Journal Pre-proof

Chronic early-life obesity linked to childhood impulsivity predicts long-term psychosis trajectory through dose-dependent cerebellar dysmaturation in 22q11.2 Deletion Syndrome.

Corrado Sandini, M.D., Ph.D, Natacha Reich, MSc, Farnaz Delavari, M.D., Lara Pajic, M.D., Andrea Escelsior, M.D, Ph.D, Silas Forrer, MSc, Andrea Imparato, MSc, Nada Kojovic, PhD, Caren Latreche, MSc, Valeria Parlatini, M.D., Ph.D, Samuele Cortese, M.D., Ph.D, Maude Schneider, PhD, Stephan Eliez, M.D.

PII: S2451-9022(25)00262-9

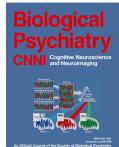
DOI: https://doi.org/10.1016/j.bpsc.2025.08.014

Reference: BPSC 1481

To appear in: Biological Psychiatry: Cognitive Neuroscience and

Neuroimaging

Received Date: 23 May 2025


Revised Date: 14 August 2025

Accepted Date: 19 August 2025

Please cite this article as: Sandini C., Reich N., Delavari F., Pajic L., Escelsior A., Forrer S., Imparato A., Kojovic N., Latreche C., Parlatini V., Cortese S., Schneider M. & Eliez S., Chronic early-life obesity linked to childhood impulsivity predicts long-term psychosis trajectory through dose-dependent cerebellar dysmaturation in 22q11.2 Deletion Syndrome., *Biological Psychiatry: Cognitive Neuroscience and Neuroimaging* (2025), doi: https://doi.org/10.1016/j.bpsc.2025.08.014.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier Inc on behalf of Society of Biological Psychiatry.

34 35

37 38 39

36

41 42 43

40

45 46

44

47 48

49 50 51

52

Title: Chronic early-life obesity linked to childhood impulsivity predicts long-term psychosis trajectory through dose-dependent cerebellar dysmaturation in 22q11.2 Deletion Syndrome.

Running title: Childhood impulsivity, obesity and psychosis risk

Corrado Sandini M.D., Ph.D1*, Natacha Reich MSc1*, Farnaz Delavari M.D.1, Lara Pajic M.D.1, Andrea Escelsior M.D, Ph.D ^{3,4}, Silas Forrer MSc^{1,2}, Andrea Imparato MSc¹, Nada Kojovic PhD⁵, Caren Latreche MSc¹, Valeria Parlatini M.D., Ph.D ^{6,7,8,9}, Samuele Cortese M.D., Ph.D ^{6,7,10,11,12}, Maude Schneider PhD¹³, Stephan Eliez M.D.1,14

Corresponding author: Corrado Sandini, Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Campus Biotech, Chemin des Mines 9, 1202 Geneva, Switzerland

*Shared First Author

Keywords: Schizophrenia; Cerebellum; BMI; Obesity; ADHD; Inflammation

Word Count: Abstract: 249, Main Text: 4443, 1 Table, 4 Figures

¹ Developmental Imaging and Psychopathology Laboratory, University of Geneva School of medicine, Geneva, Switzerland

² Medical Image Processing Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, **Switzerland**

³IRCCS Ospedale Policlinico San Martino, Genoa, Italy

⁴Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa

⁵Autism Brain and Behavior (ABB) Lab, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland

⁶Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, SO17 1BJ, United Kingdom.

⁷ Solent NHS Trust, Southampton, UK.

⁸ Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, United Kingdom

⁹Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, United Kingdom.

¹⁰Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK.

¹¹ Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA.

¹² DiMePRe-J-Department of Precision and Regenerative Medicine-Jonic Area, University "Aldo Moro", Bari, Italy

¹³Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland

¹⁴ Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland

Journal Pre-proof

kunning Heau: Unitanooa impuisivity, obesity and psychosis risk

Abstract

Background: Recent epidemiological evidence links early-life obesity and metabolic dysregulation to adult psychosis vulnerability, though a causal relationship remains unclear. Establishing causality in highly heritable psychotic disorders requires: 1) demonstrating that early-life metabolic factors mediate between genetic vulnerability and psychosis trajectory, 2) dissecting mechanisms leading to early-life obesity in genetically vulnerable individuals, and 3) clarifying downstream neurodevelopmental pathways linking early-life obesity to psychosis symptoms.

Methods: Here we investigated bidirectional pathways linking behavioral, BMI, and neurodevelopment trajectories in a unique longitudinal cohort of 184 individuals at high genetic risk for psychosis, due to 22q11.2 Deletion Syndrome (22q11DS), and 182 neurotypical controls, followed-up since childhood. We combined repeated BMI measurements with clinical/neurocognitive phenotyping and neuroimaging. We investigated the relationship between BMI trajectories with risk of psychosis and tested whether altered cortical or cerebellar development could underlie this association.

Results: Childhood behavioral impulsivity predicted early and progressive deviations in BMI trajectories, mediating the effects of 22q11DS vulnerability to early-life obesity. Chronic BMI-increases manifesting during childhood predicted the subsequent emergence of psychosis during late-adolescence/early-adulthood, mediating the effects of behavioral impulsivity. A dose effect relationship linked duration of increased BMI-status to worsening of motor and cognitive disorganization, a key schizophrenia symptom domain, which was mediated by progressive gray matter volume reductions in posterior-inferior cerebellum.

Conclusions: These findings suggest that metabolic dysregulation associated with obesity may link childhood behavioral impulsivity to psychosis vulnerability in 22q11DS, by influencing cerebellar maturation. These findings might support preventive interventions targeting early-life metabolic trajectories in individuals at risk of psychosis.

Introduction

Obesity is consistently associated with various forms of psychopathology, including neurodevelopmental, mood, and psychotic disorders[1]. The causal directionality and mechanisms underlying these associations remain largely unclear. Indeed, metabolic dysregulation associated with obesity could contribute to the emergence of psychopathology, or be the result of altered caloric intake and expenditure in the context of psychiatric disorders[1, 2], or their treatment[3]. To clarify the direction of these associations, A key longitudinal study by Perry et al. followed over 14,000 individuals from birth to age 24, demonstrating that progressive increases in BMI during childhood were linked to elevated inflammatory markers and fasting insulin levels that persisted throughout adolescence[4]. These metabolic changes, in turn, led to a sixfold increase in the risk of developing psychosis in early adulthood [4]. These findings support a causal link between childhood obesity and later psychosis risk, likely mediated by prolonged immune-metabolic dysregulation, which if confirmed would have major clinical implications, as early-life metabolic trajectories can be effectively targeted through a variety of therapeutic and preventive public-health strategies[5]. Nevertheless, at least 3 key steps in this proposed causal pathway remain insufficiently clear[2] [4].

Firstly, although psychosis is highly heritable[6], it is not yet established whether early-life obesity serves as a mediator between genetic vulnerability and the clinical trajectory of psychosis [2]. The 22q11.2 Deletion Syndrome (22q11DS) offers a powerful model to investigate this question [7]. The genetic alterations associated with 22q11DS represent the single strongest genetic risk factor for psychosis, with an adult prevalence of psychotic disorders of 30-40%[8]. In parallel, 22q11DS is also linked to atypical early-life BMI trajectories leading to increased risk of adult obesity [9]. Currently, the association between behavioral and metabolic phenotypes of 22q11DS remains largely unclear. In this study, we investigated whether atypical BMI trajectories contribute to psychosis vulnerability in a well-characterized cohort of 184 individuals with 22q11DS and 182 healthy controls, assessed longitudinally from childhood to adulthood, comprising a total of 756 visits.

Second, the mechanisms leading to early-life obesity in genetically vulnerable individuals such as those with 22q11DS remain insufficiently understood [2]. Although the pathophysiology of pediatric obesity is complex and multifactorial [10], emerging clinical and genetic evidence[11, 12] increasingly implicate the role behavioral factors [13]. In particular, the hyperactivity/impulsivity dimensions of Attention-Deficit/Hyperactivity Disorder (ADHD), is a highly replicated risk factor for early-life obesity[14], which is directly corrected by ADHD treatment[14, 15], suggesting a disease specific causal mechanism[16]. It was proposed that behavioral impulsivity may foster obesity-predisposing eating patterns, contributing to deviant early-life BMI trajectories [17]. Notably, ADHD is present in about 30% of children with 22q11DS [8]. Here, we explored whether ADHD-related impulsivity predicts aberrant BMI trajectories in 22q11DS, and whether it mediates the impact of genetic risk for early-life obesity. Given accumulating evidence linking childhood ADHD to later psychosis risk in both the general population [18, 19] and in 22q11DS[20, 21], we further examined whether atypical BMI trajectories mediated the developmental link between childhood impulsivity and subsequent psychosis trajectory.

Finally, it remains unknown whether early-life obesity exerts a direct, dose-dependent effect on downstream neurodevelopmental pathways implicated in psychosis onset [2]. Of note, bot obesity and psychosis are associated with significant reductions of Gray-Matter-Volume (GMV) which, while not identical in their anatomical distribution, overlap in affecting Cerebellar-GMV[22, 23]. Recent data suggest that cerebellar GMV loss observed in first-episode psychosis may be driven, at least in part, by immune dysregulation associated with obesity [24], but the longitudinal studies required to dissect such 3-way interactions have not yet been conducted. In this study, we modeled cerebellar and cortical GMV trajectories from childhood to adulthood in individuals with 22q11DS, in relation to early-life BMI and psychiatric outcomes. We hypothesized that prolonged early-childhood obesity would exert a duration-dependent effect on gray-matter volume reductions, in particularly impacting the cerebellum, that would be specifically implicated in the emergence of disorganization symptoms of psychosis. Overall, we hypothesized the long-term multimodal phenotyping of individuals with 22q11DS would provide a unique view of developmental mechanisms linking ADHD-related behavioral impulsivity, to early-life obesity and subsequent psychosis vulnerability.

Methods

152 153

Participants:

154 155

Healthy Controls (HC) (M/F=92:96), were recruited as part of the Geneva-22q11DS-Longitudinal-Study[25] and 156 157 158

159

160

161 162

167 168

169 170

175 176 177

178 179

193 194 195

196

In the present study, 372 participants, encompassing 184 participants with 22q11DS (M/F=93:91) and 188

followed-up prospectively for a total of 765 longitudinal assessments conducted in Geneva (433 in 22q11DS and 333 in HC). Table 1 reports participants' characteristics. Most (146/198) HC were recruited among unaffected siblings of 22q11DS participants. Clinical and neurocognitive measures

Psychiatric diagnoses were assessed according to the DSM-5 (APA, 2013), with a combination of ageadapted semi-structured interviews detailed in the supplementary material. To further characterize clinical trajectories, we combined the Structured Interview for Prodromal Syndromes (SIPS)[26], the Brief Psychiatric Rating Scale (BPRS)[27], and the Child/Adult Behavior Checklist (CBCL/ABCL)[28]. Neurocognitive impulsivity was measured with the Conners' Continuous Performance Test 2nd edition (CPT2), considering age-normed T-Scores of Hit-Reaction-Time and of Commission/Omission errors [29]. Intelligent quotient (IQ) was measured using the Wechsler Intelligence Scale for Children (WISC-IV or V)[30] and Adults (WAIS-III or IV)[31].

