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Abstract—A hybrid beamformer (HBF) is designed for in-
tegrated sensing and communication (ISAC)-aided millimeter
wave (mmWave) systems. The ISAC base station (BS), relying
on a limited number of radio frequency (RF) chains, supports
multiple communication users (CUs) and simultaneously detects
the radar target (RT). To maximize the probability of detection
(PD) of the RT, and achieve rate fairness among the CUs, we
formulate two problems for the optimization of the RF and
baseband (BB) transmit precoders (TPCs): PD-maximization
(PD-max) and geometric mean rate-maximization (GMR-max),
while ensuring the quality of services (QoS) of the RT and CUs.
Both problems are highly non-convex due to the intractable
expressions of the PD and GMR and also due to the non-
convex unity magnitude constraints imposed on each element
of the RF TPC. To solve these problems, we first transform
the intractable expressions into their tractable counterparts and
propose a power-efficient bisection search and majorization and
minimization-based alternating algorithms for the PD-max and
GMR-max problems, respectively. Furthermore, both algorithms
optimize the BB TPC and RF TPCs in an alternating fashion
via the successive convex approximation (SCA) and penalty-based
Riemannian conjugate gradient (PRCG) techniques, respectively.
Specifically, in the PRCG method, we initially add all the
constraints except for the unity magnitude constraint to the
objective function as a penalty term and subsequently employ
the RCG method for optimizing the RF TPC. Finally, we present
our simulation results and compare them to the benchmarks for
demonstrating the efficacy of the proposed algorithms.

Index Terms—Geometric mean rate, hybrid beamforming,
integrated sensing and communication, millimeter wave, RT
detection probability.
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INTEGRATED sensing, and communication (ISAC) sys-
tems are at the forefront [1], [2] of the recent era of

wireless technology. The integration of sensing and communi-
cation functionalities in such systems offers several practical
advantages, which can drive a wide range of applications
and unlock cutting-edge capabilities in next-generation (NG)
wireless communication [3]. Briefly, ISAC systems improve
hardware efficiency by enabling the use of a single platform for
sensing the radar targets (RTs) as well as for communication.
By doing so, one can reduce the size, cost, and power
consumption of the hardware in ISAC systems in comparison
to conventional systems that require separate hardware for
sensing and communication [4]–[6].

Furthermore, due to the bandwidth crunch in the sub-6
GHz frequency band, the NG wireless networks might migrate
to the millimeter wave (mmWave) band, which spans the
frequency range 30 to 300 GHz [7]. Moreover, both the
hardware architecture and signal processing necessary for
sensing the RTs are similar to those of mmWave systems.
Therefore, the integration of ISAC and mmWave capabilities
can reap the benefits of a wide frequency band and mutual
signal processing advances, while requiring only moderate
hardware changes in the existing mmWave systems.

It is crucial to employ optimal beamforming techniques to
realize the full potential of ISAC-aided mmWave systems for
sensing and communication. Furthermore, it is important to
note that the conventional fully digital beamforming (FDB)
techniques of sub-6 GHz systems [8]–[10] necessitate an
individual RF chain (RFC) for each antenna, thus rendering
them costly and power-inefficient. Hence one cannot employ
such techniques in mmWave-aided ISAC systems. To address
this, numerous authors have investigated hybrid beamforming
(HBF) designs, which require only a few RFCs and are
therefore eminently suitable for mmWave-aided ISAC systems
[11]–[19]. In HBF, the signal processing of the transmit
precoder (TPC) is divided into the digital baseband (BB)
and analog RF TPCs, where analog RF processing comprises
phase shifters designed for beam steering in the RF domain.
Furthermore, several endeavors focused on jointly optimizing
the beamforming designs of the ISAC systems for the maxi-
mization of either the sum rate or minimum rate (MR) of the
users. However, the maximization of the sum rate results in
rate unfairness, while the maximization of the MR results in
a reduced sum rate. To this end, the recent geometric mean
(GM) rate-based communication metric [20] has demonstrated
superior capability to achieve rate fairness without unduly
compromising the sum rate of the system, thus delivering
a compelling trade-off. Before we delve into the details of
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our framework, in the next subsection, we discuss the rich
prior literature in this area and the motivation behind our
investigation of novel techniques designed for mmWave-aided
ISAC systems.

A. Literature review

The authors of [8]–[10], [21]–[26] designed pioneering
beamforming techniques for ISAC systems operating in the
sub-6 GHz frequency band. Specifically, the authors of [8]
have considered both separated and shared antenna deploy-
ments, optimizing TPCs to match radar beampatterns, while
satisfying communication users (CUs) performance. Liu et
al. [9] have explored symbol-level TPC in ISAC systems to
enhance beamforming flexibility, ensuring improved instan-
taneous transmit beampatterns and better CU performance.
Unlike conventional block-level precoding techniques, authors
of [10] proposed a symbol-level TPC approach to enhance
the instantaneous transmit beampatterns for radar sensing
while maintaining communication performance, demonstrating
the potential of advanced beamforming techniques in ISAC
systems. Ding et al. [21] maximized the communication per-
formance of the CUs by minimizing the multi-user interference
(MUI), while guaranteeing the probability of detection (PD)
of the RT detection in ISAC systems. By contrast, Ashraf and
Tan [22] maximized the sensing performance of the RT by
maximizing the PD, while constraining the minimum signal-
to-interference and noise ratio (SINR) requirements of the
CUs. Furthermore, Liu et al. [23] considered the Cramér-Rao
bound (CRB) as the performance metric for sensing the RT
and minimized the CRB of the parameters in both point as
well as extended RTs, while guaranteeing the minimum SINR
requirements of the CUs. Bazzi and Chafii [24] considered
realistic imperfect channel state information (CSI) for the
CUs and maximized the received SNR of the RT under
probabilistic SINR outage constraints. On the other hand,
Zargari et al. in [25] maximized the sum rate of the CUS,
while meeting a minimum beampattern gain for the RTs.
Briefly, they optimized the beamformer by exploiting the La-
grangian and Riemannian manifold optimization principles. As
a further advance, artificially intelligent (AI)-driven techniques
for ISAC systems, such as deep unfolding learning and AI-
based iterative optimization [27], have been employed to opti-
mize RIS-aided ISAC by minimizing interference, enhancing
waveform design efficiency, and solving complex non-convex
problems in secure and robust transmission [28].

However, the above studies employ the FDB design, which
poses a significant drawback in the context of mmWave-aided
ISAC systems due to the requirement for a large number of
RFCs. In order to circumvent this issue, the authors of [12],
[13], [15]–[18], [29]–[31] have proposed diverse HBF designs
for mmWave ISAC systems, which aimed for significantly
reducing the number of RFCs. Qi et al. [12] proposed a two-
stage HBF, which minimizes the error between the ideal and
transmit beam pattern gain for the radar RT, while considering
the minimum SINR requirement of the CU as a constraint.
Furthermore, Barneto et al. [13] consider the full duplex

paradigm in a mmWave-aided ISAC system, wherein they
optimize the components of the HBF BB and RF TPCs for
maximizing the beamforming power towards the RT, while
constraining the beamforming power toward the CUs. As
a further advance, Yu et al. [17] designed HBF for the
mmWave ISAC-assisted internet of vehicles (IoVs), wherein
they formulate the joint HBF design problem as the weighted
summation of the communication beamforming error and
radar beamforming error. To solve the problem, the authors
therein proposed a pair of novel methods: fast Riemannian
manifold optimization (FRMO) and adaptive particle swarm
optimization (APSO). Moreover, the authors of [29], [30]
optimized the HBF of mmWave-aided ISAC systems, which
leads to the maximization of the weighted sum rate of the
CUs. Specifically, Gong et al. [29] evaluated the CRB for
the estimation of the DoA, while Zhou et al. [30] employed
the beampattern gain towards the RTs as the constraint for
their radar performance optimization. The authors of [29]
therein equivalently transformed the non-convex problem into
a convex one via the weighted minimum mean square error
(WMMSE) method and subsequently employed the alternating
optimization technique for optimizing the BB and RF TPCs.
Furthermore, Wang et al. [31] designed a partially-connected
hybrid MIMO architecture for mmWave ISAC systems, where
they aimed to minimize the CRB for angle of departure
(AoD) estimation while ensuring the SINR constraints of the
CUs. Unlike the fully-connected architecture, the partially-
connected structure employs a block-diagonal RF TPC matrix,
which reduces hardware complexity at the cost of slightly
eroded beamforming flexibility.

