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Abstract—A hybrid beamformer (HBF) is designed for in-
tegrated sensing and communication (ISAC)-aided millimeter
wave (mmWave) systems. The ISAC base station (BS), relying
on a limited number of radio frequency (RF) chains, supports
multiple communication users (CUs) and simultaneously detects
the radar target (RT). To maximize the probability of detection
(PD) of the RT, and achieve rate fairness among the CUs, we
formulate two problems for the optimization of the RF and
baseband (BB) transmit precoders (TPCs): PD-maximization
(PD-max) and geometric mean rate-maximization (GMR-max),
while ensuring the quality of services (QoS) of the RT and CUs.
Both problems are highly non-convex due to the intractable
expressions of the PD and GMR and also due to the non-
convex unity magnitude constraints imposed on each element
of the RF TPC. To solve these problems, we first transform
the intractable expressions into their tractable counterparts and
propose a power-efficient bisection search and majorization and
minimization-based alternating algorithms for the PD-max and
GMR-max problems, respectively. Furthermore, both algorithms
optimize the BB TPC and RF TPCs in an alternating fashion
via the successive convex approximation (SCA) and penalty-based
Riemannian conjugate gradient (PRCG) techniques, respectively.
Specifically, in the PRCG method, we initially add all the
constraints except for the unity magnitude constraint to the
objective function as a penalty term and subsequently employ
the RCG method for optimizing the RF TPC. Finally, we present
our simulation results and compare them to the benchmarks for
demonstrating the efficacy of the proposed algorithms.

Index Terms—Geometric mean rate, hybrid beamforming,
integrated sensing and communication, millimeter wave, RT
detection probability.
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NTEGRATED sensing, and communication (ISAC) sys-

tems are at the forefront [1]], [2] of the recent era of
wireless technology. The integration of sensing and communi-
cation functionalities in such systems offers several practical
advantages, which can drive a wide range of applications
and unlock cutting-edge capabilities in next-generation (NG)
wireless communication [3|]. Briefly, ISAC systems improve
hardware efficiency by enabling the use of a single platform for
sensing the radar targets (RTs) as well as for communication.
By doing so, one can reduce the size, cost, and power
consumption of the hardware in ISAC systems in comparison
to conventional systems that require separate hardware for
sensing and communication [[4]—[6].

Furthermore, due to the bandwidth crunch in the sub-6
GHz frequency band, the NG wireless networks might migrate
to the millimeter wave (mmWave) band, which spans the
frequency range 30 to 300 GHz [7]. Moreover, both the
hardware architecture and signal processing necessary for
sensing the RTs are similar to those of mmWave systems.
Therefore, the integration of ISAC and mmWave capabilities
can reap the benefits of a wide frequency band and mutual
signal processing advances, while requiring only moderate
hardware changes in the existing mmWave systems.

It is crucial to employ optimal beamforming techniques to
realize the full potential of ISAC-aided mmWave systems for
sensing and communication. Furthermore, it is important to
note that the conventional fully digital beamforming (FDB)
techniques of sub-6 GHz systems [8]-[10] necessitate an
individual RF chain (RFC) for each antenna, thus rendering
them costly and power-inefficient. Hence one cannot employ
such techniques in mmWave-aided ISAC systems. To address
this, numerous authors have investigated hybrid beamforming
(HBF) designs, which require only a few RFCs and are
therefore eminently suitable for mmWave-aided ISAC systems
[11]-[19]. In HBE, the signal processing of the transmit
precoder (TPC) is divided into the digital baseband (BB)
and analog RF TPCs, where analog RF processing comprises
phase shifters designed for beam steering in the RF domain.
Furthermore, several endeavors focused on jointly optimizing
the beamforming designs of the ISAC systems for the maxi-
mization of either the sum rate or minimum rate (MR) of the
users. However, the maximization of the sum rate results in
rate unfairness, while the maximization of the MR results in
a reduced sum rate. To this end, the recent geometric mean
(GM) rate-based communication metric [20] has demonstrated
superior capability to achieve rate fairness without unduly
compromising the sum rate of the system, thus delivering
a compelling trade-off. Before we delve into the details of


https://orcid.org/0000-0002-0951-4097
https://orcid.org/0000-0002-5793-6040
https://orcid.org/0000-0003-1594-5181
https://orcid.org/0000-0002-2636-5214

our framework, in the next subsection, we discuss the rich
prior literature in this area and the motivation behind our
investigation of novel techniques designed for mmWave-aided
ISAC systems.

A. Literature review

The authors of [8]-[10], [21]-[26] designed pioneering
beamforming techniques for ISAC systems operating in the
sub-6 GHz frequency band. Specifically, the authors of [§]
have considered both separated and shared antenna deploy-
ments, optimizing TPCs to match radar beampatterns, while
satisfying communication users (CUs) performance. Liu et
al. [9] have explored symbol-level TPC in ISAC systems to
enhance beamforming flexibility, ensuring improved instan-
taneous transmit beampatterns and better CU performance.
Unlike conventional block-level precoding techniques, authors
of [10] proposed a symbol-level TPC approach to enhance
the instantaneous transmit beampatterns for radar sensing
while maintaining communication performance, demonstrating
the potential of advanced beamforming techniques in ISAC
systems. Ding et al. [21]] maximized the communication per-
formance of the CUs by minimizing the multi-user interference
(MUI), while guaranteeing the probability of detection (PD)
of the RT detection in ISAC systems. By contrast, Ashraf and
Tan [22] maximized the sensing performance of the RT by
maximizing the PD, while constraining the minimum signal-
to-interference and noise ratio (SINR) requirements of the
CUs. Furthermore, Liu et al. [23] considered the Cramér-Rao
bound (CRB) as the performance metric for sensing the RT
and minimized the CRB of the parameters in both point as
well as extended RTs, while guaranteeing the minimum SINR
requirements of the CUs. Bazzi and Chafii [24] considered
realistic imperfect channel state information (CSI) for the
CUs and maximized the received SNR of the RT under
probabilistic SINR outage constraints. On the other hand,
Zargari et al. in [25] maximized the sum rate of the CUS,
while meeting a minimum beampattern gain for the RTs.
Briefly, they optimized the beamformer by exploiting the La-
grangian and Riemannian manifold optimization principles. As
a further advance, artificially intelligent (AI)-driven techniques
for ISAC systems, such as deep unfolding learning and Al-
based iterative optimization [27]], have been employed to opti-
mize RIS-aided ISAC by minimizing interference, enhancing
waveform design efficiency, and solving complex non-convex
problems in secure and robust transmission [28].

However, the above studies employ the FDB design, which
poses a significant drawback in the context of mmWave-aided
ISAC systems due to the requirement for a large number of
RFCs. In order to circumvent this issue, the authors of [12]],
[13], [15]-[18], [29]1-[31] have proposed diverse HBF designs
for mmWave ISAC systems, which aimed for significantly
reducing the number of RFCs. Qi et al. [12] proposed a two-
stage HBF, which minimizes the error between the ideal and
transmit beam pattern gain for the radar RT, while considering
the minimum SINR requirement of the CU as a constraint.
Furthermore, Barneto er al. [13] consider the full duplex

paradigm in a mmWave-aided ISAC system, wherein they
optimize the components of the HBF BB and RF TPCs for
maximizing the beamforming power towards the RT, while
constraining the beamforming power toward the CUs. As
a further advance, Yu et al. [17] designed HBF for the
mmWave ISAC-assisted internet of vehicles (IoVs), wherein
they formulate the joint HBF design problem as the weighted
summation of the communication beamforming error and
radar beamforming error. To solve the problem, the authors
therein proposed a pair of novel methods: fast Riemannian
manifold optimization (FRMO) and adaptive particle swarm
optimization (APSO). Moreover, the authors of [29], [30]
optimized the HBF of mmWave-aided ISAC systems, which
leads to the maximization of the weighted sum rate of the
CUs. Specifically, Gong et al. [29] evaluated the CRB for
the estimation of the DoA, while Zhou et al. [30] employed
the beampattern gain towards the RTs as the constraint for
their radar performance optimization. The authors of [29]]
therein equivalently transformed the non-convex problem into
a convex one via the weighted minimum mean square error
(WMMSE) method and subsequently employed the alternating
optimization technique for optimizing the BB and RF TPCs.
Furthermore, Wang et al. [31] designed a partially-connected
hybrid MIMO architecture for mmWave ISAC systems, where
they aimed to minimize the CRB for angle of departure
(AoD) estimation while ensuring the SINR constraints of the
CUs. Unlike the fully-connected architecture, the partially-
connected structure employs a block-diagonal RF TPC matrix,
which reduces hardware complexity at the cost of slightly
eroded beamforming flexibility.