Structural MRI Image Acquisition and Processing

T1-weighted images were acquired using Siemens Trio or Prisma 3T scanners (see Supplementary Material for details). Cerebellar segmentation followed the CERES method, implemented via the Volbrain MRI volumetry platform[32]. Gray Matter Volume (GMV) measures were extracted for the entire cerebellum and 12 lobules, averaged across hemispheres. Cortical segmentation was performed using Freesurfer (Version 7.4.1), with GMV extracted from 34 cortical regions [33] and averaged across hemispheres. High-quality cortical and cerebellar segmentation was available for 139 individuals with 22q11DS (254 assessments) and 135 Healthy Controls (187 assessments).

Statistical Analyses

Statistical analyses were conducted using MATLAB (version 2021a). To compare body mass index (BMI) trajectories between individuals with 22q11DS and healthy controls (HCs), we employed mixed-model linear implemented regression (MMLR), using a previously validated toolbox (https://github.com/danizoeller/myMixedModelsTrajectories). Statistical significance was established with likelihood ratio test with corresponding chi2 statistics reported in the main text while standardized beta coefficient are reported in the supplementary material. In this model, BMI was expressed as a function of age, diagnosis, and their interaction, incorporating gender-specific diagnostic groups and a subject-specific random intercept: Age*22q11DS $Male/Female + Age^2*22q11DS$ $Male/Female + Age^3*22q11DS$ Male/Female + (1/Subject). We repeated this analysis in a subset of antipsychotic-naïve participants.

To investigate the clinical correlates of BMI, individuals with 22q11DS were categorized based on their BMI trajectories using a previously published classification pipeline [25]. We first generated average BMI trajectories for males and females. Each individual was then classified as having a high or low baseline BMI depending on whether their initial BMI was above or below their age- and sex-adjusted group trajectory. This approach was also applied to determine rate-of-change in BMI over time, considering only assessments during which participants were antipsychotic-naïve. This two-step classification yielded four trajectory-based subgroups: High- vs. Low-Baseline-BMI and Increasing- vs. Decreasing-BMI-Trajectory (Table-1).

We used MMLR to compare clinical symptom trajectories (19 SIPS items, 25 BPRS items, 10 CBCL/ABCL scales, 4 IQ indices, and 4 CPT scores) across BMI-defined 22q11DS subgroups, with the following structure: Clinical–Score~Age*BMI_Group_Male/Female+(1/Subject). False Discovery Rate (FDR) correction was applied within each psychometric scale[34]. A similar MMLR framework was employed to analyze cortical and cerebellar grey matter volume (GMV) trajectories, comparing both 22q11DS vs. HCs and 22q11DS BMI subgroups, accounting for scan type, sex, use of psychotropic medication, and intracranial volume.

To examine the lifetime emergence of major psychiatric disorders—including ADHD (inattentive and impulsive subtypes), depressive and anxiety disorders, and psychotic disorders—as well as major psychotropic medication classes (antipsychotics, psychostimulants, and SSRIs), we conducted Kaplan–Meier survival analyses, modelling diagnostic onset and medication initiation over age across 22q11DS BMI subgroups.

A series of second-level mediation analyses were conducted to examine how clinical and neurodevelopmental variables interact with BMI status in 22q11DS. All models were implemented in MATLAB using a linear mixed-effects framework with bootstrap inference (See Supplementary Materials for details).

The first model tested whether behavioral impulsivity mediated the association between 22q11DS diagnosis and BMI trajectory. Participants (22q11DS and HCs) were categorized into High or Low Externalizing-Problems groups based on lifetime CBCL/ABCL T-scores (>55). We compared BMI trajectories across these subgroups and tested whether the effects diagnostic group (22q11DS vs. HC), on BMI trajectory were mediated by high-vs-low Externalizing-Problems diagnosis. To explore potential causal influences, we further stratified the High-Externalizing 22q11DS group by lifetime exposure to psychostimulant treatment for ADHD.

The second model investigated whether BMI status mediated the effect of externalizing symptoms on subsequent clinical progression in 22q11DS. Externalizing subgroup over age served as the predictor, BMI group as the mediator, and symptom trajectories (SIPS or BPRS) as the outcomes.

A third model examined whether time spent in a high-BMI state more strongly predicted symptom progression and regional GMV changes than age alone, testing a potential dose—response effect. Here, baseline BMI group was the predictor, time since baseline was the mediator, and outcomes included SIPS/BPRS scores and regional GVM. These analyses were restricted to brain regions and clinical measures that showed significant BMI-by-age interactions in the first-level models.

Finally, we assessed whether cerebellar GMV changes mediated the relationship between BMI status and psychosis symptom trajectories. A multivariate Partial Least Squares (PLS) correlation analysis (https://github.com/valkebets/myPLS-1)[35, 36], identified cerebellar GMV patterns associated with SIPS symptom profiles, using 18 symptom items and GMV values from 12 cerebellar subfields. Imaging data were corrected for sex, scanner, medication use, intracranial volume, and subject-level random effects. Associations between multivariate Cerebellar-GMV and SIPS scores derived from the PLS analysis were modeled using MMLR: \$Cerebellum_GMV_Score~SIPS_Symptom_Score+(1/Subject)\$. We also examined whether this relationship was moderated by Baseline-BMI group status including quadratic terms to account for potential non-linear effects: \$Cerebellum_GMV_Score~SIPS_Symptom_Score*Baseline_BMI+(SIPS_Symptom_Score)^2*Baseline_BMI+(1/Subject)\$. A final mediation model within the High-BMI subgroup tested whether cerebellar GMV mediated the relationship between age and progressive symptom intensification, with age as predictor, GMV score as mediator, and SIPS symptom severity as the outcome.

Results

Behavioral impulsivity predicts divergent BMI trajectories in 22q11DS

In both controls and individuals with 22q11DS, BMI followed a cubic trajectory, increasing during adolescence and stabilizing in adulthood (Figure-1-Panel-1A). However, individuals with 22q11DS exhibited steeper BMI increase from late childhood (Chi²-Age-Interaction=27.66,p<0.001), resulting in higher BMI by early adulthood (Chi²-Group-Effect =35.18,p<0.001), BMI increases preceded antipsychotic medication use and remained significant even in antipsychotic-naïve assessments (Figure-1-Panel-1B). Restricting BMI trajectory comparisons to a subsample **HCs** vielded similar (Supplementary-Figure-12). unrelated results BMI-Trajectory-Subgroups within the 22q11DS sample had similar baseline BMI but diverged in longitudinal trajectories (Chi²-Age-Interaction=77.25,p<0.001), with the Female-Increasing-BMI-Subgroup showing the highest adult BMI (Chi²-Group-Effect=86.96,p<0.001) (Figure-1-Panel-2B). Baseline-BMI-Subgroups differed in BMI scores from childhood (Chi²-Group-Effect=100.04,p<0.001), with the Male-High-Baseline-BMI-Subgroup showing the most pronounced divergence over time (Chi²-Age-Interaction=18.18,p<0.001) (Figure-1-Panel-2A).

Mean family income did not differ across BMI subgroups (Table-1). Family income and lifetime prevalence of hypothyroidism/diabetes did not differ, though hypoparathyroidism was elevated in High-Baseline-BMI individuals (Chi²=5.1, p=0.02; Table-1).

ADHD with combined impulsivity (\geq 3 DSM-5 Impulsivity/Hyperactivity symptoms) was more frequent the High-Baseline-BMI (Chi²-Group-Effect=5.37,p<0.02) and Increasing-BMI-Subgroups (Chi²-Group-Effect=8.39,p=0.0038), particularly in Male-Increasing-BMI (55%) and Female-High-Baseline-BMI (47%) subgroups, while lowest in Female-Low-Baseline-BMI (10%) and Female-Decreasing-BMI (8.9%) subgroups (Figure-2-Panels-1A/2A). Purely inattentive ADHD rates were similar across BMI subgroups (Supplementary-Figures-3/4). DSM-5 Impulsivity/Hyperactivity symptoms were also significantly elevated in the High-Baseline-BMI (Chi²-Group-Effect=49.2,p<0.0001, Chi²-Age-Interaction=6.07,p<0.0001) and Increasing-BMI-Subgroups (Chi²-Group-Effect=9.6,p=0.022, Chi²-Age-Interaction=8.4,p=0.015), whereas DSM-5 Inattention symptoms did not differ (Figure-2-Panels-1B/2B, Supplementary-Material).

Parental ratings in both High-Baseline and Increasing-BMI group revealed higher CBCL-Externalizing-Problems (Chi²-Group-Baseline-BMI=6.19,p=0.012, Chi²-Group-BMI-Trajectory=6.07,p=0.013) and CBCL-Aggressiveness (Chi²-Group-Baseline-BMI=6.84,p=0.0078, Chi²-Group-BMI-Trajectory=8.54,p=0.0034) scores (Figure-2-Panels-2C/D/3C/D and Supplementary-Figures-7).

Neurocognitive impulsivity in childhood was evident in High-Baseline-BMI and Increasing-BMI-Subgroups, with increased CPT-Commission/Omission-Errors (Chi²-Group-Baseline-BMI=26.5,p<0.0001, Chi²-Age-Interaction-Baseline-BMI=17.8,p<0.0001; Chi²-Group-BMI-Trajectory=10.6,p=0.013, Chi²-Age-Interaction-BMI-Trajectory=5.82,p=0.054), and lower Hit-Reaction-Time (Chi²-Group-Baseline-BMI=18.8,p=0.0006, Chi²-Age-Interaction-Baseline-BMI=12.1,p=0.0046; Chi²-Group-BMI-Trajectory=11.1,p=0.011, Chi²-Age-Interaction-BMI-Trajectory=8.25,p=0.01) (Figure-2-Panels-1E/1F and 2E/6F).

The High-Baseline-BMI subgroup also presented worsening attentional difficulties, reflected in progressively increasing CPT-Omission-Errors-T-Scores (Chi²-Group-Baseline-BMI=30,p<0.0001, Chi²-Age-Interaction-Baseline-BMI=18.3,p=0.0046) and Hit-Reaction-Time-T-Scores over time Chi²-Group-Baseline-BMI=18.8,p<0.0001, Chi²-Age-Interaction-Baseline-BMI=12.1,p<0.0001, along with a marginal reduction in Performance-IQ (Chi²-Group-Baseline-BMI=3.92,p=0.047) driven by reduced Processing-Speed (Chi²-Group-Baseline-BMI=6.27,p=0.012) (Supplementary-Figure-8).

