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Since the United Nations launched initiatives to improve global water governance and resilience,
progress has been made towards Sustainable Development Goal (SDG) 6, which aims to ensure
universal access to safe water. However, significant challenges remain, particularly concerning
inequalities in urban water supply, a problem that is especially pronounced in Sub-Saharan Africa
(SSA). These disparities are closely linked to the region’s urbanisation processes, often
characterised by the proliferation of slums, which SDG 11 (sustainable and safe cities) aims to
upgrade. While numerous studies have examined the heterogeneity of urban water services in
SSA, there has been a lack of quantitative analysis on how urban environments influence water
service performance. Focusing on water pipeline networks and kiosk-based services in two SSA
cities, 1) Kisumu, Kenya, and 2) Kigali, Rwanda, the research integrates graph-based modelling,
co-location analysis, network-based community detection algorithms, and the two-step floating
catchment area (2SFCA) model to assess the impact of urban morphology, slum distribution, and
policy interventions on both piped and non-piped water services. The findings from the graph-
based analysis indicate that the configuration of essential services, particularly piped water
provision, is shaped by two primary factors: 1) The principles guiding network construction, and
2) The influence of urban morphology. Pipeline networks exhibit discernible correlations with road
networks, with betweenness and closeness centralities displaying similar distributions across
both cities. Community detection further reveals that pipelines serving slum areas form distinct
clusters from those supplying other neighbourhoods. In Kisumu, areas under delegated water
service management arrangements also form distinct networks. Accessibility analysis of water
kiosks highlights disparities in water point availability within slums, shaped in part by broader
urban layout constraints. Additionally, the study finds that the methodology used to generate
population datasets significantly influences water access indices. Settlement-constrained
datasets offer a more robust representation of water access in SSA cities. Given the limited prior
applications of graph-based and 2SFCA methods in water service research, this study provides a
quantitative workflow for assessing urban water service disparities in data-scarce SSA cities and
addresses critical knowledge gaps in both water governance and urban studies. The findings of
this study underscore the need for an integrated approach, in which water provision challenges
should be addressed alongside broader urban planning initiatives such as slum upgrading
programmes.
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Chapter 1

Chapter1 Introduction

In 2015, the world's development agenda shifted from the Millennium Development Goals
(MDGs) to the Sustainable Development Goals (SDGs). This 15-year agenda encompasses
various aspects such as health, hunger, water, and urban and community development, with
widespread inequality in cities identified as a major issue to be addressed (UN-habitat, 2016).
However, a decade after the launch of the SDGs, the achievement of many targets remains
uncertain, with significant disparities persisting across regions, particularly in the area of water
services. According to the United Nations' 2023 report, 703 million people still lacked access to
basic water services, of whom 408 million were located in sub-Saharan Africa (SSA) (UN,
2023a). The causes of water scarcity extend beyond shifts in lifestyle and consumption
patterns; a key driver has been population growth, which has led to demand outstripping supply,
while uneven distribution further exacerbates the uncertainty of water access (Molden, 2020,
Mukheibir, 2010). Schlosser et al. (2014) estimated that, by 2050, economic and demographic
factors would cause an additional 1.8 billion people to suffer from water scarcity, and most of

these populations will be located in developing countries.

The disadvantaged position of Southern cities in terms of water supply is closely linked to their
urbanisation processes. The rapid urbanisation that has characterised the twenty-first century
has generated an insatiable demand for housing and basic services (UN-Habitat, 2023a).
Meanwhile, rapid urbanisation has widened disparities in service quality within cities (Boakye-
Ansah et al., 2019, Ocholla et al., 2022, UN-ECA, 2014). In the context of rapid urbanisation in
Southern cities, these challenges have contributed to the emergence of slums—densely
populated, underserved communities that embody the imbalance between supply and demand
for urban resources and services. Consequently, water access issues and the development of

slums are closely intertwined, both spatially and conceptually.

SDG 11 ("Make cities and human settlements inclusive, safe, resilient, and sustainable") is
closely connected to the objectives of SDG 6 ("Ensure availability and sustainable management
of water and sanitation for all") regarding equitable water provision. The close linkage between
these two goals is reflected in policy practices, such as the emphasis on infrastructure services,
particularly water services, within slum upgrading programmes (Adama, 2020, Brown-Luthango
etal., 2017, Olthuis et al., 2015), and water interventions specifically targeting slums
(Annamalai et al., 2016, Dos Santos et al., 2017, Lima et al., 2021, Marin, 2009b, Moretto et al.,
2018, UN-Habitat, 2023b). Theoretical frameworks have also explored the connections between
infrastructure and urbanisation, including discussions of the splintering of infrastructure

networks during urban growth (Coutard, 2008, Graham and Marvin, 2002), the theorisation of
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how Southern urban characteristics influence governance and modes of production (Parida and
Agrawal, 2023), and research linking urban form to network performance(Lorenz et al., 2021,

Torres et al., 2017, Zhao et al., 2020).

Nonetheless, there remains a notable evidence gap regarding the current status of water
services within Southern cities and their synergies with slum characteristics and policies.
Existing research on urban infrastructure has predominantly focused on the relationship
between road networks and urban morphology, with graph theory methods widely applied to
reveal the connections between urban networks and morphological or environmental factors
(Dingil et al., 2018, Dovey et al., 2020, Kolowa et al., 2024, Serra et al., 2016, Yin et al., 2018). By
contrast, studies concerning water services are significantly lacking, and those that do exist are
largely concentrated in Northern cities. Little is known about how urban water supply services—
including both piped networks and water points such as kiosks—are influenced by urban form.
This is particularly pertinent in the context of Southern cities, where slums form an integral part
of the urban landscape and may shape the spatial configuration of water infrastructure.
Furthermore, Southern cities have implemented various policies to intervene in water delivery
within slums (Adams et al., 2019, Dos Santos et al., 2017, Patel and Killemsetty, 2020, World
Bank, 2009), potentially adding another layer of complexity. However, there is limited
understanding of the extent to which these policies have physically influenced water
infrastructure.

Therefore, this research aims to analyse the relationship between the SSA urban environment
and the performance of water services. It is necessary to examine the spatial patterns of piped
infrastructure in selected case study areas to inform the factors influencing urban water service

delivery, particularly in slums of larger cities in SSA. Specific objectives include:

1. Assess the extent of topological and geometrical commonalities of road and
water/wastewater networks across case study SSA cities and evaluate to what extent
road typologies capture the distribution of slums and the heterogeneity of water and
sanitation service infrastructures.

2. Assess whether the spatial distribution and topology of water networks differ between
slum versus planned urban areas and between water management regimes.

3. Quantify geographic access to kiosk water in a case study city by utilising the 2 steps
floating catchment area (2SFCA) model and analyse the extent to which access to kiosk

water points is influenced by urban planning.

Against this backdrop, Chapter 2 provides a review of the progress of urbanisation and SDG
initiatives in Southern cities, as well as the policies concerning slums and water supply that are

prominent in Southern urban contexts. The review also introduces the two-step floating
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catchment area (2SFCA) method, graph theory metrics and algorithms, and relevant application
contexts. A detailed summary of the study areas’ urbanisation patterns and infrastructure
development is presented in Chapter 3. The analytical chapters are organised to address these
research objectives from various perspectives (Figure 1.1). The first chapter (Chapter 4)
quantifies co-location and topological similarities in road, water, and wastewater urban
networks in Kigali versus Kisumu, summarising patterns found. The second chapter (Chapter 5)
examines the pipeline network's relationship with slum distribution and policy by applying graph
analysis and community detection to Kisumu and Kigali's pipeline networks. The third (Chapter
6) focuses on spatial patterns of water service accessibility by examining another major water
source in the southern cities: kiosks. Due to data availability, 2SFCA results are presented for

Kisumu’s kiosks only.

Southern urbanization

Graph theory tools
Slum - sDG 1
¥
& A
Empirical evidence :
A
¥ ¥
Place-based
accessibility VWater sernvice -« SDG 6
measures

Figure 1.1 Conceptual Framework of the Thesis. In the context of southern urbanisation, there
are notable similarities between the trajectories of slum improvement and water
policy development. This research aims to identify the connections between these
two aspects, providing empirical evidence for the study of southern cities and
ultimately contributing to the understanding and achievement of SDG 6 and SDG
11.
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Chapter 2 Literature review

2.1 The Sustainable Development Goals (SDGs)

The Sustainable Development Goals (SDGs) were launched by the United Nations in 2015 as a
global initiative aimed at eradicating poverty and promoting sustainable development by 2030.
The SDGs include 17 goals, 169 targets, and over 230 indicators, addressing issues such as
poverty, health, environment, energy, and urban development, which can be classified into
three themes: economic growth, environmental protection, and social inclusion (Feeny, 2020,
Herrera, 2019). According to the 2030 agenda (UN, 2015a), the emphasis is on both the
differences between countries and the disparities within countries. In other words, the SDGs
aim to leave no one behind on the road to development, whether in developed or developing
countries. This is a historic shift, implying not only the need for multidimensional participation in
governance (participation of organisations from local to global level) but also a greater focus on
addressing inequality and poverty within countries (Revi, 2016). Such efforts are closely linked

to urbanisation (UN-habitat, 2016).

Today, some 56% of the world’s population lives in cities, and more than 80% of global GDP is
generated in cities (World Bank, 2023). Since before 1960, the total global population has risen,
and so has the proportion of people living in cities. Until relatively recently this trend towards
urbanisation has seemed irreversible (Chen et al., 2014). Historically, when economies of scale
develop within a city, the growing population moves into the city to participate in productive
activities, thus contributing to urbanisation. Therefore, the population growth accompanying
urbanisation is conducive to economic development - this can be seen from the share of urban
GDP. Itis also argued that urbanisation will facilitate the flow of goods and services, stimulate
the rural economy and narrow the gap between urban and rural areas, thereby reducing poverty

and inequality (Ahimah-Agyakwah et al., 2022).

The previously described circumstance is not always the case. As noted by Gollin et al. (2016),
urbanisation in Western cities has typically been accompanied by a transformation in economic
structure, driven by the concentration of population in urban industrial sectors. In contrast, the
trajectory of urbanisation in Sub-Saharan Africa (SSA) has diverged from trends in the share of
the manufacturing sector in GDP (see Figure 2.1). A substantial proportion of the urban
population in SSA remains employed in the agricultural sector (Grover et al., 2022). The ongoing
urbanisation in SSA has been characterised as urbanisation without economic growth (Castells-
Quintana and Wenban-Smith, 2020), or so-called premature urbanisation (Grover et al., 2022).

Moreover, urbanisation in SSA is accompanied by growing inequality in cities and problems
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such as health risks (Alaazi and Aganah, 2020, Amegah, 2021). Thus, concerns have been raised

about the living conditions of SSA urban dwellers.
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Figure 2.1 Trends in Urbanisation Rate and Manufacturing Share of GDP in SSA, 1986-2023

(Source: World Development Indicators (accessed 2025)).

2.1.1 SDGs in focus: SDG 11- sustainable cities

Based on urbanisation trends and impacts in regions such as SSA, SDG 11 was proposed to
address issues in the urban development process. As shown in Table 2.1, the overarching aim of
SDG 11 is to make cities and human settlements inclusive, safe, resilient and sustainable. This

framework covers many aspects of urban life.
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Table 2.1

Targets, and indicators for SDG 11 derived from (UN, 2015b). Italicized items

indicate targets and indicators relevant to the research theme.

sustainable

Goal 11. Make cities and human settlements inclusive, safe, resilient and

Target

Indicator

11.1 Adequate, safe and affordable
housing

11.1.1 Urban population living in slums

11.2 Accessible and Sustainable transport
systems for all

11.2.1 Public transport access

11.3 Inclusive and Sustainable
urbanisation

11.3.1 Sustainable urbanisation rates

11.8.2 Urban planning management

11.4 Safeguard the world’s cultural and
natural heritage

11.4.1 Protecting cultural heritage

11.5 Reduce the number of people
affected by disasters

11.5.1 Deaths and injuries from natural
disasters

11.5.2 Economic losses from natural
disasters

11.5.3 Damage to critical infrastructure
and disruptions to basic services

11.6 Reduce the environment impact of
cities

11.6.1 Solid waste management

11.6.2 Urban air pollution

11.7 Provide Universal access to safe
public spaces

11.7.1 Open spaces in cities

11.7.2 Safe spaces in cities

11.a Support links between urban, peri-
urban and rural areas

11.a.1 Urban and regional planning

11.b Increase integrated policies and
plans towards mitigation and adaptation
to climate change

11.b.1 Integrated disaster risk
management

11.b.2 Local disaster risk management

11.c Building sustainable and resilient
buildings utilizing local materials

SDGs set out detailed targets and indicators to monitor progress. These include providing

accessible and affordable transport systems, reducing urban expansion, increasing

participation in urban governance, enhancing cultural and heritage preservation, addressing
urban resilience and climate change challenges, better management of urban environments

(pollution and waste management), providing access to urban environment, and providing a

comprehensive and integrated approach to urban development (Franco et al., 2019).
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Despite having detailed target sets, SDG 11's progress worldwide is not encouraging, and
research targeting urbanisation is still urgently needed. The UN-Habitat Synthesis Report 2023
(UN-Habitat, 2023a) indicates that the world is still far from achieving SDG11, particularly
regarding the issue of slum expansion (for the definition and description of this issue, see
section 2.2). Although the proportion of urban population living in slums has decreased, the
absolute number has grown, currently standing at 1.1 billion (UN, 2023b). Among the regions
with the highest concentration of slum populations—Central and Southern Asia (359 million),
Eastern and South-Eastern Asia (306 million), and SSA (230 million)— have the highest
proportion of urban population living in slums (UN-Habitat, 2023c). Additionally, the rate of
reduction in both the slum population and proportion in SSA is relatively slow (UN-Habitat,
2023b), making these countries further from the goal of reducing the urban population living in
slums compared to other areas (Halkos and Gkampoura, 2021). The reasons are multifaceted. It
is argued that cities have significantly different baselines in terms of human activities, economic
activities, cultural context, political factors, and ecology (UN, 2015a). Therefore, SDG 11
imposes targets that may be impossible for some cities to achieve (Croese et al., 2021,
Janouskova et al., 2018). For example, research in SSA has shown that a lack of political will,
limited funding, and weak management capacity have severely constrained the SDG 11 process
(Juju et al., 2020). Additionally, the UN-Habitat report emphasises the role of urbanisation in
driving slum expansion, which has been exacerbated by the COVID-19 pandemic (Miranda et
al., 2023, UN-Habitat, 2023c). Given the approaching 2030 deadline, more effort needs to be

directed towards areas such as SSA cities and slums.