However, the key metric for the sensing performance is
the PD, while is still unexplored in the context of mmWave-
enabled ISAC systems. By contrast, the authors of [21],
[32], [33], [36] investigated the PD in the context of sub-
6 GHz systems and obtained the expression of the PD via
the generalized likelihood ratio test (GLRT). Furthermore,
the existing literature on mmWave ISAC systems has not
as yet explored the principle of rate fairness for the CUs,
which is also a key performance metric. To elaborate briefly,
maximizing the sum rate typically assigns the most resources
to the CUs having the best channel, while assigning a near-
zero rate to the CUs having low channel quality, especially as
the radar performance improves. However, in order to ensure
rate fairness, significant research efforts have been dedicated
to the beamforming design beyond ISAC, focusing either on
maximizing the minimum CU rate or the GM rate of the
CU [20], [34]. The authors of [34] proposed a cutting-edge
HBF design by solving a max-min rate (MMR) optimization
problem in a mmWave system. Moreover, Yu et al. [20]
considered a RIS-aided wireless system and jointly optimized
the active and passive beamformers by maximizing the GM
rate of the CUs. Furthermore, the novel transformations of
the objectives in [20], [34] were achieved using the theory
of majorization-minimization (MM), and subsequently, closed-
form expressions are derived for the optimal solutions, which
renders these studies potent in practical deployments. Com-



Table I: Contrasting our novel contributions to the literature of mmWave MIMO ISAC systems

[8] [9] [10] [12] [13] [17] [20] [21] [22] [24] [25] [29] [30] [31] [32] [33] [34] [35] Proposed
mmWave ISAC ✓ ✓ ✓ ✓ ✓ ✓
HBF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
PD-max ✓ ✓ ✓ ✓
GMR-max ✓ ✓ ✓
SINR as QoS constraint ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
PD as QoS constraint ✓ ✓ ✓
RCG ✓ ✓ ✓ ✓ ✓ ✓ ✓
SCA ✓ ✓ ✓
MM ✓ ✓ ✓ ✓ ✓ ✓
PD-max in mmWave ISAC ✓
GMR-max in mmWave ISAC ✓
Bi-Alt ✓
MM-Alt ✓ ✓
Penalty-based RCG ✓ ✓ ✓

pared to MMR optimization, which prioritizes the worst-case
user, maximization of GM rates balances fairness and overall
performance. In mmWave ISAC systems with directional
beams and blockages, it prevents resource domination by a
single user while improving weaker user rates. This enhances
the spectral efficiency and mitigates performance degradation
seen in strict MMR formulations, making it a practical choice
for ISAC deployments. As a further advance, in [35], we
have investigated HBF in mmWave ISAC systems with short-
packet communication, where radar beamforming error (RBE)
and sum rate were considered as the sensing and commu-
nication performance metrics, respectively. In particular, we
analyzed the RBE–rate trade-off under short-packet communi-
cation constraints and proposed a two-layer bisection (TLBS)
framework. However, [35] did not address sensing reliability
in terms of PD or fairness in communication performance
through GM rate.

Motivated by these facts, we investigate the PD- and GM
rate-maximization problem in an mmWave ISAC system.
To the best of our knowledge, this is the first paper that
investigates HBF for the optimization of the BB and RF
TPCs and maximizes the PD as well as GM rate obtained
for the sensing and communication subsystems, respectively.
To this end, we commence with the system model of a
downlink mmWave-aided ISAC system, where an ISAC BS
provides communication services to CUs while simultaneously
detecting the RT based on the received echo signal. Our
novel contributions are boldly and explicitly contrasted to the
existing literature in Table I and are further described next.

B. Contributions of this work

• We develop a rigorous framework for jointly evaluating
sensing and communication performance by employing
the generalized likelihood ratio test (GLRT) to determine
the PD of the RT and deriving a tractable rate expression
for the CUs. These formulations serve as the foundation
for the proposed joint optimization framework, enabling
efficient resource allocation and beamforming design
while ensuring a balanced trade-off between sensing and
communication objectives.

• Based on the system model considered as well as on
the sensing and communication performance metrics, we

formulate a pair of optimization problems, namely PD-
max and GMR-max. For the PD-max problem, we aim
for maximizing the PD of the RT, while meeting the
minimum SINR requirements of the CUs. By contrast,
in the GMR-max problem, we focus on maximizing the
GM rate of the CUs, while satisfying the minimum PD of
the RT. Both problems are highly non-convex due to the
intractable PD and GM rate expressions, owing to the
non-convex unit modulus constraint, and to the tightly
coupled optimization variables.

• To solve the first problem, we propose a bisection search-
based alternating (Bi-Alt) algorithm, where we first trans-
form the original problem to an equivalent power mini-
mization problem by introducing a slack variable for the
PD. Subsequently, we optimize the BB and RF TPCs in
an alternating fashion and update the slack variable via a
bisection search. Specifically, we adopt the SCA method
for optimizing the BB TPC, whereas we propose a novel
penalty-based Riemannian conjugate gradient (PRCG)
algorithm for optimizing the RF TPC.

• For the second GMR-max problem, we first transform the
intractable GMR-max problem into a tractable weighted
sum rate maximization problem, which is still non-convex
due to the non-convex rate expression. To address this
challenge, we propose a majorization and minimization-
based alternating (MM-Alt) algorithm, where we obtain
the convex surrogate function for the non-convex rate
function via the MM technique and optimize both BB
and RF TPCs in an alternating fashion via the SCA and
PRCG methods, respectively.

• The performance of the proposed HBF designs is char-
acterized via simulations and also compared to the per-
tinent benchmarks, which validates the efficiency of the
proposed methods.

C. Notations

We use the following notations throughout the paper: A,
a, and a represent a matrix, a vector, and a scalar quantity,
respectively. The (i, j)th element, and Hermitian of matrix
A are denoted by A(i, j), and AH , respectively. The trace,
Frobenius norm and vectorization of a matrix A are repre-
sented as tr (·), ||A||F and vec (·). The expectation operator
is represented as E{·}; the real part of a quantity is denoted by



Figure 1: Illustration of a mmWave-aided ISAC system.

ℜ (·); IM denotes an M ×M identity matrix; the symmetric
complex Gaussian distribution of the mean µ and the covari-
ance matrix σ2 is represented as CN (µ, σ2).The operators ⊙
and ⊗ denote the Hadamard product and Kronecker product,
respectively.

II. SYSTEM MODEL

We consider the mmWave ISAC downlink as illustrated
in Fig. 1, where an ISAC base station (BS) serves K CUs
and simultaneously senses a point-like RT. The ISAC BS is
equipped with Nt transmit antennas, whereas each CU has a
single antenna. To reduce both the cost and hardware power
consumption, the ISAC BS exploits a fully-connected hybrid
MIMO architecture, in which the overall TPC is split into
digital BB and analog RF domain TPCs. Both the TPCs are
connected via a limited number of RFCs, NRF, and the RF
TPC is connected to the antenna elements via phase shifters.
To ensure the feasibility of the beamforming design problem,
we assume the condition K < NRF << Nt.

A. Signal model

Let us define the data stream vector as s = [s1, . . . , sK ] ∈
CK×1, where sk denotes the data for the kth CU. We assume
that the data symbols are statistically independent with zero
means, i.e., E{ssH} = IK and E{sk} = 0,∀k. Following the
HBF design, the signal vector s is first processed by the BB
TPC VBB = [vBB,1, . . . ,vBB,K ] ∈ CNRF×K followed by the
RF TPC VRF ∈ CNt×NRF , where vBB,k represents the BB
TPC vector corresponding to the kth CU. Consequently, the
downlink signal x ∈ CNt×1 transmitted from the ISAC BS is
given by

x = VRFVBBs = VRF

K∑
k=1

vBB,ksk. (1)

Embracing the principle of ISAC technology, the transmitted
signal (1) serves a dual role in downlink communication as
well as radar detection. Therefore, we aim for efficiently
designing VBB and VRF for a favorable performance tradeoff
for RT detection and downlink communication. To this end,
we define the radar and communication performance metrics
in the subsequent subsections.

B. Metric for radar performance

We assume that the RT is located at a known distance
and direction, denoted by (r, θ). Furthermore, a colocated
MIMO radar is employed at the ISAC BS for detection, where
the same antenna array elements are used for transmitting
and receiving the radar signals. When considering a uniform
linear array (ULA) at the ISAC BS having a spacing of half-
wavelength between the nearby antenna elements, the steering
vector aBS(θ) ∈ CNt×1 can be expressed as

aBS(θ) =
1√
Nt

[
1, ejπ sin(θ), . . . , ej(Nt−1)π sin(θ)

]T
. (2)

Furthermore, upon considering a clutter-free environment, the
echo signal yr ∈ CNt×1 received at the ISAC BS from the
RT is expressed as

yr = αA(θ)VRFVBBs+ v, (3)

where A(θ) = aBS(θ)a
T
BS(θ) ∈ CNt×Nt represents the

effective radar channel matrix, and α denotes the radar cross-
section (RCS) of the RT. Moreover, v ∈ CNt×1 is the complex
additive white Gaussian noise (AWGN) with distribution v ∼
CN (0, σ2

vINt
), where σ2

v is the variance of the noise signal.
For the radar performance metric, we aim for maximizing the
PD by radiating the transmitted signal power toward the RT.
The transmit power radiated in the direction of θ, is given by

P(θ) =

K∑
k=1

∣∣aHBS(θ)VRFvBB,k

∣∣2 . (4)

Furthermore, to evaluate the sensing performance, we for-
mulate an equivalent binary hypothesis testing problem for
the RT located at θ based on the received echo signal (3) as
follows{
H0 : αA(θ)VRFVBBs = 0, [yr = v]