We performed mediation analysis to explore the contribution of behavioral impulsivity to differences in BMI trajectories observed between 22q11DS and HCs. Clinically significant CBCL/ABCL Externalizing Problems, were significantly more prevalent in 22q11DS (115/65) than in Healthy-Controls (48/130) (Chi²=49.2,p=2.32⁻¹²) (Figure-2-Panel-3A). The High-Externalizing-22q11DS group had markedly increasing BMI compared to both 22q11DS-Low-Externalizing (Chi²-Group-Effect=30.04,p<0.0001, Chi²-Age-Interaction-Effect=20.26,p=0.0001) and to Healthy-Controls (Chi²-Group-Effect=64.1 ,p<0.0001, Chi²-Age-Interaction-Effect=47,p<0.0001), while 22q11DS-Low-Externalizing BMI trajectories were not significantly different from Healthy-Controls (Chi²-Group-Effect=8.05,p=0.045, Chi²-Age-Interaction-Effect=8.1,p=0.09) (Figure-2-Panel-3B).

Mediation analysis confirmed Externalizing Problems fully mediated the effect of 22q11DS diagnosis on BMI differences (indirect effect: β =0.05, 95%-CI=[0.009–0.11],p=0.012) (Figure-2-Panel-3C). Psychostimulant-treated individuals within the High-Externalizing group (n=37/100) had more typical BMI patterns, with delayed adiposity rebound compared to untreated peers (Chi²-Group-Effect=10.35,p=0.035, Chi²-Age-Interaction-Effect=9.99,p=0.019) (Figure-2-Panel-4). Results suggest that in 22q11DS genetic predisposition to early and progressive BMI increases, is mediated by genetic vulnerability to behavioral impulsivity, and can be partially rescued by psychostimulant ADHD treatment.

Chronic High-BMI status predicts psychosis vulnerability mediating genetic vulnerability.

The Increasing-BMI-Subgroup had significantly higher rates of Depressive Disorders (DD) (p=0.01), especially among adolescent females (30%), versus 13% in adult males with decreasing BMI (Chi²=8.13,p=0.043) (Figure-3-Panel-1A). The Increasing-BMI-Subgroup exhibited age-related worsening of depressive symptoms, including SIPS-Dysphoric-Mood (Chi²-Group=12.0,p=0.0016, Chi²-Age-Interaction=4.27,p=0.038), BPRS-Depression (Chi²-Group=16.3,p=0.0003, Chi²-Age-Interaction=7.6,p=0.005), BPRS-Guilt (Chi²-Group=16.3,p=0.0003)

Group=13.4,=0.0013, Chi²-Age-Interaction=3.6,p=0.057), particularly in females (Figure-3-Panels-1B-D). Rates of Anxiety or Psychotic Disorders did not differ across BMI-Trajectory-Subgroups (Supplementary-Figure-4).

Although rates of Depressive or Anxiety diagnoses did not differ across Baseline-BMI subgroups, parentally reported CBCL-Internalizing-Problems were higher in the High-Baseline-BMI group (Supplementary-Figure-3/7). The High-Baseline-BMI-Subgroup had an increased 18% lifetime risk of psychotic disorder (PD) diagnosis, compared to 4% in the Low-Baseline-BMI-Subgroup (p=0.007, Chi²=7.09, HR=3.79, CI=1.37-10.5). Within the High-Baseline-BMI-Subgroup, PD risk was highest in males (25%) versus females (10%) (Figure-3-Panel-2A). Despite being antipsychotic-naïve at baseline, the High-Baseline-BMI-Subgroup had a greater likelihood of receiving antipsychotic medication during follow-up up (P-Group-Effect=0.0005, P-Age-Interaction=0.0046), particularly in males (Chi² 8.9, p-value 0.01) (Supplementary-Figure-2).

The High-Baseline-BMI-Subgroup also showed a progressive worsening of motor and thought $(Chi^2-Group=12,p=0.0025,$ Chi²-Agedisorganization including **BPRS-Motor-Retardation** (Chi²-Group=12.8,p=0.0016, Chi²-Age-Interaction=11.5,p=0.0007), SIPS-Motor-Disturbances (Chi²-Group=17.9,p<0.0001, Interaction=8.9,p=0.0028) SIPS-Bizarre-Thinking Chi²-Ageand Interaction=12.5,p=0.0004) (Figure-3-Panels-2B-C-Left). Additional disorganization symptoms, including SIPS-Odd-Behavior (Chi²-Group=11.9,p=0.0026, Chi²-Age-Interaction=3,p=0.083), SIPS/BPRS-Self-Neglect, and SIPS-Disorganized-Communication, were elevated but showed no significant difference in age-related developmental trajectory (Supplementary-Table-1 and Supplementary-Figures-5/6). Interestingly, trajectories of several disorganization symptoms, including SIPS-Odd-Behavior (Chi²-Group=19.5,p<0.0001, Chi²-Time-from-Baseline-Interaction=9.9,p=0.0017) diverged significantly across Baseline-BMI-Subgroups, when modeled according to time from baseline assessment (Figure-3-Panels-2D-Middle, Supplementary-Figure-5). Indeed, formal mediation analysis confirmed that duration of High-BMI status mediated the effects of age, on progressive worsening of BPRS-Motor-Retardation, SIPS-Motor-Disturbances and SIPS-Bizarre-Thinking (Figure-3-Panels-2D-Right and Supplementary-Table-3). These results would suggest a dose-dependent relationship linking prolonged high-BMI to progressive worsening of disorganization symptoms ultimately associated with full-blown psychotic disorder diagnosis.

Finally, we investigated the interplay between childhood behavioral impulsivity High-Baseline-BMI status and psychosis vulnerability. The High-Externalizing-Problems subgroup presented increased vulnerability to lifetime full-blow psychotic disorders diagnosis ($Ch^2=5.42$,p=0.02), which was however significantly mediated the effects of High-Baseline-BMI status, (indirect effect: $\beta=0.05$, 95%-CI=[0.007–0.11],p=0.02). Indeed High-Baseline-BMI status mediated the effects of Externalizing-Problems on progressive worsening of SIPS-Bizarre-Thinking, SIPS-Motor-Disturbances and BPRS-Motor-Retardation, although Externalizing-Problems also contributed an additional effect on overall psychotic disorder vulnerability and SIPS-Bizarre-Thinking trajectory when accounting for High-BMI status (Figure-3-Panels-3 and Supplementary-Table-3).

333334335

336

337

338

339

340

341

342

343

344

345

346

347

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

Cerebellar maturation links prolonged High-BMI status to psychosis vulnerability

Compared to HCs, individuals with 22q11DS exhibited reduced cerebellar GMV, though age-related trajectories were not significantly different. Cortical GMV was also broadly reduced in 22q11DS, except in the orbitofrontal, insular, and precentral gyri, which showed increased volume. Age-related cortical GMV changes did not differ significantly after multiple comparisons correction (Supplementary-Tables-5-and-9 and Supplementary-Figure-9-and-11). BMI-Trajectory subgroups showed similar developmental trajectories for both cortical and cerebellar GMV, and no significant cortical differences emerged across Baseline-BMI groups. (Supplementary-Tables-7-and-11 and Supplementary-Figure-9-10). However, the High-Baseline-BMI subgroup showed significant age-related reductions in posterior-inferior cerebellar regions, notably lobules VI and Crus I (Figure-3-Panel-4A), compared to both the Low-Baseline-BMI group (Crus-1-GMV: Chi²-Group=10.9,p=0.01, Chi²-Age-Interaction=10.2,p=0.01) and to HCs (Chi²-Group=27.3,p<0.0001, Chi²-Age-Interaction=12.5,p=0.0004). In contrast, the Low-Baseline-BMI group did not differ significantly from HCs in terms of age-related posterior-inferior GMV trajectories (Crus-1-GMV: Chi²-Group=23.8,p<0.0001, Chi²-Age-Interaction=1.3,p=0.51).

kunning Head: Unitanood impulsivity, opesity and psychosis risk

Differences in cerebellar GMV became more pronounced when analyzed as a function of time since baseline. Progressive reductions in total cerebellar GMV in the High-BMI group were driven by posterior-inferior lobules, particularly Crus I (Crus-1-GMV: Chi²-Group=11.8,p=0.008, Chi²-Age-Interaction=11.6,p=0.003) (Figure-3-Panel-4B). Mediation analysis confirmed that duration of high-BMI status mediated age-related GMV decline in lobules VI (indirect effect: β =-0.15, 95%-CI=[-0.29–0.013],p=0.034) and Crus-1 (indirect effect: β =-0.14, 95%-CI=[-0.27–0.07],p=0.04) (Figure-3-Panel-4C and Supplementary-Table-3).

To test whether cerebellar GMV mediated the link between high BMI and psychosis symptoms, we performed a partial least squares (PLS) analysis, which identified a significant latent component (R=0.26, p=0.049) linking reduced posterior-inferior GMV to increased severity in a symptom cluster including Odd-Behavior, Motor-Disturbances, Occupational-Functioning, Avolition, Blunted-Affect and Impaired-Tolerance-to-Stress (Figure-3-Panel-5B). A robust negative association was found between Cerebellum-GMV and SIPS-Symptom scores (β =-0.20 [-0.32/-0.08], ρ =0.001) (Figure-3-Panel-5C).

The lobules most affected by prolonged high BMI—VI, Crus I, I, and XI—were also key contributors to the PLS pattern (Figure-3-Panel-5A). The cerebellum–symptom association was stronger in the High-Baseline-BMI group (β =-0.26, 95%-CI=[-0.46/-0.04],p=0.01) compared to the Low-Baseline-BMI subgroup (β =-0.13 95%-CI=[-0.32/0.0008],p=0.051), with a significant group interaction effect (P-Group=0.046, P-Group-Cerebellum-GMV-interaction=0.026) (Figure-3-Panel-5C). Finally, in the High-Baseline-BMI group, cerebellar GMV reductions mediated the relationship between age and worsening SIPS symptom scores (indirect effect: β =0.16, 95%-CI=[0.002–0.55],p=0.044). (Figure-3-Panel-5D). These findings support a dose–response relationship, whereby prolonged high BMI leads to progressive cerebellar GMV loss, especially in posterior-inferior regions, which in turn increases vulnerability to psychosis through worsening of disorganization and negative symptoms.

Discussion

We explored the developmental impact of atypical BMI trajectories on psychosis vulnerability in a large longitudinal cohort of individuals with 22q11DS. The behavioral and neurocognitive impulsivity dimension of ADHD during childhood was associated with subsequent chronic BMI increases, mediating the effects of 22q11DS genetic vulnerability to early-life obesity. Childhood chronic High-BMI status contributed to a progressive increase in psychosis vulnerability, mediating the link between childhood impulsivity and subsequent psychosis clinical trajectory. A dose-effect relationship linked duration of prolonged High-BMI status to progressive alterations in cerebellar morphology, which were related to the development of motor and disorganization symptoms of psychosis. These results identify a novel neurodevelopmental-metabolic pathway linking childhood inhibitory control to psychosis vulnerability through cerebellar dysmaturation, described schematically in Figure 4.