2.1.2 SDG 6: progress and challenges in achieving universal water access

SDG 6 has encountered various challenges. Compared to Millenium Development Goal (MDG)
7¢, which only targets access to improved drinking water sources and sanitation, the ambitions
of SDG 6 are broader and more specific (Herrera, 2019). This goal considers both the disparities
in individuals' ability to access water due to gender, income, and education level, and the
spatial inequalities in resource distribution (Dos Santos et al., 2017). There are various targets
displayed in Table 2.2: drinking water (SDG 6.1), hygiene and sanitation (SDG 6.2), water quality
and wastewater (SDG 6.3), water use and scarcity (SDG 6.4), water resources management
(SDG 6.5), water-related ecosystems (SDG 6.6), cooperation and capacity-building (SDG 6a),
and participation of local communities (SDG 6b). SDG 6 commits to equal and universal access
to safely managed water and sanitation services. A safely managed water service is an improved
water source located on-premises, available when needed, and free from contamination
(WHO/UNICEF, 2018). Water sources that do not meet these criteria but take less than 30

minutes to draw water are defined as basic services (WHO/UNICEF, 2018). By this definition, if a
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water source is unprotected, it will be classified as unimproved, and improved sources are
"those that have the potential to deliver safe water by nature of their design and construction"
(WHO/UNICEF, 2010). Improved sources include piped supplies, such as water piped into
dwellings and compounds, or public taps and standpipes, as well as non-piped supplies, such
as protected wells and springs. Additionally, technologies that distribute water, such as tanker

trucks and carts with small tanks or drums, are also considered improved sources.

Table 2.2 Targets, and indicators for SDG 6 derived from (UN, 2015b). Italicized items indicate

targets and indicators relevant to the research theme.

Goal 6. Ensure availability and sustainable management of water and sanitation
for all

Target

Indicator

6.1 Safe and affordable drinking water

6.1.1 Safe drinking water

6.2 End open defecation and provide
access to sanitation and hygiene

6.2.1 Safe sanitation and hygiene

6.3 Improve water quality, wastewater
treatment and safe reuse

6.3.1 Wastewater safety

6.3.2 Ambient water quality

6.4 Increase water use efficiency and
ensure freshwater supplies

6.4.1 Water use efficiency

6.4.2 Levels of freshwater stress

6.5 Implement integrated water resources
management

6.5.1 Integrated water management

6.5.2 Transboundary water cooperation

6.6 Protect and restore water-related
ecosystems

6.6.1 Protect and restore water-related
ecosystems

6.a Expand water and sanitation support
to developing countries

6.a.1 Water and sanitation support

6.b Support local engagement in water
and sanitation management

6.b.1 Local participation in water and
sanitation management

Under this new framework, as of 2020, 74.3% of the global population had access to safely
managed drinking water. However, approximately 2 billion people still lacked access to safely
managed drinking water, and 703 million did not have access to basic water services. Of these
703 million, 408 million lived in SSA (UN, 2023a). From the experience of the International
Drinking Water Supply and Sanitation Decade (IDWSSD) and prior MDGs, the primary reason for
low levels of water access is population growth or the discrepancy between supply and demand
(Adams et al., 2019, Najlis and Edwards, 1991, Sambu and Tarhule, 2013, UN-ECA, 2014, WHO,
1992). As summarized by Huang et al. (2021) and Schlosser et al. (2014), the main drivers of
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water scarcity are increased water demand due to population growth and economic activity
rather than reduced supply due to climatic factors. In urban areas, water supply systems are
often complex and require more investment and technological input than in rural areas (Adams
et al., 2019), which contributes to significant disparities in water accessibility across different
urban populations in SSA (Armah et al., 2018). Notably, in slums where population density is
high and resources are scarce, the increase in water demand often leads to a reliance on
informal water supplies (Juju et al., 2020). One study observed that in two SSA cities, Dar es
Salaam and Addis Ababa, decentralised, on-site infrastructures rather than conventional
centralised water infrastructure constitute the main sources of water provision in informal
settlements (Herslund and Mguni, 2019). Further research indicates that water insecurity in
slums is a widespread issue across many SSA regions (Dos Santos et al., 2017, Nyika and Dinka,
2023). With the rapid population growth and governance failures in SSA, SDG 6 is expected to
face even greater challenges in the foreseeable future (Adams et al., 2019, Nyika and Dinka,

2023).

2.1.3 Integrated sustainability: interactions of SDG 6 and SDG 11

Due to the multifaceted barriers to water access, achieving SDG 6 requires consideration of
synergies with other SDGs. Ait-Kadi (2016) argues that, as the development goals are
comprehensive and sustainable, the overlap and the interaction between SDGs reflect that the
solution of one main goalinvolves the progress of other goals and requires universal efforts of
various stakeholders. Therefore, actions against a certain indicator will inevitably positively or
negatively impact other goals, and targeting only one weak point will have little success (Abson
etal., 2017, Nilsson et al., 2016). Furthermore, the adverse effects of development policies in
some sectors also influence others (Blanc et al., 2017). To provide an integrated approach to
achieve the SDGs, some studies have explored the synergies between them. Le Blanc (2015)
analysed goals based on their wording. In other words, a relationship exists between two SDGs
when a target of one SDG refers to a term that is relevant to another SDG. Coopman et al. (2016)
adopted a similar approach, but further classified the relationship as supporting,
enabling/disenabling, and relying. UN-ESCAP (2017) analysed the relationship between clean
water and sanitation (SDG 6) and other SDGs by examining the cause-and-effect relationships
between targets (Figure 2.2). Other studies have described the interactions of the SDGs based

on cases of different regions (Griggs et al., 2017, Herrera, 2019).
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Figure 2.2 A simplified model of the interactions between the Sustainable Development Goals (UN-ESCAP, 2017).
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Certain observations have been made regarding SDG 6 and SDG 11 through relevant studies.
Table 2.1 shows that SDG 11 includes targets of improving infrastructure, the urban
environment, environmental quality, and basic services. The "basic services" include water and
waste management. Le Blanc (2015), UN-ESCAP (2017) also demonstrated that some of the
objectives of SDG 6 are notably aligned with those of SDG 11 (e.g. SDG 6.1, SDG 6.3 and SDG
11.1, SDG 11.5, SDG 11.6) (see Figure 2.2). Kuc-Czarnecka et al. (2023) , based on the
implementation of SDGs in European Union countries, pointed out that SDG 6 is positively
correlated with almost all other goals, including SDG 11. Past United Nations practices also
found a strong link between water and sanitation and urbanisation in developing countries
(Adams et al., 2019, Najlis and Edwards, 1991, UN-ECA, 2014). Similarly, Dos Santos et al.
(2017) point out that in SSA, the population increase is largely concentrated in urban areas and
informal settlements. Therefore, holistic urban planning is crucial for meeting their water
demands. A limitation of these studies is that most analyses remain at a conceptual or policy-
discursive level, grounded in interpretations of SDG semantics or system-wide interactions. In
addition, the nature of the interlinkages between these SDGs varies significantly depending on
contextual factors (governance, technology, time, geographical location, for instance) (Blanc et
al., 2017, Coopman et al., 2016, UN-Water, 2021). This highlights a lack of empirical evidence
on how urbanisation processes and the development of slums concretely influence water and

sanitation systems in specific regional contexts.

In summary, the SDGs form an initiative that concentrates the efforts of multidimensional
participants and aims to banish poverty worldwide. SDGs focus on cities rather than countries,
given the prevalence of urban inequality and poverty. Regions fall behind for many reasons, and
the global indicator set is hampered in practice by many aspects. Further research is still
needed to understand the underlying drivers behind lagging regions. Another innovation of the
SDGs is the development of new monitoring indicators for SDG 6. Although the UN (2015a)
claimed that the water target for MDG 7c was met globally in 2010, some argued that this target
was built on an imperfect monitoring system (Bain et al., 2012). To better reflect the ambition of
SDGB6, safely managed water was adopted as a new 2030 target (WHO, 2017, WHO/UNICEF,
2015). According to its definition, many developing countries are currently far from this goal
(UN, 2023Db). A shared concern of both SDG 11 and SDG 6 is slums, which not only manifest the
population and resource challenges of urbanisation but also hinder the expansion of water
service coverage. Therefore, slum elimination is the first target of SDG 11 and one of the most
criticalissues in its implementation (UN-Habitat, 2023b). Simultaneously, slums mirror the
challenges of SDG 6, highlighting significant spatial disparities in water access. Although there

is substantial research on the synergies and trade-offs between SDG 11 and SDG 6, few studies
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have focused specifically on slums. Therefore, the following sections will present the practical

implementations of both SDGs and their interconnections.

2.2 Slum formation, evolution and water policy

According to UN-Habitat (2022), as of 2020, over 1 billion people reside in slums and are subject
to the worst forms of deprivation and marginalisation. It is estimated that by 2050, the number
of people living in slums could reach two billion. The United Nations estimate regarding slum
populations draws on some elements of the historical concept of “slum,” which originated in
nineteenth-century London (Harris, 2009). The Industrial Revolution triggered rapid population
growth and urbanisation — creating many new city spaces, including slums (Tockner and
Stanford, 2002). These slums are typically characterized by overcrowding, informal housing,
inadequate safe water and sanitation, and insecure tenure (land encroachment) (Davis, 2004,
UN - Habitat, 2004). Beyond the United Nations, there are varying perspectives on how slums
should be understood, and reviewing these different views can help deepen our understanding

of the nature of slums and the current state of urban water policies.

2.2.1 Slum and urban informality: changing perspectives

With the launch of the United Nations "Cities Without Slums" initiative in 1999, the term slum
has returned to prominence, and is also incorporated into the SDGs (Gilbert, 2007, UN-Habitat,
2018). Some SDGs have a focus on urban poverty and inequality: SDG 11 and SDG 6 both deal
with slums. To unpack the relationship between slums and urbanisation, population growth,

and basic services, it is necessary to explore what a slum is and how it is formed.

UN-Habitat (2006) defines a slum household as one or a group of individuals living under the

same roof in an urban area, lacking in one or more of the following five amenities:

1. Durable housing of a permanent nature that protects against extreme climate
conditions.

2. Sufficient living space, defined as not more than three people sharing the same
habitable room.

3. Easy access to safe water in sufficient amounts at an affordable price.

4. Access to adequate sanitation in the form of a private or public toilet shared by a
reasonable number of people.

5. Security of tenure that prevents forced evictions.

The five criteria reference a measurable baseline for the minimum materials needed for human

habitation, thereby enabling clear understanding of the global urbanisation process (Lucci et al.,
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2018). It is an international definition that helps identify the main challenges of SDG 11. Based
on data sources that include these indicators (primarily census and national household
surveys), the specialized agency for sustainable urbanisation and human settlements, UN-
Habitat, is able to monitor and report on slums and the other eight SDG 11 indicators (UN-
Habitat, 2021). It is noteworthy that, due to difficulties in defining and assessing it, tenure
security is not currently used by UN-Habitat in the measurement of slums (Dovey et al., 2021b,

UN-Habitat, 2006, UN-Habitat, 2018).

