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Abstract

Population data at small area scales are essential for effective decision-making, affecting public
health, disaster response, and resource allocation, amongst other issues. While national censuses
remain the foundational source of population data, they may face challenges such as high cost,
infrequency, and coverage gaps, which can hinder timely data availability. Geospatial statistical
approaches to address these challenges using limited microcensus surveys have been demonstrated,
and the field has advanced substantially in recent years, with significant developments in both data
sources and modelling methodologies. New approaches now enable the use of routine health
intervention campaign data, improved satellite-derived settlement mapping, and novel Bayesian
frameworks to produce high-quality small area population estimates where traditional enumeration
is difficult or outdated. Various countries are increasingly applying these techniques to support
census operations, health program planning, and humanitarian response. This Perspective reviews
recent advances in ‘bottom-up’ population mapping approaches, highlighting innovations in input
data, statistical methods, and validation techniques. We examine ongoing challenges, including
partial observation of buildings under forest canopies, population displacement detection, and
institutional adoption. Finally, we discuss emerging opportunities to enhance these approaches
through better integration with traditional data systems, capacity strengthening and co-production
with national institutions, often facilitated by UN organisations, such as United Nations Population
Fund (UNFPA), and the use of novel data streams to develop more timely, accurate, and useful small
area population estimates for planning and humanitarian purposes.

Keywords: population modelling; census; geostatistical models; surveys; remote sensing

Introduction

In a world where data increasingly shape policies, planning, and resource allocation, significant
gaps persist in our knowledge of basic human demographics. Central to these gaps is the lack of small
area data on population counts, arguably the cornerstone of planning and decision-making for
governmental, non-governmental, and private organisations [1-5]. Vital registries (records of births,
marriages and deaths) and the population and housing census — hereafter referred to as ‘census’ —
are traditionally the most detailed demographic data sources. However, both face practical
challenges — such as infrequent collection and resource demands — that can limit their capacity to
provide timely, granular data. Censuses are typically conducted only every 10 years or more, with
results often made publicly available only at coarse spatial resolution to protect the privacy of
individuals. Moreover, conducting a census requires substantial human and financial resources, and
ensuring full coverage — particularly in remote or marginalized areas — can be complex and
resource-intensive [6,7]. Data-rich countries may turn to population registers that are updated with
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administrative data collected at service points, but these require robust administrative systems which
are lacking in most low and lower-middle income countries [8]. Urbanization, conflicts, migration
and climate change are leading to rapid changes in population distributions and demographics, and
thus the need for regularly updated demographic data is growing, prompting the exploration and
development of alternative approaches to estimate and map populations at small area scales.

The 2030 Agenda for Sustainable Development [9] underscores the urgent need for high-quality,
timely, and disaggregated population data to monitor progress toward the Sustainable Development
Goals (SDGs). Many SDG indicators—such as those on poverty, health, education, and gender
equality —require population data as a denominator, disaggregated by sex, age, geographic location,
and other dimensions of inequality. However, millions of people remain statistically invisible due to
outdated censuses, undercounts, or a lack of data systems capable of reaching marginalized
populations. In this context, developing complementary population estimation methods becomes not
only a technical necessity, but also a human rights imperative. Enhancing statistical visibility at small
area scales is fundamental to achieving the SDG principle of leaving no one behind.

Small area population estimation methods have increasingly been recognized as critical tools
not only for addressing data gaps during intercensal periods, but also for strengthening census
operations themselves. These models can serve to evaluate and adjust for coverage issues, inform
cartographic updates, and support demographic reconciliation processes post-enumeration.
Importantly, such methods should not be seen as replacements for a national census, but rather as a
complementary source of demographic intelligence that can enhance the accuracy, equity, and
responsiveness of statistical systems — particularly in settings affected by conflict, environmental
hazards, or rapid population shifts. The integration of these approaches into national data systems
requires technical capacity, institutional coordination, and political will.

n 2018, Wardrop, et al. [10] envisaged a census-independent ‘bottom-up” estimation approach
to produce recent, small area demographic estimates in countries where demographic data sources
from censuses or registries were outdated, incomplete or unavailable. The ‘bottom-up’ approach
aimed at generating high-resolution population estimates using datasets from small area population
surveys — referred to as ‘microcensus’ data — and high-resolution geospatial covariates derived
from satellite imagery and other sources. The envisaged statistical modelling methods aimed to
estimate population counts and demographic characteristics at high spatial resolution across
unsurveyed areas, together with measures of uncertainty. Due to the variability in available
demographic data, with differences in geolocation accuracy, sample sizes and spatial coverage,
bottom-up models were anticipated to require bespoke design and development.