H1 : αA(θ)VRFVBBs ̸= 0, [yr = αA(θ)VRFVBBs+ v] ,
(5)

where H0 and H1 are the null and alternate hypotheses, which
represent the presence and absence of the RT in the detection
range of the radar, respectively. Consequently, we adopt the
generalized likelihood ratio test (GLRT) for the above problem
(5), in which the unknown parameters (α, θ) are substituted
by their maximum likelihood estimates (α̂ML, θ̂ML). Thus, the
corresponding distribution of the optimal detector is given by
[22]

L(α̂ML, θ̂ML) ∼

{
H0 : χ2

2,

H1 : χ′2
2 (ρ),

(6)

where χ2
2 and χ′2

2 (ρ) represent the central and noncentral chi-
squared distributions with two degrees of freedom, respec-
tively. Furthermore, ρ denotes the non-central parameter [21],
which is given by

ρ = µ |P(θ)|2 , (7)

where µ = |α|2
σ2
v

. Note that the non-central parameter in (7)
inherently depends on the number of receive antennas through
|P(θ)| in equation (4). Subsequently, upon employing the



Neyman-Pearson criterion, the probability of detection, PD,
of the RT for a given probability of false alarm PFA becomes

PD = Qχ2
2(ρ)

(
F−1

χ2
2

(
1− PFA

))
, (8a)

= 1−Fχ2
2(ρ)

(
F−1

χ2
2

(
1− PFA

))
, (8b)

where Qχ2
2(ρ)

(·) denotes the tail probability, and Fχ2
2(ρ)

(·) is
the cumulative distribution function (CDF) of the noncentral
chi-square distribution. Hence, this paper utilizes the above
probability of detection, given by (8), to evaluate the radar
performance of the system.

C. Metric for communication performance

Let us denote the mmWave MISO channel vector between
the ISAC BS and kth CU by hH

k ≜ [h∗1,k, . . . , h
∗
Nt,k

] ∈ C1×Nt .
To model the mmWave channel hH

k , we adopt the popular
Saleh-Valenzuela model [11], [37], which is expressed as

hH
k =

√
Nt

Lk

Lk∑
ℓ=1

βℓ,ka
H
BS(θℓ,k), (9)

where Lk is the number of multi-path components for the kth
CU, and βℓ,k represents the complex path gain for the ℓth path
of the kth CU. Furthermore, the quantity θℓ,k represents the
azimuth angle of departure (AoD). Upon assuming the full
CSI1 at the ISAC BS and CUs, the signal yk received at the
kth CU is given by

yk =hH
k VRFVBBs+ nk, (10a)

=hH
k VRFvBB,ksk +

K∑
i=1,i̸=k

hH
k VRFvBB,isi + nk, (10b)

where nk is the independent and identically distributed (i.i.d.)
complex AWGN at the kth CU having the distribution of
nk ∼ CN (0, σ2

k). Based on (10), the signal-to-interference-
plus-noise ratio (SINR) of the kth CU is given by

γk(VRF,VBB) =

∣∣hH
k VRFvBB,k

∣∣2
K∑
i̸=k

∣∣hH
k VRFvBB,i

∣∣2 + σ2
k

.
(11)

Thus, the maximum achievable transmission rate of the kth
CU is expressed in bits/s/Hz as follows

Rk

(
VRF,VBB

)
= log2

(
1 + γk

(
VRF,VBB

))
, ∀k. (12)

Based on the radar and communication performance metrics
as discussed in the above subsections, we further describe the
problem formulation in the next subsection.

1In practice, CSI is obtained via channel estimation, with users feeding
back CSI in frequency division duplex (FDD) systems or the BS estimating
it via channel reciprocity in time division duplex (TDD) systems. Estimation
and quantization errors may exist, in which case robust beamforming designs
(see, e.g., [24]) can be applied.

D. Problem formulation

This paper aims for jointly optimizing the RF TPC VRF and
BB TPC VBB for the mmWave ISAC system. It is important
to note that the optimization problems in this section are
formulated under the assumption of a known RT location
(r, θ), as described in Section II-B. For joint optimization,
we consider the following pair of criteria: 1) PD maximiza-
tion (PD-max); 2) GMR maximization (GMR-max), which
correspond to the maximization of the RT performance and
the rate-fairness among CUs, respectively. Specifically, for
the PD-max optimization problem, we maximize the PD of
the RT under limited available power, while guaranteeing the
minimum SINR requirement of the CUs. The corresponding
PD-max problem is formulated as

P1 : max
VRF,VBB

PD (13a)

s.t. γk(VRF,VBB) ≥ Γk, ∀k, (13b)

∥VRFVBB∥2F ≤ Pt, (13c)
|VRF(i, j)| = 1, ∀i, j, (13d)

where Γk and Pt are the minimum SINR requirement of the
kth CU and the transmit power available at the ISAC BS,
respectively. Furthermore, the constraint (13d) represents the
unity magnitude constraint at each element of the RF TPC due
to the phase shifters.

To ensure rate fairness among the CUs, we maximize the
geometric mean rate of the CUs in the second optimization
problem, while satisfying a minimum PD requirement in terms
of the desired sensing performance. Thus, by defining the

GMR as fGM(VRF,VBB) ≜
(∏K

k=1Rk(VRF,VBB)
) 1

K

, the
corresponding GMR-max problem is formulated as follows

P2 : max
VRF,VBB

fGM(VRF,VBB) (14a)

s. t. PD ≥ Pth, (14b)
(13c), and (13d), (14c)

where Pth denotes the specified threshold imposed on the PD
of the RT for a given false alarm probability PFA.

To account for dynamic RT scenarios, both the formulated
problems (13) and (14) are also applicable for moving RT
tracking by steering the sensing beam toward the estimated
or predicted direction [26]. While localization errors may
affect beam alignment and PD, adaptive tracking techniques
such as Kalman or particle filtering can mitigate these effects
[38], [39]. These methods refine target position estimates
in real-time, enhancing sensing accuracy. Incorporating such
strategies improves the robustness of ISAC systems in practical
deployments. Observe that both the problems (13) and (14) are
highly non-convex due to the intractable expression of the PD

and fGM(VRF,VBB), and also due to the non-convex unity
magnitude constraint on each element of the RF TPC VRF.
Furthermore, the optimization variables VBB and VRF are
tightly coupled in the objective functions and the constraints,
which exacerbates the challenges in both the problems. In the



following sections, we propose efficient algorithms for solving
both problems.

III. HBF DESIGN BASED ON PD-MAX

This section proposes an efficient iterative algorithm for
solving the optimization problem P1, given by (13). Let us
introduce a positive real slack variable η ≥ 0 to make the
problem P1 more flexible, so that its equivalent problem is
given by

max
VRF, VBB, η

η (15a)

s. t. PD ≥ η, (15b)
(13b), (13c), and (13d). (15c)

To solve the above problem (15), we propose a bisection-
Alt (Bi-Alt) algorithm in which the BB TPC VBB and RF
TPC VRF are alternately optimized using the BCD technique.
Subsequently, we update η by employing the bisection search
method. For a given η ≥ 0, the equivalent feasible problem
for (15) can be stated as

min
VRF,VBB

J (VRF,VBB) = ∥VRFVBB∥2F (16a)

s. t. (15b), (13b), and (13d). (16b)

Denoting the optimal solution of (16) as {V∗
RF,V

∗
BB}, it may

be readily seen that if ∥V∗
RFV

∗
BB∥2F ≤ Pt, problem (16) is

feasible, and infeasible otherwise. However, the problem (16)
above is still challenging to solve due to the intractable expres-
sion of PD in (15b) and owing to the non-convex constraints
(13b) and (13d). To overcome this, we first transform the
intractable expression of PD to a tractable form by exploiting
its monotonicity with respect to the noncentrality parameter
ρ, as demonstrated in Theorem 1 of [40]. Consequently, the
equivalent modified optimization problem of (16) can be recast
as follows

min
VRF,VBB

J (VRF,VBB) (17a)

s. t. ρ = µ

(
K∑

k=1

∣∣aHBS(θ)VRFvBB,k

∣∣2)2

≥ η̃, (17b)

(13b) and (13d), (17c)

where η̃ is the solution obtained for the corresponding value
of ρ by solving the following equation

1−Fχ2
2(ρ)

(
F−1

χ2
2
(1− PFA)

)
= η. (18)

Although, the constraint (17b) is now tractable, the variables
VBB and VRF are still tightly coupled in both the objective
function and the constraint of (17b). To address this issue, we
adopt the alternating optimization technique, where VBB and
VRF are optimized in an alternating fashion until the objective
function of (17) J (VRF,VBB) converges. This is described
as follows.

A. Optimization of VBB for a fixed VRF

For a fixed VRF, the resultant optimization problem for
VBB corresponding to (17) is formulated as

min
VBB

K∑
k=1

vH
BB,kMvBB,k (19a)

s. t.

K∑
i̸=k

∣∣gH
k vBB,i

∣∣2 + σ2
k ≥

1

Γk

∣∣gH
k vBB,k

∣∣2 , ∀k (19b)

K∑
k=1

vH
BB,kΩvBB,k ≥ ω, (19c)

where M = VH
RFVRF ∈ CNRF×NRF , gk = VH

RFhk ∈
CNRF×1, Ω = VH

RFA(θ)VRF ∈ CNRF×NRF , and ω =
√

η̃
µ .

