders who will

interact with robots, enable interactions with robots, or constrain interactions with robots.

In this paper, we identify (1) a set of stakeholder groups to whom researchers owe a reporting

duty, (2) the reasons why each of these types of stakeholders needs information about the use of

LLMs, and (3) the information and mode(s) of presentation best aligned with the reporting needs of

each of those stakeholder groups. These were developed based on the workshop described above.

At this session, invited speakers presented background information about Scarecrows and LLM

use, after which attendees separated into groups and brainstormed entries into a worksheet with

stakeholders, data to be reported, and the reasoning behind those requirements. These worksheets

were shared with attendees and discussed, then synthesized into a consensus table, which the

authors elaborated on based on reporting literature (see table 1). We close with suggested reporting

guidelines for HRI researchers who are incorporating LLMs into their architectures.
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2 Related Work
LLMs have the potential to revolutionize researchers’ approach to HRI, and it has not taken long

for the research community to take advantage of this opportunity. Due to overwhelming interest

in the topic, the focus of our literature review covers work specifically on models and architectures

that are used in direct or indirect interaction with end users.

Using an LLM as a module in a larger architecture is a common approach to the embodied use of

LLMs. Izquierdo-Badiola et al. [42] present a system using an LLM as a module in collaboration

with end users that generates joint plans to be executed with end users. Sun et al. [105] use an LLM

to perform collaborative task planning by interacting directly with a Partially Observable Markov

Decision Process (POMDP). Nwankwo and Rueckert [84] present a collaborative robot that uses

both an LLM and a VLM to capture situational awareness for the rest of the robot architecture.

Likewise, understanding user instructions is a common use case for LLMs. Wu et al. [121, 123]

demonstrate the effectiveness of LLMs as modules for taking instructions and generating effective

behaviors for users in a variety of tasks (e.g., tidying up, or selecting and moving objects based

on instructions). Mahadevan et al. [69] extend previous work in LLMs to accept feedback when

generating code that synthesizes expressive robot behaviors.

Other researchers have used LLMs to handle robot dialogue [1], or to reason in a shallow way

about emotional context [75] and social norms [130]. Finally, some researchers have shown specific

limitations of LLMs in HRI tasks, such as theory of mind [111] and moral reasoning [92]. Due to

more general limitations of LLMs, some researchers have begun to analyze the contexts in which

LLMs should or should not be used [49]. Authors often express the risks to end users by using

LLMs in their architecture, typically found in their discussions (e.g., [92, 111, 130, 131]). Yet other

related areas like stakeholder requirements remain unexplored; for example, none of the papers

we reviewed mention the provenance of the data on which models are trained (cf. [121]). Thus,

there is a significant need for an analysis of the risks of LLMs in HRI and when and how those

risks should be reported.

One key question to consider is when the reporting guidelines discussed in this paper are specific

to the use of Large LanguageModels in HRI, as opposed to being more broadly applicable to machine

learning in the field, and fact there is significant overlap. While there are many methodologies to

studying and investigating human-robot interaction, one popular perspective is to use data-driven

approaches to generate interactive, social, safe robotic behavior [46, 78, 98]. These approaches

typically use machine learning to learn policies, behaviors, and speech patterns from sensor data,

animations, and other useful data. However, machine learning is a large field and has many different

practices, some explainable and some not. Historically, machine learning has used a number of

approaches to learn a useful, human understandable representation. Some of these representations

are stochastic in nature [80], while others are inspired by natural neural networks [38] and require

expert inspection to understand how connections impact network output. The breakthrough

work that we are discussing in this paper involves using end-to-end neural networks that use

transformers applied to language without explicitly modeling linguistic phenomena in a more

piecewise fashion [87].

Historically, models in data-driven approaches have involved piecewise learning and optimization

of component parts of an overall behavior architecture. While these pieces are compatible in a

way that allows them to be simultaneously learned, they can be broken apart and inspected for

improvements and feature development. However, when we discuss explainability in transformer-

based neural networks, we are addressing the challenge of understanding the connections between

embeddings that were learned and how they impact overall model outcomes. Focusing on what a

transformer has ‘learned’ has proven challenging to make guarantees about. These types of models
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are somewhat black box in nature, making it hard to generalize what phenomena these models have

learned [64, 134]. While some progress has been made, the lack of guarantees inherent to these

transformer-based models significantly affects the safety and explainability of these models [67],

leading to a need for clear, explicit reporting on how and whether they are to be used. When we

discuss the challenge and lack of explainability in these models, we refer to not only in providing

guarantees but to the models’ opacity [95]. The apparent linguistic capabilities of LLMs make

them particularly tempting to incorporate in human-facing applications in robotics; it is these

transformer-based, language-capable models we specifically refer to in this paper.

3 The “Who?”: Stakeholder Categories
We begin by identifying five key groups of stakeholders to whom researchers incorporating LLMs

might owe reporting duties, either directly on indirectly, depending on the use case. Although

HRI researchers are not the only group that provides information—for example, practitioners who

design robot architectures and build robots will likely provide specification sheets to decision

makers—in this article we focus on information originating from the HRI research process.

Fig. 1. Human-robot interaction researchers using large languagemodels have a responsibility to communicate
critical information to a variety of stakeholders (Section 3). Each stakeholder group is interested in different
types of information, including: Data and model provenance, or sourcing; whether a system can be reliably
replicated and appropriate information to support such replication; how and whether a system infringes on
user privacy and how that infringement can be managed; what other risks result from using an LLM in an
HRI system, and how to mitigate those risks; and whether and how such systems may lead to user overtrust,
along with suggestions for mitigation. Different stakeholder groups have the ability to shape (affect and
report on) these axes and the information that supports reasoning about them.

We briefly define each stakeholder group before discussing their reporting needs in the following

sections. Figure 1 shows some of the types of information that should be shared between and

among groups of stakeholders.