Behavioral impulsivity predicts atypical BMI trajectories mediating the effects of 22q11DS genetic vulnerability

Recent studies in the general population suggest a significant overlap in the genetic underpinnings of ADHD with both obesity[11] and psychosis[18, 37] but the pathophysiological mechanisms accounting for these associations remain largely unclear. Our results show for the first time that in 22q11DS genetic vulnerability to early-life obesity is linked to the presence of behavioral and neurocognitive impulsivity during childhood. Indeed, both early BMI-increases and progressive increases in BMI scores were associated with diagnoses of impulsive ADHD, higher childhood externalizing psychopathology and neurocognitive trajectories indicative of childhood impulsivity. Moreover, childhood externalizing psychopathology mediated the effects of 22q11DS genetic vulnerability to atypical BMI trajectories. Atypical BMI trajectories associated with behavioral impulsivity were furthermore partially normalized by psychostimulant ADHD treatment, supporting an underlying causal association.

While these results are novel in 22q11DS, they are in line with evidence in the general population indicating that impulsivity/hyperactivity dimension of ADHD strongly predicts the emergence of early-life obesity[15], that can

be rescued by ADHD treatment[14]. It has been proposed that the impulsivity dimension of ADHD may contribute to impulsive eating patterns[17], which might reflect overleaping alterations in cortico-striatal circuits underlying top-down inhibitory control of feeding and goal directed behavior[38]. In accordance with these findings, our results suggest that the effects of 22q11DS early-life obesity genetic predisposition are mediated by behavioral impulsivity and can be at least partially rescued by behavioral impulsivity ADHD treatment.

Chronic High-BMI status predicts psychosis vulnerability mediating the effects of behavioral impulsivity.

Recent epidemiological evidence linked early deviations in metabolic trajectories to subsequent psychosis vulnerability[4]. However, behavioral phenotyping was only performed at the end of longitudinal follow-up, limiting the ability to characterize behavioral precursors of metabolic dysregulation[4]. The unique 22q11DS model allowed us to characterize both the metabolic and clinical trajectories preceding the emergence of psychosis. Early deviations in childhood BMI trajectories preceded and predicted the subsequent transition from prodromal symptoms to full-blown psychotic disorders occurring during adolescence/early-adulthood, which was more strongly related to the duration of high-BMI status than other age-related factors. These findings strongly argue against reverse causal mechanisms and would rather suggest a dose effect-relationship linking duration of High-BMI status to subsequent risk of psychosis[2, 4].

Of note, behavioral impulsivity mediated the effects of 22q11DS genetic vulnerability to atypical BMI trajectories, suggesting that chronic high-BMI status may serve as a key mediator between early-life behavioral impulsivity and later psychosis vulnerability. Indeed, converging epidemiological evidence suggests that ADHD and Psychosis share common genetic vulnerability[18], with childhood ADHD diagnosis increasing risk of psychotic disorders emerging during adolescence/early-adulthood[14, 19]. 22q11DS contributes to increased genetic risk for both ADHD and psychosis,[8] and evidence indicates that the impulsivity dimension of ADHD is predictive of subsequent disorganization symptoms associated with psychosis[20, 21]. Consistent with these findings, we observed a significant association between behavioral impulsivity and later psychosis vulnerability in individuals with 22q11DS. Crucially, this association was significantly mediated by the influence of behavioral impulsivity on early BMI trajectories, as well as by the downstream impact of prolonged high-BMI status on psychosis risk. This suggests that interventions aimed at reducing the influence of behavioral impulsivity on early-life BMI development could potentially mitigate the downstream psychiatric effects of overlapping ADHD and psychosis genetic vulnerabilities in 22q11DS.

Progressive Cerebellar atrophy links chronic High-BMI status to psychosis vulnerability.

We investigated neurodevelopmental mechanisms linking chronic High-BMI status to psychosis vulnerability. Individuals with prolonged High-BMI showed significant reductions in posterior-inferior Cerebellar-GMV compared to both low-BMI 22q11DS individuals and healthy controls. These effects were specific to Cerebellar-GMV and were not observed for Cerebral-Cortical-GMV. Moreover, cerebellar GMV reductions were more strongly associated with High-BMI duration than age, suggesting a dose-dependent effect of prolonged obesity on cerebellar atrophy. These findings align with prior evidence identifying posterior-inferior cerebellar atrophy as a shared neural correlate of both psychosis[23] and obesity[22]. Emerging evidence further suggests that cerebellar alterations observed in first-episode psychosis patients, may stem from co-occurring metabolic [24] and immunological dysregulation[39]. Additionally, cerebellar dysfunction could underly key hallmarks of psychosis symptomatology, including impaired adaptation of predictive models of the world based on past experience[40], leading to disorganized thought and behavior[41].

To explore this, we tested whether posterior-inferior cerebellar atrophy contributed to worsening of disorganization symptoms associated with prolonged high BMI status. Multivariate PLS analysis detected a significant association between Cerebellar-GMV atrophy and psychosis severity impacting a specific cluster of disorganization, negative, and motor symptoms. Of note, both symptoms and cerebellar subfields that contributed to this association were influenced by prolonged High-BMI status. Moreover, the relationship between cerebellar GMV atrophy and symptom severity was also significantly stronger in the high-Baseline-BMI subgroup. This suggests a disease process

linked to prolonged high-BMI status contributing to progressive cerebellar atrophy and associated worsening of disorganization, negative and motor symptoms. Indeed, a final mediation analysis confirmed that, within the High-Baseline-BMI subgroup, cerebellar GMV atrophy significantly mediated the effect of increasing age on progressive symptom worsening. These findings would suggest that cerebellar vulnerability to the adverse effects of prolonged high-BMI status underlies progressive worsening of disorganization, motor, and negative symptoms, culminating in psychosis onset.

At present, the underlying mechanisms through which high-BMI status impacts neurodevelopment remain speculative. Still, converging evidence implicate metabolic and immunological dysregulation. Elevated proinflammatory markers are observed at all stages of psychosis vulnerability[2], and may directly disrupt adolescent synaptic pruning implicated in psychosis pathophysiology[42], thereby predicting later psychosis onset in at-risk individuals[4, 43]. While the origins of immunological dysregulation in psychosis remain unclear[2, 44], obesity is widely recognized as a major risk factor for the development of chronic low-grade inflammation[45]. Given that childhood obesity often persists into adolescence and adulthood[46], obese children may be chronically exposed to pro-inflammatory states throughout critical periods of adolescent brain development[4]. Epidemiological data support this model indicating that adolescent insulin resistance and sustained inflammation mediated the link between high childhood BMI and adult psychosis vulnerability. [4]. While our study lacked direct metabolic and inflammatory measures to test this hypothesis explicitly, a triadic association among obesity, immunological dysregulation, and psychosis has recently been observed in individuals with 22q11DS[47].

Our findings suggest that the cerebellum may be particularly sensitive to the effects of metabolic and immunological dysregulation linked to prolonged obesity. This is consistent with translational evidence indicating heightened immunological vulnerability of the cerebellar cortex due to increased blood-brain-barrier permeability relative to the cerebral cortex[48]. Of note, 22q11DS is itself associated with altered blood-brain-barrier permeability [49], which may further exacerbate cerebellar susceptibility to the harmful immunological consequences of chronic obesity. This could, in turn, contribute to the progressive emergence of motor, cognitive, and behavioral disorganization symptoms—hallmarks of psychotic disorders—in individuals with prolonged High-BMI-status.

Strengths and Limitations

A major strength of this study is its long-term, multimodal, longitudinal design, which uniquely captures the developmental trajectory linking genetic vulnerability in 22q11DS to metabolic dysregulation, ADHD, and psychosis from childhood into adulthood. However, several limitations should be considered.

First, we lacked biochemical data on metabolic and immune dysregulation, which, according to our model, may mediate the impact of BMI on clinical and neurodevelopmental outcomes. While prior findings support a three-way association between BMI, immune dysregulation, and psychosis in 22q11DS[47], further research is needed to clarify these mechanisms.

Secondly, while our results suggest that behavioral impulsivity mediates the effect of 22q11DS on atypical BMI trajectories, we lacked detailed data on additional contributing factors—such as endocrinological, dietary, or lifestyle variables—that may influence BMI development[50] or moderate its association with behavioral impulsivity. For instance, preliminary results suggest higher prevalence of hypoparathyroidism in High vs Low Baseline-BMI subgroups, which warrants further investigation. Gender also appears to play a moderating role, consistent with epidemiological evidence indicating that associations between early metabolic dysregulation and psychosis risk may be stronger in males and post-pubertal BMI increases more strongly associated with depression in females [4]. It remains unclear whether these patterns reflect intrinsic gender differences in psychopathology, including increased female vulnerability to post-pubertal depression [51] and male vulnerability to childhood impulsivity[52] and early-onset psychosis[53], or differential moderating effects of gender on BMI–psychopathology associations.

Third, while our mediation analyses support a developmental pathway involving behavioral impulsivity, BMI, cerebellar changes, and psychosis risk, they also point to unmeasured contributing factors. Notably, a residual direct effect of impulsivity on psychosis vulnerability persisted after accounting for BMI, suggesting that additional

neurodevelopmental mechanisms may be involved and which should be investigated by combining additional neuroimaging modalities.

Fourth, while 22q11DS provides a rare model to study both antecedents and consequences of early BMI alterations, generalizability to the broader population is uncertain. Although our results align closely with epidemiological data linking early-life metabolic profiles to psychosis risk[4], specific features of 22q11DS—such as heightened immune sensitivity to obesity[45], or increased neuroinflammatory vulnerability due to blood—brain barrier alterations [49] may amplify the observed effects.

Despite these limitations, our findings emphasize the need to further investigate the role of metabolic dysregulation in the developmental trajectory of ADHD and its association with psychosis risk, both within and beyond 22q11DS. Clinically, the results raise the possibility that addressing metabolic consequences of impulsivity in early life could reduce psychosis vulnerability. While this remains a hypothesis, our findings provide a compelling rationale for preventive trials targeting early-life obesity to mitigate long-term psychiatric risk.

Acknowledgments:

This study was supported by the Swiss National Science Foundation (SNSF) (Grant numbers: to SE FNS 320030_179404, FNS 324730_144260) and by the National Center of Competence in Research (NCCR) Synapsy-The Synaptic Bases of Mental Diseases (Grant number: 51AU40_125759). Prof Maude Schneider (#162006) and Dr Corrado Sandini (#209096) were supported by grants from the SNF. Samuele Cortese, NIHR Research Professor (NIHR303122) is funded by the NIHR for this research project. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR, NHS or the UK Department of Health and Social Care. Samuele Cortese is also supported by NIHR grants NIHR203684, NIHR203035, NIHR130077, NIHR128472, RP-PG-0618-20003 and by grant 101095568-HORIZONHLTH- 2022-DISEASE-07-03 from the European Research Executive Agency. Figure-4 is created with Biorender.com. We warmly thank all the families who participated in the study.

