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Since the United Nations launched initiatives to improve global water governance and resilience, 
progress has been made towards Sustainable Development Goal (SDG) 6, which aims to ensure 
universal access to safe water. However, significant challenges remain, particularly concerning 
inequalities in urban water supply, a problem that is especially pronounced in Sub-Saharan Africa 
(SSA). These disparities are closely linked to the region’s urbanisation processes, often 
characterised by the proliferation of slums, which SDG 11 (sustainable and safe cities) aims to 
upgrade. While numerous studies have examined the heterogeneity of urban water services in 
SSA, there has been a lack of quantitative analysis on how urban environments influence water 
service performance. Focusing on water pipeline networks and kiosk-based services in two SSA 
cities, 1) Kisumu, Kenya, and 2) Kigali, Rwanda, the research integrates graph-based modelling, 
co-location analysis, network-based community detection algorithms, and the two-step floating 
catchment area (2SFCA) model to assess the impact of urban morphology, slum distribution, and 
policy interventions on both piped and non-piped water services. The findings from the graph-
based analysis indicate that the configuration of essential services, particularly piped water 
provision, is shaped by two primary factors: 1) The principles guiding network construction, and 
2) The influence of urban morphology. Pipeline networks exhibit discernible correlations with road 
networks, with betweenness and closeness centralities displaying similar distributions across 
both cities. Community detection further reveals that pipelines serving slum areas form distinct 
clusters from those supplying other neighbourhoods. In Kisumu, areas under delegated water 
service management arrangements also form distinct networks. Accessibility analysis of water 
kiosks highlights disparities in water point availability within slums, shaped in part by broader 
urban layout constraints. Additionally, the study finds that the methodology used to generate 
population datasets significantly influences water access indices. Settlement-constrained 
datasets offer a more robust representation of water access in SSA cities. Given the limited prior 
applications of graph-based and 2SFCA methods in water service research, this study provides a 
quantitative workflow for assessing urban water service disparities in data-scarce SSA cities and 
addresses critical knowledge gaps in both water governance and urban studies. The findings of 
this study underscore the need for an integrated approach, in which water provision challenges 
should be addressed alongside broader urban planning initiatives such as slum upgrading 
programmes. 
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Chapter 1 Introduction 

In 2015, the world's development agenda shifted from the Millennium Development Goals 

(MDGs) to the Sustainable Development Goals (SDGs). This 15-year agenda encompasses 

various aspects such as health, hunger, water, and urban and community development, with 

widespread inequality in cities identified as a major issue to be addressed (UN-habitat, 2016). 

However, a decade after the launch of the SDGs, the achievement of many targets remains 

uncertain, with significant disparities persisting across regions, particularly in the area of water 

services. According to the United Nations' 2023 report, 703 million people still lacked access to 

basic water services, of whom 408 million were located in sub-Saharan Africa (SSA) (UN, 

2023a). The causes of water scarcity extend beyond shifts in lifestyle and consumption 

patterns; a key driver has been population growth, which has led to demand outstripping supply, 

while uneven distribution further exacerbates the uncertainty of water access (Molden, 2020, 

Mukheibir, 2010). Schlosser et al. (2014) estimated that, by 2050, economic and demographic 

factors would cause an additional 1.8 billion people to suffer from water scarcity, and most of 

these populations will be located in developing countries. 

The disadvantaged position of Southern cities in terms of water supply is closely linked to their 

urbanisation processes. The rapid urbanisation that has characterised the twenty-first century 

has generated an insatiable demand for housing and basic services (UN-Habitat, 2023a). 

Meanwhile, rapid urbanisation has widened disparities in service quality within cities (Boakye-

Ansah et al., 2019, Ocholla et al., 2022, UN-ECA, 2014). In the context of rapid urbanisation in 

Southern cities, these challenges have contributed to the emergence of slums—densely 

populated, underserved communities that embody the imbalance between supply and demand 

for urban resources and services. Consequently, water access issues and the development of 

slums are closely intertwined, both spatially and conceptually. 

SDG 11 ("Make cities and human settlements inclusive, safe, resilient, and sustainable") is 

closely connected to the objectives of SDG 6 ("Ensure availability and sustainable management 

of water and sanitation for all") regarding equitable water provision. The close linkage between 

these two goals is reflected in policy practices, such as the emphasis on infrastructure services, 

particularly water services, within slum upgrading programmes (Adama, 2020, Brown-Luthango 

et al., 2017, Olthuis et al., 2015), and water interventions specifically targeting slums 

(Annamalai et al., 2016, Dos Santos et al., 2017, Lima et al., 2021, Marin, 2009b, Moretto et al., 

2018, UN-Habitat, 2023b). Theoretical frameworks have also explored the connections between 

infrastructure and urbanisation, including discussions of the splintering of infrastructure 

networks during urban growth (Coutard, 2008, Graham and Marvin, 2002), the theorisation of 
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how Southern urban characteristics influence governance and modes of production (Parida and 

Agrawal, 2023), and research linking urban form to network performance(Lorenz et al., 2021, 

Torres et al., 2017, Zhao et al., 2020).  

Nonetheless, there remains a notable evidence gap regarding the current status of water 

services within Southern cities and their synergies with slum characteristics and policies. 

Existing research on urban infrastructure has predominantly focused on the relationship 

between road networks and urban morphology, with graph theory methods widely applied to 

reveal the connections between urban networks and morphological or environmental factors 

(Dingil et al., 2018, Dovey et al., 2020, Kolowa et al., 2024, Serra et al., 2016, Yin et al., 2018). By 

contrast, studies concerning water services are significantly lacking, and those that do exist are 

largely concentrated in Northern cities. Little is known about how urban water supply services—

including both piped networks and water points such as kiosks—are influenced by urban form. 

This is particularly pertinent in the context of Southern cities, where slums form an integral part 

of the urban landscape and may shape the spatial configuration of water infrastructure. 

Furthermore, Southern cities have implemented various policies to intervene in water delivery 

within slums (Adams et al., 2019, Dos Santos et al., 2017, Patel and Killemsetty, 2020, World 

Bank, 2009), potentially adding another layer of complexity. However, there is limited 

understanding of the extent to which these policies have physically influenced water 

infrastructure.  

Therefore, this research aims to analyse the relationship between the SSA urban environment 

and the performance of water services. It is necessary to examine the spatial patterns of piped 

infrastructure in selected case study areas to inform the factors influencing urban water service 

delivery, particularly in slums of larger cities in SSA. Specific objectives include:  

1. Assess the extent of topological and geometrical commonalities of road and 

water/wastewater networks across case study SSA cities and evaluate to what extent 

road typologies capture the distribution of slums and the heterogeneity of water and 

sanitation service infrastructures. 

2. Assess whether the spatial distribution and topology of water networks differ between 

slum versus planned urban areas and between water management regimes.  

3. Quantify geographic access to kiosk water in a case study city by utilising the 2 steps 

floating catchment area (2SFCA) model and analyse the extent to which access to kiosk 

water points is influenced by urban planning. 

Against this backdrop, Chapter 2 provides a review of the progress of urbanisation and SDG 

initiatives in Southern cities, as well as the policies concerning slums and water supply that are 

prominent in Southern urban contexts. The review also introduces the two-step floating 
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catchment area (2SFCA) method, graph theory metrics and algorithms, and relevant application 

contexts. A detailed summary of the study areas’ urbanisation patterns and infrastructure 

development is presented in Chapter 3. The analytical chapters are organised to address these 

research objectives from various perspectives (Figure 1.1). The first chapter (Chapter 4) 

quantifies co-location and topological similarities in road, water, and wastewater urban 

networks in Kigali versus Kisumu, summarising patterns found. The second chapter (Chapter 5) 

examines the pipeline network's relationship with slum distribution and policy by applying graph 

analysis and community detection to Kisumu and Kigali's pipeline networks. The third (Chapter 

6) focuses on spatial patterns of water service accessibility by examining another major water 

source in the southern cities: kiosks. Due to data availability, 2SFCA results are presented for 

Kisumu’s kiosks only.  

 

 

Figure 1.1 Conceptual Framework of the Thesis. In the context of southern urbanisation, there 

are notable similarities between the trajectories of slum improvement and water 

policy development. This research aims to identify the connections between these 

two aspects, providing empirical evidence for the study of southern cities and 

ultimately contributing to the understanding and achievement of SDG 6 and SDG 

11. 
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Chapter 2 Literature review 

2.1 The Sustainable Development Goals (SDGs) 

The Sustainable Development Goals (SDGs) were launched by the United Nations in 2015 as a 

global initiative aimed at eradicating poverty and promoting sustainable development by 2030. 

The SDGs include 17 goals, 169 targets, and over 230 indicators, addressing issues such as 

poverty, health, environment, energy, and urban development, which can be classified into 

three themes: economic growth, environmental protection, and social inclusion (Feeny, 2020, 

Herrera, 2019). According to the 2030 agenda (UN, 2015a), the emphasis is on both the 

differences between countries and the disparities within countries. In other words, the SDGs 

aim to leave no one behind on the road to development, whether in developed or developing 

countries. This is a historic shift, implying not only the need for multidimensional participation in 

governance (participation of organisations from local to global level) but also a greater focus on 

addressing inequality and poverty within countries (Revi, 2016). Such efforts are closely linked 

to urbanisation (UN-habitat, 2016). 

Today, some 56% of the world’s population lives in cities, and more than 80% of global GDP is 

generated in cities (World Bank, 2023). Since before 1960, the total global population has risen, 

and so has the proportion of people living in cities. Until relatively recently this trend towards 

urbanisation has seemed irreversible (Chen et al., 2014). Historically, when economies of scale 

develop within a city, the growing population moves into the city to participate in productive 

activities, thus contributing to urbanisation. Therefore, the population growth accompanying 

urbanisation is conducive to economic development - this can be seen from the share of urban 

GDP. It is also argued that urbanisation will facilitate the flow of goods and services, stimulate 

the rural economy and narrow the gap between urban and rural areas, thereby reducing poverty 

and inequality (Ahimah-Agyakwah et al., 2022). 

The previously described circumstance is not always the case. As noted by Gollin et al. (2016), 

urbanisation in Western cities has typically been accompanied by a transformation in economic 

structure, driven by the concentration of population in urban industrial sectors. In contrast, the 

trajectory of urbanisation in Sub-Saharan Africa (SSA) has diverged from trends in the share of 

the manufacturing sector in GDP (see Figure 2.1). A substantial proportion of the urban 

population in SSA remains employed in the agricultural sector (Grover et al., 2022). The ongoing 

urbanisation in SSA has been characterised as urbanisation without economic growth (Castells-

Quintana and Wenban-Smith, 2020)，or so-called premature urbanisation (Grover et al., 2022). 

Moreover, urbanisation in SSA is accompanied by growing inequality in cities and problems 
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such as health risks (Alaazi and Aganah, 2020, Amegah, 2021). Thus, concerns have been raised 

about the living conditions of SSA urban dwellers. 

 
Figure 2.1 Trends in Urbanisation Rate and Manufacturing Share of GDP in SSA, 1986–2023 

(Source: World Development Indicators (accessed 2025)). 

2.1.1 SDGs in focus: SDG 11- sustainable cities 

Based on urbanisation trends and impacts in regions such as SSA, SDG 11 was proposed to 

address issues in the urban development process. As shown in Table 2.1, the overarching aim of 

SDG 11 is to make cities and human settlements inclusive, safe, resilient and sustainable. This 

framework covers many aspects of urban life.  
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Table 2.1 Targets, and indicators for SDG 11 derived from (UN, 2015b). Italicized items 

indicate targets and indicators relevant to the research theme. 

Goal 11. Make cities and human settlements inclusive, safe, resilient and 
sustainable 

Target Indicator 

11.1 Adequate, safe and affordable 
housing 11.1.1 Urban population living in slums 

11.2 Accessible and Sustainable transport 
systems for all 11.2.1 Public transport access 

11.3 Inclusive and Sustainable 
urbanisation 

11.3.1 Sustainable urbanisation rates 

11.3.2 Urban planning management 

11.4 Safeguard the world’s cultural and 
natural heritage 11.4.1 Protecting cultural heritage 

11.5 Reduce the number of people 
affected by disasters 

11.5.1 Deaths and injuries from natural 
disasters 

11.5.2 Economic losses from natural 
disasters 

11.5.3 Damage to critical infrastructure 
and disruptions to basic services 

11.6 Reduce the environment impact of 
cities 

11.6.1 Solid waste management 

11.6.2 Urban air pollution 

11.7 Provide Universal access to safe 
public spaces 

11.7.1 Open spaces in cities 

11.7.2 Safe spaces in cities 

11.a Support links between urban, peri-
urban and rural areas 11.a.1 Urban and regional planning 

11.b Increase integrated policies and 
plans towards mitigation and adaptation 
to climate change 

11.b.1 Integrated disaster risk 
management 

11.b.2 Local disaster risk management 

11.c Building sustainable and resilient 
buildings utilizing local materials   

SDGs set out detailed targets and indicators to monitor progress. These include providing 

accessible and affordable transport systems, reducing urban expansion, increasing 

participation in urban governance, enhancing cultural and heritage preservation, addressing 

urban resilience and climate change challenges, better management of urban environments 

(pollution and waste management), providing access to urban environment, and providing a 

comprehensive and integrated approach to urban development (Franco et al., 2019).  
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Despite having detailed target sets, SDG 11's progress worldwide is not encouraging, and 

research targeting urbanisation is still urgently needed. The UN-Habitat Synthesis Report 2023 

(UN-Habitat, 2023a) indicates that the world is still far from achieving SDG11, particularly 

regarding the issue of slum expansion (for the definition and description of this issue, see 

section 2.2). Although the proportion of urban population living in slums has decreased, the 

absolute number has grown, currently standing at 1.1 billion (UN, 2023b). Among the regions 

with the highest concentration of slum populations—Central and Southern Asia (359 million), 

Eastern and South-Eastern Asia (306 million), and SSA (230 million)— have the highest 

proportion of urban population living in slums (UN-Habitat, 2023c). Additionally, the rate of 

reduction in both the slum population and proportion in SSA is relatively slow (UN-Habitat, 

2023b), making these countries further from the goal of reducing the urban population living in 

slums compared to other areas (Halkos and Gkampoura, 2021). The reasons are multifaceted. It 

is argued that cities have significantly different baselines in terms of human activities, economic 

activities, cultural context, political factors, and ecology (UN, 2015a). Therefore, SDG 11 

imposes targets that may be impossible for some cities to achieve (Croese et al., 2021, 

Janoušková et al., 2018). For example, research in SSA has shown that a lack of political will, 

limited funding, and weak management capacity have severely constrained the SDG 11 process 

(Juju et al., 2020). Additionally, the UN-Habitat report emphasises the role of urbanisation in 

driving slum expansion, which has been exacerbated by the COVID-19 pandemic (Miranda et 

al., 2023, UN-Habitat, 2023c). Given the approaching 2030 deadline, more effort needs to be 

directed towards areas such as SSA cities and slums. 

2.1.2 SDG 6: progress and challenges in achieving universal water access 

SDG 6 has encountered various challenges. Compared to Millenium Development Goal (MDG) 

7c, which only targets access to improved drinking water sources and sanitation, the ambitions 

of SDG 6 are broader and more specific (Herrera, 2019). This goal considers both the disparities 

in individuals' ability to access water due to gender, income, and education level, and the 

spatial inequalities in resource distribution (Dos Santos et al., 2017). There are various targets 

displayed in Table 2.2: drinking water (SDG 6.1), hygiene and sanitation (SDG 6.2), water quality 

and wastewater (SDG 6.3), water use and scarcity (SDG 6.4), water resources management 

(SDG 6.5), water-related ecosystems (SDG 6.6), cooperation and capacity-building (SDG 6a), 

and participation of local communities (SDG 6b). SDG 6 commits to equal and universal access 

to safely managed water and sanitation services. A safely managed water service is an improved 

water source located on-premises, available when needed, and free from contamination 

(WHO/UNICEF, 2018). Water sources that do not meet these criteria but take less than 30 

minutes to draw water are defined as basic services (WHO/UNICEF, 2018). By this definition, if a 
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water source is unprotected, it will be classified as unimproved, and improved sources are 

"those that have the potential to deliver safe water by nature of their design and construction" 

(WHO/UNICEF, 2010). Improved sources include piped supplies, such as water piped into 

dwellings and compounds, or public taps and standpipes, as well as non-piped supplies, such 

as protected wells and springs. Additionally, technologies that distribute water, such as tanker 

trucks and carts with small tanks or drums, are also considered improved sources. 

Table 2.2 Targets, and indicators for SDG 6 derived from (UN, 2015b). Italicized items indicate 

targets and indicators relevant to the research theme. 

Goal 6. Ensure availability and sustainable management of water and sanitation 
for all 

Target Indicator 

6.1 Safe and affordable drinking water 6.1.1 Safe drinking water 

6.2 End open defecation and provide 
access to sanitation and hygiene 6.2.1 Safe sanitation and hygiene 

6.3 Improve water quality, wastewater 
treatment and safe reuse 

6.3.1 Wastewater safety 

6.3.2 Ambient water quality 

6.4 Increase water use efficiency and 
ensure freshwater supplies 

6.4.1 Water use efficiency 

6.4.2 Levels of freshwater stress 

6.5 Implement integrated water resources 
management 

6.5.1 Integrated water management 

6.5.2 Transboundary water cooperation 

6.6 Protect and restore water-related 
ecosystems 

6.6.1 Protect and restore water-related 
ecosystems 

6.a Expand water and sanitation support 
to developing countries 6.a.1 Water and sanitation support 

6.b Support local engagement in water 
and sanitation management 

6.b.1 Local participation in water and 
sanitation management 

Under this new framework, as of 2020, 74.3% of the global population had access to safely 

managed drinking water. However, approximately 2 billion people still lacked access to safely 

managed drinking water, and 703 million did not have access to basic water services. Of these 

703 million, 408 million lived in SSA (UN, 2023a). From the experience of the International 

Drinking Water Supply and Sanitation Decade (IDWSSD) and prior MDGs, the primary reason for 

low levels of water access is population growth or the discrepancy between supply and demand 

(Adams et al., 2019, Najlis and Edwards, 1991, Sambu and Tarhule, 2013, UN-ECA, 2014, WHO, 

1992). As summarized by Huang et al. (2021) and Schlosser et al. (2014), the main drivers of 
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water scarcity are increased water demand due to population growth and economic activity 

rather than reduced supply due to climatic factors. In urban areas, water supply systems are 

often complex and require more investment and technological input than in rural areas (Adams 

et al., 2019), which contributes to significant disparities in water accessibility across different 

urban populations in SSA (Armah et al., 2018). Notably, in slums where population density is 

high and resources are scarce, the increase in water demand often leads to a reliance on 

informal water supplies (Juju et al., 2020). One study observed that in two SSA cities, Dar es 

Salaam and Addis Ababa, decentralised, on-site infrastructures rather than conventional 

centralised water infrastructure constitute the main sources of water provision in informal 

settlements (Herslund and Mguni, 2019). Further research indicates that water insecurity in 

slums is a widespread issue across many SSA regions (Dos Santos et al., 2017, Nyika and Dinka, 

2023). With the rapid population growth and governance failures in SSA, SDG 6 is expected to 

face even greater challenges in the foreseeable future (Adams et al., 2019, Nyika and Dinka, 

2023). 

2.1.3 Integrated sustainability: interactions of SDG 6 and SDG 11 

Due to the multifaceted barriers to water access, achieving SDG 6 requires consideration of 

synergies with other SDGs. Ait-Kadi (2016) argues that, as the development goals are 

comprehensive and sustainable, the overlap and the interaction between SDGs reflect that the 

solution of one main goal involves the progress of other goals and requires universal efforts of 

various stakeholders. Therefore, actions against a certain indicator will inevitably positively or 

negatively impact other goals, and targeting only one weak point will have little success (Abson 

et al., 2017, Nilsson et al., 2016). Furthermore, the adverse effects of development policies in 

some sectors also influence others (Blanc et al., 2017). To provide an integrated approach to 

achieve the SDGs, some studies have explored the synergies between them. Le Blanc (2015) 

analysed goals based on their wording. In other words, a relationship exists between two SDGs 

when a target of one SDG refers to a term that is relevant to another SDG. Coopman et al. (2016) 

adopted a similar approach, but further classified the relationship as supporting, 

enabling/disenabling, and relying. UN-ESCAP (2017) analysed the relationship between clean 

water and sanitation (SDG 6) and other SDGs by examining the cause-and-effect relationships 

between targets (Figure 2.2). Other studies have described the interactions of the SDGs based 

on cases of different regions (Griggs et al., 2017, Herrera, 2019). 
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Figure 2.2 A simplified model of the interactions between the Sustainable Development Goals (UN-ESCAP, 2017). 
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Certain observations have been made regarding SDG 6 and SDG 11 through relevant studies. 

Table 2.1 shows that SDG 11 includes targets of improving infrastructure, the urban 

environment, environmental quality, and basic services. The "basic services" include water and 

waste management. Le Blanc (2015), UN-ESCAP (2017) also demonstrated that some of the 

objectives of SDG 6 are notably aligned with those of SDG 11 (e.g. SDG 6.1, SDG 6.3 and SDG 

11.1, SDG 11.5, SDG 11.6) (see Figure 2.2). Kuc-Czarnecka et al. (2023) , based on the 

implementation of SDGs in European Union countries, pointed out that SDG 6 is positively 

correlated with almost all other goals, including SDG 11. Past United Nations practices also 

found a strong link between water and sanitation and urbanisation in developing countries 

(Adams et al., 2019, Najlis and Edwards, 1991, UN-ECA, 2014). Similarly, Dos Santos et al. 

(2017) point out that in SSA, the population increase is largely concentrated in urban areas and 

informal settlements. Therefore, holistic urban planning is crucial for meeting their water 

demands. A limitation of these studies is that most analyses remain at a conceptual or policy-

discursive level, grounded in interpretations of SDG semantics or system-wide interactions. In 

addition, the nature of the interlinkages between these SDGs varies significantly depending on 

contextual factors (governance, technology, time, geographical location, for instance) (Blanc et 

al., 2017, Coopman et al., 2016, UN-Water, 2021). This highlights a lack of empirical evidence 

on how urbanisation processes and the development of slums concretely influence water and 

sanitation systems in specific regional contexts.  

In summary, the SDGs form an initiative that concentrates the efforts of multidimensional 

participants and aims to banish poverty worldwide. SDGs focus on cities rather than countries, 

given the prevalence of urban inequality and poverty. Regions fall behind for many reasons, and 

the global indicator set is hampered in practice by many aspects. Further research is still 

needed to understand the underlying drivers behind lagging regions. Another innovation of the 

SDGs is the development of new monitoring indicators for SDG 6. Although the UN (2015a) 

claimed that the water target for MDG 7c was met globally in 2010, some argued that this target 

was built on an imperfect monitoring system (Bain et al., 2012). To better reflect the ambition of 

SDG6, safely managed water was adopted as a new 2030 target (WHO, 2017, WHO/UNICEF, 

2015). According to its definition, many developing countries are currently far from this goal 

(UN, 2023b). A shared concern of both SDG 11 and SDG 6 is slums, which not only manifest the 

population and resource challenges of urbanisation but also hinder the expansion of water 

service coverage. Therefore, slum elimination is the first target of SDG 11 and one of the most 

critical issues in its implementation (UN-Habitat, 2023b). Simultaneously, slums mirror the 

challenges of SDG 6, highlighting significant spatial disparities in water access. Although there 

is substantial research on the synergies and trade-offs between SDG 11 and SDG 6, few studies 
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have focused specifically on slums. Therefore, the following sections will present the practical 

implementations of both SDGs and their interconnections. 

2.2 Slum formation, evolution and water policy  

According to UN-Habitat (2022), as of 2020, over 1 billion people reside in slums and are subject 

to the worst forms of deprivation and marginalisation. It is estimated that by 2050, the number 

of people living in slums could reach two billion. The United Nations estimate regarding slum 

populations draws on some elements of the historical concept of “slum,” which originated in 

nineteenth-century London (Harris, 2009). The Industrial Revolution triggered rapid population 

growth and urbanisation – creating many new city spaces, including slums (Tockner and 

Stanford, 2002). These slums are typically characterized by overcrowding, informal housing, 

inadequate safe water and sanitation, and insecure tenure (land encroachment) (Davis, 2004, 

UN‐Habitat, 2004). Beyond the United Nations, there are varying perspectives on how slums 

should be understood, and reviewing these different views can help deepen our understanding 

of the nature of slums and the current state of urban water policies. 

2.2.1 Slum and urban informality: changing perspectives 

With the launch of the United Nations "Cities Without Slums" initiative in 1999, the term slum 

has returned to prominence, and is also incorporated into the SDGs (Gilbert, 2007, UN-Habitat, 

2018). Some SDGs have a focus on urban poverty and inequality: SDG 11 and SDG 6 both deal 

with slums. To unpack the relationship between slums and urbanisation, population growth, 

and basic services, it is necessary to explore what a slum is and how it is formed. 

UN-Habitat (2006) defines a slum household as one or a group of individuals living under the 

same roof in an urban area, lacking in one or more of the following five amenities: 

1. Durable housing of a permanent nature that protects against extreme climate 

conditions.  

2. Sufficient living space, defined as not more than three people sharing the same 

habitable room. 

3. Easy access to safe water in sufficient amounts at an affordable price. 

4. Access to adequate sanitation in the form of a private or public toilet shared by a 

reasonable number of people. 

5. Security of tenure that prevents forced evictions. 

The five criteria reference a measurable baseline for the minimum materials needed for human 

habitation, thereby enabling clear understanding of the global urbanisation process (Lucci et al., 
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2018). It is an international definition that helps identify the main challenges of SDG 11. Based 

on data sources that include these indicators (primarily census and national household 

surveys), the specialized agency for sustainable urbanisation and human settlements, UN-

Habitat, is able to monitor and report on slums and the other eight SDG 11 indicators  (UN-

Habitat, 2021). It is noteworthy that, due to difficulties in defining and assessing it, tenure 

security is not currently used by UN-Habitat in the measurement of slums (Dovey et al., 2021b, 

UN-Habitat, 2006, UN-Habitat, 2018). 

Despite this intuitive definition, many other terms and standards have been adopted (Table 2.3). 

Areas defined as slums by the UN may be called conventillos, favela or umjondolo, and the 

definitions are also very different (Criqui, 2018, Moreno, 2003, Portes, 1971). For example, 

Uganda's definition of slums includes criteria such as unemployment, low income, noise, 

crime, drug abuse, immorality, alcoholism, HIV/ AIDS prevalence and fragile location (MLHUD, 

2008). Meanwhile, slum identification in India is primarily based on legal designation (Nolan, 

2015). This diversity in slum definitions partly arises from various slum patterns. The formation 

of slums is influenced by many factors such as geographic location, climate, politics, and 

culture (Kuffer et al., 2016). Therefore, slums have diverse forms: within them, housing quality 

may depend on locally available materials (e.g. metal, cardboard, plastic), and building density 

and height change as slums evolve, so newly developed slums differ from those that are more 

established. Consequently, it is difficult to define these settlements within one set standard 

(Gilbert, 2007). The varying national definitions of slums mean that slum populations are 

enumerated differently between countries (Kuffer et al., 2018, UN-Habitat, 2018). This lack of 

harmonisation is a major reason why United Nations statistics on slums are often inaccurate 

and show large fluctuations (Ezeh et al., 2017, Nolan, 2015), as they primarily rely on population 

and housing censuses and national surveys (Ezeh et al., 2017).  
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Table 2.3 Terms Used by Different Countries for "Informal Settlements" (Criqui, 2018) 

Country Name 

Angola Musseque 

Argentina Villa miseria 

Brazil Favela 

Canada Shantytown 

Ecuador Invasiones 

France / 
Morocco 

Bidonville 

India (Delhi) Jhuggi 

Indonesia Kampung 

Madagascar Bas quartiers 

Mauritania Gazra 

Mexico Colonias populares 

Niger Village urbain 

Peru Asentamiento humano 

Philippines Squatter settlements 

South Africa Township 

Syria Mukhalafat 

Tunisia Quartiers populaires 

Turkey Geçekondu 

UK Slum 

Among varied terms and definitions, "informal settlement" deserves special mention. Informal 

settlement is another term used by the UN that is related to slums. Due to the long-standing 

stereotype associated with the word "slum" (Andavarapu and Edelman, 2013, Gilbert, 2007, 

Harris, 2020), informal settlement is considered a synonym for 'slum' (Dovey et al., 2021b). 

According to UN habitat, informal settlements are defined by three main criteria which are 

already covered in the definition of slums (UN-Habitat, 2021): 

1. Insecurity of tenure  

2. Lack of formal basic services and city infrastructure,  

3. Housing not in compliance with planning and building regulations. 
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Many have questioned whether "informal settlement" should replace the term "slum." Here, the 

study does not intend to differentiate between "informal settlement" and "slum." Interested 

readers can refer to the discussions of Khan et al. (2023) and Dovey et al. (2021a) on this issue. 

Nevertheless, it is important to note that the concept of informality provides a clearer 

perspective on the formation of slums and the inequalities in infrastructure within them (Dovey 

et al., 2021b, Dovey et al., 2020). By definition, "informality" does not mean illegality, but rather 

activities that are not regulated by the authorities (Bastia, 2015, Charmes, 2012, Lara-

Hernandez et al., 2020). After Keith Hart's research (Hart, 1973) introduced the concept of the 

informal economy to urban life, people began to realize that the distinction between formality 

and informality exists widely in cities beyond the economic sector (Chen, 2012, Recio et al., 

2017). As demonstrated by Banks et al. (2020), urban informality has economic, spatial, and 

political dimensions that are not easily separated. Parida and Agrawal (2023) identify informality 

as one of the seven key characteristics of southern cities. Slums, in particular, can be seen as 

places where informal practices can readily be observed (Roy, 2011). 

More simply, the primary drivers of slum formation worldwide are associated with the issue of 

supply and growing demand (Abass and Kucukmehmetoglu, 2021, Smit et al., 2017, Woo and 

Jun, 2020). Schindler (2017) points out that in industrialized cities, it is capital that transforms 

rural populations into workers. This process is driven by two forces. Typical push factors of slum 

formation include the decline of the agricultural economy, the degradation of land quality and 

quantity, or the unfavourable social environment in rural areas. Pull forces from cities include 

better job prospects, expectations of higher urban living standards, and risk mitigation from 

relying on a single rural income source (Cities Alliance, n.d., Ezeh et al., 2017). Therefore, the 

largest populations that make up slums are migrant workers, displaced persons, illegal and 

legal immigrants, unemployed persons and refugees (Riley et al., 2007). In the context of global 

population growth, people move from the countryside or other areas to cities to obtain better 

livelihood opportunities (Cities Alliance, n.d., Ezeh et al., 2017, Keivani and Werna, 2001, 

Okpala, 1992). These migrants do not necessarily have the skills to gain employment in the 

urban job market and can only be employed in the informal sector. Rural migrants are therefore 

deprived of higher incomes and formal sector benefits (Gundogan and Bicerli, 2009, Posada and 

Moreno-Monroy, 2017, Riley et al., 2007). Due to a lack of capital, and legal and policy 

recognition, these migrant’s living spaces are also outside the governmental development 

framework and planning. The result is the informal settlement or slum (Azunre et al., 2022, 

Okyere et al., 2017, Sheppard et al., 2020). Such settlements are often the first point of arrival 

and encounter with cities for rural migrants, providing asylum and further opportunities for 

formal status (Alvarado, 2022, Cities Alliance, n.d., Keivani and Werna, 2001, Marris, 1979, 
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Misselhorn, 2008). This is also why Taubenböck et al. (2018) refer to such areas as “Arrival 

Cities”. 

It follows that water practices within slums differ significantly from other urban areas (Azunre et 

al., 2022), with the urban poor facing considerable difficulties in accessing water (Nyika and 

Dinka, 2023, Richmond et al., 2018, Sinharoy et al., 2019). Slum residents often rely on informal 

suppliers for water (Dakyaga et al., 2021). In Dhaka, Bangladesh, the urban poor rely on water 

vending and use water from dug wells, ponds, rivers, canals, and swamps (Akbar et al., 2007). In 

Luanda, Angola, water truck operators distribute water to informal home-based water retailers 

who sell to urban populations or water street vendors (Cain, 2018). Though operational methods 

vary, these unauthorized suppliers fill gaps in formal water supply within slums (Joshi et al., 

2023). This gap, as summarized by Sinharoy et al. (2019) and Nyika and Dinka (2023), stems 

from high infrastructure construction costs, slum dwellers' low willingness and ability to pay, 

long distance of slums from key urban areas, land hazards, complex building environments, 

marginalisation of residents, insecure land tenure, and lack of legal and planning recognition. 

Specifically, Sultana (2020) points out the impact of informal citizenship on slum residents' 

access to water. Joshi et al. (2023) emphasize the influence of lack of tenure security as a 

reason that slum dwellers turn to informal water services. Insecure land ownership and building 

configurations in slums often lead to chaotic network structures that are difficult to maintain 

and manage (Ahlers et al., 2013, Boakye-Ansah et al., 2019). Therefore, issues of access to 

basic services such as water are not merely technical or infrastructural concerns; rather, they 

are closely intertwined with broader processes of urbanization and informality. 

The significant role of informality in the economic, environmental, and social sustainability of 

cities in the Global South is increasingly being recognised (Azunre et al., 2021, Azunre et al., 

2022). In particular, the informal sector meets the needs of those excluded from the 

postcolonial urbanisation process in a flexible matter, including slum dwellers and those 

considered to be from the lower classes. Soliman (2020), Azunre et al. (2022), Smit et al. (2017), 

and Azunre et al. (2021) point out that urban informal activities play a crucial role in sustaining 

residents' livelihoods and making significant economic contributions in cities across SSA and 

the Middle East. With appropriate management, informality can facilitate transitions toward 

sustainable development. Auerbach et al. (2018) and Caldeira (2017) emphasise the political 

impact of informal collectives on urban governance, enabling marginalised residents to assert 

their agency in production and decision-making processes. Traditional perspectives analyse 

informality and urbanisation in the Global South through the lens of northern urban experiences. 

For instance, Lawhon and Le Roux (2019) compared urban theories included in mainstream 

textbooks and highlight the tendency to treat northern urbanisation as paradigmatic, while 

considering urbanisation in southern cities as exceptions. The typical hegemonic narrative is 
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that governance actions in southern urbanisation are seen as imitations of those in northern 

cities (de Castro Mazarro, 2023). Such a perspective fails to account for the informal practices 

that characterise urbanisation in the Global South (Roy, 2011, Sheppard et al., 2013).  

Many opinions have arisen as to whether "formal" should be regarded as the norm and 

"informal" as abnormal in urban life. This distinction can be roughly seen as a difference in the 

understanding of northern and southern urbanisation (Brenner and Schmid, 2015, Sheppard et 

al., 2013). Unlike global urbanism, which takes economically dominant global cities as models 

for urban development, these alternative perspectives do not simply treat informality and 

inequality in Southern cities as problems to be overcome (Roy, 2011, Sheppard et al., 2013). 

Instead, they seek to identify similarities between urbanisation processes in both the Global 

South and North, and aim to conceptualise informality (Harris, 2020, Nijman, 2007). Such 

frameworks include subaltern urbanism (Moyo, 2023, Roy, 2011) and critical urban theory 

(Brenner, 2009). Subaltern urbanism interprets urbanisation from the perspective of the lower-

class domain represented by subordinated slums. Drawing on critical urban theory, Banks et al. 

(2020) contend that informal practices under the dichotomous perspectives should instead be 

understood as adaptive strategies employed by differentiated social groups. This perspective 

helps to explain the emergence of new forms of “informality”, such as public-private 

partnership arrangements, which will be introduced in Section 2.2.3. This argument is also 

reflected in Moretto et al. (2018)’ study of water and sanitation service co-production in four 

case study cities. They concluded that informal services are not entirely opposed to formal 

services; instead, there is significant interaction between the two. Parida and Agrawal (2023) 

advocate for an approach that analyses southern cities based on their characteristics. This 

perspective aligns with the principles of comparative urbanism (Robinson, 2016), which 

emphasises the contributions of diverse urban experiences to urban theory. 

It is important to note that acknowledging the role of the informal sector in developing countries 

does not imply ignoring the differences between formal and informal, but rather calls for a 

deeper understanding of their organisation (Caldeira, 2017, Sheppard et al., 2013). 

Nevertheless, these perspectives provide a way of understanding slums that has facilitated and 

justified the implementation of slum upgrading and water governance policies, which will be 

introduced in the following sections. 

2.2.2 Policy towards slums: clearance versus upgrading 

City authority policy towards slums, particularly slum housing and infrastructure, have varied. 

Before the 1970s, many governments showed little interest in improving slum conditions, 

instead opting for slum clearance programs to relocate residents to other settlements. Such 
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initiatives included post-war reconstruction projects in UK cities (Jones, 2008, Kearns et al., 

2019), the two-stage slum clearance program implemented by London County Council between 

1889 to 1907, the Cross Act (1875), and Torrens Act (1866) (Stewart, 2005, Yelling, 1982). Other 

slum clearance projects can be found elsewhere, such as in the United States (Hill, 1952), 

Nigeria (Adama, 2020), and Zimbabwe (Muchadenyika, 2015). One of the most direct reasons 

for the launch of these projects was often financial gain. Since slums are formed because 

immigrants seek job opportunities in cities, the more convenient a slum’s location is, the better 

it is for immigrants. Without regulation, they often occupy locations with easy transport access 

(Marris, 1979, Misselhorn, 2008). Thus, slum locations are attractive not only to immigrants but 

also to governments and developers—especially given that slums are often not protected by law 

(Caldeira, 2017, Cities Alliance, n.d., Jones, 2010, Li et al., 2023b, Viratkapan and Perera, 2006). 

Moreover, the objective of slum clearance is to reduce unfit housing, and such schemes 

assume that the only solution is to eradicate the slum and relocate the residents to other places 

(Andavarapu and Edelman, 2013, Yelling, 2000).  

However, as indicated in section 2.2.1, slums should not be seen merely as obstacles to 

southern urbanisation. Thus, slum clearance policies have been widely criticized. A slum is a 

shelter for its inhabitants, not only in terms of the buildings and infrastructure present in the 

slum, but also in terms of informal organizations and activities. These organizations and 

activities result from continuous negotiation, gaming and cooperation among multiple actors 

(the state, the private sector and high- and low-income residents, etc.) in the urbanisation 

process (Lara-Hernandez et al., 2020). These informal activities and behaviours fill gaps that the 

formal order does not cover. Specifically, they provide services, employment opportunities, and 

other social environments upon which household and social networks depend (Misselhorn, 

2008, Roy, 2011). Thus, moving slum residents out of slums is not only an emotional blow but 

also a blow to their livelihoods, making people who are already living precariously poorer; this is 

the ‘destruction of communities’ theory that prevailed in the 1950s to the 1970s (Abebe and 

Hesselberg, 2015, Brown-Luthango et al., 2017, Kearns et al., 2019, Olu Sule, 1990). More 

broadly, such practices have been described as urbicide—the deliberate destruction of the 

material, cultural, and socio-economic foundations that support community life, often in the 

name of urban renewal (Di Virgilio, 2023). 

In the 1960s and 1970s, scholars such as Turner commented on housing policy and put forward 

the theory of gradual improvement. As a representative of slum upgrading, Turner, based on his 

observations of Peru, proposed that if the government could improve the unsanitary 

environment in the slum, residents would gradually improve shanty dwellings spontaneously, so 

intervention by government bureaucracies should be limited (Werlin, 1999). His discourse 

influenced World Bank policy, which directly affected countries' attitudes towards slums and 
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brought slum upgrading from theory to reality (Werlin, 1999). As the understanding of urban 

informality grew, the strategy of upgrading slums was promoted (Cities Alliance, 2021c). 

However, it should be noted that although the 1970s are commonly viewed as the starting point 

of the global slum upgrading trend, Harris (2020) reminds us that slum upgrading projects had 

already been implemented in both the Global South and North prior to the 1970s. These early 

efforts, though less documented and often overlooked in academic narratives, laid important 

groundwork for later upgrading strategies. 

Although the forms of intervention vary significantly, slum upgrading projects generally 

recognise improvements to physical infrastructure (Adama, 2020, Brown-Luthango et al., 2017, 

Cities Alliance, 2021c). In particular, due to the critical importance of water, sanitation, and 

hygiene (WASH), their role in slum upgrading projects has been widely discussed, especially 

after the pandemic (Cities Alliance, 2021b, Olthuis et al., 2015). Consequently, many slum 

upgrading projects involve the provision of water infrastructure. The upgrading project in 

Bandung City, Indonesia, provides piped water to 121 urban villages with slums through 

communal boreholes (KOTAKU boreholes) (Urfanisa et al., 2022). In 2006, Nairobi, Kenya, 

launched the Urban Basic Services (UBS) project as a sub-project of the Kenya Slum Upgrading 

Programme (KENSUP) (GoK, 2004, Meredith and MacDonald, 2017). Additionally, Nairobi has 

other water and sanitation infrastructure upgrading projects, such as the Kibera Community 

Water and Sanitation Project (Cronin and Guthrie, 2011). 

Another feature of slum upgrading is participation. City Alliance believes this is because of the 

occurrence of Turner’s self-help housing concept (Cities Alliance, 2021c)，which de Castro 

Mazarro (2023) views as one of the outcomes of subaltern urbanism. As noted, informality is 

significant in Global South urbanisation, with entities in slums communicating directly with 

official authorities on issues of legalization, regulation, occupation, planning, and speculation 

(Caldeira, 2017). Such collaboration has the potential to improve public service provision 

(Chidambaram, 2020). Thus, community participation and active involvement in different 

phases of slum upgrading projects is considered important (Brown-Luthango et al., 2017, 

Svensson et al., 2003). Besides the mentioned UBS project in Nairobi (Meredith and MacDonald, 

2017) and the slum upgrading project in Zimbabwe (Muchadenyika, 2015), slum upgrading in 

Bangladesh (Panday, 2020) and India (Chidambaram, 2020) has also highlighted the advantages 

of participatory slum upgrading and collective actions. Furthermore, participation in slum 

upgrading benefits the government via local knowledge – i.e. learning from informal activities 

(Brown-Luthango et al., 2017, Cities Alliance, 2021a, Nijman, 2008). The importance of 

community participation is widely acknowledged, especially in water and sanitation projects 

(Patel and Killemsetty, 2020).  
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In summary, better understanding of slums has led planners and practitioners to acknowledge 

the necessity for an approach that is more effective than clearance in addressing slum issues. 

New interventions are centred on infrastructure improvement, aiming to eliminate urban 

inequalities gradually by improving basic services such as water supply. Moreover, many 

advocates of slum upgrading believe in the active involvement of civil society, including the 

private and voluntary sectors (Nallathiga, 2012, Nijman, 2008, Otiso, 2003). Slum upgrading, 

particularly participatory slum upgrading, is a response to the traditional binary perspective on 

slums (Recio et al., 2017). Slum upgrading is an approach that views informality as a new mode 

of urban life and recognises informal efforts to improve basic services. The approach also 

implies that slums can play a positive role in sustainable urban development (Ahmed Saad et 

al., 2019, Azunre et al., 2021, Azunre et al., 2022).  

2.2.3 Water service delivery policy: service co-production 

Water utilities face distinct challenges in upgrading slums. The water sector naturally have a 

monopoly and public welfare remit. Their monopoly arises because of the high barriers to entry. 

Given the high construction costs of water infrastructure, water utilities are more exclusive than 

sectors such as electricity and communications (Cesar, 2019). Their public welfare remit arises 

from the necessity of ensuring universal service availability across the entire population. This 

obliges operators to take public responsibility and prevents them from solely pursuing self-

interest, which is undoubtedly contrary to private operators’ profit-seeking drivers (Marin, 

2009a, Ruiz-Villaverde et al., 2018). Furthermore, water pipelines are underground assets, 

making them difficult to catalogue and monitor, thereby presenting unpredictable risks for 

private companies.  

In order to alleviate public debt and curb high inflation in the 1970s, many countries significantly 

reduced subsidies available to the public sector (Ruiz-Villaverde et al., 2018). Given that tariff 

revenues were insufficient to cover these reduced subsidies, public utilities tended to depend 

more on government budget transfers than tariff revenues. Therefore, water utilities were 

effectively forced to focus more on infrastructure expansion than on maintenance and 

management in order to gain access to government funds. This led to inefficient and low-quality 

water services. During this period, investment from government decreased, while service price 

increases were not feasible because consumers were reluctant to pay more for deteriorating 

services (Marin, 2009a). It was during this period that the informal water sector grew rapidly, and 

the perception of informal provision changed (Post, 2022). 

Unsurprisingly, an innovative approach called Public-Private Partnership (PPP) aroused interest. 

PPP is a service co-production mode, which has relatively broad definitions and forms. Different 
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researchers and organizations have defined PPPs based on their disciplinary interests or 

responsibilities (Hodge and Greve, 2017, Wang et al., 2018). The Organisation for Economic Co-

operation and Development (OECD) defines PPPs as long-term agreements that the government 

uses to delegate services to a private partner to improve the efficiency of the service and 

transfer some risk to the partner (OECD, n.d.). Several commonalities emerge from these 

definitions:  

1. Cooperation. PPPs are created to address issues that require cooperation between the 

public and private sectors.  

2. Shared risks and goals. The concept of sharing is included in almost all definitions. 

Public utilities are characterised by public welfare, high risks, and costs. PPP spreads 

the costs and risks among the public and private participants and ultimately devotes 

them to achieving the common goal of public welfare.  

3. Long-term cooperation. The high risk and cost of public services require long-term 

cooperation for the private sector to recover costs (Hodge and Greve, 2017). Therefore, 

Wang et al. (2018) believe that long-term contracts are the only viable form of PPP. 