Researchers in HRI are increasingly using, extending, building, and/or designing LLMs to

meet their research goals. These researchers may determine the possible inputs, outputs, and

underlying model architecture to answer a specific research question. For example, research

questions can be specific to a model training regime or model architecture, and are typically

sensitive to characteristics–such as the transparency and bias in model outputs, key model

limitations, model hardware requirements, model power consumption and environmental

impacts–as well as the larger economic and societal impacts of LLMs. Moreover, researchers

and other members of the broader research community may need to evaluate the ethical risks

of LLMs and their use in robot architectures as part of their interactions with Institutional

Review Boards (IRBs).

ACM Trans. Hum.-Robot Interact., Vol. X, No. X, Article X. Publication date: X 2025.



Reporting Guidelines for Large Language Models in Human-Robot Interaction X:5

Stakeholder Why do they need
reporting? What should be reported, and how?

Researchers

Replicability, Long-term

risk assessment

Technical information on architecture, models, datasets, prompts,

and ethical risks, presented in research paper sections.

Engineers

Verification,

Medium-term risk

assessment

Model dependencies, inputs, and outputs, known failure modes

and ethical risks, presented in technical reports and summarized in

model cards.

End Users

Near-term risk

assessment (to self and

known others)

Influence of LLMs on system behavior and known ethical risks,

presented through quick-start guides and tutorials, education and

tech literacy programs, and transparent interactions.

Decision Makers

Near- and medium-term

risk assessment (to self

and unknown others)

Influence of LLMs on system behaviors and known ethical risks,

presented through model cards, public information/specification

sheets, and formal training and certification programs.

Lawyers and

Regulators

Community-level risk

assessment and response

Ethical risks and legal considerations, presented through policy

briefs and publicly accessible documentation.

Table 1. Condensed reporting needs for LLMs in Human-Robot Interaction for five major stakeholder groups.
These entries were developed by the authors based on input from the 30+ workshop attendees at the 2024
Conference on Human-Robot Interaction (see section 1 for details).

Engineers build or use existing LLMs, often for a specific use case. Engineers are not usually

the stakeholders that make changes to the models themselves; rather, engineers are interested

in the surrounding technologies necessary for model access, which could mean a software

development access point or a chat interface. Engineers and practitioners are responsible for

implementing and scaling the ideas and capabilities developed by researchers, and depend

directly on reporting by those researchers.

End Users make use of LLM-enabled technologies. End users are less concerned with how the

models work and more concerned with whether a model is useful and what risks it has. End

users include home users, hobbyists, students, and professionals such as K–12 educators.
1

In a professional setting, this group of stakeholders may not have complete volition over

whether to use provided tools (e.g., nurses and medication delivery robots). End users depend

on information provided by researchers both directly (through general education efforts and

popular reporting on current science) and indirectly (through implementations provided by

engineers).

Decision Makers are those who choose to acquire a robot for use by themselves or others,

whether in a home environment (e.g., parents acquiring a robot for their children) or a

professional setting (e.g., hospital or school administrators). It is worth noting that this group

may have significant overlap with both end users and with other professional units (e.g.,

approval/acquisitions managers). Decision makers depend partly on data from researchers

filtered through engineers, by way of public data, specification sheets, and marketing material.

Lawyers and Regulators are concerned with legal and societal impacts of LLMs, including

data used for training (e.g., fair-use or copyrighted data), end-user impacts, environmental

impacts, economic impacts, safety and security, as well as sourcing data.
2
Because this group

takes a higher level view, their dependence on information comes directly from researchers,

from engineers and practitioners, and from population-level education and publicity efforts.

1
In this work, we exclude people in the vicinity of LLM-using robots who are not direct users, for example, bystanders near

a museum kiosk robot. While such users have potentially relevant concerns (e.g., privacy), they fall outside the scope of our

present discussion.

2
For example, Resolution 604 adopted by the American Bar Association: https://www.americanbar.org/content/dam/aba/

directories/policy/midyear-2023/604-midyear-2023.pdf
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These groups are presented in Table 1, along with a summary of the information that should be

reported to each group, and some suggestions as to what reporting media might be appropriate to

each group. We elaborate upon these suggestions in the following section.

4 The “Why?” and The “What?”: Transparency and Types of Information to be Provided
Having delineated five key groups of stakeholders, we consider why each group needs transparency

in the use of LLMs in robot architectures for HRI. For some groups, this may be related to the

unique goals of the group, for which transparency is needed to adequately fulfill. For other groups,

this may be the unique sources of risk to which that group is vulnerable, for which transparency is

necessary to avoid. Figure 1 shows some possible areas of concern that may need to be addressed

by researchers and various stakeholders.

Having considered why stakeholders might need transparency into the use of LLMs in robot

architectures, we alsomake suggestions as to what types of informationwould help each stakeholder

group to meet their unique goals or avoid their unique sources of risk, and how those types of

information should be presented.

4.1 Researchers
Researchers must provide clarity about their use of LLMs for three key reasons: (1) to improve

replicability and scientific integrity, (2) to avoid overtrust, and (3) to ensure an understanding of

the costs associated with the research.

To assess the rigor and maturity of the research presented, transparency is critical. Therefore,

to understand the context in which work was carried out as well as to replicate the findings, key

information needs to be provided by the researchers to other researchers. This includes, for example,

the prompts used, the model version number used, the date at which the evaluation was carried

out, and information about parameters and context; for a suggested list of what details should be

provided, see Section 7. However, given the non-deterministic nature of LLMs, we acknowledge that

a replication producing the same results might not be guaranteed even when details are provided.

Beyond strengthening and advancing the quality of research, transparency is vital to minimize

the risks that arise from robot overtrust. By understanding the limitations and capabilities of a

system and the research conducted on/with it, risks to the integrity of the research community can

be minimized, as well as the risk to potential future users of the developed systems.