However, the key metric for the sensing performance is
the PD, while is still unexplored in the context of mmWave-
enabled ISAC systems. By contrast, the authors of [21]],
[32], [33]], [36] investigated the PD in the context of sub-
6 GHz systems and obtained the expression of the PD via
the generalized likelihood ratio test (GLRT). Furthermore,
the existing literature on mmWave ISAC systems has not
as yet explored the principle of rate fairness for the CUs,
which is also a key performance metric. To elaborate briefly,
maximizing the sum rate typically assigns the most resources
to the CUs having the best channel, while assigning a near-
zero rate to the CUs having low channel quality, especially as
the radar performance improves. However, in order to ensure
rate fairness, significant research efforts have been dedicated
to the beamforming design beyond ISAC, focusing either on
maximizing the minimum CU rate or the GM rate of the
CU [20], [34]. The authors of [[34]] proposed a cutting-edge
HBF design by solving a max-min rate (MMR) optimization
problem in a mmWave system. Moreover, Yu ef al. [20]
considered a RIS-aided wireless system and jointly optimized
the active and passive beamformers by maximizing the GM
rate of the CUs. Furthermore, the novel transformations of
the objectives in [20], [[34] were achieved using the theory
of majorization-minimization (MM), and subsequently, closed-
form expressions are derived for the optimal solutions, which
renders these studies potent in practical deployments. Com-
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pared to MMR optimization, which prioritizes the worst-case
user, maximization of GM rates balances fairness and overall
performance. In mmWave ISAC systems with directional
beams and blockages, it prevents resource domination by a
single user while improving weaker user rates. This enhances
the spectral efficiency and mitigates performance degradation
seen in strict MMR formulations, making it a practical choice
for ISAC deployments. As a further advance, in [35], we
have investigated HBF in mmWave ISAC systems with short-
packet communication, where radar beamforming error (RBE)
and sum rate were considered as the sensing and commu-
nication performance metrics, respectively. In particular, we
analyzed the RBE-rate trade-off under short-packet communi-
cation constraints and proposed a two-layer bisection (TLBS)
framework. However, [35] did not address sensing reliability
in terms of PD or fairness in communication performance
through GM rate.

Motivated by these facts, we investigate the PD- and GM
rate-maximization problem in an mmWave ISAC system.
To the best of our knowledge, this is the first paper that
investigates HBF for the optimization of the BB and RF
TPCs and maximizes the PD as well as GM rate obtained
for the sensing and communication subsystems, respectively.
To this end, we commence with the system model of a
downlink mmWave-aided ISAC system, where an ISAC BS
provides communication services to CUs while simultaneously
detecting the RT based on the received echo signal. Our
novel contributions are boldly and explicitly contrasted to the
existing literature in Table I and are further described next.

B. Contributions of this work

« We develop a rigorous framework for jointly evaluating
sensing and communication performance by employing
the generalized likelihood ratio test (GLRT) to determine
the PD of the RT and deriving a tractable rate expression
for the CUs. These formulations serve as the foundation
for the proposed joint optimization framework, enabling
efficient resource allocation and beamforming design
while ensuring a balanced trade-off between sensing and
communication objectives.

o Based on the system model considered as well as on
the sensing and communication performance metrics, we

formulate a pair of optimization problems, namely PD-
max and GMR-max. For the PD-max problem, we aim
for maximizing the PD of the RT, while meeting the
minimum SINR requirements of the CUs. By contrast,
in the GMR-max problem, we focus on maximizing the
GM rate of the CUs, while satisfying the minimum PD of
the RT. Both problems are highly non-convex due to the
intractable PD and GM rate expressions, owing to the
non-convex unit modulus constraint, and to the tightly
coupled optimization variables.

« To solve the first problem, we propose a bisection search-
based alternating (Bi-Alt) algorithm, where we first trans-
form the original problem to an equivalent power mini-
mization problem by introducing a slack variable for the
PD. Subsequently, we optimize the BB and RF TPCs in
an alternating fashion and update the slack variable via a
bisection search. Specifically, we adopt the SCA method
for optimizing the BB TPC, whereas we propose a novel
penalty-based Riemannian conjugate gradient (PRCG)
algorithm for optimizing the RF TPC.

o For the second GMR-max problem, we first transform the
intractable GMR-max problem into a tractable weighted
sum rate maximization problem, which is still non-convex
due to the non-convex rate expression. To address this
challenge, we propose a majorization and minimization-
based alternating (MM-Alt) algorithm, where we obtain
the convex surrogate function for the non-convex rate
function via the MM technique and optimize both BB
and RF TPCs in an alternating fashion via the SCA and
PRCG methods, respectively.

o The performance of the proposed HBF designs is char-
acterized via simulations and also compared to the per-
tinent benchmarks, which validates the efficiency of the
proposed methods.

C. Notations

We use the following notations throughout the paper: A,
a, and a represent a matrix, a vector, and a scalar quantity,
respectively. The (¢,7)th element, and Hermitian of matrix
A are denoted by A(i,j), and A, respectively. The trace,
Frobenius norm and vectorization of a matrix A are repre-
sented as tr(-), [|A||z and vec (). The expectation operator
is represented as E{-}; the real part of a quantity is denoted by
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Figure 1: Illustration of a mmWave-aided ISAC system.

R (-); Ips denotes an M x M identity matrix; the symmetric
complex Gaussian distribution of the mean y and the covari-
ance matrix o2 is represented as CN (u, 02).The operators ©
and ® denote the Hadamard product and Kronecker product,
respectively.

II. SYSTEM MODEL

We consider the mmWave ISAC downlink as illustrated
in Fig. where an ISAC base station (BS) serves K CUs
and simultaneously senses a point-like RT. The ISAC BS is
equipped with V; transmit antennas, whereas each CU has a
single antenna. To reduce both the cost and hardware power
consumption, the ISAC BS exploits a fully-connected hybrid
MIMO architecture, in which the overall TPC is split into
digital BB and analog RF domain TPCs. Both the TPCs are
connected via a limited number of RFCs, Nrp, and the RF
TPC is connected to the antenna elements via phase shifters.
To ensure the feasibility of the beamforming design problem,
we assume the condition K < Ngrp << N;.

A. Signal model

Let us define the data stream vector as s = [sy,...,Sk] €
CHE*1 where s, denotes the data for the kth CU. We assume
that the data symbols are statistically independent with zero
means, i.e., E{ss?} = I and E{s;} = 0, Vk. Following the
HBF design, the signal vector s is first processed by the BB
TPC Vg = [VBB,la . 7VBB,K] € CNrr XK followed by the
RF TPC Vgp € CNeXNre | where vpp ), represents the BB
TPC vector corresponding to the kth CU. Consequently, the
downlink signal x € CN¢*! transmitted from the ISAC BS is
given by

K
x = VRrVBBs = Vgr Z VBB, kSk- (1
k=1
Embracing the principle of ISAC technology, the transmitted
signal (I) serves a dual role in downlink communication as
well as radar detection. Therefore, we aim for efficiently
designing Vpp and VR for a favorable performance tradeoff
for RT detection and downlink communication. To this end,
we define the radar and communication performance metrics
in the subsequent subsections.