The rule setter of the water PPP is the public sector, and the form through which rules are 

defined is as contracts or concessions. Private operators can partially or fully invest in 

constructing new assets or use skills and expertise to optimize and manage infrastructure 

(Ameyaw and Chan, 2016, Marin, 2009a). Thereby, the management of public services is 

delegated to private developers, allowing public and private sector entities to share 

infrastructure costs and provide affordable water services to consumers whilst balancing this 

against potential losses of revenue.  

In addition to being benefit-oriented, PPPs can also take social responsibilities. Such non-

conventional models often involve the participation of community or civil society organizations 

and can effectively provide water to urban slum populations (Kleemeier and Lockwood, 2012, 

PPP Authority, 2008). Public utilities including water and sanitation are more vulnerable to the 

spatial inequality between slums and formal settlements. Healthcare utilities are a typical 

example. Disadvantaged groups (in terms of region, income, social class, race, gender) tend to 

seek assistance from healthcare utilities more (Hart, 1971), but they are not attractive to private 

operators (Armah et al., 2018, Knox and Pacione, 1980). The phenomenon is known as the 

inverse care law: “The availability of good medical care tends to vary inversely with the need for 

it in the population served.” (Hart, 1971). Hart (1971) believes that market forces are the driving 

force of this law, and the stronger the privatization, the stronger the inverse effect. Likewise, 

slum residents are also not attractive to private water and sanitation operators. As noted in 

section 2.2.1, since slums tend to be located on the outskirts of cities and are perceived as 
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having low willingness-to-pay for services, public sector bodies have little incentive to expand 

water and sanitation services in slums (Allen et al., 2006, Castro and Morel, 2008).  

Therefore, PPP is considered as an effective approach for upgrading slum infrastructure, 

especially water infrastructure, as it can integrate local resources (Annamalai et al., 2016, Dos 

Santos et al., 2017, Lima et al., 2021, Marin, 2009b, Moretto et al., 2018, UN-Habitat, 2023b). 

Moretto et al. (2018) argue that small-scale customised solutions to water issues are available 

in PPP projects due to their closer connections with residents. Asumadu et al. (2023), on the 

other hand, highlighted PPP’s superiority in financing. A widely studied example is the delegated 

management model (DMM) implemented in Kenya slums. In Kisumu, Kenya, Kisumu Water and 

Sanitation Company (KIWASCO) sells water through trunk pipelines to small-scale providers 

(SSPs), who then distribute water to consumers through pipelines, shared standpipes, and 

water kiosks (World Bank, 2009). In which SSPs can be community-based organisations or 

individuals (Castro and Morel, 2008). The DMM approach has expanded the coverage of water 

services while also providing better quality water to slum residents (Nzengya, 2018, Schwartz 

and Sanga, 2010). Additionally, community participation in DMM has not only alleviated the 

burden on the government but also reduced the cost of water access for slum residents (World 

Bank, 2009). 

However, there is an ongoing debate about the performance of PPP projects in the water sector 

(Cesar, 2019, McDonald, 2018, Mvulirwenande et al., 2019, Ruiz-Villaverde et al., 2018). Andres 

et al. (2008) collected data on 45 private water and sanitation companies in Latin America. The 

results show that private companies have higher labour productivity, efficiency, and quality 

levels. However, it is impossible to tell whether this improvement is due to privatization or 

company management. Chenoweth and Bird (2018) reviewed 20 studies on water and sanitation 

services in the United States, England, Wales, and France. They concluded that there was no 

convincing evidence that private companies outperformed public sector entities. Kirkpatrick et 

al. (2006) interpreted data from water utilities in 13 countries. They suggest that the impact of 

privatization was positive across multiple service provision domains, but not statistically 

significant. 

According to the World Bank's Private Participation in Infrastructure Project Database, the 

number and investment of PPP projects in 2023 have decreased compared to 2022 (WBG, 

2024). Studies have identified more than 20 failure drivers facing water PPP projects, including 

corruption, illegal connection, political interference, infrastructure construction and 

maintenance failures, and unclear land ownership (Ameyaw and Chan, 2015, Zhang and Tariq, 

2020). Furthermore, Lima et al. (2021) and Almeile et al. (2024) highlighted risk-sharing issues in 

PPP projects, as the large scale of investment and the long payback period put the great risk on 
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the private sector and make them lose interest in PPPs. Additionally, poor contract 

arrangements can lead to the private sector having difficulties in fulfilling promises, resulting in 

early contract termination and a lack of subsequent bidding interest. Buenos Aires, Hamilton, 

and Dar es Salaam have all seen PPP projects cancelled because private operators are unwilling 

to comply with unprofitable and restrictive contracts (McDonald, 2018). Studies on southern 

cities also indicate that water PPPs often suffer from weak infrastructure, limited funding and 

technical resources (Adams et al., 2020). Additionally, the importance of legislative support and 

recognition is highlighted for the success of PPPs in India, Latin America, and the Caribbean 

(Jha, 2023, Munoz-Jofre et al., 2023, Tirumala et al., 2020). Despite the increasing research on 

water sector PPP projects in recent years (Lima et al., 2021), there is a notable lack of studies 

examining the risks encountered by PPPs in slums and their interactions with the slum physical 

environment (Henson et al., 2020), such as the constraints imposed by slums’ spatial layout on 

DMM operation (Nzengya, 2015). 

2.3 Impacts and drivers of water pipeline configuration on services 

in slums 

2.3.1 Drivers of water pipeline configuration in cities 

Whilst the challenges of slum upgrading and water delivery policy within slums are well known, 

their implications for configuration of the associated infrastructure, and how utility networks 

within slums differ from formal areas are rarely discussed.  

Sorensen (2018) points out that, like railway and road networks, establishing water and sewer 

networks requires significant financial investment. Once the network is built, there is no way to 

move these capital investments. The presence of sunk costs leads to the following 

characteristics of pipeline networks: firstly, urban networks tend to be monopolised because 

the high costs preclude the possibility of free competition. The threshold is high, and the costs 

caused by competition are unaffordable; secondly, due to the high costs, there is a severe path 

dependency in the construction of the network. Once the location of the network has been 

determined initially, subsequent network expansion will be highly dependent on the location of 

the existing network. Similarly, it is difficult to change the management system overseeing 

infrastructure once established. These characteristics can be summarized by the Matthew 

effect: "the rich get richer and the poor get poorer" (Merton, 1968), which is also observed with 

road networks (Lan et al., 2022). From a topological perspective, this effect can be explained by 

the preferential attachment process or the Yule process, where a small number of nodes (hubs) 
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assume the primary connectivity roles during network formation, and new nodes tend to 

connect to these highly connected hubs (Fornito et al., 2016b, Yule, 1925). 

These characteristics can be traced back to the nineteenth century when large-scale urban 

pipeline networks emerged in industrial cities. The expansion of industrial cities was 

accompanied by high densities of population and human activity. In order to provide these cities 

with adequate services, centralised systems were needed to gather funds and land for urban 

planning (Gandy, 2004). At the same time, the emergence of pipeline networks can also be 

linked to new public health concepts and technologies. It can be argued that the rise of pipeline 

networks represents the Western concept of the ideal city as a unified, orderly city, with 

centralised and standardised networked infrastructure serving a wide range of residents 

(Coutard, 2008, Coutard and Rutherford, 2015). In other words, pipeline networks are not just 

infrastructure but also a set of values. Equitable allocation of services to users via a pipeline 

network embodies a value system in which the equal status of the users in the city is central, as 

discussed in the concept of global urbanism in Section 2.2.1. 

This value of equality is also reflected in designing the pipeline network. Since pipeline networks 

are constructed to provide universal access to public services, growing population with water 

demand becomes the main driver of water pipeline expansion. Network expansion in cities can 

be broadly classified into area expansion and densification (Yang et al., 2017). The former is the 

process of building a network to cover new settlements, while the latter refers to the 

enhancement of water services in existing communities. In both expansions, the 

distribution/density of population growth (demand points) determines the shape of pipeline 

networks (Farmani and Butler, 2014, Yang et al., 2017). These expansions align within the 

broader processes of urban evolution (Gudmundsson and Mohajeri, 2013, Mohajeri and 

Gudmundsson, 2014, Strano et al., 2012). 

Consequently, pipeline networks exhibit similarities to the urban road networks, the latter of 

which fundamentally determine the morphology of cities (Scheer, 2015). Beyond their geometric 

overlap (Mair et al., 2017), graph studies also found shared patterns within urban networks, one 

of which is the power law distribution of centrality metrics (Akbarzadeh et al., 2018, Giudicianni 

et al., 2018, Johnson et al., 2019, Kirkley et al., 2018, Klinkhamer et al., 2017, Lämmer et al., 

2006, Yang et al., 2017, Yu et al., 2024, Zischg et al., 2019). The power-law distribution is 

characterized by heavy tails, meaning that nodes with high centrality (i.e., the importance or 

influence of a node) are more likely to occur in scale-free networks than in Gaussian-distributed 

networks (random networks). Based on the definitions of centrality metrics, the rule reflects the 

pattern shared by urban sprawl and infrastructure networks, where the network's primary 

connections (the city's framework) form circuits and then expand outwards (Akbarzadeh et al., 
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2018). The evolution of both pipeline and road networks both follow this development dynamic 

(Dovey et al., 2020, Mohajeri et al., 2015). 

Although many have questioned the universality of power law distributions in recent years 

(Broido and Clauset, 2019, Casali and Heinimann, 2019, Reza et al., 2024, Wéber et al., 2020), 

there is evidence that a significant proportion of real networks are subject to this unifying law or 

alternative distributions, such as lognormal (Casali and Heinimann, 2019) and modified Lomax 

(Akbarzadeh et al., 2018, Artico et al., 2020, Chattopadhyay et al., 2021, Kirkley et al., 2018). 

Graph metrics have revealed statistical similarities between road networks across urban 

contexts (Akbarzadeh et al., 2018, Casali and Heinimann, 2019, Kirkley et al., 2018, Lan et al., 

2022). Liu et al. (2016) observed that building density is positively correlated with the centrality 

of streets. Giudicianni et al. (2018) and Krueger et al. (2017) identified regular variations in 

structural indicators of pipeline networks over time and urban scale. As both street and pipeline 

networks are constrained by the spatial boundaries established during city expansion, they tend 

to follow similar evolution trajectories (Abdel-Mottaleb and Zhang, 2020).  

The research described above has taken place mainly in developed countries and has focused 

on the formation patterns of general urban networks. In Africa, however, the environment 

affecting the layout of pipeline networks is more complex. When this centrally managed pipeline 

system was transplanted to Africa from colonial times, the lack of resources limited the 

network's layout and, thus, its performance. As Gandy (2004) states, contrary to what one would 

expect, not all cities will follow the western network pattern. The first issue many African cities 

face is the profound influence of colonial policies (Andersson, 2017, Harris, 2021, Letema et al., 

2014). During the colonial era, African colonies were often divided into two zones: la ville des 

indigenes (the indigenous zone) and la ville des europèenes (the European zone) (Bigon and 

Njoh, 2015). This stratification was based not only on ethnicity but also on native locations, 

culture, religion, occupation, and income. In Tema, Ghana, for example, colonial housing 

allocation policies were designed according to occupation and income (Kaye-Essien, 2020). The 

result of stratification was the explicit spatial and functional divisions within African cities, 

whereby the native areas severely lacked urban planning and infrastructure services compared 

to the European areas (Tetteh et al., 2022). This unfair dualistic structure has been maintained 

during subsequent urban development and makes building equally distributed pipelines difficult 

in African cities from the outset (Bigon and Njoh, 2015).  

As mentioned previously (section 2.2), the second factor influencing pipeline networks in 

African cities is rapid urbanisation and population growth, accompanied by greater water 

service demand. Individual local authorities or utilities in African cities lack sufficient funds and 

the construction and management skills necessary to build and manage a pipeline network that 
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covers all demand equally. Instead, the dualistic structure can still be found as a legacy in water 

pipeline networks even after African countries gained their independence (Bigon and Njoh, 

2015). In the case of Kisumu, for example, although population density is the criteria for 

prioritising pipeline installation, it is the formerly European or Asian middle and high-income 

areas with lower population density rather than slums and peri-urban areas that are included in 

planning (Letema et al., 2014). Similar problems are seen in Lima, Peru, and Dar es Salaam, 

Tanzania (Ioris, 2012, Smiley, 2020). Further, Ioris (2012) concludes that in a context where the 

authorities lack the capacity to manage the whole city, water supply shortages result from 

colonial and post-colonial social, economic, and spatial inequalities. Jaglin (2012) emphasises 

that social inequalities have caused different governance arrangements for particular 

population groups and areas. This contradicts the values on which infrastructure networks are 

based - equality and universal access (Coutard, 2008). As Dupuy (2011) states, "Even though 

the network exists, all the necessary elements for it to function are not yet in place." 

Predictably, if one compares the morphology of pipeline networks within slums with that of 

formal areas, they will be very different since: 

1. The unplanned buildings and road networks in slums limit the space available for 

pipeline laying, thereby making the pipelines have inefficient topology. 

2. Insecure land ownership, low-income levels, and governance failures further weaken 

pipeline planning and maintenance in slums. 

3. Due to colonial history, the infrastructure baseline in slums differs significantly from that 

in formal areas, increasing the cost of further pipeline expansion. 

Several empirical studies have confirmed this argument (Lagerberg, 2016, Mapunda et al., 2018, 

Shushu et al., 2021). Due to their populations’ inability to access and afford formal water 

services, slums suffer from illegal connection problems and thus have unplanned piped 

network structures (Boakye-Ansah et al., 2019). For example, Mutikanga et al. (2009) reported 

the formation of a "spaghetti" pipeline network, referring to a structurally disorganised network 

(see Figure 2.3), in Kampala, Uganda. Another reason for slums’ vulnerable networks is that 

urban expansion is faster than expectations. Therefore, these networks are built without utility 

plans (Shushu et al., 2021). High building density, the complex road network, and 

insecure tenure also inhibit building of pipeline networks in slums (Alba and Bruns, 2022, Wagle, 

2022). It is worth noting that there are no studies yet on the differences in the structure of 

pipeline networks within slums versus formal areas. In addition, although some interventions 

(such as DMM) have been implemented in slums to improve water access (Nzengya, 2018, 

Ocholla et al., 2022), their impact on network structure remains unclear (Nzengya, 2015).  
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Figure 2.3 Spaghetti networks versus structured networks. The network endpoints are Small 

Scale Infrastructure Providers (SSIPs) and households (Ahlers et al., 2013). 

2.3.2 Impacts of water pipeline configuration in cities 

As discussed in the previous section, the urban context shapes the configuration of pipeline 

networks, creating a contrast between informal and formal areas. A related question is whether 

pipeline performance varies as a result of their varying configurations in different contexts. 

Here, the review first discusses reliability as an example, which refers to the ability of the 

pipeline network to remain operational during malfunctions (Gheisi et al., 2016). Pipeline 

networks and other infrastructure networks are built to transport substances and energy from 

one point to another. Given equity is an underpinning value of many networked cities (see 

Section 2.3.1), it is crucial that users have equal access to substances and energy from the 

network. This is also consistent with the universal access targets for SDG 6. Therefore, the 

reliability of a network can be measured by the number of off-grid customers when failure 

happens. In other words, it is the risk that when one pipeline fails, other pipelines are 

disconnected from the network, which is affected by how the pipelines are organised 

(Agathokleous et al., 2017, Bentes et al., 2011, Wang et al., 2019). According to Punmia et al. 

(1995), the way pipelines are organised can be classified into four types: 

1. Grid-iron system or Reticulation system 

2. Circular system or Ring system 

3. Radial system 

4. Dead-end system or Tree system 
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Figure 2.4 Water distribution system layouts. A. Grid Iron; B. Ring System; C. Radial System; D. 

Dead End (Mazumder et al., 2018). 

These layouts appear in different forms of settlements and have different advantages and 

disadvantages. In the case of a dead-end or tree system (Figure 2.4 (D)), which is common in 

rural areas (Sarbu and Ostafe, 2016), a main pipeline runs through the service area with sub-

mains connected on either side. These sub-mains are further divided into branch lines, where 

there are no cross-connections between sub-mains and branch lines. The whole system forms 

the shape of a tree, and the trunk is the main pipeline. In this network, breakage of any pipelines 

will result in some customers not receiving service, and the extent of the impact depends on the 

class of the pipeline that fails. The spaghetti network mentioned in section 2.3.1 fits into this 

category. However, this does not imply that networks within slums are necessarily dead-end 

systems, as slums exhibit various spatial structures (Flores Fernandez, 2011). On the contrary, 

all branches are connected in the ring systems (see Figure 2.4 (B)) that can be found in well-

planned cities. Very few customers in this system will be affected when one pipeline breaks 

because there are always several pipes connecting a point. Lorenz et al. (2021) suggest that the 

resilience of pipeline networks varies with urban form, as urban form greatly affects the 

structure of pipeline networks. Moreover, Adraoui et al. (2024) suggest that it is also possible to 

estimate the robustness of a network by testing the consequences of removing its constituent 

pipelines using graph metrics. Since the distribution of centrality can be used to describe the 

network's structure (see section 2.3.1), some studies argue that the power law distribution of a 

pipeline network implies the existence of highly concentrated centres. Such a scale-free 
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network is highly resilient to random faults compared to a random network, but vulnerable to 

targeted attacks. Thus, the degree to which the distribution is subjected to a power law can be a 

useful indicator of network resilience (Wéber et al., 2020, Yu et al., 2024, Zischg et al., 2019). 

In addition to reliability, water pipeline networks have unique properties that are affected by 

structure. Many studies use graph metrics to measure the impact of a network's topology on the 

transmission efficiency of water flow or, put another way, the importance of nodes/edges and 

the robustness of the network. Yu et al. (2024) demonstrate that the topology of the water 

network can be used to estimate hydraulic head, flow rate, water age/residency times, and 

thereby water quality in the network. Zhao et al. (2020) found that energy consumption for water 

supply (e.g., energy required for pumping stations) varies with urban morphology, with radial-

uniform cities consuming the least energy for water supply among radial, grid and satellite 

cities. Torres et al. (2017) pointed out that changes in network topology lead to subsequent 

changes in water quality in the system. He examined 11 graph metrics regarding maximum 

hourly unit head loss, minimum hourly system pressure, average system water age, and average 

concentration of an unknown chemical. The result shows that 10 of the 11 metrics describing 

network structure and 3 of the 4 performance metrics had strong positive or negative 

correlations with these operational water parameters.  

Based on the evidence from section 2.3.1, relationships between piped network performance 

and urban form can be further inferred. If the performance of a pipeline network is influenced by 

its structure, then a pipeline network’s weak structure could exacerbate water service delivery 

challenges in slums. Taking Water Safety Plans (WSPs) as an example, a WSP is a management 

tool designed to ensure the delivery of safe drinking water (Roeger and Tavares, 2018). It enables 

managers to effectively identify and control risks within the pipeline network. The development 

of a WSP relies on quantitative analysis and supporting programmes to oversee the water 

system (Godfrey and Howard, 2005b). However, Godfrey and Howard (2005a) note that 

unplanned water systems with limited data availability make it difficult to locate the main 

pipelines. Consequently, the development of WSPs requires significant time and expert 

experience to conduct field surveys and desk-based system analysis, which delays preventative 

action against issues affecting water supply and quality. Additionally, for water pressure 

management, the water pressure, pipeline lifespan, and the water lost in leaks are closely 

linked. Thus, efficient water pressure management contributes to the system's short and long-

term operation. However, in a ‘spaghetti’ network, managing water pressure in different zones is 

difficult due to the lack of information about infrastructure such as valves. Hence, frequent 

pressure transients and surges in the system will trigger bursts and leaks (Mutikanga et al., 

2009). Similarly, Lagerberg (2016) notes that extensions of pipelines in informal settlements are 

often informal and, therefore, not officially documented. Especially in places like slums, where 
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governance is fragmented or limited, few people know the pipelines' location and condition 

except those who laid them. Therefore, in the event of a pipeline breakage, few people realise 

when breakages occur and are able to remediate, repair or replace the pipeline. 

Since maintaining a chaotic pipeline network is more complicated and costly than a well-

structured network, bursts and leaks also lead to more severe consequences in a pipeline 

network with poorly structured topology. A complex pipeline network requires more 

computation to analyse the condition of pipelines (Ghosn et al., 2016). In addition, their size and 

complexity, as well as their accessibility, make repairing the system more difficult (Kaminsky 

and Kumpel, 2018). Particularly, pipelines in slums may be exposed rather than buried and 

made of plastic, allowing residents to cut the pipes to fetch water (Mapunda et al., 2018). An 

example comes from the slums of Malawi, where the maintenance cost per unit length of the 

pipeline is much higher than in other areas. The reason for this is the poorly laid network and the 

frequent vandalism of pipelines in slums (Banda and Mwale, 2018). In the case of Mwanza, 

Tanzania, the researchers observed that due to such bursts and leaks, the amount of non-

revenue water in slum areas was much higher than the average for the city, with 87 per cent of 

the actual water loss being related to the network topology and operating conditions (Shushu et 

al., 2021).  

This chapter underscores the close interconnection between SDG 6 and SDG 11, as revealed 

through topological research. The construction of water pipeline networks is fundamentally 

designed to provide equitable services to residents, aligning closely with the objectives of SDG 6 

on safely managed water services. The realization of this goal is directly influenced by the 

structure of pipeline networks. Topological research finds that the ability of pipeline networks to 

reliably deliver water without being affected by failures depends on their structural type. 

Moreover, the network's structure directly impacts its hydraulic efficiency and ultimately 

parameters such as water residency times and pressure linked to water safety. Structured water 

pipeline networks are easier to manage, and thus have greater resilience against contamination 

and degradation. As a result, the structure of pipeline networks can provide insights into both 

aspects of the safely managed drinking water indicator of SDG 6.1: availability when needed and 

freedom from contamination. 

On the other hand, similar to the informality of slums, spatial disparities in pipeline 

configurations across SSA also arise from urbanisation and are closely linked to urban 

structure. SSA cities face constraints such as limited financial resources and governance 

capacities, which curtail the extension of formal water services. Simultaneously, urban water 

sectors are under pressure to meet water demand due to population growth. A similar supply-

demand contradiction is also the cause of slum proliferation, creating substantial overlap 
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between water supply issues and slum challenges. Given that the evolution of pipeline networks 

mirrors urban development, significant disparities between slums and formal settlements in 

pipeline configurations should become evident through comparisons of urban and pipeline 

morphology. Thus, the subsequent empirical evidence in this thesis on how slum and slum 

upgrading projects affect pipeline network structure can inform efforts to achieve both SDG 6 

and SDG 11. 

2.4 Graph theory methods for measuring network structure 

As previously highlighted, an approach often used in studies of the performance (e.g., 

robustness and efficiency) of urban pipeline networks is graph theory. Unlike hydraulic models, 

which measure the physical properties of pipeline networks (D’Ambrosio et al., 2015), graph 

theory measures the structure of the pipeline network. Its lower computational complexity 

makes it suitable for use in settings where data are sparse, which is particularly valuable given 

that the physical layouts (e.g., pipe layout, pipe diameter) and operational characteristics (e.g., 

pump operation) of pipeline networks are often not publicly available (Ahmad et al., 2022). 

Applications of graph theory include a range of metrics and algorithms that reveal infrastructure 

network characteristics from a different perspective, complementing traditional hydraulic 

models (Torres et al., 2017).  

2.4.1 Graph approaches to water pipeline networks 

A graph is a mathematical abstraction that can represent any set of elements related to each 

other in some way (Clark and Holton, 1991, Wilson, 2010). Loosely speaking, any system that 

connects individual units can be called a network and can be represented by a graph. A well-

known graph example is Zachary's karate club. In this study, club members are treated as units, 

and the information flows between members are represented as graph edges (Zachary, 1977). 

Therefore, representing infrastructure such as pipeline networks as graphs is a natural idea. 

There are various methods to represent pipeline networks as graphs. A pipeline network 

consists of components located in Euclidean space, with water flows forming connections that 

can also be mapped within this space. Such networks are known as spatial networks 

(Barthélemy, 2011, Tsiotas and Polyzos, 2018). Representing spatial networks as graphs 

inevitably involves discarding redundant elements while preserving their morphology and 

connectivity (Šuba et al., 2016). In other words, graph theory analysis requires the merging and 

simplification of spatial data to achieve a balance between mathematical representation and 

the real world, addressing various objectives such as aesthetics, readability, and computational 

efficiency. Since there is no universally accepted definition (Pueyo et al., 2019), the review uses 
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the term 'graph generalization' here. Disagreements about generalization methods primarily 

revolve around the choice of which elements to discard and how to organise the components, 

which often depends on the research objectives (Pueyo et al., 2019). From a functional 

perspective, there are two generalisation methods for representing spatial networks as graphs. 

One approach is to depict components in the network that consume, generate, or regulate a 

resource or service as nodes (e.g., cities, ports), and the exchange of resources and services 

between nodes as edges (Dunn et al., 2013). The other method represents the intersections and 

endpoints in the network as nodes. Both methods can be seen in the study by Prieto-Curiel et al. 

(2022). Additionally, various methods have been proposed to identify and aggregate elements 

within spatial networks. Space syntax is a pioneering approach in this field. It represents linear 

elements in urban spaces as axial lines based on visibility (Hillier et al., 1993). Subsequently, 

methods have emerged for identifying elements based on features such as names and angular 

relationships between elements. These methods derive from specific interpretations of 

networks and have inherent limitations (Marshall et al., 2018). For instance, Marshall (2016) 

notes that while all nodes in air transport facilitate point-to-point services, in road networks, 

services do not terminate at some nodes. Consequently, the nodes have different functions, but 

the aforementioned representations fail to capture this distinction. Nevertheless, these 

modelling approaches all capture network continuity and hierarchical structure (Marshall et al., 

2018, Negadi et al., 2023), and thus have also been applied to pipeline network modelling 

(Krueger et al., 2017, Zischg et al., 2019). However, the impact of using different generalisation 

methods in pre-processing pipeline network for analysis has yet to be fully recognised. 

In this section, we discuss modelling pipeline networks as simple graphs. Generally, a graph 

without self-loops (edges connecting a node back to itself) or multiple connections between two 

nodes (parallel edges or multi-edges) is called a simple graph. Following the methods used in 

road network modelling, pipeline endpoints and intersections are normally represented as graph 

nodes, while pipes are represented as graph edges (see Figure 2.5).  

 
Figure 2.5 Example Graph of a Water Distribution Network. Dashed edges represent self-loops 

and parallel edges, while nodes surrounded by circles are pseudo-nodes. 
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Thus, a pipeline network can be represented by the adjacency matrix A. When the network has N 

nodes and E edges, 𝐴𝑖𝑗  is an n * n matrix and can be defined as (Barthélemy, 2011): 

𝐴𝑖𝑗 = {
1, 𝑖𝑓 𝑖 𝑎𝑛𝑑  𝑗 𝑎𝑟𝑒  𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

For undirected and unweighted graphs, 𝐴𝑖𝑗is a symmetric matrix, that is, 𝐴𝑖𝑗=𝐴𝑗𝑖  , which 

is not the case for directed graphs. For directed graphs, when i is connected to j, 𝐴𝑖𝑗  =1, 

but j is not necessarily connected to i, and 𝐴𝑗𝑖  may be 0. When the distance between 

nodes (whether physical distance or cost) also needs to be considered, we need to use 

a weighted graph to represent the network. For a weighted graph, when i and j are 

connected, 𝐴𝑖𝑗  =𝑤𝑖𝑗 , where 𝑤𝑖𝑗represents the distance of the edge connecting i and j. It 

can be seen that the adjacency matrix describes how the essential components of the 

network, the nodes, are connected. 

According to this most basic definition of graph theory, we can already obtain some 

network metrics. Some commonly used metrics in water network studies are 

represented in Table 2.4. 
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Table 2.4 Basic Structural Network Measurements for Water Networks (m and n denote the number of edges and nodes in the graph, respectively, and s, t, i, j 

represent nodes in the node set V) 

Graph metric Formula Description 
Application in infrastructure 
network management 

Centrality 
metrics 

Degree centrality 
𝑘𝑖 =∑ 𝐴𝑖𝑗

𝑗
 

 

The degree of a node is the number of 
its neighbours. 

Centrality metrics indicate 
the importance of the node. 
There are a large number of 
them, including maximal 
clique centrality (MCC), 
maximum neighbourhood 
component (MNC), the 
density of maximum 
neighbourhood component 
(DMNC), betweenness 
centrality, bottleneck, 
eccentricity, stress, and 
closeness centrality 
(Barthélemy, 2011, Mata, 
2020). Of these, degree, 
betweenness and closeness 
centrality are commonly used 
by recent infrastructure 
network studies (Daniel et al., 
2021, Henry et al., 2019, Liu 
et al., 2016, Morzy et al., 
2016). They assess nodes in 
terms of connectivity, flow 
loading, and efficiency, 
respectively. Their statistics 

Betweenness 
centrality 

𝐵(𝑖) =∑
𝜎𝑠𝑡(𝑖)

𝜎𝑠𝑡𝑠≠𝑡
 

 

A node's betweenness centrality 𝐵(𝑖) 
can be defined based on the number 
of shortest paths through the node. 
𝜎𝑠𝑡 is the number of shortest paths 
going from s to t and𝜎𝑠𝑡(𝑖) is the 
number of shortest paths going 
from s to t through node i. 𝐵(𝑖) can be 
interpreted as the ability of node i to 
facilitate the flow of material or 
information in the network. 

 

Closeness 
centrality 

𝐶(𝑖) =
1

∑ 𝑑𝑖𝑗𝑖≠𝑗
 

Closeness centrality measures the 
distance from a node to all other 
nodes in the network. 𝐶(𝑖) is the 
inverse of the sum of distances to all 
reachable nodes; the higher 𝐶(𝑖) is, 
the more efficiently the node can 
communicate with other nodes in the 
network. 
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also provide insight into the 
configuration of the network. 

Link density 𝑞 =
2𝑚

𝑛(𝑛 − 1)
 

Density is the ratio of the actual 
number of edges in the network to this 
maximum possible and  describes 
how connected a network is (O’
Sullivan, 2014) .  

Graph density represents 
how many edges can still be 
added to the network. 
Therefore, link density is the 
design efficiency of the 
network. 

Critical breakdown ratio 𝑓𝑐 =
1

𝑘2

𝑘
− 1

 

A network will fail when removing 
nodes whose degree exceeds the 
threshold 𝑓𝑐 . The value thus depends 
on the average node degree k  
(Yazdani et al., 2013) . 

This value is related to the 
stability of the pipeline 
network. The higher the value, 
the more tolerant the pipe 
network is to breakages 
represented via disconnected 
nodes. 

Average shortest path length ℓ𝑖𝑗̅̅̅̅ =
1

𝑛(𝑛 − 1)
∑ ℓ𝑖𝑗

𝑖≠𝑗
 

The value of the average distance 
along the shortest paths ℓ𝑖𝑗 
connecting nodes i and j, compared 
to all possible pairs of nodes in the 
network  (Porse and Lund, 2016, 
Yazdani et al., 2013). 

This value is similar to link 
density. By traversing all node 
connections in the piped 
network, it represents the 
connection efficiency of the 
piped network. 

Algebraic connectivity 

 The second smallest eigenvalue of the 
normalized Laplacian matrix.  

Similar to the critical 
breakdown ratio, algebraic 
connectivity represents the 
robustness of the pipeline 
network (Yazdani et al., 
2013). 

𝜆2 
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Meshedness 

 

Also called the Alpha Index. Measures 
the ratio of the actual versus possible 
number of independent loops in a 
planar graph. It ranges between 0 for 
tree-like and 1 for grid-like networks 
(Porse and Lund, 2016). 

A larger α corresponds to a 
more connected network 
(Hwang and Lansey, 2017) . 
This index can be used to 
describe the number of 
enclosed faces in 
infrastructure networks, 
thereby reflecting the 
structural characteristics of 
urban blocks(Usui and 
Asami, 2011). 

Graph diameter 

 

The maximum geodesic distance 
between any two nodes. It captures 
the maximum eccentricity of nodes in 
the network and provides a basic 
measure of topological and 
geographical spread of the network  
(Zeng et al., 2017). 

A rough estimate of the size 
and complexity of the piped 
network can be obtained 
from graph diameter. 

Network efficiency 𝑄̅ =
1

𝑛(𝑛 − 1)
∑ 𝑄𝑖𝑗

𝑖≠𝑖
 

Q is calculated as the ratio between 
physical distance and topological 
distance. Ranges between 0 for least-
efficient and 100% for most-efficient 
networks and may be used as a proxy 
for average water travel time. 

This is an indicator based on 
the actual operation of the 
pipe network. The higher the 
value, the less efficient the 
water flows in the network. 

Central-point dominance 
𝐶𝐵
′ =

1

|𝑉| − 1
∑𝐶𝐵(𝑣

∗) − 𝐶𝐵(𝑣)

𝑣

 

 

Central-point dominance is a 
parameter based on the evolution of 
betweenness centrality(Freeman, 
1977). 𝐶𝐵′  ranges from 0 to 1, and a 
higher value means that the nodes in 
the network are more closely 

In a water network, a star 
graph can be effective in 
improving efficiency, meaning 
that there is a node in the 
centre of the network that 
plays an important role in 

𝛼 =
𝑚 − 𝑛 + 1

2𝑛 − 5
 

Max(𝑑(𝑁𝑖，𝑁𝑗)) 
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distributed around a central point. 0 
means that the distribution pattern of 
the points in the network has no 
distinctive features, while 1 means 
that the network is a wheel or star 
graph, which means that there is a 
significant central point in the 
network. 

transmission, but this can 
also reduce the stability of 
the network, so in practice a 
grid structure is preferred for 
a water network (Yazdani and 
Jeffrey, 2011). 

 

Clustering coefficient 
𝐶𝑖
𝑤 =

1

𝑠𝑖(𝑘𝑖 − 1)
∑

𝑤𝑖𝑗 +𝑤𝑖ℎ

2𝑗,ℎ
𝑎𝑖𝑗𝑎𝑖ℎ𝑎𝑗ℎ 

 

Also known as the Transitivity. Where 
𝑠𝑖is the strength of vertex i, 𝑎𝑖𝑗are 
elements of the adjacency matrix, 𝑘𝑖is 
the vertex degree, 𝑤𝑖𝑗are the weights 
(Barrat et al., 2004). 

This metric detects the presence of 
triangular loops in the network. A 
value of 0 for 𝐶𝑖

𝑤 represents the 
absence of triangles in a network, 
whereas increasing triangle density 
results in a higher cluster coefficient. 
Therefore, grid networks have a 
smaller clustering coefficient. 

Higher values indicate a more 
connected network and 
better performance in terms 
of network efficiency and 
redundancy. However, most 
loops in urban networks are 
not triangular but square. 
Therefore, another similar 
metric, meshedness 
coefficient, is always 
considered alongside 
clustering coefficient in water 
network studies (Yazdani and 
Jeffrey, 2011). 
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Spectral gap ∆𝜆 

Spectral gap is the difference 
between the first and second largest 
eigenvalues of the adjacency matrix.  

The magnitude of this value is 
related to a property known 
as "expansibility". Intuitively, 
it represents the connectivity 
and robustness between any 
set of points in the network. 
Low values of spectral gap 
indicate a lack of 
expansibility and are more 
prone to failures when the 
network is under attack  
(Yazdani and Jeffrey, 2010) . 
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2.4.2 Community detection for identifying network sub-regions 

In addition to examining the attributes of urban pipeline networks, the relationship between 

pipeline network performance and spatial patterns implies that urban heterogeneity, or the 

distribution of slums, affects water delivery within sub-regions. Further, given the interactions 

between SDG 11 with SDG 6, a tool such as community detection can be used to identify the 

morphology of the water pipeline network and thus evaluate whether the piped structure for 

water delivery within slums and areas under specific service delivery management 

arrangements differ to those elsewhere. 

Community detection is a technique for identifying communities—nodes in a network that are 

tightly connected or share similar characteristics (Fortunato and Newman, 2022). This concept 

builds on the ideal network. In mathematics, we can build and elaborate on ideal models to test 

similar model properties in more complex cases. This is also the case with the network model. A 

popular approach is to define random graph classes. One null model that is important for any 

network model is the Erdös-Rényi (E-R) model (Erdős and Rényi, 1960). The E-R graph is built 

from a set of random nodes, where the probability p of connecting two nodes is the same.  

While the E-R model is idealised, real-world networks tend to be highly heterogeneous. Let us 

first return to the study of Zachary's karate club (section 2.4.1), which is not only a landmark 

study of social networks, but also inspired the study of community structure in the network. The 

karate club has become the test subject of many community detection algorithms 

(Chintalapudi and Prasad, 2015, Despalatović et al., 2014, Girvan and Newman, 2002). During 

Zachary (1977) ’s study, the club was divided into two parts due to conflict between members. 

Members in each part have stronger social ties to each other and fewer ties between different 

parts. From this example, it can be recognised that in a social network where each node 

represents a person, the connection between nodes, or the social relationship, is affected by 

people's preferences. In addition to Zachary's karate club, a study on a collaboration network of 

scientists at the Santa Fe Institute, an interdisciplinary research centre in Santa Fe, New 

Mexico, showed that scientists tend to work with colleagues with similar research themes or 

methods (Girvan and Newman, 2002). 

The above examples demonstrate a property that occurs in real-world networks: the existence 

of a set of entities that are closer to each other than other entities in the dataset, called a 

community. This means that a network influenced by or consisting of people is not a random 

graph like the E-R graph. The community structure in networks has been studied extensively in 

sociology (Kao and Porter, 2018) and can even be extended to biological research (Girvan and 

Newman, 2002). In addition, there are also community studies in the fields of land use (Comber 
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et al., 2012), transportation networks (Hong and Yao, 2019), and water pipelines (Brentan et al., 

2017). Studies have revealed the characteristics of communities and, further, how they are 

influenced by entities within networks (Javed et al., 2018). For example, the process of disease 

transmission can be understood by identifying different population communities (Kitchovitch 

and Liò, 2011), recommendation algorithms can be improved for business websites (Krishna 

Reddy et al., 2002), and the division of brain regions can be studied (Zhang, 2017). In the fields of 

communication networks, economics, and biological networks, community detection has also 

produced many outputs (Fortunato, 2010, Javed et al., 2018, Mittal and Bhatia, 2021). 

However, it is not easy to review community detection algorithms. Due to the complexity of real-

world networks, many algorithms are developed for specific communities and network types 

(Yang et al., 2016), which means that community detection algorithms are best classified 

relative to a specific network and community application area. For example, Mittal and Bhatia 

(2021) classify community detection algorithms into four categories according to technology: 

modularity algorithms, information theoretic algorithms, network algorithms, and hierarchical 

algorithms; while in Bedi and Sharma (2016)’s  review, the algorithms for community detection 

are categorized into approaches based on graph partitioning, clustering, genetic algorithms, 

label propagation-based, semantics-based, methods for overlapping community detection, and 

community detection for dynamic networks. Another algorithm classification differentiates the 

following categories: traditional algorithms of community detection, algorithms of overlapping 

community detection, and algorithms of local community detection (Wang et al., 2015). While it 

is difficult to categorize algorithms, we can still filter out some algorithms since the type of 

network and community largely limits their application. 

Networks can be divided into static and dynamic. Community detection algorithms in static 

networks are relatively simple and mostly centred on optimizing the objective function (Javed et 

al., 2018). However, networks in real life may be dynamic, which is reflected in the changes in 

network structure and composition. For example, Twitter users may be interested in different 

topics at different times and thus join different communities. In addition, communities can be 

overlapping, meaning that members of a community can simultaneously belong to another 

community (Mittal and Bhatia, 2021). Given that urban area divisions typically do not have 

overlapping or ambiguous regions, and that the analysis of the evolution of water networks is 

not within the scope of this review, the review focuses only on algorithms for non-overlapping 

communities and static networks. The following section is an introduction to three common 

types of algorithms. 
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2.4.2.1 The Cut-based Perspective 

Since communities have stronger internal connections than external connections, some 

algorithms have found a way to delineate optimal boundaries to cut the graph so that the 

internal connections of the cut result are stronger than those crossing boundaries. In the 

traditional partitional clustering algorithm, given the number of target clusters, the performance 

of the given cost function is continuously optimized during the cutting process, such as 

maximizing or minimizing a loss function based on the distance between clusters. Functions 

such as Minimum k-clustering, k-clustering sum, k-centre, and k-median are all this type of 

community detection algorithm (Wang et al., 2015). They are all functions assigning points to k 

given clusters by optimising the distance between the k centroids and the other points within 

the cluster. The result is Voronoi cells. However, since it is difficult to know the number of 

clusters in advance when conducting community detection, hierarchical clustering methods are 

often proposed as an alternative to such methods. These algorithms consider the network as a 

binary tree with different levels. There are two branches of hierarchical clustering methods. The 

starting point of agglomerative algorithms, the first branch, is nodes. At any step of an 

agglomerative algorithm, whether two nodes are connected depends on the similarity score of 

the cluster. This method is an iterative process of merging communities from the bottom up 

(Despalatović et al., 2014). In contrast, divisive algorithms are global in perspective, consider all 

nodes as one community, then iteratively split clusters top-down by removing edges connecting 

vertices with low similarity. Both algorithms are iterative, as the weights of the edges change 

after each operation. Among them, divisive algorithms belong to the cut-based perspective. A 

typical example is the Girvan-Newman method, where edge weight is defined as the number of 

shortest paths passing through a given edge, a value known as edge betweenness (Girvan and 

Newman, 2002). 

Graph Partition methods, on the other hand, aims to partition a graph into multiple 

predetermined-sized communities that satisfy some objective function by removing edges. A 

typical method is the Kernighan-Lin algorithm proposed to deal with circuit problems (Kernighan 

and Lin, 1970). This is a greedy optimization algorithm whose basic idea is to maximize the profit 

function by exchanging nodes between different groups. This profit function can be defined as 

the difference between the number of edges inside the module and the number of edges lying 

between them. Nevertheless, this algorithm requires the size of the community to be known. If 

the number of communities is known, then another algorithm in graph partition, spectral 

clustering, can be applied. 
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Similar to partitional clustering, if the sum of the weights of the edges between different clusters 

is the cost (rather than the distance between clusters), the basic principle of spectral clustering 

can be obtained (von Luxburg, 2007).  

For two node sets 𝐴, 𝐵 ⊂ V, A ∩ B = ∅, the cut weight between A and B is: 

𝑊(𝐴, 𝐵) = ∑ 𝑤𝑖𝑗
𝑖∈𝐴,𝑗∈𝐵

 

When cutting the graph, for a set k of subgraph points 𝐴1, 𝐴2,.. 𝐴𝑘, the cut is: 

 

𝑐𝑢𝑡(𝐴1, 𝐴2, …𝐴𝑘) =
1

2
∑𝑊(𝐴𝑖 , 𝐴𝑖̅)

𝑘

𝑖=1

 

Where 𝐴𝑖̅ is the complement of 𝐴𝑖.  

If the calculation process stops here, the result is likely to be inaccurate: isolated points in the 

network will be classified as clusters. Therefore, spectral clustering introduces the Laplace 

matrix to ensure the size of the clusters is sufficiently large. Take the RatioCut algorithm as an 

example (Wei and Cheng, 1989): 

𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡(𝐴1, 𝐴2, …𝐴𝑘) =
1

2
∑

𝑊(𝐴𝑖 , 𝐴𝑖̅)

|𝐴𝑖|

𝑘

𝑖=1

 

This equation takes into account the size of the clusters. 

At the same time, it introduces the indicator vector ℎ𝑗 ∈ {ℎ1, ℎ2,…ℎ𝑘}: 

ℎ𝑖𝑗 =

{
 

 
0                𝑣𝑖 ∉ 𝑨𝒋

1

√|𝐴𝑗|

                  𝑣𝑖 ∈ 𝐴𝑗           

According to the properties of the Laplace matrix: 

ℎ𝑖
𝑇𝐿ℎ𝑖 =

𝑐𝑢𝑡(𝐴𝑖, 𝐴𝑖̅)

|𝐴𝑖|
 

For subgraph i, its RatioCut is equivalent to ℎ𝑖
𝑇𝐿ℎ𝑖, so the goal of the algorithm turns to finding 

the smallest eigenvalue of L. 
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2.4.2.2 The Clustering Perspective  

There is another type of algorithm in addition to the partition algorithm, for which constraint 

functions are used to identify the structure of the community. That is, instead of trying to find 

best cuts, these algorithms try to find the best aggregation scheme for combining the nodes in a 

graph into communities. This principle leads to a community detection algorithm in which the 

proximity between nodes is described by the presence and weight of edges between them. A 

branch of agglomerative algorithms in the above-mentioned hierarchical clustering exemplifies 

this approach. Aside from agglomerative algorithms, one of the most influential examples is 

Newman-Girvan modularity, one of the most common clustering metrics in the literature (Chen 

et al., 2014, Despalatović et al., 2014). Modularity is a global mass function that aims to find 

community structure from a global, whole network perspective. 

The modularity measure is defined as (Newman and Girvan, 2004): 

 

𝑄 =
1

2𝑚
∑ (𝐴𝑖𝑗 − 𝑃𝑖𝑗)𝛿(𝐶𝑖, 𝐶𝑗)

𝑖𝑗
 

Where m is the total number of edges of the graph, A is the adjacency matrix. If vertex i is 

connected with vertex j, 𝐴𝑖𝑗 = 1，otherwise 𝐴𝑖𝑗 = 0. 𝑃𝑖𝑗  is the expected number of edges 

between vertices i and j in the null model. 𝛿(𝑐𝑖, 𝑐𝑗) is a conditional function，if 𝑐𝑖=𝑐𝑗, 𝛿(𝑐𝑖, 𝑐𝑗)=1, 

otherwise 𝛿(𝑐𝑖, 𝑐𝑗)=0. The goal of modular-based algorithms is to maximize the value of Q. If the 

number of within-community edges is no better than random, Q = 0. Values approaching Q = 1 

indicate networks with strong community structure. In practice, values for such networks 

typically fall in the range of about 0.3 to 0.7. Higher values are rare (Wang et al., 2015). There are 

many modularity-based algorithms, including extreme optimization, spectral optimization, 

greedy optimization, simulated annealing, and genetic algorithms (Javed et al., 2018). However, 

all modularity-based algorithms have a common aim to place points in different communities to 

maximize modularity. Taking the Louvain method as an example, it uses a Greedy optimization 

that defines modularity as (Blondel et al., 2008): 

𝑄 =
1

2𝑚
∑[𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]𝛿(𝑐𝑖 , 𝑐𝑗)

𝑖𝑗

 

Where: 

𝐴𝑖𝑗  represents the edge weight between nodes i and j; 

𝑘𝑖 and 𝑘𝑗 are the sum of the weights of the edges attached to nodes i and j, respectively; 
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m is the sum of all of the edge weights in the graph; 

𝑐𝑖 and 𝑐𝑗 are the communities of the nodes;  

If 𝑐𝑖=𝑐𝑗, 𝛿(𝑐𝑖 , 𝑐𝑗)=1, otherwise 𝛿(𝑐𝑖, 𝑐𝑗)=0. 