Observe that the problem (19) is non-convex due to the non-
convex constraints (19b) and (19c). In order to handle the
non-convexity of constraints (19b), we apply a common phase
shift to vBB,k, ∀k, so that the quantity

∣∣gH
k vBB,k

∣∣ leads to
real-valued quantities ∀k. Consequently, the constraints (19b)
are transformed into the second-order cone (SOC) convex
constraints as follows∥∥∥∥ GHe

σk

∥∥∥∥
2

≤
√
1 +

1

Γk
tk,i, ∀k, (20)

where GH = [g1, . . . ,g1] ∈ CNRF×K and tk,i = gH
k vBB,i.

Furthermore, the quantity e ∈ CK×1 is the elementary vector
with one on its kth position and zero elsewhere. Next, to
handle the non-convex constraint (19c), we employ the popular
successive convex approximation (SCA) technique, where the
first-order Taylor series is used to find the pertinent convex
surrogate functions for (19c). Specifically, a convex lower
bound in a linear form of the function vH

BB,kΩvBB,k around
the point v(j)

BB,k can be constructed as follows

vH
BB,kΩvBB,k ≥ 2ℜ{v(j)H

BB,kΩvBB,k} − v
(j)H
BB,kΩv

(j)
BB,k, (21)

where v
(j)
BB,k, ∀k, denotes the optimal solution obtained at the

jth iteration. Following these transformations, the equivalent
convex problem for (19) at the (j + 1)th iteration can be
formulated as

min
VBB

K∑
k=1

vH
BB,kMvBB,k (22a)

s. t. 2

K∑
k=1

ℜ{v(j)H
BB,kΩvBB,k} ≥ ω̃, and (20), (22b)

where ω̃ = ω +
∑K

k=1 v
(j)H
BB,kΩv

(j)
BB,k. Since the problem (22)

is convex, it can be efficiently solved via a standard convex
optimization tool. Thereby, we follow the SCA approach
for recursively solving the problem (22), which obtains the
optimal solution to the original problem (19). Moreover, we
show the key steps involved in optimizing VBB in Algorithm
1.



Algorithm 1 SCA method for solving (19)
Input: VRF, VBB

Output: optimal BB TPC V∗
BB

1: initialize: j = 0, v(j)
BB,k = VBB(:, k), ∀k

2: repeat
3: compute ω̃ as ω̃ = ω +

∑K
k=1 v

(j)H
BB,kΩv

(j)
BB,k

4: update v
(j+1)
BB,k , ∀k by solving (22)

5: set j ← j + 1
6: until objective function of (22) converges

B. Optimization of VRF for a fixed VBB

In this subsection, we optimize VRF for a fixed
VBB. To this end, let us define Hk = hkh

H
k ∈

CNt×Nt , Bi = vBB,iv
H
BB,i ∈ CNRF×NRF , and ∆k ≜

Γk

K∑
i̸=k

tr(VH
RFHiVRFBi)−tr

(
VH

RFHkVRFBk

)
+σ2

kΓk with

B = VBBV
H
BB ∈ CNRF×NRF . Thus, we formulate the sub-

problem of optimizing VRF as follows

min
VRF

tr
(
VH

RFINtVRFB
)

(23a)

s. t. ∆k ≤ 0,∀k, (23b)

tr
(
VH

RFA(θ)VRFB
)
≥ ω. (23c)

By leveraging the matrix transformation identity
tr
(
PHQPR

)
= vec (P)H

(
RT ⊗Q

)
vec (P), one

can rewrite the objective function (23a), and constraints (23b)
and (23c) as given by (24), (25), and (26), respectively, shown
at the top of the next page. Following these transformations,
the problem (23) can be recast as

min
ϕ

ϕHTϕ (27a)

s. t. ϕHΠkϕ+ σ2
kΓk ≤ 0,∀k, (27b)

ϕHΛϕ ≥ ω, (27c)
|ϕ(n)| = 1,∀n ∈ {1, . . . , NtNRF}, (27d)

where ϕ = vec (VRF) ∈ CNtNRF×1, T =
(
BT ⊗ INt

)
∈

CNtNRF×NtNRF , Λ =
(
BT ⊗A (θ)

)
∈ CNtNRF×NtNRF ,

and Πk = Γk

( K∑
i̸=k

(
BT

i ⊗Hk

) )
−
(
BT

k ⊗Hk

)
∈

CNtNRF×NtNRF . Furthermore, the problem (27) above is still
challenging to solve in the Euclidean space due to the non-
convex unity magnitude constraints (27d). To solve this prob-
lem, we propose a penalty-based RCG (PRCG) algorithm
that solves the problem in the Riemannian space. Specifically,
we first add the constraints (27b) and (27c) to the objective
function as penalty terms. Subsequently, we employ the RCG
framework to tackle the unity magnitude constraint (27d),
which solves the problem on the complex circle Riemannian
manifold. Finally, we adjust the penalty term to satisfy the
constraints (27b) and (27c).

To this end, let us convert the constrained problem (27) into
an unconstrained problem on the Riemannian manifold upon

Algorithm 2 PRCG algorithm for solving (23)
Input: VRF ∈ M, VBB, λ ≥ 1, 0 < c < 1, and thresholds
ϵ1 > 0, ϵ2 > 0
Output: Optimal V∗

RF

1: initialize: t = 0, ϕt = vec(VRF), ζt = −∇ML(ϕt)
2: while

(
∥∇ML(ϕt)∥22 ≥ ϵ1

)
do

3: choose step size ν2 using Armijo backtracking line
search algorithm

4: update the next point ϕt+1 by using (36)
5: evaluate ∇ML (ϕt+1) using (31.
6: compute ζt+1 according to (34)
7: set t← t+ 1

8: end while
9: if

(
ψk (ϕt) ≤ ϵ2 && δ (ϕt) ≤ ϵ2

)
, ∀k

10: return ϕ∗ = ϕt stop
11: else
12: update λ = λ

c and go to step 2
13: end if
14: return: restore matrix V∗

RF via ϕ∗

adding the constraints (27b) and (27c) into the objective func-
tion as a penalty term. Consequently, the resulting problem is
formulated as

min
ϕ
L(ϕ) = ϕHTϕ+ λ

(
K∑

k=1

ψk (ϕ) + δ (ϕ)

)
s. t. (27d),

(28)

where λ ≥ 1 is a penalty parameter, which maintains a trade-
off between the objective function (27a), and the constraints
(27b) and (27c). Furthermore, the quantities ψk(ϕ) and δ(ϕ)
are defined as follows

ψk(ϕ) ≜
(
max

{
0,ϕHΠkϕ+ σ2

kΓk

})2
, ∀k (29a)

δ(ϕ) ≜
(
max

{
0, ω − ϕHΛϕ

})2
. (29b)

Clearly, for the given λ, the problem (29) above represents
a manifold optimization problem, where the non-convex unity
magnitude constraint (27d) forms a NtNRF-dimensional com-
plex circle Riemannian manifold, as M = {ϕ ∈ CNtNRF×1 :
|ϕ(n)| = 1, ∀1 ≤ n ≤ NtNRF}. Thus, we adopt the RCG
method to solve (29), which differs from the conventional
gradient descent method performed in the Euclidean space.
The following are the key steps involved in each iteration of
the PRCG method.

Riemannian gradient: We evaluate the Riemannian gradient
at point ϕ denoted as ∇ML(ϕ) by orthogonally projecting
the Euclidean gradient onto the tangent space of the manifold
TϕM expressed as

TϕM = {z ∈ CNtNRF×1|ℜ{z⊙ ϕ∗} = 0NtNRF×1}. (30)

Thus, the Riemannian gradient is given by

∇ML(ϕ) = Projϕ∇L(ϕ) (31a)

= ∇L(ϕ)−ℜ{∇L(ϕ)⊙ ϕ∗} ⊙ ϕ, (31b)



tr
(
VH

RFINtVRFB
)
= vec (VRF)

H(BT ⊗ INt) vec (VRF) (24)

∆k = δ

K∑
i̸=k

vec (VRF)
H
(
BT

i ⊗Hk

)
vec (VRF)− vec (VRF)

H
(
BT

k ⊗Hk

)
vec(VRF) + σ2

kδ ≤ 0, ∀k,

(25)

tr
(
VH

RFA(θ)VRFB
)
= vec (VRF)

H(BT ⊗A(θ)) vec (VRF) (26)

where Proj denotes the projection operation, and ∇L(ϕ) is
the Euclidean gradient. Furthermore, we evaluate ∇L(ϕ) as
follows

∇L(ϕ) = 2Tϕ+ λ

(
K∑

k=1

κκκk + ς

)
, (32)

where the quantities κκκk and ς are given by

κκκk =

{
4
(
ϕHΠkϕ+ σ2

kΓk

)
Πkϕ, ϕHΠkϕ+ σ2

kΓk ≥ 0

0, ϕHΠkϕ+ σ2
kΓk < 0

(33a)

ς =

{
4
(
ϕHΛϕ− ω

)
Λϕ, ω ≥ ϕHΛϕ

0, ω < ϕHΛϕ
. (33b)

Steepest search direction: With the aid of the Riemannian
gradient, we find the most efficient steepest search direction
ζj+1 at the (j + 1)th iteration by employing the conjugate
gradient method as follows

ζ(j+1) = −∇ML
(
ϕ(j+1)

)
+ ν1 Tϕ(j)7→ϕ(j+1)

(
ζ(j)

)
,

(34)
where ν1 represents the Polak-Ribiére’s conjugate parameter
[11] and Tϕ(j) 7→ϕ(j+1)

(
ζ(j)

)
is the transport operation. Note

that the vectors ζ(j+1) and ζ(j) cannot be added directly, since
they belong to different tangent spaces. Thereby, we require
a transport operation Tϕ(j) 7→ϕ(j+1)

(
ζ(j)

)
to map the search

direction from its original tangent space to the current tangent
space, which is defined as

Tϕ(j) 7→ϕ(j+1)

(
ζ(j)
)
= ζ(j)−ℜ

{
ζ(j) ⊙

(
ϕ(j+1)

)∗}
⊙ϕ(j+1).