Lastly, working with LLMs—whether via a browser, a smartphone, an API, or a robot—is a costly

endeavor. Estimates have been made that indicate that the slightest performance improvement to

translation tasks costs around $150,000 in additional training costs [7]. By disclosing information

on the complexity of the trained model (e.g., what data was used or how many parameters), it

becomes possible to estimate financial and environmental costs and impacts.

In addition to the need for clarity in reporting on their own research, researchers and members

of the broader research community need to fulfill roles as members of Institutional Review Boards

(IRBs). Because IRBs are charged with providing ethical and regulatory oversight of research

involving human subjects, IRB members need to have a comprehensive understanding of what

LLMs are involved in the research or development processes, how those LLMs are used, and

what potential impacts this might have on research participants. This understanding can help IRB

members to establish and refine LLM-related institutional regulations to prevent negative outcomes

(as well as misconduct) during the experimentation or development process.

How to provide transparency among researchers. Researchers using LLMs as part of robot architec-

tures need to disclose a variety of information to ensure replicability of their work:
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(1) First and foremost, researchers should disclose the larger architectural context within which

LLMs were used, and the specific locations and temporal dynamics of use of those LLMs.

(2) Because the behavior of LLMs is largely determined both by the data on which LLMs were

trained and tested, as well as by the prompts provided to them, researchers should also report

at a minimum (1) information available (e.g., relevant datasheets [34]) about the data on

which their chosen LLM was trained, as well as the nature and origin of any supplemental

data the researchers used for fine-tuning; and (2) both the exact prompts used for testing,

and the history of prompts that preceded those testing queries.

(3) Because the capabilities and limitations of LLMs are constantly changing, researchers should

report not only the version number of the LLM(s) they use, but also the date on which queries

were given to those LLMs, and the LLM seed specified, if any. (Although additional reliability

measures are desirable, these are frequently difficult with black box systems; authors should

consider additional methods for capturing system performance under different parameters.)

(4) Researchers who use LLMs in their overall system should also report the range of inputs,

as well as the modifications to the outputs that allow those outputs to be useful for the

downstream users of the LLMs.

(5) Researchers reporting in scientific papers on their use of LLMs should be clear about the

known ethical risks of those LLMs, including privacy, economic, environmental, and social

justice concerns, and how those risks were/were not mitigated through the researchers’

technical approach. In doing so, researchers should be clear not only about the types of risks

raised by their use of LLMs, but also the likelihood, severity, and timescale of those risks.

While the risks associated with LLMs can impact anyone, research participants in human-robot

interaction studies involving LLMs can be uniquely vulnerable because they are the first ones

exposed to these technologies while they are under development; planning to report on the above

points will help researchers explicitly consider such risks. This information should all be reported in

research papers (distributed as appropriate across “Technical Approach” and “Discussion” sections

of those papers), and reported in IRB applications. For example, the following details might be

presented in a paper’s “Technical Approach” section:

“All evaluations performed in this work leveraged OpenAI’s gpt-4-0613, a text-only LLM with a 8,192 token
context window. All queries were given to this model between 04/01/2024 and 04/30/2024. No seed was
specified, and a temperature of 0.5 was used. One-shot prompts were used, with no prior chat conversation
provided. Each natural language instruction verbally provided by the user to the Softbank Pepper (described
in Section X) in the context of interaction (described in Section Y) was translated from speech to text using
the PocketSphinx 5.0.3 Automatic Speech Recognition Model, and then fed to the LLM, with the prompt:

I am going to give you a sentence. You will return the logical representation of the

utterance, with no explanation or anything beyond the logical representation. [Here, the
authors would provide the examples they are using to enable in-context learning, which we have omitted
for readability.]

Here is the sentence: “Put the box on the large table in the kitchen”.

Results returned by the LLM were then provided to the natural language understanding system as
described in Section Z.”

The following text might similarly appear in the paper’s “Discussion” section and/or as part of

the research project’s initial IRB application.

The use of LLMs comes with a number of privacy, economic, environmental, and social justice concerns

that may be propagated through the use of LLM-based methods. Our use of GPT4 to parse interactants’

utterances means that those utterances are implicitly provided to OpenAI; a risk with high likelihood
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but low severity, that will occur once per interactant utterance. Other researchers hoping to use this

technique should make this privacy risk transparent to users, request a Zero Data Retention endpoint

from OpenAI, or use an LLM that does not present this privacy risk.

Our use of GPT4 also presents several economic risks, due to the water and electricity consumption

of LLMs, and the reliance of LLMs and other AI systems on toxic mining practices. Each GPT4 query

is estimated to consume 0.3kWh, and at least as much water (17ml) as GPT3. These high energy costs

mean that this type of model may be unsuited to domains where a high rate of interaction is required

over long periods of time.

Finally, the use of GPT4 presents social justice concerns. Some of these concerns, such as the tendency

of LLMs to center and normalize White, Western, masculine voices and perspectives (a manifestation of

roboticists’ power in the cultural domain [115]), are mitigated through our limited use of GPT4 to only

effect relatively straightforward transformations of text into logical representation. Other concerns, like

the reliance of OpenAI’s ethical guardrails on practices of data colonialism, where Kenyan workers are

subjected to psychologically and economically exploited conditions to benefit American tech companies,

are not similarly mitigated. While further damage is not inflicted upon repeated uses of GPT4 within our

architecture, this nevertheless presents hidden costs that may limit the ability of our model to ethically

be transitioned into use cases beyond the laboratory, unless a different LLM is used.

This text explains where LLMs are used, how the use of LLMs might affect outcomes, what risks

LLMs present to users or experimental participants, how those risks are bounded by the way they

are used in the robot architecture. When used in the context of an IRB application, researchers

should supplement this type of explanation with a further explanation of when and how these

risks would be disclosed to experimental participants.