Since Wardrop et al. was published, conflicts, resource limitations, political changes, natural
disasters and the COVID-19 pandemic have resulted in census delays and cancellations in many
countries, as well as increasing rates of undercounting in many censuses conducted in the 2020 round
[11-13]. Partly as a result, there has been increasing demand for alternative approaches for the
provision of small area population estimates. Fuelled by this need, together with increased data
availability and recent statistical modelling developments, the bottom-up approach has seen
substantial advances in the past five years. These complementary estimation methods are also
increasingly being explored in combination with traditional censuses to enhance coverage, support
pre-enumeration planning, and improve responsiveness to dynamic demographic conditions.

Here we review the current state of census-independent bottom-up models for the production
of small area population estimates. We explore their application to challenges concerning the
estimation of population distributions and demographics, particularly in resource poor settings. We
present an overview of the modelling frameworks that have been developed to date, the range of
input demographic and geospatial datasets they utilise, and approaches to the validation of outputs.
Finally, we discuss current challenges and future opportunities facing the field.
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Approaches to Census-Independent Small Area Population Estimation

New data types and sources, as well as demographic challenges, which have required novel
approaches to spatial coverage, data quality and human mobility issues, have accelerated
development of small area population methods in recent years. Figure 1 illustrates these different
approaches and data used for different scenarios - filling gaps in an existing census, providing new
estimates in the absence of a recent census, addressing undercounts, and supporting census
preparations, among other applications. In the following sections we review each component of
Figure 1, providing examples throughout.
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Figure 1. Components of the bottom-up approach to population estimation. Different sample demographic
datasets are combined with ancillary geospatial datasets covering the entire study area in bespoke modelling

frameworks to estimate population distributions and demographics.

Demographic Datasets

Bottom-up demographic estimation methods rely on a training set of population data to predict
demographic attributes, such as population counts and age and sex structures, across unsampled
locations. In recent years, digitally collected data and GPS devices have become standard for survey
teams, both for the census and household surveys and for those delivering health campaigns [11].
This has resulted in significant improvements in attribute accuracy and geolocation, which makes for
more straightforward integration of these datasets into modelling processes. These demographic
datasets can have different levels of spatial completeness (Figure 1), from purposefully designed
microcensus surveys to partial censuses, household surveys and specific sectoral interventions, like
health campaigns.

Wardrop et al. (ibid) presented the use of microcensus surveys for population modelling in the
absence of census observations, offering the advantage of rapid data collection (10, 14-17).
Microcensus surveys typically enumerate a random, representative sample of locations, fully
covering a small area; around three hectares each of a single settlement type. The sample locations
must be geographically defined, with clear spatial locations and extents. These bespoke surveys can
also accommodate more complex sampling designs, such as stratified and probabilistic samples, and
usually involve limited sample sizes [18]. Like traditional censuses, they still require considerable
human and financial resources — albeit a fraction of a full census — and face traditional challenges
related to inaccessibility and insecurity.

Since these early applications, a wider set of models have been developed to deal with situations
where recent enumeration data already exists. Among those discussed here, the most complete form
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of demographic sample can be derived from partial census enumerations which provide observations
across entire regions, enabling the filling of geographic gaps in census data collection [19,20]. There
are also examples of using census cartography data for population modelling to support census
planning processes [21]. These data consist of demographic attributes associated with household
coordinates or enumeration areas, but do not provide a random sample of the population due to
accessibility limitations. Nevertheless, they generally have very large sample sizes. In addition to
gaps in enumeration due to conflict or remoteness [7,22], there exist growing numbers of examples
of undercounts in both rural and urban settings, including associated with high rise buildings, gated
communities [23] and among certain demographic groups [6,24,25]. Population modelling
approaches can help complement census data by identifying and addressing such gaps.

Another source of georeferenced enumeration data can be found through the process of
undertaking national household surveys to monitor demographic, socio-economic and health
characteristics (e.g. the Demographic and Health Surveys, Household Income and Expenditure
Surveys, Multiple Indicator Cluster Surveys). These surveys are designed to be nationally
representative by fully enumerating a stratified random sample of the population at selected
locations. Repurposing the household listing observations for population modelling is a novel way
of conducting population estimation, potentially enabling frequent and low-cost model updates [26—
28]. Such datasets typically include geographic data on the cluster locations and, in some cases, even
the coordinates of individual households and the sampling weights [29].