(35)
Retraction: Similar to the classic gradient descent approach,

we compute the next point ϕ(j+1) using the step size ν2 and
search direction ζ(j). Yet, it is very likely that the next point
ϕ(j+1) = ϕ(j) + ν2ζ

(j) does not fall on the manifold M,
but rather lies on the Tϕ(j+1)M. Therefore, to retract back the
point on the manifold M, we perform the retraction mapping
as follows

Retrϕ : TϕM→M :

ϕ(j+1) =

[
(ϕ(j)+ν2ζ

(j))1
|(ϕ(j)+ν2ζ(j))1|

, . . . ,
(ϕ(j)+ν2ζ

(j))NtNRF

|(ϕ(j)+ν2ζ(j))NtNRF
|

]T
,

(36)
where the step size ν2 is obtained by the Armijo backtracking
line search algorithm [11].

Update penalty parameter: Finally, we update the penalty
parameter λ to meet the constraints (27b) and (27c) in the
optimization problem (27). Note that the penalty parameter
λ is crucial for achieving an optimal feasible VRF. If λ
is too small, the resultant solution may fall far outside the
feasible region, potentially leading to the violation of the
constraints. Thus, we initialize λ to be a small number and
then gradually increase it as λ = λ/c, where c ∈ (0, 1) is the
scaling parameter for ensuring that the constraint violations
are sufficiently penalized. We summarize the PRCG method
in Algorithm 2, which is guaranteed to converge to a stationary
point [37].

C. Slack variable η update

Finally, we update the slack variable η via the bisection
search method for fixed values of VRF and VBB. Toward
this, we define the quantities ηL and ηU as the lower and
upper bound of the optimal value of PD, respectively. Since
the probability of detection is bounded between 0 and 1, we
set ηL = 0 and ηU = 1 to keep the optimization within a
valid range, ensuring accurate constraint handling. When the
problem (16) is feasible for a given η i.e., ∥V∗

RFV
∗
BB∥2F ≤ Pt,

we update the lower bound as ηL = η, else we update the
upper bound as ηU = η.

Based on the method presented above, we summarize the
complete Bi-Alt method conceived for solving the PD-max
problem in Algorithm 3. Note that ϵ3 and ϵ4 in Algorithm
3 are the error tolerance for the function J (VRF,VBB)
in the inner loop and bisection search in the outer loop,
respectively. Furthermore, the computational complexity
of Algorithm 3 depends on Algorithm 1 and 2. Since
Algorithm 1 involves the interior-point method harnessed
for optimizing the BB TPC VBB, it has the complexity
order of O(IbN3.5

RFK
3.5), where Ib denotes the number of

iterations required for updating VBB. On the other hand,
Algorithm 2 focuses on optimizing the RF TPC VRF,
whose main complexity arises from the computation of
the Euclidean gradient (32). Consequently, the complexity
of Algorithm 2 is given by O

(
IrN2

t N
2
RF

1
ϵ21

)
, where Ir

represents the combined number of iterations required for the
RCG method and updating the penalty factor λ. Therefore,
the overall computational complexity of Algorithm 3 is given
by O

(
IoutIin

(
IbN3.5

RFK
3.5 log2

(
1
ϵ0

)
+ IrN2

t N
2
RF

1
ϵ21

))
,

where Iin and Iout denote the number of iterations required
in the inner layer and outer layer, respectively. In addition, ϵ0



Algorithm 3 Bi-Alt method for solving P1

Input: Pt, PFA, Γk, ∀k, thresholds ϵ3, ϵ4
1: initialize: VRF,VBB, lower bound ηL = 0, and upper

bound ηU = 1.
2: repeat
3: η = (ηL + ηU) /2
4: compute η̃ using (18)
5: repeat
6: set j = 0, J (j) =∞.
7: evaluate V

(j+1)
BB for given V

(j)
RF by solving (19) via

Algorithm 1.
8: obtain V

(j+1)
RF for given V

(j+1)
BB by solving (23)

via Algorithm 2.
9: compute J (j+1) = ∥V(j+1)

RF V
(j+1)
BB ∥2F

10: set j ← j + 1
11: until

∣∣(J (j) − J (j−1)
∣∣ ≤ ϵ3

12: if obtained set {VRF,VBB} is feasible,
13: update ηL = η
14: else
15: set ηU = η.
16: until ηU − ηL ≤ ϵ4

signifies the accuracy of the SCA in Algorithm 1.

IV. HBF DESIGN BASED ON GMR-MAX

In this section, we focus our attention on optimizing the
BB and RF TPCs based on the GMR-max problem given by
P2 of (14), which is NP-hard. To solve P2, we first utilize
the relationship between the PD PD and the noncentrality
parameter ρ, as discussed in Section III, which transforms the
constraint (14b) into a tractable form. Given the transformed
PD constraint (14b), the equivalent GMR-max problem is
reformulated as

max
VRF,VBB

fGM(VRF,VBB) (37a)

s. t.(13c), (13d), and (17b). (37b)

Observe that the objective function fGM(VRF,VBB) in the
above problem (37) is nonlinear and involves the product
of non-concave functions Rk(VRF,VBB), which renders
fGM(VRF,VBB) a highly non-convex function. To handle this
hurdle, we first transform fGM(VRF,VBB) from a nonlinear
function to a weighted linear function of the CU’s rate.
Toward this, let us consider (V(0)

RF,V
(0)
BB) as an initial feasible

point, and (V
(j)
RF,V

(j)
BB) as the feasible solution obtained

from the (j − 1)th iteration. Then, the linearized function
of the composite function fGM(VRF,VBB) around the point
Rk

(
V

(j)
RF,V

(j)
BB

)
is given as [20]

1

K
fGM

(
V

(j)
RF,V

(j)
BB

) K∑
k=1

Rk(VRF,VBB)

Rk

(
V

(j)
RF,V

(j)
BB

)
 . (38)

Thus, the problem (37) is equivalently transformed to the
following weighted sum rate maximization problem at the jth

iteration

max
VRF,VBB

g(j)(VRF,VBB) ≜
K∑

k=1

u
(j)
k Rk(VRF,VBB)

(39a)
s. t. (13c), (13d), and (17b), (39b)

where u
(j)
k is the weight corresponding to CU k, which is

computed as

u
(j)
k =

max
k′∈K

Rk′

(
V

(j)
RF,V

(j)
BB

)
Rk

(
V

(j)
RF,V

(j)
BB

) , ∀k. (40)

Although, the objective function (37a) is transformed to the
linearized form (39a), it is still non-convex due to the mul-
tiple fractional parameters of SINR terms γk(VRF,VBB).
Moreover, the tightly coupled variables VRF and VBB, both
in the objective function and constraints, make the problem
(39) even more challenging to solve. To solve this problem,
we propose a majorization and minimization-based alternating
(MM-Alt) algorithm, in which for a fixed u

(j)
k , ∀k, at the

jth iteration, we first split the problem (39) into two sub-
problems for the optimization of the BB TPC VBB and
RF TPC VRF alternatively. Furthermore, at each stage of
optimization of these variables, we transform the non-convex
objective functions corresponding to (39a) into suitable convex
surrogate functions via the MM technique [34], [41], [42].