Despite this intuitive definition, many other terms and standards have been adopted (Table 2.3).
Areas defined as slums by the UN may be called conventillos, favela or umjondolo, and the
definitions are also very different (Criqui, 2018, Moreno, 2003, Portes, 1971). For example,
Uganda's definition of slums includes criteria such as unemployment, low income, noise,
crime, drug abuse, immorality, alcoholism, HIV/ AIDS prevalence and fragile location (MLHUD,
2008). Meanwhile, slum identification in India is primarily based on legal designation (Nolan,
2015). This diversity in slum definitions partly arises from various slum patterns. The formation
of slums is influenced by many factors such as geographic location, climate, politics, and
culture (Kuffer et al., 2016). Therefore, slums have diverse forms: within them, housing quality
may depend on locally available materials (e.g. metal, cardboard, plastic), and building density
and height change as slums evolve, so newly developed slums differ from those that are more
established. Consequently, it is difficult to define these settlements within one set standard
(Gilbert, 2007). The varying national definitions of slums mean that slum populations are
enumerated differently between countries (Kuffer et al., 2018, UN-Habitat, 2018). This lack of
harmonisation is a major reason why United Nations statistics on slums are often inaccurate
and show large fluctuations (Ezeh et al., 2017, Nolan, 2015), as they primarily rely on population

and housing censuses and national surveys (Ezeh et al., 2017).
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Table 2.3 Terms Used by Different Countries for "Informal Settlements" (Criqui, 2018)

Country Name

Angola Musseque

Argentina Villa miseria

Brazil Favela

Canada Shantytown

Ecuador Invasiones

;rs:'ocfcg Bidonville

India (Delhi) Jhuggi

Indonesia Kampung
Madagascar Bas quartiers
Mauritania Gazra

Mexico Colonias populares
Niger Village urbain

Peru Asentamiento humano
Philippines Squatter settlements
South Africa Township

Syria Mukhalafat

Tunisia Quartiers populaires
Turkey Gecekondu

UK Slum

Among varied terms and definitions, "informal settlement" deserves special mention. Informal
settlement is another term used by the UN that is related to slums. Due to the long-standing
stereotype associated with the word "slum" (Andavarapu and Edelman, 2013, Gilbert, 2007,
Harris, 2020), informal settlement is considered a synonym for 'slum' (Dovey et al., 2021b).
According to UN habitat, informal settlements are defined by three main criteria which are

already covered in the definition of slums (UN-Habitat, 2021):

1. Insecurity of tenure
2. Lack of formal basic services and city infrastructure,

3. Housing notin compliance with planning and building regulations.
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Many have questioned whether "informal settlement"” should replace the term "slum." Here, the
study does not intend to differentiate between "informal settlement" and "slum." Interested
readers can refer to the discussions of Khan et al. (2023) and Dovey et al. (2021a) on this issue.
Nevertheless, it is important to note that the concept of informality provides a clearer
perspective on the formation of slums and the inequalities in infrastructure within them (Dovey
etal., 2021b, Dovey et al., 2020). By definition, "informality" does not mean illegality, but rather
activities that are not regulated by the authorities (Bastia, 2015, Charmes, 2012, Lara-
Hernandez et al., 2020). After Keith Hart's research (Hart, 1973) introduced the concept of the
informal economy to urban life, people began to realize that the distinction between formality
and informality exists widely in cities beyond the economic sector (Chen, 2012, Recio et al.,
2017). As demonstrated by Banks et al. (2020), urban informality has economic, spatial, and
political dimensions that are not easily separated. Parida and Agrawal (2023) identify informality
as one of the seven key characteristics of southern cities. Slums, in particular, can be seen as

places where informal practices can readily be observed (Roy, 2011).

More simply, the primary drivers of slum formation worldwide are associated with the issue of
supply and growing demand (Abass and Kucukmehmetoglu, 2021, Smit et al., 2017, Woo and
Jun, 2020). Schindler (2017) points out that in industrialized cities, it is capital that transforms
rural populations into workers. This process is driven by two forces. Typical push factors of slum
formation include the decline of the agricultural economy, the degradation of land quality and
quantity, or the unfavourable social environment in rural areas. Pull forces from cities include
better job prospects, expectations of higher urban living standards, and risk mitigation from
relying on a single rural income source (Cities Alliance, n.d., Ezeh et al., 2017). Therefore, the
largest populations that make up slums are migrant workers, displaced persons, illegal and
legal immigrants, unemployed persons and refugees (Riley et al., 2007). In the context of global
population growth, people move from the countryside or other areas to cities to obtain better
livelihood opportunities (Cities Alliance, n.d., Ezeh et al., 2017, Keivani and Werna, 2001,
Okpala, 1992). These migrants do not necessarily have the skills to gain employment in the
urban job market and can only be employed in the informal sector. Rural migrants are therefore
deprived of higher incomes and formal sector benefits (Gundogan and Bicerli, 2009, Posada and
Moreno-Monroy, 2017, Riley et al., 2007). Due to a lack of capital, and legal and policy
recognition, these migrant’s living spaces are also outside the governmental development
framework and planning. The result is the informal settlement or slum (Azunre et al., 2022,
Okyere et al., 2017, Sheppard et al., 2020). Such settlements are often the first point of arrival
and encounter with cities for rural migrants, providing asylum and further opportunities for

formal status (Alvarado, 2022, Cities Alliance, n.d., Keivani and Werna, 2001, Marris, 1979,
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Misselhorn, 2008). This is also why Taubenbdck et al. (2018) refer to such areas as “Arrival

Cities”.

It follows that water practices within slums differ significantly from other urban areas (Azunre et
al., 2022), with the urban poor facing considerable difficulties in accessing water (Nyika and
Dinka, 2023, Richmond et al., 2018, Sinharoy et al., 2019). Slum residents often rely on informal
suppliers for water (Dakyaga et al., 2021). In Dhaka, Bangladesh, the urban poor rely on water
vending and use water from dug wells, ponds, rivers, canals, and swamps (Akbar et al., 2007). In
Luanda, Angola, water truck operators distribute water to informal home-based water retailers
who sell to urban populations or water street vendors (Cain, 2018). Though operational methods
vary, these unauthorized suppliers fill gaps in formal water supply within slums (Joshi et al.,
2023). This gap, as summarized by Sinharoy et al. (2019) and Nyika and Dinka (2023), stems
from high infrastructure construction costs, slum dwellers' low willingness and ability to pay,
long distance of slums from key urban areas, land hazards, complex building environments,
marginalisation of residents, insecure land tenure, and lack of legal and planning recognition.
Specifically, Sultana (2020) points out the impact of informal citizenship on slum residents'
access to water. Joshi et al. (2023) emphasize the influence of lack of tenure security as a
reason that slum dwellers turn to informal water services. Insecure land ownership and building
configurations in slums often lead to chaotic network structures that are difficult to maintain
and manage (Ahlers et al., 2013, Boakye-Ansah et al., 2019). Therefore, issues of access to
basic services such as water are not merely technical or infrastructural concerns; rather, they

are closely intertwined with broader processes of urbanization and informality.

The significant role of informality in the economic, environmental, and social sustainability of
cities in the Global South is increasingly being recognised (Azunre et al., 2021, Azunre et al.,
2022). In particular, the informal sector meets the needs of those excluded from the
postcolonial urbanisation process in a flexible matter, including slum dwellers and those
considered to be from the lower classes. Soliman (2020), Azunre et al. (2022), Smit et al. (2017),
and Azunre et al. (2021) point out that urban informal activities play a crucial role in sustaining
residents' livelihoods and making significant economic contributions in cities across SSA and
the Middle East. With appropriate management, informality can facilitate transitions toward
sustainable development. Auerbach et al. (2018) and Caldeira (2017) emphasise the political
impact of informal collectives on urban governance, enabling marginalised residents to assert
their agency in production and decision-making processes. Traditional perspectives analyse
informality and urbanisation in the Global South through the lens of northern urban experiences.
For instance, Lawhon and Le Roux (2019) compared urban theories included in mainstream
textbooks and highlight the tendency to treat northern urbanisation as paradigmatic, while

considering urbanisation in southern cities as exceptions. The typical hegemonic narrative is
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that governance actions in southern urbanisation are seen as imitations of those in northern
cities (de Castro Mazarro, 2023). Such a perspective fails to account for the informal practices

that characterise urbanisation in the Global South (Roy, 2011, Sheppard et al., 2013).

Many opinions have arisen as to whether "formal" should be regarded as the norm and
"informal" as abnormal in urban life. This distinction can be roughly seen as a difference in the
understanding of northern and southern urbanisation (Brenner and Schmid, 2015, Sheppard et
al., 2013). Unlike global urbanism, which takes economically dominant global cities as models
for urban development, these alternative perspectives do not simply treat informality and
inequality in Southern cities as problems to be overcome (Roy, 2011, Sheppard et al., 2013).
Instead, they seek to identify similarities between urbanisation processes in both the Global
South and North, and aim to conceptualise informality (Harris, 2020, Nijman, 2007). Such
frameworks include subaltern urbanism (Moyo, 2023, Roy, 2011) and critical urban theory
(Brenner, 2009). Subaltern urbanism interprets urbanisation from the perspective of the lower-
class domain represented by subordinated slums. Drawing on critical urban theory, Banks et al.
(2020) contend that informal practices under the dichotomous perspectives should instead be
understood as adaptive strategies employed by differentiated social groups. This perspective
helps to explain the emergence of new forms of “informality” , such as public-private
partnership arrangements, which will be introduced in Section 2.2.3. This argument is also
reflected in Moretto et al. (2018)’ study of water and sanitation service co-production in four
case study cities. They concluded that informal services are not entirely opposed to formal
services; instead, there is significant interaction between the two. Parida and Agrawal (2023)
advocate for an approach that analyses southern cities based on their characteristics. This
perspective aligns with the principles of comparative urbanism (Robinson, 2016), which

emphasises the contributions of diverse urban experiences to urban theory.

It is important to note that acknowledging the role of the informal sector in developing countries
does not imply ignoring the differences between formal and informal, but rather calls for a
deeper understanding of their organisation (Caldeira, 2017, Sheppard et al., 2013).
Nevertheless, these perspectives provide a way of understanding slums that has facilitated and
justified the implementation of slum upgrading and water governance policies, which will be

introduced in the following sections.

2.2.2 Policy towards slums: clearance versus upgrading

City authority policy towards slums, particularly slum housing and infrastructure, have varied.
Before the 1970s, many governments showed little interest in improving slum conditions,

instead opting for slum clearance programs to relocate residents to other settlements. Such
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initiatives included post-war reconstruction projects in UK cities (Jones, 2008, Kearns et al.,
2019), the two-stage slum clearance program implemented by London County Council between
1889 to 1907, the Cross Act (1875), and Torrens Act (1866) (Stewart, 2005, Yelling, 1982). Other
slum clearance projects can be found elsewhere, such as in the United States (Hill, 1952),
Nigeria (Adama, 2020), and Zimbabwe (Muchadenyika, 2015). One of the most direct reasons
for the launch of these projects was often financial gain. Since slums are formed because
immigrants seek job opportunities in cities, the more convenient a slum’s location is, the better
itis for immigrants. Without regulation, they often occupy locations with easy transport access
(Marris, 1979, Misselhorn, 2008). Thus, slum locations are attractive not only to immigrants but
also to governments and developers—especially given that slums are often not protected by law
(Caldeira, 2017, Cities Alliance, n.d., Jones, 2010, Li et al., 2023b, Viratkapan and Perera, 2006).
Moreover, the objective of slum clearance is to reduce unfit housing, and such schemes
assume that the only solution is to eradicate the slum and relocate the residents to other places

(Andavarapu and Edelman, 2013, Yelling, 2000).

However, as indicated in section 2.2.1, slums should not be seen merely as obstacles to
southern urbanisation. Thus, slum clearance policies have been widely criticized. A slum is a
shelter for its inhabitants, not only in terms of the buildings and infrastructure presentin the
slum, but also in terms of informal organizations and activities. These organizations and
activities result from continuous negotiation, gaming and cooperation among multiple actors
(the state, the private sector and high- and low-income residents, etc.) in the urbanisation
process (Lara-Hernandez et al., 2020). These informal activities and behaviours fill gaps that the
formal order does not cover. Specifically, they provide services, employment opportunities, and
other social environments upon which household and social networks depend (Misselhorn,
2008, Roy, 2011). Thus, moving slum residents out of slums is not only an emotional blow but
also a blow to their livelihoods, making people who are already living precariously poorer; this is
the ‘destruction of communities’ theory that prevailed in the 1950s to the 1970s (Abebe and
Hesselberg, 2015, Brown-Luthango et al., 2017, Kearns et al., 2019, Olu Sule, 1990). More
broadly, such practices have been described as urbicide—the deliberate destruction of the
material, cultural, and socio-economic foundations that support community life, often in the

name of urban renewal (Di Virgilio, 2023).