Thus, the modularity value of community C is: 

𝑄𝑐 =
∑ 𝑖𝑛

2𝑚
− (

∑ 𝑡𝑜𝑡

2𝑚
)2 

∑ 𝑖𝑛 is the sum of edge weights between nodes within the community c. 

∑𝑡𝑜𝑡 is the sum of all edge weights of nodes within the community. 

In the first step, each node is assigned a community. If removing a node from the community 

and joining it in another community cannot lead to a modular change, the node will be kept in 

the original community. Otherwise, it will be joined into the new community that caused the 

most significant modular increase. When all attempts have been made, the second step will be 

performed. The concept of hierarchy is introduced in the second step, whereby the community 

in the first step is used as a node to build a new network, and the first step is re-executed. 

2.4.2.3 The Dynamical Perspective 

These algorithms do not refer to algorithms developed for dynamic communities mentioned by 

Mittal and Bhatia (2021), but to algorithms that simultaneously consider the topology of the 

network and dynamic processes taking place within networks (Fortunato and Newman, 2022). 

As Rosvall et al. (2019) pointed out, for real-world networks (such as aviation networks), the 

structure of the network is naturally important, but understanding how the structure of the 

network affects the system's behaviour is also essential. Treating partitioning as a dynamic 

process thus distinguishes another type of community detection algorithm. Infomap (Rosvall et 

al., 2009) and Walktrap (Pons and Latapy, 2005) are two popular representatives. Both 

algorithms assume that a random walker is exploring the real network. Since the connections 

within a given community are closer, the random walker should be trapped in the community for 

a longer time. In other words, moving within a community is easier and moving between 

communities is harder. 

The basic idea of the Walktrap algorithm is that when a random walker moves from one node to 

another with a given probability, short-distance random walks are more likely to remain within 

the same community. This characteristic is used to identify communities within a network (Pons 

and Latapy, 2005). 
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In the Infomap algorithm, the route of the random walker is recorded and used to identify 

communities. Communities receive unique codes based on the module switch rates of the 

random walker, while nodes within each community are encoded with the average node visit 

frequencies of an infinite random walk. When random walkers move from one community to 

another, Infomap records a unique exit code for the original community. Therefore, the path of a 

random walker in a community starts with the community code, ends with the exit code, and in 

the middle is the node code. When the starting point is within a community, other nodes in the 

same community are more likely to be visited, resulting in their codes appearing more 

frequently in the path. Consequently, accurately identifying and encoding communities can 

effectively reduce the code length of nodes within the network, thereby compressing the overall 

path information (see Figure 2.6). The cost function of the Infomap algorithm is the length of the 

code record, or in other words, the information cost for describing the movements of the 

random walker. The shorter the length, the better the algorithm's performance (Rosvall et al., 

2009). 

 

Figure 2.6 Example of how community delineation affects path information length. Different 

colours represent different communities. The numbers to the left and right of the 

arrows represent the entry and exit codewords for each community, respectively. 

The average per-step code length is denoted as L (Blöcker et al., 2022). 

Given a partition M, the description length L(M) that defines the average walk path is (Rosvall et 

al., 2009): 

𝐿(𝑀) = 𝑞↷𝐻(ζ) +∑ 𝑝↻
𝑖

𝑚

𝑖=1
𝐻(P𝑖) 

𝑞↷ is the probability of going from one module to another in a random walk step; 𝐻(ζ) is the 

entropy of the module encoding; 𝐻(P𝑖) is the entropy of the encoding of the node in the walk, 

measuring the average information required to describe the walker's steps; 𝑝↻
𝑖 is the probability 

that module i is visited.The calculation process of Infomap is similar to Louvain's algorithm, 

except that the modularity is replaced by 𝐿(𝑀). 
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2.4.3 Applications of algorithms in water pipeline network research 

The application of community detection in the study of water networks lies mainly in the 

delineation of District Metering Areas (DMAs). The aim is to use community detection algorithms 

to identify areas that can be isolated for pressure management and leakage reduction. 

However, DMA delineation must incorporate the physical and hydraulic characteristics of the 

network such as topography, water pressure, and water quality (Khoa Bui et al., 2020, Sharma et 

al., 2022b). Consequently, studies tend to optimise community detection algorithms based on 

these properties, either manually or automatically (Khoa Bui et al., 2020). A summary of 

examples using community detection algorithms can be found in Table 2.5. Additionally, given 

the distributional similarities of road and water networks, and the extensive research in road 

networks, applications of community detection in road network studies are also listed here for 

reference.  

Table 2.5 Summary of objectives and algorithms used in previous community detection 

studies of piped or road networks via network analysis (DMA: District Metered Area) 

Reference Algorithm 
Application 
Areas Objective 

(Brentan et al., 2017) Walktrap water DMA creation 

(Brentan et al., 2018) Walktrap water DMA creation 

(Campbell et al., 2014) Walktrap water DMA creation 

(Jazayeri and Moeini, 2024) 
Improved Girvan-
Newman algorithm water DMA creation 

(Scibetta et al., 2013) 
fast-greeding 
modularity water DMA creation 

(Sharma et al., 2022a) 
fast Newman 
algorithm  water DMA creation 

(Zhang et al., 2017) Louvain  water DMA creation 

(Haghbayan et al., 2021) Infomap traffic 
congested urban 
road identification 

(Hong and Yao, 2019) Infomap 
traffic/urban 
areas  

functional area 
identification 

(Shang et al., 2020) 
Order Statistics Local 
Optimization Method traffic 

assessment of the 
urban road 
network 

(Bramson, 2022) 

greedy modularity 
communities 
algorithm 

traffic/urban 
areas  

neighbourhood 
identification 
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(Law et al., 2019) 
modularity 
optimisation algorithm 

traffic/urban 
areas  

neighbourhood 
identification 

Several review articles also describe the application scenarios for different algorithms and 

explain their conceptual advantages and disadvantages. Gates et al. (2016) evaluated weighted, 

undirected community detection algorithms from the perspective of applications in brain 

science. They evaluated the Spectral Approach, Walktrap, Fast Modularity, Louvain method, 

Label Propagation and Infomap algorithms. The results indicate that when the data are in the 

form of sparse count networks (such as those seen in diffusion tensor imaging), Label 

Propagation and Walktrap surfaced as the most reliable methods for community detection. For 

dense, weighted networks such as correlation matrices capturing functional connectivity, 

Walktrap consistently outperformed the other approaches for recovering communities. 

Wickramasinghe and Muthukumarana (2022) also compared the performance of the algorithm 

in both sparse and dense networks, and found that the Louvain algorithm performed well in both 

contexts. Harenberg et al. (2014) compared the performance of eight algorithms across five 

networks and concluded that an algorithm's output with a good community structure does not 

necessarily have high accuracy, and vice versa. Smith et al. (2020) described application 

scenarios for the Edge-Betweenness, Random Walktrap, Label Propagation, Infomap, Louvain, 

and Spinglass algorithms. Their study suggests that researchers should choose an algorithm 

based on the main research problem in conjunction with the principles of the algorithm. 

Ghasemian et al. (2019) compare the performance of 11 algorithms for a specific task, 

indicating that algorithms sharing similar underlying assumptions tend to exhibit comparable 

performance, although the similiarity remains contingent upon the characteristics of the 

network. Fortunato and Hric (2016) mentioned in their algorithm guide that the methods based 

on modularity and Infomap algorithms perform better. Infomap is more easily adapted to 

different types of input data and research questions. In contrast, the modularity algorithm itself 

has a resolution problem. 

Particularly, graph studies on water networks face significant constraints due to limited data 

availability. Although a systematic review on this topic is absent, it is noteworthy that several 

pipeline studies in the table used synthetic rather than real-world networks. This exemplifies a 

broader trend in water research, as seen in the 44 publicly available datasets of water pipeline 

networks listed by Giudicianni et al. (2018), of which 23 are synthetic. Momeni et al. (2023) 

highlighted that the paucity of real-world data assets is one of the primary obstacles to research 

on water distribution networks. Furthermore, Yu et al. (2024) emphasized that this limitation not 

only restricts the study of network topology but also hampers the transferability of findings to 

different regions.  
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In summary, on the one hand, the performance of algorithms differs across various scenarios; 

on the other hand, experience in applying algorithms is lacking in some regions. Thus, although 

community detection has been applied to road networks for urban planning and used in water 

network studies, there remains a research gap in understanding the relationship between water 

infrastructure and urbanisation trajectories, particularly in slums. 

2.5 Water access in urban areas: performance and measurement  

SDG 6.1 aims to achieve universal and equitable access to safe and affordable drinking water 

for all by 2030. The WHO/UNICEF Joint Monitoring Programme (JMP) has developed a 

classification system for drinking water facilities and services to benchmark and monitor 

progress, with water access being a core component of this system (WHO/UNICEF, 2023b). 

There are significant disparities in water access between regions—beyond the impacts of 

economic and social factors, the availability of improved water sources varies between 

countries and cities (Deshpande et al., 2020, Dos Santos et al., 2017, Wagle, 2022), urban poor 

are confined to slums or peripheral areas and live far from the areas where these facilities are 

concentrated (Armah et al., 2018). To better understand how regional characteristics influence 

water supply and to examine water access patterns in informal settlements, researchers have 

called for spatial studies of water access (Cassivi et al., 2019, Dos Santos et al., 2017). 

2.5.1 Place-based approaches to measuring water access 

Many measures have been developed to study infrastructure accessibility. Generally, 

accessibility refers to the ease of reaching urban services (in this case, water) or the interaction 

between people and infrastructure (Chen et al., 2017). According to Siddiq and Taylor (2021), 

the four types of factors that can influence accessibility include the built environment, transport 

systems, individual characteristics, and trip characteristics (see Figure 2.7). Studies define 

accessibility differently and focus more on some of these four factors. Their different 

methodologies can be categorised into four groups: infrastructure-based measures, location-

based measures, person-based measures, and utility-based measures. They measure 

infrastructure accessibility in terms of facility performance, spatial distribution of facilities and 

population, individual activities, and economic benefits, respectively (Geurs and van Wee, 

2004, Higgins et al., 2022). To simplify, we can classify them into place-based accessibility 

measures, analysing the spatial proximity to urban opportunities, and person-based 

accessibility measures, measuring the spatial and temporal constraints individuals experience 

when travelling (Chen et al., 2017). 
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Figure 2.7 A conceptual model of the factors affecting accessibility (Siddiq and Taylor, 

2021).  

More specifically, person-based accessibility measures emphasise the impact of travellers’ 

characteristics on accessibility. Such a concept is derived from time geography, which suggests 

that accessibility is constrained by the individual's daily activity schedule (the time budget) and 

the travel time to the location of the target activity (Liao, 2019). Unsurprisingly, while it is 

possible to measure differences in accessibility between individuals and provide insight into 

how personal traits interact with the environment and affect accessibility, person-based 

methods rely on detailed personal information and travel logs (Boschmann and Kwan, 2008) 

(Huang, 2019). For example, travel diaries were used in the studies by Neutens et al. (2012) and 

Dixit and Sivakumar (2020). Understanding person-based accessibility patterns also relies on 

people's perceptions, the domain of perceived accessibility, which requires more 

comprehensive and flexible models (Bugden and Stedman, 2019, Pot et al., 2021). Firstly, 

studies that emphasise the importance of personal experience also acknowledge the influence 

of spatial elements on accessibility. Secondly, as demonstrated by Siddiq and Taylor (2021) and 

Miller (2018), scholars often expect to build a comprehensive model to include the effects of 

individual/household characteristics on accessibility. However, such models are often flexible, 

complex, and difficult to interpret, and the variability of individual behaviours can make person-

based availability approaches both challenges and difficult to generalise.  
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Instead, more operationally pragmatic models in practice come from place-based measures (Li 

et al., 2023a). These approaches focus more on the other three elements in addition to 

individual characteristics (Luo and Qi, 2009): 

1. Supply, the amount, capacity and distribution of the facilities, and the quality of the 

service. 

2. Demand, the demand for water by population groups (of different ages, genders, 

incomes, etc.) in the study area, and their distribution pattern. 

3. Spatial distance, distance between population and water sources, travel modes and 

corresponding travel speeds, the negative effect of travel time on water accessibility, 

and competitive relationship between facilities. 

These three elements form easy-to-grasp accessibility measures. The two most popular types 

are cumulative-opportunity and gravity-based approaches (Bittencourt and Giannotti, 2023). 

Given a threshold, cumulative opportunity measures count the number of opportunities that 

can be reached by the threshold time, and opportunities beyond the threshold are not 

considered (Kelobonye et al., 2020). The strong relationship between thresholds and cumulative 

accessibility results in a major drawback of traditional person-based approaches. Recently, a 

time interval cumulative accessibility measure using multiple thresholds has been proposed to 

overcome the shortcomings of the traditional cumulative opportunity measure (Tomasiello et 

al., 2023). Nevertheless, it is still a simple and direct accessibility model, while gravity-based 

approaches are considered more complex. In the gravity model (Weibull, 1976), the 

accessibility of a population location depends on the supply/demand ratio of all facilities to the 

population within a certain area and is adjusted according to the distance between them. More 

specifically, the supply/demand ratio of a facility to all population within its catchment is the 

attractiveness or "opportunity" of the facility. Facility attractiveness decreases as distance to a 

given population increases. All opportunities a population location can approach collectively 

constitute the location's accessibility. 

As highlighted by Miller (2018), there is no objective definition of the accessibility score, thus 

accessibility score only has meaning when being compared within a group. So, deciding 

between gravity-based and cumulative opportunities methods is difficult, especially when their 

performances are similar. For instance, studies using cumulative opportunity and gravity-based 

approaches in London and Vancouver show that they have similar results given the same 

thresholds (Kapatsila et al., 2023). However, a recent study points to a potential drawback of 

cumulative-opportunity approaches. Klar et al. (2023) used cumulative-opportunity, gravity-

based, and a hybrid of the two approaches for Vancouver's transit system. They observed that 

since the cumulative-opportunity approach only considers opportunities within a given 
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catchment and innovations often lead to changes in service coverage areas (catchments), 

gravity-based models respond better when examining the range of impacts. 

2.5.2 The two-step floating catchment technique: methodological developments and 

applications 

The two-step floating catchment area (2SFCA) method, which has been widely used in recent 

years, is derived from the gravity-based model. The problem with the traditional gravity model is 

that, while accounting for the negative effect of distance on attractiveness, the model does not 

define the catchment of the facility and population location. This results in the number of 

facilities that can be accessed by the population location as well as the accessibility score 

being sensitive to study area delineation and choice of administrative geography, thus making it 

hard to interpret the outputs (Luo and Qi, 2009). As a special case of the gravity model, 2SFCA 

corrects this problem by defining the catchments and allowing the boundaries to float based on 

a user-specified distance from each facility and population location, thus limiting the spatial 

variables that are used in the calculation. Therefore, the 2SFCA method can be implemented in 

two steps: 

Step 1: For facilities j, search all population locations k that are within a threshold travel time 

from location j, and compute the capacity-to-population ratio 𝑅𝑗, defined as the supply 𝑆𝑗 e.g., 

facility capacity) divided by the population within the catchment area P, discounted by distance 

decay function 𝑓(𝑑𝑘𝑗). 

𝑅𝑗 =
𝑆𝑗

∑ 𝑃𝑘𝑓(𝑑𝑘𝑗)𝑘∈{𝑑𝑘𝑗≤𝐶𝑗}
 

 

Step 2: For each population location i, search all facilities locations (j) that are within the 

catchment area of population location i (𝐶𝑖), and sum up the capacity-to-population ratios 

(derived in step 1), 𝑅𝑗, at these locations, discounted by distance decay function 𝑓(𝑑𝑖𝑗): 

𝐴𝑖
𝐹 =∑ 𝑅𝑗𝑓(𝑑𝑖𝑗)

𝑗∈{𝑑𝑖𝑗≤𝐶𝑖}
 

In recent years, several improvements have also been introduced to the 2SFCA model, one of 

which focuses on the distance decay function that measures the negative effect of distance on 

accessibility. In the classic 2SFCA model, dichotomous methods are used, which divide the 

catchment into zones with different weights based on distance (Liu et al., 2022). In other words, 

the classic methods simulate the negative effect of distance on accessibility by directly adding 
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or subtracting weights for each zone. This leads to a similar situation as opportunity 

accumulation models: two points inside and outside a boundary will have very different weights, 

and different locations in the same zone will have the same weight, which does not align with 

common sense. Therefore, continuous distance-decay functions were introduced to simulate 

travel friction. They imply that distance is negatively correlated with accessibility. As the 

distance increases, the weights gradually decrease. Commonly used functions include the 

exponential, Gaussian, and kernel density functions. Among them, the Gaussian function is 

believed to be the best-performing function in access studies (Chen and Jia, 2019, Liu et al., 

2022). It is defined as: 

𝑓(𝑑𝑖𝑗 , 𝑑0) =
𝑒−(1 2⁄ ) × (𝑑𝑖𝑗 𝑑0⁄ )2 − 𝑒−(1 2⁄ )

1 − 𝑒−(1 2⁄ )
 

Another improvement on the original 2SFCA model is the realisation that in addition to the 

capacity of the facility, the demand also needs to be weighted according to the crowdedness of 

facilities. In other words, there is a need to incorporate people's preferences for facilities, which 

are considered to be related to distance (Kanuganti et al., 2016). In practice, when there are 

multiple facilities that people can access within a threshold time, this model enhancement 

assumes that the closest one with the best service quality will be chosen. Hence, residents in a 

population location will make decisions about attending services based on trip distances and 

capacity at service points. It also means that a facility within a population catchment will not be 

accessed by all residents of that population location. However, according to the 2SFCA formula 

above, each facility's supply/demand ratio is calculated using the total head count of a 

population location, which means that the traditional 2SFCA overestimates demand (Subal et 

al., 2021). Therefore, there is need for an indicator to measure facility crowdedness or offset the 

overestimated demand. Given this need, the Huff function has been used to improve the 2SFCA 

(Wang, 2018). The Huff function searches for all facilities k that a population centroid i can 

approach within the travelling time threshold and compares the performance of a particular 

facility j with the rest of the facilities on the distance decay function. If facility j is closer to 

population centroid i than other facilities and has more capacity, then facility j will have a higher 

Huff value than the other facilities. It will also have a higher likelihood of becoming the 

destination of population centroid, i. 

𝑃𝑟𝑜𝑏𝑖𝑗 =
𝑆𝑗𝑓(𝑑𝑖𝑗)

∑ 𝑆𝑘𝑓(𝑑𝑖𝑘)𝑘∈[𝑑𝑖𝑘≤𝑑0]
 

Where 𝑃𝑟𝑜𝑏𝑖𝑗is the probability of i choosing j. 

Based on these two improvements, the improved 2SFCA method can be represented as: 
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Step1: 

𝑅𝑗 =
𝑆𝑗

∑ 𝑃𝑘𝑓(𝑑𝑘𝑗)𝑃𝑟𝑜𝑏𝑘𝑗𝑘∈[𝑑𝑘𝑗≤𝑑0]
 

Step 2: 

𝐴𝑖
𝐹 = ∑ 𝑃𝑟𝑜𝑏𝑖𝑗𝑓(𝑑𝑖𝑗)𝑅𝑗

𝑗∈[𝑑𝑖𝑗≤𝑑0]

 

2SFCA and improved versions have been widely used in studies on public facility accessibility, 

especially in healthcare studies (Kanuganti et al., 2016, Luo and Qi, 2009, Wang, 2012). The 

experience in these healthcare accessibility studies shows that 2SFCA is sensitive to parameter 

selection, especially in the choice of distance thresholds. Chen and Jia (2019) pointed out that 

variants of the 2SFCA model yield similar results if the same threshold value is used. This proves 

that the threshold value is the main factor that affects the results. A large threshold may smooth 

the spatial pattern of the accessibility map, while a small threshold introduces more localised 

variations into the result. They also pointed out that since thresholds are also variables in the 

distance decay function, it will also affect the performance of the distance decay function. Luo 

and Whippo (2012) emphasised the significance of the threshold affecting the accessibility 

results. They argue that the distribution of facilities and population differs significantly between 

urban and rural areas. As a result, the time urban versus rural residents are willing to spend on 

accessing facilities varies, and using the same catchment sizes will overestimate accessibility 

in both areas. Therefore, when applying the 2SFCA method, thresholds should be chosen 

carefully with attention to the specific application and relevant theory.  

As highlighted in previous discussion of global urbanism (see section 2.2.1), urbanisation and 

new interventions have made the landscape of basic services in these regions increasingly 

complex and fragmented (Coutard, 2008, Smiley, 2020). On the one hand, the emergence of 

informal settlements increases the complexity of urban spaces; on the other hand, non-piped 

water supply systems play a crucial role in water access in global southern cities (Adams, 

2018b, Azunre et al., 2022). Both of these factors can be captured by the 2SFCA method. The 

results of this method are influenced by population and facility capacity, and the sensitivity of 

the 2SFCA method to parameters corresponds to the spatial heterogeneity of urban water 

access. Thresholds in 2SFCA models represent how much time residents are willing to spend 

accessing services and the travel modes (walking or driving) used by an area’s inhabitants 

(Chen and Jia, 2019). This means that 2SFCA results can be interpreted in terms of the size of 

the thresholds: they reveal the distribution of facilities and populations, as well as the social 

factors associated with accessibility (Wan et al., 2012). Therefore, 2SFCA can be used to 
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analyse the complex water supply landscape in cities of the Global South. However, while the 

2SFCA method and its improved versions have been extensively applied in healthcare studies 

(Kanuganti et al., 2016, Khashoggi and Murad, 2021, Luo and Qi, 2009, Shao and Luo, 2022, Tao 

et al., 2020, Wang, 2012), its application in the water sector remains largely unexplored, despite 

repeated calls for more quantitative evidence on water access (Cassivi et al., 2019, Dos Santos 

et al., 2017). 
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Chapter 3 Research scope and technical resources 

Rapid urbanisation in Africa poses significant challenges to land, infrastructure, and service 

provision in cities, further exacerbating urban inequality (UN-Habitat, 2022). Sections 2.1 and 

2.2 have outlined how this urbanisation intensifies pressure on urban water services. According 

to the UN reports on the Sustainable Development Goals (SDGs) (UN-Habitat, 2023b, UN, 

2023a), Sub-Saharan Africa (SSA) has some of the highest concentrations of slum populations 

and the largest numbers of people lacking access to basic water services. Various initiatives, 

such as slum upgrading and delegated management model (DMM), have been introduced to 

address these pressing issues, generating diverse responses within the context of urbanisation 

in southern cities. 

Recent studies have proposed different theories to understand and guide these interventions, 

yet they remain constrained by the lack of empirical evidence (Parida and Agrawal, 2023, 

Pieterse, 2011). Particularly in SSA, the impact of urban space and water interventions on 

service delivery remains largely unknown and uncertain. While graph and access 

measurements have been shown to be effective in assessing infrastructure patterns and the 

urban environment, neither has been fully developed or applied specifically for water study 

purposes (Derudder and Neal, 2018). Since these methods often involve empirically adjusted 

parameters, this leaves a research gap.  

To address the gaps and establish links between research methods and the theoretical 

frameworks of urbanisation and water services in SSA, this study seeks to gather empirical 

evidence from cities in SSA by analysing water infrastructure in southern cities from multiple 

perspectives. This chapter primarily outlines the selection of the study areas and provides 

relevant background information. 

3.1 Case study cities: description and rationale  

To achieve the research aim of analysing the impact of SSA urbanisation on water supply, the 

study area must ideally have rich data on water infrastructure, particularly pipeline data, as this 

is essential for applying graph theory and accessibility analyses. Additionally, the area should 

share similar urbanisation characteristics, specifically facing challenges of slum expansion and 

water access, to ensure the representativeness of the study and allow for broader applicability 

of the results across various SSA cities. Based on these criteria, this section reviews available 

databases and recent SDG monitoring reports, and provides a description of the urban layout, 

road networks, and water infrastructure of the two selected case study areas, Kisumu in Kenya 
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and Kigali in Rwanda, both located in East Africa. This description lays the foundation for 

interpreting the subsequent analyses. 

3.1.1 Rationale for selection of case study cities 

An audit of water infrastructure data to assess the data landscape was the first step in selecting 

potential study areas from SSA countries. Since the main providers of water services in cities 

within SSA are usually governmental or regional/international NGOs/humanitarian 

organisations, this audit entailed structured searches of international and regional databases 

for water infrastructure and consumer/supplier data. The databases searched included the 

World Bank, International Benchmarking Networking, Food and Agriculture Organization, World 

Resources Institute, Water Point Data Exchange, OpenStreetMap, openAFRICA, and Africa 

Infrastructure Knowledge. For point data, tags related to water infrastructure (e.g. water 

treatment plant, pumping station, water tank) were of interest.  

Following the searches, it became apparent that very few open data sources cover SSA. 

Datasets such as the World Bank and Humanitarian Data Exchange only provide water statistics 

and analysis reports for water services. At the same time, the only databases containing 

geospatial infrastructure data are OpenStreetMap (OSM) and Water Point Data Exchange.  A 

search of OSM showed that, as of 2022, there were only 1,539 pipeline records in Africa, mainly 

in South Africa, Libya, and Ethiopia. Since Libya is not an SSA country and Ethiopia's records are 

mainly distributed in the rural areas, only South Africa was investigated further. There are 161 

records in South Africa, but in many cases, a single pipeline may be associated with multiple 

records, meaning the actual number of features is lower. 

In comparison, there is a greater availability of point data related to pipelines. The Water Point 

Exchange database has 14,434 records for piped water points in SSA countries (as of 2024), with 

11,385 of those being public tapstands and kiosks. Sierra Leone and Ghana have the highest 

number of water point records. Despite the fact that many searched tags are not available in 

Africa, the survey of OSM data shows that there are 18,923 large water points (where larger 

amounts of drinking water can be collected) and 21,144 general drinking water in Africa. These 

points are mainly located in Uganda, Kenya, and Burkina Faso. The low number of pipeline 

records compared to the high number of ancillary facilities suggests that these SSA countries 

have dense piped infrastructures, and their pipeline networks are not yet covered by public 

domain databases. These counties include Sierra Leone, Ghana, Liberia, Zambia, Kenya, 

Uganda, and Rwanda. 

Another key finding from the data audit is that the data quality of public databases such as OSM 

and Water Point Data Exchange varies across SSA, largely due to the type of data source. For 
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example, Sierra Leone has well-documented water points due to government efforts, while 

water point clusters in Liberia are associated with the Liberia Firestone Rubber Company. In 

some instances, OSM, as a Volunteered Geographic Information (VGI) platform, can be 

incomplete with inconsistent labelling, particularly in Africa. In these cases, utility companies 

with established GIS-based asset management systems are the most reliable data sources. 

After further investigations, two cities, Kisumu and Kigali, were further filtered from the above 

countries as the study areas for this research. Both cities face rapid urbanization and high 

proportions of slum populations: slums in Kisumu account for 19% of the city’s area and house 

60% of its urban population (Othoo et al., 2020), whereas 77.3% of Kigali’s households live in 

slums, covering 79% of the population (Hitayezu et al., 2018, NISR, 2018). Despite the 

similarities, their piped water service levels differ significantly. In Kisumu, Kisumu Water and 

Sanitation Company (KIWASCO) provides piped water to 8.3% of households within dwellings, 

10.9% to yards/plots, and 22.1% via public taps (KNBS, 2019b). Water coverage in Kisumu’s 

low-income areas has increased, but unregulated connections remain, creating unsafe 

"spaghetti" networks (Boakye-Ansah et al., 2019, LVSWSB, 2021). In contrast, Kigali’s Water and 

Sanitation Corporation (WASAC) reported a 50% household water connection rate in 2018, with 

about 87% of unplanned settlement households accessing improved water sources (City of 

Kigali, 2020a, Hitayezu et al., 2018, NISR, 2018). Additionally, Kisumu was the first city in Kenya 

to implement a large-scale water DMM program targeting slums (Nzengya, 2015). By 2022, 

KIWASCO had partnered with 41 master operators to manage water delivery in low-income 

areas under DMM contracts. Unlike Kigali, where WASAC directly manages all water 

infrastructure, Kisumu’s approach includes some decentralized management to address water 

accessibility challenges. This contrast provides an opportunity to compare their existing 

pipeline networks and explore the interactions between SDG 6 and SDG 11, particularly in terms 

of policy impacts. 

3.1.2 Urbanisation and infrastructure development in Kisumu 

3.1.2.1 Urban layout 

Kisumu County is located in western Kenya. The topography of Kisumu County varies, with 

northern regions characterized by hilly terrain and southern regions predominantly consisting of 

plains. The county is bordered by Lake Victoria, the world’s second-largest freshwater lake, to 

the west, and by mountains to the east. Within this, Kisumu County has a total area of 2,085.9 

km². According to the 2019 census, Kisumu County has a total population of 1,155,574, with 

397,957 located in Kisumu City, the third-largest city in Kenya after the capital Nairobi and 

Mombasa (KNBS, 2019a). 
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Figure 3.1 Map of Kisumu County, showing its constituent 2019 municipal sublocations 

including Kisumu City. Names and population counts from the 2019 Kenya census 

(KNBS, 2019a) are labelled  per each sub-county. The overview map shows Kenya’s 

47 counties with Kisumu marked in green. 

The name Kisumu stands for the trade of goods, which comes from Kisumu's longstanding 

status as a commercial and transportation centre in the Lake Basin region. In 1898, the tip of the 

Winam Gulf was designated as the railway terminus for the Kenya-Uganda railway. With this as 

the central area, Kisumu City gradually developed into its current size. The name Kisumu can 

refer to two entities: Kisumu County and Kisumu City. Kisumu County is one of Kenya's 47 

counties and is subdivided into 7 sub-counties (as shown in Figure 3.1). However, 'Kisumu' is 

more frequently used to refer to Kisumu City, the study area for this study. The boundaries of 

Kisumu City are largely inherited from the previous Kisumu Municipality. Today, Kisumu City is 

divided into 25 sub-locations or 10 main areas (Township, East Kolwa, Central Kolwa, 

Southwest Kisumu, North Kisumu, Central Kisumu, East Kisumu, West Kajulu, East Kajulu, and 

West Kolwa) (Figure 3.2). From the perspective of history and planning, those sub-locations can 
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be grouped as central urban areas and informal areas, representing the developed areas in 

central Kisumu and less developed areas in peripheral regions, respectively. 

 
Figure 3.2 10 main administrative areas of Kisumu City. 

The central urban areas are the well-planned neighbourhoods for the middle and high-income 

residents, including the former European residential area (Milimani), the former Indian 

residential area (Kibuye), low and middle-income public housing (Municipal, Railways, Kenya 

Post, Kenya Power). These areas originated from colonial-era plans and were characterised by 

high levels of service delivery and infrastructure provision (Letema et al., 2014, UN-Habitat, 

2005). Apart from colonial planning, a second reason for the distinction between the central 

urban areas and the informal areas was the extension of the city’s boundaries in 1972. This plan 

increased the city’s total area to 53 km2. The peri-urban region that was included now fell under 

the administration of Kisumu County Council whereas previously, it fell under the rural Kisumu 

District administration. This means that the planning policy historically applied to the newly 

extended area was the rural standard. Since the rural standard is lower than the urban standard, 

there has been a persistent difference between the informal and central areas since then, 

resulting in two very different urban configurations within Kisumu (UN-Habitat, 2005). 
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Figure 3.3 The slum belt surrounding the central areas in Kisumu (UN-Habitat, 2005). 

As shown by Figure 3.3, unplanned informal areas surround the central areas of Kisumu. As a 

result of colonial zoning, African communities were isolated from the city’s core and housing 

developed without regulation and planning (Letema et al., 2014). In recent years, many 

immigrants from other counties have also settled here for employment and entrepreneurial 

opportunities. These slums cover approximately 19% of the city and host about 60% of 

Kisumu’s urban population (Othoo et al., 2020). These slums and central urban areas form the 

boundaries of Kisumu City, beyond which are the vast rural areas and satellite towns of Kisumu 

County.  

Kisumu City has a higher population but smaller area than the remaining areal units. The urban 

population of Kisumu County is 1,155,574, while the Kisumu East (220,997), Kisumu West 

(172,821), and Kisumu Central (174,145) are the three sub-counties with the largest populations 

in Kisumu County. Due to boundary changes since the last census in Kisumu (in 2009), it is hard 

to analyse the spatial distribution and growth rate of the population in more detail. 

Nevertheless, it can be concluded that these slums, concentrated in high-population sub-

counties, are home to a significant proportion of Kisumu's population, which increases pressure 

on infrastructure. The 2019 Kenya Population and Housing Census Volume IV also notes that 

the proportion of population with piped water into dwellings in Kisumu has an extreme 

distribution. The average proportion in Kisumu County is 8.3%, with the highest proportion in 
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Kisumu Central, at 26.1%. The Seme has the smallest proportion, 0.7%. And for sub-counties 

other than Kisumu Central, the figure is no more than 10% (KNBS, 2019b). 

3.1.2.2 Water services 

Since the 2010 Kenyan constitution made access to safe water a human right, subsequent laws 

have divided powers and responsibilities for water and sanitation services (Price et al., 2018). 

Each county provides services within its jurisdiction while being regulated by the state. In 

Kisumu County, the Municipal Council of Kisumu (MCK) owns all water and sewerage facilities, 

and institutions such as the Water Resources Authority are responsible for managing water 

resources. Since 2003, the Lake Victoria South Water Services Board (LVSWSB) has been 

responsible for executing and implementing water projects and licensing water service 

providers. The actual water service provider is Kisumu Water and Sanitation Company 

(KIWASCO). 

Most of the water in Kisumu County is obtained from Lake Victoria, but some residents also rely 

on rivers (such as Kibos, Nyamasaria, Kisian, Kajulu, Mamboleo, Luanda, and Lidango) and 

groundwater (Maoulidi, 2010). In central urban areas, the pipelines are mainly managed by 

KIWASCO, and their spatial distribution is regular, mainly laid below the streets. Statistics from 

the Kisumu County Water Resource Masterplan Draft Report show that in low-income areas 

(peri-urban or informal areas), the coverage of the water supply network is still very low 

(LVSWSB, 2021). In the absence of supervision, operators in informal areas tend to connect 

pipelines to the network in illegal and unplanned ways. The structure of these pipelines is called 

a 'spaghetti' network. In addition to inefficient spatial configuration, 'spaghetti' lines also face 

safety and quality issues (Boakye-Ansah et al., 2019). 

It is important to consider Kisumu’s water service development within the broader historical 

context of Kenya. Following the economic crises and rapid urban population growth from the 

1970s onwards, Kenya’s water sector faced severe financial deficits, prompting a series of 

reforms. These reforms included the introduction of local authorities and the adoption of 

commercial models to manage and operate water infrastructure (Nilsson and Nyanchaga, 

2008). This shift in policy aligns with the context discussed in Section 2.2 of the literature review, 

where the emergence of public-private partnerships (PPP) and slum upgrading was 

emphasised. In Kisumu, water service provision and development were commercialised under 

the Kenya Water Act 2002, which provided the legal framework for the introduction of DMM 

(GoK, 2002). In Kisumu, KIWASCO is responsible for providing water in bulk to agents (master-

operators), who in turn deliver water to consumers through retail or by establishing pipelines 

(Nzengya, 2015). KIWASCO will provide them with basic network extension and maintenance 

training. However, in practice, those master-operators tend to build pipeline networks to a lower 
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standard for reasons of limited space in slums and cost saving, resulting in poorer-quality 

pipeline and water distribution (Nzengya, 2015).  

According to the Kisumu County Water Resource Master plan Draft Report (LVSWSB, 2021), the 

challenges faced by Kisumu's water and sanitation services are: 

1. Growing demand for services. The water demand in 2020 was 78,332 m³ /d. Considering 

the development of population and income, water demand is expected to be 87,248 m³ 

/d in 2025, and by 2050, this amount will double.  

2. The infrastructure needs to be renewed and expanded. Existing water pipelines suffer 

from deteriorating condition and poor coverage. The previous stage (the second phase 

of the Kisumu Water Supply and Sanitation project) of Kisumu’s infrastructure 

development scheme mainly focused on water intake and treatment works, 

transmissions mains and storage tanks and ignored network maintenance and 

expansion of the secondary distribution system. Therefore, existing pipelines are often 

at risk of blockages and leaks. In areas already covered by the network, the capacity of 

the network lags behind demand. In low-income areas such as informal areas, water 

services coverage remains very low, and even current needs cannot be met. 

3. The DMM approach requires improvement and expansion. 

4. Data to support network renewal and regular maintenance is lacking. 

3.1.2.3 Roads 

The road network in Kisumu is managed by three agencies: the Kenya National Highways 

Authority (KeNHA), the Kenya Urban Roads Authority (KURA), and the County Government of 

Kisumu (Figure 3.4). Due to Kisumu's location, the main arteries serve dual roles: they are both 

urban streets and crucial transportation routes connecting other cities. This dual function is one 

of the factors influencing road design in Kisumu (County of Kisumu, 2020). Interventions have 

been implemented to enhance road accessibility in some Kisumu communities (Khanani et al., 

2021). During the last County Integrated Development Plan of Kisumu period (2018 – 2022), 15 

km of bitumen standard roads were constructed, significantly improved access and 

connectivity within informal settlements (CGK, 2022). However, overall, well-planned streets 

are still concentrated in the city centre.  
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Figure 3.4 Street jurisdiction in Kisumu (County of Kisumu, 2020). 

3.1.3 Urbanisation and infrastructure development in Kigali 

3.1.3.1 Urban layout 

Like Kisumu, Kigali also originated from trading posts established during the colonial period 

(Manirakiza et al., 2019). Along with the city's expansion, in 1964, the first Conceptual Master 

Plan for urban planning was presented. Later, in 1990, the Préfecture de la Ville de Kigali (PVK) 

was introduced to manage Kigali, which had expanded from 70 to 112 square kilometres. By the 

time the Mairie de la Ville de Kigali replaced the PVK in 2000, the area of Kigali had reached 314 

square kilometres. Finally, in 2005, the name 'City of Kigali' (CoK) was officially given to this city, 

which had grown to 730 square kilometres and consisted of 3 districts, 35 sectors, 161 cells and 

1,061 villages (Baffoe et al., 2020b, City of Kigali, 2020b, Manirakiza et al., 2019). 

The configuration of urban space and population in Kigali was shaped mainly during the 1990s, 

in the post-genocide period (Esmail and Corburn, 2020). In the two decades from 1991 to 2022, 

Kigali's population grew from 1.3 million to about 1.75 million (NISR, 2023a, ONAPO, 1991). 

According to the 2022 Rwanda Population Census, most of them are located in the Gasabo 

district (50.4%) (NISR, 2023b). The high urban population proportion of 86.9% also makes the 

City of Kigali the most urbanised province in Rwanda (NISR, 2023b). Meanwhile, Kigali 

experienced a rapid increase in the built-up areas between 1984 and 2016, with a net change of 

887.9% in high-density buildup areas (Mugiraneza et al., 2019), with the residential area of Kigali 
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increased by 20.6% from 2013 to 2018 (City of Kigali, 2020d). As with SSA urbanisation 

described in the literature review (section 2.2.1), in Kigali, rapid urbanisation is also 

accompanied by informal area expansion (known as akajagari in the local language) or 

unplanned settlements as Kigali officials prefer to call them (NISR, 2018). As for the population 

currently living in Kigali, about 77.3% of the households live in informal settlements (NISR, 

2018), about 79% of the total population (Hitayezu et al., 2018). It is widely recognised that the 

emergence of informal settlement in Kigali is linked to the influx of post-genocide migrants. In 

the 2022 census, the total number of immigrants in Kigali reached 354,970 (NISR, 2023b). 

Hitayezu et al. (2018) estimated that 65% of adult residents living in unplanned settlements are 

immigrants who moved to Kigali for geopolitical or economic reasons. Due to the importance 

immigrants place on ease of work, these communities tend to be close to well-developed roads 

(Hitayezu et al., 2018, Uwizeye et al., 2022). Meanwhile, they are excluded from the small slope 

areas that are less hazardous because of Kigali's hilly terrain (Baffoe et al., 2020b, Nduwayezu 

et al., 2021, University of Rwanda, 2018). This pattern is consistent with the common 

distribution characteristics of urban slums in the global south as summarised by Kuffer et al. 

(2017). Overall, the city follows a concentric urban land-use model, extending from the central 

business district (CBD) areas to informal settlements on the outskirts, with some high-end 

housing scattered on the outermost periphery (Nduwayezu et al., 2016, University of Rwanda, 

2018). Baffoe et al. (2020) further divided Kiagli's neighbourhoods into three typologies: 

planned, unplanned /informal, and a mixture of the two (neighbourhoods resulting from 

upgrading, degradation or amalgamation). The distribution of informal settlements is illustrated 

in Figure 3.5. 
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Figure 3.5 Map of informal settlements in Kigali (City of Kigali, 2020a). The UN-Habitat and the City of Kigali have classified these settlements into seven types. 

The dominant categories include the uphill sloped settlements and overcrowded settlements located in Nyarugenge, which is situated in the city centre. 
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The distribution of informal settlements in Kigali, while following the general pattern of urban 

expansion in SSA, was also influenced by colonial-era policies. Esmail and Corburn (2020) note 

that some informal settlements can date back to the colonial period communities and that they 

coexisted with planned areas until the Rwandan government intervened. Based on the National 

Informal Settlements Upgrading Strategy's classification of informal settlements (MININFRA, 

2015a), the informal settlements with long histories include Akabahizi, Munanira, Kimisagara, 

Gatenga, Karambo, Nyanza. Nyagatovu, Nyabisindu, Kangondo I, and Kangondo II (Uwizeye et 

al., 2022). In contrast, areas that were the focus of the French Ministry of Cooperation (e.g., 

Kicukiro, Remera, Kimihurura, and Kacyiru) are now the home of the high-income groups 

(Benken, 2017). 

3.1.3.2 Water services and roads 

Before 2014, Kigali's water provision was the responsibility of EWSA, the Energy, Water and 

Sanitation Authority (University of Rwanda, 2018), and now the Water and Sanitation 

Corporation (WASAC) is in charge of urban water supply (City of Kigali, 2020a). The main water 

sources of the Kigali water supply system are the Yanze River, Nyabarongo River and Lake 

Mugesera. Water is distributed to consumers from these sources through WASAC's 494km of 

pipelines, which cover most of the built-up areas in the city. Urban areas close to the city 

centre, such as Muhima, Nyarugenge, Gitega, Kimisagara, Kimihurura, Gikondo, etc., have the 

most extensive piped water network. In the past, the water network extension was not planned 

according to the future land use or growth. Hence, many existing pipelines do not follow the 

road alignments and encroach into property boundaries. This has made maintenance work 

challenging to carry out. At the same time, the undulating terrain also adds cost to any 

expansion (City of Kigali, 2020a).  

Although risks also exist in Kigali's basic service systems, such as water and sanitation (Tsinda 

et al., 2020), the overall performance of water services in Kigali remains impressive. In 2018, 

WASAC reported that 86% of the Kigali population had access to water within 200m of travel, 

while the proportion of the population able to access household water connection reached 50% 

(NISR, 2018). The Rwanda DHS report shows that in the City of Kigali, the population with access 

to improved drinking water sources (piped water, protected well/spring, etc.) reached 97.4% 

(NISR, 2021). Hitayezu et al. (2018) estimate that 87% of households in unplanned settlements 

have access to improved water sources, with the value affected by the distance from the main 

road. The well-developed water system in Kigali can be explained by the strategy of its master 

plan, which is that the expansion of water and other infrastructures should always align with the 

city's overall development plan. Uwizeye et al. (2022), Benken (2017), University of Rwanda (UR) 

(2018) and Hudani (2020) all find that Kigali has deployed urban plans that incorporate a range 
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of policies (e.g., the National Urbanisation Policy (MININFRA, 2015b), and the Vision 2020 (GoR, 

2012)), which set strict standards for urban environment in order to form "the Singapore of 

Africa". The government expects that the transformed Kigali can serve as an intrinsic economic 

driver and hopes that inclusive policies can unite the city's inhabitants during the post-genocide 

period (Manirakiza et al., 2019). We can see this in Bolin (2019)'s description of the changes in 

Kigali, which Esmail and Corburn (2020) summarise as "a large technological system, with its 

harmonised edifices of zoning and legal provisions, which segment and integrate space and 

social life." The implementation of these policies has objectively enabled the residents of 

Kigali's informal settlements to access public services such as water, sanitation, electricity, and 

land registration. Of course, according to the master plan of Kigali, providing basic services to 

the residents of the informal settlements does not justify the presence of the informal 

settlement in the "modern city with high standards" (Esmail and Corburn, 2020, Uwayezu and de 

Vries, 2020). At the same time, paid services, such as healthcare and education, remain 

unaffordable for informal settlement residents (Hitayezu et al., 2018, Uwizeye et al., 2022). 