A. Optimization of VBB for a fixed VRF

For the given point
(
V

(j)
RF,V

(j)
BB

)
, we seek to optimize

V
(j+1)
BB that satisfies the following condition

g(j)
(
V

(j)
RF,V

(j+1)
BB

)
> g(j)

(
V

(j)
RF,V

(j)
BB

)
, (41)

by considering the following sub-problem for the BB TPC

max
VBB

K∑
k=1

u
(j)
k ln

(
1 + γ

(j)
k (VBB)

)
(42a)

s. t. ρth = µth

(
K∑

k=1

∣∣∣aHBS(θ)V
(j)
RFvBB,k

∣∣∣2)2

≥ η̃th, (42b)

∥V(j)
RFVBB∥2F ≤ Pt, (42c)

where η̃th is the solution obtained for the corresponding value
of ρth by solving 1 − Fχ2

2(ρth)

(
F−1

χ2
2
(1 − PFA)

)
= Pth and

γ
(j)
k (VBB) =

∣∣∣h̃(j)
k vBB,k

∣∣∣2
K∑

i̸=k

∣∣∣h̃(j)
k vBB,i

∣∣∣2+σ2
k

with h̃
(j)
k = hH

k V
(j)
RF. Let us

define ū = h̃
(j)
k v

(j)
BB,k and v̄ =

K∑
i̸=k

∣∣∣h̃(j)
k v

(j)
BB,i

∣∣∣2 + σ2
k. Then,

a quadratic minorizing function for objective (42a) at point
V

(j)
BB is constructed as follows

K∑
k=1

u
(j)
k

(
2ℜ{a(j)k h̃

(j)
k vBB,k} − b(j)k

K∑
i=1

∣∣∣h̃(j)
k vBB,i

∣∣∣2 + c
(j)
k

)
,

(43)



where a
(j)
k =

γ
(j)
k

(
V

(j)
BB

)
h̃

(j)
k v

(j)
BB,k

, b(j)k =
γ
(j)
k

(
V

(j)
BB

)
∑K

i=1

∣∣∣h̃(j)
k vBB,i

∣∣∣2+σ2
k

and

c
(j)
k = ln

(
1 + γ

(j)
k

(
V

(j)
BB

))
− γ

(j)
k

(
V

(j)
BB

)
− b

(j)
k σ2

k. Fur-
thermore, by rearranging the terms of (43) and omitting the
constant terms, followed by the substitution of the non-convex
constraint (42b) with its associated minorant (21) as detailed
in Section III-A, the equivalent modified problem of (42) is
given by

min
VBB

K∑
k=1

vH
BB,kΦ

(j)vBB,k − 2

K∑
k=1

ℜ{d(j)k vBB,k} (44a)

s. t. 2

K∑
k=1

ℜ{v(j)HBB,kΩ
(j)
d vBB,k} ≥ ω̃(j)

th , (44b)

K∑
k=1

vH
BB,kΩ

(j)
p vBB,k ≤ Pt, (44c)

where Φ(j) =
∑K

i=1 u
(j)
i b

(j)
i h̃

(j)H
i h̃

(j)
i , d

(j)
k =

u
(j)
k a

(j)
k h̃

(j)
k , ∀k, Ω(j)

p = V
(j)H
RF V

(j)
RF, Ω(j)

d = V
(j)H
RF A(θ)V

(j)
RF

and ω̃
(j)
th = ωth +

∑K
k=1 v

(j)H
BB,kω

(j)v
(j)
BB,k with ω =

√
η̃th

µth
.

Since both the objective function and the constraints of the
problem (44) are convex, one can solve it efficiently via a
standard convex solver, such as [43].

B. Optimization of VRF design for a fixed VBB

Next, for a given
(
V

(j)
RF,V

(j+1)
BB

)
, we further seek to

optimize V
(j+1)
RF that satisfies the following condition

g(j)
(
V

(j+1)
RF ,V

(j+1)
BB

)
> g(j)

(
V

(j)
RF,V

(j+1)
BB

)
, (45)

by considering the following sub-problem for the RF TPC:

max
VRF

K∑
k=1

u
(j)
k ln

(
1 + γ

(j)
k (VRF)

)
(46a)

s. t. µth

(
K∑

k=1

∣∣∣aHBS(θ)VRFv
(j+1)
BB,k

∣∣∣2)2

≥ η̃th, (46b)

∥VRFV
(j+1)
BB ∥2F ≤ Pt, (46c)

|VRF(i, j)| = 1, ∀i, j, (46d)

where γ
(j)
k (VRF) = γk

(
VRF,V

(j+1)
BB

)
. Furthermore,

by using the transformation hH
k VRFv

(j+1)
BB,i =[(

v
(j+1)
BB,i

)T
⊗ hH

k

]
vec (VRF) and by definition of

ϕ as ϕ = vec (VRF), we rewrite γ
(j)
k (VRF) in

terms of ϕ as γ
(j)
k (ϕ) =

∣∣∣h̃(j+1)
k,k ϕ

∣∣∣2
K∑

i̸=k

∣∣∣h̃(j+1)
k,i ϕ

∣∣∣2+σ2
k

, where

h̃
(j+1)
k,i ≜

[
(v

(j+1)
BB,i )

]T
⊗ hH

k . Given this transformation,

the quadratic minorizing function of γ
(j)
k (ϕ) at point

ϕ(j) = vec(V(j)
RF) is obtained by considering ū = h̃

(j+1)
k,k ϕ(j)

and v̄ =
K∑
i̸=k

∣∣∣h̃(j+1)
k,i ϕ(j)

∣∣∣2 + σ2
k as follows

K∑
k=1

u
(j)
k

(
2ℜ{ã(j)k h̃

(j+1)
k,k ϕ} − b̃(j)k

K∑
i=1

∣∣∣h̃(j+1)
k,i ϕ

∣∣∣2 + c̃
(j)
k

)
,

(47)
where ã

(j)
k =

γ
(j)
k (ϕ(j))

h̃
(j+1)
k,k ϕ(j)

, b̃(j)k =
γ
(j)
k (ϕ(j))∑K

i=1

∣∣∣h̃(j+1)
k,i ϕ(j)

∣∣∣2+σ2
k

and

c̃
(j)
k = ln

(
1 + γ

(j)
k

(
ϕ(j)

))
−γ(j)k

(
ϕ(j)

)
− b̃(j)k σ2

k. To simplify
it further, we rewrite (47) in a compact form as follows

2ℜ{p(j)ϕ} − ϕHE(j)ϕ+ c(j), (48)

where E(j) =
∑K

k=1 u
(j)
k b̃

(j)
k

(∑K
i=1(h̃

(j+1)
k,i )H h̃

(j+1)
k,i

)
,

p(j) =
∑K

k=1 u
(j)
k ã

(j)
k h̃

(j+1)
k,k , and c(j) =

∑K
k=1 u

(j)
k c̃

(j)
k . Next,

we apply similar transformations to constraints (46b) and (46c)
as illustrated in Section III-B, which reformulates problem (46)
as follows

min
ϕ

ϕHE(j)ϕ− 2ℜ{p(j)ϕ} (49a)

s. t. ϕHΛ
(j)
d ϕ ≥ ωth, (49b)

ϕHΠ(j)
p ϕ ≤ Pt, (49c)

|ϕ(n)| = 1,∀n, (49d)

where Λ
(j)
d =

K∑
i=1

[(
v
(j+1)
BB,i (v

(j+1)
BB,i )H

)T
⊗A(θ)

]
and

Π
(j)
p =

[
V

(j+1)
BB

(
V

(j+1)
BB

)H]T
⊗INt

. Subsequently, we adopt

the PRCG algorithm, which converts the above constrained
problem (49) into an unconstrained problem on the Rieman-
nian manifold upon adding the constraints (49b) and (49c) into
the objective function. Thus, the equivalent penalized problem
is given by

min
ϕ
F (j)(ϕ)

= ϕHE(j)ϕ− 2ℜ{p(j)ϕ}+ λ
(
ν
(j)
d (ϕ) + χ(j)

p (ϕ)
)

s. t. |ϕ(n)| = 1, ∀n,

(50)

where ν
(j)
d (ϕ) ≜

(
max{0, ωth − ϕHΛ

(j)
d ϕ}

)2
, χ(j)

p (ϕ) ≜(
max{0,ϕHΠ

(j)
p ϕ− Pt}

)2
and λ is the penalty factor. Next,

to solve the above problem (50) on the Riemannian manifold
for a given λ, the Euclidean gradient of F (j)(ϕ) is given by

∇F (j)(ϕ) = 2E(j)ϕ− 2(p(j))H + λ
(
ξ
(j)
d + ξ(j)p

)
, (51)

where the quantities ξ
(j)
d and ξ

(j)
p are defined as

ξ
(j)
d =

{
4
(
ϕHΛ

(j)
d ϕ− ωth

)
Λ

(j)
d ϕ, ωth ≥ ϕHΛ

(j)
d ϕ,

0, ωth < ϕHΛ
(j)
d ϕ,

(52a)

ξ(j)p =

{
4
(
ϕHΠ

(j)
p ϕ− Pt

)
Π

(j)
p ϕ, ϕHΠ

(j)
p ϕ ≥ Pt,

0, ϕHΠ
(j)
p ϕ < Pt.

(52b)



Algorithm 4 MM-Alt method for solving P2

Input: Pt, PFA, Pth

1: initialize: j = 0, feasible TPCs V
(j)
RF and V

(j)
BB

2: repeat
3: compute u(j)k , ∀k using (40)
4: obtain V

(j+1)
BB for given V

(j)
RF by solving (44).

5: find V
(j+1)
RF for given V

(j+1)
BB by solving (50) via

Algorithm 2.
6: until fGM(VRF,VBB) converges.