In the 1960s and 1970s, scholars such as Turner commented on housing policy and put forward
the theory of gradual improvement. As a representative of slum upgrading, Turner, based on his
observations of Peru, proposed that if the government could improve the unsanitary
environment in the slum, residents would gradually improve shanty dwellings spontaneously, so
intervention by government bureaucracies should be limited (Werlin, 1999). His discourse

influenced World Bank policy, which directly affected countries' attitudes towards slums and
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brought slum upgrading from theory to reality (Werlin, 1999). As the understanding of urban
informality grew, the strategy of upgrading slums was promoted (Cities Alliance, 2021c).
However, it should be noted that although the 1970s are commonly viewed as the starting point
of the global slum upgrading trend, Harris (2020) reminds us that slum upgrading projects had
already been implemented in both the Global South and North prior to the 1970s. These early
efforts, though less documented and often overlooked in academic narratives, laid important

groundwork for later upgrading strategies.

Although the forms of intervention vary significantly, slum upgrading projects generally
recognise improvements to physical infrastructure (Adama, 2020, Brown-Luthango et al., 2017,
Cities Alliance, 2021c). In particular, due to the critical importance of water, sanitation, and
hygiene (WASH), their role in slum upgrading projects has been widely discussed, especially
after the pandemic (Cities Alliance, 2021b, Olthuis et al., 2015). Consequently, many slum
upgrading projects involve the provision of water infrastructure. The upgrading projectin
Bandung City, Indonesia, provides piped water to 121 urban villages with slums through
communal boreholes (KOTAKU boreholes) (Urfanisa et al., 2022). In 2006, Nairobi, Kenya,
launched the Urban Basic Services (UBS) project as a sub-project of the Kenya Slum Upgrading
Programme (KENSUP) (GoK, 2004, Meredith and MacDonald, 2017). Additionally, Nairobi has
other water and sanitation infrastructure upgrading projects, such as the Kibera Community

Water and Sanitation Project (Cronin and Guthrie, 2011).

Another feature of slum upgrading is participation. City Alliance believes this is because of the
occurrence of Turner’s self-help housing concept (Cities Alliance, 2021c), which de Castro
Mazarro (2023) views as one of the outcomes of subaltern urbanism. As noted, informality is
significant in Global South urbanisation, with entities in slums communicating directly with
official authorities on issues of legalization, regulation, occupation, planning, and speculation
(Caldeira, 2017). Such collaboration has the potential to improve public service provision
(Chidambaram, 2020). Thus, community participation and active involvement in different
phases of slum upgrading projects is considered important (Brown-Luthango et al., 2017,
Svensson et al., 2003). Besides the mentioned UBS project in Nairobi (Meredith and MacDonald,
2017) and the slum upgrading project in Zimbabwe (Muchadenyika, 2015), slum upgrading in
Bangladesh (Panday, 2020) and India (Chidambaram, 2020) has also highlighted the advantages
of participatory slum upgrading and collective actions. Furthermore, participation in stum
upgrading benefits the government via local knowledge —i.e. learning from informal activities
(Brown-Luthango et al., 2017, Cities Alliance, 2021a, Nijman, 2008). The importance of
community participation is widely acknowledged, especially in water and sanitation projects

(Patel and Killemsetty, 2020).
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In summary, better understanding of slums has led planners and practitioners to acknowledge
the necessity for an approach that is more effective than clearance in addressing slum issues.
New interventions are centred on infrastructure improvement, aiming to eliminate urban
inequalities gradually by improving basic services such as water supply. Moreover, many
advocates of slum upgrading believe in the active involvement of civil society, including the
private and voluntary sectors (Nallathiga, 2012, Nijman, 2008, Otiso, 2003). Slum upgrading,
particularly participatory slum upgrading, is a response to the traditional binary perspective on
slums (Recio et al., 2017). Slum upgrading is an approach that views informality as a new mode
of urban life and recognises informal efforts to improve basic services. The approach also
implies that slums can play a positive role in sustainable urban development (Ahmed Saad et

al., 2019, Azunre et al., 2021, Azunre et al., 2022).

2.2.3 Water service delivery policy: service co-production

Water utilities face distinct challenges in upgrading slums. The water sector naturally have a
monopoly and public welfare remit. Their monopoly arises because of the high barriers to entry.
Given the high construction costs of water infrastructure, water utilities are more exclusive than
sectors such as electricity and communications (Cesar, 2019). Their public welfare remit arises
from the necessity of ensuring universal service availability across the entire population. This
obliges operators to take public responsibility and prevents them from solely pursuing self-
interest, which is undoubtedly contrary to private operators’ profit-seeking drivers (Marin,
2009a, Ruiz-Villaverde et al., 2018). Furthermore, water pipelines are underground assets,
making them difficult to catalogue and monitor, thereby presenting unpredictable risks for

private companies.

In order to alleviate public debt and curb high inflation in the 1970s, many countries significantly
reduced subsidies available to the public sector (Ruiz-Villaverde et al., 2018). Given that tariff
revenues were insufficient to cover these reduced subsidies, public utilities tended to depend
more on government budget transfers than tariff revenues. Therefore, water utilities were
effectively forced to focus more on infrastructure expansion than on maintenance and
management in order to gain access to government funds. This led to inefficient and low-quality
water services. During this period, investment from government decreased, while service price
increases were not feasible because consumers were reluctant to pay more for deteriorating
services (Marin, 2009a). It was during this period that the informal water sector grew rapidly, and

the perception of informal provision changed (Post, 2022).

Unsurprisingly, an innovative approach called Public-Private Partnership (PPP) aroused interest.

PPP is a service co-production mode, which has relatively broad definitions and forms. Different
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researchers and organizations have defined PPPs based on their disciplinary interests or
responsibilities (Hodge and Greve, 2017, Wang et al., 2018). The Organisation for Economic Co-
operation and Development (OECD) defines PPPs as long-term agreements that the government
uses to delegate services to a private partner to improve the efficiency of the service and
transfer some risk to the partner (OECD, n.d.). Several commonalities emerge from these

definitions:

1. Cooperation. PPPs are created to address issues that require cooperation between the
public and private sectors.

2. Sharedrisks and goals. The concept of sharing is included in almost all definitions.
Public utilities are characterised by public welfare, high risks, and costs. PPP spreads
the costs and risks among the public and private participants and ultimately devotes
them to achieving the common goal of public welfare.

3. Long-term cooperation. The high risk and cost of public services require long-term
cooperation for the private sector to recover costs (Hodge and Greve, 2017). Therefore,

Wang et al. (2018) believe that long-term contracts are the only viable form of PPP.

The rule setter of the water PPP is the public sector, and the form through which rules are
defined is as contracts or concessions. Private operators can partially or fully invest in
constructing new assets or use skills and expertise to optimize and manage infrastructure
(Ameyaw and Chan, 2016, Marin, 2009a). Thereby, the management of public services is
delegated to private developers, allowing public and private sector entities to share
infrastructure costs and provide affordable water services to consumers whilst balancing this

against potential losses of revenue.

In addition to being benefit-oriented, PPPs can also take social responsibilities. Such non-
conventional models often involve the participation of community or civil society organizations
and can effectively provide water to urban slum populations (Kleemeier and Lockwood, 2012,
PPP Authority, 2008). Public utilities including water and sanitation are more vulnerable to the
spatial inequality between slums and formal settlements. Healthcare utilities are a typical
example. Disadvantaged groups (in terms of region, income, social class, race, gender) tend to
seek assistance from healthcare utilities more (Hart, 1971), but they are not attractive to private
operators (Armah et al., 2018, Knox and Pacione, 1980). The phenomenon is known as the
inverse care law: “The availability of good medical care tends to vary inversely with the need for
itin the population served.” (Hart, 1971). Hart (1971) believes that market forces are the driving
force of this law, and the stronger the privatization, the stronger the inverse effect. Likewise,
slum residents are also not attractive to private water and sanitation operators. As noted in

section 2.2.1, since slums tend to be located on the outskirts of cities and are perceived as
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having low willingness-to-pay for services, public sector bodies have little incentive to expand

water and sanitation services in slums (Allen et al., 2006, Castro and Morel, 2008).

Therefore, PPP is considered as an effective approach for upgrading slum infrastructure,
especially water infrastructure, as it can integrate local resources (Annamalai et al., 2016, Dos
Santos et al., 2017, Lima et al., 2021, Marin, 2009b, Moretto et al., 2018, UN-Habitat, 2023b).
Moretto et al. (2018) argue that small-scale customised solutions to water issues are available
in PPP projects due to their closer connections with residents. Asumadu et al. (2023), on the
other hand, highlighted PPP’s superiority in financing. Awidely studied example is the delegated
management model (DMM) implemented in Kenya slums. In Kisumu, Kenya, Kisumu Water and
Sanitation Company (KIWASCO) sells water through trunk pipelines to small-scale providers
(SSPs), who then distribute water to consumers through pipelines, shared standpipes, and
water kiosks (World Bank, 2009). In which SSPs can be community-based organisations or
individuals (Castro and Morel, 2008). The DMM approach has expanded the coverage of water
services while also providing better quality water to slum residents (Nzengya, 2018, Schwartz
and Sanga, 2010). Additionally, community participation in DMM has not only alleviated the
burden on the government but also reduced the cost of water access for slum residents (World

Bank, 2009).

However, there is an ongoing debate about the performance of PPP projects in the water sector
(Cesar, 2019, McDonald, 2018, Mvulirwenande et al., 2019, Ruiz-Villaverde et al., 2018). Andres
et al. (2008) collected data on 45 private water and sanitation companies in Latin America. The
results show that private companies have higher labour productivity, efficiency, and quality
levels. However, it is impossible to tell whether this improvement is due to privatization or
company management. Chenoweth and Bird (2018) reviewed 20 studies on water and sanitation
services in the United States, England, Wales, and France. They concluded that there was no
convincing evidence that private companies outperformed public sector entities. Kirkpatrick et
al. (2006) interpreted data from water utilities in 13 countries. They suggest that the impact of
privatization was positive across multiple service provision domains, but not statistically

significant.

According to the World Bank's Private Participation in Infrastructure Project Database, the
number and investment of PPP projects in 2023 have decreased compared to 2022 (WBG,
2024). Studies have identified more than 20 failure drivers facing water PPP projects, including
corruption, illegal connection, political interference, infrastructure construction and
maintenance failures, and unclear land ownership (Ameyaw and Chan, 2015, Zhang and Tariq,
2020). Furthermore, Lima et al. (2021) and Almeile et al. (2024) highlighted risk-sharing issues in

PPP projects, as the large scale of investment and the long payback period put the great risk on
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the private sector and make them lose interest in PPPs. Additionally, poor contract
arrangements can lead to the private sector having difficulties in fulfilling promises, resulting in
early contract termination and a lack of subsequent bidding interest. Buenos Aires, Hamilton,
and Dar es Salaam have all seen PPP projects cancelled because private operators are unwilling
to comply with unprofitable and restrictive contracts (McDonald, 2018). Studies on southern
cities also indicate that water PPPs often suffer from weak infrastructure, limited funding and
technical resources (Adams et al., 2020). Additionally, the importance of legislative support and
recognition is highlighted for the success of PPPs in India, Latin America, and the Caribbean
(Jha, 2023, Munoz-Jofre et al., 2023, Tirumala et al., 2020). Despite the increasing research on
water sector PPP projects in recent years (Lima et al., 2021), there is a nhotable lack of studies
examining the risks encountered by PPPs in slums and their interactions with the slum physical
environment (Henson et al., 2020), such as the constraints imposed by slums’ spatial layout on

DMM operation (Nzengya, 2015).

2.3 Impacts and drivers of water pipeline configuration on services

in slums

2.31 Drivers of water pipeline configuration in cities

Whilst the challenges of slum upgrading and water delivery policy within slums are well known,
their implications for configuration of the associated infrastructure, and how utility networks

within slums differ from formal areas are rarely discussed.

Sorensen (2018) points out that, like railway and road networks, establishing water and sewer
networks requires significant financial investment. Once the network is built, there is no way to
move these capital investments. The presence of sunk costs leads to the following
characteristics of pipeline networks: firstly, urban networks tend to be monopolised because
the high costs preclude the possibility of free competition. The threshold is high, and the costs
caused by competition are unaffordable; secondly, due to the high costs, there is a severe path
dependency in the construction of the network. Once the location of the network has been
determined initially, subsequent network expansion will be highly dependent on the location of
the existing network. Similarly, it is difficult to change the management system overseeing
infrastructure once established. These characteristics can be summarized by the Matthew
effect: "the rich getricher and the poor get poorer" (Merton, 1968), which is also observed with
road networks (Lan et al., 2022). From a topological perspective, this effect can be explained by

the preferential attachment process or the Yule process, where a small number of nodes (hubs)
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assume the primary connectivity roles during network formation, and new nodes tend to

connect to these highly connected hubs (Fornito et al., 2016b, Yule, 1925).