Conflict of interest

Prof. Cortese has declared reimbursement for travel and accommodation expenses from the Association for Child and Adolescent Central Health (ACAMH) in relation to lectures delivered for ACAMH, the Canadian AADHD Alliance Resource, the British Association of Psychopharmacology, and from Healthcare Convention for educational activity on ADHD, and has received honoraria from Medice. All other authors report no biomedical financial interests or potential conflicts of interest.

Supplement Description:

Supplement Methods, Results, Figures S1-S12, Tables S1-S12

References

- Leutner, M., et al., *Obesity as pleiotropic risk state for metabolic and mental health throughout life.* Transl Psychiatry, 2023. **13**(1): p. 175.
- 531 2. Pillinger, T., et al., *Is psychosis a multisystem disorder? A meta-review of central nervous*532 *system, immune, cardiometabolic, and endocrine alterations in first-episode psychosis*533 *and perspective on potential models.* Mol Psychiatry, 2019. **24**(6): p. 776-794.
- Fillinger, T., et al., Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: a systematic review and network meta-analysis. The Lancet Psychiatry, 2020. **7**(1): p. 64-77.
- Perry, B.I., et al., Longitudinal Trends in Childhood Insulin Levels and Body Mass Index
 and Associations With Risks of Psychosis and Depression in Young Adults. JAMA
 Psychiatry, 2021. 78(4): p. 416-425.
- 5. Lambrinou, C.P., et al., Effective strategies for childhood obesity prevention via school based, family involved interventions: a critical review for the development of the Feel4Diabetes-study school based component. BMC Endocr Disord, 2020. 20(Suppl 2): p. 52.
- 545 6. Gottesman, II and J. Shields, *A polygenic theory of schizophrenia*. Proc Natl Acad Sci U S A, 1967. **58**(1): p. 199-205.
- McDonald-McGinn, D.M., et al., 22q11.2 deletion syndrome. Nat Rev Dis Primers, 2015.
 p. 15071.
- Schneider, M., et al., Psychiatric disorders from childhood to adulthood in 22q11.2
 deletion syndrome: results from the International Consortium on Brain and Behavior in
 22q11.2 Deletion Syndrome. Am J Psychiatry, 2014. 171(6): p. 627-39.
- 552 9. Tarquinio, D.C., et al., *Growth charts for 22q11 deletion syndrome*. Am J Med Genet A,
 553 2012. **158A**(11): p. 2672-81.
- 554 10. Gonzalez-Muniesa, P., et al., *Obesity*. Nat Rev Dis Primers, 2017. **3**: p. 17034.
- 555 11. Anttila, V., et al., *Analysis of shared heritability in common disorders of the brain.* Science, 2018. **360**(6395).
- 557 12. Karlsson Linner, R., et al., *Multivariate analysis of 1.5 million people identifies genetic*558 associations with traits related to self-regulation and addiction. Nat Neurosci, 2021.
 559 **24**(10): p. 1367-1376.
- Berthoud, H.R., H. Munzberg, and C.D. Morrison, *Blaming the Brain for Obesity: Integration of Hedonic and Homeostatic Mechanisms*. Gastroenterology, 2017. 152(7): p.
 1728-1738.
- 563 14. Cortese, S., et al., Association Between ADHD and Obesity: A Systematic Review and Meta-Analysis. Am J Psychiatry, 2016. **173**(1): p. 34-43.
- Kase, B.E., et al., Longitudinal Associations Between Symptoms of ADHD and BMI From
 Late Childhood to Early Adulthood. Pediatrics, 2021. 147(6).
- 567 16. Cortese, S. and B. Vincenzi, *Obesity and ADHD: clinical and neurobiological implications*. Curr Top Behav Neurosci, 2012. **9**: p. 199-218.
- 569 17. Pinto, S., et al., *Eating Patterns and Dietary Interventions in ADHD: A Narrative Review.* Nutrients, 2022. **14**(20).

- 571 18. Olde Loohuis, L.M., et al., Genetic and clinical analyses of psychosis spectrum symptoms 572 in a large multiethnic youth cohort reveal significant link with ADHD. Transl Psychiatry, 573 2021. **11**(1): p. 80.
- 574 19. Nourredine, M., et al., Association of Attention-Deficit/Hyperactivity Disorder in 575 Childhood and Adolescence With the Risk of Subsequent Psychotic Disorder: A 576 Systematic Review and Meta-analysis. JAMA Psychiatry, 2021. **78**(5): p. 519-529.
- 577 20. Niarchou, M., et al., Attention deficit hyperactivity disorder symptoms as antecedents of later psychotic outcomes in 22q11.2 deletion syndrome. Schizophr Res, 2019. **204**: p. 320-325.
- Niarchou, M., et al., *Attention Deficit Hyperactivity Disorder Symptoms and Psychosis in* 22q11.2 Deletion Syndrome. Schizophr Bull, 2018. **44**(4): p. 824-833.
- 582 22. Garcia-Garcia, I., et al., Neuroanatomical differences in obesity: meta-analytic findings 583 and their validation in an independent dataset. Int J Obes (Lond), 2019. **43**(5): p. 943-584 951.
- 585 23. Moberget, T., et al., Cerebellar volume and cerebellocerebral structural covariance in 586 schizophrenia: a multisite mega-analysis of 983 patients and 1349 healthy controls. Mol 587 Psychiatry, 2018. **23**(6): p. 1512-1520.
- Kolenic, M., et al., Higher Body-Mass Index and Lower Gray Matter Volumes in First
 Episode of Psychosis. Front Psychiatry, 2020. 11: p. 556759.
- Sandini, C., et al., Pituitary dysmaturation affects psychopathology and
 neurodevelopment in 22q11.2 Deletion Syndrome. Psychoneuroendocrinology, 2020.
 p. 104540.
- 593 26. Miller, T.J., et al., *Prospective diagnosis of the initial prodrome for schizophrenia based*594 on the Structured Interview for Prodromal Syndromes: preliminary evidence of interrater
 595 reliability and predictive validity. Am J Psychiatry, 2002. **159**(5): p. 863-5.
- Overall, J.E. and D.R. Gorham, *The Brief Psychiatric Rating Scale*. Psychological Reports, 1962. 10(3): p. 799-812.
- 598 28. TM, A., *Manual for the Child Behavior Checklist/4-18 and 1991 profile*. 1991: Burlington: University of Vermont Department of Psychiatry.
- 600 29. Keith Conners, C., G. Sitarenios, and L.E. Ayearst, *Conners' Continuous Performance* 601 *Test Third Edition*, in *Encyclopedia of Clinical Neuropsychology*, J.S. Kreutzer, J.
- DeLuca, and B. Caplan, Editors. 2018, Springer International Publishing: Cham. p. 929-603 933.
- 504 30. D, W., *The Wechsler intelligence scale for children—third edition: administration and scoring manual.* 1991, San Antonio: Psychological corporation.
- D., W., Wechsler adult intelligence scale-III: administration and scoring manual. 1997,
 San Antonio: Psychological Corporation.
- 608 32. Manjón, J.V. and P. Coupé, *volBrain: An Online MRI Brain Volumetry System*. Front Neuroinform, 2016. **10**: p. 30.
- Desikan, R.S., et al., An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 2006. **31**(3): p. 968-80.
- Benjamini, Y. and D. and Yekutieli, *False Discovery Rate–Adjusted Multiple Confidence Intervals for Selected Parameters.* Journal of the American Statistical Association, 2005.
- 615 **100**(469): p. 71-81.

- Delavari, F., et al., Dysmaturation Observed as Altered Hippocampal Functional
 Connectivity at Rest Is Associated With the Emergence of Positive Psychotic Symptoms in
 Patients With 22q11 Deletion Syndrome. Biol Psychiatry, 2021. 90(1): p. 58-68.
- Zoller, D., et al., Psychotic symptoms influence the development of anterior cingulate
 BOLD variability in 22q11.2 deletion syndrome. Schizophr Res, 2017.
- Hamshere, M.L., et al., Shared polygenic contribution between childhood attentiondeficit hyperactivity disorder and adult schizophrenia. Br J Psychiatry, 2013. **203**(2): p. 107-11.
- Barbosa, D.A.N., et al., *Aberrant impulse control circuitry in obesity*. Mol Psychiatry,
 2022. 27(8): p. 3374-3384.
- Quide, Y., et al., Systemic inflammation and grey matter volume in schizophrenia and bipolar disorder: Moderation by childhood trauma severity. Prog
 Neuropsychopharmacol Biol Psychiatry, 2021. 105: p. 110013.
- 629 40. Schmahmann, J.D., *Dysmetria of thought: clinical consequences of cerebellar dysfunction on cognition and affect.* Trends Cogn Sci, 1998. **2**(9): p. 362-71.
- Andreasen, N.C., et al., *Defining the phenotype of schizophrenia: cognitive dysmetria* and its neural mechanisms. Biol Psychiatry, 1999. **46**(7): p. 908-20.
- 633 42. Sekar, A., et al., *Schizophrenia risk from complex variation of complement component 4.* Nature, 2016. **530**(7589): p. 177-83.
- Kappelmann, N., et al., Systemic inflammation and intelligence in early adulthood and subsequent risk of schizophrenia and other non-affective psychoses: a longitudinal cohort and co-relative study. Psychol Med, 2019. **49**(2): p. 295-302.
- Khandaker, G.M., et al., *Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment.* Lancet Psychiatry, 2015. **2**(3): p. 258-270.
- 45. Hotamisligil, G.S., *Inflammation and metabolic disorders*. Nature, 2006. **444**(7121): p.
 860-7.
- 642 46. Rolland-Cachera, M.F., et al., *Early adiposity rebound: causes and consequences for obesity in children and adults.* Int J Obes (Lond), 2006. **30 Suppl 4**: p. S11-7.
- Mekori-Domachevsky, E., et al., Elevated Proinflammatory Markers in 22q11.2 Deletion
 Syndrome Are Associated With Psychosis and Cognitive Deficits. J Clin Psychiatry, 2017.
 78(9): p. e1219-e1225.
- 48. Phares, T.W., et al., Regional differences in blood-brain barrier permeability changes
 and inflammation in the apathogenic clearance of virus from the central nervous system.
 J Immunol, 2006. 176(12): p. 7666-75.
- 650 49. Crockett, A.M., et al., *Disruption of the blood-brain barrier in 22q11.2 deletion* 651 syndrome. Brain, 2021. **144**(5): p. 1351-1360.
- Kim, M.S., et al., *Association of genetic risk, lifestyle, and their interaction with obesity and obesity-related morbidities.* Cell Metab, 2024. **36**(7): p. 1494-1503 e3.
- Salk, R.H., J.S. Hyde, and L.Y. Abramson, Gender differences in depression in
 representative national samples: Meta-analyses of diagnoses and symptoms. Psychol
 Bull, 2017. 143(8): p. 783-822.
- 657 52. Cross, C.P., L.T. Copping, and A. Campbell, *Sex differences in impulsivity: a meta-analysis.* Psychol Bull, 2011. **137**(1): p. 97-130.
- Selvendra, A., et al., Age of onset by sex in schizophrenia: Proximal and distal characteristics. J Psychiatr Res, 2022. 151: p. 454-460.