Thus, the optimal problem solution of (46) is achieved via the
PRCG algorithm, where the penalty parameter λ progressively
increases until the constraints are met. Hence, we alternatively
optimize the BB TPC VBB and RF TPC VRF using the
proposed MM-Alt method. Furthermore, Algorithm 4 presents
a pseudo-code of the proposed MM-Alt method for jointly
optimizing the RF and BB TPCs for solving the GMR-max
problem.

Observe that Algorithm 4 employs Algorithm 1 and
Algorithm 2 for optimizing the BB and RF TPCs, re-
spectively, in an alternating fashion. Therefore, the over-
all computational complexity of Algorithm 4 is given by
O
(
Io
(
N3.5

RFK
3.5 + IrN2

t N
2
RF

1
ϵ21

))
, where Io is the number

of iterations required for the convergence of Algorithm 4.
Note that the proposed designs are also applicable to the

partially-connected hybrid MIMO architecture, where the RF
TPC matrix adopts a block-diagonal form [31], affecting only
the RF TPC design. Since both optimization problems (13) and
(14) use the proposed PRCG algorithm, the block-diagonal
RF TPC can be vectorized into the tractable forms of (27)
and (49), allowing the PRCG method to efficiently solve
the problems while preserving the architecture’s structural
constraints.

V. SIMULATION RESULTS

In this section, we present our simulation results to eval-
uate both the detection and communication performance for
demonstrating the effectiveness of the proposed algorithms for
HBF design in an ISAC-enabled mmWave system. Throughout
the simulations, we use the following settings, unless stated
otherwise. The ISAC BS is configured with a ULA having
Nt = 128 antennas and NRF ∈ {8, 16} RFCs. We consider
K = 4 CUs, which are positioned at distances of 40 m, 30 m,
20 m, and 10 m in a circular area of radius 50 m from the ISAC
BS, at angles of −60◦,−30◦, 30◦, and 60◦, respectively. The
RT is located at 0◦. Furthermore, the mmWave channel gain
is modeled as βℓ,k ∼ CN (0, 10−0.1PL(dm)), where PL(dk)
represents the path loss gain and it is given by [14]

PL(dk) [dB] = ε+ 10φ log10(dk) +ϖ, (53)

where dk is the associated distance of the kth CU from the
ISAC BS, and the quantities ε, φ and ϖ are given by ε =
61.4, φ = 2 and ϖ ∈ CN (0, σ2

ϖ), with σϖ = 5.8dB [14].
Moreover, the system operates at the carrier frequency of 28

GHz with a bandwidth of 251.1886 MHz and a total power
budget of Pt = 30dBm. Thus, the noise variance at each CU is
set as σ2

k = −174+10 log10B = −90 dBm. The radar cross-
section is generated as α ∈ CN (0, σ2

α) with σ2
α = −90 dB and

the noise variance of the echo signal is set as σ2
k = -60 dBm.

While we model α as α ∈ CN (0, σ2
α), incorporating distance-

dependent path loss is an interesting direction for future work.

A. Trade-off between sensing and communication via PD-max

In this subsection, we investigate the performance analysis
of the proposed Algorithms toward designing the HBF via PD-
max optimization. We consider the minimum SINR require-
ment for each CU to be the same as Γk = Γ,∀k, and set the
parameters Γ = 15 dB, PFA = 10−6 and η = 0.975, unless
stated otherwise. Furthermore, we compare the proposed Bi-
Alt scheme to the following benchmarks:

• Scheme 1 (Sensing-only): For this scheme, we allocate
the total available power exclusively to sensing. Thus, the
BB and RF TPCs are optimized via solving problem P1

by removing the SINR constraint (13b).
• Scheme 2 (FDB): For this scheme, we employ the FDB

scheme to solve P1, which requires NRF = Nt.
• Scheme 3 (HBF, two-stage): For this scheme, we employ

the two-stage design [12], where we first obtain the FDB
corresponding to P1 and subsequently optimize the BB
and RF TPCs via minimizing the Euclidean distance
between the FDB and HBF beamfomers.

• Scheme 4 (HBF, OMP): For this scheme, we employ the
OMP algorithm [19] to optimize the BB and RF TPCs in
the inner layer of the Bi-Alt algorithm.

1) Convergence behavior: Here we characterize the conver-
gence behavior of the proposed Bi-Alt Algorithm 3 for solving
(13), particularly for larger antenna arrays and increased RF
chains. The inner loop of the algorithm follows a BCD
approach, iteratively updating the RF and BB TPCs, FRF and
FBB, to minimize the objective function J (VRF,VBB). At
the (j+1)th iteration, the monotonic convergence property is
ensured as follows:

J (F(j+1)
RF ,F

(j+1)
BB ) ≤ J (F(j)

RF,F
(j+1)
BB ) ≤ J (F(j)

RF,F
(j)
BB),

(54)
where the RF TPC F

(j)
RF is optimized via the PRCG method.

The PRCG method iteratively refines the feasibility points
while ensuring a non-increasing sequence of objective function
values. Given the outer loop structure, the slack variable η
is updated via the bisection search method until convergence
is achieved. Furthermore, Fig. 2a shows the convergence
behavior of the inner layer of the proposed Bi-Alt algorithm
with ϵ3 = 10−3, and NRF = {8, 16}, which minimizes the
function J (VRF,VBB). As shown in the figure, the function
J (VRF,VBB) gradually decreases and reaches its minimum
value within a few iterations, which shows the convergence
of the inner layer of the Bi-Alt algorithm. Observe that the
function J (VRF,VBB) associated with NRF = 16 converges
faster than for NRF = 8, as the influence of BB TPC over the
RF TPCs is greater for a large number of RFCs. Furthermore,
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Figure 2: Convergence behavior of the proposed Bi-Alt algo-
rithm in (a) inner layer; (b) outer layer.

Fig. 2b illustrates the convergence behavior of the outer layer
of the Bi-Alt with ϵ4 = 10−6, which corresponds to the
bisection search algorithm. As seen from the figure, the PD
PD saturates within 10 iterations for both Γ = 12 dB and 15
dB, which verifies the rapid convergence of the proposed Bi-
Alt algorithm. Note that the nonmonotonic behavior in Fig. 2b
is due to the bisection search method in the outer layer of the
Bi-Alt Algorithm, which iteratively updates the slack variable
while ensuring feasibility under the transmit power constraint.

2) Probability of detection versus SINR threshold: Fig. 3a
investigates the behavior of the PD with respect to the SINR
threshold for various values of the number of RFCs. As shown
in the figure, the PD decreases upon increasing the SINR
threshold, which reveals the trade-off between the sensing
and communication tasks. This trade-off is intuitive, since
more power is radiated toward the CUs to meet the higher
SINR requirements, which reduces the power available for RT
detection. Observe that the PD of the sensing-only scheme is
independent of the SINR threshold and acts as the upper bound
for the sensing performance. Furthermore, the proposed Bi-Alt
scheme having NRF = 16 performs close to the FDB scheme
and outperforms the two-stage HBF and OMP benchmarks for
both NRF = 8 and 16. This shows the efficacy of the proposed
PRCG and SCA algorithms employed in our Bi-Alt scheme
for the optimization of the RF and BB TPCs, respectively.

3) Probability of detection versus transmit power: To fur-
ther investigate the performance of the proposed HBF design
based on the Bi-Alt algorithm, we plot the probability of
detection versus transmit power in Fig. 3b. As shown in the
figure, the probability of detection increases monotonically
upon increasing the transmit power, which is a benefit of
having a higher power for RT detection for a fixed SINR
requirement. Observe that the probability of detection for the
proposed scheme associated with NRF = 16 RFCs approaches
that of the FDB scheme, and it is enhanced in comparison to
the benchmarks for both NRF = 8 and 16 at high as well
as low transmit powers. Interestingly, the performance gap
between the proposed scheme having NRF = 8 and the FDB
scheme reduces upon increasing the transmit power. Hence,
one can further reduce the number of RFCs in mmWave ISAC
systems for achieving the desired probability of detection by
increasing the transmit power.

4) Probability of detection versus the number of CUs: In
Fig. 3c, we investigate the impact of the number of CUs on the
probability of detection for a fixed transmit power of Pt = 30
dBm. As shown in the figure, the performance of the system
degrades upon increasing the number of CUs, which is due
to the increasing SINR requirements of the additional CUs.
Furthermore, the proposed Bi-Alt scheme performs close to
the FDB for NRF = 16, even for an increasing number of
CUs in the system. Furthermore, it is superior to the other two
benchmarks for both NRF = 8 and NRF = 16. Observe that
the performance of the two-stage HBF and of OMP having
NRF = 8 degrades sharply after K = 5 CUs due to the
resultant reduced HBF gain toward the RT. By contrast, the
performance of the Bi-Alt scheme with NRF = 8 does not
degrade sharply, which shows the efficacy of the SCA and
PRCG algorithms. Moreover, it is suggested that for a fixed
transmit power, one has to increase the number of RFCs upon
increasing the number of CUs to achieve a higher probability
of detection.