B. Metric for radar performance

We assume that the RT is located at a known distance
and direction, denoted by (r,#). Furthermore, a colocated
MIMO radar is employed at the ISAC BS for detection, where
the same antenna array elements are used for transmitting
and receiving the radar signals. When considering a uniform
linear array (ULA) at the ISAC BS having a spacing of half-
wavelength between the nearby antenna elements, the steering
vector apg(f) € CMe*1 can be expressed as

1
Vv Ny
Furthermore, upon considering a clutter-free environment, the

echo signal y, € CNe*1 received at the ISAC BS from the
RT is expressed as

Vr = aA(0)VrrVaes + v, 3)

where A(0) = aps(f)ahq(d) € CNe*Ne represents the
effective radar channel matrix, and « denotes the radar cross-
section (RCS) of the RT. Moreover, v € CNt*1 is the complex
additive white Gaussian noise (AWGN) with distribution v ~
CN(0,021y,), where o2 is the variance of the noise signal.
For the radar performance metric, we aim for maximizing the
PD by radiating the transmitted signal power toward the RT.
The transmit power radiated in the direction of 6, is given by

. . . T
aBS(e) — [17 eI 5111(9)7 o 76_](Nt—l)Tr sin(0) ) )

K
2
P(0) = Z |afs () VREvEB.k| - 4)
k=1
Furthermore, to evaluate the sensing performance, we for-
mulate an equivalent binary hypothesis testing problem for
the RT located at # based on the received echo signal as

follows

Ho .

Hq - QA(G)VRFVBBS 75 07 [Yr = O[A(Q)VRFVBBS + V] s

(&)

where H and #; are the null and alternate hypotheses, which
represent the presence and absence of the RT in the detection
range of the radar, respectively. Consequently, we adopt the
generalized likelihood ratio test (GLRT) for the above problem
(5), in which the unknown parameters (c, 6) are substituted
by their maximum likelihood estimates (&, O ). Thus, the
corresponding distribution of the optimal detector is given by
(22]

aA(0)VrrVeps =0, [y; = V]

7'[O . X%a
Hi: x5 (p),

where x3 and x%*(p) represent the central and noncentral chi-
squared distributions with two degrees of freedom, respec-
tively. Furthermore, p denotes the non-central parameter [21]],
which is given by

L, Ou) ~ { 6)

2

p=ulPO), (7)

where 1 = “—5-. Note that the non-central parameter in H
inherently depends on the number of receive antennas throug
|P(6)| in equation (). Subsequently, upon employing the



Neyman-Pearson criterion, the probability of detection, Pp,
of the RT for a given probability of false alarm Prp becomes

-1
P = Q) (F (1= Prn)).

= 1= Feai (Fa (1= Pra) ),

(8a)
(8b)

where Q,z2(,)(-) denotes the tail probability, and Fyz(,(-) is
the cumulative distribution function (CDF) of the noncentral
chi-square distribution. Hence, this paper utilizes the above
probability of detection, given by (8), to evaluate the radar
performance of the system.

C. Metric for communication performance

Let us denote the mmWave MISO channel vector between
the ISAC BS and kth CU by hif = [h} ..., hy, ,] € CPNe
To model the mmWave channel h,Ij , we adopt the popular
Saleh-Valenzuela model [[11]], [37], which is expressed as

a_ [N & H
hj’ = kaﬁé,kaBs(9z,k), 9
=1

where Ly, is the number of multi-path components for the kth
CU, and f3,, 1, represents the complex path gain for the /th path
of the kth CU. Furthermore, the quantity 6, j represents the
azimuth angle of departure (AoD). Upon assuming the full
CS]E] at the ISAC BS and CUs, the signal y; received at the
kth CU is given by

yr =h;' VrrVEss + ng, (10a)
K
=h VRpvpp sk + thvﬁFVBB,iSi +ng, (10b)
=10k

where ny, is the independent and identically distributed (i.i.d.)
complex AWGN at the kth CU having the distribution of
ng ~ CN (O,a%). Based on , the signal-to-interference-
plus-noise ratio (SINR) of the kth CU is given by

‘thVRFVBB,Ic ’2

Yk(VRF, VBB) = ) .
> [ Vreves| + 0}
ik

(1)

Thus, the maximum achievable transmission rate of the kth
CU is expressed in bits/s/Hz as follows

Ri(Vrr, Ves) = log, (1 + Vi (VRF,VBB)),Vk- (12)

Based on the radar and communication performance metrics
as discussed in the above subsections, we further describe the
problem formulation in the next subsection.

'In practice, CSI is obtained via channel estimation, with users feeding
back CSI in frequency division duplex (FDD) systems or the BS estimating
it via channel reciprocity in time division duplex (TDD) systems. Estimation
and quantization errors may exist, in which case robust beamforming designs
(see, e.g., [24]) can be applied.

D. Problem formulation

This paper aims for jointly optimizing the RF TPC Vg and
BB TPC Vpg for the mmWave ISAC system. It is important
to note that the optimization problems in this section are
formulated under the assumption of a known RT location
(r,0), as described in Section II-B. For joint optimization,
we consider the following pair of criteria: 1) PD maximiza-
tion (PD-max); 2) GMR maximization (GMR-max), which
correspond to the maximization of the RT performance and
the rate-fairness among CUs, respectively. Specifically, for
the PD-max optimization problem, we maximize the PD of
the RT under limited available power, while guaranteeing the
minimum SINR requirement of the CUs. The corresponding
PD-max problem is formulated as

Py max Pp (13a)
VRrr,VBB

st. v(Vrr, Ves) > Tk, Vk,  (13b)

|VrrVes|% < B, (13¢)

where 'y, and P; are the minimum SINR requirement of the
kth CU and the transmit power available at the ISAC BS,
respectively. Furthermore, the constraint (I3d) represents the
unity magnitude constraint at each element of the RF TPC due
to the phase shifters.

To ensure rate fairness among the CUs, we maximize the
geometric mean rate of the CUs in the second optimization
problem, while satisfying a minimum PD requirement in terms
of the desired sensing performance. Thus, by deﬁninlg the

GMR as fo (Vir, Vin) £ gnff_l Ri(Vi, Vis) ) " the
corresponding GMR-max problem is formulated as follows

Py max fam(Vrr, Ves) (14a)
VRrr,VBB

s.t.  Pp> P, (14b)

(13d), and (13d), (14c¢)

where P;}, denotes the specified threshold imposed on the PD
of the RT for a given false alarm probability Ppa .

To account for dynamic RT scenarios, both the formulated
problems and are also applicable for moving RT
tracking by steering the sensing beam toward the estimated
or predicted direction [26]. While localization errors may
affect beam alignment and PD, adaptive tracking techniques
such as Kalman or particle filtering can mitigate these effects
[38[I, [39]. These methods refine target position estimates
in real-time, enhancing sensing accuracy. Incorporating such
strategies improves the robustness of ISAC systems in practical
deployments. Observe that both the problems (13) and (14} are
highly non-convex due to the intractable expression of the Pp
and fem(Vrr, Vas), and also due to the non-convex unity
magnitude constraint on each element of the RF TPC Vyp.
Furthermore, the optimization variables Vgp and Vgyyp are
tightly coupled in the objective functions and the constraints,
which exacerbates the challenges in both the problems. In the



following sections, we propose efficient algorithms for solving
both problems.