Journal Pre-proof

kunning Heaa: Uniianooa impuisivity, opesity and psychosis risk

663 664 665 666 667 668 669 670 671 **Table Legends:** 672 673 Table 1: Demographic information. Differences in continuous measures were tested using a two-samples t-test, while 674 binary measures were tested using a Chi² test. Household incomes are scaled from 1 to 10 (with 1<15'000 CHF/year 675 and 10 > 240'000 CHF/year). Education is scaled from 1 to 7 (1 = primary school, 2=middle school, 3-4=High School, 676 5-6 = University and 7 = PhD). 677 1 Two-samples t-test 678 ² Chi² test 679 * Significant difference (p<0.05) 680 681 **Figure Legends:** 682 683 Figure 1: 684 685 Panel 1A: Developmental trajectories of BMI scores compared across Healthy Controls and 22q11DS individuals modelling for the effects of gender yielding 4 subgroups: Male 22q11DS in dark blue, Female 22q11DS in red, Male 686 687 Healthy Controls in Light Blue, Female Healthy Controls in Orange. Assessments during which 22q11DS individuals 688 are receiving antipsychotic treatment are highlighted in black. 689 Panel 1B: Developmental trajectories of BMI scores compared across Healthy Controls and 22q11DS individuals still 690 naïve to antipsychotic medication. 691 Panel 2A: Subgroup analysis within 22q11DS sample. 22q11DS are divided in subgroups according to BMI scores 692 at baseline assessments and considering males and females separately. This analysis yields 4 subgroups, High-Baseline 693 BMI-Males in dark blue, High-Baseline-BMI-Females in red, Low-Baseline-BMI-Males in light blue, and Low-694 Baseline-BMI-Females in orange. 695 Panel 2B: Subgroup analysis within 22q11DS sample. 22q11DS are divided in subgroups according to longitudinal 696 BMI trajectories, considering males and females separately. This analysis yields 4 subgroups, Increasing-BMI-Males 697 in dark blue, Increasing-BMI-Females in red, Decreasing-BMI-Males in light blue, and Decreasing-BMI-Females in 698 orange. 699 700 701 Figure 2: 702 703 Evidence that atypical BMI trajectories are linked to childhood behavioral and neurocognitive impulsivity. 704 Panels 1A-1F: Behavioral and neurocognitive impulsivity in High-vs-Low-Baseline-BMI subgroups. High-Baseline 705 BMI-Males in dark blue, High-Baseline-BMI-Females in red, Low-Baseline-BMI-Males in light blue, and Low-706 Baseline-BMI-Females in orange.

kunning Heaa: Uniianooa impuisivity, obesity and psychosis risk

- 707 **Panels 2A-2F:** Behavioral and neurocognitive impulsivity in Increasing-vs-Decreasing-BMI-Trajectory subgroups.
- 708 Increasing-BMI-Males in dark blue, Increasing-BMI-Females in red, Decreasing-BMI-Males in light blue, and
- 709 Decreasing-BMI-Females in orange.
- 710 Panels 1A-2A: Kaplan-Meyer survival curves for lifetime DSM-5 diagnosis of ADHD associated with 3 or more
- 711 impulsivity/hyperactivity symptoms.
- Panels 1B-2B: Number of DSM-5 impulsivity/hyperactivity symptoms compared across BMI-Subgroups with
- 713 Mixed-Model-Linear-Regression.
- Panels 1C-2C: Parentally reported Aggressiveness considering age-normed Child-Behavioral-Checklist T-Score
- 715 compared across BMI-Subgroups with Mixed-Model-Linear-Regression.
- 716 Panels 1D-2D: Parentally reported Externalizing Problems considering age-normed Child-Behavioral-Checklist T-
- 717 Score compared across BMI-Subgroups with Mixed-Model-Linear-Regression.
- 718 Panels 1E-2E: Ratio of CPT2 Commission/Omission Error T-Scores measuring neurocognitive impulsivity compared
- 719 across BMI-Subgroups with Mixed-Model-Linear-Regression.
- 720 Panels 1F-2F: CPT2 Hit-Reaction-Time T-Scores measuring neurocognitive impulsivity compared across BMI-
- 721 Subgroups with Mixed-Model-Linear-Regression.
- 722
- Panels 3: 3-Way Analysis of Externalizing-Problems 22q11DS and BMI Trajectory.
- 724 Panel 3A: Comparison of CBCL/ABCL Externalizing-Problems-T-Score trajectory across Healthy Controls (in
- Green) and 22q11DS individuals divided in High Externalizing-Problems (in Brown) and Low Externalizing-
- Problems (in Yellow) according to lifetime T-Scores > 55.
- Panel 3B: Comparison of BMI trajectory across Healthy Controls (in Green) and 22q11DS individuals divided in
- High Externalizing-Problems (in Brown) and Low Externalizing-Problems (in Yellow) according to lifetime T-Scores
- 729 > 55.
- 730 Panel 3C: Mediation analysis between 22q11DS diagnosis by age (input), Externalizing Problems diagnosis by age
- 731 (mediator) and BMI trajectory (outcome).
- Panel 4: Comparison of BMI trajectory across 22q11DS individuals with High Externalizing Problems divided
- according to lifetime prescription of psychostimulant medication. No-Psychostimulant-Males in dark blue, No-
- 734 Psychostimulant-Females in red, Psychostimulant-Males in light blue, and Psychostimulant-Females in orange.
- 735
- 736
- 737738
- 739 Downstream clinical and neurodevelopmental consequences of atypical BMI trajectories emerging during longitudinal
- 740 follow-up.

Figure 3:

- Panels 1A-1D: Differential vulnerability to depression during longitudinal follow-up in Increasing-vs-Decreasing-
- 742 BMI-Trajectory Subgroups. Increasing-BMI-Males in dark blue, Increasing-BMI-Females in red, Decreasing-BMI-
- Males in light blue, and Decreasing-BMI-Females in orange.
- Panel 1A: Kaplan-Meyer survival curves for lifetime Depressive Disorder across BMI-Trajectory Subgroups.
- Panel 1B: Severity of the Dysphoric-Mood item of the SIPS compared across BMI-Trajectory Subgroups with Mixed-
- 746 Model-Linear-Regression.
- Panel 1C: Severity of the Depression item of the BPRS compared across BMI-Trajectory Subgroups with Mixed-
- 748 Model-Linear-Regression.
- Panel 1D: Severity of the Excessive Guilt item of the BPRS compared across BMI-Trajectory Subgroups with Mixed-
- 750 Model-Linear-Regression.

kunning Head: Unitanood impulsivity, obesity and psychosis risk

- Panels 2A-2D: Differential vulnerability to psychotic disorders during longitudinal follow-up in High-vs-Low-
- 752 Baseline-BMI-Subgroups. High-Baseline BMI-Males in dark blue, High-Baseline-BMI-Females in red, Low-
- 753 Baseline-BMI-Males in light blue, and Low-Baseline-BMI-Females in orange.
- 754 **Panel 2A:** Kaplan-Meyer survival curves for lifetime Psychotic Disorder across Baseline-BMI Subgroups.
- 755 **Panel 2B:** Severity of the Bizarre-Thinking item of the SIPS compared across Baseline-BMI-Subgroups with Mixed-
- Model-Linear-Regression. In the left portion of the panel symptom severity is modelled according to age while in the
- middle portion it is modelled according to time after baseline assessment. The right most portion captures mediation
- analysis between Baseline-BMI-Group by age (input), Baseline-BMI-Group by time after baseline assessment
- 759 (mediator) and Bizarre-Thinking Severity (outcome)
- 760 Panel 2C: Severity of the Motor-Disturbance item of the SIPS compared across Baseline-BMI-Subgroups with
- Mixed-Model-Linear-Regression. In the left portion of the panel symptom severity is modelled according to age while
- in the middle portion it is modelled according to time after baseline assessment. The right most portion captures
- mediation analysis between Baseline-BMI-Group by age (input), Baseline-BMI-Group by time after baseline
- assessment (mediator) and Motor-Disturbance Severity (outcome).
- 765 Panel 2D: Severity of the BPRS Conceptual Disorganization item compared across Baseline-BMI-Subgroups with
- Mixed-Model-Linear-Regression. In the left portion of the panel symptom severity is modelled according to age while
- in the middle portion it is modelled according to time after baseline assessment. The right most portion captures
- 768 mediation analysis between Baseline-BMI-Group by age (input), Baseline-BMI-Group by time after baseline
- assessment (mediator) and Motor-Retardation Severity (outcome).
- 770 Panels 3: 3-Way analysis of Externalizing-Problems, Baseline-BMI and Psychosis Trajectory. The left plots depict
- 771 clinical trajectory according to both Externalizing-Problems and Baseline-BMI Diagnosis. High-Baseline-BMI/High-
- 772 Externalizing-Problems (purple), High-Baseline-BMI/Low-Externalizing-Problems (brown), Low-Baseline-
- 773 BMI/High-Externalizing-Problems (yellow), Low-Baseline-BMI/Low-Externalizing-Problems (green). The right
- plots describe mediation analysis between Externalizing-Problems diagnosis by age (input), Baseline-BMI diagnosis
- by age (input) and psychosis clinical trajectory (outcome).
- 776 **Panel-3A:** Psychotic Disorder Diagnosis.
- 777 **Panel-3B:** SIPS-Bizarre-Thinking severity.
- 778 **Panel-3C:** SIPS-Motor-Disturbance severity.
- 779 **Panel-3D:** BPRS-Motor-Retardation severity.
- 780
- 781 Panel 4A: Trajectories of Cerebellar Gray Matter Volume (GMV) compared across baseline BMI-Subgroups using
- 782 Mixed-Model-Linear-Regression, correcting for gender, psychotropic medication, intracranial volume, and scanner
- type. The upper panel displays the developmental trajectory of posterior-inferior (Crus 1) Gray Matter Volume. High-
- 784 Baseline-BMI in Purple. Low-Baseline-BMI in Green. The anatomical pattern displays diverging developmental
- trajectories of 12 cerebellar subfields across subgroups. Subfields are color coded from dark to light blue according to
- 786 p-value of age-interaction effect (darker blue indicating more significant differences). Subfields with non-significant
- differences after False Discovery Rate correction for multiple comparisons are displayed in gray.
- 788 **Panel 4B:** Trajectories of Cerebellar Gray Matter Volume (GMV) compared across baseline BMI-Subgroups using
- Mixed-Model-Linear-Regression, correcting for gender, psychotropic medication, intracranial volume, and scanner
- 790 type. Cerebellar GMV trajectories are modelled according to time from baseline assessment to characterize to
- investigate whether divergent cerebellar trajectories across Baseline-BMI subgroups were more directly predicted by
- duration of High-vs-Low BMI status that by the effect of age.
- 793 Panel 4C: Mediation analysis between Baseline-BMI by age (input), Baseline-BMI by Time from Baseline-
- Assessment (mediator) and posterior-inferior (Crus 1) Gray Matter Volume (outcome).