A different type of sample population enumeration data can be obtained from activities that aim
to deliver a commodity or service to all households, in a similar way to the census, aiming to reach
every household in a given area. For example, campaigns to distribute insecticide treated nets (ITNs)
as part of malaria control measures, often adopt a house-to-house distribution model, with
demographic attributes relevant to the campaign recorded at the household level. Previous
applications have used health campaign data (Figure 1), but the potential is not limited to data
collected for the delivery of health interventions. Such semi-regularly collected campaign data can
enhance sample coverage and frequency, offering a practical complement to censuses or microcensus
surveys [30,31]. While not originally intended for robust statistical analysis, these data may contain
collection biases that require careful quality assessment and adjustment. For example, random (i.e.
missed and ghost households) and systematic (i.e. inflated household sizes) biases likely to be more
prevalent than in well-planned surveys. In addition, the lack of clarity in the designs of these
operations could also introduce estimation biases.

Geospatial Datasets

The development of bottom-up population modelling approaches has been closely linked with
the availability and growth of geospatial datasets derived from satellite imagery [14,32] and other
geospatial data sources. All modelling approaches discussed here leverage ancillary geospatial
datasets that describe the human landscape (Figure 1) and thus correlate with the geographic
distribution of demographic attributes across an area of interest. To be able to predict into gap areas
more accurately, geospatial datasets must have complete coverage of the area of interest. Such
ancillary datasets can be prepared as small area summaries at administrative or census unit level, but
they are often utilised in a regular gridded format, with the spatial resolution matching the desired
estimated population output — e.g. approximately 10m [33] or 100m [34].

Wardrop et al. highlighted advances in geospatial data, citing satellite-derived building area,
land use, counts of dwelling units, spectral radiance and other socio-economic and physical
characteristics. Today, geospatial datasets representing factors relating to the human landscape have
advanced substantially due to increasing computing power, a wider range of data sources, and
advances in Al algorithms that can extract relevant features. These have greatly improved the quality,
spatial detail and regularity of relevant available data. As a result, the availability of near-global open
geospatial datasets on factors relating to population distributions have become commonplace,
driving the production of more detailed, more accurate and more recent small area estimates.
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The most important geospatial datasets for population modelling describe built-up areas [35].
Today, near-global building footprint datasets exist going beyond simply defining the extents of
major settlements, and instead mapping individual buildings (e.g. outline, height, roof type) with
unprecedented accuracy [36-39]. Building footprints in population models are typically aggregated
to provide summaries of the built environment at the scale of the model output, for instance
100x100m grid cells. These aggregations include, for example, building footprint counts and area,
morphology (e.g., building footprint perimeter and volume), and other locational characteristics (e.g.
building orientation, neighbourhood types) [40-44]. Some datasets also exist that stratify building
footprints into residential/non-residential classes [33]. Road network data can also be extracted from
satellite imagery [45] and converted into population model inputs using similar metrics described
above. Finally, satellite-derived temporally explicit building datasets are now becoming available
with annual timesteps, such as the Google 2.5D building dataset, enabling spatio-temporal
assessment and better temporal alignment of covariates with ground enumeration samples [46].

Other geospatial datasets can capture additional valuable covariates. Leveraging the growing
availability of volunteered geographic information (VGI), OpenStreetMap data for example [47],
provides detailed geographic locations for different point of interests (e.g., health and education
facilities) associated with population distributions [48]. Regional and global datasets mapping health
and education facility locations [49], armed conflicts [50], and building damage [51-53] can also
provide useful ancillary covariate data. These point location datasets can be converted into gridded
or other formats using focal windows of different sizes to count them and thus mapping potential
push-pull effects of different features on population distributions. Additionally, digital trace data
from mobile devices have been used as indicators of the presence and densities of humans, including
call detail records [54,55] and smartphone app data [56].

The presence and distribution of humans and their settlements have always been driven by or
associated with environmental factors, such as topography, climate, water bodies and land cover [35],
and an increasing number of high spatial resolution datasets with global coverage and frequent
updates are now available. Similarly, lights visible from nighttime satellite imagery are often used as
a potential indicator of human presence, indicating areas with electrification and fires [57], while
open near real-time global land cover mapping datasets are now also routinely produced [58].