III. HBF DESIGN BASED ON PD-MAX

This section proposes an efficient iterative algorithm for
solving the optimization problem P;, given by (I3). Let us
introduce a positive real slack variable n > 0 to make the
problem P; more flexible, so that its equivalent problem is
given by

15
VRF{H\%}ESB, 1777 (152)
s.t. Pp>n, (15b)
(I36). (139). and (13d). (150)

To solve the above problem (I3), we propose a bisection-
Alt (Bi-Alt) algorithm in which the BB TPC Vpp and RF
TPC Vgyr are alternately optimized using the BCD technique.
Subsequently, we update n by employing the bisection search
method. For a given n > 0, the equivalent feasible problem
for (I5) can be stated as

min J (Vrr, Ves) = [|[Vrr Va5 (16a)
VRrF,VBEB
5.t (T5B), (I35), and (T33). (16b)

Denoting the optimal solution of as {Vip, Vip}, it may
be readily seen that if ||[VipVigll% < P, problem is
feasible, and infeasible otherwise. However, the problem
above is still challenging to solve due to the intractable expres-
sion of Pp in (I5b) and owing to the non-convex constraints
(13b) and (13d). To overcome this, we first transform the
intractable expression of Pp to a tractable form by exploiting
its monotonicity with respect to the noncentrality parameter
p, as demonstrated in Theorem 1 of [40]. Consequently, the
equivalent modified optimization problem of (I6) can be recast
as follows

min  J (Vgr, Ves)

17a
VRF,VBB ( )

K 2

2 .

s.t. p=u <Z !ags(e)VRFVBB,k’ ) > 1, (17b)
k=1

(I36) and (133),

where 77 is the solution obtained for the corresponding value
of p by solving the following equation

(17¢)

1_‘FX§(P) (f)zgl(l—PFA)) =T1. (18)
Although, the constraint is now tractable, the variables
Vgp and Vgyy are still tightly coupled in both the objective
function and the constraint of (I7b). To address this issue, we
adopt the alternating optimization technique, where Vpp and
Vrr are optimized in an alternating fashion until the objective
function of J (Vrr, Vep) converges. This is described
as follows.

A. Optimization of Vg for a fixed Vyp

For a fixed Vgry, the resultant optimization problem for
Vg corresponding to is formulated as

K
min ngB +MVBB (19a)
Ves ’
k=1
K 2 1 2
st ) lgdvesa| +of > = [gi el vk (19b)
ik k
K
> ViR iQVBBE > W, (19¢)
k=1
where M = VE . Vpp € CNowxNer gy — VEHhy <
CNerx1 Q) = VELA(0)Vrp € CNreXNrrand w = 2,

Observe that the problem (19) is non-convex due to the non-
convex constraints (I9b) and (19¢). In order to handle the
non-convexity of constraints (I9b)), we apply a common phase
shift to vgg x,Vk, so that the quantity |g,’j VBB7k| leads to
real-valued quantities Vk. Consequently, the constraints (I9b)
are transformed into the second-order cone (SOC) convex

constraints as follows
1
<y /14 —tr., YKk,
2 I

GHe
| %
where G = [gy,...,g1] € CNvv*E and ¢, = gflvpp ;.
Furthermore, the quantity e € CX*! is the elementary vector
with one on its kth position and zero elsewhere. Next, to
handle the non-convex constraint (I9¢), we employ the popular
successive convex approximation (SCA) technique, where the
first-order Taylor series is used to find the pertinent convex
surrogate functions for (I9¢). Specifically, a convex lower
bound in a linear form of the function vgBAkaBgyk around

the point vg])3 . can be constructed as follows

(20)

g - .

Vip s VBB K > QQ{Vgl)s,kQVBB,k} - Vg}%,kﬂvg])s,k» 2
where vl(gj% 4» Vk, denotes the optimal solution obtained at the
sth iteration. Following these transformations, the equivalent
convex problem for at the (j + 1)th iteration can be
formulated as

K
: H
M 22a
mnin ;VBBJ@ VBB,k (22a)
K .
s. t. QZ%{vg%iﬂvBka} > w, and 20), (22b)
k=1

where w = w + Z,If:l vg])ghllﬂvg% - Since the problem
is convex, it can be efﬁciehtly solved via a standard convex
optimization tool. Thereby, we follow the SCA approach
for recursively solving the problem (22), which obtains the
optimal solution to the original problem (19). Moreover, we
show the key steps involved in optimizing Vgp in Algorithm

[



Algorithm 1 SCA method for solving

Algorithm 2 PRCG algorithm for solving

Input: VRF’ VBB
Output: optimal BB TPC Vip

: initialize: j = 0, vBB k= VeB(:,k), VK
: repeat _ _
compute @ s =w+ Y, g%iﬂvg%’k

setyej+1

1
2
3
4: update vBB k), Vk by solving
5
6: until objective function of converges

B. Optimization of Vgr for a fixed Vpp

In this subsection, we optimize Vgp for a fixed
Vgg. To this end, let us define Hy = hyh{f €
(CN”XNt, B, = vBB’ivgB i € CNrr XNRF, and Ay &

K
e > tr(VELH; VieB;) —tr (VELH, VrpBy,) + 07l with
i#k
B = VBBVEIB € CNrrxNrF Thus, we formulate the sub-
problem of optimizing Vi as follows

min  tr (VEpIn, VrrB) (23a)
VRF
s. t. Ap <0,VEk, (23b)
tr (VEFA(0)VrrB) > w (23¢)
By leveraging the matrix transformation identity

tr (PPQPR) = vec (P)? (RT®Q)vec (P), one
can rewrite the objective function (23a)), and constraints (23b)
and as given by (24), (23), and (26), respectively, shown
at the top of the next page. Following these transformations,
the problem (23) can be recast as

mdin o To (27a)
s. t. @HTIpp + 02T < 0, Vk, (27b)
AP > w, 27¢)
|p(n)| =1,¥n € {1,..., N;Ngrr}, (27d)

where ¢ = vec (Vgg) € (CN“NRFX1 gVT®INt €
(CNtNRFXNtNRF’ A = (BT®A c C tNRFXNtNRF

rk(imf@m)) - (Blem) <
ik

CNeNrrxNeNrr - Fyrthermore, the problem above is still
challenging to solve in the Euclidean space due to the non-
convex unity magnitude constraints (27d). To solve this prob-
lem, we propose a penalty-based RCG (PRCG) algorithm
that solves the problem in the Riemannian space. Specifically,
we first add the constraints and to the objective
function as penalty terms. Subsequently, we employ the RCG
framework to tackle the unity magnitude constraint (27d),
which solves the problem on the complex circle Riemannian
manifold. Finally, we adjust the penalty term to satisfy the
constraints and 27c).

To this end, let us convert the constrained problem into
an unconstrained problem on the Riemannian manifold upon

and II, =

Imput: Vigr € M, Vg, A > 1, 0 < ¢ < 1, and thresholds
€1 > O €a >0
Output: Optimal Vip
1: initialize: ¢t = 0, ¢ = vec(VRrr),(; =
2: while (|[VrL(h:)]3 > €1) do
choose step size v» using Armijo backtracking line
search algorithm
4 update the next point ¢;1 by using
5. evaluate VL (¢p41) using
6: compute (¢4 according to (34)
7
8
9

~VmL(dr)

(95}

sett<—t+1
: end while
Cif (U (@) < €2 && 0 (Pr) < €2),Vk
10: return ¢* = ¢, stop
11: else
12: update A = % and go to step 2
13: end if

14: return: restore matrix Vip via ¢*

adding the constraints and (27d) into the objective func-
tion as a penalty term. Consequently, the resulting problem is
formulated as
K
min L(¢) = ¢" T+ XY v (@) +3(9)
¢ Pt (28)
(27d),

where A > 1 is a penalty parameter, which maintains a trade-
off between the objective function ([27a)), and the constraints

(27b) and (27c). Furthermore, the quantities ¢, (¢) and §(¢)

are defined as follows
V() é(max {0,0" 1,0 + aﬁrk})z, Yk
2
5(¢) é(max {0,w— ¢>HA¢}) :

Clearly, for the given A, the problem (29) above represents
a manifold optimization problem, where the non-convex unity
magnitude constraint forms a N; Nry-dimensional com-
plex circle Riemannian manifold, as M = {¢ € CNeNrex1 .
|op(n)| = 1,V1 < n < N¢Ngrr}. Thus, we adopt the RCG
method to solve (29), which differs from the conventional
gradient descent method performed in the Euclidean space.
The following are the key steps involved in each iteration of
the PRCG method.