Thus, while the small drinking-water supplies (SDWS) projects similar to the DMM also exist in 

Kigali (Herschan et al., 2023, University of Rwanda, 2018) , Kigali prefers the formal way to cope 

with the increase in demand due to rapid urbanisation (City of Kigali, 2020a). 

For the same reason, Kigali's road network (Figure 3.6) exhibits the best connectivity among all 

roads in Rwanda. The construction and management of these roads and their traffic fall under 

the jurisdiction of the Ministry of Infrastructure (MINIFRA) and its subsidiary agency, the Rwanda 

Transport Development Agency (RTDA). They are focusing mainly on improving the standards of 

the road network, such as paving roads and establishing clearer road classification and design 

criteria (City of Kigali, 2020a).  

The layout of existing roads is recognised as being primarily influenced by topography and 

strongly linked to the city's layout (Dufitimana and Niyonzima, 2023, Hitayezu et al., 2018). It can 

be stated that the expansion pattern of Kigali City is horizontal, and the expansion and 

infrastructure development largely adhere to a similar pattern. These newly expanded areas 

tend to border existing urban core areas. Correspondingly, streets of new areas evolve along the 

city's main roads (Nduwayezu et al., 2021).  
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Figure 3.6 Kigali road map (City of Kigali, 2020c). The roads are classified based on capacity and function. Under this classification, the roads in Kigali are 

primarily encompassed by the Kigali Ring Road, which is classified as High Capacity. 
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3.2 Software and packages used 

To support the various stages of analysis in this research, a range of software and packages 

were employed. 

ArcGIS Pro 2.7.3 (Esri) was used extensively for geospatial data editing and analysis. This 

included the identification of topological errors in the pipeline network using the topology 

validation tool (Chapter 4), spatial statistical analyses such as Global and Local Moran’s I 

(Chapter 6), and interpolation methods including inverse distance weighting (IDW) and kernel 

density estimation (KDE) (Chapter 6). The calculation of population-weighted centroids 

(Chapter 6), the co-location analysis of pipelines (Chapter 4), and the estimation of 2SFCA 

accessibility (Chapter 6) were also carried out within this platform. All maps presented in the 

analytical chapters were generated using ArcGIS Pro except for Figure 4.5. 

AccessMod 5 (Ray and Ebener, 2008) was employed to simulate travel paths as part of the 

accessibility analysis in Chapter 6. 

For network-based analysis, a combination of R and Python packages was used. The R package 

sf (Pebesma and Bivand, 2023) and sfnetworks (van der Meer et al., 2021) were applied for graph 

construction and smoothing (Chapter 4, Section 4.2). Package networkx (Hagberg et al., 2008) 

and igraph (Csardi and Nepusz, 2006) libraries were used for converting between primal and 

dual graph representations and for calculating graph metrics (Chapters 4 and 5). The shp2graph 

package (Lu et al., 2018) was employed to detect and visualise self-connected components 

within the network (Chapter 4). The OSMnx package (Boeing, 2017) facilitated the downloading 

and preparation of OpenStreetMap road data for graph-based analysis (Chapter 4). The Infomap 

algorithm (Rosvall et al., 2009) was applied via the MapEquation platform 

(https://www.mapequation.org/infomap/) (Chapter 5). Finally, the aricode package (Julien 

Chiquet, 2024) was used to compute partition similarity indices (Chapter 5). 

Two statistical packages also supported specific analytical tasks. The blandr package (Datta, 

2024) was used to conduct Bland–Altman analyses in Chapter 6, while fitdistrplus (Delignette-

Muller and Dutang, 2015) was used for fitting statistical distributions in Chapter 5.  

 

 

 

 

https://www.mapequation.org/infomap/
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Chapter 4 Geometric and topological convergence of urban 

networks 

The performance of water pipeline networks is closely related to their morphology. In addition to affecting 

network robustness (Agathokleous et al., 2017, Bentes et al., 2011, Wang et al., 2019), the topology of a water 

pipeline network also influences water transmission efficiency (Torres et al., 2017, Yu et al., 2024) as well as 

the complexity of management and maintenance (Godfrey and Howard, 2005a, Lagerberg, 2016). As 

highlighted in Section 2.3.1 of the literature review, urban infrastructure networks are a product of the 

industrial-era urbanization process in Europe (Coutard, 2008, Coutard and Rutherford, 2015), designed 

primarily to ensure equal access to services for all urban residents. Consequently, infrastructure network 

expansion follows two key processes: area expansion and densification (Yang et al., 2017), which involve 

connecting new settlements and enhancing coverage in already serviced areas. 

However, this concept faces challenges in Africa. Cities in Sub-Saharan Africa (SSA) experience a distinct form 

of informal urbanization (see Sections 2.1 and 2.2.1 of the literature review). This not only differentiates their 

economic growth patterns from historical European urbanization but also alters spatial development, which in 

turn affects infrastructure network performance (Batty, 2012). A study on SSA urban morphology using Accra, 

Ghana, as a case study found that urban growth in SSA is characterized by increasing complexity and 

fragmented spatial development (Korah et al., 2019). Cobbinah and Niminga-Beka (2017) and Agyemang et al. 

(2019) noted that this process is often accompanied by unplanned land-use changes, reflecting spontaneous, 

inefficient, and poorly regulated development. These characteristics further affect infrastructure network 

morphology and performance. A striking example is the water network in SSA slums. The emergence of slums 

is closely linked to urbanization outpacing government capacity, resulting in highly informal settlements 

characterized by self-organized management and a lack of formal planning (Azunre et al., 2022, Okyere et al., 

2017, Sheppard et al., 2020). While definitions of slums vary, descriptions across many developing countries 

consistently highlight their dense population and built-up environment (Criqui, 2018, MLHUD, 2008, Moreno, 

2003, Nolan, 2015, UN-Habitat, 2006). These characteristics are closely associated with urban water supply 

challenges (Azunre et al., 2022, Nyika and Dinka, 2023, Richmond et al., 2018, Sinharoy et al., 2019). As 

discussed in Section 2.3.1 of the literature review, three key challenges inhibit slum water pipeline network 

development:  

1. The unplanned buildings and road networks in slums limit the space available for pipeline laying, 

thereby making the pipelines have inefficient topology. 
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2. Insecure land ownership, low-income levels, and governance failures further weaken pipeline planning 

and maintenance in slums. 

3. Due to colonial history, the infrastructure baseline in slums differs significantly from that in formal 

areas, increasing the cost of further pipeline expansion. 

Therefore, assessing water services in SSA cities inevitably requires considering the unique characteristics of 

their urban morphology. 

Urban morphology is often evaluated through the geometry and topology of street networks. In urban 

morphology studies, cities are understood as spatial organisations of different elements—primarily plots, 

buildings, and streets—forming recognisable patterns that influence urban life (Araújo de Oliveira, 2022b, 

Scheer, 2015). Among these elements, streets are particularly emphasised. Streets serve as the structural 

framework of urban organisation, integrating other elements. Compared to street blocks, plots, and buildings, 

streets exhibit greater stability throughout urban evolution while also serving as a key representation of a city's 

structural characteristics (Araújo de Oliveira, 2022a, Wang and Gu, 2023). Streets connect new settlements 

while linking private spaces, simultaneously delineating public spaces that facilitate the flow of materials and 

energy within the city (Kropf, 2014). Therefore, urban amenities and infrastructure networks often follow similar 

spatial patterns and evolutionary trajectories to street networks. Consequently, street networks are widely 

regarded as simplified schematic representations of urban contexts and are frequently used to classify and 

analyse different urban morphologies (Cardillo et al., 2006, Zhang et al., 2023). Numerous studies have 

employed street network analysis to investigate various aspects of urban systems. For instance, Dingil et al. 

(2018) analysed road data to examine the relationship between infrastructure accessibility and socioeconomic 

indicators across different urban typologies. Serra et al. (2016) described six decades of morphological 

changes in the Oporto Metropolitan Area through an analysis of street network geometry and topology. Buhl et 

al. (2006) identified self-organised urban settlement patterns through street network analysis. Negadi et al. 

(2023) assessed urban connectivity by examining fractality and connectivity of street networks. Additionally,  

Jang et al. (2024) explored the correlation between street characteristics and urban vibrancy, with population 

mobility serving as the indicator of vibrancy in this study. Their findings demonstrate that street features 

influence the vibrancy of different age groups at various times of the day. This human mobility pattern is also 

considered closely linked to urban morphology (Kang et al., 2012). Some studies have further extended this 

approach to examine the impact of slums on urban morphology (Dovey et al., 2020, Kolowa et al., 2024). 

The spatial distribution of roads has also been recognised as being closely related to the structure and 

performance of pipeline networks. For example, Abdel-Mottaleb and Zhang (2020) assert that there is an 

unquantified dependency between urban water supply and transportation networks. Debón et al. (2010) and 
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Așchilean et al. (2018) highlight that pipeline failure risks are associated with road traffic loads. Mair et al. 

(2017) further analyse the shared characteristics of street networks and urban water infrastructure networks. 

However, their study is based on three anonymised cities and does not explore the role of urban morphology in 

shaping these networks. Additionally, from the network science perspective, urban infrastructure systems—

including water, electricity, and transport networks—can be analysed as an interdependent multilayered 

model (Munikoti et al., 2021). Despite this, no existing studies have explicitly established a correlation between 

urban morphology and the structural patterns of both road and water pipeline networks. Lorenz et al. (2021) 

attempted to compare pipeline network attributes across cities, yet their analysis was not based on a detailed 

examination of urban morphology. Moreover, their analysis did not examine pipeline attributes beyond 

resilience. Another attempt to analyse the relationship between road and pipeline networks in different cities 

comes from Abdel-Mottaleb and Zhang (2020). However, their study relied solely on synthetic pipeline 

networks, focusing on the properties of the interface network formed by roads and water networks. Another 

relevant study is that of Chegini and Li (2022), which explored the topological relationship between street 

networks and belowground urban stormwater systems. However, the stormwater infrastructure considered in 

their work is specifically designed to collect runoff and protect streets from flooding, and is thus inherently 

more tightly integrated with the street layout. As a result, the observed correspondence in centrality and 

spatial positioning between streets and pipelines in their analysis is context-dependent and of limited 

generalisability. More importantly, no study has specifically investigated the relationship between the unique 

morphological characteristics of SSA cities and their water distribution networks. 

The performance of a pipeline network can be measured from multiple perspectives, including reliability, risk, 

vulnerability, and resilience (Shuang et al., 2019, Soldi et al., 2015). However, the calculation of these metrics 

requires different techniques and an understanding of the hydraulic characteristics and mechanics of the 

pipeline (Jensen and Jerez, 2018, Yazdani and Jeffrey, 2011). Such an approach often faces many challenges:  

1. The pipelines are located underground, and it is difficult to determine the condition of the network 

visually, thus requiring more effort to obtain data (Yu et al., 2024).  

2. The pipeline network is a complex system, and its assessment is often accompanied by a number of 

constraints, such as dependencies between components, water pressure requirements, and urban 

planning requirements, making the analysis difficult (Jensen and Jerez, 2018).  

3. As the size of the network increases, these constraints become increasingly complex, and new 

variables are introduced (Herrera et al., 2015).  

Therefore, measuring large urban water and sanitation networks requires a large amount of data as model 

inputs (Perelman and Ostfeld, 2011, Torres et al., 2017). The situation is even more complex in low- and 
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middle-income countries like most of those in SSA. Consequently, assessing the pipeline configurations in SSA 

slums using this method presents significant challenges. 

This is where the advantages of graph theory come into play, as it captures the structure of pipelines 

associated with the performance of water services. The coverage of water network directly affects residents' 

proximity to urban water and sanitation services, while the network structure influences efficiency and 

robustness of the water supply. Therefore, compared to traditional methods, graph assessments are 

topological in nature and can yield valuable insights into network performance. Given the spatial and policy 

differences between cities and between slum and non-slum areas, if there are differences in their pipeline 

networks, graph metrics can provide performance indicators relevant to the Sustainable Development Goal 

(SDG) 6 and water policies. The results of this assessment are topological, and therefore the results obtained 

are comparable between different areas. 

Therefore, this chapter examines the relationship between the topology of pipeline networks and SSA urban 

morphology from a global perspective, analysing their correlation from both geometric and topological 

perspectives. It aims to address two major research gaps: 

1. Urban morphology studies have predominantly focused on cities in the Global North. As a result, 

variations in urban form across cities in the Global South, particularly SSA, have received limited 

attention. 

2. Road networks serve as the structural backbone of cities, influencing other infrastructure networks. 

However, few studies have explicitly linked the morphological characteristics of road networks with 

pipeline networks. Furthermore, existing research has not considered the impact of slum settlements 

on this relationship. 

To bridge these gaps, this chapter employs a co-location approach to analyse the morphological differences 

between roads and pipelines occupying the same spatial locations. Given that road networks serve as 

indicators of urban morphology, this approach aims to identify the relationship between pipeline networks and 

urban form, specifically by:  

1. Quantifying the differences in road networks—and by extension, urban morphology—across cities with 

varying types of slum settlements. 

2. Assessing the association between urban morphology and pipeline networks and potential 

implications for water service provision. 

3. Comparing the commonalities between road and pipeline networks across case study SSA cities. 
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4.1 Overview of methodology 

We here examine the commonalities of three infrastructure networks in Kisumu—road, water pipeline, and 

sewer pipeline networks—as well as the road and water pipeline networks in Kigali, via analysis of their 

topological and geometrical similarities (Figure 4.1). The urban infrastructure networks within the study area 

are first converted into dual graphs and compared using graph theory approaches. In addition to employing 

graph theory metrics to analyse general topological characteristics, the dissimilarity method proposed by 

(Schieber et al., 2017) was applied. Subsequently, centrality metrics (degree, betweenness, closeness) 

obtained from graph analysis were mapped back into geometric space. Through co-location analysis, 

overlapping features of water and sewer pipeline networks and road networks, as well as the correlation 

between their centrality metrics, were identified. 

 
Figure 4.1 Workflow for comparing topological characteristics of road, water and sewerage networks in 

Kisumu and Kigali. 

4.2 Data preprocessing 

Due to data availability constraints, sewer network data for Kigali was not accessible. Therefore, this study 

utilized water, sewer, and road networks from Kisumu, along with water and road networks from Kigali. The 

road networks primarily served as a reference for identifying urban morphology. To enable the application of 

graph methods, which are widely used in network morphology studies, network data were preprocessed before 

conversion to graph format. This preprocessing included network feature identification, topological correction, 

graph smoothing, and dual mapping. 
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4.2.1 Downloading and preprocessing road network data 

In the study area, multiple data sources are available for road networks, providing more options than for 

pipeline networks. As of February 4, 2024, these sources include the Kenya Roads Board (KRB) (KRB, 2021), 

Rwanda Transport Development Agency (RTDA) (RTDA, 2022), Global Roads Inventory Project (GRIP) (Meijer et 

al., 2018), and OpenStreetMap (OSM) (OpenStreetMap contributors, 2023). KRB and RTDA are national road 

management authorities in Kenya and Rwanda, respectively. The road data from KRB, collected through a 

national survey in 2018, covers only the main roads in Kisumu, with a total length of 519,524 meters. Similarly, 

RTDA’s dataset includes only National Roads, Class 1 District Roads, and roads in the City of Kigali and other 

urban areas. The GRIP Road database, covering the study area, integrates multiple data sources, including 

OpenStreetMap. However, due to its primary focus on environmental and biodiversity research such as 

GLOBIO (Schipper et al., 2020), the level of detail in GRIP's road data is insufficient for other research 

applications. In Kisumu, GRIP's road length is 415,016 meters, while in Kigali, it spans 2,024,631 meters. 

Comparatively, the OSM road network in Kisumu has a length of 1,681,830 meters, and in Kigali, the OSM road 

length is 5,022,458 meters, including a greater proportion of local roads. Since OSM’s total road lengths are 

greater than those of other data sources, and the spatial distribution is more uniform, this chapter uses OSM 

as the road data source. The Python package OSMnx (Boeing, 2017) was employed to retrieve OSM road maps 

within the boundaries of Kisumu and Kigali as of February 4, 2024.  

The OSMnx package provides built-in functionality for processing downloaded road networks from OSM into 

planar graphs and performing topological corrections. Since OSM data includes 3D information, such as 

bridges, OSMnx:  

1. processes the network into a planar graph, preserving only the 2D projection of the road network while 

excluding 3D intersections—a standard approach in road network analysis (Boeing, 2018).  

2. converts the 2D network into a graph format supported by the NetworkX package (Hagberg et al., 2008). 

It represents road network as an undirected primal graph, where road junctions correspond to graph 

nodes, and road segments are represented as edges(Añez et al., 1996).  

3. In this study, street angles and road attributes were not considered in the modelling process to ensure 

consistency with the pipeline network representation. 

4.2.2 Preprocessing of water pipeline networks 

Kisumu's water pipeline network data was obtained from KIWASCO in September 2020, following a formal data 

request (Figure 4.2). The raw dataset comprised 21,448 polyline features depicting pipelines with a total length 
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of 538,559 meters. In contrast, the sewer network was comparatively smaller, comprising 253 polylines with a 

total length of 90,467 meters (Figure 4.3). 

 

Figure 4.2 Piped drinking-water network in Kisumu City. Boundary data created based on the boundary map 

produced by the American Red Cross (American Red Cross, 2019)).  
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Figure 4.3 Sewer network in Kisumu City. Boundary data created based on the boundary map produced by 

the American Red Cross (American Red Cross, 2019)). 

Kigali's water pipeline network data was obtained from the Water and Sanitation Corporation (WASAC) via an 

open data repository, WaterGIS (https://github.com/watergis). The data, updated in 2020, comprises a larger 

network than that of Kisumu, including 11,072 line segments with a total length of 1,728,445 meters (Figure 

4.4).  

https://github.com/watergis
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Figure 4.4 Piped drinking-water network of Kigali City. Boundary data extracted from the administrative level 1 

boundaries of Rwanda in the Common Operational Datasets (CODs) (OCHA, 2023). 

4.2.2.1 Manual topology correction for pipeline data 

Piped network layers were provided in non-topological shapefile format, so topology-building was necessary. 

Theoretically, a city's pipeline network should have no pipelines that are disconnected from the rest of the 

network. Therefore, it is assumed that the study area contains only a single connected network; any isolated 

pipelines present are considered digitising errors. R’s nt.connect function in its shp2graph library was used 

initially to identify self-connected parts within each network (Lu et al., 2018).  

As shown in Figure 4.5, there are many self-connected parts in Kisumu's water pipeline network with similar 

problems in Kigali. The reasons include topological problems such as overshoots, overlapping pipelines, 

misalignment of endpoints and interruptions in line segments (see examples in Figure 4.6). Since the modelling 

of pipeline networks follows principles outlined in section 2.4.1, graph metrics will be misleading when 

modelling with disconnected network components. Kisumu and Kigali’s piped networks both contain 

topologically incorrect points and lines, and the node and edge lists cannot be used to build a graph without 

prior correction.  
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Figure 4.5 Self-connected parts in the Kisumu network before topological correction, with 1,134 parts plotted in different colours. 

 

 



Chapter 4 

96 

However, on one hand, OSMnx cannot be used to correct topology errors in pipelines as it does 

for OSM roads due to incompatibility with the data structure required by the OSMnx package. 

On the other hand, ArcGIS Pro’s automated topology correction workflows have limitations 

when applied to urban networks. ArcGIS Pro software automatically identifies and handles 

polyline topological errors including overlaps, intersects, and dangles. Take dangles, for 

example, as shown in Figure 4.6 (A), identified by ArcGIS where endpoints of lines do not touch 

other line segments, both real-world consumer endpoints and topologically incorrect 

breakpoints. The latter are abundant in Kisumu (Figure 4.6 (B)). However, Figure 4.6 (A) also 

shows that in residential areas, the distance between consumer endpoints is often small as 

well, so these pipelines without topology errors will also be identified as dangles and be 

trimmed or extended in ArcGIS. Since this automated topology correction creates errors, all 

pipelines were therefore corrected manually. 

 
Figure 4.6 Common topological errors in water pipeline networks, illustrated with examples 

from the Kisumu pipeline network. A. dangles; B. breakpoints in pipelines; C. 

isolated pipelines; D. overshoots with large angles; E. isolated parts with small gaps 

from the main; F. closed network segments. 

After diagnosing potential topological errors in the networks, these errors were subsequently 

corrected via the strategies shown in Table 4.1. The principle of the correction is to make as few 

changes as possible to the original data. The city's pipeline network shows a certain pattern: the 
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main pipelines distributed along the main roads extend in parallel and are rarely connected to 

each other. At the same time, the distribution of pipelines in residential areas is often quite 

regular. These are also the conditions to be considered when making amendments. 

Table 4.1 Potential Topology Errors and Corresponding Correction Strategies in the Study 

Networks 

Potential Topology Errors Examples Correction Strategy 

Breakpoints Figure 4.6 (B) 

To identify these, a tolerance distance of two 
meters is applied; gaps smaller than this 
threshold are considered topological errors and 
are resolved by reconnecting the segments. 

Isolated pipelines/self-
contained segments Figure 4.6 (C) 

Overshoots with large angles 
of extension Figure 4.6 (D) 

Short overshoots or undershoots that deviate 
significantly from the angle extending an existing 
line feature are considered to be deliberate on 
the part of the cartographer and, therefore, very 
unlikely to be topological errors and not 
corrected. 

Isolated parts with small gaps 
from the main networks Figure 4.6 (E) 

If an isolated pipe can be connected to the 
nearest network section by extending the 
undershoots, the connection is made, even if 
the distance is considerable (e.g., 10m). 

Closed network segments Figure 4.6 (F) 

A pipeline running parallel to the nearest pipe 
that cannot be connected is assumed to belong 
to a different system and is temporarily 
removed. 

4.2.2.2 Transforming pipeline data to graph format 

During the preprocessing steps, the pipeline networks were first transformed into an undirected 

graph through primal mapping (Figure 4.1). Although the direction of water flow is critical for 

hydraulic simulations of the network, detailed information (e.g. on pressure head, pipe diameter 

and gradient) required for hydraulic analysis is often lacking. As a result, pipeline networks are 

frequently treated as undirected graphs, a format in which hydraulic direction is not considered 

(Boccaletti et al., 2006, Hwang and Lansey, 2017, Meijer et al., 2018, Yazdani and Jeffrey, 2012a, 

Yazdani and Jeffrey, 2012b). Primal mapping is an intuitive modelling method and is commonly 

used for graph analyses of water distribution networks (Yazdani and Jeffrey, 2011). In primal 

mapping, specific locations (e.g. pipeline and road intersections, reservoirs, consumers and 

pumps) are represented as nodes and pipelines are defined as edges between nodes within a 

network (Yazdani and Jeffrey, 2011, Yazdani et al., 2011). 
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To convert the network into a graph, it is necessary to determine which elements in the raw 

network should be retained based on factors such as their attributes and the angles between 

them (Marshall et al., 2018, Stavroulaki et al., 2017). Treatment varies from modelling methods 

such as space syntax (Hillier and Hanson, 1989), the street name approach (SN), intersection 

continuity negotiation (ICN) (Porta et al., 2006), and Hierarchical Intersection Continuity 

Negotiation (HICN) (Masucci et al., 2014). Nevertheless, studies of road and pipeline networks 

have not considered whether edge attributes or angles between features are the most 

appropriate basis for graph modelling (Giudicianni et al., 2018, Hwang and Lansey, 2017, 

Marshall et al., 2018, Pagano et al., 2019, Yazdani and Jeffrey, 2012a). Since the case study 

networks provide little information on components besides pipelines, only pipelines and 

intersections were considered in modelling: 

1. Endpoints and intersections of line features were identified 

2. And pipelines with the same ID were merged and then split at the intersections. 

3. The resulting shapefile was then read as an sf class object, storing the node and edge 

information using R’s sf library (Pebesma and Bivand, 2023).  

4.2.3 Graph smoothing 

Prior to analysis, graph smoothing (sometimes called pseudo-node removal) was undertaken. 

The raw graph object contains vertices that are likely to contribute little to graph structure and 

hinder the processing and interpretation of the graph (Ersoy et al., 2011, Hennessey et al., 2008, 

Hwang and Lansey, 2017, Ruan et al., 2011, Yu et al., 2024). OSMnx provides a built-in method 

for simplifying road networks, which eliminates nodes that do not correspond to intersections or 

endpoints while merging edges and preserving geometric attributes (Boeing, 2017). However, 

the simplification algorithm in OSMnx is specifically designed for road networks formatted 

according to OSM data structures, incorporating real-world connectivity constraints. To 

maintain consistency in network simplification across different infrastructure types, this study 

instead adopted the R package sfnetworks (van der Meer et al., 2021) for graph smoothing. The 

package implements a simplification method by retaining only the endpoints of line segments, 

the point from which an edge self-loops (which are excluded in the simplified graph; see Section 

2.4.1), and the intersection of multiple edges where at least one of the edges continues through 

the intersection (Figure 4.7). 
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Figure 4.7 (A) Original street network obtained from OSM. (B) Simplified network after pseudo 

node removal. 

4.2.4 Dual mapping of infrastructure networks 

After obtaining the corrected pipeline and road networks, the primal graphs were converted into 

dual graphs using igraph. In dual mapping, the edges of the primal graph are represented as 

nodes, and connections are established between these nodes if the corresponding edges in the 

primal graph share an endpoint. Mathematically, a dual graph is the duality of the primal graph, 

which gives it its name; however, in practice, the dual graph is not always a precise dual of the 

primal graph (Marshall, 2016). Consequently, some studies use the term line graph to refer to 

this type of graph (e.g. Gharaee et al. (2021)). For consistency, this study adopts the term dual 

graph throughout the text. 

A disadvantage of the dual mapping approach is that when edges are mapped as nodes in a 

graph, the geometric characteristics are discarded. However, Porta et al. (2006) also point out 

the advantages of dual mapping. In the case of street networks, the number of streets (edges) 
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that can be connected to an intersection (node) is finite in primal mapping. However, in a dual-

mapped street network, the number of intersections (edges) that can be connected to a street 

(node) is infinite. This structure is closer to the networks in other research fields, thus allowing 

for comparisons between networks. Both modelling practices (primal and dual) are commonly 

used in studies of infrastructure networks (Adraoui et al., 2024, Giustolisi et al., 2019, Wéber et 

al., 2020, Zhang et al., 2017, Zischg et al., 2019). In cases where the focus is on the 

representation of network edges, the dual approach is more appropriate. This is particularly 

relevant for co-location analysis, where the goal is to compare the spatial overlap of networks. 

In such cases, analysing edges rather than nodes is a more reasonable choice, as the 

comparison is between roads and pipelines rather than specific locations within the network 

(e.g., intersections). 

4.3 Graph-based analysis methods 

The processed dual graphs were analysed to uncover their commonalities. This involved using 

graph metrics to describe network properties, applying D-measure to quantify network 

dissimilarity, and identifying overlapping features to extract their centrality patterns. 

4.3.1 Graph metrics 

The following graph metrics, selected from those introduced in the literature review (Section 

2.4.1), were used to assess various aspects of efficiency and stability in urban networks: 

• Average shortest path length: the average distance along the shortest paths connecting 

two nodes, compared to all possible pairs of nodes in the network. 

• Average node degree: the average value of the number of nodes connected to each node 

in the network. 

• Critical breakdown ratio: the threshold that a network will fail when removing nodes 

whose degree exceeds this value. 

• Algebraic connectivity: the second smallest eigenvalue of the normalized Laplacian 

matrix, reflecting the robustness of the network. 

• Spectral gap: the difference between the first and second eigenvalues of the adjacency 

matrix. 

• Clustering coefficient: the presence of triangular loops in the network. 

• Meshedness coefficient: the presence of loops in the network, with a higher value 

signifying a more connected network. 
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Given that this study focuses on urban morphology rather than on the functional performance of 

the pipeline network, indicators emphasizing morphological characteristics were selected. Of 

these metrics, average shortest path length is related to the efficiency of the pipelines. 

According to Meng et al. (2018), the average path length is strongly correlated with the diameter 

and graph radius and, thus, more representative; average node degree, critical breakdown ratio, 

and algebraic connectivity are all related to the fault-tolerance of the pipeline, also known as 

robustness. This study did not use density of bridges/articulation points as an indicator of 

robustness as they are not representative in water distribution networks (Meng et al., 2018). In 

addition, two parameters characterise the shape of the network, from which information about 

the efficiency and robustness of the network can be obtained: cluster coefficient, and 

meshedness coefficient. 

Specifically, three graph metrics were employed to identify local network characteristics in the 

co-location analysis: 

Degree centrality: This metric represents the degree of each node in the dual graph, indicating 

the extent to which a pipeline or road is connected to others. In other words, it reflects the 

positional importance of an edge within the network. For instance, a node with a degree 

centrality of 1 signifies that it has only one connecting edge, meaning the corresponding 

road/pipeline is located at the network’s terminus. 

Betweenness centrality: This metric measures how frequently a node appears on the shortest 

paths between any two nodes in the network. A higher value indicates that the corresponding 

pipeline or road plays a crucial role in maintaining network connectivity. If such an element is 

removed, other pipelines or roads would require longer topological paths to remain connected. 

Closeness centrality: This metric is computed based on the shortest path distance from a 

node to all other nodes, reflecting the network’s flow capacity at that node. As an example from 

Wang et al. (2011b), in an air transportation network, cities with higher closeness centrality—

indicating proximity to other cities in the graph—tend to exhibit better economic performance. 

4.3.2 Network similarity 

There is widespread interest in the research and application of network similarities across 

various disciplines, including social sciences, medicine, and biology (Barabási et al., 2011, 

Coşkun and Koyutürk, 2021, Tarapata and Kasprzyk, 2009, Taylor et al., 2015). Generally, this 

issue can be considered as the graph isomorphism problem, which aims to measure whether 

two graphs are topologically equivalent. Over the past few decades, numerous techniques have 

emerged for studying graph similarity, primarily focusing on proposing effective and 
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computationally efficient metrics. Measures include Graph Edit Distance (Bunke and 

Allermann, 1983), Singular Value Sequence (Xu et al., 2019), and Graph Fourier Distances 

(Lagunas et al., 2018), as well as algorithms based on node scores, such as the SimRank 

algorithm (Jeh and Widom, 2002) and Kleinberg's algorithm (Blondel et al., 2004). Their common 

concept is to treat the distance between graphs as a measure of their similarity (Shimomura et 

al., 2021).  

Among these methods, this study employed the D-measure, proposed by Schieber et al. (2017) , 

to quantify the similarity/dissimilarity of infrastructure networks within the study area. The D-

measure is primarily based on node-to-node connection distances and comprises three 

components: the first term compares the networks' distance distributions, capturing global 

topological differences; the second term assesses how each element is connected throughout 

the network; and the last term analyses differences in the way this connectivity occurs, through 

the examination of Katz centrality. Thus, the dissimilarity 𝐷(𝐺, 𝐺′) between graphs G and𝐺′ is 

defined as: 

𝐷(𝐺, 𝐺′)

= 𝑤1√
𝒥(𝜇𝐺 , 𝜇𝐺′)

log2
+ 𝑤2 |√𝑁𝑁𝐷(𝐺) − √𝑁𝑁𝐷(𝐺

′)| +
𝑤3
2
(√

𝒥(𝑃𝛼𝐺 , 𝑃𝛼𝐺′)

log2
+
𝒥(𝑃𝛼𝐺𝑐 , 𝑃𝛼𝐺𝑐′)

log 2
) 

Where network node dispersion (NND) is a measure of the heterogeneity of graph G in terms of 

connectivity distances introduced by Schieber et al. (2017): 

𝑁𝑁𝐷(𝐺) =
𝒥(𝑷1, . . . , 𝑷𝑁)

log(𝑑 + 1)
 

𝑃𝑖(𝑗) being the fraction of nodes that are connected to node i at distance j, leading to the 

following equations:  

𝑷𝑖={𝑝𝑖(𝑗)}; 

𝒥(𝑷1, . . . , 𝑷𝑁) =
1

𝑁
∑𝑝𝑖(𝑗) log(

𝑝𝑖(𝑗)

𝜇𝑗
)

𝑖,𝑗

 

𝜇𝑗 = (∑ 𝑝𝑖(𝑗)
𝑁

𝑖=1
)/𝑁 

Where w1, w2 and w3 are arbitrary weights of the terms where w1+w2+w3=1. 

Through their experiments, the weights of the three components should ideally be set to 0.45, 

0.45, and 1, respectively. Additionally, applying the D-measure to real networks significantly 

increases the cost of computing the α-centrality of their graph's complements due to the sparse 
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nature of real networks. Therefore, a simplified D-measure was used in this study, considering 

only the first two terms of the equation to assess network dissimilarity. When two graphs are 

isomorphic, the D-measure returns 0; otherwise, it quantifies the structural differences 

between the graphs. 

4.3.3 Geometry and topology co-location analysis 

Considering the possibility that pipeline and road networks may not be perfectly aligned, as well 

as potential data discrepancies leading to network misplacement, network overlap in the co-

location analysis is defined as elements that are mutually parallel within a certain geometric 

distance. Similarly, due to considerations of data quality and coverage, road networks, rather 

than pipeline networks, were selected for buffer generation. A pipeline is considered to overlap 

with a road if it is located within the buffer of that road. 

Buffer width reflects the stringency of the co-location analysis, where increasing the buffer size 

not only makes it more likely to capture pipelines overlapping with roads but also inevitably 

increases the inclusion of pipeline segments that do not overlap with roads, such as those 

crossing streets. Therefore, a sensitivity analysis was conducted to determine the appropriate 

buffer width by examining the pipeline length and proportion covered by buffers of different 

sizes (in 1-metre increments). Since the degree of alignment between pipelines and roads is 

unknown, the assumed buffer width was based on the common lane widths and lane numbers 

provided by the road classification frameworks from Kigali and Kisumu (see Tables 4.2 and 4.3). 

Alternative buffer distances (i.e., assumed street widths) ranged from 1 to 15 metres for Kisumu 

roads and 1 to 17 metres for Kigali roads, following methods outlined by Klinkhamer et al. 

(2017), Mair et al. (2017) and Klinkhamer et al. (2019). A maximum buffer width of 15 metres for 

Kisumu corresponds to the width of a dual-lane road, according to the Kenya Road Design 

Manual (Ministry of Roads and Transport, 2023). Meanwhile, 17 meters corresponds to the 

maximum road width of high-capacity urban roads in Kigali (City of Kigali, 2020c). By calculating 

the proportion of the pipeline network covered by buffers of varying widths, appropriate buffer 

widths were selected for the co-location analysis. The underlying logic is that if increasing the 

buffer width captures more pipeline fragments running parallel to roads than those crossing 

streets, the covered pipeline length should increase rapidly; otherwise, the rate of increase 

should slow down. The second derivative of the proportion of overlapping pipelines as the buffer 

width increases was used to identify these two growth trends. 
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Table 4.2 Kenya road classification and width (Ministry of Roads and Transport, 2023) 

Road category 

Most common 
functional class 
and type 

Surface type Lane width 
range (m) 

Inter-urban roads 

A (international 
highways) Paved Dual 2*7.3 

B (national 
highways) Paved 7.3 

C (primary 
roads/inter county 
roads) 

Paved 7.0 

Rural roads 

D (secondary 
roads/inter sub-
county roads) 

Paved 7.0 

E (minor roads/ 
sub-county roads) 

Paved or 
unpaved 6.5 - 7.0 

F, G, P, S, W, T, U 
(local roads) 

Paved or 
unpaved 5.5 - 7.0 

Urban roads 

UA (urban arterial 
roads) Paved Dual 2*7.3 

UC (urban 
collector roads) Paved 7.3 

UL (local urban 
streets) 

Paved 6.0 - 7.0 
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Table 4.3 Rwanda road classification and width (City of Kigali, 2020c). 

Type 

High-
Capacity 

Urban 
Roads 

Major Arterial Roads Minor Arterial Roads Collector Roads 

Trunk Roads Bus Rapid 
Transport 

Link 
Roads 

CBD Throughfare Bus 
Routes 

Commercial 
Streets 

Residential 
Streets 

Rural 
Road 

Desirable 
Road 
Reserve 
Width 

37 – 44 m 34 – 37 m 34-40m 34 – 37 m 28 – 37 m 22 – 27 m 27 m 27 m 18 – 22 m 18 – 22 m 

Typical 
number of 
lanes per 
direction 

2 – 5 lanes 2 – 4 lanes 2 – 3 lanes 2 – 3 lanes 2 – 3 lanes 1 – 2 lanes 
1 – 2 

lanes 1 – 2 lanes 1 – 2 lanes 1 – 2 lanes 

Minimum 
Carriageway 
Width 

3.5 m per 
lane 

3.5 m per 
lane 

3.5 m per 
lane 

3.5 m per 
lane 

3.5 m per 
lane 

3.5 m per 
lane 

3.5 m per 
lane 

3.5 m per 
lane 

3 m per 
lane 

4 m per 
lane 

Median 
Width 4 m 1 – 4 m 1 – 4 m 0.6 – 4 m 0.6 m 0.6 m 0.6 m 0.6 – 2 m - - 

Hard 
Shoulder 3 m - - - - - - - - - 

Easement / 
Verge 

2.5 – 6 m 2.5 – 6 m - - - - - - - 2 – 3.5 m 

Footway - - 1.5 m min 1.5 m min 1.5 m min 1.5 m min 2 m min 2 m min 1.5 m min - 

Cycleway - - 1.5 m min 1.5 m min 1.5 m min 1.5 m min 
1.5 m 

min, or 
omit 

1.5 m min, 
or omit 1.5 m min - 

Planting Strip - - 2 m 2 m 2 m 2 m 2 m 2 m 2 m - 
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4.4 Results 

The results are analysed from three perspectives to examine the relationship between urban 

morphology and pipeline networks. First, an overview of the topological properties of the 

networks in each city is provided, offering insights into their commonalities and, by extension, 

the influence of the urban environment on infrastructure network structures. Based on the same 

dual graphs, network dissimilarity was also calculated for networks within each city. 

Subsequently, different buffer widths were tested against the length of piped infrastructure 

elements that overlapped with roads, and the buffer widths that best captured network overlap 

patterns were selected for co-location analysis. The co-location analysis extracted overlapping 

urban networks and compared the centrality of overlapping elements in pairs, enabling a spatial 

and morphological comparison of network differences. 

4.4.1 Topological characteristics of study infrastructure networks  

Table 4.4 shows that the Kisumu sewer network exhibits a simple structure, characterised by 

high betweenness and closeness metrics, along with a relatively high average shortest path 

length. This simplicity is associated with lower overall connectivity and limited stability. 

The table also reveals that the road networks in both Kisumu and Kigali exhibit lower link 

density. Moreover, the road networks demonstrate significantly lower betweenness and 

closeness centrality, along with higher average shortest path lengths compared to other 

networks. The clustering coefficient and meshedness are both indicators of faces or loops in a 

network, but they show opposing trends. The former identifies triangular loops, as discussed in 

literature review 2.4.1, which are typically rare in urban networks, while meshedness indicates 

that road networks tend to contain more square loops. This suggests that, in both cities, road 

networks are inherently less efficient than piped networks in terms of connectivity but exhibit 

greater robustness. 

An analysis of network degree further supports this observation (Figures 4.8 and 4.9). In both 

networks, the water network exhibits a right-skewed distribution, with a few high-degree nodes 

(corresponding to edges in the network). This indicates the presence of hubs within the network, 

enhancing connectivity efficiency while reducing the water network’s resilience to risks. 

 

 

 



Chapter 4 

107 

Table 4.4 Summary of graph theory metrics for the dual representation of road, water, and 

sewer networks in Kisumu and Kigali 

  Kisumu Kigali 
  Water Road Sewer Water Road 
Number of nodes 4076 11616 348 6721 35191 
Number of edges 6690 22203 547 10781 69839 
Link Density 0.0008 0.0003 0.0091 0.0005 0.0001 
Mean Degree Centrality 3.2826 3.8228 3.1437 3.2082 3.96914  
Mean Betweenness Centrality 0.0092 0.0044 0.0447 0.0054 0.0020 
Mean Closeness Centrality 0.0275 0.0200 0.0630 0.0276 0.0141 
Cluster Coefficient 0.4944 0.4006 0.4571 0.4307 0.3909 
Meshedness Coefficient 0.3210 0.4558 0.2894 0.3022 0.4923 
Average Shortest Path Length 38.541 52.576 16.478 37.546 71.769 

 

Figure 4.8 Degree distribution of the Kisumu water pipeline, road, and sewer pipeline 

networks. 

 
Figure 4.9 Degree distribution of the Kigali water pipeline and road networks. 
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Using the D-measure, pairwise dissimilarity comparisons of infrastructure networks from both 

study cities were conducted. Since a value of 0 indicates two isomorphic networks, while larger 

values signify greater structural differences, the results reveal several key patterns (Table 4.5). 

First, infrastructure networks generally all exhibit high structural similarity. Second, the 

similarity between Kisumu’s road and water networks is higher than that observed between 

Kigali’s road and water networks. Third, Kisumu’s sewer network shows markedly high 

dissimilarity compared to other networks. Finally, networks of the same type display the highest 

similarity: both the water and road networks in Kigali and Kisumu exhibit relatively low 

dissimilarity, with the similarity between the two cities’ water networks being particularly 

pronounced. To further check this finding, the study additionally compared the dissimilarity 

between Kisumu’s pipeline networks and Kigali’s road network, as well as between Kigali’s 

pipeline networks and Kisumu’s road network. The results suggest that, broadly speaking, 

infrastructure networks within the same city are more structurally similar to one another than to 

networks of the same type in another city. 

Table 4.5 Dissimilarity index between road, water, and sewer networks 

  Kisumu Water Kisumu Road Kisumu Sewer Kigali Water Kigali Road 
Kisumu Water 0         
Kisumu Road 0.146 0       
Kisumu 
Sewer 0.290 0.357 0     

Kigali Water 0.072 0.161  0.315 0   
Kigali Road 0.277 0.152 0.427 0.284 0 

4.4.2 Sensitivity analysis of buffer size effects on network co-location 

The results of the sensitivity test (Figure 4.10) indicate that as the buffer size increases, the 

increase in the length of water and sewer pipelines covered by roads follows a pattern similar to 

a logarithmic distribution. The second derivative results (Figure 4.11) further show that the 

trends in both cities can be divided into three phases, corresponding to rapid, moderate, and 

slow increases in the proportion of covered pipeline length. The point at which the increase 

slows down occurs at a buffer width of 10m in Kisumu, while in Kigali, it occurs at 11 meters. 

Accordingly, the buffer width for co-location analysis of Kisumu roads was set at 10 meters, 

aligning with the standard road width (including shoulders) of approximately 10 meters in Kenya 

(Ministry of Roads and Transport, 2023). In this case, the covered length of the water pipeline is 

371,496.4 meters, constituting 69.624% of the entire network length. The covered length of the 

sewer pipeline is 52,888.12 meters, representing 58.0246% of the total sewer network length. 

Meanwhile, in Kigali, with a buffer width of 11 meters, the road network overlaps with 

1,378,317.75 meters of water pipelines, accounting for 79.47% of the total pipeline network 

length.  
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Figure 4.10 Sensitivity analysis of additional street width and covered network length below the 

roads.  
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Figure 4.11 Second derivative distribution of the proportion of pipeline length covered by road 
buffers at different widths. Panel A shows Kisumu, where the proportions of water and sewer 

pipelines were averaged in the analysis. Panel B shows Kigali, focusing solely on the water 
pipelines. 

4.4.3 Co-location of infrastructure networks 

The initial geographic visualization of network degree centrality (Figures 4.12 and 4.13) reveals 

that high-degree edges appear in all three networks, extending beyond the central region. In 
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both cities, road networks generally exhibit a decreasing degree trend from the core outward. 

Notably, Kigali's road network features multiple high-degree clusters, as reflected in the degree 

distribution (Figure 4.9), whereas the pipeline network does not exhibit a similar pattern. This 

observation aligns with the structural differences highlighted by the graph metrics, which 

indicate that pipeline networks have a more evenly distributed structure compared to road 

networks. 

The maps also provide insight into potential spatial correlation of high-degree distribution. For 

instance, in Kisumu, water pipelines exhibit relatively high degree within slums (see Section 

3.2.2), a phenomenon not observed in the road network. Conversely, in regions where road 

degree is high, pipelines do not display a similarly high-degree distribution. However, high-

degree sewer pipelines tend to co-locate with high-degree roads. 
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Figure 4.12 Remapping of the dual graph degree to the primal space for the Kisumu road 

network, water pipeline network, and sewer pipeline network of Kisumu. The box 

highlights the different distributions of high-degree roads and pipelines within the 

same area (A), while showing similar distributions between roads and the sewer 

pipeline network (B). 
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Figure 4.13 Remapping of the dual graph degree to the primal space for the Kigali road network 

and water pipeline network. The two panels show the overall distribution 

differences of high-degree roads and pipelines across the area. 

We further examined centrality by applying a sensitivity test to extract pipelines overlapping with 

roads using the buffers (Figures 4.14 and 4.15). By analysing the degree, betweenness, and 
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closeness centrality distributions for co-located features across the five infrastructure 

networks, several patterns emerge: 

Degree distribution: In both cities, the degree distributions of the networks are generally 

uniform (Figures 4.14 (A)(B), Figure 4.15 (A)). There is no significant dependency between the 

degrees of pipelines and roads. However, high-degree roads tend to overlap with low-degree 

pipelines (as shown in the example area in Figure 4.12 (A)), a trend that is slightly less 

pronounced in sewer pipelines (Figure 4.12 (B)).  

Betweenness centrality: High-betweenness edges in one network tend to overlap with low-

betweenness edges in the other (Figure 4.14 (C)(D), Figure 4.15 (B)). However, in Kigali, some 

high-betweenness pipelines overlap with roads exhibiting a wider range of betweenness values.  