4.2 Engineers
Engineers and robotics practitioners require insight into the capabilities, failure modes, and mech-

anisms of LLM-based systems for several reasons. First and foremost, in designing and building

robots for deployment, they must decide whether, how, and how frequently to use large models

and systems that depend on them, with an emphasis on building systems that perform safely and

as intended. As a matter of responsible engineering conduct, professional engineers must build

systems that do not behave unethically or support unethical behavior. They also require trans-

parency into the use of LLMs in robot architectures in part because they have associated reporting

burdens to their own stakeholders, and in part to support understanding and debugging their own

systems. Ultimately, engineers are responsible for the overall design, verification, performance,

and maintenance of a robotic system—tasks they cannot perform without clear information from

researchers who design the underlying models.

How to provide transparency to engineers. The use of an LLM provides many of the same opportu-

nities [11, 39] and challenges [81] that come with scaling experimental systems for deployment.

Understanding the risks and limitations of LLMs will allow engineers to provide guarantees that an

LLM does not introduce critical flaws to a robot architecture that would prevent safe deployment

to the end user. This is important both for good engineering practice, and so that engineers can

report costs and risks to their own stakeholders. Engineers will also need to report known flaws in

the system and, where possible, remediate these flaws from occurring, in part via careful prompt

engineering [99]. Prompt engineering has been a popular method of introducing LLMs into a much

larger robot architecture. Using LLMs as components requires extensive knowledge of fault and

failure cases in prompt engineering, such that the details used in researcher experiments provide

valuable insights to preventing these flaws from occurring in the first place. It is worth noting that,

while “guardrails” are a major resource for engineers to manage risks and flaws [33, 79, 113, 129],
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current guardrail technology is insufficient for deployed systems that incorporate LLMs [20]. This

insufficiency can be observed through LLM’s continued tendency to engage in sexist or otherwise

hateful speech [37, 124], and to engage in ‘bullshitting’ [119, cf.] and other actions that present

risks to democracy [22]. Moreover, guardrails on their own are insufficient to address the cultural

and ethnic homogenization of LLM-driven robot speech [18] (although cp. [93]), and in some cases

may even reinforce such homogenization (due to the ways that rule-driven guardrail systems

inherit from racist philosophies that equate morality with White standards of behavior [74]) [116, p.

121–124]. Finally, because guardrails are often enabled using Reinforcement Learning from Human

Feedback, they naturally encode the biases of those providing feedback, meaning that current

guardrail-based ethic systems will likely encode and reinforce White supremacist and patriarchal

behavioral expectations [116, p. 87].

Fig. 2. Sample Nutrition Label, generated
through https://nutrition-facts.ai.

Depending on the role and function of an LLM within

a robot architecture, engineers may treat the LLM as a

black box with a particular set of expected inputs and

outputs, or they may be more concerned with how the

LLM was trained or what the model itself may learn as

they may be applying the experiment to their own data.

In fact, Jiang et al. [44] found that the top concerns for

machine learning engineers when reusing models are

data provenance, reproducibility, and portability. This

reflects the broad spectrum of use cases and responsibili-

ties of engineers in this context and provides barriers and

challenges to reporting this information to engineers.

To communicate meaningful knowledge from re-

searchers to engineers is no easy task, as this detailed

information can be quite verbose. Appropriate details in-

clude hyperparameters, data origin, including copyright

and licensing information, as well as the the model’s

propensity to hallucinate. It is also important that engi-

neers know what the model has learned, what kinds of

outputs are expected from the model, and in what con-

texts it is appropriate for it to run efficiently and effec-

tively. Recently, new ways of concisely communicating

summaries of complex information have emerged that

support this need, such as model cards [73, 76], or “nu-

trition facts” style visualizations [36, 110], such as that

shown in Figure 2. These types of visualizations incorpo-

rate other social and reproducibility considerations, such

as why the data was used, with what hyperparameters,

and what model details should be discussed.

While these mechanisms for communicating informa-

tion can often provide a helpful resource about model

details and training regimens, they may be limited in

their ability to communicate more scientific components of trained models. For instance, how

models are used may typically not be found on model cards but are important details for engineers.

Many times, training parameters are only available via paper reporting or via websites, such as

Hugging Face or Neptune. On the other hand, risks, user evaluations, and model transparency

details are frequently still lacking from these sources. For this reason, it is still recommended that
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researchers provide as much supplementary materials as is possible and necessary to address the

needs of engineers.

4.3 End Users
End users are not a monolithic group, and HRI researchers need to consider the possible character-

istics of different user groups when providing information (further discussed in Section 6.4). As an

example, some populations do not have an obligation to interact with robotic systems, such as most

users of social companion robots, who are in a position to determine when to opt out of two-way

communication or to opt out of use entirely. These decisions can only be made in the presence of

sufficient information about the system’s behavior and data flow patterns. The needs of this group

may vary from, for example, those of professional end users, for whom robots exist in workplaces

and serve professional functions (e.g., nurses who interact with medication-dispensing robots in

hospitals). For this group, technology use may not be a matter of choice, changing the nature of

their interaction with those technologies [10]. As such, these users must be provided with enough

information to understand the nature of the interactions, allowing them to understand possible

risks and avoid overtrust/overreliance on the technology [52].

Some users may also play the role of a mediator of technology—for example, a patient in a hospital

receiving medication from a robot, whose introduction to and questions about the technology

will likely be handled by the nurses who work with it. In this situation, a clear understanding of

the robot technology will affect technological understanding and appropriate use patterns [21] by

these secondary users. All end users require a clear understanding of the actual capabilities of the

robot and to what degree these systems should be trusted (described below), as either under- or

over-trust can lead to system misuse [52].

How to provide transparency to end users. Users frequently have relatively little control over and

minimal visibility into the nature of the technology underlying robots and related technologies

(e.g., voice-activated assistants [43]). Accordingly, information that should be made available to

end users is frequently distinct from the information engineers and researchers need to exchange.