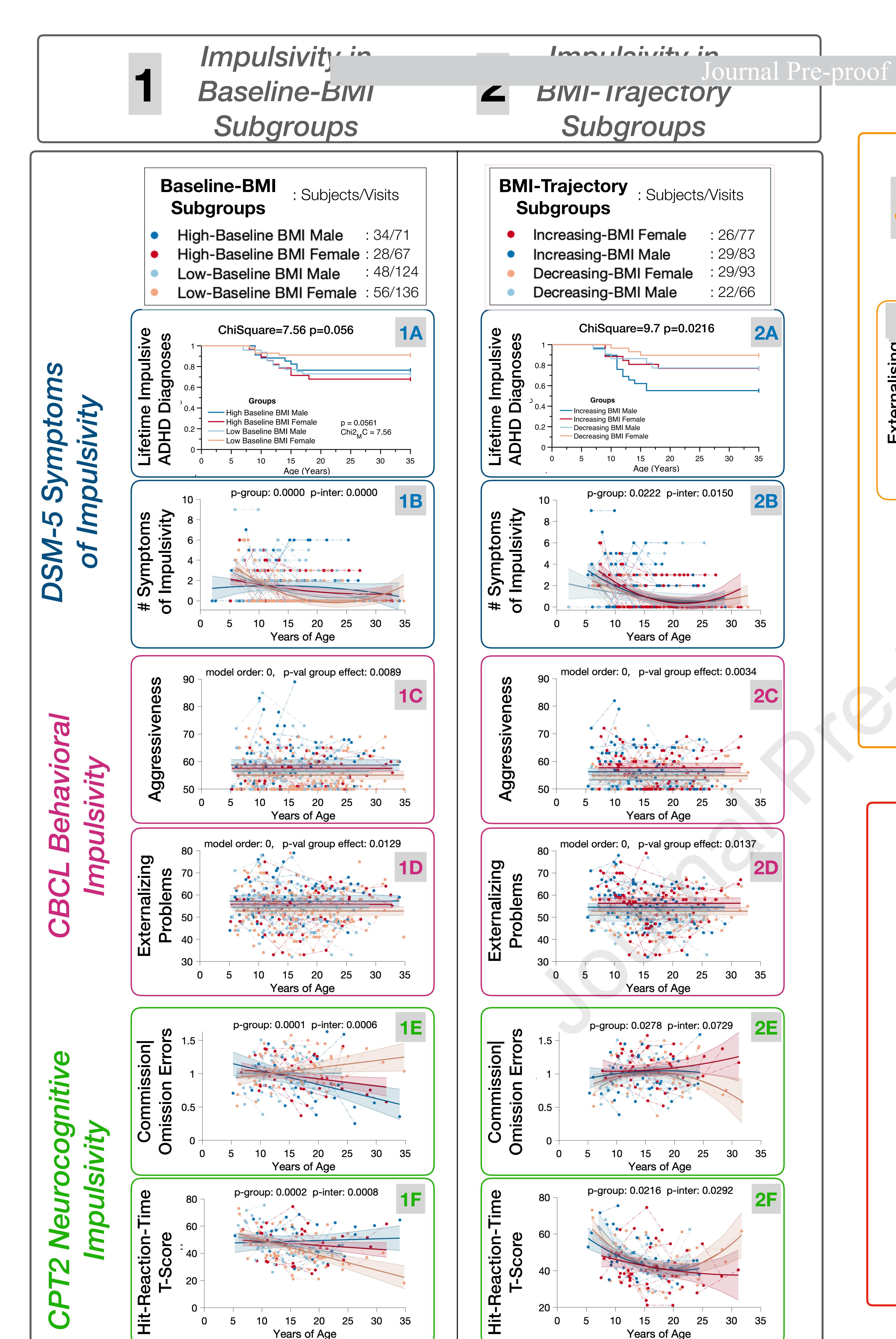
795796

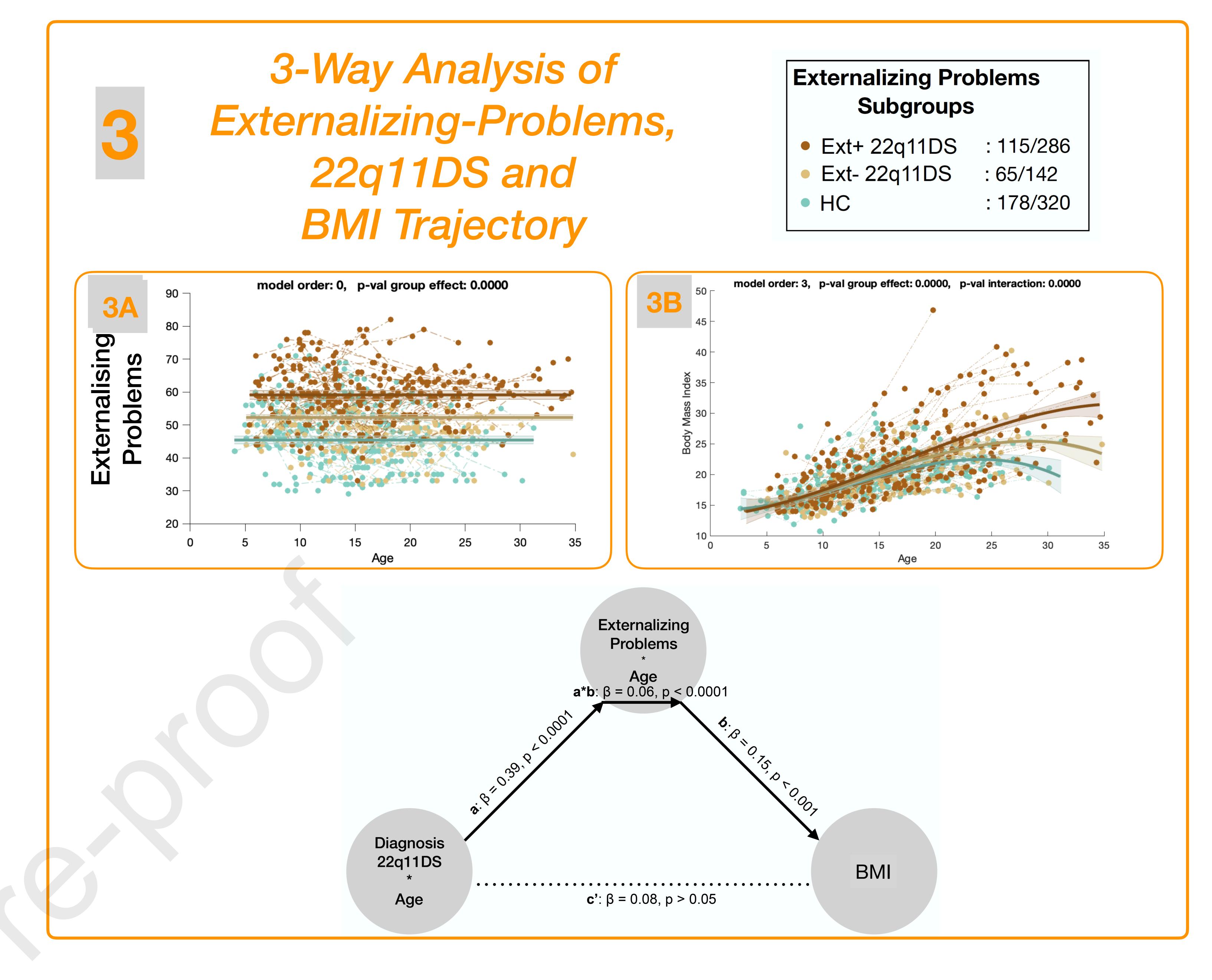
Panels 5: 3-Way Analysis of Baseline-BMI, Cerebellar Trajectory and Psychosis Trajectory.

kunning Head: Unitanood impulsivity, opesity and psychosis risk

- 797 Panel 5A: Multivariate cerebellar pattern, derived from PLCS analysis capturing multivariate association between
- 798 SIPS symptoms severity and Cerebellar-GMV. Color coding reflects loading of cerebellar lobules on the multivariate
- 799 pattern, with Blue indicating significant positive loading and Red significant negative loading.
- 800 Panel 5B: Multivariate SIPS clinical pattern derived from PLCS analysis capturing multivariate association between
- 801 SIPS symptoms severity and Cerebellar-GMV. Symptoms highlighted in yellow contribute significantly to the pattern.
- 802 Direct of the bar plot reflects direction of association of individual SIPS symptoms (upwards positive association,
- 803 downwards negative association),
- 804 Panel 5C: Association of Multivariate Cerebellar-GMV scores and SIPS-Symptom scores detected from PLCS
- 805 analysis, modelled using MMLR separately for High-Baseline-BMI subgroup (in purple) and Low-Baseline-BMI
- 806 subgroup (in yellow).
- 807 Panel 5D: Mediation analysis restricted to the High-Baseline-BMI subgroup, between age (input), Cerebellum-GMV
- 808 score derived from PLS analysis (mediator), and SIPS-Symptom-Score derived from PLS analysis (outcome).
- 810 Figure 4:

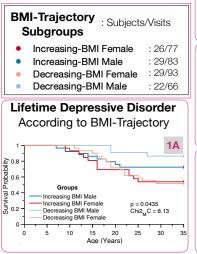
- 811 Schematic representation of a possible developmental pathways accounting for the main results and discussed above.
- 812 White boxes highlight correlates of atypical BMI trajectories observed at different developmental stages. Box 1:
- 813 Behavioral impulsivity evident particularly during childhood predicts subsequent alterations in BMI Trajectory. Box
- 814 2: Deviations in BMI trajectories in 22q11DS emerge during childhood and progressively worsening during
- 815 adolescence and early adulthood, preceding the prescription of antipsychotic medication. Box 3: Atrophy of the
- 816 Posterior Inferior Cerebellum develops progressively as a result of chronic metabolic dysregulation following a dose-
- 817 effect relationship with duration of High-BMI Status, Box 4: Progressive cerebellar atrophy is linked to the
- 818 development of motor and cognitive disorganization symptoms that also follow a dose effect relationship with duration
- 819 of High-BMI status. Box 5: Progressive worsening of disorganization symptoms results in increased vulnerability of
- 820 being diagnosed with a psychotic disorder requiring antipsychotic treatment as a result of chronic metabolic
- 821 dysregulation.
- 822 Gray boxes highlight non-measured mechanisms that could hypothetically link the different developmental
- 823 alterations. Box H1: Impulsive eating patterns could mediate the link between behavioral impulsivity and early
- 824 chronic BMI increases reflecting shared impairment of cortico-striatal circuits responsible for top-down inhibitory
- 825 control goal-directed and feeding behavior. Box H2: Chronic pro-inflammatory stated linked to prolonged metabolic
- 826
- dysregulation could affect cerebellar maturation and contribute to account for the dose effect relationship linking
- 827 duration of metabolic dysregulation to progressive cerebellar atrophy. Box H3: Alterations in the posterior inferior
- 828 cerebellum could impair predictive modelling of higher order cognitive processes resulting in motor and cognitive
- 829 disorganization symptoms of psychosis and progressive worsening of executive and attentional difficulties.
- 830 831
- 832 833
- 834