These characteristics can be traced back to the nineteenth century when large-scale urban
pipeline networks emerged in industrial cities. The expansion of industrial cities was
accompanied by high densities of population and human activity. In order to provide these cities
with adequate services, centralised systems were needed to gather funds and land for urban
planning (Gandy, 2004). At the same time, the emergence of pipeline networks can also be
linked to new public health concepts and technologies. It can be argued that the rise of pipeline
networks represents the Western concept of the ideal city as a unified, orderly city, with
centralised and standardised networked infrastructure serving a wide range of residents
(Coutard, 2008, Coutard and Rutherford, 2015). In other words, pipeline networks are not just
infrastructure but also a set of values. Equitable allocation of services to users via a pipeline
network embodies a value system in which the equal status of the users in the city is central, as

discussed in the concept of global urbanism in Section 2.2.1.

This value of equality is also reflected in designing the pipeline network. Since pipeline networks
are constructed to provide universal access to public services, growing population with water
demand becomes the main driver of water pipeline expansion. Network expansion in cities can
be broadly classified into area expansion and densification (Yang et al., 2017). The former is the
process of building a network to cover new settlements, while the latter refers to the
enhancement of water services in existing communities. In both expansions, the
distribution/density of population growth (demand points) determines the shape of pipeline
networks (Farmani and Butler, 2014, Yang et al., 2017). These expansions align within the
broader processes of urban evolution (Gudmundsson and Mohajeri, 2013, Mohajeri and

Gudmundsson, 2014, Strano et al., 2012).

Consequently, pipeline networks exhibit similarities to the urban road networks, the latter of
which fundamentally determine the morphology of cities (Scheer, 2015). Beyond their geometric
overlap (Mair et al., 2017), graph studies also found shared patterns within urban networks, one
of which is the power law distribution of centrality metrics (Akbarzadeh et al., 2018, Giudicianni
etal., 2018, Johnson et al., 2019, Kirkley et al., 2018, Klinkhamer et al., 2017, L&mmer et al.,
2006, Yang et al., 2017, Yu et al., 2024, Zischg et al., 2019). The power-law distribution is
characterized by heavy tails, meaning that nodes with high centrality (i.e., the importance or
influence of a node) are more likely to occur in scale-free networks than in Gaussian-distributed
networks (random networks). Based on the definitions of centrality metrics, the rule reflects the
pattern shared by urban sprawl and infrastructure networks, where the network's primary

connections (the city's framework) form circuits and then expand outwards (Akbarzadeh et al.,
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2018). The evolution of both pipeline and road networks both follow this development dynamic

(Dovey et al., 2020, Mohajeri et al., 2015).

Although many have questioned the universality of power law distributions in recent years
(Broido and Clauset, 2019, Casali and Heinimann, 2019, Reza et al., 2024, Wéber et al., 2020),
there is evidence that a significant proportion of real networks are subject to this unifying law or
alternative distributions, such as lognormal (Casali and Heinimann, 2019) and modified Lomax
(Akbarzadeh et al., 2018, Artico et al., 2020, Chattopadhyay et al., 2021, Kirkley et al., 2018).
Graph metrics have revealed statistical similarities between road networks across urban
contexts (Akbarzadeh et al., 2018, Casali and Heinimann, 2019, Kirkley et al., 2018, Lan et al.,
2022). Liu et al. (2016) observed that building density is positively correlated with the centrality
of streets. Giudicianni et al. (2018) and Krueger et al. (2017) identified regular variations in
structural indicators of pipeline networks over time and urban scale. As both street and pipeline
networks are constrained by the spatial boundaries established during city expansion, they tend

to follow similar evolution trajectories (Abdel-Mottaleb and Zhang, 2020).

The research described above has taken place mainly in developed countries and has focused
on the formation patterns of general urban networks. In Africa, however, the environment
affecting the layout of pipeline networks is more complex. When this centrally managed pipeline
system was transplanted to Africa from colonial times, the lack of resources limited the
network's layout and, thus, its performance. As Gandy (2004) states, contrary to what one would
expect, not all cities will follow the western network pattern. The first issue many African cities
face is the profound influence of colonial policies (Andersson, 2017, Harris, 2021, Letema et al.,
2014). During the colonial era, African colonies were often divided into two zones: la ville des
indigenes (the indigenous zone) and la ville des européenes (the European zone) (Bigon and
Njoh, 2015). This stratification was based not only on ethnicity but also on native locations,
culture, religion, occupation, and income. In Tema, Ghana, for example, colonial housing
allocation policies were designed according to occupation and income (Kaye-Essien, 2020). The
result of stratification was the explicit spatial and functional divisions within African cities,
whereby the native areas severely lacked urban planning and infrastructure services compared
to the European areas (Tetteh et al., 2022). This unfair dualistic structure has been maintained
during subsequent urban development and makes building equally distributed pipelines difficult

in African cities from the outset (Bigon and Njoh, 2015).

As mentioned previously (section 2.2), the second factor influencing pipeline networks in
African cities is rapid urbanisation and population growth, accompanied by greater water
service demand. Individual local authorities or utilities in African cities lack sufficient funds and

the construction and management skills necessary to build and manage a pipeline network that
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covers all demand equally. Instead, the dualistic structure can still be found as a legacy in water
pipeline networks even after African countries gained their independence (Bigon and Njoh,
2015). In the case of Kisumu, for example, although population density is the criteria for
prioritising pipeline installation, it is the formerly European or Asian middle and high-income
areas with lower population density rather than slums and peri-urban areas that are included in
planning (Letema et al., 2014). Similar problems are seen in Lima, Peru, and Dar es Salaam,
Tanzania (loris, 2012, Smiley, 2020). Further, loris (2012) concludes that in a context where the
authorities lack the capacity to manage the whole city, water supply shortages result from
colonial and post-colonial social, economic, and spatial inequalities. Jaglin (2012) emphasises
that social inequalities have caused different governance arrangements for particular
population groups and areas. This contradicts the values on which infrastructure networks are
based - equality and universal access (Coutard, 2008). As Dupuy (2011) states, "Even though

the network exists, all the necessary elements for it to function are not yet in place.”

Predictably, if one compares the morphology of pipeline networks within slums with that of

formal areas, they will be very different since:

1. The unplanned buildings and road networks in slums limit the space available for
pipeline laying, thereby making the pipelines have inefficient topology.

2. Insecure land ownership, low-income levels, and governance failures further weaken
pipeline planning and maintenance in slums.

3. Due to colonial history, the infrastructure baseline in slums differs significantly from that

in formal areas, increasing the cost of further pipeline expansion.

Several empirical studies have confirmed this argument (Lagerberg, 2016, Mapunda et al., 2018,
Shushu et al., 2021). Due to their populations’ inability to access and afford formal water
services, slums suffer from illegal connection problems and thus have unplanned piped
network structures (Boakye-Ansah et al., 2019). For example, Mutikanga et al. (2009) reported
the formation of a "spaghetti" pipeline network, referring to a structurally disorganised network
(see Figure 2.3), in Kampala, Uganda. Another reason for slums’ vulnerable networks is that
urban expansion is faster than expectations. Therefore, these networks are built without utility
plans (Shushu et al., 2021). High building density, the complex road network, and

insecure tenure also inhibit building of pipeline networks in slums (Alba and Bruns, 2022, Wagle,
2022). It is worth noting that there are no studies yet on the differences in the structure of
pipeline networks within slums versus formal areas. In addition, although some interventions
(such as DMM) have been implemented in slums to improve water access (Nzengya, 2018,

Ocholla et al., 2022), their impact on network structure remains unclear (Nzengya, 2015).
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Figure 2.3 Spaghetti networks versus structured networks. The network endpoints are Small

Scale Infrastructure Providers (SSIPs) and households (Ahlers et al., 2013).

2.3.2 Impacts of water pipeline configuration in cities

As discussed in the previous section, the urban context shapes the configuration of pipeline
networks, creating a contrast between informal and formal areas. A related question is whether

pipeline performance varies as a result of their varying configurations in different contexts.

Here, the review first discusses reliability as an example, which refers to the ability of the
pipeline network to remain operational during malfunctions (Gheisi et al., 2016). Pipeline
networks and other infrastructure networks are built to transport substances and energy from
one point to another. Given equity is an underpinning value of many networked cities (see
Section 2.3.1), it is crucial that users have equal access to substances and energy from the
network. This is also consistent with the universal access targets for SDG 6. Therefore, the
reliability of a network can be measured by the number of off-grid customers when failure
happens. In other words, it is the risk that when one pipeline fails, other pipelines are
disconnected from the network, which is affected by how the pipelines are organised
(Agathokleous et al., 2017, Bentes et al., 2011, Wang et al., 2019). According to Punmia et al.

(1995), the way pipelines are organised can be classified into four types:

1. Grid-iron system or Reticulation system
Circular system or Ring system

Radial system

P ®n

Dead-end system or Tree system
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Figure 2.4 Water distribution system layouts. A. Grid Iron; B. Ring System; C. Radial System; D.
Dead End (Mazumder et al., 2018).

These layouts appear in different forms of settlements and have different advantages and
disadvantages. In the case of a dead-end or tree system (Figure 2.4 (D)), which is common in
rural areas (Sarbu and Ostafe, 2016), a main pipeline runs through the service area with sub-
mains connected on either side. These sub-mains are further divided into branch lines, where
there are no cross-connections between sub-mains and branch lines. The whole system forms
the shape of a tree, and the trunk is the main pipeline. In this network, breakage of any pipelines
will result in some customers not receiving service, and the extent of the impact depends on the
class of the pipeline that fails. The spaghetti network mentioned in section 2.3.1 fits into this
category. However, this does not imply that networks within slums are necessarily dead-end
systems, as slums exhibit various spatial structures (Flores Fernandez, 2011). On the contrary,
all branches are connected in the ring systems (see Figure 2.4 (B)) that can be found in well-
planned cities. Very few customers in this system will be affected when one pipeline breaks
because there are always several pipes connecting a point. Lorenz et al. (2021) suggest that the
resilience of pipeline networks varies with urban form, as urban form greatly affects the
structure of pipeline networks. Moreover, Adraoui et al. (2024) suggest that it is also possible to
estimate the robustness of a network by testing the consequences of removing its constituent
pipelines using graph metrics. Since the distribution of centrality can be used to describe the
network's structure (see section 2.3.1), some studies argue that the power law distribution of a

pipeline network implies the existence of highly concentrated centres. Such a scale-free
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network is highly resilient to random faults compared to a random network, but vulnerable to
targeted attacks. Thus, the degree to which the distribution is subjected to a power law can be a

useful indicator of network resilience (Wéber et al., 2020, Yu et al., 2024, Zischg et al., 2019).

In addition to reliability, water pipeline networks have unique properties that are affected by
structure. Many studies use graph metrics to measure the impact of a network's topology on the
transmission efficiency of water flow or, put another way, the importance of nodes/edges and
the robustness of the network. Yu et al. (2024) demonstrate that the topology of the water
network can be used to estimate hydraulic head, flow rate, water age/residency times, and
thereby water quality in the network. Zhao et al. (2020) found that energy consumption for water
supply (e.g., energy required for pumping stations) varies with urban morphology, with radial-
uniform cities consuming the least energy for water supply among radial, grid and satellite
cities. Torres et al. (2017) pointed out that changes in network topology lead to subsequent
changes in water quality in the system. He examined 11 graph metrics regarding maximum
hourly unit head loss, minimum hourly system pressure, average system water age, and average
concentration of an unknown chemical. The result shows that 10 of the 11 metrics describing
network structure and 3 of the 4 performance metrics had strong positive or negative

correlations with these operational water parameters.

Based on the evidence from section 2.3.1, relationships between piped network performance
and urban form can be further inferred. If the performance of a pipeline network is influenced by
its structure, then a pipeline network’s weak structure could exacerbate water service delivery
challenges in slums. Taking Water Safety Plans (WSPs) as an example, a WSP is a management
tool designed to ensure the delivery of safe drinking water (Roeger and Tavares, 2018). It enables
managers to effectively identify and control risks within the pipeline network. The development
of a WSP relies on quantitative analysis and supporting programmes to oversee the water
system (Godfrey and Howard, 2005b). However, Godfrey and Howard (2005a) note that
unplanned water systems with limited data availability make it difficult to locate the main
pipelines. Consequently, the development of WSPs requires significant time and expert
experience to conduct field surveys and desk-based system analysis, which delays preventative
action against issues affecting water supply and quality. Additionally, for water pressure
management, the water pressure, pipeline lifespan, and the water lost in leaks are closely
linked. Thus, efficient water pressure management contributes to the system's short and long-
term operation. However, in a ‘spaghetti’ network, managing water pressure in different zones is
difficult due to the lack of information about infrastructure such as valves. Hence, frequent
pressure transients and surges in the system will trigger bursts and leaks (Mutikanga et al.,
2009). Similarly, Lagerberg (2016) notes that extensions of pipelines in informal settlements are

often informal and, therefore, not officially documented. Especially in places like slums, where
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governance is fragmented or limited, few people know the pipelines' location and condition
except those who laid them. Therefore, in the event of a pipeline breakage, few people realise

when breakages occur and are able to remediate, repair or replace the pipeline.