This information can be difficult to formalize, because “end users” is a heterogeneous category

whose members may require different kinds of information. Nonetheless, providing the following

information should be considered a baseline.

First, researchers and engineers should make it clear to users when interactions are generated in

part by an LLM, using general terminology and readily understandable examples. This should be

paired with disclaimers that the systemmay not be reliable, and that any information or suggestions

made by the system may be incorrect. Because LLMs are frequently used for back-end tasks as

well as direct interaction, this will likely involve providing samples of possible failure modes. It

may also be useful to convey the concept of “guardrails” with explanations of their weaknesses

(although this may convey information about how to subvert those safety measures).

Users should also be made aware of the potential privacy failures and data leakage associated

with use of online models or other advanced features, such as personalized agents. Specifically,

personalization mechanisms deployed on LLMs often rely on retaining users’ conversation history

and historical behaviors [109, 133]. These data pipelines should be explained, making clear what

data will be retained, who may have access to user-supplied data, and how users can opt out of

those features. Conveying privacy information successfully is nontrivial [9, 35, 53] and may not be

desirable to the providers of technology [132], meaning that this is both an important requirement

and difficult to actualize. Developers of user-facing technologies should therefore be aware of best

practices in providing privacy explanations ([12, 13, 100], inter alia), and avoid “dark patterns” in

presenting information (e.g., presenting risk information only in jargon-filled license agreements).
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Similarly, users should be made aware of mechanisms for and associated implications of declining

the use of LLM-based technology.

These types of information could be provided to users in at least two forms. First, some informa-

tion could be provided to users who are the “first line” of robot deployment through quick-start

guides and tutorials integrated into the unboxing and setup process. These guides and tutorials

could provide an point of intervention where users can be sure to be exposed to key information

about the design and limitations of robots’ software architectures before they are able to use those

robots. Second, some information could be provided by robots themselves through modalities, such

as natural language, either during introductions or over the course of interactions. In the same way

that ChatGPT might caveat some dialogue turns with a statement of its limitations as a language

model, LLM-enabled robots might find opportunities to indicate where and how LLMs are used as

part of relevant interactions.

4.4 Decision Makers
While many end users may have little decision making power as to when, where, and how robots

are deployed in their contexts of use, some users and non-users will have decision making capability.

We define decision makers as those with the power to decide to purchase and deploy LLM-enabled

robots; as such, this group requires a clear understanding of these systems not only to determine

how to use robots in a variety of settings, but whether or not to do so—deciding whether to buy

robots, whether to deploy them, how they should be used, and how frequently to activate them. This

group relies on researchers, technology vendors, and others to make information broadly available

so that decisions can be made in an informed way. “Decision makers” here loosely incorporates

or overlaps with such professional groups as acquirers, approvers, managers, lab leaders, and

administrators, but also non-professionals, such as parents.

This group requires information about how LLMs affect overall performance of the system under

consideration (e.g., what capabilities are enabled, and also what risks are introduced), but must

also consider their significant ethical implications [40, 107]. Of particular note are the privacy

implications of deploying LLM-using robots; concerns about the privacy implications of modern

smart automation [29, 71] already represent an (often well-founded) barrier to adoption [41, 97],

and physical agents with sensors have the potential to compound both real and perceived privacy

risks. Additionally, LLMs have been demonstrated to produce social dependency behaviors [85, 125]

and can lead to over-reliance among some users [57], which may be exacerbated by the human

tendency to over-trust physically embodied agents [2, 112].

It is also worth noting that decision makers may be responsible for making decisions for others—
including vulnerable groups (e.g., children, whose parents may make decisions regarding robots in

their environment), or groups that do not have a choice about whether to use robots (e.g., when tool

use is required in a workplace setting). The ability of these stakeholders to make decisions about the

appropriateness of robot systems at a broader scale implies the need for even more transparency

with respect to the pros, cons, risks, and rewards of those systems.

How to provide transparency to decision makers. Many of the types of information that should be

provided to those who will make decisions regarding the purchase and deployment of LLM-enabled

robots are similar to those that should be provided to end users; however, this group has additional

needs and requires different mechanisms for conveying information. Notably, it is necessary to

convey information about the specific risks posed before decisions aremade about when andwhether

to acquire and deploy these tools; this includes providing information about not only possible failure

modes (e.g., acting from a biased perspective, hallucinating factual information, and contributing

to harmful outputs), but also about possible longer-term costs (e.g., cultural homogenization and
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environmental impacts [107]). Decision makers may also have a significant need to more deeply

understand the possibility of data leakage, in which queries and interactions are fed back into the

system as training data, making it possible both to retrieve those interactions [6, 14, 16, 135] and to

draw inferences about the querent and their environment [103].

Again, this information should be conveyed clearly and in a fashion tailored to the specific use

case, using examples as appropriate. However, to make informed decisions, one must weigh risks

and trade-offs when choosing whether and how to use a system. Many of the mechanisms for

informing users prior to system use (e.g., unboxing videos, introductory tutorials, and reviews)

do not present risks and trade-offs in a meaningful manner. Like engineers, this population may

benefit from reporting in the form of model cards, and, like end users, public information efforts

are key. However, they additionally require the existence of public information, such as clear, easily

interpreted product information and specification sheets, made available via mechanisms such as

web sites. Groups or companies that provide LLM-enabled robots should make every effort to make

such information publicly available.

In addition to general community awareness programs, decision-makers in professional settings

may also benefit from more formal training and certification programs. While such programs would

not provide sufficient transparency about individual models, they could provide professionals

with awareness of the types of risks and considerations they should be attentive towards when

considering the use of particular models.