Modelling Frameworks

Wardrop ef al. suggested simple regression and geostatistical approaches as potential bottom-
up model frameworks. Since then, many different frameworks for bottom-up population estimation
have been developed and implemented. These frameworks are specifically designed to accommodate
the available input data and span from deterministic approaches, through frequentist and Bayesian
statistical modelling frameworks, to machine learning and artificial intelligence (AI) techniques
(Figure 1). In essence, these approaches assess relationships between the demographic and geospatial
covariate datasets outlined above that are observed at sampled locations (e.g., administrative units,
census enumeration areas, microcensus clusters, household locations) to estimate demographic
attributes at both sampled and unsampled locations using the geospatial covariates as predictors
(Figure 2). The simplest form of small area population involves mapping constant values of
population densities across the study area. Through estimates of the number of residential buildings,
households per building, and the average household size, population numbers can be estimated
deterministically at small area scales. While such approaches produce highly uncertain outputs that
do not account for local variations, recent advances in the availability of datasets like building
footprint maps, building heights and settlement types are improving the precision of outputs [44,59].

Leasure et al. [16] used Bayesian hierarchical models to estimate population counts as a Poisson
process with exact counts derived from the product of settlement datasets and estimated population
densities. In a hierarchical modelling framework, population densities are generally modelled as a
lognormal process to capture variabilities in the expected population densities. Hierarchical models
draw information from all scales, such as coarse administrative units (e.g., regions or districts) or
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functional areas (e.g., settlement classes), to define different model parameters, including random
intercepts, random effects, and variance components [16,28]. The hierarchical random intercept is a
key component of model structure that helps to account for the complex sampling designs used in
the data collection as well as the geographic patterns in population density. Moreover, by using
random effects, key information is shared among various spatial scales, thereby, leveraging
observations from neighbouring clusters to predict population densities across clusters with no
observations. More recent hierarchical model applications utilise satellite image-derived building
footprints enabling more accurate population distribution prediction [17,19,26] and some even
extended to estimating building count distributions [18,60]. These approaches train the model
parameters using the observed population data and then predict into other unsampled areas based
on the trained parameters in line with the model assumptions.

Bayesian geostatistical models have also been developed to explicitly account for spatial
autocorrelation not captured by covariates. Geostatistical models employ the use of distance-
dependent covariance matrices to describe the spatial autocorrelation between observations. This
includes a two-stage Poisson-Gamma geostatistical regression [61]. Similar to those described for
hierarchical approaches, these models also assume that the population density is related to a set of
geospatial covariates through a linear predictor, and then produce estimates of population as a
function of the product of the predicted population density and the corresponding building counts.
However, the Poisson-Gamma approach utilises Gamma probability density instead the lognormal
to model the population density in a more flexible manner whilst utilising the integrated nested
Laplace approximations (INLA) [62] techniques in conjunction with stochastic partial differential
equation (SPDE) [63] approaches. The use of the INLA approach enables Bayesian statistical inference
based on the posterior marginal distribution, thereby ensuring both accuracy and computational
speed. An extra layer of computation speed is achieved via the use of the SPDE approach which
specifies spatial autocorrelation using a triangulation (or mesh) of the entire continuous spatial
domain so that the usual computationally expensive dense matrix of the Gaussian Process is
approximated via a sparse matrix, represented through the Gaussian Markov Random Field. These
geostatistical models have been extended to estimate population counts where no building footprints
were available and the indicators of human settlements were only partially observed [30].

An important development is the use of machine learning and Al, including deep learning, to
estimate intercensal population counts at high spatial resolution directly from satellite imagery.
Landscan HD, for example, uses a data fusion approach to merge relevant land use and building
layers in a deep learning framework to generate gridded population estimates [64]. Another
approach is to use a convolutional neural network with visual geometry group architecture for deep
learning directly from a concatenation of low-resolution Landsat-7/8, Sentinel-1 and night-time light
satellite images [65,66]. Key advantages of these methods are the frequent and freely accessible
satellite image updates, enabling rapid population map updates and scalability in data scarce regions.
The use of very high-resolution satellite images such as the Maxar VIVID 2.0 in conjunction with a
small sample of ground truth dataset, appears promising to help with the identification of inhabited
areas and non-residential buildings [67].