Riemannian gradient: We evaluate the Riemannian gradient
at point ¢ denoted as V (L(¢) by orthogonally projecting
the Euclidean gradient onto the tangent space of the manifold
Ty M expressed as

S. L.

(29a)

(29b)

TyM = {z € CNNrr X iR{z2 0 ¢*} = On,Nppx1}- (30)

Thus, the Riemannian gradient is given by
VL () = Proj,VL(¢) (31a)
=VL(¢) - R{VL(p) ©d"} © ¢,  (31b)



tr (VEpIn, VrrB) = vec (Vi) (BT @ 1y,) vec (Vgr)

K

(24)

Ap=96 Zvec (VRF)H (BLT ® Hk) vec (Vgrp) — vec (VRF)H (Bg ® Hk) vec(VRr) + ai(S <0,Vk,

itk

tr (Vf{FA(G)VRFB) = vec (Vre) (BT @ A(0)) vec (Vgg)

(25)
(26)

where Proj denotes the projection operation, and VL(¢) is
the Euclidean gradient. Furthermore, we evaluate VL(¢) as
follows

K
VL(p) = 2T + A (Z 2, + g) : (32)

k=1

where the quantities s¢;, and ¢ are given by

5 {4 (¢TI, + 02Ty) i, ¢TI+ 02l >0
k) =

0, PHIgep + 02Ty, <0
(33a)
H o H
. {4 (¢7A0 —w) A, w > @"AS. (330)
0, w< ¢pHAP

Steepest search direction: With the aid of the Riemannian
gradient, we find the most efficient steepest search direction
Cj+1 at the (j + 1)th iteration by employing the conjugate
gradient method as follows

C(j+1) =-VmL (¢(j+1)) +un T¢(j)>—>¢(j+1) (C(j)) )

(34
where v represents the Polak-Ribiére’s conjugate parameter
[11] and T¢(j),_>¢(j+1) (C(j)) is the transport operation. Note
that the vectors ¢U+1) and ¢() cannot be added directly, since
they belong to different tangent spaces. Thereby, we require
a transport operation Ty, ,g(i+1) (¢9)) to map the search
direction from its original tangent space to the current tangent
space, which is defined as

s+ (C“’) _ C(”—%{C(” o <¢(j+1))*}®¢(ﬂ'+1).
(35
Retraction: Similar to the classic gradient descent approach,
we compute the next point ¢7t1) using the step size v and
search direction ¢(). Yet, it is very likely that the next point
Ut = ) + 1,¢) does not fall on the manifold M,
but rather lies on the Ty ;+1) M. Therefore, to retract back the
point on the manifold M, we perform the retraction mapping
as follows

Retry : T M — M :
T

(@) 41y¢ W), (@D +15¢D) N, N ]
(@D +120)1 |77 [(@D)+12¢10)) N, N | (36’)
where the step size v5 is obtained by the Armijo backtracking
line search algorithm [[11].

¢(j+1) _

Update penalty parameter: Finally, we update the penalty
parameter \ to meet the constraints and in the
optimization problem (27). Note that the penalty parameter
A is crucial for achieving an optimal feasible Vyp. If A
is too small, the resultant solution may fall far outside the
feasible region, potentially leading to the violation of the
constraints. Thus, we initialize A to be a small number and
then gradually increase it as A = A/c, where ¢ € (0,1) is the
scaling parameter for ensuring that the constraint violations
are sufficiently penalized. We summarize the PRCG method
in Algorithm 2] which is guaranteed to converge to a stationary
point [37].

C. Slack variable 1 update

Finally, we update the slack variable 1 via the bisection
search method for fixed values of Viyr and Vpp. Toward
this, we define the quantities 1y and 7y as the lower and
upper bound of the optimal value of Pp, respectively. Since
the probability of detection is bounded between 0 and 1, we
set n, = 0 and ny = 1 to keep the optimization within a
valid range, ensuring accurate constraint handling. When the
problem is feasible for a given n i.e., |[Vip Vigll% < P,
we update the lower bound as 7y, = 7, else we update the
upper bound as ny = 7.

Based on the method presented above, we summarize the
complete Bi-Alt method conceived for solving the PD-max
problem in Algorithm 3. Note that €3 and €4 in Algorithm
3 are the error tolerance for the function J (Vgrr, Vip)
in the inner loop and bisection search in the outer loop,
respectively. Furthermore, the computational complexity
of Algorithm 3 depends on Algorithm [I] and Since
Algorithm |I| involves the interior-point method harnessed
for optimizing the BB TPC Vppg, it has the complexity
order of O(Z, Ng2K3®), where Z;, denotes the number of
iterations required for updating Vpg. On the other hand,
Algorithm focuses on optimizing the RF TPC Vgp,
whose main complexity arises from the computation of
the Euclidean gradient (32). Consequently, the complexity
of Algorithm E is given by O (IrNENI%FE%), where 7,
represents the combined number of iterations réquired for the
RCG method and updating the penalty factor A. Therefore,
the overall computational complexity of Algorithm 3 is given
by O (TowTin (T N3RS logy () +IrN3N;F§2)),
where Z;, and Z,,; denote the number of iterations reqllnred
in the inner layer and outer layer, respectively. In addition, €



Algorithm 3 Bi-Alt method for solving P
Input: P;, Ppa, 'y, Vk, thresholds €3, €4
1: initialize: Vrpr, Vg, lower bound 7, = 0, and upper

bound ny = 1.

2: repeat

3 n=(mL+nu)/2

4: compute 7 using

5: repeat

6: set j =0, 7U) =00

7: evaluate V(] 1 for given V 9) by solving via
Algorithm [1]

8: obtain Vg; ) for given V(] +1) by solving
via Algorithm [2]

9: compute J U+ = HV(]+1)V(J+1)||2

10: set j e j +1

11 until |(J —Ju- 1)| < g

12: if obtalned set {VRrr, Vpp} is feasible,
13: update 7, =7

14 else

15: set nu = 1.

16: until ny —nr, < ey

signifies the accuracy of the SCA in Algorithm [T}

IV. HBF DESIGN BASED ON GMR-MAX

In this section, we focus our attention on optimizing the
BB and RF TPCs based on the GMR-max problem given by
Py of (14), which is NP-hard. To solve Ps, we first utilize
the relationship between the PD Pp and the noncentrality
parameter p, as discussed in Section which transforms the
constraint (T4b) into a tractable form. Given the transformed
PD constraint (I4b), the equivalent GMR-max problem is
reformulated as

max fam(VRrr, VBB) (37a)
VRrF, VBB
s. t.(I3c), (13d), and (17B). (37b)

Observe that the objective function foum(Vrr, Veg) in the
above problem is nonlinear and involves the product
of non-concave functions Ry(Vgr, Vpp), which renders
fem(Vrr, Vig) a highly non-convex function. To handle this
hurdle, we first transform foy(VRrre, Veg) from a nonlinear
function to a weighted linear function of the CU’s rate.
Toward this, let us consider (Vg}%, V(O)) as an initial feasible
point, and (Vg%,vg])g) as the feasible solution obtained
from the (j — 1)th iteration. Then, the linearized function
of the composite function fon(Vrr, V) around the point

Ry, (V%%,V(J)) is given as [20]

Ry (Vrr, VBB)
(Vi veh)
Thus, the problem is equivalently transformed to the
following weighted sum rate maximization problem at the jth

K
o (VELVE) D (38)
k=1 Bk

iteration
@ (Vgp, V )Rie(Vrr, V
ma , Uy ,
VRFa\);BB 9"’ (Vrr, VeB) Z k(Vrr, VBB)
(39a)
s. t.  (I3¢), (13d), and (T70), (39b)
where ug ) is the weight corresponding to CU k, which is

computed as
max Ry (Vi VEL)
u(j): ek k RF> Y BB

RV

(40)

Although, the objective function is transformed to the
linearized form (394d), it is still non-convex due to the mul-
tiple fractional parameters of SINR terms ~x(Vgr, Vep)-
Moreover, the tightly coupled variables Vryr and Vpp, both
in the objective function and constraints, make the problem
(39) even more challenging to solve. To solve this problem,
we propose a majorization and minimization-based alternating
(MM-ALlt) algorithm, in which for a fixed u,(j ),Vk, at the
jth iteration, we first split the problem (39) into two sub-
problems for the optimization of the BB TPC Vpp and
RF TPC Vgyyp alternatively. Furthermore, at each stage of
optimization of these variables, we transform the non-convex
objective functions corresponding to into suitable convex
surrogate functions via the MM technique [34]], [41]], [42]].