4.5 Lawyers and Regulators
Lawyers, policy makers, and regulators must design, enact, and enforce laws, guidelines, and

specifications to promote the responsible, accountable, and sustainable design of robotic systems.

HRI researchers should support this group in obtaining a comprehensive but less technical under-

standing of the processes involved in designing, developing, deploying, and using physical systems

in day-to-day life, including in situations where those systems incorporate LLMs. Policy makers

must be aware of how LLMs in such systems have the potential to adversely affect individuals,

communities, society, and the environment, so that they can make effective decisions.

There are multiple axes of transparency regarding what information policy makers should be

aware of (at some level of abstraction). LLMs are varied as well as complex, but policy makers

should be consistently be made aware of at least the sourcing of training data, the collection and

utilization of user data and associated privacy implications, and the probability and implications

of hallucinations and other failures. The source and usage of training data for large models is

important because it determines the behavior of those models; however, for policy makers they

are particularly important because there are significant controversies surrounding the ownership

of that data—numerous lawsuits have been filed, and different jurisdictions have varying rules

regarding the use of publicly available data for training [3]. Many of the largest providers of LLM

models, such as OpenAI and Google, do not reveal exactly what data their models are trained

on, and it is difficult to reverse engineer whether a particular source is included [70], arguably

exacerbating the need for oversight and regulation.

Policy makers also need to be aware of how LLMs interact with user data and the associated

extensive privacy implications [63]. Large models hosted by developers almost universally take user

inputs as additional training data, despite the fact that these models can be induced to repeat training

data [15, 17] and can infer surprisingly detailed personal information from interactions [103].

Regulatory privacy frameworks such as the European General Data Protection Regulation (GDPR)

and the European AI Act struggle to address opaque, closed-source systems, which frequently use

data in ways not conceived of by these laws [30, 56, 65]. These and related concerns necessitate a

holistic, rigorous regulation mechanism in the development of LLM-backed robotic applications.
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For policy makers, clear information should emphasize the unique challenges posed by LLM-

powered robotic systems, which may arise due to the embodiment and physical presence of the

robots delivering LLM-related output [106, 122]. These challenges include, but are not limited to,

the epistemological, the ecological, and the economic.
Epistemologically, LLMs can affect society by shaping knowledge practices and peoples’ under-

standing of themselves and their societies. Associated threats include the spread of misinformation

and disinformation [5, 83], as LLMs in physical systems are in a uniquely persuasive position [66]

to disseminate incorrect or false information with or without human intent, as well as generate

biased content that favors specific viewpoints [27, 127].

Ecologically, LLM-based robots have real consequences on the environment and the planet at

large. The substantial computational resources required to train and operate these robots contribute

to skyrocketing energy consumption [104], and the consumption of cold freshwater for cooling

large data centers [61].

Economically, data cleaning and annotation crowd work involves a vast network of people,

often with unfair compensation rates [45]. Privacy concerns also arise from the collection and use

of personal data in LLM training datasets without explicit consent or awareness [120, 126]; these

concerns are exacerbated by the physical presence of robots in human spaces [117].

How to provide transparency to policy makers. Overall, the risks policy makers must consider stem

from the combination of the data, algorithms, and physical presence of the robot in human spaces.

These risks are partially associated with challenges in ensuring the quality and appropriateness of

training data and algorithms used to fine-tune LLMs—which imply the need for data and algorithmic

regulations [32, 54, 101]—and partially result from the fact that language-using physical agents pose

additional risks [117]. This is particularly true given peoples’ tendency to overestimate systems

that seem capable in a particular area [47].

HRI researchers should therefore work toward transparently informing regulatory stakeholders

about the risks associated with robotics platforms that rely on language and, in particular, on large

pre-trained models. This includes providing information about the nature and whereabouts of data

used for training [34]; for example, regulators might need to know whether an LLM-backed robot

uses data from the Internet, which might not be accurate, confidential, free, or representative, and

whether the data curation of an LLM involves fair treatment of data cleaners or annotators behind

the scenes [82]. They also need to understand some of the risks associated with physical systems

in terms of their influence over people, privacy implications, and effects on perceived identity (e.g.,

perpetuating gender stereotypes [96]), and to be informed of possible immediate and downstream

failure modes of such robots.

In addition to supporting the regulation process, the Artificial Intelligence (AI) research commu-

nity should engage with supporting the regulation of algorithms that are used to train LLMs and

apply them to physically situated problems. While regulatory bodies do not need to understand the

sophisticated implementations of algorithms, they should be informed of overall mechanisms and

how LLMs can go wrong when embedded into robot architectures. Researchers might also consider

creating tools or frameworks for algorithm and behavior inspection [88].

This information could be reported in the form of policy briefs and publicly accessible documen-

tation. The Colorado AI Act [23], for example, requires developers to provide (1) disclosures and

documentation of model risks and data use to deployers; (2) statements of the purpose, intended use,

and means of operation to consumers; and (3) statements regarding high-risk use of AI available for

public inspection. HRI researchers should make these types of information available both so that

developers building off their work can easily accommodate legally mandated reporting guidelines,
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and so that lawyers, policymakers, and regulators can effectively monitor the advances being made

by the research community and the legally relevant effects those advances may have.

Although the research community will necessarily iterate on the best mechanisms for providing

transparency, the suggestions in the preceding section are intended to establish a baseline level of

information appropriate for the stakeholders discussed here. To make the discussion more concrete,

we next present a brief example of a fictional research project and associated reporting.

5 Reporting Example for Researchers
In this example, we consider a research project in which a robot/person dyad are performing a

manipulation task together. The robot is providing additional manipulation capabilities, serving

as a “third hand.” The user provides spoken instructions describing what the robot should be

doing, which may be simple (e.g., “move the part down a couple of inches”), or arbitrarily complex

(e.g., “finish assembling this while I hold it”), with no predefined constraints on the language’s

level of abstraction. The system performs language understanding and interpretation by sending

commercial LLM a sequence of images of the interaction and the human’s spoken instructions, and

prompting for what action(s) the robot should take (so it may return, for example, “move gripper

20cm left”). When reporting on this work, the researcher should answer the following questions:

(1) What model are you using, and what version of that model?