Most of the types of population models outlined above estimate the total population, but
development and humanitarian interventions often require specific age and sex information (Figure
2). The most widespread method for age and sex disaggregation is using observed or projected
subnational population pyramids to deterministically disaggregate the total population estimates
[68]. There are however, hierarchical model applications where the proportion of under-five
population is estimated at 1km resolution using a Bayesian spatio-temporal model [69], or the entire
age and sex structure of each simulation unit is statistically estimated using a Dirichlet-multinomial
process [17]. A recent methodology developed uses a flexible multi-stage Bayesian statistical
modelling approach based on ‘sequential’ Binomial probability mass functions to produce
disaggregated structured estimates of population counts and population proportions at both
administrative units and high-resolution grid cell levels [70]. The methodology can be used to
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estimate age/sex classes, and other socio-economic groups such as ethnicity, occupation, education.
The key input datasets are the demographic structures (e.g. age, sex, ethnicity, etc) which can come
from various sources such as census/microcensus, household surveys (e.g. DHS), and administrative
records. The methodology is implemented via INLA-SPDE approach, thus capable of rapidly
producing structured estimates of population and population proportions at small area scales
including at locations without observations, along with the corresponding estimates of uncertainties.
In addition to age/sex information, field campaigns often require household level information that
can also be modelled statistically [27].
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Figure 2. Example population model applications: field observations (panel a), model input (panel b), settlement
constrained model outputs with age/sex and uncertainty information (panel c). Data sources: DRC microcensus

[71], DRC population estimates [17], Mali census cartography [72], Mali population estimates [21].
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Outputs and Validation

Small area estimates produced using the modelling approaches outlined above are typically
output at the grid square scale (Figure 2). This format is advantageous because it provides a
continuous surface to support visualisation and understanding of small-scale landscape variation.
Moreover, the grid format enables flexible aggregation and summation of population estimates to
different decision-making units, such as districts, wards or health zones, or by features of interest,
such as urban extents, flooded areas, or hurricane tracks. Moreover, the format enables ease of
integration with other geolocated datasets, such as the locations of health facilities, conflicts, schools
or polling booths. Gridded population estimates have been used to calculate social-distancing
indicators [73], map out-of-school children [74,75], support disaster response [76,77], create survey
sampling frames [78,79], and prepare for vaccination campaigns [80]. Accuracy is however
challenging to assess at the grid level unless geolocated household data - with GPS accuracy better
than the grid resolution - is available. Gridded estimates require technical expertise to aggregate to
more useful spatial units for field operations planning such as settlement or admin boundaries.

Population estimates are often reported as a single ‘best’” estimate of residential population for a
specific timepoint, however, they cannot capture accurately the full complexity of our world.
Uncertainty in population estimates varies place to place, originating from both the observations used
in their construction and from the model design and assumptions. Observation uncertainties include
non-representativeness (e.g. too small sample size), sampling bias that under-represents some
populations (e.g. slum and informal settlement dwellers), and measurement error (e.g. missed
populations, incorrectly recorded data). Partial, unobserved or outdated observations of the settled
areas have a direct effect on the accuracy of the estimates and thus on their usability. However, it is
difficult to translate the estimated uncertainty across spatial scales.

Using a Bayesian method enables the consideration of these errors during population estimation
and provides the most likely estimates with quantified uncertainties. Model designs, guided by the
local context and the accessible observations can be tested in a simulation study [29,30], assessing the
importance of various inputs and the sensitivity of the model structure. Uncertainties are then
quantified for the final model design through the posterior distribution of model parameter values.
These posterior distributions are used to calculate metrics such as the mean value of the predicted
population in an area, the standard deviation, and 95% credible intervals. In addition to
communicating varying levels of uncertainty in modelled estimates, the use of these measures has
the potential to also help make more informed decisions. For example, (i) using the upper confidence
interval for health intervention campaign planning to ensure confidence that enough resources are
acquired for each delivery area (ii) to identify where to conduct additional data collection to improve
population estimates, or (iii) mapping model uncertainty to identify important predictors that may
be missing from the modelling process that could aid better prediction in areas with high uncertainty.

Model validation is vital to ensure that model outputs are accurate and can be trusted by data
users and decision makers. This is generally done though model diagnostics, goodness-of-fit
assessment and external validation against an independent set of observations. Model diagnostics
include checking convergence issues, posterior predictions, grid cell predictions and undertaking
cross-validation to check the robustness of the model design, as well as uncertainty visualisation (e.g.
16). Goodness-of-fit assessments compare the outputs against the training data used by calculating
metrics such as root mean square error and correlation coefficients (e.g. 61).