Closeness centrality: There is no correlation between the closeness centrality of roads and 

sewers, suggesting a lack of significant planning coordination between the two networks (Figure 

4.14 (F)). However, in both cities, water pipelines exhibit an approximately linear relationship 

with road closeness (Figures 4.14 (E)(F), Figure 4.15 (C)), meaning that high-closeness roads 

tend to overlap with high-closeness pipelines. 
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Figure 4.14 Dual mapping local graph metrics (node degree(A and B), betweenness(C and D), 

and closeness(E and F)) of co-located roads, water and sewer pipelines in Kisumu. 
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Figure 4.15 Dual mapping local graph metrics (node degree (A), betweenness (B), and 

closeness (C)) of co-located roads and water pipelines in Kigali. 
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4.5 Discussion 

Urban infrastructure networks are shaped by urban morphology, leading to commonalities in 

network structure across cities of similar scale. The study posits that SSA cities, facing 

comparable urbanisation challenges, exhibit shared characteristics in their infrastructure 

networks. These commonalities can be identified by examining the structural similarities 

between road networks and water and sanitation networks. To assess them from both 

topological and geometric perspectives, the study applied a dual transformation to the 

networks, measured their graph properties, calculated network distances, and analysed the 

centrality metrics of pipelines co-located with roads. 

We find that despite differences in scale and national context, infrastructure networks in SSA 

cities exhibit remarkable commonalities, even though the networks in the two cities were 

developed independently. Notably, infrastructure networks, including water pipelines, share a 

high degree of similarity with road networks. Graph metrics reveal a consistent pattern in which 

road networks tend to be more structurally robust compared to water networks. More 

specifically, networks of the same infrastructure type exhibit higher similarity, as demonstrated 

by the D-measure. Moreover, infrastructure networks within the same city tend to be more 

similar to each other, while differences between roads and water networks in Kisumu and Kigali 

also follow similar patterns. The centrality analysis of co-located networks further reinforces 

this observation, as the distribution trends of centrality measures in co-located elements are 

strikingly similar across both cities. 

In studies of African cities, urbanization patterns are generally characterized by a concentration 

of population in the central business district (CBD), with a rapid decline in transport network 

density and accessibility towards the urban periphery, in contrast to European cities (Antos et 

al., 2016). This observation aligns with the study's graph analysis (Table 4.4) and degree 

distribution maps (Figures 4.12 and 4.13), which show that in both Kisumu and Kigali, the degree 

of dual road networks decreases outward from the centre, accompanied by relatively low link 

density. A critical factor shaping SSA urban morphology and network structure is informality, 

which introduces heterogeneity in both spatial patterns and network properties. Studies on 

urban form have identified two primary typologies: organically developed road networks, 

shaped by historical and geographical factors, exhibiting irregular patterns, and planned road 

networks, which follow structured, grid-like patterns due to formal urban planning interventions. 

For instance, Wang (2015) compared the road networks of Beijing and London, revealing the 

contrast between Beijing’s top-down planned grid structure and London’s self-organized tree-

like network. Similarly, Alobaydi and Rashid (2024) classified Baghdad’s urban form into six 

categories based on organic and grid-based structures, each shaped by different historical 
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periods. Comparable studies on African cities have also categorized urban forms into irregular 

and well- structured patterns. Baffoe et al. (2020b) classified Kigali’s neighbourhoods into 

formal, informal, and mixed types based on their planning characteristics, while Steyn (2012) 

highlighted the morphological disparities between slums and formal settlements in Kisumu. The 

predominant urban form inevitably influences overall street network properties (Serra et al., 

2016). This relationship was examined through graph analysis. The network metrics (Table 4.4) 

and degree distribution plots (Figures 4.8 and 4.9) indicate that the degree of road intersections 

in both cities is close to four. In the dual graph representation, degree corresponds to the 

number of intersections along a road. A grid-based layout would typically yield higher degree 

values due to the increased number of dual connections. For example, Porta et al. (2006) 

reported degree values of 8 and 6 for street samples in San Francisco and Barcelona, 

respectively, while Wang (2015) found that the average degree in the dual graph of Beijing (a 

grid-based city) was 5, compared to 3.6 in London (a self-organized city). Based on this 

comparison, the road networks of Kisumu and Kigali exhibit characteristics more aligned with 

self-organized structures. The spatial distribution of high-degree roads, as visualized in the 

degree maps (Figures 4.12 and 4.13), further supports this distinction. In Kisumu, high-degree 

roads are concentrated in formal areas and a few well-planned slums, while in Kigali, the 

pipeline network displays widespread clustering of high-degree nodes. These cluster locations 

align with household living condition analyses by Akinyemi and Bigirimana (2012) and the 

community survey conducted by Baffoe et al. (2020b). These graph indicators also align with 

existing knowledge on the distribution of slums in both cities. In Kisumu, slums vary in their 

degree of planning—Manyatta, for instance, has a more structured road network compared to 

Obunga and Bandani (UN-Habitat, 2005). In contrast, reports on Kigali indicate that regular 

residential land is consistently distributed throughout the city  (Antos et al., 2016, City of Kigali, 

2020c). 

The similarity between road morphology and pipeline networks highlights the influence of urban 

morphology on infrastructure development. Previous studies have shown correlations between 

road networks and pipeline networks, with degree distributions of roads, urban drainage 

networks, and water distribution networks fitting Pareto distributions (Klinkhamer et al., 2019). 

Based on an analysis of urban drainage networks, the authors argue that urban networks evolve 

through preferential attachment while being constrained by factors such as cost and available 

space. Building on these insights, this study identifies differences in the graph-theoretic 

properties of road and infrastructure networks within the dual space in Kisumu and Kigali. These 

differences manifest both in global performance and spatial distribution of graph attributes. In 

Kisumu, the graph indicators suggest that roads exhibit greater structural stability than water 

networks, which in turn are more stable than sewer networks. Conversely, global centrality 



Chapter 4 

121 

measures indicate that network efficiency follows the opposite trend. A similar pattern is 

observed in Kigali, suggesting that these differences may stem from variations in urban network 

development principles. Studies on road network evolution indicate that urbanisation involves 

two predominant processes—densification and exploration—which dominate at different 

stages of city development (Gudmundsson and Mohajeri, 2013, Mohajeri and Gudmundsson, 

2014, Strano et al., 2012). Over time, urban networks tend to mature and transition towards 

more structured grid patterns (Strano et al., 2012). However, pipeline networks face additional 

constraints, leading to greater variability in their construction. Ozanne (2011) notes that the 

primary determinant in pipeline network construction is the shortest path between origin and 

destination, as cost considerations play a crucial role. However, additional factors such as land 

ownership and environmental constraints (e.g. terrain and soil conditions) must also be 

accounted for. These factors are inherently linked to urban morphology. First, population 

distribution influences pipeline terminal locations, and population patterns are recognised as 

key drivers of urban expansion (Achibet et al., 2014), which in turn affects the distribution and 

density of buildings (Prieto-Curiel et al., 2023). Second, slums often exhibit insecure land tenure 

and tend to develop in steep or marginal areas (McCartney and Krishnamurthy, 2018). This is 

particularly evident in Kigali, where, due to its topography, slums are predominantly located on 

steep hillsides and marshy lowlands (Manirakiza et al., 2019).  

Spatially, there are differences in the centrality distribution of infrastructure networks between 

Kisumu and Kigali. The degree maps (Figures 4.12 and 4.13) indicate two possible scenarios: 

Densely developed areas with intensive infrastructure: 

The co-location of high-degree edges is likely prevalent in areas characterised by a 

concentration of infrastructure. These regions typically exhibit significant urban development 

and a high demand for multiple types of infrastructure. 

Critical arterials of urban connectivity: 

Co-located high-degree edges may align with key urban arteries, which serve as major 

transportation or utility routes. These critical corridors play a fundamental role in the overall 

functionality and connectivity of the city. 

Similarly, the colocation analysis of betweenness centrality for roads and pipelines reveals 

notable differences. One contributing factor is the disparity in the spatial coverage of road and 

pipeline networks, meaning that well-developed pipeline systems do not necessarily 

correspond to the communities connected by road networks. This suggests a potential 

imbalance in the development of road and pipeline infrastructure in both cities, which 

correlates with neighbourhood distribution. In Kigali, certain high-betweenness pipelines 

overlap with roads exhibiting diverse betweenness values. Conversely, the absence of 
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correlation between road network closeness centrality and sewer networks indicates a lack of 

significant planning coordination between these two systems. However, water pipelines exhibit 

an approximately linear relationship with road network closeness in both cities, implying that 

roads with high closeness centrality tend to overlap with water pipelines of similarly high 

closeness. This finding underscores the influence of urban accessibility on the spatial 

organisation of essential infrastructure. 

In contemporary urban network research, substantial attention has been given to infrastructure 

studies. However, there remains a gap in understanding the relationship between urban 

morphology and infrastructure beyond road networks, particularly in the context of SSA 

urbanisation. This study contributes to filling gap by employing graph analysis of urban road 

networks to characterise SSA urban morphology. The study first proposes a workflow to address 

data quality issues posed by data deficiencies in SSA countries, including strategies for topology 

correction, graph smoothing, and simplification. Using methods such as D-measure and co-

location analysis, the study provides empirical evidence on how the unique urban forms of SSA 

cities influence infrastructure development. Additionally, this analysis offers insights into the 

issue of urban scaling, which concerns the variation of urban indicators across cities of different 

sizes (Pumain and Guerois, 2004). The findings reveal a relatively stable relationship between 

road and pipeline networks in Kisumu and Kigali, despite their differing scales. This observation 

aligns with previous research on human interaction networks(Schläpfer et al., 2014). It is 

important to note that, beyond the D-measure used in this study, various approaches exist for 

assessing graph similarity (i.e., graph isomorphism). For instance, information-theoretic 

methods define graph similarity through information compression (Coupette and Vreeken, 

2021). Meanwhile, Graph Neural Network (GNN) (Gori et al., 2005) and Graph Convolutional 

Network (GCN) approaches also assess graph similarity in the graph signal processing way, a 

framework that treats network features as signals (Dong et al., 2020, Ma et al., 2021, Ortega et 

al., 2018). Furthermore, Kolowa et al. (2024) highlight the association between unplanned, low-

density sprawl—a characteristic of SSA cities—and street accessibility. By evaluating network 

connectivity, they find that the presence of informal settlements does not always correlate with 

urban sprawl in SSA. This suggests that assessing the impact of slums, a defining feature of SSA 

urbanisation, on pipeline networks requires further investigation. This topic is explored in 

greater depth in the next chapter. 

4.6 Conclusion 

Urban morphology has a significant role in shaping infrastructure networks in SSA cities. 

Through graph analysis, the study demonstrate the structural relationships between road and 
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pipeline networks in Kisumu and Kigali, revealing the characteristics of infrastructure in SSA 

cities and their relationship with urban morphology. The application of graph metrics provides 

empirical evidence on how SSA's unique urban forms influence infrastructure distribution. 

Furthermore, the results of D-measure and colocation analysis indicate that while road and 

pipeline networks exhibit a relatively stable relationship across cities of different scales, 

variations in their connectivity and coverage suggest imbalances in infrastructure development.
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Chapter 5 An analysis of pipeline network topology 

and urban environment in Kisumu and Kigali 

This chapter forms the basis of a paper accepted for publication as: 

‘Graph and Community Detection Analysis of Pipeline Network Configuration and 

Urban Morphology in Kisumu and Kigali,’ accepted for publication in the Journal of 

Water Resources Planning and Management. 

The Sustainable Development Goal (SDG) 6 incorporates safely managed drinking water as an 

indicator, defined as on-premise improved water sources, including piped water (WHO/UNICEF, 

2018). Achieving this goal necessitates specific requirements for the infrastructure of urban 

piped systems. As urban populations grow, service demand often outpaces infrastructure 

development (Adams et al., 2019). This disparity makes it challenging for formal water services 

to reach all residents, deviating from the ideal of networked cities. In informal settlements, two 

distinct piped water configurations exist. On one hand, the adverse locational factors of 

informal settlements, coupled with a lack of spatial planning, lead to chaotic pipe layouts, 

which increase the difficulties of water provision, management, and maintenance (as discussed 

in Section 2.3). On the other hand, some governments have implemented interventions to 

enhance water services and pipeline infrastructure within slums. To assess the pipeline 

characteristics of slums in the contexts of Kisumu and Kigali, this research analyses two 

primary factors: 1. The impact of slum conditions on piped water supply, and 2. The effects of 

measures taken by Kisumu on pipeline configurations. 

5.1 Motivation and objectives 

Urbanisation in Sub-Saharan Africa (SSA) is largely attributed to the expansion of informal 

settlements, which often lack spatial planning and are located in disadvantaged areas. Previous 

research on SDG 11 (concerning the upgrading of slums) shows that the unplanned dense 

buildings within slums create a particular pattern of road networks, affecting residents' spatial 

access to services (Brelsford et al., 2018). For similar reasons to other services, the limited 

space within slums also constrains pipeline laying for water and sanitation. Pipelines in slums, 

therefore, are expected to have distinctive morphology, which impacts the delivery of water 

services, as discussed in the literature review (Section 2.3).  

Given the obstacles faced by governments in improving urban water supply, a range of 

alternative service delivery models has been proposed for SSA, with community-based 

paradigms gaining attention in recent years (Adams et al., 2019, Dos Santos et al., 2017). In the 
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case of delegated management models (DMM), for instance, this policy has been implemented 

in the slums of some cities, assigning the construction and operation of household connections 

to small-scale water providers (individuals or local entrepreneurs closely linked to the 

community). This approach is perceived as a potential solution for delivering sustainable water 

and sanitation services in slums (see Section 2.2). One of the anticipated improvements 

brought by these small-scale water providers is the enhancement of the spatial configuration of 

pipelines (World Bank, 2009). The distribution of pipelines significantly impacts the delivery of 

water services; however, the spatial configuration of pipelines in slums has not been studied 

previously.  

As demonstrated in the previous chapter, graph methods offer advantages in analysing urban 

networks. However, a few studies have applied graph theory to the field of water, with most of 

these located in the USA (Hwang and Lansey, 2017, Porse and Lund, 2016, Yazdani and Jeffrey, 

2010), the UK (Yazdani and Jeffrey, 2012a, Yazdani and Jeffrey, 2012b), Italy (Pagano et al., 2019) 

and other developed countries. Research on water pipeline networks in LMICs remains sparse. 

Existing research has not explored the use of graph-theoretic methods to analyse the impact of 

urban communities or policies on pipeline networks. This chapter therefore aims to:  

1. Develop a workflow for evaluating the connectivity and resilience of pipeline networks 

via graph theory metrics within two data-sparse case study cities in SSA, namely Kisumu 

and Kigali. 

2. Assess the utility of the InfoMap algorithm for detecting pipeline communities and 

informing urban water service planning in the study areas. 

3. Interpret the differences in pipeline distribution within urban areas through graph 

analysis and community detection outputs, taking into account the DMM and 

distribution of slums.   

5.2 Overview of methodology 

The analysis process was divided into three parts (Figure 5.1), utilizing the primal graphs of 

water pipeline networks in Kisumu and Kigali constructed in the previous chapter. Since there 

was no specific analytical objective concerning edge relationships, the study retained the 

primal graph format in this chapter without performing further dual mapping, as this facilitates 

the interpretation of metrics. Additionally, the global graph metrics were applied to the primal 

graphs, and the distribution of their centrality metrics was summarised using commonly 

employed statistical distributions. Finally, the Infomap algorithm (Rosvall et al., 2009) was used 

to identify discrete communities within the Kisumu and Kigali pipeline networks based on their 

topology. The distribution of detected communities was then interpreted based on the pattern 



Chapter 5 

126 

of slums. The communities in Kisumu were also examined based on the pipelines managed 

under DMM. In the first two steps, the networks of Kigali and Kisumu were treated as 

unweighted and undirected. Considering that the continuity of water supply is one of the 

standards defining safely managed water (“available when needed”) as stated by WHO/UNICEF 

(2018), vulnerability weights were assigned to both sets of pipelines during the community 

detection step. The following sections will sequentially address the delineation of slums and 

pipelines managed under DMM, as well as the data preparation, analysis, and community 

detection steps. 

 
Figure 5.1 Flowchart of the major stages in graph analysis and community detection. Pipeline 

networks from Kisumu and Kigali were pre-processed for graph theory analysis and 

weighted for community detection. The community similarity test involved 

comparing the pipeline communities of Kigali and Kisumu with the Million 

Neighborhoods map, as well as a separate comparison of Kisumu's communities 

with the DMM information. 

5.3 Data preparation 

The pipeline networks of Kisumu and Kigali were selected to address the research objectives. To 

analyse the impact of slums and water management measures on these networks, it was first 

necessary to delineate both the pipelines within slums and those managed under the delegated 

management model. Additionally, considering concerns about network vulnerability, the 

material and diameter attributes of the pipelines were weighted and imputed for community 

detection. 

5.3.1 Delineation of slums 

As described in Chapter 4, Kisumu’s water pipeline network is sourced from KIWASCO, while 

Kigali’s network originates from the GIS for Water project. Both network data were topologically 

corrected and constructed to be converted into a simple primal graph prior to subsequent 

analysis. 
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To compare the morphological differences between pipelines in slums and other areas, it was 

first necessary to extract the pipelines within slum regions. Identifying slum areas is often 

challenging, with different studies adopting various approaches (Kuffer et al., 2016). In this 

study, the Million Neighborhoods map (Brelsford et al., 2018) provided under licence by the 

University of Chicago's Mansueto Institute for Urban Innovation was used (see Figures 5.2 and 

5.3). Brelsford et al. (2018)’s Million Neighborhoods map assumes that topology, or spatial 

connectivity rather than geometry, determines the city's form. Since slums are characterised by 

unplanned spatial layouts, it is difficult for people living in slums to access services and 

infrastructure. Therefore, slums can be recognized through their access networks (roads, 

streets, and paths). The Million Neighborhoods map uses a metric called block complexity to 

measure the connectedness of a city block. In a dual-mapped graph where the internal parcels 

are represented by nodes, block complexity refers to the number of iterations required to 

continuously derive the dual of the graph until it converges into a trivial tree graph, reflecting the 

difficulty of travelling inside the block. As a result, the Million Neighborhoods map can be 

considered a slum map representing the complexity of the neighbourhoods (Chen et al., 2022b). 

Areas with higher complexity mean that street access from an area’s buildings is more difficult, 

a characteristic of slums. In Figure 5.2, areas with high block complexity in Kisumu generally 

decrease from south to north, while Figure 5.3 shows that in Kigali, they decrease from west to 

east. Additionally, a slum distribution map for Kisumu from the United Nations (UN-Habitat, 

2005) and a land use map from the Kigali master plan (City of Kigali, 2020a) were used to help 

identify slums in Kisumu and Kigali. 
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Figure 5.2 The million neighborhoods map of Kisumu, constructed based on the urban 

footprint of 2020. A higher value for a city block indicates the higher probability of 

that block being a slum. Data sources: Million Neighborhoods map, 2023 version 

(Brelsford et al., 2018). 
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Figure 5.3 The million neighborhoods map of Kigali, constructed based on the urban footprint 

of 2020. A higher value for a city block indicates the higher probability of that block 

being a slum. Data sources: Million Neighborhoods map, 2023 version (Brelsford et 

al., 2018). 

To further assess the impact of water management measures on the pipeline network, pipelines 

were classified based on their management model. Among the two study areas, DMM is 

exclusively implemented in Kisumu, where it is referenced in the attributes under the 'remarks' 

field. Kisumu pipelines with the following remarks are managed under DMM: “DMM”, “Managed 

by DMM”, “Mauna DMM”, “Nyawita Residence DMM Network”, “Pamoja Trust Funded”, 

“Obukase DMM Network”. These pipelines were delineated for the community similarity 

analysis. Figure 5.4 shows that a considerable portion of pipelines in slum and rural areas is 

currently managed under DMM. 
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Figure 5.4 Pipelines managed under DMM in Kisumu City, highlighted in green. The inset maps display DMM pipelines located within two neighbourhoods. 
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5.3.2 Assignment and imputation of weights for Community Detection 

Weights can be regarded as additional information about the network. Incorporating weights 

into graph analysis can yield more accurate assessments of the network, whether in simulating 

water flow (Scibetta et al., 2013) or evaluating the vulnerability of water pipelines (Delaunois et 

al., 2014, Kleiner and Rajani, 2001, Mavin, 1996, Wilson, 2010). Furthermore, the use of weights 

in community detection provides additional insights (Bramson, 2022, Haghbayan et al., 2021, 

Law et al., 2019). By incorporating weights into community detection, nodes with similar 

weights tend to cluster in the same community. Considering SDGs, safely managed water 

services should be available when needed and thus free from the interruptions arising from the 

breakage of vulnerable pipelines. Therefore, in community detection, the vulnerability of the 

pipeline material was used to identify communities with similar levels of vulnerability (either 

structurally or materially) (Figure 5.1).   

In a water network, the weights can be physical properties such as geographic distance and 

pipe diameter or abstract properties such as nodal demand or construction cost (Yazdani and 

Jeffrey, 2012b). However, the required information for commonly used vulnerability models 

(Almheiri et al., 2020) cannot be found in the attribute tables of Kisumu and Kigali’s pipelines. 

The attribute fields of Kisumu’s pipeline network include diameter, length, roughness, minor 

loss (i.e., energy loss due to water flow through pipeline components), service status, pipe 

material, zone, date mapped, installation date, and network type (distribution mains or 

transmission mains). Additionally, the 'remarks' field captures operational status, operator 

information, and associated risks. The attributes of Kigali’s pipeline network are similar to those 

of Kisumu but also include the names of pipeline operators. From the statistical analysis of the 

attributes of the corrected and modelled pipeline networks, it is evident that key attributes 

related to pipeline conditions, such as roughness, minor loss, and nominal pressure, are either 

null or contain questionable values across both networks. Statistics on the attributes that are 

relatively well-preserved in both networks are presented in Table 5.1. 
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Table 5.1 Statistics on selected properties of case study water pipelines following topological 

correction 
 

Kisumu Kigali 
Number of pipelines 4,293 14,172 
Average length (m) 123.5842 120.6493 
Average diameter 
(mm) 

60.9457 101.34189  

Material (percentage 
of total number) 

PVC (84.25%) PVC (71.81%) 

GI (6.80%) GI (8.19%) 

Steel (3.61%) Steel (1.40%) 

PPR (3.07%) PPR (0.08%) 

AC (1.96%) Iron (1.55%) 

HDPE (0.30%) HDPE (11.56%) 

DI (3.51%) 
Missing data 
(1.91%) 

Date mapped/year of 
installation 
(years/percentage of 
total number) 

2014 (24.64%) 1890-2022 
2015 (14.98%) 
2016 (15.70%) 
2017 (10.34%) 
2018 (0.63%) 
Missing data 
(33.71%) 

Missing data 
（47.40%） 

DMM (percentage of 
total number) 

39.00% N/A 

*Note: Missing diameter values are not included in the statistical calculations. 

Based on the statistical results, the material and diameter of the pipelines are the two attributes 

with the highest completeness. This study, therefore, adopted the index table proposed by 

Marzouk et al. (2015). The weight index can be used for the evaluation of the pipeline 

vulnerability even in the absence of detailed data. They estimated the factors that play a 

significant role in the pipeline's deterioration based on feedback from water experts and 

calculated the weights for different factors. The weight index for the study pipeline networks 

was obtained, as shown in Table 5.2. 
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Table 5.2 Factor weights and grading scales for creating network weights reflecting pipeline 

vulnerability to breakages (derived from Marzouk et al. (2015)) 

Factor Factor weight Factor grade scales (Scores)  
    1 2 3 4 5 

Pipe material type 0.05 PVC Steel 
Ductile 
Iron 

Cast 
Iron Asbestos 

Pipe diamete (mm) 0.09 >300 300 200 150 ≤ 100  

Table 5.2 presents two key factors for assessing the condition of pipelines: material and 

diameter, with vulnerability weights of 0.05 and 0.09, respectively, among a total of 20 factors. 

The grade scale corresponds to the contribution of different materials and diameters to pipeline 

deterioration, where 1 represents minimal contribution, and 5 represents the maximum. Based 

on the provided index, the weights for the pipelines in Kisumu and Kigali can be calculated. 

The pipelines in both cities are mainly made of plastic pipelines, i.e. PVC (Polyvinyl Chloride), 

HDPE (High-density Polyethylene), and PPR (Polypropylene Random Copolymer) pipelines. The 

materials used in the Kisumu network are PVC, Steel, GI (Galvanized Iron), AC (Asbestos-

cement), PPR, HDPE (Table 5.1). PVC, PPR, and HDPE were classified as types of plastic, 

whereas GI, despite its name, is often made from mild steel sheets and was therefore classified 

as steel. The materials used in Kigali's pipelines are similar to those in Kisumu's network, 

including DI (Ductile Iron), Iron, GI, PVC, PPR and HDPE (Table 5.1). Table 5.1 shows that the 

average pipeline lengths in Kisumu and Kigali are similar, but Kisumu has a smaller average 

diameter. Subsequently, the two grade scales for each pipeline are multiplied by their 

corresponding factor weights and summed to obtain the vulnerability weight for that pipeline, as 

suggested by Marzouk et al. (2015). 

Although the material and diameter are the two most complete attributes of Kisumu and Kigali 

pipelines, there are still gaps in the Kigali network, with 138 missing diameter records and 271 

missing material records. Due to the small number of pipelines with missing properties, a 

multiple imputation method, the sequential imputation of missing values (IMPSEQ) (Verboven et 

al., 2007a) was used to impute both fields. This method is considered the best approach for 

imputing missing data in the water distribution system (Kabir et al., 2020, Osman et al., 2018). 

The basic principle of IMPSEQ, similar to other multiple interpolation methods, is to impute 

results via iteration. The IMPSEQ method treats the missing values in the pipeline networks as 

Missing at Random (MAR), a prerequisite for many imputation techniques (Lin and Tsai, 2020, 

Newman, 2014, Woods et al., 2024). In other words, it estimates missing data values based on 

observed variables. The IMPSEQ method divides the dataset into missing matrices 𝐷𝑚𝑖𝑠𝑠 and 

complete matrices 𝐷𝑐𝑜𝑚, and sorts the variables among 𝐷𝑚𝑖𝑠𝑠 based on the number of missing 
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values. The variables with the least missing values are estimated first by minimising the 

determinant of the covariance matrix of 𝐷𝑚𝑖𝑠𝑠, where (Verboven et al., 2007b) 

𝑐𝑜𝑣(𝐷𝑚𝑖𝑠𝑠) =
𝑡 − 1

𝑡
𝑐𝑜𝑣(𝐷𝑐𝑜𝑚) +

1

𝑡
(𝐷𝑚𝑖𝑠𝑠  −  𝐷𝑐𝑜𝑚̅̅ ̅̅ ̅̅ ̅)(𝐷𝑚𝑖𝑠𝑠  − 𝐷𝑐𝑜𝑚̅̅ ̅̅ ̅̅ ̅)′ 

And t is the number of observed values，𝐷𝑐𝑜𝑚̅̅ ̅̅ ̅̅ ̅ is the average of the observed values. 

The above steps are repeated until the imputation of the dataset is complete. 

5.4 Topological analysis 

In this chapter, the evaluation of the pipeline networks in Kisumu and Kigali is primarily based 

on their graph metrics and community distribution (Figure 5.1). The former focuses on the 

overall network structure, while the latter examines the organization of nodes within the 

network. The same graph metrics as in the previous chapter were used, but, due to the focus on 

urban features, dual mapping was not applied. Further exploration of these results, including 

geospatial re-mapping, circuit extraction, and graph similarity analysis, can reveal how the 

pipelines perform and function in the real world. 

Due to the lack of flow data, hydraulic records and empirical data, Kisumu and Kigali's networks 

were treated as unweighted and undirected in graph analysis (see section 4.2.1). The metrics 

were calculated using the networkx (Hagberg et al., 2008) and igraph libraries (Csardi and 

Nepusz, 2006).  

5.4.1 Extraction of pipeline circuits 

In addition to evaluating the overall performance of the network, some of the graph theory 

metrics listed in Section 4.3.1 can also be used to assess the importance of individual pipelines 

within the network. Urban pipeline networks consist of transmission and distribution systems, 

with the former connecting water sources to the distribution systems and the latter supplying 

water to individual users. From a topological perspective, the branches of the pipeline network 

that do not contain loops are called trees (Deuerlein, 2008). In a tree graph, there is only one 

path between any two nodes, and subgraphs of the tree are also trees, making it possible to 

identify them through graph generalisation. As mentioned in Section 2.4.1, several 

generalisation methods exist. Here, the threshold-based approach was applied to generalise 

the graph by iteratively removing nodes with a degree of 1, along with their connected edges 

(Zhou et al., 2010), which are also called leaves (Mair et al., 2017). This method has been 

applied in simplifying both pipeline and road networks (Hwang and Lansey, 2017, Maschler and 

Savic, 1999, Pung et al., 2022). 
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Additionally, edge betweenness was used to highlight important edges in the network. The 

definition of edge betweenness centrality is similar to that of node betweenness centrality—it 

represents the number of shortest paths passing through a given edge. In infrastructure 

networks, edges with high betweenness centrality are critical high-capacity routes (Giustolisi et 

al., 2019, Yamaoka et al., 2021). Therefore, pipelines with high betweenness centrality were 

highlighted to represent the key topological structure of the network. 

5.4.2 Community detection 

5.4.2.1 Selection of algorithms 

The algorithm selected for community detection should exhibit high accuracy, meaning that the 

output partitions should closely align with real-world communities. However, algorithms 

behave differently between networks, so there are no universal guidelines for selecting 

algorithms (Ghasemian et al., 2019, McCarthy et al., 2019, Peel et al., 2017). In the context of 

this chapter, where the community structure of the real network is unknown, based on the 

literature review (Sections 2.4.2 and 2.4.3), the Infomap algorithm was chosen for the following 

reasons: 

1. Breadth and depth of algorithm use: InfoMap has been applied to a wide range of 

application scenarios(Farage et al., 2021, Hong and Yao, 2019, Hu et al., 2021, Mangioni 

et al., 2020, Velden et al., 2017), generating algorithmic insights, improvements and 

robust software for its implementation (Smiljanić et al., 2023). 

2. Performance: Lancichinetti and Fortunato (2009) consider Infomap to be one of the 

best performing algorithms. Agreste et al. (2017) also point out that “Infomap algorithm 

showcased the best trade-off between accuracy and computational performance.” The 

comparison by Wickramasinghe and Muthukumarana (2022) also indicates that Infomap 

performs well in sparse networks. Given that infrastructure networks are often sparse, 

this makes the Infomap algorithm a suitable choice for the analysis. 

3. Resolution of output detected communities: Infomap has the advantage of resolution. 

Fortunato and Barthélemy (2007) indicate that many modularity-based algorithms suffer 

from an inherent resolution problem in that they cannot identify communities smaller 

than a certain size. Their minimum resolvable community size depends on the total size 

of the network and the degree of interconnection of the modules. This is because 

modularity-based algorithms (For example, the Newman-Girvan modularity described in 

the literature review 2.4.2) work by comparing network clusters with those in a random 

network. As the network size increases, the expected number of connections between 

clusters in the random network decreases. Therefore, when connections exist in the 
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clusters of a large-scale network, they will be treated as strong connections, resulting in 

two communities with different characteristics being merged. In contrast, Kawamoto 

and Rosvall (2015) demonstrate that Infomap performs well in terms of resolution. 

4. Hierarchical community classification: Real-world networks are often hierarchical, 

and Infomap can detect their hierarchical structure. In large systems, there is often a 

hierarchical relationship between communities, with smaller communities being part of 

communities at a higher level. This structure can improve the efficiency and stability of 

the system. Therefore, identifying the hierarchical structure is essential to 

understanding the network's performance. Many other algorithms do not have this 

capability (Lancichinetti et al., 2011). 

This study used the multi-level method of Infomap. If a community is still subdividable, 

according to the map equation, the multi-level Infomap algorithm will continue to partition the 

network until all communities are indivisible, thus dividing the network into various levels of 

communities. Due to Infomap being a heuristic algorithm, the trial number was set to 50 to 

obtain a best-performing partition (with the shortest description length) from the 50 

calculations. In Infomap, Markov time refers to the coding frequency of the random walker’s 

path, thus controlling the expected community size. The Markov time was set to 1, as Poorthuis 

(2018) suggests that a Markov time in the range of 0.6 to 1.1 helps to detect meaningful city 

structure. Setting it to 1 means that the random walker’s position is encoded at each step. In 

addition, unweighted graphs were used to evaluate the impact of incorporating vulnerability 

index values as weights into the InfoMap workflow. 

5.4.2.2 Validation of the community’s structure 

Infomap outputs communities at different levels, and only some are meaningful in a real-world 

context. Therefore, without prior knowledge of true community structure, it is important to find 

reliable methods to evaluate the output of the community detection algorithm (Signorelli and 

Cutillo, 2022). The Community Structure Validation (CSV) index proposed by Signorelli and 

Cutillo (2022) was used in this study to test the structural strength of the output communities. 

This approach follows similar principles to the modularity and Order Statistics Local 

Optimization Methods (OSLOM) (Lancichinetti et al., 2011) in assuming that the density of 

connections within a community is higher than the density of connections between 

communities. It compares the observed connections with a hypergeometric null model, as 

proposed by Lancichinetti et al. (2010). For undirected networks, the hypergeometric null model 

is defined as (Signorelli et al., 2016): 

𝑁𝐵~ℎ𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚(𝑛 = 𝑑𝐴, 𝐾 = 𝑑𝐵, 𝑁 = 𝑑𝑉)  
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Where V is the node set of a graph, whilst A and B are node subsets A and B. 𝑑𝐴, 𝑑𝐵, 𝑑𝑉 denote 

the total degrees of sets A, B and V. 

CSV evaluates two types of hypotheses for each community pair 𝐶𝑟and 𝐶𝑠: 

Internal density of a community 𝐶𝑟 is tested by: 𝐻0: 𝜇𝑟𝑟 = 𝜇𝑟𝑟0  vs. 𝐻1: 𝜇𝑟𝑟 > 𝜇𝑟𝑟0  

where 𝜇𝑟𝑟  denotes the expected number of links between nodes in 𝐶𝑟, and 𝜇𝑟𝑟0  is the 

corresponding null expectation from the hypergeometric model. 

External sparsity between communities 𝐶𝑟and 𝐶𝑠 is tested by:  𝐻0: 𝜇𝑟𝑠 = 𝜇𝑟𝑠0  vs. 𝐻1: 𝜇𝑟𝑠 < 𝜇𝑟𝑠0  

where 𝜇𝑟𝑠 denotes the expected number of links between nodes in sets 𝐶𝑟and 𝐶𝑠, and 𝜇𝑟𝑠0  is the 

corresponding null expectation from the hypergeometric model. 

If both null hypotheses are rejected in large proportions for a given type I error α, it upholds the 

idea that there is a clear community structure in the network. In other words, given the 

significance level, the CSV index specifies to what extent the structure of the network conforms 

to the definition of a community based on statistics describing the connections in a network. 

The CSV ranges from 0 to 1, and the closer the value is to 1, the clearer the community 

structure. In addition, Signorelli and Cutillo (2022) introduced the weighted CSV, which weights 

the CSV based on the strength of rejecting the null hypothesis. Like the original CSV, it ranges 

from 0 to 1. Both CSVs were applied in this study. The CSVs are influenced by the size of the 

network, and given the size of the Kisumu and Kigali networks, their CSVs results should be 

reliable according to Signorelli and Cutillo (2022)’s tests. The code is available from 

https://github.com/mirkosignorelli/csv. 

5.4.2.3 Partition similarity 

The interpretation of the output of community detection can be seen as an extension of Section 

5.4.2.2. In this context, the DMM attribute and the million neighbourhoods map (complexity 

index) serve as ground truth partitions. Measuring the distance between these partitions can 

further uncover the similarity between network communities and the real-world environment 

(Bramson, 2022, Law et al., 2019). According to Fortunato and Hric (2016), techniques for 

measuring the distance between two partitions can be categorised into pair counting, cluster 

matching and information theory. Commonly used metrics include the fraction of correctly 

detected vertices, adjusted Rand index (ARI), adjusted mutual information (AMI), and 

normalised mutual information (NMI) (Danon et al., 2005, Girvan and Newman, 2002, Liu et al., 

2019, Vinh et al., 2009). 

https://github.com/mirkosignorelli/csv
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In this chapter, the metrics used to measure the distance between partitions are ARI and AMI 

(Vinh et al., 2009). The Rand index measures the overlap of communities to indicate the 

similarity between two partitions, while mutual information assesses the entropy of two 

discrete variables (partitions) (Liu et al., 2019). In other words, the mutual information measures 

the information needed to infer a partition given the other partition (Dao et al., 2020). The term 

'adjusted' refers to the adjustment for chance. In the test of the Rand index and mutual 

information, Vinh et al. (2009) found that an increase in the number of communities in a 

partition leads to higher Rand index and mutual information values that are independent of 

ground truth. ARI and AMI correct this bias, ensuring that the ARI and AMI of randomly generated 

partitions are fixed given ground truth. In other words, the accuracy of the two metrics is not 

affected by the number of communities. Both metrics range from 0 to 1, with 1 meaning that the 

two partitions are identical and 0 meaning that the similarity between the two is the same as 

that of any two random graphs. 

In this chapter, the blocks in the Million Neighborhoods map, whose boundaries are from Maxar 

Technologies Inc and Ecopia.AI, were taken as communities. These blocks were dissolved 

based on the complexity index classification of Brelsford et al. (2018), and the IDs of the 

dissolved blocks were given to the pipeline network nodes that spatially overlapped with them 

to form a new partition. The partitions were further refined in the analysis of the impact of DMM 

on the pipeline network, where nodes within the same dissolved community that belong and do 

not belong to the DMM pipeline are further partitioned into different communities. In other 

words, partitions related to slum distribution were generated based on the Million 

Neighborhoods Map, and the Kisumu partition was refined according to DMM information by 

creating additional communities. Following division, the average degree, betweenness, and 

closeness centrality of pipeline nodes within areas of varying block complexity and within DMM 

areas were computed as an initial comparison of communities. Then, both sets of partitions 

were then used to measure the relevance of pipeline topology to the distribution of slums and 

DMM areas using ARI and AMI.  

5.5 Results 

In the results section, the global performance of the water networks was first presented by 

evaluating graph metrics of the Kisumu and Kigali primal graphs. The subsequent section 

focuses on the centrality measures derived from these metrics and interprets their distribution 

in relation to the characteristics of each city. As one of the most widely recognised graph 

metrics in network analysis, centrality has been demonstrated to provide insights into the 

configuration of key pipelines that are critical for transmission. The differences in centrality 
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performance between Kisumu and Kigali were explored. The final parts analyse the community 

structure of the study area networks. Communities, representing tightly connected groups 

within the network, often correspond to real-world regional characteristics. Therefore, this 

section examines the relationship between slum distribution and network communities within 

the study areas and further interprets the connection between Kisumu’s pipeline communities 

and the DMM. 

5.5.1 Graph analysis for Kisumu versus Kigali 

The pipeline networks of Kisumu and Kigali were simplified through graph generalisation and 

pipelines with high edge betweenness centrality were highlighted in Figures 5.5 and 5.6. The 

simplified pipeline networks in both cities form circuits surrounding vital urban areas. In 

Kisumu, the simplified pipelines are predominantly located in the southern part of the city 

(Figure 5.5), whereas in Kigali, the density of major pipelines decreases from west to east (Figure 

5.6). The overlap of high centrality pipelines with the simplified network suggests that circuit 

pipelines play a crucial transmission role and thus have higher importance. Furthermore, the 

maps show differences in the pipeline layout within slums/unplanned settlements between 

Kisumu and Kigali. Kisumu slums have more tree-like structures that are excluded from the 

simplified map, while Kigali has a more connected network in slums.  
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Figure 5.5 Maps of simplified pipeline (A) and edge betweenness centrality distribution (B) in 

Kisumu. Both distributions highlight critical pipelines from the perspectives of degree and 

betweenness. 
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Figure 5.6 Maps of simplified pipeline (A) and edge betweenness centrality distribution (B) in 

Kigali. Both distributions highlight critical pipelines from the perspectives of degree and 

betweenness. 

Table 5.3 provides additional key properties of the pipeline networks. Firstly, it can be seen from 

the number of nodes and edges that after smoothing and fixing the topology, Kigali has 

a larger network size than Kisumu. Nevertheless, despite differences in network scale, most 

graph metrics between the two cities show only minor differences, demonstrating the 

robustness of the graph metrics under various city contexts. 
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Table 5.3 Graph attributes and measurements for the water networks 

  Kisumu Kigali 
Nodes 3,911 6,254 
Edges 4,076 6,721 
Average node degree 2.0844 2.1493 
Normalized betweenness centrality 0.0100 0.0060 
Normalized closeness centrality 0.0264 0.0267 
Cluster coefficient 0.0054 0.0143 
Meshedness coefficient 0.0212 0.0374 
Average shortest path length 40.0610 38.7395 
Algebraic connectivity 0.0001 0.0001 
Spectral gap 0.2715 0.0010 

The average node degree hardly varies with the network size. According to Giudicianni et al. 

(2018), it ranges from 2 to 4.5 in water distribution networks, with a lower value representing 

less robustness. The table shows that both have relatively low average node degrees, 

suggesting the low redundancy characteristic of water systems, as Wéber et al. (2020) 

demonstrated, and Kisumu's network is more sparsely connected (Yu et al., 2024).  

The average shortest path length and clustering coefficient are used to assess the orderliness of 

a network. The average shortest path length measures the steps required to link nodes across 

the network. At the same time, the clustering coefficient indicates the number of loops or faces 

of a network, reflecting how tightly nodes are connected. Ordered networks typically score high 

on both metrics. Kigali's clustering coefficient and meshedness are considerably higher than 

Kisumu's. Combined with the slightly larger degree and smaller average shortest path length, 

metrics suggest that the Kigali network is connected more efficiently. This aligns with Kigali's 

development emphasis on planning for urban infrastructure (see section 3.2). Additionally, the 

clustering coefficient and average shortest path are indicators of small-world networks, which 

are widely observed in real-world systems and characterized by dense local clusters connected 

by few inter-cluster links (Schnettler, 2009). Kigali's higher clustering coefficient and shorter 

average path length suggest that its network is more likely to exhibit small worldliness 

compared to Kisumu. However, specific metrics are required to formally identify a small-world 

network (Neal, 2018), so this conclusion remains tentative. 

Spectral gap and algebraic connectivity are low in both networks, which is expected due to the 

inherent sparsity of infrastructure systems. Spectral gap indicates how the network is 

connected. The larger the network, the smaller spectral gap generally is, as small spectral gap 

values suggest more critical bottlenecks or bridges that can split the network into two or more 

isolated parts (Yazdani and Jeffrey, 2012a). Based on this metric, it can be concluded that Kigali 

lacks long pipelines connecting distant regions, to which network size and terrain may 

contribute. However, Kigali surprisingly has greater algebraic connectivity than Kisumu, 
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meaning network bisection is more challenging in Kigali (Zeng et al., 2017). It also implies that 

there are no clear high-density and low-density clusters in Kigali, or that its pipeline network has 

more evenly distributed clusters, as evidenced by the low average shortest path length.  

5.5.1.1 Network centrality 

Degree, betweenness, and closeness are three commonly used network metrics for assessing 

edge importance, making it essential to measure them further. Although it is not possible to use 

the distribution to describe the pattern of degrees due to the small range, it can be noted that 

both networks tend to be right-skewed. As illustrated in Figure 5.7, nodes with a degree of 2 in 

both networks have a low frequency, primarily due to the removal of pseudo-nodes during graph 

smoothing. Additionally, Figure 5.7 indicates that degree distributions in the Kisumu and Kigali 

networks exhibit a high frequency of nodes with degrees 1 and 3, which correspond to endpoints 

and the T-junction of pipelines respectively. In other words, the networks may have many tree-

like branch pipelines.   

 

Figure 5.7 Degree distribution of the Kisumu and Kigali networks. 

Figures 5.8 and 5.9 show similar distributions for betweenness and closeness centrality, which 

are well-represented by Weibull and lognormal distributions. This finding is consistent with the 

reported centrality distribution of roads in Hong Kong (Lan et al., 2022). However, the functions 

of the two networks have subtle differences. The Weibull function better fits Kisumu's 

betweenness and closeness with low Akaike information criterion (AIC) and Bayes information 
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criterion (BIC). In contrast, the lognormal distribution performs better for Kigali's centrality 

data. This suggests that, for both networks, the betweenness and closeness are heavy-tailed, 

and there are "backbone" pipelines with high centralities in the networks (Fornito et al., 2016a).  

 

 

Figure 5.8 Betweenness distribution of the Kisumu and Kigali networks. 
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Figure 5.9 Closeness distribution of the Kisumu and Kigali networks. 