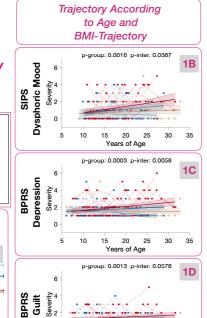

		22q11DS	нс	22q11DS- vs-HC	Decreasing- BMI	Increasing -BMI 22q11DS-	Increasing-vs- Decreasing-BMI	Low-Baseline-BMI 22q11DS-Subgroup	High-Baseline- BMI	High-vs-Lov Baseline-BN
				p-value	22q11DS-	Subgroup	P-Value	55411D3-2008LOUD	22q11DS-	P-Value
Number of Su	bjets/Assesment	184/433	188/332		51/159	55/160		104/258	62/138	
Number of Assessments per Subject: mean (sd) ¹		2.3(1.2)	1.7(0.85)	<0.001*	3.1(1.1)	2.9(0.9)	0.3	2.4 (1.2)	2.2 (1.1)	0.2
Age: n	nean(sd)¹	16.49(6.7)	14.4 (6.7)	<0.001*	17(6.9)	15.7(5.4)	0.06	16.4 (6.3)	16.2 (7.1)	0.82
Baseline Age: mean (sd) 1		13.2(6.6)	12.9(5.8)	0.66	12.1(5.5)	11.6(3.8)	0.62	13 (6)	12.5 (6.4)	0.66
Age at Last Longitudinal Follow-Up ¹		18.4 (7.6)	15.9 (6)	<0.001*	19.9(7.5)	19.2(5.2)	0.54	18.6(7)	17.4(8.2)	0.33
Duration of Longitudinal Follow-Up: mean (sd) ¹ Gender(male:female. subjects/visits) ²		5.1(4.7)	2.9(3.3)	<0.001*	7.8(4.3)	7.5 (3.7)	0.69	5.6 (4.8)	4.8(4.8)	0.34
Gender(male:rem	laie. subjects/visits) ²	93:91/	92:96/	0.75/0.9	22:29/66:93	29:26/83:77	0.32/0.06	48:56/124:136	34:28/71:67	0.28/0.43
Medication (Subjects/Visits)	Atypical Antipsychotic ²	38/66			10/14	9/13	0.84/0.89	9/14	11/18	0.08/0.008
	Psychostimulant ²	83/145			32/52	38/58	0.53/0.34	46/73	26/48	0.67/0.97
	SSRI ²	49/78	/	/	20/28	21/30	0.94/0.81	25/42	17/25	0.62/0.64
	Hypoparathyroidy ²	8/184	0/187	0.004*	2/51	3/55	0.71	6/56	2/102	0.02*
Endocrine Disorder (subjects/visits)	Hypothyroidy ²	23/184	0/187	<0.0001*	8/51	7/55	0.66	10/52	13/91	0.51
	Diabetes ²	2/184		0.67	0/51	1/55	0.88	0/62		0.31
			3/187						1/103	
Socioecomic status:	Household income ¹	5.67 (2.43)	6.15 (2.73)	0.17	5.41 (2.44)	5.63 (2.46)	0.67	5.66 (46)	5.57 (2.42)	0.81
mean (sd)	Education ¹	4.92 (1.44)	5.1 (1.42)	0.42	4.56 (1.53)	4.78 (1.13)	0.42	4.73 (1.48)	5.1 (1.38)	0.14


Male 22q11DS : 93/217 Female 22q11DS : 91/216 Male Healthy Controls : 92/165 Antipsychotic Medication Female Healthy Control: 96/1167 Antipsychotic-Naive Participants Journal Pre-proof **X9** 45 - 40 - 35 40 40 35 4 35 -**Sas** 30 -**88** 30 -**5** 20 - **6** 15 -**5** 20 - **6** 15 -Years of Age Years of Age Baseline-BMI **BMI-Trajectory** : Subjects/Visits : Subjects/Visits Subgroups Subgroups Increasing-BMI Female High-Baseline BMI Male : 26/77 : 34/71 High-Baseline BMI Female: 28/67 Increasing-BMI Male : 29/83 : 29/93 : 48/124 Decreasing-BMI Female Low-Baseline BMI Male Decreasing-BMI Male : 22/66 Low-Baseline BMI Female: 56/136 p-group: 0.0000 p-inter: 0.0072 p-group: 0.0000 p-inter: 0.0000 **2B** 50 □ 40 -35 -Index **SSB** 30 – 25 – Mass Body **5** 20 – 15 – 10 -35 Years of Age Years of Age

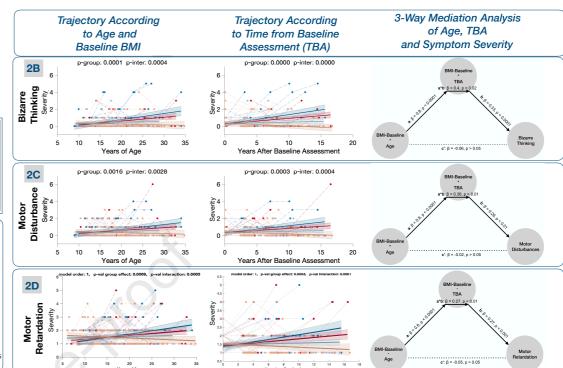
22q11DS and

Healthy Controls

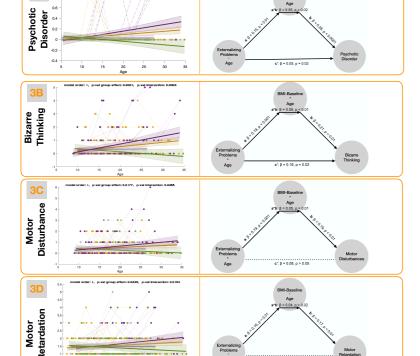

: Subjects/Visits





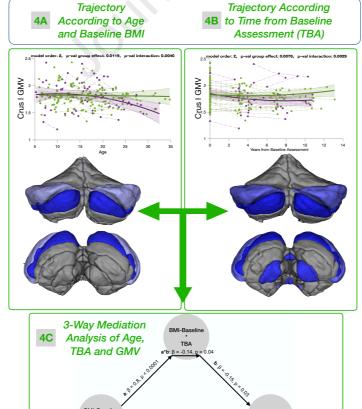

Depression Trajectory in BMI-Trajectory Subgroups

Psychosis Trajectory in Baseline-BMI Subgroups

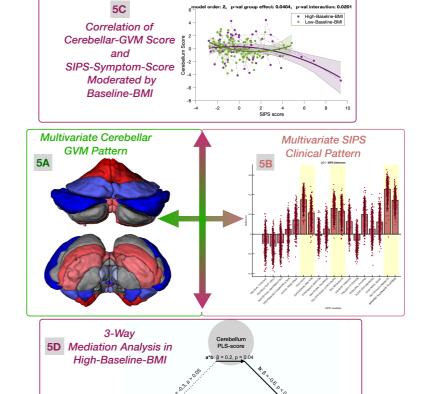

3-Way Analysis of Externalizing-Problems, Externalizing Problems Baseline-BMI and **PsychosisTrajectory**

Ext+ High-Baseline BMI : 38/94 Ext+ Low-Baseline BMI : 60/157
 Ext- High-Baseline BMI : 20/39

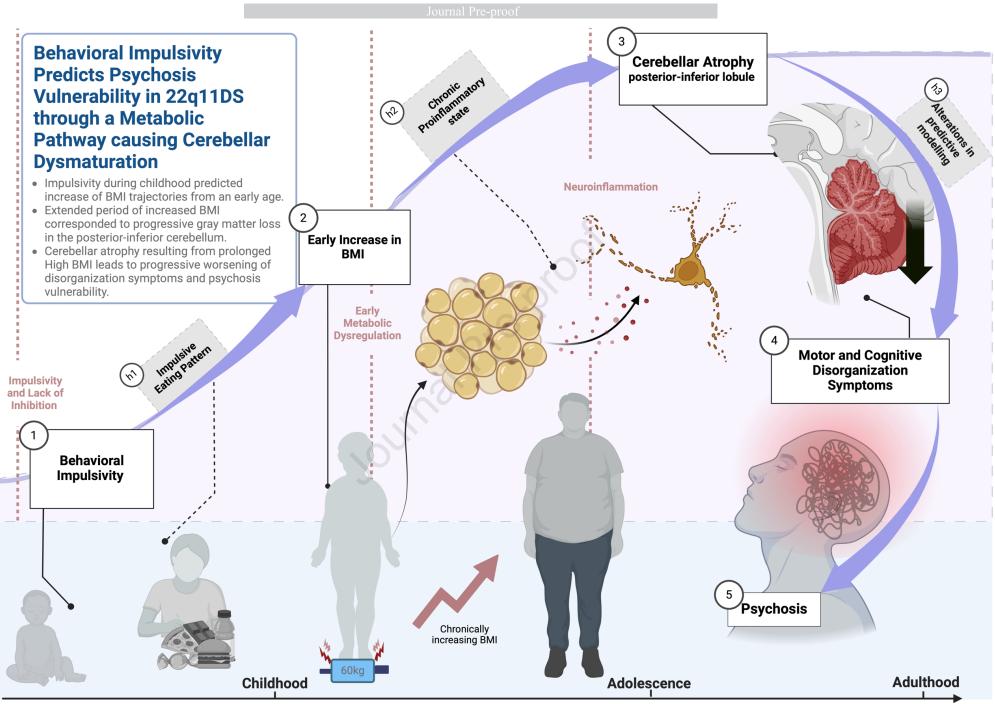
15 20 25


Trajectory According to Age, Externalizing-Problems and Baseline-BMI

3-Way Mediation Analysis of Externalizing-Problems, Baseline-BMI and Psychosis Severity


Cerebellar **Trajectory** in Baseline-BMI Subgroups

Baseline-BMI Subjects/Visits Subgroups High-Baseline-BMI: 42/71 Low-Baseline-BMI: 80/156



c': B = 0.2, p > 0.05

3-Way Analysis of Baseline-BMI, Cerebellar Trajectory and Psychosis Trajectory

c': $\beta = 0.5$, p > 0.05

Development