(2) Why are you using an LLM, and why that particular model?

(3) How is the LLM component evaluated? Is there a separate subsystem evaluation of perfor-

mance, or is it part of the evaluation of the overall system?

(4) Are you using the LLM as a Scarecrow (i.e., as a “brainless” module in which the LLM

provides a stopgap solution rather than a theoretically principled, empirically justified, and

safe solution), or are you advocating for its use as part of a deployable solution?

(5) What role is the LLM serving in the architecture, and how is it integrated into that architec-

ture?

(6) What are the ethical implications stemming from your choice to use an LLM, and from the

specific way in which you are using that LLM? In particular, those using LLMs should clearly

acknowledge the environmental and sociological impacts, the privacy and reliability risks,

and the ways those risks specifically manifest and are accentuated or ameliorated within the

research context being explored.

The inset box shows how the answers to these questions might be included in a publication.

The system described in this work depends on the use of a Large Vision and Language Model for

interpreting human instructions and selecting robot actions based on those inputs. The VLM was a

separate API that was queried to find a mapping from human instructions to possible actions. For the

implemented system, we used OpenAI’s GPT, specifically model gpt-4o-2024-08-06. No fine-tuning

was performed, and no seeds were specified. This model was selected based on its accessibility and

performance on a range of queries obtained during a Wizard of Oz pilot study. We performed all queries

during December 11–15, 2024. We prompt the model with the following (example instruction included):

PROMPT: You are an interpreter of human instructions for basic tasks. You are
working with a human to jointly perform a simple collaborative task. In this task
you are a robot working with a human to build a slot together model. For a given
statement determine if the statement is directed to the robot, is not a request or is
not an action. If it is a request or action directed to the robot, return the action
the robot should take as a python dictionary. The dictionary has one key: "action":
A list of the actions that the robot should take, taken from the actions list. For a
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given statement determine what actions the robot should take. Return only a single
object from the list of objects provided. Resume using the following instruction and
the objects in the provided image.

"instruction": 'Okay, now hand me the red part.'
"objects" = [FrontPiece, BackPiece, LegsFront, LegsBack, Head]
"actions" = [MOVERIGHT, MOVELEFT, MOVEUP, MOVEDOWN, MOVEFORWARD, MOVEBACKWARD,

TILTUP, TILTDOWN, ROTATELEFT, ROTATERIGHT, PICKUP, OPENHAND, CLOSEHAND, OTHER]

Because the information being sent to the model includes both the human instructions and an image

of the workspace, we arranged the camera to show only participants’ hands and arms. There are still

privacy implications in the transmission of (transcribed) human speech. However, since the task involves

only language about joining pieces of a toy, there is no reason for participants to provide sensitive

information, and experimenters were prepared to intervene in any case in which they did so. The overall

system evaluation included questions such as “I felt like the robot understood what I wanted,” but did

not include a separate assessment of the VLM’s performance.

From a social justice perspective, we identify two possible sources of risk. First, the model is receiving

images that include participants’ hands and arms, and skin tone may affect model behavior [8, 58, 59].

Participant instructions may also convey demographic information in a way that affects the system’s

performance [24, 50]. To minimize these risks, the prompts were designed to be task-oriented and focus

on the objects in the workspace. GPT was prompted to focus on the human instructions and not the

instructors. Transcribing speech to text may also reduce the impact of acoustic features such as accents.

Environmentally, although detailed figures are difficult to obtain, a conservative estimate is that

each of our GPT inferences is responsible for approximately 0.047 kilowatt-hours of electricity [68]. As

our study had 20 participants who issued an average of 16.3 instructions each, we estimate that the

electricity usage of our study was roughly 15.3 kWh. Our proposed deployment model is to evaluate

the type of instructions participants tend to use and transition to a smaller, local model tuned for those

specific use cases, reducing both environmental costs and privacy concerns.

Without the use of a vision and language model, this work—which does not focus primarily on

the development of an NLP interface—would have relied on simpler linguistic interactions, possibly

with the use of a fixed lexicon of commands, reducing the participants’ freedom to convey a variety of

requirements to the robot helper. It is intuitive to expect that users would have ended up using simpler

commands in this case; however, ablation studies were not performed.

Sample report on LLM usage in a hypothetical research project.

6 Next Steps
In this paper, we explored the “why?” and the “how?” of the ways researchers depend on and can

provide transparency about the uses of LLMs in robot architectures for five key user groups to whom

researchers owe an informative reporting responsibility: other researchers, engineers, decision

makers, lawyers/regulators, and end users. However, there are a number of related considerations

that must also be discussed to make clear the boundaries of our analysis.

6.1 Transparency for Additional Stakeholders
The need to be transparent does not only apply to the HRI research community. Frequently, the

ultimate goal of HRI research is to understand how to build robots that can be deployed in a variety

of situations in which they might supply assistance, provide work, or otherwise contribute to

meeting the needs of people. Successful deployments require pipelines of programmers, engineers,

manufacturers, marketers, and support personnel, among others. It is unrealistic to expect that

every person involved in such an endeavor will be fully informed about the technical underpinnings
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of a developed system. However, the goal is that every person involved will understand the shape of

the technological solution and the risks that may be involved. As such, it becomes necessary

to identify what information should be provided to whom, and what information may be expected

to be passed through to other stakeholders to meet their own information needs. As an example,

sales personnel need to understand enough about how LLM-based systems work and what the

associated risks are that they can convey this information to potential customers.