Out-of-sample cross validation is considered the gold standard way of validating population
models [81,82], though data triangulation with other sources is often important for model validation.
For example, aggregating the outputs to various administrative units enables cross-checking the
results against population predictions and other external data sources. Modelled estimates are
however often constructed precisely because of the lack of reliable ground enumeration data, making
such comparisons rare and challenging to undertake. Even if an independent, reliable data source
exists, there are also always differences that make comparisons difficult and potentially
uninformative, such as the time difference between the reference year of the modelled and the
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independent datasets, the survey design and/or methodology, the population groups being counted
and time of year of enumeration.

There have been very few bottom-up model validations using extensive small area enumeration
data published so far. Darin et al. [60] used the 2018 Colombian census to test the accuracy of two
Bayesian model designs against a machine learning methodology at enumeration area and
municipality scales, while also varying the use of six different input settlement maps. They sampled
from the census data to create an artificial data set, so the sample and the validation data were directly
comparable and thus avoiding the issues described above relating to external data triangulation.
They highlighted the importance of building footprints as the best ancillary information source for
settlements. For unbiased, complete observations, the machine learning approach was the best
performing method, whereas coarse or biased observations for sparsely populated regions were best
explained by Bayesian methods because of their ability to correct biases. They emphasised that
uncertainties varied vastly across different landscapes and at different spatial scales. For example,
the median inaccuracy was 32%, but at finer spatial scales it rose to 148%. They highlighted that there
is a limit to the information that can be derived from building footprint data, with no apparent
increase in accuracy following an increase in sample size.

Chamberlain et al. [83] compared the 2019 census-independent modelled population estimates
for Zambia [26] with the population counts from the 2022 national census at province, district and
ward-level. Their analysis showed a strong correlation between the modelled population estimates
and the census-enumerated counts (r=0.98 at district-level and r=0.95 at ward-level). In province-level
comparisons, census counts were within the 95% credible interval (CI) of the modelled estimates for
five out of ten provinces, with census counts less than the lower 95% CI for the other five provinces,
indicating some degree of positive bias in the modelled estimates. At district- and ward-level, census
counts were within the 95% Cls for 64% of districts, and 52% of wards. The difference between the
modelled estimates and enumerated census counts is likely in part due to some degree of over-
estimation associated with non-residential buildings, however the temporal difference between the
modelled estimates and the census also complicated the comparison.

Breuer ef al. [84] compared gridded population estimates with population counts for a sample
of slum areas in eight major cities of the Global South and found that slum populations were
significantly underestimated with large spatial variation: only estimating 48 percent on average
(range of 8-147 percent) of the true population. Thomson et al. [85,86] similarly found that population
models only estimated a fraction (11-39 percent) of slum residents in Nigeria, Kenya and Namibia,
potentially omitting 0.75 to 1.5 people for every estimated person. They concluded that this
underestimation is due to (i) the 100m resolution being too coarse to capture the vastly different
demographic and building patterns in slum areas, and (ii) insufficient observations in slum areas for
model training.

Challenges and Future Directions

The significant developments in data sources and methods described above have enabled the
generation of geospatial modelled population estimates in a range of countries and contexts. These
advances have addressed many challenges outlined by Wardrop et al. [2018], but some challenges
remain, and new ones have emerged as applications involve increasingly diverse sources of data.
These challenges can be categorized into data input challenges, methodological considerations, and
implementation barriers (Figure 3).
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Figure 3. Challenges (white boxes) and opportunities (grey boxes) towards sustainable data production and use.
MAUP = Modifiable Areal Unit Problem.

Data Input Challenges

Challenges persist regarding input enumeration data quality and suitability for training and
validating models. Field data collection has benefited from GPS-enabled devices that facilitate
navigation and location recording, but practical limitations remain, including battery life, internet
access in remote areas, and safety concerns for enumerators in insecure regions [87,88]. Community
distrust in data collection efforts can result in non-response or incomplete coverage, particularly
among marginalized populations [89]. Enumeration data collected through questionnaires linked to
the distribution of health interventions, such as bednets or vaccines, can result in biases in numbers
upwards or downwards, depending on incentives in receiving these interventions [90]. Though field
data collection software enables near real-time quality checks, data quality ultimately depends on
survey design, field protocols, and team training [88]. This underscores the importance of thorough
documentation of survey methodologies, particularly as financial resources for field data collection
become increasingly constrained [91].