A. Optimization of Vg for a fixed Vyr
For the given point (Vg%,vg%), we seek to optimize
Vg];r Y that satisfies the following condition
+1 * a a
9 (VR VEEY) > 0 (VL VD).

by considering the following sub-problem for the BB TPC

K
Zug) In (1 + 'y,(f) (VBB))

(41)

(42a)

max
ViB

2
s.t.  pen = fen (Z ‘aBS V%FVBB k‘ ) > Tjtn, (42b)

IV Vesl3 < P, (420)

where 7, is the solution obtained for the corresponding value
of pyn by solving 1 — F z(pt})(]: (1- PFA)S = P, and

|h(J>VBB k| with h(J) hHV(J) Let us

+0k

1) (Vip) =

Z |h(])VBB i
iZk

define u = h,(f)vg% p and 7 = Z ’H(])Vg% i +O’,%. Then,

a quadratic minorizing functionzfor objective (42a)) at point
Vg% is constructed as follows

LS 2 ‘
> uf (2R{af by +c),
k=1

(43)

)veE Kt b(J) Z ‘h VBB,i




O _ (V) o (Vi)

where a;" = =572 = and
k hg) g};,k K hi‘j)vBBl +o?

= (150 (Vid)) = (Vi) ~ . e

thermore, by rearranging the terms of (@3) and omitting the

constant terms, followed by the substitution of the non-convex
constraint (42b) with its associated minorant (2I) as detailed
in Section the equivalent modified problem of (@2) is
given by

K K
Z VgByk(I)(j)VBB,k -2 Z m{d](g)VBB,k}

min (44a)

Vs k=1 k=1
st2 Z R{vEy L0 Ve 1} > ), (44b)
ZVgBka;j)VBB,k < Pt, (440)

k=1

whlere‘ @'(j) _ ZK (J)b( )h() h(J) d;gj) =
(])a’(gJ)hl(CJ)’Vk., Q;Saj) Vl(‘{jk)‘HVgIZ" Q(J) V(])HA(Q)\/;%%
and wm = wth + Zkzl Vl(g];,,kw(”vg%,k with w = Z%:

Since both the objective function and the constraints of the
problem (@4) are convex, one can solve it efficiently via a
standard convex solver, such as [43]].
B. Optimization of Vg design for a fixed Vpp

Next, for a given (Vg%7V](3j}3+ 1)), we further seek to

optimize Vg;— Y that satisfies the following condition
g (VEEDVERY) > o9 (VL VERY) . @)

by considering the following sub-problem for the RF TPC:

Z u(]) In (1 + ,y(J)(VRF)) (46a)

max
VRF

2
st fuen <Z’ags( VRFvB“\> > 7, (46b)
k=1

IVeeVig V5 < P, (46c)
where 7“) (Ver) = %% (VRF, Vgg 1)). Furthermore,
by using the transformation hi VRFVS]; 1) =

, T
[(Vg;{i)) ®h};{} vec (Vgr) and by definition of

¢ as ¢ = vec(Vgr), we rewrite W(j)(VRF) in
, RU+D
terms of ¢ as 77 (¢p) = M, where

. 2
> [B2ef o

oy 1))} ® hf’. Given this transformation,

e 2 (v

the quadratic minorizing function of 'y(] )(q_’)) at point
$U) = vec(VY)) is obtained by considering @ = h,(f )

2
and ¥ = Z h(ﬁl)qb(f)
i#k

+ o3 as follows

Sl <m{ag)ag;n¢} S |+ egg)) |
k=1 i=1

7 (¢19) “n
>k, )ﬁi{j1>¢m|2+gg and
&) = (1 +47) (p0) )) —39) (¢9)) b 52 To simplify
it further, we rewrite (7) in a compact form as follows

i G @y ~(5
() _ (@) 7() _
where a;" = W’ =

where E() SE ug@}(g) (Zifil(fl(j+1)>Hfl(j+1) ’
p) = YK WDaRE and ¢ = K W06 Next,

we apply similar transformations to constraints (@ and @6c)
as illustrated in Section[[II-B] which reformulates problem (46))
as follows

m;n HTED ¢ — 2R{pW) ¢} (49a)
s.t. pTAY > wn, (49b)
"¢ < P, (49¢)
|o(n)| = 1,Vn, (49d)
. K . T
where A((ij) = 2:1 {(vggi)(vg];?)}[) ®A(9)] and

Héj ) :JVgg 1) (Vg];r D) ®I,. Subsequently, we adopt
the PRCG algorithm, which converts the above constrained
problem (@9) into an unconstrained problem on the Rieman-
nian manifold upon adding the constraints (#9b) and into
the objective function. Thus, the equivalent penalized problem

is given by

m(gn FO ()
— $TED ¢ — 2R{pW g} + A(,,éj) () + X (4,)) (50)
S. t. |¢(n)| = Lvna

(maX{07Wth - ¢HA§j)¢})2, X5 (¢) 2

2
(maX{O ot H ¢> P} ) and X is the penalty factor. Next,
to solve the above problem (50) on the Riemannian manifold
for a given )\, the Euclidean gradient of F()(¢) is given by

VFO (@) = 2BV —2(p0)7 + A (67 +€). 5D
where the quantities £ ) and £(j ) are defined as

¢ _ [1(67AD 0 —wu) ADG. w20 AL,
o, win < $TAY @,
(52a)
("¢ — P )1, ¢MIe > P,
0, P ¢ < P
(52b)

where v (¢p) £

5}(}]’)



Algorithm 4 MM-AIlt method for solving Po
Input: P, Ppa, Pin
. initialize: j = 0, feasible TPCs V) and VJ}
: repeat

1
2
3: compute uffj ), Vk using
) .
5

obtain V) for given VY by solving .

find Vg; D for given VB]]; D by solving via
Algorithm 2.
until fon(Verr, Veg) converges.

a

Thus, the optimal problem solution of (#6) is achieved via the
PRCG algorithm, where the penalty parameter A progressively
increases until the constraints are met. Hence, we alternatively
optimize the BB TPC Vg and RF TPC Vgyp using the
proposed MM-Alt method. Furthermore, Algorithm 4 presents
a pseudo-code of the proposed MM-Alt method for jointly
optimizing the RF and BB TPCs for solving the GMR-max
problem.

Observe that Algorithm 4 employs Algorithm 1 and
Algorithm 2 for optimizing the BB and RF TPCs, re-
spectively, in an alternating fashion. Therefore, the over-
all computational complexity of Algorithm 4 is given by
@ (IO Nl?%f%K?"‘r’ + ITNENI%FE%)), where 7, is the number
of iterations required for the coni/ergence of Algorithm 4.

Note that the proposed designs are also applicable to the
partially-connected hybrid MIMO architecture, where the RF
TPC matrix adopts a block-diagonal form [31f], affecting only
the RF TPC design. Since both optimization problems (I3 and
(T4) use the proposed PRCG algorithm, the block-diagonal
RF TPC can be vectorized into the tractable forms of
and (@9), allowing the PRCG method to efficiently solve
the problems while preserving the architecture’s structural
constraints.