Even before deployment, some of the same requirements apply to smaller-scale commercial

efforts; for example, a startup trying to develop a robot system for hospital use should be aware

of, sensitive to, and transparent about questions of privacy and information flow. At the opposite

end of the spectrum, large companies that are responsible for developing, training, and publicizing

very large models should be aware of the potential uses discussed in this article, and should make

every effort to be as transparent as possible for the sake of avoiding problems such as test data

contamination [4, 60].

6.2 Beyond Transparency
Despite the importance of transparency, it is equally critical to note the limitations of (and ethical

inculpability provided by) simply providing information about a system. In practice, technical

informationmay be difficult to understand, while excessive informationmay be impossible to absorb

usefully [90]. At best, poorly presented informationmay not allow users to provide informed consent

to the use of LLMs [28]; at worst, such documentation may be used as a form of “transparency-

washing,” in which technology providers use tools such as end-user license agreements primarily

to exculpate themselves of responsibility for user understanding [31]. Designers of robotic systems

(LLM-enabled or not) must take advantage of best practices in current digital consent
research to ensure that key information is communicated effectively. The communication tools

described in this article are intended as a starting point towards this practice.

6.3 The Need for Robotics and AI Literacy Efforts
This need to move beyond transparency highlights the information needs of stakeholders like end

users, decision makers, and law and policy experts. Not only do these stakeholders need “reporting”

from roboticists before they make decisions as to when and how to regulate, purchase, and use

LLM-enabled robots, but they moreover need a solid base of knowledge about the nature of these

robots, and the broad space of opportunities and risks they present. This broad base of knowledge

might thus be best enabled not only through “reporting” as traditionally construed, but also through

population-level education and tech literacy efforts.
Efforts like AI4K12 [108] (see also [94, 114]) have emphasized the importance of integrating

awareness of ethical risks into K-12 AI education; Duke’s Cultural Competence in Computing

(3C) program trains educators in how to develop coursework related to issues of identity and

computing [25]; Ko and colleagues’ textbook on Critically Conscious Computing seeks to center

societal and ethical issues in the course of secondary computing education [51]; and the AAAS’s

Project 2061 [72] has presented guidelines for technology literacy efforts, which have been taken

up by HRI researchers like Mott and Williams [77]. Our analysis in this paper presents not only a

set of guidelines that HRI researchers should follow, but also a call to action to work with educators

and education researchers to develop and disseminate these types of curricula.

An interesting extension of the concept of general education that came from our workshop was

the idea of licensure for LLMs and robotics, in which practitioners (researchers and/or engineers)

would receive formal training and licensing in these systems. Such licensing might take two forms:

(1) voluntary certifications, which could serve to demonstrate expertise in the uses and risks of

LLM-backed robots; and (2) professional licensing, in which such expertise would be considered a
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professional expectation. Licensing has the advantages of incorporating the legal system to hold

practitioners accountable and provide more transparency, and could build trust in an organization

dedicated to researching and using such systems. However, it also has the challenges of requiring

both time and effort, making it disproportionately harder for small businesses and individuals to

get involved or gain accreditation.

6.4 Expanding Reporting Guidelines for Diverse Robot Types and Human Populations
In this paper, we proposed foundational reporting guidelines for the general use of LLMs in
HRI research. While the guidelines presented are broadly applicable, we acknowledge that HRI

encompasses a wide range of robotic applications, each with unique ethical, safety, and operational

considerations. As such, this paper serves as a starting point rather than a comprehensive framework

addressing every potential use case.

For example, different robot types (e.g., anthropomorphic vs. non-anthropomorphic robots) will

likely require tailored approaches to reporting and ethical considerations. Moreover, the diversity

of human populations interacting with robots further highlights the need for specialized reporting

frameworks; for example, children, older adults, and individuals with special needs may have

distinct vulnerabilities that necessitate careful consideration.

We propose that future research expand upon the foundational guidelines outlined in this paper

to explore these specific contexts in greater detail. Investigating how reporting requirements should

vary based on different robot types (e.g., humanoids vs. non-humanoids) and different human

populations (e.g., children, older adults, or people with special needs) is a critical next step. By

doing so, the HRI community can ensure that the ethical, safety, and operational needs of diverse

applications are adequately addressed.

7 Conclusion & Reporting Guidelines
As seen across this paper, there are a wide array of stakeholders who deserve targeted communica-

tion about the use of LLMs in robot architectures. Each of these stakeholder groups has their own

motivations for such reporting, their own reporting needs, and their own ideal forms of reporting.

However, we wish to end this paper by providing, as a primary takeaway, a succinct summary of

the most important information that HRI researchers using LLMs should report to other researchers

in the context of their scientific papers.

As a first step towards meeting the broad range of reporting guidelines described across this

paper, we recommend that HRI researchers, at minimum, report, in research papers that leverage

LLMs as part of larger robot architectures, the answers to the six questions listed in Section 5,

which we repeat here for clarity:

(1) What model are you using, and what version of that model?

(2) Why are you using an LLM, and why that particular model?

(3) How is the LLM component evaluated? Is there a separate subsystem evaluation of perfor-

mance, or is it part of the evaluation of the overall system?

(4) Are you using the LLM as a Scarecrow (i.e., as a “brainless” module in which the LLM

provides a stopgap solution rather than a theoretically principled, empirically justified, and

safe solution), or are you advocating for its use as part of a deployable solution?

(5) What role is the LLM serving in the architecture, and how is it integrated into that architec-

ture?

(6) What are the ethical implications stemming from your choice to use an LLM, and from the

specific way in which you are using that LLM? In particular, those using LLMs should clearly

acknowledge the environmental and sociological impacts, the privacy and reliability risks,
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and the ways those risks specifically manifest and are accentuated or ameliorated within the

research context being explored.

By making this minimal set of information available to other HRI researchers, we can start

creating a culture of appropriate and mutual transparency toward the range of stakeholders to

whom the field of HRI owes a reporting burden.
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