Since maintaining a chaotic pipeline network is more complicated and costly than a well-
structured network, bursts and leaks also lead to more severe consequences in a pipeline
network with poorly structured topology. A complex pipeline network requires more
computation to analyse the condition of pipelines (Ghosn et al., 2016). In addition, their size and
complexity, as well as their accessibility, make repairing the system more difficult (Kaminsky
and Kumpel, 2018). Particularly, pipelines in slums may be exposed rather than buried and
made of plastic, allowing residents to cut the pipes to fetch water (Mapunda et al., 2018). An
example comes from the slums of Malawi, where the maintenance cost per unit length of the
pipeline is much higher than in other areas. The reason for this is the poorly laid network and the
frequent vandalism of pipelines in slums (Banda and Mwale, 2018). In the case of Mwanza,
Tanzania, the researchers observed that due to such bursts and leaks, the amount of hon-
revenue water in slum areas was much higher than the average for the city, with 87 per cent of
the actual water loss being related to the network topology and operating conditions (Shushu et

al., 2021).

This chapter underscores the close interconnection between SDG 6 and SDG 11, as revealed
through topological research. The construction of water pipeline networks is fundamentally
designed to provide equitable services to residents, aligning closely with the objectives of SDG 6
on safely managed water services. The realization of this goal is directly influenced by the
structure of pipeline networks. Topological research finds that the ability of pipeline networks to
reliably deliver water without being affected by failures depends on their structural type.
Moreover, the network's structure directly impacts its hydraulic efficiency and ultimately
parameters such as water residency times and pressure linked to water safety. Structured water
pipeline networks are easier to manage, and thus have greater resilience against contamination
and degradation. As a result, the structure of pipeline networks can provide insights into both
aspects of the safely managed drinking water indicator of SDG 6.1: availability when needed and

freedom from contamination.

On the other hand, similar to the informality of slums, spatial disparities in pipeline
configurations across SSA also arise from urbanisation and are closely linked to urban
structure. SSA cities face constraints such as limited financial resources and governance
capacities, which curtail the extension of formal water services. Simultaneously, urban water
sectors are under pressure to meet water demand due to population growth. A similar supply-

demand contradiction is also the cause of slum proliferation, creating substantial overlap
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between water supply issues and slum challenges. Given that the evolution of pipeline networks
mirrors urban development, significant disparities between slums and formal settlements in
pipeline configurations should become evident through comparisons of urban and pipeline
morphology. Thus, the subsequent empirical evidence in this thesis on how slum and slum
upgrading projects affect pipeline network structure can inform efforts to achieve both SDG 6

and SDG 11.

24 Graph theory methods for measuring network structure

As previously highlighted, an approach often used in studies of the performance (e.g.,
robustness and efficiency) of urban pipeline networks is graph theory. Unlike hydraulic models,
which measure the physical properties of pipeline networks (D’ Ambrosio et al., 2015), graph
theory measures the structure of the pipeline network. Its lower computational complexity
makes it suitable for use in settings where data are sparse, which is particularly valuable given
that the physical layouts (e.g., pipe layout, pipe diameter) and operational characteristics (e.g.,
pump operation) of pipeline networks are often not publicly available (Ahmad et al., 2022).
Applications of graph theory include a range of metrics and algorithms that reveal infrastructure
network characteristics from a different perspective, complementing traditional hydraulic

models (Torres et al., 2017).

241 Graph approaches to water pipeline networks

A graph is a mathematical abstraction that can represent any set of elements related to each
other in some way (Clark and Holton, 1991, Wilson, 2010). Loosely speaking, any system that
connects individual units can be called a network and can be represented by a graph. A well-
known graph example is Zachary's karate club. In this study, club members are treated as units,
and the information flows between members are represented as graph edges (Zachary, 1977).

Therefore, representing infrastructure such as pipeline networks as graphs is a natural idea.

There are various methods to represent pipeline networks as graphs. A pipeline network
consists of components located in Euclidean space, with water flows forming connections that
can also be mapped within this space. Such networks are known as spatial networks
(Barthélemy, 2011, Tsiotas and Polyzos, 2018). Representing spatial networks as graphs
inevitably involves discarding redundant elements while preserving their morphology and
connectivity (Suba et al., 2016). In other words, graph theory analysis requires the merging and
simplification of spatial data to achieve a balance between mathematical representation and
the real world, addressing various objectives such as aesthetics, readability, and computational

efficiency. Since there is no universally accepted definition (Pueyo et al., 2019), the review uses
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the term 'graph generalization' here. Disagreements about generalization methods primarily
revolve around the choice of which elements to discard and how to organise the components,
which often depends on the research objectives (Pueyo et al., 2019). From a functional
perspective, there are two generalisation methods for representing spatial networks as graphs.
One approach is to depict components in the network that consume, generate, or regulate a
resource or service as nodes (e.g., cities, ports), and the exchange of resources and services
between nodes as edges (Dunn et al., 2013). The other method represents the intersections and
endpoints in the network as nodes. Both methods can be seen in the study by Prieto-Curiel et al.
(2022). Additionally, various methods have been proposed to identify and aggregate elements
within spatial networks. Space syntax is a pioneering approach in this field. It represents linear
elements in urban spaces as axial lines based on visibility (Hillier et al., 1993). Subsequently,
methods have emerged for identifying elements based on features such as names and angular
relationships between elements. These methods derive from specific interpretations of
networks and have inherent limitations (Marshall et al., 2018). For instance, Marshall (2016)
notes that while all nodes in air transport facilitate point-to-point services, in road networks,
services do not terminate at some nodes. Consequently, the nodes have different functions, but
the aforementioned representations fail to capture this distinction. Nevertheless, these
modelling approaches all capture network continuity and hierarchical structure (Marshall et al.,
2018, Negadi et al., 2023), and thus have also been applied to pipeline network modelling
(Krueger et al., 2017, Zischg et al., 2019). However, the impact of using different generalisation

methods in pre-processing pipeline network for analysis has yet to be fully recognised.

In this section, we discuss modelling pipeline networks as simple graphs. Generally, a graph
without self-loops (edges connecting a node back to itself) or multiple connections between two
nodes (parallel edges or multi-edges) is called a simple graph. Following the methods used in
road network modelling, pipeline endpoints and intersections are normally represented as graph

nodes, while pipes are represented as graph edges (see Figure 2.5).
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Figure 2.5 Example Graph of a Water Distribution Network. Dashed edges represent self-loops

and parallel edges, while nodes surrounded by circles are pseudo-nodes.
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Thus, a pipeline network can be represented by the adjacency matrix A. When the network has N

nodes and E edges, 4;; is an n *n matrix and can be defined as (Barthélemy, 2011):

1, if iand jare connected
Aij = .
0, otherwise

For undirected and unweighted graphs, Aijis a symmetric matrix, thatis, Aij=Ajl- , which
is not the case for directed graphs. For directed graphs, when i is connected to j, Al-j =1,
butjis not necessarily connected to i, and 4;; may be 0. When the distance between
nodes (whether physical distance or cost) also needs to be considered, we need to use
a weighted graph to represent the network. For a weighted graph, when iandj are
connected, A;; =w;; , where w;;represents the distance of the edge connectingiandj. It
can be seen that the adjacency matrix describes how the essential components of the

network, the nodes, are connected.

According to this most basic definition of graph theory, we can already obtain some
network metrics. Some commonly used metrics in water network studies are

represented in Table 2.4.
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Table 2.4 Basic Structural Network Measurements for Water Networks (m and n denote the number of edges and nodes in the graph, respectively, and s, t, /, j

represent nodes in the node set V)

Graph metric

Formula

Description

Application in infrastructure
network management

Degree centrality

The degree of a node is the number of
its neighbours.

B =) #—Ui:(:)

A node's betweenness centrality B (i)
can be defined based on the number
of shortest paths through the node.
Ot is the number of shortest paths
going from s to t ando; (i) is the

the more efficiently the node can
communicate with other nodes in the
network.

Centrality metrics indicate
the importance of the node.
There are a large number of
them, including maximal
clique centrality (MCCQC),
maximum neighbourhood
component (MNC), the
density of maximum
neighbourhood component

Betweenness number of shortest paths going E:[;Tt,:;i)t, bzlvzﬁg:ziis
centrality from s to t through node i. B(i) can be W ’
. . . . eccentricity, stress, and
Centrality interpreted as the ability of node i to .
. L . closeness centrality
metrics facilitate the flow of material or .
information in the network (Barthelemy, 2011, Mata,

) 2020). Of these, degree,
betweenness and closeness
centrality are commonly used

Closeness centrality measures the by recent infrastructure

distance from a node to all other network studies (Daniel et al.,

nodes in the network. C () is the 2021, Henry et al., 2019, Liu
Closeness (i) = inverse of the sum of distancesto all | etal., 2016, Morzy et al.,
centrality Ziij dl-j reachable nodes; the higher C (i) is, 2016). They assess nodes in

terms of connectivity, flow
loading, and efficiency,
respectively. Their statistics
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also provide insight into the
configuration of the network.

Density is the ratio of the actual
number of edges in the network to this

Graph density represents
how many edges can still be

. . 2m maximum possible and describes added to the network.
Link density q=—"=< . ) . o
nn—1) how connected a network is (O Therefore, link density is the
Sullivan, 2014) . design efficiency of the
network.
A network will fail when removing This value is related to the
nodes whose degree exceeds the stability of the pipeline
1 threshold f. . The value thus depends | network. The higher the value,
Critical breakdown ratio fe= k2 on the average node degree k the more tolerant the pipe
Kk 1 (Yazdani et al., 2013) . network is to breakages
represented via disconnected
nodes.
The value of the average distance This value is similar to link
along the shortest paths ¢ij density. By traversing all node
Average shortest path length _U 1 v, connecting node§ iandj, compared connectigns in the piped
nn—1) Laizj to all possible pairs of nodes in the network, it represents the

network (Porse and Lund, 2016,
Yazdani et al., 2013).

connection efficiency of the
piped network.

Algebraic connectivity

The second smallest eigenvalue of the
normalized Laplacian matrix.

Similar to the critical
breakdown ratio, algebraic
connectivity represents the
robustness of the pipeline
network (Yazdani et al.,
2013).
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Also called the Alpha Index. Measures
the ratio of the actual versus possible
number of independent loopsin a
planar graph. It ranges between 0O for
tree-like and 1 for grid-like networks
(Porse and Lund, 2016).

A larger acorrespondsto a
more connected network
(Hwang and Lansey, 2017) .
This index can be used to
describe the number of
enclosed facesin
infrastructure networks,
thereby reflecting the
structural characteristics of
urban blocks(Usui and
Asami, 2011).

Graph diameter

Max(d(N;, N;))

The maximum geodesic distance
between any two nodes. It captures
the maximum eccentricity of nodes in
the network and provides a basic
measure of topological and
geographical spread of the network
(Zengetal., 2017).

Arough estimate of the size
and complexity of the piped
network can be obtained
from graph diameter.

Network efficiency

_ 1
0=y 2o

Q is calculated as the ratio between
physical distance and topological
distance. Ranges between 0 for least-
efficient and 100% for most-efficient
networks and may be used as a proxy
for average water travel time.

Thisis anindicator based on
the actual operation of the
pipe network. The higher the
value, the less efficient the
water flows in the network.

Central-point dominance

1
Cp = Wl——lzv: Cg(v™) — Cg(v)

Central-pointdominance is a
parameter based on the evolution of
betweenness centrality(Freeman,
1977). Cp ranges from O to 1, and a
higher value means that the nodes in
the network are more closely

In a water network, a star
graph can be effective in
improving efficiency, meaning
that there is a node in the
centre of the network that
plays an importantrole in
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distributed around a central point. 0
means that the distribution pattern of
the points in the network has no
distinctive features, while 1 means
that the network is a wheel or star
graph, which means that thereis a
significant central point in the
network.

transmission, but this can
also reduce the stability of
the network, so in practice a
grid structure is preferred for
a water network (Yazdani and
Jeffrey, 2011).

Clustering coefficient

cv

i

1

sk

+ Win
QAijAinAjp

5,
— 1) Lujp

Also known as the Transitivity. Where
siis the strength of vertexi, a;;are
elements of the adjacency matrix, k;is
the vertex degree, w;;are the weights
(Barrat et al., 2004).

This metric detects the presence of
triangular loops in the network. A
value of 0 for C}* represents the
absence of triangles in a network,
whereas increasing triangle density
results in a higher cluster coefficient.
Therefore, grid networks have a
smaller clustering coefficient.

Higher values indicate a more
connected network and
better performance in terms
of network efficiency and
redundancy. However, most
loops in urban networks are
not triangular but square.
Therefore, another similar
metric, meshedness
coefficient, is always
considered alongside
clustering coefficient in water
network studies (Yazdani and
Jeffrey, 2011).
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Spectral gap

AL

Spectral gap is the difference
between the first and second largest
eigenvalues of the adjacency matrix.