V. SIMULATION RESULTS

In this section, we present our simulation results to eval-
uate both the detection and communication performance for
demonstrating the effectiveness of the proposed algorithms for
HBF design in an ISAC-enabled mmWave system. Throughout
the simulations, we use the following settings, unless stated
otherwise. The ISAC BS is configured with a ULA having
N; = 128 antennas and Nyr € {8,16} RFCs. We consider
K = 4 CUs, which are positioned at distances of 40 m, 30 m,
20 m, and 10 m in a circular area of radius 50 m from the ISAC
BS, at angles of —60°, —30°,30°, and 60°, respectively. The
RT is located at 0°. Furthermore, the mmWave channel gain
is modeled as S ~ CN(0,10701PL(dm)) where PL(dy)
represents the path loss gain and it is given by [|14]

PL(dy)[dB] = € + 10¢ logy((dx) + @, (53)

where d, is the associated distance of the kth CU from the
ISAC BS, and the quantities ¢, ¢ and w are given by ¢ =
61.4, o = 2 and w € CN(0,02), with 0, = 5.8dB [14].
Moreover, the system operates at the carrier frequency of 28

GHz with a bandwidth of 251.1886 MHz and a total power
budget of P, = 30dBm. Thus, the noise variance at each CU is
set as 07 = —174 +10log,o B = —90 dBm. The radar cross-
section is generated as « € CN(0,02) with 2 = —90 dB and
the noise variance of the echo signal is set as o7 = -60 dBm.
While we model o as o € CA(0,02), incorporating distance-
dependent path loss is an interesting direction for future work.

A. Trade-off between sensing and communication via PD-max

In this subsection, we investigate the performance analysis
of the proposed Algorithms toward designing the HBF via PD-
max optimization. We consider the minimum SINR require-
ment for each CU to be the same as I'y, = I', V&, and set the
parameters I' = 15 dB, Ppa = 10~% and n = 0.975, unless
stated otherwise. Furthermore, we compare the proposed Bi-
Alt scheme to the following benchmarks:

e Scheme 1 (Sensing-only): For this scheme, we allocate
the total available power exclusively to sensing. Thus, the
BB and RF TPCs are optimized via solving problem P;
by removing the SINR constraint (I3b).

o Scheme 2 (FDB): For this scheme, we employ the FDB
scheme to solve P;, which requires Nrrp = N.

o Scheme 3 (HBF, two-stage): For this scheme, we employ
the two-stage design [[12f], where we first obtain the FDB
corresponding to P; and subsequently optimize the BB
and RF TPCs via minimizing the Euclidean distance
between the FDB and HBF beamfomers.

o Scheme 4 (HBF, OMP): For this scheme, we employ the
OMP algorithm [19] to optimize the BB and RF TPCs in
the inner layer of the Bi-Alt algorithm.

1) Convergence behavior: Here we characterize the conver-
gence behavior of the proposed Bi-Alt Algorithm 3 for solving
(I3), particularly for larger antenna arrays and increased RF
chains. The inner loop of the algorithm follows a BCD
approach, iteratively updating the RF and BB TPCs, Frr and
Fpp, to minimize the objective function J (Vgrr, Vpp). At
the (j 4 1)th iteration, the monotonic convergence property is
ensured as follows:

IOV FEEY) < TR FEEY) < T (R, F%];>,(54)
where the RF TPC Fg% is optimized via the PRCG method.
The PRCG method iteratively refines the feasibility points
while ensuring a non-increasing sequence of objective function
values. Given the outer loop structure, the slack variable 7
is updated via the bisection search method until convergence
is achieved. Furthermore, Fig. shows the convergence
behavior of the inner layer of the proposed Bi-Alt algorithm
with €3 = 1073, and Ngr = {8, 16}, which minimizes the
function J (Vrr, Veg). As shown in the figure, the function
J (Vgr, Vp) gradually decreases and reaches its minimum
value within a few iterations, which shows the convergence
of the inner layer of the Bi-Alt algorithm. Observe that the
function J (Vgrr, Vap) associated with Ngrr = 16 converges
faster than for Ngp = 8, as the influence of BB TPC over the
RF TPCs is greater for a large number of RFCs. Furthermore,
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Figure 2: Convergence behavior of the proposed Bi-Alt algo-
rithm in (a) inner layer; (b) outer layer.

Fig. [2b| illustrates the convergence behavior of the outer layer
of the Bi-Alt with ¢4 = 1075, which corresponds to the
bisection search algorithm. As seen from the figure, the PD
Pp saturates within 10 iterations for both I' = 12 dB and 15
dB, which verifies the rapid convergence of the proposed Bi-
Alt algorithm. Note that the nonmonotonic behavior in Fig.
is due to the bisection search method in the outer layer of the
Bi-Alt Algorithm, which iteratively updates the slack variable
while ensuring feasibility under the transmit power constraint.

2) Probability of detection versus SINR threshold: Fig.
investigates the behavior of the PD with respect to the SINR
threshold for various values of the number of RFCs. As shown
in the figure, the PD decreases upon increasing the SINR
threshold, which reveals the trade-off between the sensing
and communication tasks. This trade-off is intuitive, since
more power is radiated toward the CUs to meet the higher
SINR requirements, which reduces the power available for RT
detection. Observe that the PD of the sensing-only scheme is
independent of the SINR threshold and acts as the upper bound
for the sensing performance. Furthermore, the proposed Bi-Alt
scheme having Nry = 16 performs close to the FDB scheme
and outperforms the two-stage HBF and OMP benchmarks for
both Nrr = 8 and 16. This shows the efficacy of the proposed
PRCG and SCA algorithms employed in our Bi-Alt scheme
for the optimization of the RF and BB TPCs, respectively.

3) Probability of detection versus transmit power: To fur-
ther investigate the performance of the proposed HBF design
based on the Bi-Alt algorithm, we plot the probability of
detection versus transmit power in Fig. [3b] As shown in the
figure, the probability of detection increases monotonically
upon increasing the transmit power, which is a benefit of
having a higher power for RT detection for a fixed SINR
requirement. Observe that the probability of detection for the
proposed scheme associated with Nrr = 16 RFCs approaches
that of the FDB scheme, and it is enhanced in comparison to
the benchmarks for both Ngrr = 8 and 16 at high as well
as low transmit powers. Interestingly, the performance gap
between the proposed scheme having Ngr = 8 and the FDB
scheme reduces upon increasing the transmit power. Hence,
one can further reduce the number of RFCs in mmWave ISAC
systems for achieving the desired probability of detection by
increasing the transmit power.

4) Probability of detection versus the number of CUs: In
Fig.[3c| we investigate the impact of the number of CUs on the
probability of detection for a fixed transmit power of P, = 30
dBm. As shown in the figure, the performance of the system
degrades upon increasing the number of CUs, which is due
to the increasing SINR requirements of the additional CUs.
Furthermore, the proposed Bi-Alt scheme performs close to
the FDB for Ngrr = 16, even for an increasing number of
CUs in the system. Furthermore, it is superior to the other two
benchmarks for both Ngr = 8 and Nrr = 16. Observe that
the performance of the two-stage HBF and of OMP having
Ngrr = 8 degrades sharply after K = 5 CUs due to the
resultant reduced HBF gain toward the RT. By contrast, the
performance of the Bi-Alt scheme with Ngr = 8 does not
degrade sharply, which shows the efficacy of the SCA and
PRCG algorithms. Moreover, it is suggested that for a fixed
transmit power, one has to increase the number of RFCs upon
increasing the number of CUs to achieve a higher probability
of detection.

B. Trade-off between sensing and communication via GMR-
max

In this subsection, we evaluate the performance of the
proposed HBF design based on the MM-ALlt algorithm, which
ensures rate-fairness among the CUs. Unless stated other-
wise, we set the parameters for the GMR-max scheme as
P, = 30 dBm, Ppa = 1076 and P, = 0.975. Furthermore,
we compare the proposed MM-Alt scheme to the following
techniques to reveal interesting insights pertaining to HBF
designs:

e Scheme 1 (Comm-only): The available transmit power
is used for the CUs only. Therefore, we set P, = 0 for
optimization of the BB and RF TPCs via problem Ps.

o Scheme 2 (FDB): This scheme employs the fully digital
beamformer to solve Ps.

e Scheme 3 (MMR-max): This scheme optimizes the BB
and RF TPCs to maximize the minimum CU rate by
solving the following optimization problem:

max min Rk(VRFavBB) (55&)
VRrr, VBB k=1,...,.K
s.t. (139, (3. and (1H). (55b)

We solve the problem (53)) seen above by transforming it
into a feasible problem via the introduction of an auxiliary
variable for R (Vgrr, VBg), and, subsequently employed
the Bi-Alt scheme for optimizing the BB, RF TPCs, and
the auxiliary variable via the SCA, PRCG and binary
search algorithms.

o Scheme 4 (SR-max): For this scheme, we optimize the
BB and RF TPCs to maximize the sum rate of the system.
The corresponding pertinent optimization problem for
SR-max is given by

K

Ri(Vir, V 56
v, max ; % (Vrr, VBB) (56a)
s.t. (39, ([3J), and (T3H). (56b)
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The optimal solution of the SR-max framework above is
solved using the proposed MM-Alt algorithm by fixing
the weight of the CU as u,(c]) =1, Vk.