Building footprint and settlement datasets have seen substantial improvements in global
coverage and public availability, but challenges remain around temporal and spatial coverage due to
cloud cover, tree canopy obstruction, and certain areas not being mapped in open datasets due to
conflicts or other sensitivities. Documentation of these datasets can be limited, making it difficult to
ascertain the currency of imagery used in their construction, classification criteria, and
methodological limitations. Moreover, substantial variations exist between datasets [92], likely
translating into significant differences in population predictions in many areas. Capturing rural
populations needs further attention [93] and mapping urban slums also presents particular
difficulties [85]. Thomson et al. demonstrated that slum populations are significantly underestimated
by all types of gridded population datasets, primarily due to a lack of recent and reliable population
enumeration data from such settings, as well as challenges in mapping the structures and extents of
such areas consistently. Multiple efforts are ongoing to improve the mapping of structures and
populations in these areas by combining Earth observation data, statistical modelling, and
community engagement [84,86,94].

Mobile populations present another significant challenge. According to UNHCR, 117.3 million
people worldwide were forcibly displaced at the end of 2023, excluding those displaced by
environmental disasters and climate stressors [95]. These rapid-onset events driving displacements
and other localized movements, including nomadic populations, are generally not captured in static

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1625.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 19 June 2025 d0i:10.20944/preprints202506.1625.v1

11 of 19

population models. Recent model applications have attempted to address this by creating
displacement-adjusted layers that redistribute populations based on known displacement patterns
[96]. Feature extraction algorithms have been developed to map structures in refugee camps [97], and
humanitarian administrative data has been integrated with satellite-derived building footprints to
map registered refugee populations [98]. However, many types of mobile populations remain
inadequately represented in current approaches.

Methodological Considerations

Novel data sources offer promising avenues for increasing the temporal-resolution of
population estimates and thus increased accuracy in context of mass movement. Digital trace data
from mobile phone call detail records [54], smartphone location history data [99], mobile applications
[100], and social media platforms [101,102] have demonstrated potential for measuring near real-time
population distributions and movements. These data sources are valuable for their volume and
frequency of updates, though spatial resolution varies along urban-rural gradients and
representativeness across population subgroups remains uncertain. Methods to correct for these
biases using survey data are emerging [103], but access challenges due to private ownership persist.

Population model design also raises other important methodological considerations. Spatial
autocorrelation of inputs requires particular attention for accurate uncertainty estimation, as it can
alter observation variance and increase sensitivity to certain covariates [104,105]. This is particularly
important when there are spatial dependences in the data that cannot be accounted for by readily
available covariates, i.e. when spatial autocorrelation remains in the residuals of a fully specified
model.

The modifiable areal unit problem (MAUP) - error arising from the choice of spatial units used
to summarise point-based observations - represents another crucial consideration, particularly when
the spatial scales of observations differ from pixel-level estimation units [106]. This mismatch can
reduce explained variance, increase residual spatial autocorrelation, and potentially lead to
erroneous conclusions [107,108]. MAUP requires careful harmonization of all scales—observations,
human populations, and statistical model predictions [109]. For population models that rely heavily
on satellite-derived information, even the gridding process itself may impose artificial discretization
on the underlying continuous landscape [110]. Simulation studies can help determine appropriate
scale choices [111], while spatial aggregation models that incorporate both data response and
sampling frame components can better account for population distribution uncertainties [108].

Implementation Barriers and Opportunities

While a growing number of applications show how small area modelled population estimates
provide valuable support for planning and decision-making during intercensal periods, they often
face barriers to acceptance by governments, who may be reluctant to use modelled data, geospatial
covariates, or to collaborate with external partners to produce official population estimates.
Population statistics have significant implications for resource allocation [112-114], political
representation [115], and economic and SDG indicators [116], making their official endorsement
politically sensitive. To facilitate greater governmental uptake, several approaches show promise:
improved model validation, enhanced communication of model methods, results and associated
uncertainties [117] and crucially, local ownership of the modelling process [118]. Local ownership
ideally means that when external partners are brought in to support the design and use of these new
methods, the approach is co-developed with national statistical offices, and is accompanied by
appropriate capacity strengthening for sustainable data generation and use [119,120]. Although
geographic information systems are now commonly used to analyse and display population data,
spatial statistical expertise is often limited in government institutions across low-income settings.
Medium- to long-term investment is needed to identify in-country champions, develop institutional
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skills, and strengthen national university programs to cultivate the next generation of geospatial
experts.