The magnitude of this value is
related to a property known
as "expansibility". Intuitively,
it represents the connectivity
and robustness between any
set of points in the network.
Low values of spectral gap
indicate a lack of
expansibility and are more
prone to failures when the
network is under attack
(Yazdani and Jeffrey, 2010) .
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2.4.2 Community detection for identifying network sub-regions

In addition to examining the attributes of urban pipeline networks, the relationship between
pipeline network performance and spatial patterns implies that urban heterogeneity, or the
distribution of slums, affects water delivery within sub-regions. Further, given the interactions
between SDG 11 with SDG 6, a tool such as community detection can be used to identify the
morphology of the water pipeline network and thus evaluate whether the piped structure for
water delivery within slums and areas under specific service delivery management

arrangements differ to those elsewhere.

Community detection is a technique for identifying communities—nodes in a network that are
tightly connected or share similar characteristics (Fortunato and Newman, 2022). This concept
builds on the ideal network. In mathematics, we can build and elaborate on ideal models to test
similar model properties in more complex cases. This is also the case with the network model. A
popular approach is to define random graph classes. One null model that is important for any
network model is the Erdos-Rényi (E-R) model (Erdés and Rényi, 1960). The E-R graph is built

from a set of random nodes, where the probability p of connecting two nodes is the same.

While the E-R modelis idealised, real-world networks tend to be highly heterogeneous. Let us
first return to the study of Zachary's karate club (section 2.4.1), which is not only a landmark
study of social networks, but also inspired the study of community structure in the network. The
karate club has become the test subject of many community detection algorithms
(Chintalapudi and Prasad, 2015, Despalatovic¢ et al., 2014, Girvan and Newman, 2002). During
Zachary (1977) ’s study, the club was divided into two parts due to conflict between members.
Members in each part have stronger social ties to each other and fewer ties between different
parts. From this example, it can be recognised that in a social network where each node
represents a person, the connection between nodes, or the social relationship, is affected by
people's preferences. In addition to Zachary's karate club, a study on a collaboration network of
scientists at the Santa Fe Institute, an interdisciplinary research centre in Santa Fe, New
Mexico, showed that scientists tend to work with colleagues with similar research themes or

methods (Girvan and Newman, 2002).

The above examples demonstrate a property that occurs in real-world networks: the existence
of a set of entities that are closer to each other than other entities in the dataset, called a
community. This means that a network influenced by or consisting of people is hot a random
graph like the E-R graph. The community structure in networks has been studied extensively in
sociology (Kao and Porter, 2018) and can even be extended to biological research (Girvan and

Newman, 2002). In addition, there are also community studies in the fields of land use (Comber
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et al., 2012), transportation networks (Hong and Yao, 2019), and water pipelines (Brentan et al.,
2017). Studies have revealed the characteristics of communities and, further, how they are
influenced by entities within networks (Javed et al., 2018). For example, the process of disease
transmission can be understood by identifying different population communities (Kitchovitch
and Lio, 2011), recommendation algorithms can be improved for business websites (Krishna
Reddy et al., 2002), and the division of brain regions can be studied (Zhang, 2017). In the fields of
communication networks, economics, and biological networks, community detection has also

produced many outputs (Fortunato, 2010, Javed et al., 2018, Mittal and Bhatia, 2021).

However, it is not easy to review community detection algorithms. Due to the complexity of real-
world networks, many algorithms are developed for specific communities and network types
(Yang et al., 2016), which means that community detection algorithms are best classified
relative to a specific network and community application area. For example, Mittal and Bhatia
(2021) classify community detection algorithms into four categories according to technology:
modularity algorithms, information theoretic algorithms, network algorithms, and hierarchical
algorithms; while in Bedi and Sharma (2016)’s review, the algorithms for community detection
are categorized into approaches based on graph partitioning, clustering, genetic algorithms,
label propagation-based, semantics-based, methods for overlapping community detection, and
community detection for dynamic networks. Another algorithm classification differentiates the
following categories: traditional algorithms of community detection, algorithms of overlapping
community detection, and algorithms of local community detection (Wang et al., 2015). While it
is difficult to categorize algorithms, we can still filter out some algorithms since the type of

network and community largely limits their application.

Networks can be divided into static and dynamic. Community detection algorithms in static
networks are relatively simple and mostly centred on optimizing the objective function (Javed et
al., 2018). However, networks in real life may be dynamic, which is reflected in the changes in
network structure and composition. For example, Twitter users may be interested in different
topics at different times and thus join different communities. In addition, communities can be
overlapping, meaning that members of a community can simultaneously belong to another
community (Mittal and Bhatia, 2021). Given that urban area divisions typically do not have
overlapping or ambiguous regions, and that the analysis of the evolution of water networks is
not within the scope of this review, the review focuses only on algorithms for non-overlapping
communities and static networks. The following section is an introduction to three common

types of algorithms.
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2.4.21 The Cut-based Perspective

Since communities have stronger internal connections than external connections, some
algorithms have found a way to delineate optimal boundaries to cut the graph so that the
internal connections of the cut result are stronger than those crossing boundaries. In the
traditional partitional clustering algorithm, given the number of target clusters, the performance
of the given cost function is continuously optimized during the cutting process, such as
maximizing or minimizing a loss function based on the distance between clusters. Functions
such as Minimum k-clustering, k-clustering sum, k-centre, and k-median are all this type of
community detection algorithm (Wang et al., 2015). They are all functions assigning points to k
given clusters by optimising the distance between the k centroids and the other points within
the cluster. The result is Voronoi cells. However, since it is difficult to know the humber of
clusters in advance when conducting community detection, hierarchical clustering methods are
often proposed as an alternative to such methods. These algorithms consider the network as a
binary tree with different levels. There are two branches of hierarchical clustering methods. The
starting point of agglomerative algorithms, the first branch, is nodes. At any step of an
agglomerative algorithm, whether two nodes are connected depends on the similarity score of
the cluster. This method is an iterative process of merging communities from the bottom up
(Despalatovi¢ et al., 2014). In contrast, divisive algorithms are global in perspective, consider all
nodes as one community, then iteratively split clusters top-down by removing edges connecting
vertices with low similarity. Both algorithms are iterative, as the weights of the edges change
after each operation. Among them, divisive algorithms belong to the cut-based perspective. A
typical example is the Girvan-Newman method, where edge weight is defined as the number of
shortest paths passing through a given edge, a value known as edge betweenness (Girvan and

Newman, 2002).

Graph Partition methods, on the other hand, aims to partition a graph into multiple
predetermined-sized communities that satisfy some objective function by removing edges. A
typical method is the Kernighan-Lin algorithm proposed to deal with circuit problems (Kernighan
and Lin, 1970). This is a greedy optimization algorithm whose basic idea is to maximize the profit
function by exchanging nodes between different groups. This profit function can be defined as
the difference between the number of edges inside the module and the number of edges lying
between them. Nevertheless, this algorithm requires the size of the community to be known. If
the number of communities is known, then another algorithm in graph partition, spectral

clustering, can be applied.
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Similar to partitional clustering, if the sum of the weights of the edges between different clusters
is the cost (rather than the distance between clusters), the basic principle of spectral clustering

can be obtained (von Luxburg, 2007).

For two node sets A,B € V,AN B = @, the cut weight between A and B is:

W(A,B): z Wl'j
i€A,jJEB

When cutting the graph, for a set k of subgraph points A4, A4,,.. A, the cutis:

k
1 _
cut(Ay, Ay, .. A) = EZ W(4;, 4,

i=1

Where 4, is the complement of 4;.

If the calculation process stops here, the result is likely to be inaccurate: isolated points in the
network will be classified as clusters. Therefore, spectral clustering introduces the Laplace
matrix to ensure the size of the clusters is sufficiently large. Take the RatioCut algorithm as an

example (Wei and Cheng, 1989):

k _
, 1IN W(4;,4)
RatioCut(Ay, Ay, .. A}) = _Z—
2L |4;]
=1
This equation takes into account the size of the clusters.

At the same time, it introduces the indicator vector h; € {hy, hy_hy}:

0 vieAj

=

ij =\ —7T— v; € A]
|4

According to the properties of the Laplace matrix:
cut(4;,4A)

hILh; = 4]
l

For subgraph /, its RatioCut is equivalent to hl-Tth-, so the goal of the algorithm turns to finding

the smallest eigenvalue of L.
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2.4.2.2 The Clustering Perspective

There is another type of algorithm in addition to the partition algorithm, for which constraint
functions are used to identify the structure of the community. That is, instead of trying to find
best cuts, these algorithms try to find the best aggregation scheme for combining the nodes in a
graph into communities. This principle leads to a community detection algorithm in which the
proximity between nodes is described by the presence and weight of edges between them. A
branch of agglomerative algorithms in the above-mentioned hierarchical clustering exemplifies
this approach. Aside from agglomerative algorithms, one of the most influential examples is
Newman-Girvan modularity, one of the most common clustering metrics in the literature (Chen
et al., 2014, Despalatovi¢ et al., 2014). Modularity is a global mass function that aims to find

community structure from a global, whole network perspective.

The modularity measure is defined as (Newman and Girvan, 2004):

1
Q= %ZU(AU — P;;)6(C, Cy)

Where m is the total number of edges of the graph, A is the adjacency matrix. If vertex i is
connected with vertexj, A;; = 1, otherwise 4;; = 0. P;; is the expected number of edges
between vertices i and j in the null model. §(c;, ¢;) is a conditional function, if ¢;=c;, §(c;, ¢;)=1,
otherwise §(¢;, ¢;)=0. The goal of modular-based algorithms is to maximize the value of Q. If the
number of within-community edges is no better than random, Q = 0. Values approaching Q =1
indicate networks with strong community structure. In practice, values for such networks
typically fall in the range of about 0.3 to 0.7. Higher values are rare (Wang et al., 2015). There are
many modularity-based algorithms, including extreme optimization, spectral optimization,
greedy optimization, simulated annealing, and genetic algorithms (Javed et al., 2018). However,
all modularity-based algorithms have a common aim to place points in different communities to
maximize modularity. Taking the Louvain method as an example, it uses a Greedy optimization

that defines modularity as (Blondel et al., 2008):

1 kik;
Q:%z Aij—m 6(Ci,Cj)
17

Where:
A;j represents the edge weight between nodes i and j;

k; and k]- are the sum of the weights of the edges attached to nodes i and j, respectively;
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m is the sum of all of the edge weights in the graph;
¢; and ¢; are the communities of the nodes;

If ¢;=cj, 6(c;, ¢;)=1, otherwise &(c;, ¢;)=0.

Thus, the modularity value of community C is:

_Zin_ > tot

T 2m 2m

Qe )?

Y inis the sum of edge weights between nodes within the community c.
Y tot is the sum of all edge weights of nodes within the community.

In the first step, each node is assigned a community. If removing a node from the community
and joining it in another community cannot lead to a modular change, the node will be keptin
the original community. Otherwise, it will be joined into the new community that caused the
most significant modular increase. When all attempts have been made, the second step will be
performed. The concept of hierarchy is introduced in the second step, whereby the community

in the first step is used as a node to build a new network, and the first step is re-executed.

2.4.2.3 The Dynamical Perspective

These algorithms do not refer to algorithms developed for dynamic communities mentioned by
Mittal and Bhatia (2021), but to algorithms that simultaneously consider the topology of the
network and dynamic processes taking place within networks (Fortunato and Newman, 2022).
As Rosvall et al. (2019) pointed out, for real-world networks (such as aviation networks), the
structure of the network is naturally important, but understanding how the structure of the
network affects the system's behaviour is also essential. Treating partitioning as a dynamic
process thus distinguishes another type of community detection algorithm. Infomap (Rosvall et
al., 2009) and Walktrap (Pons and Latapy, 2005) are two popular representatives. Both
algorithms assume that a random walker is exploring the real network. Since the connections
within a given community are closer, the random walker should be trapped in the community for
a longer time. In other words, moving within a community is easier and moving between

communities is harder.

The basic idea of the Walktrap algorithm is that when a random walker moves from one node to
another with a given probability, short-distance random walks are more likely to remain within
the same community. This characteristic is used to identify communities within a network (Pons

and Latapy, 2005).
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In the Infomap algorithm, the route of the random walker is recorded and used to identify
communities. Communities receive unique codes based on the module switch rates of the
random walker, while nodes within each community are encoded with the average node visit
frequencies of an infinite random walk. When random walkers move from one community to
another, Infomap records a unique exit code for the original community. Therefore, the path of a
random walker in a community starts with the community code, ends with the exit code, and in
the middle is the node code. When the starting point is within a community, other nodes in the
same community are more likely to be visited, resulting in their codes appearing more
frequently in the path. Consequently, accurately identifying and encoding communities can
effectively reduce the code length of nodes within the network, thereby compressing the overall
path information (see Figure 2.6). The cost function of the Infomap algorithm is the length of the
code record, or in other words, the information cost for describing the movements of the
random walker. The shorter the length, the better the algorithm's performance (Rosvall et al.,

2009).

(a) (b) 00
100 1101 \L - 2.47 bits

L = 2.88 bits

101 1110 10

1100 1111

Path: 101 100 1100 00 01 1101 01 1111 (24 bits) Path: 0 10 00 11001 111 1 0 100 0 110 (22 bits)

Figure 2.6 Example of how community delineation affects path information length. Different
colours represent different communities. The numbers to the left and right of the
arrows represent the entry and exit codewords for each community, respectively.