1) Convergence behavior: For the MM-Alt algorithm, the
overall convergence behavior follows the same principles as
Bi-Alt, with the key distinction that the bisection search step is
omitted. Since the RF TPC significantly influences the overall
convergence, and it is optimized using the PRCG method,
the algorithm remains stable even for large-scale mmWave
systems. Moreover, Fig. [ shows the convergence behavior of
the proposed MM-Alt algorithm conceived for maximizing the
GM rate of the CUs. As shown in the figure, the GM rate of
the system saturates within a few iterations for both Ngp = 8
and 16, which verifies the convergence of the MM-Alt scheme.
Furthermore, the achievable GM rate increases and achieves
the rate of an ideal FDB scheme upon increasing Nry, which
validates the efficacy of the proposed MM-Alt scheme.

2) Achievable GM rate versus the probability of detection
threshold: In Fig. 5al we plot the achievable GM rate of
the system versus the probability of detection threshold P,
for Npp = {8, 16}. The achievable GM rate of the system
decreases upon increasing F;p, due to the radiation of lower
power towards the CUs. Observe that the GM rate remains
nearly constant for P}, between 0.8 and 0.95, as ample power
is available for communication. However, for P, > 0.95,

more power is allocated for sensing, leading to a significant
decline in the GM rate. Furthermore, the GM rate of the
Comm-only scheme remains unaffected by P, and acts as
an upper bound for the communication performance. Interest-
ingly, the performance of the MM-AIt algorithm with only
six RFCs achieves a performance close to that of the FDB
scheme, which verifies the efficacy of the SCA and PRCG
algorithms, and renders it eminently suitable for the practical
use cases of ISAC-enabled mmWave systems. Furthermore,
the achievable GM rate of the GMR-max scheme is higher
than that of the MMR- and SR-max schemes, which arises
due to the allocation of power based on the GMR-max criteria.
Therefore, the proposed MM-ALIt scheme is eminently suitable
for maximizing the GM rate of the system.

3) Achievable minimum rate versus threshold for probabil-
ity of detection: To investigate the performance of the pro-
posed scheme in achieving rate fairness, we plot the achievable
minimum rate of the system in Fig. 5b Note that the MMR-
max scheme acts as an optimal scheme for the achievable
minimum rate due to its inherent power allocation based on
maximizing the minimum CU rate. As shown in the figure,
the proposed GMR-max-based design yields a performance in
close proximity to that of the optimal MMR-max scheme and
improved over the SR-max scheme for both Ngr = {16, 8}.
This verifies the suitability of the proposed MM-Alt scheme
for achieving rate fairness via the GMR-max framework in
mmWave ISAC systems.

4) Achievable sum rate versus threshold for probability of
detection: In Fig. we plot the achievable sum rate of
the system using the proposed algorithms. As shown in the
figure, the SR-max scheme acts as an optimal scheme for
the achievable sum rate of the system. This is due to the
allocation of higher power to the stronger CUs possessing
higher-quality channels. Interestingly, the performance of the
GMR-max scheme is closer to that of the SR-max scheme
and exceeds that of the MMR-max method for both Ngry = 8
and 16. This reveals that the MM-Alt algorithm proposed
for the GMR-max scheme achieves rate fairness, without
significantly compromising the achievable sum rate. Therefore,
GM rate maximization is eminently suited for an optimal
trade-off between the achievable sum rate and rate-fairness
in the mmWave ISAC system.
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(c) Achievable sum rate versus probability of detection.
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It is worth noting that Fig. 5b] shows that the GMR-max
outperforms the SR-max metric in fairness under the MMR-
max framework, while Fig. demonstrates its superiority
over the MMR-max in maintaining higher throughput under
the SR-max framework. These results confirm that the GM
rate metric ensures fairness without significantly degrading
the overall system throughput, making it a well-balanced and
effective metric for the mmWave ISAC systems.

5) Achievable GM rate versus transmit power P;: In Fig.
[6a] we plot the achievable GM rate of the system versus
transmit power P; for a fixed value of the probability of
detection threshold, namely, P = 0.975 and for the probability
of false alarm Ppa 1076, As expected, the achievable
GM rate of the system increases with P, due to having
higher SINRs for the CUs. For comparison, we evaluate the
proposed MM-Alt method against the WMMSE-AIt approach
from [29]]. The WMMSE-AIt method reformulates the non-
convex problem (39) into a convex one using the WMMSE
framework, which is then solved via alternating optimization.
As illustrated in Fig. [6a] the MM-Alt demonstrates superior
performance by effectively handling non-convexity, resulting
in improved efficiency in power distribution and overall system
performance.

6) Achievable GM rate versus probability of false alarm:
Fig. [6D] plots the achievable GM rate versus the probability
of false alarm Ppp for the fixed probability of detection
P, = 0.975 and transmit power P, = 30 dBm. As shown in
the figure, the achievable GM rate of the system improves upon

Probability of false alarm, Py,

(b)

10° 10?2

Number of CUs, K

(©

Figure 6: Achievable GM rate versus (a) transmit power; (b) probability of false alarm; (c) number of CUs.

increasing Pra from 1076 to 10~!. This is due to the fact that
the power radiated towards the RT decreases upon increasing
Pra, which results in a higher SINR at the CUs. Additionally,
observe that the MM-Alt consistently achieves a higher GM
rate across different probabilities of false alarm, demonstrating
its effectiveness in optimizing the sensing-communication
trade-off. Furthermore, the performance of the GMR-max
scheme having Nrr = 16 achieves levels coinciding with
its FDB counterpart for low as well as high values of Ppa.
This confirms the efficiency of the proposed MM-Alt scheme.
Thus, the proposed MM-AIt algorithm is a power-efficient
method conceived for beamforming optimization in ISAC-
aided mmWave systems due to its requirement of fewer RFCs,
while also achieving the GM rate of the FDB scheme.

7) Achievable GM rate versus number of CUs: Fig.
shows the achievable GM rate decreasing as the number of
CUs increases from 2 to 8, with a fixed transmit power of
30 dBm and 8 RFCs. This decline is due to CUs competing
for limited resources, reducing per-CU beamforming gain.
However, the proposed MM-Alt algorithm with fewer RFCs
performs close to the FDB scheme even for a higher number of
users, highlighting its scalability and efficiency in multi-user
hybrid beamforming.

VI. CONCLUSION

In this paper, we conceived novel HBF designs for optimiz-
ing the BB and RF TPCs for joint communications and sensing
by exploiting the spatial degrees of freedom in the mmWave



ISAC system. To evaluate the sensing and communication
performances, a pair of problems, namely: PD-max and GMR-
max, were formulated considering the QoS of the RT and CUs,
transmit power, and the unity magnitude constraints. A pair of
power-efficient Bi-Alt and MM-ALIt algorithms were proposed
for solving the PD-max and GMR-max problems, respectively,
which involve the SCA and PRCG algorithms for optimizing
the RF and BB TPCs. Finally, simulation results were pre-
sented, which verify that our proposed design approaches the
performance of the ideal yet impractical FDB, despite using
a low number of RFCs. Furthermore, the proposed design
outperformed various benchmark schemes, which shows the
efficacy of the proposed algorithms. Moreover, extending the
proposed design to multiple-RT scenarios presents additional
challenges, requiring advanced HBF algorithms and refined
sensing performance evaluations, which we defer to our future
research.
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