The centrality maps (Figures 5.10 and 5.11) show the difference between betweenness and 

closeness in the two study areas more clearly. In both Kigali and Kisumu, nodes with high 

betweenness centrality are the minority and are distributed regularly, the same as the 

distribution shown in Figure 5.8. In Kisumu, high betweenness nodes are distributed along the 

direction of its urban sprawl (County of Kisumu, 2013). If compared with the Million 

Neighborhoods map, it can be observed that these points are also distributed at the boundaries 

of informal and formal areas, where pipelines and buildings form distinct neighbourhood 

boundaries. In Kigali, the high betweenness pipelines roughly form a Y-shape, which overlaps 

considerably with the three main pipelines outlined in the Kigali master plan (City of Kigali, 

2020a). Nodes with high closeness centrality that can effectively connect to others are mainly 

located in the central area of Kisumu. In particular, a gradual decrease in closeness can also be 

found at the boundary between Kigali’s formal and informal areas, with low closeness nodes 

roughly distributed within the unplanned settlements.   
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Figure 5.10 Betweenness centrality maps for Kisumu (A) and Kigali (B). Betweenness centrality indicates the importance of a pipeline in connecting various parts 

of the network. Darker colours represent higher centrality values. 
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Figure 5.11 Closeness centrality maps for Kisumu (A) and Kigali (B).Closeness centrality reflects the ease with which a pipeline can reach all other nodes. 
Darker colours represent higher centrality values. 
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5.5.2 Validation and interpretation of the results of community detection 

Table 5.4 shows that the community detection stopped at the seventh layer for Kisumu's 

weighted network, the eighth layer for Kisumu’s unweighted network, and the eighth layer for 

both Kigali's weighted and unweighted networks. Both weighted and unweighted CSVs were 

employed to assess the outputs at these layers. The CSV values range from 0 to 1, with higher 

values indicating a partition that is more likely to exhibit a clear community structure. Since the 

CSV calculation excludes clusters with fewer than 5 nodes, the values fluctuate as the levels 

increases and the granularity of the output becomes finer. However, considering the scale of 

the study network, the initial few layers of Infomap output, which are identified as having strong 

community structure based on the CSVs, remain reliable. According to Table 5.4, Infomap 

identifies community structures more efficiently in Kisumu's weighted network as it reaches the 

maximum CSV values faster. It can be seen that the CSV values reach the maximum of the 

Kisumu networks in the weighted first level (Figure 5.12) and unweighted second level, with 

these levels having a similar number of communities. Kigali is the opposite, as its unweighted 

rather than weighted network reaches the maximum CSV values more quickly (Figure 

5.13). Moreover, Kigali and Kisumu have similar numbers of communities at the layers where 

their maximum CSV values occur. 

Table 5.4 Number of communities detected from case study water piped networks using the 

Infomap algorithm, together with associated CSV index values. 

Hierarchical level  

Kisumu Kigali 
Number of 

communities 
CSV Weighted CSV Number of 

communities 
CSV Weighted CSV 

Weighted 
network 

Level 1 14 1.000 1.000 2 0.667 0.667 
Level 2 71 0.466 0.358 15 1.000 1.000 
Level 3 328 0.023 0.016 92 0.378 0.302 
Level 4 1365 0.009 0.009 479 0.013 0.009 
Level 5 3096 0.037 0.036 2182 0.005 0.005 
Level 6 3805 0.400 0.400 4957 0.015 0.015 
Level 7 3911 n/c n/c 6170 0.250 0.250 
Level 8  n/c n/a n/a 6254 n/c n/c 

Unweighted 
network 

Level 1 2 0.667 0.667 9 1.000 1.000 
Level 2 12 1.000 1.000 52 0.654 0.573 
Level 3 74 0.361 0.270 306 0.046 0.029 
Level 4 378 0.016 0.011 1526 0.005 0.004 
Level 5 1766 0.010 0.009 4346 0.010 0.010 

Level 6 3151 0.023 0.023 5927 0.065 0.063 

Level 7 3879 0.400 0.400 6223 0.500 0.500 

Level 8 3911 n/c n/c 6254 n/c n/c 
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Figure 5.12 Kisumu Thiessen polygon map of weighted communities at level 1, where the CSVs 

reach their maximum value. 
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Figure 5.13 Kigali Thiessen polygon map of weighted communities at level 2, where the CSVs 

reach their maximum value. 

5.5.2.1 Kisumu 

As shown in Table 5.5, the number of pipelines in Kisumu initially increases and then decreases 

with rising levels of neighbourhood morphological complexity. This trend contrasts with the 

distribution of the number of neighbourhoods across the same complexity levels, which exhibits 

a consistent decline—from 2,287 blocks at complexity level 1, to 910, 233, and 52 blocks at 

levels 2, 3, and 4, respectively. Although exact density cannot be computed due to variations in 

neighbourhood size, it is evident that most pipelines are located within moderately complex 

areas. 

When viewed through the lens of DMM, the total number of pipelines under DMM and non-DMM 

management in Kisumu is roughly equal. However, the proportion of DMM-managed pipelines 

increases with morphological complexity. The degree and betweenness of DMM pipeline nodes 

are generally lower than those for other areas with the same settlement complexity level. This 

indicates that DMM pipelines primarily serve as branch lines for water distribution to 

consumers. In addition, both average degree and betweenness centrality decline as settlement 

morphological complexity increases and areas become more slum-like, with the decline being 
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particularly pronounced for betweenness. On the other hand, closeness centrality remains 

relatively stable across all areas, suggesting that it is less associated with local settlement 

structural characteristics.  

Table 5.5 Statistics of centrality metrics for Kisumu pipelines, categorised by neighbourhood 

morphological complexity and DMM status 

Complexity 
Class DMM* Count Mean Degree 

Mean 
Betweenness 

Mean 
Closeness 

1 
0 250 2.3080 0.0144 0.0292 
1 54 2.2037 0.0234 0.0212 

2 
0 1007 2.1887 0.0132 0.0268 
1 708 2.0508 0.0085 0.0256 

3 
0 582 2.0928 0.0109 0.0264 
1 905 1.9746 0.0064 0.0255 

4 
0 169 1.9704 0.0099 0.0274 
1 236 1.9576 0.0048 0.0289 

*DMM code: 0 indicates non-DMM pipelines; 1 indicates DMM-managed pipelines. 

ARI and AMI are two metrics used to measure the similarity between partitions. Figure 5.14 

show that the trends in ARI and AMI for the Kisumu partitions are similar across levels. Overall, 

the value of AMI is always higher than the ARI for the same partition, and both AMI and ARI are 

higher when DMM partition is used as the “ground truth” compared to when only slum data is 

used. The figure also shows some subtle trend variations. The AMI of the weighted graph peaks 

at community level 2 (Figure 5.15), while the unweighted graph shows a rightward trend, peaking 

at community level 3, which has a similar community number to the second layer of the 

weighted graph. These findings suggest that weighting the pipeline network aids in the discovery 

of real-world communities. The largest ARI values of slums and DMM are both observed in the 

second layer of the weighted network. Interestingly, the ARI peaks for slums and DMM areas 

from the unweighted network are observed in the second layer rather than the third.  
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Figure 5.14 AMI and ARI distributions for weighted and unweighted communities in Kisumu. The 

figure illustrates the distance between Kisumu's pipeline communities and 

partitions derived from the Million Neighborhoods map, as well as the DMM 

partitions refined from the former. 

 

Figure 5.15 Kisumu Thiessen polygon map of weighted communities at level 2, where the AMI 

and ARI reach their maximum values. 
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5.5.2.2 Kigali 

Table 5.6 reveals a markedly different pattern of pipeline distribution in Kigali compared to 

Kisumu. On the one hand, the number of neighbourhoods in Kigali also decreases with 

increasing morphological complexity, from 4,536 at level 1 to 2,137, 376, and 119 at levels 2, 3, 

and 4, respectively. However, in contrast to Kisumu, pipelines in Kigali are densely concentrated 

in the least complex neighbourhoods. In addition, the centrality metrics of pipelines in Kigali 

exhibit the same trends observed in Kisumu: both degree and betweenness centrality decline 

with increasing morphological complexity, while closeness centrality remains relatively stable.  

Table 5.6 Statistics of centrality metrics for Kigali pipelines, categorised by neighbourhood 

morphological complexity. 

Complexity 
Class Count Mean Degree 

Mean 
Betweenness 

Mean 
Closeness 

1 2192 2.2359 0.0069 0.0267 
2 2603 2.1425 0.0058 0.0267 
3 842 2.0689 0.0062 0.0268 
4 617 1.9806 0.0038 0.0266 

Figure 5.16 shows that Kigali also has a higher AMI than ARI. The key difference between Kigali 

and Kisumu lies in how AMI and ARI respond to the weighting and unweighting of the networks. 

In contrast to Kisumu, Kigali's weighted networks are more right-skewed than unweighted 

networks with AMI/ARI peaking at level 3 for weighted networks (Figure 5.17) but level 2 for 

unweighted networks, a pattern also reflected in statistics. In addition, there is no clear 

relationship between the maximum values of AMI and ARI. The maximum ARI occurs in the third 

level of the weighted network and the second level of the unweighted network, corresponding to 

the CSV of communities. The third level of both graphs has the maximum AMI.  
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Figure 5.16 AMI and ARI distributions for weighted and unweighted communities in Kigali. The 

figure illustrates the distance between Kigali's pipeline communities and partitions 

derived from the Million Neighborhoods map. 

 

Figure 5.17 Kigali Thiessen polygon map of weighted communities at level 3, where the AMI and 

ARI reach their maximum values. 

5.6 Discussion 

In this study, graph theory and community detection methods were applied to the water pipeline 

networks of Kisumu and Kigali to investigate their performance, hierarchy, community structure, 

and vulnerability. By converting the primary elements of the pipeline networks into graph nodes 

and edges, the relationship between the networks and the urban environment was highlighted. 

Compared to other water pipeline networks studied in literature (Giudicianni et al., 2018), both 

cities have lower average node degrees (close to 2), indicating line graph properties with 

relatively lower robustness. Other metrics from Table 5.3 show that Kisumu has a more uneven 

pipeline distribution than Kigali. Furthermore, Kigali's network is more similar to the small-world 

network, with dense clusters and fewer connections between them.  
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In the graph simplification, more branch pipelines were excluded in Kisumu's slums than in 

Kigali's. Since the excluded pipelines have tree structures that are less costly but less reliable in 

infrastructure networks (Han et al., 2020), the simplification of the pipeline networks implies 

differences in planning tendencies within the slums of the two cities. Kigali’s well-developed 

water system in slums aligns with the city’s overall development plan. Uwizeye et al. (2022), 

Benken (2017), Jaganyi et al. (2018) and Hudani (2020) have found that Kigali has implemented 

urban plans incorporating various policies, such as the National Urbanisation Policy (MININFRA, 

2015b) and Vision 2020 (GoR, 2012). These initiatives aim to transform Kigali into an intrinsic 

economic growth driver while fostering inclusivity in the post-genocide period (Manirakiza et al., 

2019). As a result, these policies have objectively facilitated access to public services, including 

water, sanitation, electricity, and land registration, for residents of Kigali's slums. Simplified 

pipeline maps and centrality distribution maps also show significant spatial structural 

differences between formally planned settlements and slums in both cities. High betweenness 

centrality nodes are concentrated along the main urban arteries and the boundaries of the city’s 

central areas, overlapping with urban loops. The closeness centrality of both cities' networks 

decreases from their centres outward to the slums. 

Statistical results for centrality emphasize the similarities between the two study networks. 

Both cities have a high number of intersections with a degree of 3 (Figure 5.7), consistent with 

the degree distribution patterns observed in road networks of over eighty global cities 

(Badhrudeen et al., 2022). The betweenness and closeness centrality distributions of the two 

networks are similar and can be represented via Weibull and lognormal distributions, which are 

flexible and can be transformed into Gaussian and power-law distributions. This supports 

Broido and Clauset (2019)’s conclusion that many networks are better described by 

distributions other than the power-law one. However, there are also topological differences 

between the study networks. On the one hand, as network size increases, the connectivity of 

water distribution networks tends to decrease, making them more prone to fragmentation 

(Giudicianni et al., 2018). On the other hand, urban infrastructure networks are influenced by 

urban morphology and historical factors (Nor et al., 2021, Yazdani and Jeffrey, 2012a). For 

example, Xue et al. (2022) and Mengistie et al. (2023) observe that cities in developed countries 

have significantly more homogeneous road networks than those in developing countries. 

Similarly, Kut et al. (2016) note that cities with similar historical backgrounds may exhibit similar 

graph-theoretic properties. Kisumu's development has always been centred around the 

Kanyakwar Plain near Lake Victoria, expanding outward from its colonial city core. Kisumu's role 

as a transportation hub linking eastern and western Kenyan cities has significantly influenced its 

urban growth and infrastructure development (County of Kisumu, 2013, County of Kisumu, 

2020, LVSWSB, 2021) , which explains the spatial configuration of its pipelines and why its high-
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betweenness pipelines do not align with large-diameter north-south pipelines (Figure 5.5).  

Meanwhile, although Kigali also experienced social and spatial heterogeneity, urban planning 

has played a significant role in its urbanization (Ananga et al., 2019, Baffoe et al., 2020a, Baffoe 

et al., 2020b, LVSWSB, 2021, Manirakiza et al., 2019). This may account for the subtle variations 

in algebraic connectivity and centrality distributions between the two cities. 

The distribution of centrality metrics across the two cities is not without pattern. As shown in 

Tables 5.5 and 5.6, the properties of pipelines are closely associated with the morphological 

characteristics of neighbourhoods. In Kigali, pipelines are concentrated in the least complex 

neighbourhoods; the better planned a neighbourhood is, the more pipelines it tends to contain. 

This pattern differs from that observed in Kisumu, reflecting the divergent urban planning 

strategies of the two cities. The trend in Kigali corresponds to a city-wide strategy that 

emphasises the upgrading of entire neighbourhoods into higher-standard residential areas, 

rather than implementing targeted interventions in water infrastructure alone. Conversely, the 

pipeline distribution in Kisumu suggests a pattern of infrastructural intervention in response to 

specific settlement conditions. Notably, in both cities, the degree and betweenness centrality of 

pipelines decrease with increasing morphological complexity, regardless of the overarching 

planning strategies. This supports the conclusion drawn in Chapter 4—namely, that the spatial 

properties of urban networks are closely tied to neighbourhood typologies. It is also worth 

highlighting the role of DMM-managed pipelines, whose proportion increases with 

neighbourhood complexity. These pipelines tend to exhibit lower betweenness centrality, 

indicating that they primarily function as branch lines within informal settlements. 

Community detection sheds further light on the relationship between urban environments and 

water infrastructure. A key conclusion is that the distribution and vulnerability of pipelines in 

Kisumu and Kigali are closely related to the distribution of slums. From a graph theory 

perspective, the pipeline networks in Kisumu and Kigali can be partitioned into a similar number 

of weighted communities (Table 5.4). Given that Kigali’s network is larger than that of Kisumu, 

the fact that both cities have a similar number of detected communities supports the view that 

Kigali's pipeline system is more evenly distributed. Moreover, graph similarity analysis, 

considering slums as “ground truth”, shows that the topology and vulnerability of the pipelines 

in both cities are strongly related to slum distribution. This result agrees with Buhl et al. (2006), 

who observed that street networks in slum areas exhibit unique characteristics. The AMI and ARI 

values (Figures 5.14 and 5.16) indicate that Kisumu has more heterogeneous pipeline networks 

in slums than Kigali. Notably, higher AMI and ARI values are concentrated in the first three 

partition levels, after which both measures gradually decline. This trend is reinforced by the CSV 

results, which indicate that partition structures are strongest in these initial layers, supporting 
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the interpretation that early partitions capture meaningful features of the network relevant to 

slum distribution. 

Additionally, graph similarity findings suggest that Kisumu’s DMM policies are also associated 

with the layout of pipelines. DMM pipelines operate as distinct subsystems managed and 

constructed by master-operators, aiming to replace the chaotic 'spaghetti' network with a more 

structured one (World Bank, 2009). Comparison of pipeline-derived communities with the DMM 

partitioning of urban space yielded higher similarity scores, indicating that the topology of DMM 

pipelines distinctly differs from that of other slum pipelines. This finding partially addresses 

Nzengya (2015)’s concern that there is a lack of evidence to show whether DMM genuinely 

improves the layout of pipeline networks within slum areas. 

These findings contribute to bridging urban science and network studies. Researchers in city 

science emphasize the need to understand cities and urban planning both through urban 

processes and infrastructural form, particularly graph theory properties (Brelsford and Martin, 

2021). Southern cities face challenges with fragmented networked services, and there is 

consensus on the impact of urban governance difficulties and slums on these networks. 

Nevertheless, infrastructure in southern cities, particularly in slums, is often overlooked in 

graph theory research, and there is limited understanding of the factors influencing urban 

network layout and how to measure these impacts, especially in developing countries (Neal et 

al., 2021). This chapter contributes to addressing these issues by providing insights into the 

pipeline topology of the study areas and developing a workflow for adapting graph theory 

methods to the characteristics of available data in LMIC cities. 

This chapter adopted the same network preprocessing methods and graph metrics as those 

employed in Chapter 4, but placed greater emphasis on the analysis of the performance of 

water networks. As a result, the graph approach in this chapter is subject to certain limitations: 

1. Graph metrics provide only an initial answer to questions regarding water networks. 

Both empirical and hydraulic data are still necessary to establish a direct link between 

network topology and management activities. As Yazdani and Jeffrey (2011) point out, 

topological analysis alone provides an incomplete picture of network resilience, as 

financial and operational management, geographical context and the urban space 

heavily influence the structure of the network. 

2. Graph analyses of infrastructure often vary in their modelling methods (Marshall et al., 

2018, Pueyo et al., 2019, Zhou et al., 2010), such as whether to use primary or dual 

mapping, and how to correct and simplify network topology. Each method has its own 

particular applications, but in practice, this methodological diversity can affect the 

reliability and generalizability of the results (Giustolisi et al., 2019, Marshall et al., 2018). 
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3. Many existing studies of water network topology rely on synthetic networks, which do 

not always reflect the characteristics of real-world networks (Momeni et al., 2023, Paez 

and Filion, 2017, Yu et al., 2024). As a result, conclusions drawn from graph studies of 

pipeline networks still require validation through further research based on real 

networks in SSA regions. 

The analytical workflow is also constrained by data limitations. The absence of installation date 

records for pipeline data restricted this analysis to a cross-sectional study, limiting further 

exploration of temporal causal relationships between urban environmental change, policies, 

and subsequent pipeline network evolution. Additionally, inconsistencies in digital pipeline 

mapping considerably increased the analytical workload, diminishing reproducibility and 

preventing hydraulic simulations. Therefore, it is encouraged that utilities improve the 

management of geospatial data, particularly by systematically recording attributes such as 

pipeline installation dates (even if only approximately for the oldest network segments), 

materials, and diameters. This will enable more detailed evaluations of pipelines and facilitate 

spatio-temporal analysis of network evolution.  

Furthermore, the study acknowledge the inherent limitations of community validation methods. 

The method relies on prior knowledge to identify environmental factors. In this study, the 

assessment of slum impacts is based on the Million Neighborhoods Map. However, in practice, 

there are multiple approaches to identifying slums (Kuffer et al., 2016, McCartney and 

Krishnamurthy, 2018, Smit et al., 2017). Improving the accuracy of slum infrastructure analysis 

will thus ultimately depend on further understanding of slum morphology. The study may also 

overlook other influential factors related to pipeline distribution. In particular, the mountainous 

terrain of Kigali undoubtedly influences both settlement distribution and the laying of pipelines, 

presenting a promising direction for future research. Researchers may consider employing the 

workflow established in this study while incorporating detailed elevation data. 

5.7 Conclusion 

The expansion of slums is a key feature of urbanization in SSA. Slums are characterized by 

dense populations, overcrowded buildings, lack of tenure and security, and chaotic 

management, all of which have hampered efforts to improve water access. This chapter 

examined the state of water services in the slums of Kisumu and Kigali by applying graph theory 

and community detection methods, offering insights into pipeline networks and their 

relationship with the urban environment in developing countries. Graph metrics provide a 

valuable overview of pipeline networks, especially in locations where information is scarce, 

while the Infomap algorithm reveals the networks’ hierarchical and clustering structure, 
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indicating their response to urban environmental change and policy. The results show that 

Kisumu and Kigali share similar topological characteristics common to southern cities. 

Furthermore, both government intervention and the spatial configuration of the slum are 

significantly associated with the pipeline layout. The findings contribute to a deeper 

understanding of urban networks in developing countries and offer insights for improving water 

infrastructure in such contexts. 
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Chapter 6 Measuring the spatial accessibility of water 

kiosks in Kisumu 

The structure and performance of pipeline networks represent only part of the urban water 

landscape. According to the WHO/UNICEF Joint Monitoring Programme (JMP), improved water 

services are further classified into safely managed, basic, and limited water services based on 

accessibility, availability, and quality (WHO/UNICEF, 2018). Under these standards, in 2022, 2.2 

billion people still lacked safely managed drinking water, with 1.8 billion people lacking on-

premises drinking water (UN, 2024). Accessibility on-premises is the most common limiting 

factor for safely managed drinking water services in Sub-Saharan Africa (SSA). In 2022, nearly 

half (45%) of the 1.2 billion people in SSA relied on water collected outside their homes, a 

proportion significantly higher than in other regions (WHO/UNICEF, 2023a). This indicates that a 

large portion of the population relies on public water sources, such as kiosks, public taps, and 

boreholes, for basic and limited services. For example, Uganda's 2021 census showed that 8% 

of households used public taps during the dry season, with this number rising to 11.3% in the 

wet season—both higher than the proportion of households using piped water in dwellings 

during the same period (UBOS, 2022). Similarly, Kenya's 2019 census reported that 9.9% of 

households nationally used public taps or standpipes, which was higher in urban areas, 

reaching 15.6% (KNBS, 2019b). These shared water sources greatly extend water coverage in 

low-income communities (Post and Ray, 2020). To comprehensively evaluate water access in 

urban areas, it is essential to assess these diverse water sources in addition to conducting 

graph theory analyses of water pipeline networks. 

Among shared sources, water kiosks—micro-enterprises that sell piped water to households 

without direct pipeline connections—play a crucial role in supplying water in many African 

cities. Despite their importance, assessments of kiosks have primarily relied on field surveys 

and interviews (Adams, 2018b, Falcone et al., 2023, Nel et al., 2023, Opryszko et al., 2013). 

While such methods provide valuable insights, they fail to account for the influence of urban-

scale environmental factors—such as the distribution of infrastructure and population—on 

water access. Consequently, they fall short in quantifying the geographic accessibility of kiosks, 

which is crucial for understanding and improving urban water systems. Thus, this chapter aims 

to quantify geographic access to kiosk water within Kisumu using the two-step floating 

catchment area (2SFCA) method. To evaluate how spatial representation of population affects 

accessibility metrics, the method integrates three gridded population map datasets with water 

kiosk locations to estimate the supply and demand ratio. Additionally, the relationship between 

kiosk accessibility and road networks is analysed due to their close interconnection. 
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6.1 Introduction 

Shared or communal water sources have a long history in Africa (Nilsson, 2011) and come in 

various forms, including standpipes, kiosks, water tankers, household resellers, and water 

vendors (Chitonge, 2014). The proliferation of shared water sources aligns with the emergence 

of the informal sector and public-private partnerships (PPPs) in urbanization (Section 2.2.3). 

Urbanization poses two major challenges in water management: a mismatch between water 

supply and demand, and the unequal distribution of water resources (Dos Santos et al., 2017, 

Rebelo and Matos, 2022). Access to improved water sources in SSA is influenced by factors 

such as household characteristics (e.g. income, gender, and education) as well as urban 

planning and historical policies (Antunes and Martins, 2020, Armah et al., 2018, Tetteh et al., 

2022). Higher-income groups are more likely to have piped water connections, but even so, 

these sources may be unstable (Ngben and Yakubu, 2023, Zuin et al., 2011). As an alternative, 

residents in SSA are increasingly forced to rely on shared water sources, spending more time 

and money on accessing water (Chakraborty, 2022, Pierce, 2017, Sarkar, 2022). Therefore, 

shared water sources play an essential role in supplying water to low-income areas, as shown 

by studies in Kampala, Uganda (Isoke and van Dijk, 2014, Tumwebaze et al., 2023), Lilongwe, 

Malawi(Adams, 2018b), Lusaka, Zambia, and Cape Town, South Africa (Nel et al., 2023).  

Among shared water sources, water kiosks are fixed-location facilities that may include water 

storage and treatment systems, where consumers can purchase water (sometimes alongside 

other goods). Water kiosks have a long history in Kenya. Since the colonial era, kiosks or 

standpipes have been used to supply water to African settlements in Kenya (Nilsson, 2011). 

After the 1970s, due to economic decline and concerns over self-sufficiency, these community 

water distribution systems were considered as an alternative formal solution for providing water 

in low-income areas (Nilsson, 2011, Sarkar, 2022). Boakye-Ansah et al. (2022) note that shared 

water sources, including water kiosks, are often managed through agreements between asset 

holders—such as government agencies—and intermediaries, which may include NGOs, 

community organizations, individuals, or private water vendors(Adams, 2018b, Contzen and 

Marks, 2018, Opryszko et al., 2013). In addition to the KIWASCO utility directly selling bulk water 

to kiosk operators within the network that it operates, Kisumu’s delegated management model 

(DMM) incorporates water kiosks (Schwartz and Boakye-Ansah, 2023). In this model, the Kisumu 

Water and Sewerage Company (KIWASCO) delivers bulk water to metered Master Operators 

who manage DMM pipelines. These operators then sell some of this water to consumers 

indirectly through kiosk vendors (Nzengya, 2015). 

Studies on water kiosks highlight risks of availability, affordability, quality, and accessibility. 

Water interruptions in kiosks occur for two main reasons: either the service provided by 
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suppliers to the kiosks is disrupted, or kiosk operators choose to provide water only during 

limited hours due to cost considerations or personal commitments (Boakye-Ansah et al., 2022, 

Schwartz and Boakye-Ansah, 2023). A study in Malawi (Adams, 2018b) observed that, in such 

cases, consumers were compelled to switch to alternative water sources. Affordability is 

another major concern for kiosk users. Despite official pricing set by local authorities, the cost 

of water sold at kiosks often exceeds these regulated prices. Respondents consistently reported 

higher expenditures on water purchased from kiosks compared to private connections. In a field 

study conducted in Kisumu in 2017 and 2018, for example, water from kiosks (Ksh 0.2/litre) was 

priced higher than the official domestic tariff (Ksh 0.06/litre) for the first 6,000 litres of water 

consumed (Boakye-Ansah et al., 2022). The elevated costs are largely attributed to the presence 

of intermediaries, a pattern also observed in Nairobi, Kenya (Ondigo et al., 2018), Kampala, 

Uganda (Tumwebaze et al., 2023), and Kumasi, Ghana  (Adusei et al., 2018). To address these 

challenges, Kisumu and other SSA cities have recently introduced prepaid dispensers (PPDs) in 

kiosks. Through PPDs, customers can purchase water at kiosks using tokens with pre-

purchased credit. Replacing relatively unreliable operators with these automated systems is 

seen as a way to ensure more consistent water supply, and lower kiosk water prices (Adusei et 

al., 2018, Boakye-Ansah et al., 2022, Schwartz and Boakye-Ansah, 2023).  

Accessibility is another key metric when assessing the efficiency and functionality of water 

services. The time spent collecting water is closely linked to the amount of water households 

can access (Devi and Bostoen, 2009). If the time required (including queuing and collection) is 

excessive, residents tend to reduce the frequency of water collection, and the amount of water 

collected is also inversely proportional to the time (Boakye-Ansah et al., 2022, Cassivi et al., 

2019). Adams (2018b) and Boakye-Ansah et al. (2022) reported that queuing times in their study 

areas often far exceeded the time required to travel to and from the water source. Combined 

with the need for multiple trips per day, this imposes a significant burden on households, 

exacerbated by unstable supply schedules (Adams, 2018b). As women and girls primarily bear 

the responsibility for water collection, this issue raises concerns about gender equality and 

safety, especially when water must be collected at night (Rusca et al., 2017). Additionally, water 

quality can be impacted during collection. While studies by Zuin et al. (2011) and Tumwebaze et 

al. (2023) found that kiosk water quality was generally good and well-regarded, other research 

highlighted post-collection contamination risks. Cassivi et al. (2021), Wright et al. (2004) and 

Shields et al. (2015) all highlighted the deterioration in water quality between the source and 

stored water, implying contamination during collection, transport, or storage. 

Several studies have shown that both water source types and access exhibit spatial 

heterogeneity (Deshpande et al., 2020, Dongzagla et al., 2022, Tetteh et al., 2022). Velzeboer et 

al. (2018) pointed out that the distribution of kiosks is influenced by landowners and urban 
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chiefs and therefore does not always reflect residents' needs, often resulting in uneven 

coverage and further complicating water allocation practices. Lawhon et al. (2018) and Rusca 

and Cleaver (2022) emphasized that analysing such heterogeneity in water infrastructure can 

provide insights into broader socio-political dynamics. However, due to the diversity of water 

sources, the instability of supply, the difficulty of monitoring consumption, and issues of data 

quality, water usage analysis often faces significant limitations (Nauges and Whittington, 2010). 

Current studies on access to water points are often based either on self-reported water 

collection distances and times (Adams, 2018a, Adams, 2018b, Isoke and van Dijk, 2014, Kayaga 

et al., 2020, Tumwebaze et al., 2023, Zuin et al., 2011), which may deviate from actual distances 

(Crow et al., 2013, Ho et al., 2013), or on direct estimations of Euclidean distances between 

water points and households (Cassivi et al., 2021). Such surveys are likely to contain biases 

arising from sampling errors or inaccuracies in the survey instruments (Bartram et al., 2014). 

Additionally, interview-based studies have failed to capture the variation in water access across 

the urban scale. 

Therefore, a city-scale quantitative accessibility analysis is necessary to examine the spatial 

heterogeneity of urban water distribution, an area that remains underexplored. Among studies 

on infrastructure accessibility, a commonly used approach is the 2SFCA method. The 2SFCA 

measurement originates from the gravity-based model, which captures both supply-demand 

dynamics and spatial distance in accessibility analysis (Luo and Wang, 2003). By introducing 

catchment areas to constrain the scope of accessibility, it overcomes the sensitivity of gravity-

based accessibility measurements to area delineation (see Literature Review 2.5). Since its 

calculations are based on the spatial distribution of populations and facilities, the results not 

only capture spatial disparities in access but also reflect the rationality of facility distribution, 

making it a suitable choice for this study. The 2SFCA method and its improved versions have 

been widely applied in public facility accessibility research, particularly in healthcare studies 

(Kanuganti et al., 2016, Luo and Qi, 2009, Wang, 2012). However, to the best of available 

knowledge, only one study by Mahuve and Tarimo (2022) has employed the 2SFCA method in 

water accessibility research. Their study focused on improving the travel impedance function 

within the 2SFCA framework. Through a sample survey, they estimated the population within the 

rural wards of Dodoma Urban District in Tanzania and used this as a basis to compare their 

2SFCA model with previous models. The main aim of their study was not to address the 

knowledge gap in the distribution of urban water resources. 

Therefore, current research on water access primarily relies on field surveys, which estimate 

water demand based on small-scale population data. However, this approach also limits the 

scope of such studies, whereas large-scale infrastructure accessibility analyses typically 

involve the use of aggregated population data (Mizen et al., 2015, Stępniak and Jacobs-Crisioni, 
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2017). This aggregation method represents a unit—such as a neighbourhood—using a single 

point, assuming the entire population is concentrated at that point. The accessibility of that 

point is taken to represent the accessibility of the entire neighbourhood. This process can utilise 

large-scale population surfaces as the basis for aggregation, with population estimations relying 

on assumptions about the city. However, discrepancies between these assumptions and 

reality—such as variations in occupancy rates across different neighbourhoods—can lead to 

fluctuations in surface performance. For example, Palacios-Lopez et al. (2019) demonstrated 

the relationship between the covariates' quality and the population dataset's performance. They 

pointed out that the quality of a model that uses covariates to estimate population, such as 

LandScan, is affected by the availability of information. Hence, the performance of population 

models is constrained by the heterogeneity of study areas (Palacios-Lopez et al., 2019). This 

problem is particularly significant in slums, where some characteristics are often not covered 

by urban covariates, resulting in an underestimation of slum populations (Hanberry, 2022, 

Thomson et al., 2021). Thus, when population-weighted centroids are used instead of areal 

centroids, the population distribution affects not only demand estimates but also the location 

of centroids, which, in turn, impacts accessibility estimations in these areas. Considering the 

expansion of slums in SSA, if the 2SFCA method is to be applied to measure water accessibility 

in SSA urban areas, the performance of population datasets must be assessed—a factor that 

remains unclear. 

Furthermore, in 2SFCA calculations, urban layout plays a significant role in shaping water 

access through the road network. The configuration of urban elements varies across regions, 

reflecting the factors that drive differences in infrastructure distribution within cities. Generally, 

variations in urban morphology are primarily identified through differences in street network 

topology, as street networks serve to partition urban space and facilitate material flows (Kropf, 

2014, Zhang et al., 2023). The Million Neighborhoods Map (Brelsford et al., 2018) in the previous 

chapter uses the hierarchical structure of road networks as an indicator of neighbourhood 

morphological complexity, exemplifying a common approach to capturing urban-scale 

morphological characteristics through the use of centrality measures. These measures reveal 

how different areas within a city are organized and highlight material connectivity within the 

urban fabric (Akbarzadeh et al., 2019, Porta et al., 2012, Wang et al., 2011a, Zhao et al., 2016). 

Studies utilising road network centrality have identified links between urban amenities, 

population distribution, and infrastructure accessibility. Specifically, when network distances 

are used instead of straight-line distances, the topology of roads directly impacts the number of 

accessible facilities. However, research has yet to establish a direct link between infrastructure 

accessibility and urban morphology or road topology. 
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Therefore, to enhance the assessment of urban water services, this chapter takes water kiosks 

as a case study, aims to develop a workflow for applying 2SFCA to water services, and evaluates 

its effectiveness in quantifying water access at the city scale using secondary data. Due to data 

availability, kiosks in Kisumu are selected. Given the relationship between 2SFCA analysis, 

population data, and urban morphology, the objectives of this study are as follows: 

1. Develop a workflow to evaluate geographic water accessibility using the 2SFCA method 

and develop recommendations for applying 2SFCA to water services. 

2. Examine the spatial patterns of 2SFCA results, incorporating spatial autocorrelation 

analysis.  

3. Assess the impact of different population surfaces on 2SFCA geographic water access 

measures and examine the sources of their variations. 

4. Investigate the relationship between water source access and road centrality to explain 

accessibility in relation to urban layout. 

6.2 Methodology 

The study area is the urban region of Kisumu. Background information on the city's urban and 

water services can be found in Section 3.2. Formal water services in urban Kisumu are primarily 

provided by a single major service provider, KIWASCO, which directly contracts with water 

kiosks, except in DMM areas. To simplify the analysis, the study scope is limited to exclude 

small-scale community supplies and self-supply systems present in urban and peri-urban 

areas. The population using kiosks is estimated by excluding households with domestic piped 

connections based on domestic water meter density. 

Measurement of infrastructure accessibility often relies on place-based approaches (see 

Section 2.5.1). In this chapter, an adjusted 2SFCA method was applied to measure the 

accessibility of water kiosks in Kisumu. The calculations were performed using different 

population datasets, allowing for a sensitivity analysis of how population data products affect 

the results. This analytical approach helped mitigate the influence of disparities between 

population data products on the estimation of kiosk accessibility. All three population datasets 

and facility distribution data are from 2020, meaning the results reflect kiosk accessibility in that 

year. The results were further utilized to identify patterns in kiosk access distribution and 

examine related factors through spatial analyses. The main workflow of the study is illustrated 

in the figure below (Figure 6.1). 
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Figure 6.1 Flowchart of the major stages in kiosk accessibility analysis. Population datasets, 

kiosks, and environmental datasets were used as inputs for AccessMod to estimate 

travel time between populations and facilities, which was then applied in the 2SFCA 

model analysis. Following the computation of accessibility results, their spatial 

distribution patterns were examined. 

6.2.1 2SFCA methodology and spatial accessibility analysis 

The 2SFCA method was first introduced by Luo and Wang (2003) to measure spatial 

accessibility by calculating the supply-demand ratio for specific locations. Subsequent 

enhancements to the 2SFCA, such as the i2SFCA (Wang, 2018) and H2SFCA (Tao et al., 2020), 

adhere to similar principles (Stacherl and Sauzet, 2023) and involve two steps: calculating the 

facility's score (𝑅𝑗) and the accessibility of population location i (𝐴𝑖
𝐹) (see section 2.5.2 ). The 

Gaussian function (Dai, 2010) was employed as the distance decay function as it continuously 

discounts accessibility, providing a more realistic representation of travel processes. When 

compared with various distance decay functions, the Gaussian model exhibited a higher 

average similarity coefficient with other models, indicating that models using this function 

better approximate actual accessibility (Chen and Jia, 2019). To account for variations in facility 

attractiveness when multiple kiosks are accessible within a travel time threshold, the Huff 

model (Huff, 1963) was incorporated. This model considers facility capacity and travel distance 

to compute the probability of a facility being chosen, assigning higher preference to kiosks 

located closer to the population. As distance is the primary factor in discounting accessibility, 

this adjustment helps to avoid unnecessary discounting in calculations, providing a more 

accurate representation of water collection behaviour. This adjusted 2SFCA approach, which 

integrates the Huff model, is also known as the 3SFCA (Liang et al., 2023). The calculation was 

performed in two steps： 

Step1: Computation of the capacity-to-population ratio 𝑅𝑗 for kiosk j 

𝑅𝑗 =
𝑆𝑗

∑ 𝑃𝑘𝑓(𝑑𝑘𝑗)𝑃𝑟𝑜𝑏𝑘𝑗𝑘∈[𝑑𝑘𝑗≤𝑑0]
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Step 2: Computation of accessibility 𝐴𝑖
𝐹  at each population location i 

𝐴𝑖
𝐹 = ∑ 𝑃𝑟𝑜𝑏𝑖𝑗𝑓(𝑑𝑖𝑗)𝑅𝑗

𝑗∈[𝑑𝑖𝑗≤𝑑0]

 

Where: 

𝑆𝑗is the capacity of kiosk j; 

𝑃𝑘is the population of centroid k; 

𝑑𝑘𝑗 is the distance between centroid k and kiosk j within the catchment (𝑑0);  

𝑓(𝑑𝑘𝑗) is the distance decay between two locations k and j, which takes a Gaussian form: 

𝑓(𝑑𝑖𝑗) =
𝑒−(1/2)×(𝑑𝑖𝑗/𝑑0)

2−𝑒−(1/2)

1 − 𝑒−(1/2)
 

𝑃𝑟𝑜𝑏𝑘𝑗 is the probability that the population-weighted centroid k selects kiosk j as the water 

source: 

𝑃𝑟𝑜𝑏𝑖𝑗 =
𝑆𝑗𝑓(𝑑𝑖𝑗)

∑ 𝑆𝑘𝑓(𝑑𝑖𝑘)𝑘∈[𝑑𝑖𝑘≤𝑑0]
 

Similar to other accessibility measures, the results of the 2SFCA method 𝐴𝑖
𝐹  hold no intrinsic 

meaning in isolation; their significance emerges only when compared across different regions 

(Dalvi and Martin, 1976, Miller, 2018). Consequently, analysing the patterns of accessibility 

scores within the study area becomes more critical. To assess the agreement between outputs, 

Spearman’s rank correlation coefficient and Bland-Altman plots (Bland, 1986) were employed, 

with the latter used to estimate and display the limits of agreement between input variables. The 

blandr package in R (Datta, 2024) was used to perform Bland-Altman analyses. Additionally, this 

chapter utilised the Global and Local Moran’s I tools (Anselin, 1995, Getis and Ord, 1992) to 

analyse the spatial patterns of accessibility scores derived from the 2SFCA results. The Moran’s 

I index is commonly used to evaluate whether a spatial feature exhibits spatial autocorrelation 

with its neighbouring features. In other words, it highlights the statistically significant spatial 

clustering patterns of accessibility values across the study area. The default distance threshold 

was used for the Moran’s I tools to ensure that each input feature had at least one neighbour. 

This choice excluded other similar clustering tools, such as Incremental Spatial 

Autocorrelation. Global Moran's I, range from -1 to 1, representing perfect dispersion and 

perfect clustering, respectively. Local Moran's I, on the other hand, classifies spatial 

autocorrelation into hot spots, cold spots. Compared to another tool provided by ArcGIS, 

Optimized Hot Spot Analysis, Local Moran’s I also identifies spatial outliers. After obtaining the 
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2SFCA outputs, both EAs with no access and those with no data were treated as zero, indicating 

that these EAs could not access water kiosks. The outputs were then subjected to statistical 

analysis. The results from different population datasets were normalised, and pairwise 

differences were computed. Global and Local Moran’s I were used to examine both each 2SFCA 

output and the differences between the normalised outputs. 

The relationship between accessibility and the urban environment was analysed by measuring 

the correlation between the topological properties of roads and the accessibility scores. 

Betweenness and closeness were used to measure the characteristics of road nodes in the 

primal graph due to their widespread application in urban studies (Jiang and Claramunt, 2004, 

Kirkley et al., 2018, Serra and Hillier, 2019, Shang et al., 2020, Shi et al., 2024, Wang et al., 

2011a). Both metrics have been recognized as indicators of network robustness and 

accessibility, as well as their associations with urban layout, land use, and facility distribution 

(see Sections 2.4.1).  

To compare accessibility and centrality within a unified framework, the centrality values 

obtained were smoothed using spatial interpolation techniques. The choice of interpolation 

method should not significantly affect the results. In this chapter, inverse distance weighting 

(IDW) and kernel density estimation (KDE) were used. IDW is a distance-based spatial 

interpolation algorithm that estimates unknown values based on weighted averages of known 

values within the neighbourhood. KDE, on the other hand, is a non-parametric method that 

estimates the probability density. Specifically, it uses the density of data within a defined range 

(window) to estimate the value at the window centre. In the context of centrality measurements, 

KDE has been regarded as effective in capturing neighbourhood characteristics (Liu et al., 2015, 

Liu et al., 2016). The parameters of IDW and KDE, such as power and bandwidth, produce 

slightly different interpolation results. However, as analysing these effects is beyond the scope 

of this chapter, a power of 2 was used for IDW as the default. This parameter only reflects the 

influence of values and is not related to any real physical process. Considering the catchment 

and travel scenarios of the study area (see Section 6.3.3.3), along with the search distance 

derived from Moran’s I analysis—where each EA has at least one neighbour at approximately 

1,450 meters—a bandwidth of 1,500 meters was applied for KDE. The output pixel size was set 

to 50 × 50 meters. 

After performing the interpolation, the mean interpolated values within each enumeration area 

(EA) were calculated for subsequent correlation with accessibility scores. To compare outputs 

from different population datasets and examine the relationship between road centrality and 

accessibility distribution, Spearman’s correlation coefficient was used to measure the 
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relationships between accessibility maps and between interpolated road centrality and 

accessibility maps.  

6.3 Datasets and parameterization for the study area 

6.3.1 Data audit of gridded population datasets 

The measurement of kiosk accessibility involves a methodological issue that requires 

clarification: spatial aggregation. Spatial aggregation refers to the practice of classifying 

individual data into geographic regions. In analysis, this means using smaller spatial units 

(points, lines, or areas) to represent original spatial data within the same spatial extent. In this 

study, the direct impact of spatial aggregation on accessibility is that different estimations of 

population distribution in population datasets influence the aggregation outcomes. For 

instance, if population data underestimate the population in a given area, the aggregation 

results may either retain or mitigate this bias, depending on the boundaries used for 

aggregation. 

To evaluate the sensitivity of 2SFCA outputs to the choice of population dataset and mitigate its 

impact on the assessment, seven gridded population datasets available for the study area 

(Table 6.1) were assessed. 
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Table 6.1 Summary of gridded population datasets available for the study area 

Dataset Source 
Spatial 

Resolutio
n 

Available 
Year (s) Input Variables Method 

Constrained 
by built 

settlement 
extent 

High Resolution 
Settlement Layer 

(HRSL) 

Facebook Connectivity 
Lab and Center for 
International Earth 

Science Information 
Network (CIESIN) - 

Columbia University 
(2016) 

30m 2015 

National census data 
from CIESIN, binary 

settlement layer from 
DigitalGlobe imagery 

Convolutional neural 
network for building 

classification, informing 
population distribution. 

Constrained 

Global Human 
Settlement 

Population (GHS-
POP) 

European Commission 
Joint Research Centre 

(JRC) and Center for 
International Earth 

Science Information 
Network (CIESIN) 

- Columbia University 
(2020) 

250m/1k
m 

1975–
2030 

Raw census data from 
CIESIN’s GPW, 

modified using UN 
World Population 

Prospects 2019 (UN, 
2020) and UN World 

Urbanization 
Prospects 2018 (UN, 

2019). 

Disaggregation based on 
built-up area distribution, 
classification, and density 

from the Global Human 
Settlement Layer. 

Constrained 

LandScan Global 
Oak Ridge National 
Laboratory (ORNL) 

(2021) 
1km 2000 - 

2022 

Sub-national census 
counts, spatial data, 

high-resolution 
imagery. 

Multi-variable dasymetric 
modeling, interpolation 

using LandScan distribution, 
adjusted to geographical 

characteristics. 

Constrained 
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WorldPop-Global-
Constrained 

WorldPop (Bondarenko 
et al., 2020) 100m 2020 National census data, 

ancillary datasets. 

Semi-automated dasymetric 
modelling (Stevens et al., 

2015), Random Forest 
model (RF), gridded 

population prediction using 
geospatial covariates, final 
adjustments aligned with 
UN population estimates 

(UN, 2020).  

Constrained 

WorldPop-Bespoke 
Country Model 

(WOPR) - Kenya 

WorldPop (Gadiaga et 
al., 2023) 100m 2022 

2009 and 2019 
census data from 
Kenya’s National 

Bureau of Statistics. 

RF models combined with 
geospatial covariates for 
population estimation. 

Constrained 

WorldPop-Global-
Unconstrained WorldPop (2018) 100m 2000-

2020 
National census data, 

ancillary datasets. 

As above WorldPop global 
constrained data but does 

not use built settlement data 
to constrain population 

Unconstraine
d 

Gridded Population 
of the World (GPW) 

Center for International 
Earth Science 

Information Network 
(CIESIN) - Columbia 

University (2018) 

1km 2000 - 
2020 

National census data 
from various sources 

(around 2010), 
boundary data, 
United Nations 

population estimates. 

Disaggregation using a 30 
arc-second grid, population 

distributed by land area 
proportion within each pixel, 

minimal additional 
geographic data (only water 

masks used). 