Beyond the uptake of model results by various stakeholders, there are other important barriers
for population modelling, such as data licenses. Various licence types are available for public data
products (e.g. Creative Commons Attribution, Open Data Commons Open Database License). Some
of them are fully open, some of them are restricted one way or another. Some geospatial data products
have strict restrictions on combination with similar data products and have even restrictions on data
dissemination of the derived outputs. Others, such as the OSM license, only require the final product
to be made publicly available. The licence of the available data must therefore be considered during
model design and publishing.

Another concern is that small area estimates, especially high-resolution population estimates,
might expose vulnerable groups to unwanted surveillance or security risks and might impact
equitable resource allocations [121,122]. Ensuring responsible use of modern technologies and
publication and use of population data are crucial. Good practice includes seeking approval from
(and if necessary, establishing) independent ethics boards of the data provider, government and/or
universities, de-identification of observations, and publishing only aggregated statistical estimates
and not the original observations. At the international level, the UN Statistical Commission should
consider developing guidance for countries utilising these approaches on effective practice and good
governance. In doing so it would empower countries to innovate and try alternative methodologies
to fill crucial gaps, whilst showing how this can be done safely and sustainably.

Conclusions

Reliable, recent, and detailed small area population data are increasingly required for effective
decision-making, development planning, Sustainable Development Goal reporting, operational
campaign planning, and humanitarian response. Since Wardrop et al. [10] presented their
perspectives on spatially disaggregated population estimates, significant advances have been made
in both data sources and methodological approaches. The emergence of building footprint datasets
with near-global coverage, applications of Bayesian hierarchical modelling frameworks to handle
complex data integration, and development of methods to quantify and communicate uncertainty
have substantially improved the quality and reliability of small area population estimates in the
absence of census data.

These advances have enabled practical applications across diverse contexts. In countries
including Burkina Faso [123], Mali [124], Papua New Guinea [125], and South Sudan [126], modelled
population estimates have been adopted by national statistical offices for country planning activities.
In Colombia, the national statistical office has developed capacity to implement these methods
themselves, using them to address census enumeration gaps [20]. UN agencies including UNFPA
and UNICEF (United Nations Children's Fund) are actively promoting and applying these
approaches [127-129] and computer algorithms [130,131] to support field operations and data
sustainability.

Despite these successes, challenges remain in capturing urban diversity, informal settlements,
mobile populations, and populations in areas with persistent cloud cover or heavy vegetation.
Continuing methodological advances and stronger partnerships between data producers, data
scientists, and stakeholders are needed to further enhance the utility and acceptance of these
approaches. Increasing transparency in data products, promoting collaboration and co-production,
and investing in capacity strengthening would significantly enhance uptake and sustainability.

As demographic data gaps increase [91], the complementary role of small area population
estimation approaches will likely expand. Their integration with traditional demographic data
systems offers a path toward more responsive and cost-efficient statistics, particularly in contexts of
census disruption or under-coverage. These methods can play a crucial role in demographic
reconciliation, helping to detect and adjust for omissions or overcounts and providing robust,
disaggregated data for planning and monitoring. Looking forward, the field is poised to benefit from
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increasing availability of digital trace data, advances in Al for building characterization, and
improvements in statistical methods for data integration and uncertainty quantification.

The elaboration of such models, however, requires more than technical expertise. It depends on
the sustained collaboration between national statistical offices, academic institutions, and
international partners. In Latin America and the Caribbean, a collaborative partnership model
involving UNFPA, ECLAC (Economic Commission for Latin America and the Caribbean), and
national statistical offices has proven effective [132]. These partnerships leverage local contextual
knowledge, statistical leadership, and external modelling capacity to co-develop robust estimates. In
the Caribbean, coordination with regional statistical entities such as CARICOM (Caribbean
Community) has also emerged as a key enabler for institutionalizing these approaches.

To ensure the long-term utility and trust in these estimates, methods and results must be
transparently documented, presented with clear uncertainty and goodness of fit metrics, and
integrated into national processes such as census reconciliation and population projections. With
proper institutionalization and regional coordination, small area estimation methods can become a
strategic asset for achieving data-driven, inclusive development.
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