B. Trade-off between sensing and communication via GMR-
max

In this subsection, we evaluate the performance of the
proposed HBF design based on the MM-Alt algorithm, which
ensures rate-fairness among the CUs. Unless stated other-
wise, we set the parameters for the GMR-max scheme as
Pt = 30 dBm, PFA = 10−6 and Pth = 0.975. Furthermore,
we compare the proposed MM-Alt scheme to the following
techniques to reveal interesting insights pertaining to HBF
designs:

• Scheme 1 (Comm-only): The available transmit power
is used for the CUs only. Therefore, we set Pth = 0 for
optimization of the BB and RF TPCs via problem P2.

• Scheme 2 (FDB): This scheme employs the fully digital
beamformer to solve P2.

• Scheme 3 (MMR-max): This scheme optimizes the BB
and RF TPCs to maximize the minimum CU rate by
solving the following optimization problem:

max
VRF, VBB

min
k=1,...,K

Rk(VRF,VBB) (55a)

s. t. (13c), (13d), and (14b). (55b)

We solve the problem (55) seen above by transforming it
into a feasible problem via the introduction of an auxiliary
variable for Rk(VRF,VBB), and, subsequently employed
the Bi-Alt scheme for optimizing the BB, RF TPCs, and
the auxiliary variable via the SCA, PRCG and binary
search algorithms.

• Scheme 4 (SR-max): For this scheme, we optimize the
BB and RF TPCs to maximize the sum rate of the system.
The corresponding pertinent optimization problem for
SR-max is given by

max
VRF, VBB

K∑
k=1

Rk(VRF,VBB) (56a)

s. t. (13c), (13d), and (14b). (56b)
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Figure 3: Probability of detection versus (a) SINR threshold; (b) transmit power; (c) number of CUs.
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Figure 4: Convergence behavior of the proposed MM-Alt
algorithm.

The optimal solution of the SR-max framework above is
solved using the proposed MM-Alt algorithm by fixing
the weight of the CU as u(j)k = 1, ∀k.

1) Convergence behavior: For the MM-Alt algorithm, the
overall convergence behavior follows the same principles as
Bi-Alt, with the key distinction that the bisection search step is
omitted. Since the RF TPC significantly influences the overall
convergence, and it is optimized using the PRCG method,
the algorithm remains stable even for large-scale mmWave
systems. Moreover, Fig. 4 shows the convergence behavior of
the proposed MM-Alt algorithm conceived for maximizing the
GM rate of the CUs. As shown in the figure, the GM rate of
the system saturates within a few iterations for both NRF = 8
and 16, which verifies the convergence of the MM-Alt scheme.
Furthermore, the achievable GM rate increases and achieves
the rate of an ideal FDB scheme upon increasing NRF, which
validates the efficacy of the proposed MM-Alt scheme.

2) Achievable GM rate versus the probability of detection
threshold: In Fig. 5a, we plot the achievable GM rate of
the system versus the probability of detection threshold Pth

for NRF = {8, 16}. The achievable GM rate of the system
decreases upon increasing Pth, due to the radiation of lower
power towards the CUs. Observe that the GM rate remains
nearly constant for Pth between 0.8 and 0.95, as ample power
is available for communication. However, for Pth > 0.95,

more power is allocated for sensing, leading to a significant
decline in the GM rate. Furthermore, the GM rate of the
Comm-only scheme remains unaffected by Pth and acts as
an upper bound for the communication performance. Interest-
ingly, the performance of the MM-Alt algorithm with only
six RFCs achieves a performance close to that of the FDB
scheme, which verifies the efficacy of the SCA and PRCG
algorithms, and renders it eminently suitable for the practical
use cases of ISAC-enabled mmWave systems. Furthermore,
the achievable GM rate of the GMR-max scheme is higher
than that of the MMR- and SR-max schemes, which arises
due to the allocation of power based on the GMR-max criteria.
Therefore, the proposed MM-Alt scheme is eminently suitable
for maximizing the GM rate of the system.

3) Achievable minimum rate versus threshold for probabil-
ity of detection: To investigate the performance of the pro-
posed scheme in achieving rate fairness, we plot the achievable
minimum rate of the system in Fig. 5b. Note that the MMR-
max scheme acts as an optimal scheme for the achievable
minimum rate due to its inherent power allocation based on
maximizing the minimum CU rate. As shown in the figure,
the proposed GMR-max-based design yields a performance in
close proximity to that of the optimal MMR-max scheme and
improved over the SR-max scheme for both NRF = {16, 8}.
This verifies the suitability of the proposed MM-Alt scheme
for achieving rate fairness via the GMR-max framework in
mmWave ISAC systems.

4) Achievable sum rate versus threshold for probability of
detection: In Fig. 5c, we plot the achievable sum rate of
the system using the proposed algorithms. As shown in the
figure, the SR-max scheme acts as an optimal scheme for
the achievable sum rate of the system. This is due to the
allocation of higher power to the stronger CUs possessing
higher-quality channels. Interestingly, the performance of the
GMR-max scheme is closer to that of the SR-max scheme
and exceeds that of the MMR-max method for both NRF = 8
and 16. This reveals that the MM-Alt algorithm proposed
for the GMR-max scheme achieves rate fairness, without
significantly compromising the achievable sum rate. Therefore,
GM rate maximization is eminently suited for an optimal
trade-off between the achievable sum rate and rate-fairness
in the mmWave ISAC system.
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(c) Achievable sum rate versus probability of detection.
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Figure 6: Achievable GM rate versus (a) transmit power; (b) probability of false alarm; (c) number of CUs.

It is worth noting that Fig. 5b shows that the GMR-max
outperforms the SR-max metric in fairness under the MMR-
max framework, while Fig. 5c demonstrates its superiority
over the MMR-max in maintaining higher throughput under
the SR-max framework. These results confirm that the GM
rate metric ensures fairness without significantly degrading
the overall system throughput, making it a well-balanced and
effective metric for the mmWave ISAC systems.

5) Achievable GM rate versus transmit power Pt: In Fig.
6a, we plot the achievable GM rate of the system versus
transmit power Pt for a fixed value of the probability of
detection threshold, namely, P = 0.975 and for the probability
of false alarm PFA = 10−6. As expected, the achievable
GM rate of the system increases with Pt due to having
higher SINRs for the CUs. For comparison, we evaluate the
proposed MM-Alt method against the WMMSE-Alt approach
from [29]. The WMMSE-Alt method reformulates the non-
convex problem (39) into a convex one using the WMMSE
framework, which is then solved via alternating optimization.
As illustrated in Fig. 6a, the MM-Alt demonstrates superior
performance by effectively handling non-convexity, resulting
in improved efficiency in power distribution and overall system
performance.

6) Achievable GM rate versus probability of false alarm:
Fig. 6b plots the achievable GM rate versus the probability
of false alarm PFA for the fixed probability of detection
Pth = 0.975 and transmit power Pt = 30 dBm. As shown in
the figure, the achievable GM rate of the system improves upon

increasing PFA from 10−6 to 10−1. This is due to the fact that
the power radiated towards the RT decreases upon increasing
PFA, which results in a higher SINR at the CUs. Additionally,
observe that the MM-Alt consistently achieves a higher GM
rate across different probabilities of false alarm, demonstrating
its effectiveness in optimizing the sensing-communication
trade-off. Furthermore, the performance of the GMR-max
scheme having NRF = 16 achieves levels coinciding with
its FDB counterpart for low as well as high values of PFA.
This confirms the efficiency of the proposed MM-Alt scheme.
Thus, the proposed MM-Alt algorithm is a power-efficient
method conceived for beamforming optimization in ISAC-
aided mmWave systems due to its requirement of fewer RFCs,
while also achieving the GM rate of the FDB scheme.

7) Achievable GM rate versus number of CUs: Fig. 6c
shows the achievable GM rate decreasing as the number of
CUs increases from 2 to 8, with a fixed transmit power of
30 dBm and 8 RFCs. This decline is due to CUs competing
for limited resources, reducing per-CU beamforming gain.
However, the proposed MM-Alt algorithm with fewer RFCs
performs close to the FDB scheme even for a higher number of
users, highlighting its scalability and efficiency in multi-user
hybrid beamforming.

VI. CONCLUSION

In this paper, we conceived novel HBF designs for optimiz-
ing the BB and RF TPCs for joint communications and sensing
by exploiting the spatial degrees of freedom in the mmWave



ISAC system. To evaluate the sensing and communication
performances, a pair of problems, namely: PD-max and GMR-
max, were formulated considering the QoS of the RT and CUs,
transmit power, and the unity magnitude constraints. A pair of
power-efficient Bi-Alt and MM-Alt algorithms were proposed
for solving the PD-max and GMR-max problems, respectively,
which involve the SCA and PRCG algorithms for optimizing
the RF and BB TPCs. Finally, simulation results were pre-
sented, which verify that our proposed design approaches the
performance of the ideal yet impractical FDB, despite using
a low number of RFCs. Furthermore, the proposed design
outperformed various benchmark schemes, which shows the
efficacy of the proposed algorithms. Moreover, extending the
proposed design to multiple-RT scenarios presents additional
challenges, requiring advanced HBF algorithms and refined
sensing performance evaluations, which we defer to our future
research.
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