Unconstraine
d 
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These gridded population datasets can be classified based on the type of modelling 

used to create them (Leyk et al., 2019). A dataset is ‘top-down’ if the model 

disaggregates census data or other complete population counts to cells, informed by 

some (or no) auxiliary data. ‘Bottom-up’ population datasets are those that use 

household survey data (i.e. small census surveys performed at local level) and ancillary 

data, to predict population in the cells between the surveys. All population data in the 

table are generated using the top-down approach. Population datasets differ in how 

many ancillary datasets are used to produce them. Some datasets incorporate 

geospatial covariates, including human settlements, built settlement extent, night light 

intensity, road networks, land cover and land use type, climatic factors, water features, 

and terrain elevation and slope (Palacios-Lopez et al., 2019) to generate weighting 

layers. In contrast, datasets such as GPW and GHS-POP are directly aggregated or 

disaggregated with very few or no covariates. Another key distinction is whether the 

dataset is constrained or unconstrained by built settlement extent during the 

aggregation or disaggregation process. Constrained models will only assign populations 

to settled or built-up areas, whereas unconstrained models will potentially assign a 

value to any cell (Thomson et al., 2022b). 

6.3.2 Overview of study datasets 

To ensure that the population-weighted centroids are representative, three population 

datasets available for Kisumu were selected to estimate the population likely to access 

kiosks: WorldPop Global Constrained (Bondarenko et al., 2020), WorldPop Global 

Unconstrained (WorldPop and CIESIN, 2018), and the GHS-POP (Schiavina et al., 2020), 

all of which provide population estimates for 2020. All three datasets are top-down 

models but differ in their degree of modelling, covariates, and methodologies (Table 

6.1). Notably, both WorldPop Global Constrained and GHS-POP constrain population to 

areas of built settlement, meaning that they are more likely to provide accurate and 

detailed distributions of population. GHS-POP uses GHS-BUILT-S (GHS-

BUILTS_GLOBE_R2022A, version 1.0) as its input for built-up areas, whereas WorldPop 

Constrained primarily relies on building footprint data from Maxar/Ecopia. Additionally, 

GHS-POP differs from the other two datasets in terms of its modelling approach: it 

either proportionally allocates population to built-up areas based on density or applies 
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areal weighting to distribute population to non-built-up areas (Freire et al., 2016). In 

contrast, both WorldPop datasets use the RF algorithm (Stevens et al., 2015) to create a 

weighting surface for the dasymetric redistribution of census counts. Thus, WorldPop 

Constrained and GHS-POP differ from WorldPop Unconstrained in whether built 

settlements are used as a constraint, while the WorldPop datasets and the GHS-POP 

dataset differ in the complexity of their modelling approaches. The use of the three 

datasets enables an assessment of how population surfaces with varying 

characteristics influence accessibility analysis. 

The metadata for other datasets used by the analytical methods described in Section 

6.2, apart from population data, is summarised in Table 6.2 below:
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Table 6.2 Characteristics of geospatial datasets used in kiosk accessibility estimation (excluding population data) 

Purpose in 
Study Name Year 

Represented Source Access Type 

Delineating 
the study 
area 

Administrative wards 
in Kenya   2019 

American Red Cross 
(https://data.humdata.org/dataset/administrative-
wards-in-kenya-1450) 

Open Access 

Kenya Urban Centres  2019 (Macharia et al., 2021) Open Access 

KIWASCO service 
coverage  2020 Kisumu Water and Sanitation Company 

(KIWASCO) By Request 

Estimating 
population 
reliant on 
off-
premises 
water 
sources 

KIWASCO meter 
density 2020 Kisumu Water and Sanitation Company 

(KIWASCO) By Request 

Calculating 
population-
weighted 
centroids 

Kisumu Enumeration 
Areas 2009 Kenya National Bureau of Statistics (KNBS)  By Request 

Estimating 
travel time 

KIWASCO water 
facilities maps 2020 Kisumu Water and Sanitation Company 

(KIWASCO)  By Request 

https://data.humdata.org/dataset/administrative-wards-in-kenya-1450
https://data.humdata.org/dataset/administrative-wards-in-kenya-1450
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DEM 2011 
The Ministry of Economy, Trade, and Industry 
(METI) of Japan and the United States National 
Aeronautics and Space Administration (NASA)  

Open Access 

Land cover 
classification 2022 

FAO Water Productivity Open-access portal 
(WaPOR) 
(https://data.apps.fao.org/catalog/iso/69be3461-
320f-40a6-93d7-fa4ed3db77d1) 

Open Access 

Open Street Map 
(OSM) Road  2023/07 

OpenStreetMap Foundation (OSMF) & 
Contributors (downloaded via https://overpass-
turbo.eu/)  

Open Access 

 

 

https://data.apps.fao.org/catalog/iso/69be3461-320f-40a6-93d7-fa4ed3db77d1
https://data.apps.fao.org/catalog/iso/69be3461-320f-40a6-93d7-fa4ed3db77d1
https://overpass-turbo.eu/
https://overpass-turbo.eu/
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The Kisumu City administrative wards map, produced and updated by the American Red 

Cross, contains 1,450 administrative wards across Kenya, with the version used in this 

study updated in April 2019. The Kenya urban centres map (Macharia et al., 2021) 

delineates urban centres based on a population threshold of 2,000, with boundaries 

digitised from 2019 data. The KIWASCO coverage map, obtained in September 2020, 

defines the service boundaries of KIWASCO, encompassing the available kiosks. 

Similarly, the meter density map, also acquired from KIWASCO, represents the spatial 

distribution of piped water meters, aiding in the identification of populations using 

household connections. The enumeration areas (EAs) map, sourced from the Kenya 

National Bureau of Statistics (KNBS), includes the 2009 EA boundaries, as the 2019 

version was unavailable at the time. This dataset was accessed in October 2020 

through the Water & Waste project, with EA-based results providing higher-resolution 

spatial analyses. Additionally, the KIWASCO water facilities map, obtained in 

September 2020, includes shapefiles of water kiosks and the pipeline network, 

identifying 299 kiosks (Figure 6.2). The Digital Elevation Model (DEM), extracted from the 

ASTER Global DEM Version 2 (NASA and METI, 2011), was chosen over Version 3 due to 

its enhanced void-filling and data cleanup. Land cover information was sourced from 

the 2022 Africa and Near East land cover classification map (FAO, 2020), based on the 

FAO-developed Land Cover Classification System (LCCS). The road network dataset 

(OpenStreetMap contributors, 2023), downloaded from OpenStreetMap, provides 

classifications and speed limits for roads within Kisumu City. Prior to analysis, all 

datasets were projected to a uniform coordinate system, Arc 1960 UTM Zone 36S, 

ensuring spatial consistency. 
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Figure 6.2 Spatial distribution of water kiosks in Kisumu. 

6.3.3 Data preparation and 2SFCA parameter adjustments 

6.3.3.1 Study area delineation 

Narrowing the study area to the KIWASCO service coverage helps eliminate the 

influence of water sources other than kiosks on the accuracy of calculations. This 

information can be obtained from the KIWASCO coverage area map. Furthermore, since 

this study focuses on urban water access, the service boundary should be delineated 

with reference to the Kisumu City map and the Urban areas map. EAs located within the 

boundary were used as units for the 2SFCA analysis. The difference in map coverage 

also needs to be considered in this step. Since the EAs map is from 2009 and later EA 

boundaries were unavailable, it has a different administrative boundary from the other 

maps from 2019. Therefore, EAs were selected and extracted only if they were located 

within: 

1. the 2019 boundaries of Kisumu City. 
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2. Kisumu's urban areas. 

3. the KIWASCO coverage area. 

The extracted EAs map includes 847 EAs. The average population of the units in 2009 

was 389.8, and the average number of households in 2009 was 99.5, with an average 

area of 583,155.6 square metres of EAs. All data used subsequently was clipped to this 

boundary. 

6.3.3.2 Spatial representation of demand for off-premises water services 

In the 2SFCA analysis, the use of population-weighted centroids is considered 

preferable to geometric centroids in reducing spatial aggregation errors when 

estimating distances, particularly network distances (Mizen et al., 2015, Stępniak and 

Jacobs-Crisioni, 2017). Therefore, this chapter employs population-weighted centroids 

rather than areal centroids to calculate population locations. For data consistency, the 

2020 population estimates of the WorldPop Global Constrained, WorldPop-Global-

Unconstrained population, and GHS-POP datasets were used. To simplify calculations, 

it was assumed that the population relying on kiosks corresponds to those without 

household water connections. As a result, the population using household water 

connections was excluded from the calculation of population-weighted centroids. 

Using the meter density map obtained from KIWASCO, which indicates the density of 

households with water connections in Kisumu, and the 2019 Kenya Population and 

Housing Census Volume II (KNBS, 2019a), which provides the total population and 

number of households in each sub-location, the weighted centroids for the population 

accessing kiosks were derived. The calculation was carried out in the following steps: 

1. Convert the sub-location household size provided by the census into a raster 

format. 

2. Multiply the household size layer by the meter density layer using the raster 

calculator to generate a distribution raster for the population using household 

connections. 

3. Subtract the household connection population raster from the overall 

population surface to obtain the raster for the population relying on kiosks. As 

the meter density distribution does not perfectly align with the population data 

and there may be errors in the WorldPop product, some cells in the resulting 
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raster had negative values. These cells were reclassified as 0, indicating that the 

population in these cells exclusively uses piped water.  

4. Use the 'Zonal Statistics as Table' tool to calculate the population using kiosks 

within each EA. 

5. Convert the raster data to points and assign EA names to the points based on 

their spatial locations. 

6. Use the 'Mean center' tool to obtain the population-weighted centroids, using 

population values as weights. 

6.3.3.3 Defining catchment areas and travel scenarios  

Catchment size plays a crucial role in 2SFCA analyses. It reflects the analyst's prior 

knowledge of the study area and determines the model's sensitivity to spatial 

heterogeneity (as discussed in Section 2.5.2). The JMP framework adopts a 30-minute 

benchmark for round-trip access to basic improved water sources (i.e., 15 minutes one 

way) (WHO/UNICEF, 2018). However, in practice, water collection times in SSA vary 

considerably (Adams, 2018b, Cassivi et al., 2018, Dongzagla et al., 2020, Hopewell and 

Graham, 2014). In Kisumu, the time required to fetch water from borehole kiosks ranges 

from 10 minutes to over 30 minutes (Akelo and Nzengya, 2023). Therefore, earlier 

studies on the 2SFCA method have emphasised that catchment sizes should be 

adjusted according to local travel conditions (Luo and Whippo, 2012, McGrail and 

Humphreys, 2009), which led to the development of the variable catchment 2SFCA 

approach (Chen and Jia, 2019). Notably, the 15-minute water collection time (one way) 

refers to individuals, whereas when using population-weighted centroids instead of 

actual population locations, applying the same threshold would underestimate 

coverage and significantly reduce the number of accessible kiosks (Bryant Jr and 

Delamater, 2019). Consequently, this study used 30 minutes as the one-way travel time 

threshold. 

Before estimating water collection paths, it is essential to understand the travel 

behaviours of Kisumu’s inhabitants. Macharia et al. (2021) reviewed transport patterns 

in Kenya, noting that in the capital region, 83% of trips for all purposes include walking 

as a mode of travel, with 41% of the trips in the city comprising walking only. In smaller 

cities, the reliance on walking increases significantly. Meanwhile, 65% of adults in 

urban slums walk to work. Although commuting travel modes differ from those used to 
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access basic services, literature addressing this distinction is scarce. As mentioned by 

Watmough et al. (2022) in their study of access to healthcare facilities in Uganda, it is 

difficult to get information on the speeds of boda bodas or matutus (two transport tools 

that are also popular in Kenya). Considering that water collection is a daily activity with 

a low likelihood of involving transport tools, this study also considered only walking, 

aligning with numerous studies that use walking speed and walking distance as key 

parameters (Boakye-Ansah et al., 2019, Cassivi et al., 2019, Crow et al., 2013, Kim et al., 

2020, Pickering and Davis, 2012). 

Additionally, Watmough et al. (2022) provide insights into travel speeds across different 

landscapes. Their study leverages LCCS and estimates walking speeds on various land 

cover types and roads based on published data. These walking speed estimates were 

utilized to model travel scenarios. 

6.3.3.4 Modelling Travel Paths with AccessMod 

The distances used in access analysis should reflect real-world distances between 

populations and facilities (Apparicio et al., 2017, Mizen et al., 2015). Therefore, 

AccessMod 5 (Ray and Ebener, 2008) was used for this study to calculate network 

distances and travel times between locations.  

AccessMod 5, developed by the World Health Organization, is widely used for analysing 

interactions between populations and service facilities such as healthcare centres 

(Hierink et al., 2023, Macharia et al., 2023). Its core functionalities include computing 

service areas, simulating healthcare referral pathways, and estimating facility 

accessibility. Unlike the Network Analyst functionality within ArcGIS, which assumes 

that travel occurs primarily on road networks, AccessMod simulates travel on an 

impedance surface, built using land cover, road, and DEM data. This surface accounts 

for travel speeds adjusted for terrain, slope and travel direction, enabling the 

calculation of travel times from any point on the map, regardless of proximity to roads. 

This approach is more reflective of the realities in SSA, where water collection often 

involves traversing varied terrain before reaching the road network. For example, 

residents in Malawi have complained that in addition to dangerous road conditions, 

they have to pass through a variety of hazardous terrain during water collection (Adams 

et al., 2022). A study on geographical accessibility to urban centres in Kenya also 
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assumed a travel scenario where walking occurs across areas without road coverage 

(Macharia et al., 2021). In addition, since population-weighted centroids are an 

aggregation of the gridded population surface, they are not necessarily connected to 

roads. Therefore, it is reasonable that this study used Accessmod 5 in estimating travel 

paths.  

6.4 Results  

In this section, the accessibility values for the three population datasets are presented. 

While the population data influenced the distribution of population centroids and the 

calculation of demand, all other parameters and environmental factors were consistent 

across the three computations. This means that the differences in the results are mainly 

due to variations in population estimates. After obtaining the results, the commonalities 

and differences within the spatial outputs of the three datasets were analysed, 

including comparisons of their global and local Moran's I statistics, correlation 

coefficients, and normalized accessibility values. Additionally, the relationship between 

urban environments and water access was explored by examining the centrality of 

roads and their similarity to kiosk accessibility through Spearman correlation 

coefficient.  

6.4.1 Differences between population products. 

The GHS-POP dataset utilizes the Gridded Population of the World v4 as its data source, 

which uses Kenya's 2009 national census in estimating the population in the study area. 

This data source is consistent with those used by both the WorldPop Constrained and 

Unconstrained datasets. However, differences in population disaggregation methods 

employed by the three datasets result in variations in population density and spatial 

distribution estimates within the study area, as shown in Table 6.3 and Figure 6.3. The 

spatial distribution of high population density values is consistent across the three 

datasets, with concentrations observed in Kisumu’s slums (see Section 3.2.2). 

However, the sharpness of the boundaries defining these high-value regions varies, with 

the WorldPop Unconstrained dataset showing the most distinct boundaries. A greater 

presence of no data cells (hollow) can be observed in the WorldPop Constrained 

dataset (Figure 6.3 (A)). 
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Table 6.3 Summary statistics for population datasets in the study area 

Population datasets Total Population Estimates 
Population Lacking On-Premises Piped 

Water 
WorldPop 
Constrained 409482 340805 

WorldPop 
Unconstrained 397346 326010 

GHS-POP 457834 397123 
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Figure 6.3 Total population estimates per grid cell in the study area from different 

datasets: WorldPop Constrained (A), WorldPop Unconstrained (B), and 

GHS-POP (C). 
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6.4.2 Mapping accessibility  

The accessibility maps derived from these datasets also exhibit differences, as 

illustrated in Figure 6.4. "No data" indicates areas where no population is distributed, 

possibly due to the resolution limitations of the population datasets, while "No access" 

refers to areas where the population cannot access water based on the calculation. 

When accessibility scores for both cases are treated as zero, the unconstrained 

accessibility dataset shows the highest mean and standard deviation (see Table 6.4). 

The figure reveals that in all three outputs, most EAs with high accessibility scores are 

concentrated in central Kisumu, particularly in Manyatta A, Manyatta B, Migosi, and 

Kasule, which host a dense network of water kiosks (Figure 6.2). It indicates heavy 

reliance on and easy access to these kiosks in these areas. Interestingly, the pattern 

aligns with the Thiessen polygon map presented in Chapter 5 (Figure 5.15), suggesting 

that both may be associated with the city’s spatial layout. Notably, the highest 

accessibility values for all three datasets are observed in Dunga EA in Nyalenda B 

sublocation, located in the study area's southernmost area.  

Spatial differences in accessibility scores are evident among the three datasets. The 

WorldPop Unconstrained derived accessibility dataset tends to estimate higher values 

in the central region, while the WorldPop Constrained derived dataset provides high 

estimates for the northern and western areas. In comparison, the GHS-POP derived 

accessibility dataset aligns more closely with the WorldPop Constrained dataset but 

shows lower accessibility estimates in the central region. 
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Figure 6.4 2SFCA accessibility results for EAs in Kisumu. A. WorldPop constrained 

dataset; B. WorldPop unconstrained dataset; C. GHS-POP dataset. 

Table 6.4 Statistics of accessibility outputs for different population datasets 

  WorldPop Constrained Grid 
WorldPop Unconstrained 
Grid  GHS-POP Grid 

Mean 0.0016 0.0018 0.0015 
Median 0.0017 0.0017 0.0015 
Std Dev 0.0010 0.0012 0.0008 
Maximum 0.0046 0.0063 0.0038 

6.4.3 Comparison of accessibility across population datasets 

The study also conducted pairwise comparisons of the three outputs, calculating the 

correlation coefficients between them, as well as the Global and Local Moran’s I indices 

of the differences between the normalized accessibility scores. While the former 

illustrates the similarity between the outputs, the latter reveals the distribution of their 

differences. Table 6.5 shows that the three population datasets generally exhibit high 

similarity. However, the unconstrained output demonstrates lower similarity to both the 

WorldPop constrained and GHS-POP outputs, which is consistent with the previously 

observed results. 
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Table 6.5 Spearman correlations between accessibility outputs (derived from 847 

EAs, p values <0.001). 

Output Spearman 

WorldPop 
Constrained Grid 

WorldPop 
Unconstrained 
Grid 

0.9809 

WorldPop 
Constrained Grid GHS-POP Grid 0.9862 

WorldPop 
Unconstrained 
Grid GHS-POP Grid 

0.9679 

The Bland-Altman plot provides a visual assessment of the agreement between 

accessibility outputs (Figure 6.5). The X-axis represents the EA-level mean of each pair 

of input data, while the Y-axis shows their difference. The plots below are based on a 

95% confidence interval. The mean differences across the three comparisons are 

relatively small (close to 0); however, notable variations exist in the upper and lower 

limits of agreement. Specifically, the WorldPop Constrained and WorldPop 

Unconstrained pairs, as well as the WorldPop Unconstrained and GHS-POP pairs, 

exhibit similar ranges for their upper and lower limits, whereas the WorldPop 

Constrained and GHS-POP pair has a much narrower range. This suggests a higher level 

of agreement between the WorldPop Constrained and GHS-POP datasets. Additionally, 

the distribution of points indicates that the differences between the WorldPop 

Constrained and GHS-POP outputs are more evenly spread compared to the other two 

pairs. 
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Figure 6.5 Bland-Altman plots comparing accessibility scores by Enumeration Area. 

(A) WorldPop Constrained vs. WorldPop Unconstrained, (B) WorldPop 

constrained vs. GHS-POP, and (C) WorldPop Unconstrained vs. GHS-POP. 

The significance level is set at 0.95. The three dashed lines represent, from 

top to bottom, the upper limit of agreement, the average difference, and the 

lower limit of agreement. 

Spatial autocorrelation analysis further revealed the geographic distribution of kiosk 

accessibility (Figure 6.6). Global Moran’s I results indicate significant clustering of kiosk 

accessibility within Kisumu, although the degree of clustering varies slightly across the 

three 2SFCA outputs. The order of clustering intensity, from highest to lowest, is 

WorldPop constrained (0.9077), GHS-POP (0.9039), and WorldPop unconstrained 

(0.8855). All results have p-values far below 0.001 and z-scores exceeding 96. 

The Local Moran’s I analysis, on the other hand, corroborates the locations of high 

accessibility values observed in the previous section. It clearly illustrates a pattern 

where kiosk accessibility decreases from the centre of Kisumu outward. 
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Figure 6.6 Global and local Moran's I of accessibility for EAs in Kisumu. A. WorldPop 

constrained dataset; B. WorldPop unconstrained dataset; C. GHS-POP 

dataset. It shows whether areas with high or low accessibility scores are 

surrounded by similar regions. 

The Global Moran’s I index of differences reveals that the differences between the 

WorldPop Unconstrained accessibility dataset and both the WorldPop Constrained and 

GHS-POP datasets are pronounced with stronger clustering. This suggests that the 

population estimates in the unconstrained population dataset likely differ significantly 

in their spatial distribution from the other two datasets. The study further normalised 

the 2SFCA results and calculated the pairwise differences, followed by Moran’s I 

analysis of these differences, as shown in Figure 6.7. The differences between the 

constrained and unconstrained accessibility datasets are primarily observed in central 

urban areas, where accessibility is higher. In contrast, both datasets exhibit 

considerable agreement in the more remote areas of Kisumu. On the other hand, the 

differences between GHS-POP and the other two datasets are concentrated in areas 

with lower accessibility. However, GHS-POP and unconstrained accessibility datasets 

demonstrate significant agreement in the central areas. 
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Figure 6.7 Global and local Moran’s I of the differences in normalized accessibility 

scores between population datasets. A. WorldPop Constrained vs. 

WorldPop Unconstrained; B. WorldPop Constrained vs. GHS-POP; C. 

WorldPop Unconstrained vs. GHS-POP. 

6.4.4 Correlation analysis of road centrality and kiosk accessibility 

The analysis of road centrality within Kisumu reveals that areas with high road centrality 

overlap to some extent with the distribution of kiosk accessibility, while also extending 

into the central urban area (industrial area). An exception is observed in the IDW results 

of betweenness centrality, where high values roughly form the shape of the road 

network. This pattern is likely due to the nature of betweenness, which reflects the 

number of shortest paths passing through a node and is closely related to traffic 

efficiency. Consequently, betweenness values are concentrated along major roads and 

decay rapidly in the IDW interpolation. This rapid decay limits the influence of high 

betweenness on surrounding areas, leading to a lower correlation coefficient with kiosk 

accessibility in the analysis (Table 6.6). 
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Additionally, while both closeness and betweenness KDE interpolations overlap the 

same two regions with dense kiosk distributions (Figure 6.8), their distributions exhibit 

distinct differences. Betweenness KDE features two core areas of concentration, thus 

demonstrating a stronger correlation with 2SFCA accessibility compared to closeness 

KDE interpolation, as shown in Table 6.6. Moreover, regardless of the interpolation 

method, the correlation between road centrality and the population datasets 

consistently follows the order: WorldPop Constrained > WorldPop Unconstrained > 

GHS-POP. 
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Figure 6.8 Interpolation of road betweenness and closeness using IDW and KDE. A. IDW Interpolation of betweenness; B. IDW Interpolation of 

closeness; C. KDE Interpolation of betweenness; D. KDE Interpolation of closeness. 
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Table 6.6 Spearman correlation coefficient (derived from 847 EAs, p values <0.001). 

  Kernel IDW 
  Betweenness Closeness Betweenness Closeness 
WorldPop 
Constrained 0.6147 0.5390 0.3473 0.6386 

WorldPop 
Unconstrained 0.6002 0.5370 0.3258 0.6150 

GHS-POP 0.5637 0.4931 0.3139 0.5962 

6.5 Discussion 

Due to the widespread challenges of urbanisation faced by SSA countries, shared water sources 

play a critical role in urban water supply systems. Investigating the accessibility of water kiosks 

provides valuable insights into the heterogeneous distribution of water resources in southern 

city environments and contributes to monitoring progress toward SDG 6. This study employed 

the 2SFCA method to analyse the spatial distribution of accessibility to water kiosks within the 

study area. Widely applied in healthcare research, this method has been shown to effectively 

capture the distribution of facilities and populations, as well as the social factors associated 

with accessibility (Chen and Jia, 2019, Kanuganti et al., 2016, Luo and Qi, 2009, Wan et al., 

2012, Wang, 2012). However, it has not yet been applied to urban water accessibility 

assessments. Building on previous 2SFCA studies in healthcare and secondary data on the 

study area and SSA cities, the 2SFCA model was configured to account for population 

aggregation, catchment and travel scenarios. The results derived from WorldPop and GHS-POP 

datasets consistently show that EAs with high values are concentrated in regions where kiosks 

are most densely distributed, with accessibility declining outward from this central zone (Figure 

6.4).  

Further analysis differentiated the outputs produced using different population datasets. The 

significant differences emerge between the outputs generated from WorldPop Unconstrained 

data and those derived from the constrained datasets (WorldPop Constrained and GHS-POP 

data). WorldPop Constrained and GHS-POP exhibit higher spatial similarity in their 2SFCA 

estimates, with more comparable clustering patterns (Figure 6.6). However, accessibility scores 

derived from GHS-POP population data are generally lower. Analysis of the disparities reveals 

that the differences in accessibility scores between constrained and unconstrained datasets 

appear in similar regions (Figure 6.7). 

In centrality analyses, nodes with high betweenness typically align with roads characterized by 

high transport efficiency, whereas nodes with high closeness represent convenient 

transportation hubs (Casali and Heinimann, 2019, Lan et al., 2022). These metrics are closely 
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linked to urban planning and land-use types. In the study area of Kisumu, correlation analyses 

revealed a positive relationship between road betweenness and closeness centrality and the 

2SFCA results (Table 6.6). The IDW interpolation of closeness has a spatial distribution similar 

to 2SFCA accessibility, with a decay pattern radiating outward from regions with high values. 

Furthermore, KDE interpolations of both betweenness and closeness cover two areas densely 

populated with kiosks. Rui and Ban (2014) noted that built-up areas and urban greenbelts are 

positively associated with various centralities. Similarly, Mengistie et al. (2023) highlighted that 

urban socioeconomic attributes, such as walkability, block size, and GDP, positively correlate 

with both betweenness and closeness. Overall, road centrality tends to decrease with 

increasing distance from the central business district (CBD). Shi et al. (2024) emphasized the 

strong relationship between closeness centrality and the distribution of residential life facilities, 

noting that road centrality exerts a greater influence on the distribution of urban facilities than 

population distribution. Liu et al. (2015) further pointed out that, beyond betweenness, the 

density of road centrality positively correlates with road density. As centrality density increases, 

construction land expands and becomes more compact. From these, three main inferences can 

be drawn: 

1. Areas with higher 2SFCA values are concentrated in the central study area, including 

Manyatta A, Manyatta B, Migosi, and Kasule. These areas are characterized by a dense 

distribution of kiosks and high centrality values. Therefore, the observed high 

accessibility in these areas is likely not coincidental, as kiosks are primarily intended to 

serve residents who lack access to household piped water. These high 2SFCA areas are 

located within Kisumu's slums (Okotto-Okotto et al., 2015), where the high population 

and building densities are more likely to lead to high road centrality values and densities. 

However, it should be noted that the correlation between the KDE of closeness and 

accessibility is lower than that of the KDE of betweenness. Visually, high values of 

closeness are concentrated in the industrial area located in Bandari. Due to the dense 

concentration of low-income households residents in this area, it has been classified as 

a slum by UN-Habitat (2005), (2020). This suggests that in Manyatta and its surrounding 

areas, where kiosk accessibility is high, the contribution of road patterns to accessibility 

is limited. Instead, the high accessibility in these areas is primarily attributed to the 

density of major urban roads with high betweenness.  

2. Population datasets predict population distributions differently, leading to variations in 

results. The density and spatial distribution differences among population datasets 

stem from variations in their disaggregation methods. In addition to the significant 

differences in population distribution estimates between the constrained and 

unconstrained datasets due to the use of built-up areas, the limitations of the datasets 
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also include the accuracy of auxiliary data for built-up areas in GHS-POP (Yin et al., 

2021), and the resolution of input variables (e.g., nighttime lights and land cover types) in 

WorldPop's random forest approach (Thomson et al., 2022a). In a further analysis based 

on slum populations, Breuer et al. (2024) also pointed out that the quality of input 

census data may affect the accuracy of population estimates. In accessibility 

calculations, the estimation of demand and travel distance depends on the spatial and 

numerical accuracy of population datasets, which affects the results. For example, a 

study on gridded population data's impact on healthcare accessibility in SSA highlighted 

that population data characteristics directly influence the estimated number of people 

covered by healthcare facilities (Hierink et al., 2022). Since road betweenness and 

closeness centrality are related to travel efficiency, and the distribution of kiosks directly 

influences the travel distance for water access, both are key factors that affect the 

distribution of accessibility. Based on the maps of the two factors and the accessibility 

outputs, as well as the correlation coefficient between road centrality and accessibility 

outputs, the WorldPop Constrained dataset likely more accurately reflects the 

population disparities within the study area. This finding aligns with other studies on 

population dataset characteristics (Kuffer et al., 2022, Thomson et al., 2021). 

3. In the study area, kiosks partially meet the water needs of residents in informal 

settlements. This is primarily due to the dense distribution of kiosks within informal 

settlements and the construction of highly connected urban roads. However, residents 

in certain slums still face difficulties in accessing water. On the other hand, previous 

research also indicated that queueing times in certain slums, such as Manyatta and 

Migosi, are longer than in others, such as Nyalenda (Sima et al., 2013). Based on this 

observation of kiosk capacity and the findings on kiosk accessibility, it is recommended 

that the service capacity of kiosks be increased in high-accessibility areas such as 

Manyatta and Migosi. Additionally, improving connectivity between informal settlements 

in the Nyalenda area and other regions should be prioritized. In other words, in terms of 

water access, improvements in overall layout should be considered after the 

development of arterial roads. 

The 2SFCA workflow established in this study effectively captured the spatial characteristics of 

urban water access. The travel mode for water collection in the study area was set as walking, 

as noted by Crow et al. (2013) and Kim et al. (2020), who observed that residents in Kenya 

typically fetch water on foot. Based on this scenario, a 30-minute catchment (one-way trip 

distance threshold) was applied. Previous research has highlighted that catchment size in 

2SFCA analysis should vary by region, as excessively large or small catchments fail to capture 

accessibility patterns (Chen and Jia, 2019, Luo and Whippo, 2012). A secondary reason for 
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adopting a 30-minute threshold instead of the 15-minute standard recommended by the JMP is 

the findings of Akelo and Nzengya (2023) , which indicate significant variation in water collection 

times from kiosks in Kisumu. A more fundamental reason is that the JMP’s 15-minute threshold 

refers to household-level water access, whereas in this study, EAs rather than household-level 

population inputs were used. Applying the original threshold could exclude some kiosk 

destinations that would otherwise be accessible. To account for this, the catchment area was 

expanded while introducing a Gaussian distance decay function to appropriately discount 

accessibility scores. This adjustment provides a more realistic representation of local water-

fetching behaviours. The inclusion of the Huff model further enhances this representation. As a 

place-based accessibility model, 2SFCA emphasises the role of distance in accessibility; 

therefore, weighting accessibility scores based on kiosks’ distance to consumers is a more 

reasonable and practical approach. The results confirm that these localised adjustments are 

appropriate. The workflow can be transferred to areas where water points are well mapped or 

applied to broader water accessibility measurements by incorporating predictive techniques for 

water points (Yu et al., 2019b). 

Beyond indicating the relationship between accessibility and urban morphology, the similarity 

between road centrality and accessibility also suggests that, at least from the perspective of 

travel efficiency, the WorldPop constrained dataset performs better within the study area. 

However, this conclusion requires careful consideration. The accuracy of population estimates 

in urban areas with slums may fluctuate due to the unique characteristics of these settlements. 

Comparative studies in South Asia have shown that GPW, GHS-POP, WorldPop, and LandScan 

exhibit varying errors across countries, particularly in areas with high population densities and 

rapid population growth (Yin et al., 2021). Consequently, all population datasets tend to 

underestimate the population in slums (Breuer et al., 2024, Thomson et al., 2021, Thomson et 

al., 2022a). Given that kiosks' users are expected to be densely concentrated in slums, all 

selected population datasets likely overestimate kiosk accessibility. This underestimation of 

population arises primarily from the inability to accurately delineate slum boundaries and 

update population distribution patterns accordingly (Breuer et al., 2024, Kuffer et al., 2016, 

Thomson, 2020). With more precise slum delineation, this issue can be mitigated, thereby 

improving the accuracy of the WorldPop constrained dataset (Thomson et al., 2022b). 

Therefore, in well-established slums, where buildings are adequately identified, this should not 

pose a significant problem. Population maps (see Figure 6.3) indicate that slum populations in 

Kisumu are effectively captured, which likely explains the superior performance of the 

constrained dataset in this context. However, this finding may not be generalizable to other 

cities, as other SSA cities may have newly emerging slums, where the advantages of the 

constrained dataset are less pronounced. Moreover, given the factors influencing the 
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performance of population datasets as discussed earlier, it is essential to examine the data 

sources and covariates when applying these population products in other urban contexts.  

The current study and its methodological configuration have some limitations. The observed 

decline in accessibility from the centre outward is partly attributable to the disadvantaged 

positional status of population centroids located at the periphery of the study area when 

calculating accessibility. Therefore, catchment size should be adjusted to account for this 

effect. Moreover, the population in the study area was divided into two groups: those using 

household piped water and those using kiosks. However, this method oversimplifies the water 

supply situation in Kisumu. On one hand, it is common in developing countries for households 

to use multiple water sources (Daly et al., 2021, Nauges and Whittington, 2010), meaning that 

those with access to household piped water may also use water kiosks. On the other hand, 

urban residents in SSA often supplement their water supply with alternative sources. The study 

did not account for other shared water sources in Kisumu, such as self-supply water sources. 

Consequently, the estimation of demand for kiosks in the 2SFCA analysis does not fully capture 

the complexities of water usage patterns, nor does it entirely reflect the accessibility of shared 

water sources. Additionally, the analysis is based on the distance and travel time between 

facilities and populations. While this approach provides a broader picture of urban water 

fetching compared to small-scale, field-based studies, it overlooks factors such as time spent 

on water purchase, pumping, and queuing. Although this does not impact urban-scale 

infrastructure planning, it implies that the 2SFCA results may not effectively reflect residents' 

actual water-fetching experiences. 

It is worth noting that this study is also affected by the Modifiable Areal Unit Problem (MAUP) 

resulting from spatial aggregation. Spatial aggregation is often employed for three main reasons: 

(1) certain patterns can only be revealed at specific scales (Heuvelink, 1998, Marceau et al., 

1994, Seyfried and Wilcox, 1995); (2) data for the study area may be incomplete or anonymized 

to protect privacy; and (3) spatial aggregation reduces computational demands. In accessibility 

analyses, aggregation is frequently applied to population data when measuring distances 

between populations and amenities (Chen, 2019, Fransen et al., 2015, Kiani et al., 2021, Xing et 

al., 2020), primarily for the third of these reasons. Origin-destination matrices grow 

exponentially with the number of units, increasing calculation times. In the 2SFCA analysis 

presented in this chapter, EAs, which are considered relatively detailed, were used as 

aggregation units for population-weighted centroids. This approach cannot fully overcome the 

errors introduced by the MAUP (Bryant Jr and Delamater, 2019, Wong, 2009). Compared to 

individual-level data, the use of EAs tends to overestimate accessibility, particularly in areas 

with low population densities (Wang et al., 2023). Additionally, MAUP also influences the 

comparison of accessibility derived from different population datasets as these datasets exhibit 
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variations across different scales and regions. As a result, using boundaries with varying 

granularity introduces inherent biases.  

In summary, this study demonstrates that 2SFCA results can be used to provide urban planning 

recommendations to the government and highlight directions for water facility improvements. 

Planning efforts should focus on integrating both the urban layout and the distribution of water 

facilities. Given the negative correlation between water quantity and accessibility distance 

(Cassivi et al., 2019, Martínez-Santos, 2017), these findings also contribute to research on 

water usage and water-related diseases. However, more accurate 2SFCA parameters, including 

kiosk capacity, travel thresholds, and population estimates, are needed to address the 

aforementioned limitations, requiring further detailed information. Future research could also 

incorporate field surveys to obtain records of queueing times at kiosks to improve these 

estimates. Additionally, analysing other shared water sources beyond kiosks would be 

beneficial for a more comprehensive understanding of water access patterns in SSA. 

6.6 Conclusion 

Shared water sources play a vital role in urban water supply systems in developing countries 

and have received attention in the pursuit of achieving SDG 6. In monitoring access to shared 

water sources, evaluations that consider spatial determinants are essential for providing 

policymakers with accurate and actionable information (Devi and Bostoen, 2009). Using 

Kisumu’s kiosks as a case study, this study employed 2SFCA method to estimate accessibility, 

incorporating the distribution of population and kiosks while accounting for the decay effects of 

network distance on accessibility. Three gridded population datasets—WorldPop constrained, 

WorldPop unconstrained, and GHS-POP—were used to evaluate how different population 

disaggregation methods influence accessibility estimates and to ensure robust conclusions. 

The outputs were further analysed in relation to road centrality metrics to explore the impact of 

the urban environment on accessibility. Findings reveal that several slums within the study area, 

such as Manyatta and Migosi, achieved relatively high accessibility scores. This outcome is 

consistent across all three population datasets. The correlation analysis between accessibility 

and road centrality highlights two key conditions for improving water access for slum residents: 

a dense distribution of kiosks and strong transportation connectivity between the community 

and other parts of the city. Thus, improving accessibility in slums requires not only increasing 

kiosks but also enhancing the development of urban arterial roads. This study contributes to a 

deeper understanding of urban water heterogeneity and social inequality and provides valuable 

insights for advancing the goals of SDG 6. 
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Chapter 7 Discussion 

The rapid urbanisation of Sub-Saharan Africa (SSA) has given rise to significant challenges in 

water supply and governance. Water access, encompassing both the provision of water and its 

proximity to residents, has been highlighted as a critical issue in the Sustainable Development 

Goals (SDGs) agenda. This study has examined these challenges across three key chapters. 

In Chapters 4 and 5, an assessment of the overall and regional structural characteristics of 

pipeline networks provided insights into how urban development in SSA influences the 

configuration of water infrastructure networks. Notably, pipeline networks within slums exhibit 

significant structural differences compared to other urban areas. Chapter 6 further explored the 

demand and spatial distribution of shared water sources, revealing a strong alignment with the 

spatial organisation of urban layouts. 

Building on these analyses, the following sections discuss how these findings contribute to a 

deeper understanding of urbanisation, informality, and the heterogeneity of urban water 

services in SSA, thereby supporting the overarching research objective of advancing progress 

towards the SDGs (Section 7.1). This discussion outlines the broader implications of the study 

for research and practice in water service provision (Section 7.2). Finally, key considerations 

regarding the limitations and transferability of the findings, as well as future research directions 

informed by this study, are explored in Sections 7.3–7.6, with a particular focus on their 

potential to enhance future practice. 

7.1 Evaluation of thesis objectives 

Objective 1: Assess the extent of topological and geometrical commonalities road and 

water/wastewater networks in SSA cities. 

Observations of urban infrastructure network topology, combined with insights into pipeline 

network operation and maintenance, suggest that urban layout shapes pipeline structure, 

thereby affecting water service delivery (Section 2.3). Accordingly, Chapter 4 aimed to evaluate 

the hypothesis that, given shared urbanisation trends in SSA, and the role of roads and pipeline 

networks in urban planning, it should be possible to identify correlations between road and 

pipeline networks, with these relationships being influenced by the presence of informal 

settlements and other aspects of SSA urbanisation. 

To achieve this, the study first developed a workflow for evaluating the connectivity and 

resilience of pipeline networks using graph theory metrics within two data-sparse case 
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study cities in SSA, followed by an analysis that quantified the differences in road networks 

between Kisumu and Kigali. These cities exhibit similarities in urban evolution, as described by 

Antos et al. (2016), where rapid spatial decay from the city centre is reflected in the graph 

properties of the road networks. The presence of both irregular and well-structured patterns 

influences the overall road network characteristics in the study areas. Given the differences in 

urban layout and informal settlement distribution between Kisumu and Kigali, their respective 

graph-theoretic properties display subtle variations—Kigali’s road network exhibits lower 

connectivity efficiency but greater stability compared to that of Kisumu (see discussion in 

Chapter 4 for details). 

Furthermore, the study assessed the commonalities between road and pipeline networks 

across the case study SSA cities. The findings in Chapter 4 indicate that infrastructure 

networks in both Kisumu and Kigali share common topological characteristics. The sewer 

network in Kisumu demonstrates lower structural stability than other networks, and its 

centrality measures show weaker correlations with those of the road network. By contrast, 

water pipeline networks consistently exhibit high structural similarity with road networks, with 

co-located roads and pipelines in both cities displaying comparable distributions of 

betweenness and closeness centrality. This suggests that pipelines in SSA follow common, 

scale-independent spatial configurations that are linked to urban morphology. Consequently, 

this finding not only identifies recognisable structural features in urban infrastructure networks, 

but also highlights the link between their spatial patterns and urbanisation—a connection that 

has so far lacked empirical support in research on cities of the Global South. 

Objective 2: Assess spatial and topological differences in water networks between slums 

and planned urban areas. 

This objective focused on a city-scale analysis of urban environmental factors. Building on the 

previous chapter, Chapter 5 developed a workflow for evaluating the heterogeneity of 

pipeline networks using the Infomap community detection algorithm. It examined the 

variability of water networks within the city by integrating local information to identify distinct 

network characteristics. Slum proliferation and delegated management model (DMM) were 

considered as potential influencing factors. Slum proliferation is prominent in SSA cities and is a 

possible explanation for the observed differences between urban infrastructure networks and 

road networks in the previous chapter. DMM, on the other hand, represents a prevalent 

community-led governance approach in SSA slums (see literature review 2.2.3). Both can be 

broadly regarded as products of informality in SSA urbanisation. The findings indicate that both 

factors correlated with pipeline network morphology. In addition to slums versus non-slums, 

pipelines managed under DMM also differ from other pipelines.  
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Objective 3: Quantify geographic accessibility to kiosk water using the two-step floating 

catchment area (2SFCA) model. 

Given the widespread reliance on shared water sources as part of household water 

provisioning, Chapter 6 investigated whether water point accessibility, like pipeline 

network topology, is shaped by urban form. Specifically, the study developed a workflow to 

evaluate geographic water accessibility using the two-step floating catchment area 

(2SFCA) method and provided recommendations for its application to water services. It 

also examined how different population attribution methods, accounting for the Modifiable 

Areal Unit Problem (MAUP), perform in 2SFCA analyses within SSA cities and correlates 

2SFCA results with road network centrality. The findings reveal that water point accessibility 

exhibits spatial heterogeneity within the study area, affected by two primary factors: the 

distribution of water sources and the spatial configuration of roads or overall accessibility. 

Moreover, access maps derived from constrained population datasets align more closely with 

the urban layout as indicated by the road network. 

7.2 Research contributions 

The primary contributions of this study are twofold. First, there are methodological 

contributions (Section 7.2.1): the application of graph-theoretic approaches and the 2SFCA 

method remains either unexplored or only minimally utilised in water research in LMICs. Thus, a 

key contribution of this study is the establishment of workflows for applying these methods in 

combination with urban planning data to characterise water distribution patterns in Global 

South cities. Following the sequence of methods employed within the overall research 

workflow, Section 7.2.1 presents the methodological contributions arising from the applications 

of topological correction, network generalisation, and community detection (Section 7.2.1.1), 

followed by the application of 2SFCA method to assess communal water point access (Section 

7.2.1.2). 

Second, through the application of these methods, this study identified key spatial 

characteristics of water service provision in SSA. These findings not only address existing gaps 

in empirical observations of urban water systems in SSA but also contribute to a more nuanced 

understanding of urbanisation theories. Section 7.2.2 first summarises the study’s key findings 

before reviewing gaps in existing theories on Southern urbanism and discussing how these 

results help bridge those gaps. 
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7.2.1 Methodological contributions 

7.2.1.1 Application of network analysis methods to water pipeline infrastructure 

In Chapters 4 and 5, this PhD study employed graph methods to study urban networks. As 

discussed in Chapter 4, graph-based analysis approaches to infrastructure often vary in their 

modelling methods (Marshall et al., 2018, Pueyo et al., 2019, Zhou et al., 2010). Existing 

research on infrastructure network modelling has largely focused on road networks. In 

contrast, approaches for processing pipeline networks for graph-based analysis remain 

underexplored, while existing analyses of pipeline networks using graph theory are largely 

confined to case studies in high-income countries. This study established a modelling and 

analysis workflow tailored to SSA pipeline network layers. During the data preprocessing stage, 

an evaluation and topological correction of the collected pipeline and road network data were 

conducted. Depending on the specific analytical objectives, the networks were modelled as 

dual and primal graphs in Chapters 4 and 5, respectively, and were standardised through graph 

smoothing to ensure consistency in their representation. 

1. A topological correction workflow for water network layers in low-resource settings 

The scarcity of graph analysis of water pipeline networks is not only constrained by the limited 

availability of data in LMICs (Yu et al., 2024), but also by issues of data quality. This not only 

includes the widespread problem of missing records, as exemplified in leakage analyses 

(Kirstein et al., 2019, Wu et al., 2024), but also frequent spatial and topological errors arising 

from infrastructure network management practices (Khaleghian and Shan, 2023, Solomakhina 

et al., 2016). In this PhD research, severe topological errors were likewise observed in pipeline 

datasets across both SSA case study regions. As a result, although topological approaches have 

been proposed as a simplified alternative to hydraulic modelling (Santonastaso et al., 2021), 

such analysis often remains unfeasible due to the lack of coherent topology in available data. 

Topological correction is rarely addressed in the structural analysis of water pipeline networks, 

as hydrodynamic simulations typically rely on well-structured, real or simulated network data 

that do not require topological adjustments. As noted in Chapter 4, the issue of topological 

correction has been discussed only in a limited number of studies, primarily in the context of 

road network preprocessing—for instance, the Shp2graph package by Lu et al. (2018) and the 

OSMnx package introduced by Boeing (2017). However, existing correction functions are not 

suitable for pipeline networks. Therefore, this study develops an approach for topological 

correction specifically tailored to pipeline networks. 



Chapter 7 

208 

Addressing topological errors can be regarded as a form of network reconstruction, as precise 

knowledge of the actual pipeline distribution or the causes of errors remains unknown, similar 

to the challenges posed by missing data (Chittor Sundaram et al., 2020). Drawing on experience 

with urban network patterns, the PhD study proposed a set of topological correction rules in 

Chapter 4, such as using angles and distances to differentiate between topological errors and 

original/correct network structures. These correction rules could serve as a methodological 

reference for future studies on the topology of piped infrastructure in LMICs, facilitating the 

correction of raw datasets, improving data usability, and enabling the undertaking of additional 

case studies. 

2. Water network generalisation 

Before analysis, the representation of pipelines was addressed. As noted earlier, variations in 

data quality and mapping standards can lead to inconsistencies in analysis. Existing network 

generation techniques were all developed in relation to specific application contexts (Blagus et 

al., 2014, Cheng and Scherpen, 2021, Dias et al., 2018, Goyal et al., 2021, Maschler and Savic, 

1999, Zhou et al., 2010), such as visual clarity or computational efficiency. Given that the 

networks in the study areas are relatively small, this thesis is less concerned with reducing 

network size for computational efficiency. Instead, the study focuses on ensuring consistency in 

network representation. In this study, the network was modelled as a simple graph, as is 

common in hydraulic studies (Goyal et al., 2021, Mah and Shacham, 1978, Momeni et al., 2023). 

Based on the generalisation principles, two main approaches were adopted in the PhD study. 

First, during the identification process, as many elements as possible were retained in the 

graph. This decision was made given that reducing the number of elements derived from the 

original network may lead to the loss of spatial properties, thereby hindering spatially informed 

analyses—such as the co-location analysis conducted in Chapter 4—from capturing certain 

spatial relationships. Subsequently, a simplification process was conducted by removing 

pseudo-nodes that do not contribute to the network structure, which are most likely 

introduced due to issues in network mapping. This approach ensures that graph-theoretical 

metrics derived from different networks maintain a consistent mathematical meaning. The 

simplification method was further developed in Chapter 5, where the extraction of pipeline 

circuits was largely guided by research on network simplification (Pung et al., 2022). This 

process is also related to the identification of tree structures and convex hull extraction in 

network analysis (Deuerlein, 2008, Šubelj, 2018). As a result of these steps, the networks are 

free from errors that may stem from data quality or capture issues. The resulting graphs 

preserve essential network characteristics—such as those relevant to hydraulic function—while 

exhibiting a consistent mathematical representation. This enables broader comparative and 
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structural analyses. For example, in Chapters 4 and 5, the two graphs were analysed in both 

primal and dual forms, using nodes and edges, respectively, as units of analysis. 

3. Applications of community detection 

As shown in Table 2.5 of the literature review (Section 2.4.3), the application of community 

detection algorithms in infrastructure networks remains limited. Within existing studies on 

water networks, such algorithms have primarily been employed for the identification of District 

Metering Areas (DMAs), but not for examining the inter-relationship between urban form and 

water infrastructure. A few exceptions, such as Bramson (2022) and Law et al. (2019), have 

extended the range of applications by associating community structures within road networks 

with urban neighbourhoods. This approach inspired the PhD study, which adopts community 

detection as the principal quantitative method for identifying environmental factors associated 

with pipeline structure. For this purpose, the research implemented community detection 

algorithms, complemented by interpolation, structural validation, and partition similarity 

assessments (Chapter 5). These approaches have not been previously applied to water 

network analysis, nor have they been explored from the perspective of water–urban 

morphology/governance interactions. 

This research introduces a combined approach that integrates multiple imputation with an 

interview-based vulnerability framework. The sequential imputation of missing values 

(IMPSEQ), a multiple imputation method that iteratively estimates missing entries, has 

performed strongly in water distribution systems (Kabir et al., 2020, Osman et al., 2018). This 

study also employed the pipeline deterioration factor scale developed by Marzouk et al. (2015). 

The integration of these two methods effectively addressed the weighting requirements for 

community detection in this study and may offer a generalisable solution for handling 

missing vulnerability-related attributes in a wide range of pipeline networks. 

Following the implementation of community detection, this study incorporated a structural 

validation step to filter Infomap’s multilayer outputs. Unlike validations that aim to evaluate the 

performance of community detection algorithms—typically by comparing detected 

communities with benchmark partitions that exhibit known community structures (Javed et al., 

2018)—this study treated community detection outputs as a form of network attribute to be 

interpreted in relation to environmental variables. In such contexts, no ground truth exists 

against which results can be directly assessed. Therefore, Community Structure Validation 

(CSV) was employed to evaluate the structural strength of the resulting partitions. This 

approach has not been widely applied. The application of CSV demonstrated its ability to 

evaluate the overall structural validity of partitions across spatial scales. The results indicate 

that the most structurally meaningful layers in both networks are concentrated within the first 



Chapter 7 

210 

three partition levels, a finding that corroborates the patterns observed in the subsequent 

partition similarity analyses. However, it was also observed that, due to its inherently 

conservative definition of community structure, the method tends to disregard smaller-scale 

communities at higher hierarchical levels, retaining only the larger ones and thereby reducing 

the size of the input partition. Thus, the methodological contribution of this application is 

twofold: the incorporation of CSV into a workflow to enhance community detection for 

infrastructure networks, alongside recommendations on interpreting CSV outputs across 

hierarchical levels.  

To assess the correlation between the output partitions and environmental and governance 

characteristics, this study employed Adjusted Rand Index (ARI) and Adjusted Mutual 

Information (AMI), two metrics commonly used to measure the distance between partitions. 

Specifically, slum coverage and DMM information were combined to generate environmental 

partitions. This approach demonstrates a transferable method for aligning urban infrastructure 

networks with spatially distributed environmental data, with high potential for adaptation to a 

range of socio-spatial indicators beyond slum coverage. 

In summary, Chapter 5 consolidates methods originally developed in other domains and 

contributes a coherent workflow for analysing the relationship between network structure and 

urban morphology or governance. While none of the individual techniques are novel in 

themselves, their integrated application to the analysis of water infrastructure networks, 

particularly in the context of LMICs, is original and accompanied by detailed 

methodological guidance. Furthermore, the proposed framework is readily adaptable, offering 

a flexible analytical structure that can be extended beyond water infrastructure or SSA cities. 

7.2.1.2 Development of recommendations for applying 2SFCA models to water 

services 

In the analysis of water point accessibility, the 2SFCA model was employed. As noted in 

Section 6.5, this accessibility model has not been applied in urban water supply studies, 

and it has only been used by a single rural study for assessing water point access (Mahuve 

and Tarimo, 2022). The general effectiveness of the 2SFCA approach is known to be influenced 

by several factors, particularly parameter settings such as threshold distances and distance 

decay functions (see Section 2.5.2). Previous studies have highlighted the importance of 

context-specific travel scenarios in ensuring the model’s ability to capture realistic accessibility 

patterns (Chen and Jia, 2019, Wan et al., 2012). Accordingly, parameter calibration is essential 

when applying the 2SFCA model to urban contexts, where travel behaviours and spatial 

configurations differ from other settings. In addition, as noted in Chapter 6, the impact of 

population data on accessibility outcomes remains insufficiently understood. Prior studies have 
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shown that different modelling approaches and covariates can lead to substantial variations 

across population datasets for the same area, which in turn affect accessibility estimations. 

Moreover, due to the scale and zoning effects of the MAUP, differences between population 

products in representing demand distribution may be amplified or mitigated by aggregation 

practices, yet this interaction remains underexplored. 

To tailor the 2SFCA model for analysing water point access in urban SSA settings, this 

study refined both the parameterisation and population modelling components. Drawing on 

field-specific literature and case-specific observations, key parameters, such as travel mode, 

catchment threshold, and distance decay, were adapted to reflect realistic water-fetching 

practices in Kisumu. To simplify the complex water access landscape in Kisumu, this study 

excluded piped connections and other unrecorded communal sources, thereby focusing the 

analysis on one communal improved water source, namely water kiosks. Therefore, the study 

first estimated the population with access to piped water by multiplying domestic water meter 

density with mean household sizes per enumeration areas (EAs). These populations were 

excluded from the analysis, as their water needs were assumed to be met by piped 

connections. The remaining population was aggregated by EA and represented using 

population-weighted centroids to model demand for shared water points. Walking was adopted 

as the assumed travel mode, consistent with the findings of Crow et al. (2013) and Kim et al. 

(2020) on water collection in Kenya. A 30-minute one-way catchment threshold was selected 

to account for the spatial distribution of water points and to avoid underrepresenting 

accessible sources. Given that EAs rather than households were used as the population 

aggregation unit, the 15-minute threshold recommended by the JMP was deemed unsuitable in 

this context. The Gaussian distance decay function was introduced, and the Huff model was 

incorporated to weight accessibility scores based on proximity, capturing both the reduced 

likelihood of distant water collection and the impact of urban clustering of water points on 

destination choice. These access parameterisation choices, along with the rationale behind 

them, may inform future water access research in urban contexts across SSA. 

To compare how different population datasets perform in accessibility modelling in SSA urban 

contexts, this study included three datasets with substantial differences in modelling 

approaches, covariate selection, and methodological assumptions: WorldPop Global 

Constrained, WorldPop Global Unconstrained, and the GHS-POP. Both the WorldPop 

Constrained and GHS-POP datasets incorporate built settlement extents as constraints in their 

population distribution processes. To reduce the influence of the scale effect of the MAUP, EAs 

were used as the unit of aggregation when computing population-weighted centroids. Despite 

this, notable variation in accessibility patterns remained across the datasets, indicating 

that differences in population allocation still affect spatial estimates of access. Among the 
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three, the two constrained datasets produced more consistent results with each other, while 

the unconstrained WorldPop dataset diverged more substantially. Notably, the WorldPop 

Constrained dataset exhibited the highest spatial alignment with road centrality patterns, 

potentially due to the inclusion of detailed building footprints in its modelling workflow, which 

constitutes a further theoretical advantage of constrained models in capturing the influence of 

urban form on accessibility. Given the 2SFCA model’s sensitivity to spatial distribution and 

distance, this alignment indicates that the WorldPop Constrained dataset is the most 

reliable population data source for water access analysis in this setting.  

7.2.2 Evidential and theoretical contributions 

In SSA, the advancement of both SDG 6 (clean water and sanitation) and SDG 11 (sustainable 

cities and communities) faces pressing challenges, notably reflected in the rapid expansion of 

slums and the difficulties in providing adequate water services (UN-Habitat, 2023b, UN-Habitat, 

2023c, UN, 2023a). The SDGs proposed by the United Nations exhibit multiple interlinkages, 

both in their conceptual definitions (Coopman et al., 2016, Le Blanc, 2015) and in regional 

implementation practices (Griggs et al., 2017, Herrera, 2019), whereby actions targeting a 

particular indicator inevitably influence the achievement of other goals, either positively or 

negatively (Abson et al., 2017, Nilsson et al., 2016). Specifically, SDG 6 and SDG 11 have been 

recognized to exhibit both synergies and trade-offs (see Section 2.1.3). In practice, SSA’s water 

and slum challenges are closely tied to rapid urban population growth, stemming from a 

fundamental mismatch between service provision and urban demand. This leads to both 

conceptual and spatial intersections between slums and unmet water needs (Adams et al., 

2019, Dos Santos et al., 2017). Regarding piped water services, earlier studies suggest that slum 

expansion contributes to intra-urban disparities in service provision (Lagerberg, 2016, Mapunda 

et al., 2018, Shushu et al., 2021). Moreover, due to the path-dependent nature of network 

evolution, pipeline infrastructure within slum areas often exhibits distinct structural features, 

which likely affect service performance, as summarized in Section 2.3.2. Meanwhile, water 

access studies on both water source types and accessibility exhibit spatial heterogeneity 

(Deshpande et al., 2020, Dongzagla et al., 2022, Tetteh et al., 2022). However, despite these 

insights, systematic and spatially explicit evidence on the coupled relationship between 

slums and water infrastructure remains scarce. In particular, few studies quantitatively 

explore the mechanisms through which piped and non-piped water access are shaped by urban 

spatial structure. This evidential gap poses two key challenges. First, from a knowledge 

perspective, the absence of empirical data hinders a systemic understanding of how urban 

planning affects both marginalised urban populations and the infrastructure systems that serve 

them. Second, from a policy perspective, interventions—such as slum upgrading or water utility 
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reform—often lack a nuanced grasp of this spatial interaction, impeding the development of 

targeted, context-sensitive strategies. A case in point is the DMM implemented in Kisumu, 

which was explicitly designed to address water supply issues within slums by replacing the 

chaotic 'spaghetti' network with a more structured one (World Bank, 2009). While such 

initiatives directly respond to the challenges outlined above, there is to date no empirical 

evidence on their effectiveness, highlighting the need for further empirical evaluation (Nzengya, 

2015). This study addressed this gap by applying an integrated analytical framework that 

combines urban morphology and water infrastructure analysis, revealing that pipeline 

topology is shaped by broader urban environments, including both physical form and 

governance strategies such as the DMM. This approach enabled the empirical 

identification of spatial interactions and trade-offs between SDG 6 and SDG 11 at the intra-

urban scale. 

The overarching approach of this study is to examine the performance of road networks, water 

and sanitation infrastructure, with particular attention to how these associations vary across 

slum and non-slum areas, as well as under different management regimes. In sub-Saharan 

Africa, urban water provision encompasses both piped and non-piped sources. This study 

focuses exclusively on two improved water sources, pipelines and water kiosks, which are 

representative examples of piped and non-piped water supply, respectively. The morphology and 

management of pipeline networks influence maintenance and water supply stability (see 

Section 2.3.2). The research findings indicate that, despite differences in scale and national 

context, infrastructure networks in SSA cities exhibit remarkable commonalities in their 

structural configuration, with connectivity and robustness being closely linked to urban 

morphological characteristics (see Chapter 4). Notably, the D-measure and co-location analysis 

of road and water networks—particularly the linear relationship observed in co-located road and 

pipeline closeness centrality—highlights two key points: (1) urban morphology has a strong 

relationship with infrastructure networks, and (2) the road and water networks of two case study 

SSA cities share common morphological characteristics. The significance of this study lies in 

highlighting the influence of urbanisation in the Global South on the configuration of water 

systems. Crucially, the influence is independent of specific conditions such as city size or 

geographical location, as evidenced by structural similarities observed across comparable types 

of infrastructure in different cities. The findings provide a foundation for analysing the 

relationship between slums and water network configurations. Previous studies, despite their 

efforts to compare water infrastructure networks across cities using graph-theoretical 

approaches, have generally failed to reach clear conclusions due to the absence of quantitative 

measurements (Abdel-Mottaleb and Zhang, 2020, Lorenz et al., 2021, Mair et al., 2017). Further 

analysis (Chapter 5) examined the spatial configuration of pipeline layouts within the study 
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cities. The results demonstrate that the heterogeneity of network structures within the cities, 

where both government intervention and the spatial configuration of slums are related to the 

variations in pipeline network structures at the intra-urban level. These findings are further 

supported by graph metrics and supplementary contextual information. In particular, pipelines 

in Kisumu managed under DMM show distinct characteristics in community detection, 

indicating that they tend to form discrete, self-contained subsystems compared to pipelines in 

other areas.  

Regarding water kiosks, existing studies, such as Adams (2018b) and Boakye-Ansah et al. (2022) 

listed in Chapter 6, have largely relied on small-scale surveys and interviews. While valuable for 

uncovering specific local details and consumer experiences, these studies do not offer broader 

spatial or quantitative insights into access patterns. As a result, they provide limited guidance 

for large-scale urban planning or policy formulation. Chapter 6 reveals that EAs with high 

accessibility values are concentrated in certain slums where kiosks are most densely 

distributed. This variation between slums in kiosk availability also corresponds with earlier 

findings of prolonged queuing times in other slum areas with lower kiosk density (Sima et al., 

2013). Accessibility declines outward from these areas. Meanwhile, for water points like kiosks, 

the relative spatial distribution of these points in relation to the population directly affects their 

accessibility and, consequently, water consumption (Boakye-Ansah et al., 2022, Cassivi et al., 

2019, Devi and Bostoen, 2009). This pattern can also be linked to urban morphology, as it 

overlaps with the KDE and IDW interpolation results of road network centralities, which serve as 

indicators of major urban road density. This finding is consistent with the commonly observed 

heterogeneity of water provision in SSA cities (Deshpande et al., 2020, Dongzagla et al., 2022, 

Tetteh et al., 2022), but offers more data-driven evidence and identifies the spatial factors that 

may most effectively enhance access. 

Our study provides a robust quantitative framework to address these gaps by demonstrating that 

the heterogeneity of both pipeline and water point services can be recognised by a common 

environmental factor, urban morphology. Urban morphology is determined by the spatial 

organisation of city elements—primarily plots, buildings, and streets (Araújo de Oliveira, 2022b, 

Scheer, 2015), among which streets are commonly used as a basis for analysis (Araújo de 

Oliveira, 2022a, Wang and Gu, 2023). In the PhD study, road networks were used as a reference 

in both Chapters 4 and 6, while Chapter 5 employed the Million Neighborhoods Map, a dataset 

that also utilises urban morphology to identify slums. Urban morphology influences pipeline 

placement by determining spatial divisions, leading to structural variations within slums. Due to 

differences in construction guidelines between streets and pipeline networks, a systematic 

centrality difference between the two was observed. As a result, the PhD study observed similar 

infrastructure metrics across both cities in Section 4.4. This was further validated through 
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community detection and partition similarity assessments, which confirmed that pipeline 

structures within slums exhibit distinct network characteristics. Additionally, in Kisumu, 

community detection revealed that the DMM had a notable impact on pipeline topology. 

For water points, the study’s findings align with intuitive expectations: urban morphology and the 

spatial distribution of water sources are both associated with accessibility. In Kisumu, the 

clustering of high accessibility scores overlapped with densely distributed kiosk areas and 

regions with high road centrality. These findings provide further evidence that SSA cities exhibit 

identifiable structural patterns that influence both infrastructure provision and residents' daily 

lives. Furthermore, pipeline network arrangements and water interventions (including both DMM 

pipelines and kiosks, the latter of which in Kisumu is also linked to the DMM) represent an 

attempt to formalise informality. The observations indicate that formal and informal networks 

exhibit distinct morphological characteristics. Neoliberal water governance policies have made 

measurable progress, aligning with Harris (2020), who argues that while neoliberal reforms are 

often perceived as a withdrawal of formal governance and require careful scrutiny, they have 

nonetheless objectively improved essential services. 

Overall, these findings provide strong evidence to support the developing theories of 

Southern urbanisation. Since the 1960s, scholars have proposed varying interpretations of 

informality, offering insights into how it should be conceptualized and positioned within the 

urban context. A systematic review of urban studies indicates that the focus on cities in the 

Global South is increasing (de Castro Mazarro, 2023). This shift has been accompanied by 

changes in both policy and research perspectives, moving from the experiences of northern 

cities to the realities of southern cities, as well as a transition from urban renewal strategies to 

subaltern urban governance (Brenner and Schmid, 2015, Sheppard et al., 2013). Scholarship 

has advanced alternative theories of urbanisation that seek to incorporate Southern urban 

experiences into a more inclusive theoretical framework, while also exploring the underlying 

drivers and conceptualisation of such practices (Parida and Agrawal, 2023). This theoretical 

trend in Global South urban studies, along with the associated developments in slum and water 

policies, is described in the literature review (Section 2.2). In this context, merely increasing the 

number of studies on cities in the Global South does not necessarily enhance understanding of 

their development; rather, it risks reinforcing fragmented perspectives on specific cities. 

Therefore, research on Southern cities, particularly on informal slums, is essential for 

deepening the understanding of Southern urbanisation. 

Studies of Southern urbanisation primarily focus on how to approach the existence of slums. 

The subaltern perspective recognizes the value of the activities of slum residents, rather than 

viewing them merely as objects to be excluded. From another angle, the resistance of slum 
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residents to slum clearance activities can also be seen as an expression of subaltern power (Fix 

and Arantes, 2022). This is the reason behind slum upgrading policies discussed in the literature 

review and the introduction of the DMM / public-private partnership (PPP) model for improving 

slums. The current research demonstrates that such intervention policies, distinct from full 

public actions, can effectively change service provision in neighbourhoods. The deeper 

conceptual issue that the theories address is how to identify the poverty entities that 

require governance. As Roy (2014) pointed out, since the SDGs focus on eliminating urban 

inequality and poverty, recognizing and understanding the poverty entities that need 

improvement in cities becomes a key issue. This involves determining which rights or conditions 

should be seen as essential for urban residents. As noted in the literature review 2.2.1, different 

countries define slums in various ways, reflecting their understanding of urban inequality. 

Alizadeh and Prasad (2024) advocate for The right to the city, which views the rights of excluded 

urban residents as a basis for identifying urban inequality. Following this perspective, in the 

PhD study, whether measuring network structures or water kiosk access, the essence is to 

treat access to basic services as a universal right for urban residents, and, based on this, 

quantitatively assess the risks of being excluded from these rights. Through comparison with 

areas commonly regarded as slums, valid similarities in their distribution were found, indicating 

that service provision can be viewed as a key indicator of urban inequality. This suggests 

that the observed inequalities reflect broader, shared patterns of urban development 

imbalances. Therefore, the evidence contribution, which concerns inequalities in access to 

water services, is not limited to the context of slum-free cities or Southern urbanisation. 

7.3 Research limitations and uncertainties 

The limitations of the study can be divided into three categories. The first category consists of 

the shortcomings arising from practical implementation, which can be improved with more 

accurate information. The second category refers to the inherent limitations of the research 

methods and approach; these limitations are intrinsic to the methods used and can only be 

addressed by employing alternative approaches. The third category stems from external factors, 

such as policy frameworks and socio-economic conditions, which impose contextual 

constraints on the research. 

Limitations that can be addressed through acquiring more robust information: First, the 

lack of access to temporal data restricted this analysis to a cross-sectional study. In such 

cases, causal inference is generally inappropriate without additional supporting information 

(Kesmodel, 2018). As a result, this study was limited in its ability to explore temporal 

relationships between urban environmental change, policy interventions, and the evolution of 



Chapter 7 

217 

pipeline networks. Specifically, the study was unable to determine whether the observed 

relationships hold consistently over time or confirm a causal link between urban morphology 

and networks.  

In the 2SFCA analysis, I simplified the water access situation within the study area by applying 

the same catchment size to both the population centroids of peripheral and internal EAs. The EA 

boundaries for Kisumu were derived from the 2009 Kenya Census rather than the more recent 

2019 Census, due to data availability. Moreover, this study did not account for the diversity of 

water sources within the study area. In this study, kiosk demand was estimated by subtracting 

the population using piped water from the total population. However, in many developing 

contexts, including Kisumu, households often rely on multiple water sources for different 

purposes (Daly et al., 2021, Okotto et al., 2015). Due to the lack of detailed data on how water 

use is allocated across sources in Kisumu, this study adopts a simplified estimation approach 

that does not fully reflect such complexities. Moreover, the travel scenarios and distance decay 

parameters were set based solely on existing literature rather than field surveys in Kisumu. 

Therefore, the access analysis results may differ from actual water collection conditions. These 

limitations, similar to those in graph-based analysis, could be improved with further 

investigations and the collection of field data. 

Inherent uncertainties stemming from modelling assumptions and data limitations: Further 

challenges arise from the application of graph theory and the 2SFCA method. The interpretation 

of topological attributes is influenced by other similar studies. On one hand, there is no 

established standard for how to apply graph measures to infrastructure networks, which 

introduces methodological variations in network modelling and representation, such as 

whether to use primal or dual mapping, and how to correct and simplify network topology. This 

results in potential differences in the interpretation or significance of the graph metrics 

employed. For example, Hwang and Lansey (2017) pointed out that removing or retaining 

pseudo-nodes within the same network can result in different meshedness values. This implies 

that differences in modelling assumptions can render network indicator values non-comparable 

across studies. This issue is also related to the availability of data. Many studies of water 

network topology rely on synthetic networks, which do not always reflect the characteristics of 

real-world networks (Momeni et al., 2023, Paez and Filion, 2017, Yu et al., 2024), thus 

undermining the comparability of the study’s findings with other studies. Another limitation of 

graph theory analysis is that, although network topology is closely linked to the hydraulic 

performance of pipeline networks, it should only be viewed as a preliminary basis for network 

resilience analysis. As Yazdani and Jeffrey (2011) point out, topological analysis alone provides 

an incomplete picture of network resilience, as financial and operational management, 

geographical context and the urban space heavily influence the structure of the network.  
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In addition, several inherent uncertainties in the accessibility analysis cannot be resolved 

through the acquisition of better data or the adoption of alternative methods. First, gridded 

population datasets are inherently predictive in nature and rely on modelling assumptions that 

introduce uncertainty. Although this study compared multiple population datasets through 

assessing their alignment with road centrality patterns, the results can only indicate relative 

performance. Second, household-level data on population distribution and water access would 

offer higher accuracy but are often unavailable due to geoprivacy concerns and the limited 

spatial coverage of detailed surveys. Third, despite being a critical component of actual water 

access, unimproved water sources are often informal, transient, and difficult to monitor, 

making them challenging to incorporate into spatial models with consistency and reliability. As 

a result, analyses of water access are inevitably subject to uncertainty, since actual service 

levels can only be approximated rather than precisely measured. 

Limitations arising from socio-economic and governance factors: Moreover, the 

interpretability of this study is subject to variability due to governance and socio-environmental 

factors. A notable limitation lies in the definition of slums in Chapter 5. Extracting urban 

structure and community information is challenging due to the lack of widely accepted 

definitions for communities (Harris, 2020). This is particularly true for slums (Kuffer et al., 2016). 

In this study, slum boundaries were derived from the Million Neighborhoods Map and 

supplemented using UN-Habitat slum maps.  Although the Million Neighborhoods Map also 

accounts for population distribution, it fundamentally relies on the analysis of road network 

layouts, meaning its results may still differ from studies employing alternative slum 

identification methods. Another greater source of uncertainty arises from the fact that, due to 

political and social factors, slums exhibit a wide variety of forms and compositions (Smit et al., 

2017, Taubenböck et al., 2018), and definitions differ across countries and even between cities. 

Consequently, using a broad classification of slums or informal settlements may result in 

variability in analyses of slums in relation to urban pipelines, depending on the criteria applied. 

This limitation cannot be fully resolved until a unified framework for defining community and 

slum boundaries is established. Furthermore, in the community validation section of Chapter 5, 

other environmental factors potentially affecting pipeline distribution may have been 

overlooked. Variations between slums in terms of population, infrastructure conditions, and 

income levels, as well as differences in terrain and the priorities of government strategic 

planning, may exert additional influence on the configuration of pipeline networks within 

communities.  

Similarly, the study also reveals that urban morphology plays a role in water access. However, in 

Kisumu, water kiosks display a notably clustering distribution. Considering that the 

establishment of water kiosks is often shaped by power dynamics (Velzeboer et al., 2018), this 
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dense distribution suggests that kiosk placement is likely influenced by governmental decisions 

or environmental factors. It may also reflect heterogeneity in community demand for kiosk 

services. Therefore, an analysis focusing solely on access cannot fully capture the relationship 

between supply and demand, and the layout of the road network represents only one of the 

factors influencing access. 

7.4 Transferability and scalability of the research 

Although the setting of parameters requires local knowledge, the analysis approaches 

employed in this study are not dependent on the characteristics of specific cities and can be 

applied to other cities, including graph similarity measures, community detection algorithms, 

co-location analysis, and the 2SFCA model. Graph methods treat networks as the mathematical 

representations, preserving only the connectivity between nodes, while other attributes are 

incorporated as alternative weights. Moreover, network metrics are designed to account for the 

varying numbers of nodes and edges within the network. The study’s findings also show that 

graph-based analyses exhibit characteristics that are scale-independent, especially in the case 

of co-location analysis. While this study adopted a specific community detection algorithm, 

Infomap, it is important to note that no single algorithm is universally optimal. Due to the 

absence of a definitive ground truth and the context-dependent nature of algorithm 

performance—summarised in the no ground truth and no free lunch theorems (Fortunato and 

Hric, 2016, McCarthy et al., 2019, Peel et al., 2017), researchers seeking to apply this workflow 

to other networks should be cautious about how algorithm choice may affect results. 

The 2SFCA model, as a place-based accessibility assessment approach, is fundamentally an 

application of Tobler’s First Law of Geography (Tobler, 1970), evaluating accessibility by 

measuring the supply-to-demand ratio and the spatial proximity between them. Therefore, the 

workflow developed can be applied where information on population, water points, and travel 

scenarios is available. Among these, population datasets are relatively well-developed, with 

many offering global coverage—such as the HRSL, GHS-POP, LandScan, and WorldPop global 

layers listed in Section 6.3.1, as well as the forthcoming WorldPop Global 2. Considering the 

differences observed in the performance of population datasets in 2SFCA analysis and their 

timeliness, some additional population indicators can also be used to assist in population 

estimation (Tan et al., 2021). However, population datasets differ in accuracy depending on 

modelling approaches, input covariates, and data availability—particularly in slums, where 

covariates such as building footprints may be insufficient or outdated (Hanberry, 2022, 

Palacios-Lopez et al., 2019, Thomson et al., 2021). As this study has shown that constrained 

datasets performed better within slum areas of the study region, we recommend careful 
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evaluation of population layers when applying the 2SFCA workflow to other contexts. On the 

other hand, studies have already established global and national-level travel scenario models. 

For example, Macharia et al. (2023) calculated the geographic accessibility of public primary 

schools in Kenya, using Accessmod software to construct travel paths, a method also employed 

in the current study. Weiss et al. (2018) created global city accessibility maps, also employing 

the friction surface modelling method. Watmough et al. (2022) constructed travel time maps to 

the nearest health facility across Uganda, Tanzania, Zimbabwe, and Mozambique. These 

examples highlight the increasing availability of large-scale population and travel scenario 

data, which supports the application of the 2SFCA model.  

However, the application of the 2SFCA model requires a detailed and georeferenced 

inventory of communal water points to construct travel paths between populations and 

specific sources. While several countries—such as Sierra Leone, Liberia, Uganda, and 

Tanzania—have national-level water point databases, studies have highlighted persistent 

quality issues, including procedural, observational, and conceptual errors (Foster, 2013, Yu et 

al., 2017). These issues, arising from both local contexts and general limitations in water point 

mapping, can introduce errors when combined with population estimates (Verplanke and 

Georgiadou, 2017, Yu et al., 2017). The study’s data audit also shows that the generation of 

population data products relies on census data, which means that when applying the 2SFCA 

analysis in other areas, there may be discrepancies between the model outputs and actual 

supply-demand conditions. Nevertheless, the method remains promising in contexts where 

the reasonably complete and up-to-date inventories of water points are increasingly 

available through systematic mapping campaigns and the digitization of utility records. In 

addition, platforms such as the Water Point Data Exchange (WPdx), the International 

Benchmarking Network for Water and Sanitation (IBNET), SIASAR, and the JMP offer valuable 

reference sources to support broader application and calibration of the model at city or national 

scales. 

Our focus is on addressing urban inequalities, particularly in spatial and water services. Apart 

from the availability of pipeline data, the only criterion for selecting study areas was that they 

should face challenges of slum expansion and water access. This criterion ensures the 

representativeness of the study and allows for transferability of the results across various SSA 

cities. Therefore, the two selected cities differ significantly in other aspects, such as city scale, 

spatial layout, infrastructure development history, and water policies (Section 3.2). Despite 

these differences, both cities still exhibit similar infrastructure patterns, as demonstrated by the 

findings in Chapters 4 and 5. This suggests that the observed relationships between urban form 

and infrastructure may also hold in other SSA cities with urban inequalities, regardless of their 

other conditions. Furthermore, as previously discussed, the development of urban 
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infrastructure—whether in southern or northern cities—is constrained by similar factors. The 

study’s focus on slums and water services in SSA cities fundamentally reflects a broader 

pattern of urban water distribution inequalities. From the perspective of comparative theory, 

this research eventually contributes to the understanding of global urban development.  

7.5 Implications for urban water service delivery and planning 

In this PhD study, the application of graph theory methods demonstrates significant potential 

for evaluating pipeline networks and informing pipeline planning, particularly in LMICs where 

data on pipelines is often scarce. However, it remains important to maintain comprehensive 

records of pipeline infrastructure to support accurate network performance assessments. As 

noted in the limitations, the absence of installation date records hinders the possibility of 

conducting longitudinal studies on pipeline networks. Therefore, utilities are encouraged to 

improve the management of pipeline data and maintain detailed records of installation dates. In 

addition, documenting other physical attributes such as pipe diameter and material is also 

recommended, as this information can contribute to more accurate weight estimations in 

network analysis. 

As highlighted in the literature review (Section 2.2.3), the implementation of PPP projects, such 

as the DMM, has been subject to considerable criticism worldwide. Many of these projects have 

either failed (Ameyaw and Chan, 2015, Zhang and Tariq, 2020) or are perceived to have shown 

no significant performance improvements compared with publicly managed initiatives 

(Chenoweth and Bird, 2018). As a result, PPPs are often regarded as involving substantial risks. 

On the other hand, from the perspective of slum upgrading, existing research has demonstrated 

that the public-oriented nature and social engagement inherent in PPPs can bring significant 

benefits to upgrading projects (Brown-Luthango et al., 2017, Svensson et al., 2003). In this 

context, the extent to which PPPs can improve existing conditions becomes a crucial question. 

For water provision, given the crucial role of pipeline networks in determining water access and 

their long lifespan, which implies long-term impacts, it is also essential to examine their 

physical configuration. Evidence from Chapter 5 indicates that pipelines implemented under 

the DMM project exhibit distinct characteristics compared to other areas. Since one of the key 

motivations behind the DMM deployment is to improve the disordered "spaghetti" pipelines 

commonly found in slum communities (World Bank, 2009), the results suggest that these 

interventions have successfully enhanced water distribution networks in slums. Although 

the nature of this impact—whether positive or negative—remains unclear, it nevertheless 

provides an important indication that PPPs have the potential to continue or expand their role in 

improving water provision in slum areas through interventions in the pipeline network. 
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Furthermore, this suggests the feasibility of the Southern urban-style transformation towards 

sustainable water management advocated by (Herslund and Mguni, 2019).  

This research also indicates that there are still certain shortcomings in the current placement of 

DMM endpoints. In the Kisumu area, there are two operational management models for water 

kiosks. One is managed by the DMM master operators, who collaborate closely with the utility. 

The other is operated directly by the utility and kiosk operators as separate actors, without the 

involvement of master operators. The DMM kiosks are mainly concentrated in Nyalenda, while 

the kiosks in Manyatta follow the latter model (two areas identified in Chapter 6) (Gilson et al., 

2025). According to a survey by Nzengya (2018), it was observed that the number of people 

queuing at kiosks in Nyalenda is significantly higher than in Manyatta, despite the kiosks in 

Nyalenda offering lower prices. The study’s observations support this phenomenon, as 

Nyalenda shows lower access levels in the accessibility analysis, while the areas around 

Manyatta have higher water access. The former pattern is likely primarily related to supply 

shortages and may also indicate affordability constraints where limited competition leads to 

higher prices (Section 6.5). Therefore, while DMM kiosks play a role in extending water access to 

underserved communities, their limited distribution constrains broader impact. This finding 

points to the importance of expanding kiosk provision, particularly in areas with 

constrained access and limited inter-kiosk competition. Policymakers may consider 

introducing spatially targeted support mechanisms, such as start-up financing, training 

programmes, and streamlined administrative procedures, to facilitate the entry of new kiosk 

operators and reduce barriers to service provision. 

From an urban planning perspective, one of the major challenges faced by cities in the Global 

South is how to address the expansion of slums that accompanies rapid urbanisation. While in-

situ slum upgrading has been implemented in many contexts (Bolton, 2020), research has also 

pointed out that some projects have achieved only limited improvements in residents’ access to 

basic services(Edith et al., 2019, Patel, 2013). This places higher demands on infrastructure 

planning. 

Adopting a morphological perspective, this study highlights several key considerations for 

planners: 

1. The results indicate a strong relationship between the pipeline network and the 

distribution of slums within the study area. This suggests that the poor condition of 

infrastructure in slums is closely related to the spatial configuration of service facilities. 

Consequently, improvements in accessibility and performance should be grounded in 

modifications to the spatial layout of these facilities. 

2. Infrastructure upgrading should not only focus on the internal spatial planning of 
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slums, but also take into account their interaction with facilities in adjacent areas, as 

well as their location within the wider urban infrastructure network — for example, their 

distance from main roads or trunk pipelines, and their connectivity with other communities. 

3. The overlap between roads and pipelines indicates that slum upgrading plans need 

to consider how the allocation of public space influences the spatial distribution and 

interaction of multiple infrastructure networks. Furthermore, due to the spatial 

misalignment between road and pipeline networks caused by their different core layouts 

and design principles, planners must also recognise that such interactions are constrained 

by local conditions, for example, the locations of reservoirs, treatment plants and trunk 

lines, or the road structure of well-developed areas such as CBDs or historically established 

neighbourhoods. 

7.6 Future directions for research 

Future research can address the gaps identified in this study and expand on its findings. As 

noted in the limitations section, the current study has methodological shortcomings. Future 

work can improve the framework by: 

1. Enhancing the identification of urban inequality. In this study, the assessment of slum 

impacts is based on the Million Neighborhoods Map, but future research could explore 

alternative approaches to identifying slums (Kuffer et al., 2016, McCartney and 

Krishnamurthy, 2018, Smit et al., 2017). Whether for slum-related research or for 

applying this framework to other cities, it is essential to clarify what urban inequality 

means in the specific research context and how disadvantaged areas should be 

identified. This remains an important aspect for future research. 

2. Exploring the complex interactions between water points, population distribution, 

and urban morphology to refine 2SFCA assessments. This is crucial for further 

developing accessibility analyses to improve water service provision. 

3. Leveraging alternative methods for measuring network similarity beyond the D-

measure. Neural network-based approaches have gained traction in urban morphology 

research. For instance, Kempinska and Murcio (2019) employed Variational 

Autoencoders (VAEs) to encode urban street networks into low-dimensional 

representations, enabling quantitative analysis of CNN without prior domain knowledge. 

Ma et al. (2024) utilized GCN-based models to predict the complexity and connectivity of 

street networks across cities. These methods can provide comparative insights and 

enable broader network analysis. Additionally, methods assessing node similarity within 
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networks, such as SimRank* (Yu et al., 2019a), can also help quantify regional 

characteristics within the network. 

The robustness of the research can be further improved through enhanced data collection and 

analysis. As discussed in Section 7.2.1, the topological correction of the network essentially 

involves a reconstruction of the data based on prior knowledge. Collaborating with individuals 

who possess contextual expertise, such as engineers familiar with the local network, could 

improve the reliability of the corrected network and enhance its alignment with the real-world 

infrastructure. With more detailed temporal data, future studies could also analyse the 

evolution of pipeline networks and further depict the relationship between urban morphology 

and pipeline infrastructure. Additionally, as highlighted by Sambu (2016), water governance 

strategies in Africa have undergone significant changes over the past few decades. Therefore, a 

longer-term observation of pipeline networks would provide deeper insights into how policies 

have influenced the configuration of urban networks. Previous studies have made noteworthy 

attempts in this area. For instance, by examining graph metrics of Hong Kong's road network 

over time, Lan et al. (2022) demonstrated that urban networks exhibit a specific evolutionary 

trajectory. In the study of the changing graph properties of Paris's road network over two 

centuries, Kirkley et al. (2018) found that centrality indicators were insensitive to changes in the 

urban spatial layout. Similarly, Krueger et al. (2017) observed that, over several decades, water 

distribution and sanitary sewer networks in an Asian city displayed nearly stable graph 

characteristics that were independent of urban settings, suggesting that infrastructure evolution 

follows generic mechanisms. Given the similar phenomena observed in the study, 

conducting such research in SSA regions would likely yield insights into evolutionary 

trajectories for infrastructure. Furthermore, Sulem et al. (2024) proposed a method for 

detecting change-points by comparing the similarity of continuously changing graphs. This 

suggests that the graph similarity analysis techniques employed in the study could also be 

further enhanced when applied to the analysis of temporal data. 

As highlighted in the limitations section, more robust 2SFCA estimation require records 

including kiosk capacity, travel thresholds, queueing times at kiosks, and population estimates 

for kiosk usage (or other water sources, depending on research objectives). Therefore, 

incorporating detailed field surveys to improve these estimates with detailed and up-to-date 

information would be valuable in future studies. This requires further communication and 

investigation with utilities and master operators within the study area to gather information 

about project implementation and kiosk operations (e.g., water pricing, service coverage, 

operating hours) and to understand their challenges. This should help refine the reliability of the 

model and provide more meaningful and realistic interpretations of water services.  
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Furthermore, with access to additional data, future studies could examine the implications 

of the observed topology and accessibility characteristics using the analytical framework 

developed in this study. As reviewed in Section 2.3.2, a range of studies has demonstrated that 

pipeline topology is associated with key aspects of water service, including leakages(Adraoui et 

al., 2024)，hydraulic characteristics(Torres et al., 2017, Yu et al., 2024)，energy consumption 

for water supply(Zhao et al., 2020)，and asset management(Godfrey and Howard, 2005a). 

Therefore, future research could apply the methodological framework developed in this study to 

identify structural heterogeneity in networks and examine whether such differences are 

reflected in operational outcomes. For example, by developing a geo-referenced database of 

pipeline breakage incidents, researchers could compare failure frequencies between informal 

and formal areas and assess whether these are associated with specific topological features or 

community structures. Similarly, future studies could explore the relationships between 

2SFCA-based accessibility and other attributes of water services. Several studies have 

investigated the affordability of kiosks and reported spatial disparities in water prices 

(Adams, 2018b, Adusei et al., 2018, Boakye-Ansah et al., 2022, Nzengya, 2018, Ondigo et al., 

2018, Tumwebaze et al., 2023). These price differences are often linked to variations in the 

density and spatial distribution of water points, which may reflect levels of market competition 

or monopoly. Notably, Nzengya (2018) reported spatial variations in water pricing in Kisumu, 

and these patterns appeared to correlate with the accessibility results derived in the PhD study, 

which likewise accounted for the spatial distribution of water sources. These findings suggest 

that the results of 2SFCA analysis may serve as a useful proxy for understanding affordability. If 

price data were available, it would be possible to examine such correlations more directly, 

similar to how this study related road network centrality to water point accessibility. This 

approach could also be extended to investigate broader dimensions of service delivery, 

including availability, affordability, and water quality. 

The findings of this study also open several new directions. For example, integrating 

accessibility analysis with network analysis, as demonstrated in Kranioti et al. (2022)’s study, 

where accessibility between locations was used to construct network edges. Moreover, 

multilayer network research has increasingly focused on the interdependencies among urban 

infrastructure systems Building on this perspective, future research could advance efforts to 

conceptualise infrastructure as an interconnected system by adopting a multilayer network 

approach, thereby examining structural interactions or synchronisation across co-located 

networks such as water, electricity, gas, and roads (Boccaletti et al., 2014, Kivelä et al., 2014). 

Furthermore, this PhD study annotated network features using slum and DMM information，in 

order to examine their associations with network structure. This approach could be extended to 

other network or environmental factors. One possible direction could involve adopting the 
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method proposed by Müller et al. (2020) to delineate slope-based zones, assigning networks 

within the same landslide risk area to a common community. By comparing the resulting 

partitions, future research could assess whether such factors influence network structure. 
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Chapter 8 Conclusion 

Urbanisation in the Global South has resulted in diverse urban forms and water service delivery 

practices, exhibiting characteristics distinct from those of the Global North. Previous research, 

which predominantly relies on surveys and interviews, has largely failed to capture the broader-

scale characteristics and influencing factors of water service provision. This study contributes 

to filling the gap in quantitative evidence by applying graph theory and accessibility measures to 

examine the spatial heterogeneity of water services in Sub-Saharan African (SSA) cities. Further, 

the relationships between water services and contextual factors such as water supply policies 

and community characteristics are explored. Chapters 4 and 5 employed graph methods to 

assess the performance of piped networks from two different SSA cities (Kisumu, Kenya; and 

Kigali, Rwanda). The findings revealed that the water pipe networks in the two cities exhibited 

remarkable similarities, with network attributes strongly associated with the commonalities 

observed in SSA urbanisation. Building on this, differences in urban planning strategies between 

the two cities were reflected in variations in network connectivity and robustness. The presence 

of slums contributed to the formation of distinct community structures within the piped 

networks of both cities, which were further differentiated by water interventions specifically 

targeting slums. The analysis of access to water kiosks addressed a significant research gap 

concerning the spatial distribution of off-premises water supply in SSA cities and potentially 

explained variations in kiosk water pricing across slums. The analysis revealed that, beyond 

supply and demand factors, the characteristics of shared water provision are also associated 

with road centrality. Furthermore, the study indicated that access estimates derived from 

population datasets that are constrained by built settlement extent exhibited a stronger 

correlation with road centrality, suggesting a closer alignment with urban spatial structures. 

This research established an analytical workflow that applies methodologies developed in other 

fields to the study of water infrastructure, enabling a comprehensive and large-scale 

assessment of both piped and non-piped water services within the unique context of SSA. In 

doing so, the study contributes to bridging existing gaps in the literature on water practices in 

the region, while also shedding light on the interaction between SDG 6 and SDG 11 via the lens 

of water infrastructure. Building upon the findings of this study, future researchers and urban 

planners may gain deeper insights into the dynamics of urban development, thereby informing 

more equitable and sustainable urban planning practices and advancing towards the 

achievement of the SDGs. 
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