The average per-step code length is denoted as L (Blocker et al., 2022).

Given a partition M, the description length L(M) that defines the average walk path is (Rosvall et
al., 2009):

LN = q-H@+ Y phHED

g~ is the probability of going from one module to another in a random walk step; H(Q) is the
entropy of the module encoding; H(Pi) is the entropy of the encoding of the node in the walk,
measuring the average information required to describe the walker's steps; p{,is the probability
that module i is visited.The calculation process of Infomap is similar to Louvain's algorithm,

except that the modularity is replaced by L(M).
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2.4.3 Applications of algorithms in water pipeline network research

The application of community detection in the study of water networks lies mainly in the
delineation of District Metering Areas (DMAs). The aim is to use community detection algorithms
to identify areas that can be isolated for pressure management and leakage reduction.
However, DMA delineation must incorporate the physical and hydraulic characteristics of the
network such as topography, water pressure, and water quality (Khoa Bui et al., 2020, Sharma et
al., 2022b). Consequently, studies tend to optimise community detection algorithms based on
these properties, either manually or automatically (Khoa Bui et al., 2020). A summary of
examples using community detection algorithms can be found in Table 2.5. Additionally, given
the distributional similarities of road and water networks, and the extensive research in road
networks, applications of community detection in road network studies are also listed here for

reference.

Table 2.5 Summary of objectives and algorithms used in previous community detection

studies of piped or road networks via network analysis (DMA: District Metered Area)

Application
Reference Algorithm Areas Objective
(Brentan et al., 2017) Walktrap water DMA creation
(Brentan et al., 2018) Walktrap water DMA creation
(Campbell et al., 2014) Walktrap water DMA creation
Improved Girvan-
(Jazayeri and Moeini, 2024) Newman algorithm water DMA creation
fast-greeding
(Scibetta et al., 2013) modularity water DMA creation
fast Newman
(Sharma et al., 2022a) algorithm water DMA creation
(Zhangetal., 2017) Louvain water DMA creation
congested urban
(Haghbayan et al., 2021) Infomap traffic road identification
traffic/urban | functional area
(Hong and Yao, 2019) Infomap areas identification
assessment of the
Order Statistics Local urban road
(Shang et al., 2020) Optimization Method traffic network
greedy modularity
communities traffic/urban | neighbourhood
(Bramson, 2022) algorithm areas identification
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modularity traffic/urban | neighbourhood
(Law et al., 2019) optimisation algorithm | areas identification

Several review articles also describe the application scenarios for different algorithms and
explain their conceptual advantages and disadvantages. Gates et al. (2016) evaluated weighted,
undirected community detection algorithms from the perspective of applications in brain
science. They evaluated the Spectral Approach, Walktrap, Fast Modularity, Louvain method,
Label Propagation and Infomap algorithms. The results indicate that when the data are in the
form of sparse count networks (such as those seen in diffusion tensor imaging), Label
Propagation and Walktrap surfaced as the most reliable methods for community detection. For
dense, weighted networks such as correlation matrices capturing functional connectivity,
Walktrap consistently outperformed the other approaches for recovering communities.
Wickramasinghe and Muthukumarana (2022) also compared the performance of the algorithm
in both sparse and dense networks, and found that the Louvain algorithm performed well in both
contexts. Harenberg et al. (2014) compared the performance of eight algorithms across five
networks and concluded that an algorithm's output with a good community structure does not
necessarily have high accuracy, and vice versa. Smith et al. (2020) described application
scenarios for the Edge-Betweenness, Random Walktrap, Label Propagation, InNfomap, Louvain,
and Spinglass algorithms. Their study suggests that researchers should choose an algorithm
based on the main research problem in conjunction with the principles of the algorithm.
Ghasemian et al. (2019) compare the performance of 11 algorithms for a specific task,
indicating that algorithms sharing similar underlying assumptions tend to exhibit comparable
performance, although the similiarity remains contingent upon the characteristics of the
network. Fortunato and Hric (2016) mentioned in their algorithm guide that the methods based
on modularity and Infomap algorithms perform better. Infomap is more easily adapted to
different types of input data and research questions. In contrast, the modularity algorithm itself

has a resolution problem.

Particularly, graph studies on water networks face significant constraints due to limited data
availability. Although a systematic review on this topic is absent, it is noteworthy that several
pipeline studies in the table used synthetic rather than real-world networks. This exemplifies a
broader trend in water research, as seen in the 44 publicly available datasets of water pipeline
networks listed by Giudicianni et al. (2018), of which 23 are synthetic. Momeni et al. (2023)
highlighted that the paucity of real-world data assets is one of the primary obstacles to research
on water distribution networks. Furthermore, Yu et al. (2024) emphasized that this limitation not
only restricts the study of network topology but also hampers the transferability of findings to

different regions.

63



Chapter 2

In summary, on the one hand, the performance of algorithms differs across various scenarios;
on the other hand, experience in applying algorithms is lacking in some regions. Thus, although
community detection has been applied to road networks for urban planning and used in water
network studies, there remains a research gap in understanding the relationship between water

infrastructure and urbanisation trajectories, particularly in slums.

2.5 Water access in urban areas: performance and measurement

SDG 6.1 aims to achieve universal and equitable access to safe and affordable drinking water
for all by 2030. The WHO/UNICEF Joint Monitoring Programme (JMP) has developed a
classification system for drinking water facilities and services to benchmark and monitor
progress, with water access being a core component of this system (WHO/UNICEF, 2023b).
There are significant disparities in water access between regions—beyond the impacts of
economic and social factors, the availability of improved water sources varies between
countries and cities (Deshpande et al., 2020, Dos Santos et al., 2017, Wagle, 2022), urban poor
are confined to slums or peripheral areas and live far from the areas where these facilities are
concentrated (Armah et al., 2018). To better understand how regional characteristics influence
water supply and to examine water access patterns in informal settlements, researchers have

called for spatial studies of water access (Cassivi et al., 2019, Dos Santos et al., 2017).

2.5.1 Place-based approaches to measuring water access

Many measures have been developed to study infrastructure accessibility. Generally,
accessibility refers to the ease of reaching urban services (in this case, water) or the interaction
between people and infrastructure (Chen et al., 2017). According to Siddiqg and Taylor (2021),
the four types of factors that can influence accessibility include the built environment, transport
systems, individual characteristics, and trip characteristics (see Figure 2.7). Studies define
accessibility differently and focus more on some of these four factors. Their different
methodologies can be categorised into four groups: infrastructure-based measures, location-
based measures, person-based measures, and utility-based measures. They measure
infrastructure accessibility in terms of facility performance, spatial distribution of facilities and
population, individual activities, and economic benefits, respectively (Geurs and van Wee,
2004, Higgins et al., 2022). To simplify, we can classify them into place-based accessibility
measures, analysing the spatial proximity to urban opportunities, and person-based
accessibility measures, measuring the spatial and temporal constraints individuals experience

when travelling (Chen et al., 2017).
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A conceptual model of the factors affecting accessibility (Siddiq and Taylor,

More specifically, person-based accessibility measures emphasise the impact of travellers’

characteristics on accessibility. Such a concept is derived from time geography, which suggests
that accessibility is constrained by the individual's daily activity schedule (the time budget) and
the travel time to the location of the target activity (Liao, 2019). Unsurprisingly, while it is
possible to measure differences in accessibility between individuals and provide insight into
how personal traits interact with the environment and affect accessibility, person-based
methods rely on detailed personal information and travel logs (Boschmann and Kwan, 2008)
(Huang, 2019). For example, travel diaries were used in the studies by Neutens et al. (2012) and
Dixit and Sivakumar (2020). Understanding person-based accessibility patterns also relies on
people's perceptions, the domain of perceived accessibility, which requires more
comprehensive and flexible models (Bugden and Stedman, 2019, Pot et al., 2021). Firstly,
studies that emphasise the importance of personal experience also acknowledge the influence
of spatial elements on accessibility. Secondly, as demonstrated by Siddiq and Taylor (2021) and
Miller (2018), scholars often expect to build a comprehensive model to include the effects of
individual/household characteristics on accessibility. However, such models are often flexible,
complex, and difficult to interpret, and the variability of individual behaviours can make person-

based availability approaches both challenges and difficult to generalise.
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Instead, more operationally pragmatic models in practice come from place-based measures (Li
et al., 2023a). These approaches focus more on the other three elements in addition to

individual characteristics (Luo and Qi, 2009):

1. Supply, the amount, capacity and distribution of the facilities, and the quality of the
service.

2. Demand, the demand for water by population groups (of different ages, genders,
incomes, etc.) in the study area, and their distribution pattern.

3. Spatial distance, distance between population and water sources, travel modes and
corresponding travel speeds, the negative effect of travel time on water accessibility,

and competitive relationship between facilities.

These three elements form easy-to-grasp accessibility measures. The two most popular types
are cumulative-opportunity and gravity-based approaches (Bittencourt and Giannotti, 2023).
Given a threshold, cumulative opportunity measures count the number of opportunities that
can be reached by the threshold time, and opportunities beyond the threshold are not
considered (Kelobonye et al., 2020). The strong relationship between thresholds and cumulative
accessibility results in a major drawback of traditional person-based approaches. Recently, a
time interval cumulative accessibility measure using multiple thresholds has been proposed to
overcome the shortcomings of the traditional cumulative opportunity measure (Tomasiello et
al., 2023). Nevertheless, it is still a simple and direct accessibility model, while gravity-based
approaches are considered more complex. In the gravity model (Weibull, 1976), the
accessibility of a population location depends on the supply/demand ratio of all facilities to the
population within a certain area and is adjusted according to the distance between them. More
specifically, the supply/demand ratio of a facility to all population within its catchment is the
attractiveness or "opportunity" of the facility. Facility attractiveness decreases as distance to a
given population increases. All opportunities a population location can approach collectively

constitute the location's accessibility.

As highlighted by Miller (2018), there is no objective definition of the accessibility score, thus
accessibility score only has meaning when being compared within a group. So, deciding
between gravity-based and cumulative opportunities methods is difficult, especially when their
performances are similar. For instance, studies using cumulative opportunity and gravity-based
approaches in London and Vancouver show that they have similar results given the same
thresholds (Kapatsila et al., 2023). However, a recent study points to a potential drawback of
cumulative-opportunity approaches. Klar et al. (2023) used cumulative-opportunity, gravity-
based, and a hybrid of the two approaches for Vancouver's transit system. They observed that

since the cumulative-opportunity approach only considers opportunities within a given
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catchment and innovations often lead to changes in service coverage areas (catchments),

gravity-based models respond better when examining the range of impacts.

2.5.2 The two-step floating catchment technique: methodological developments and

applications

The two-step floating catchment area (2SFCA) method, which has been widely used in recent
years, is derived from the gravity-based model. The problem with the traditional gravity model is
that, while accounting for the negative effect of distance on attractiveness, the model does not
define the catchment of the facility and population location. This results in the number of
facilities that can be accessed by the population location as well as the accessibility score
being sensitive to study area delineation and choice of administrative geography, thus making it
hard to interpret the outputs (Luo and Qi, 2009). As a special case of the gravity model, 2SFCA
corrects this problem by defining the catchments and allowing the boundaries to float based on
a user-specified distance from each facility and population location, thus limiting the spatial
variables that are used in the calculation. Therefore, the 2SFCA method can be implemented in

two steps:

Step 1: For facilities j, search all population locations k that are within a threshold travel time
from location j, and compute the capacity-to-population ratio R;, defined as the supply S; e.g.,
facility capacity) divided by the population within the catchment area P, discounted by distance
decay function f (d;).

S.

R; = ]
T Bketanyscp Pef (@icj)

Step 2: For each population location i, search all facilities locations (j) that are within the
catchment area of population location i (C;), and sum up the capacity-to-population ratios

(derived in step 1), R;, at these locations, discounted by distance decay function f(d;;):

AT=D Rf(dy)
Je{dij=Ci}

In recent years, several improvements have also been introduced to the 2SFCA model, one of
which focuses on the distance decay function that measures the negative effect of distance on
accessibility. In the classic 2SFCA model, dichotomous methods are used, which divide the
catchment into zones with different weights based on distance (Liu et al., 2022). In other words,

the classic methods simulate the negative effect of distance on accessibility by directly adding
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or subtracting weights for each zone. This leads to a similar situation as opportunity
accumulation models: two points inside and outside a boundary will have very different weights,
and different locations in the same zone will have the same weight, which does not align with
common sense. Therefore, continuous distance-decay functions were introduced to simulate
travel friction. They imply that distance is negatively correlated with accessibility. As the
distance increases, the weights gradually decrease. Commonly used functions include the
exponential, Gaussian, and kernel density functions. Among them, the Gaussian function is
believed to be the best-performing function in access studies (Chen and Jia, 2019, Liu et al.,
2022). ltis defined as:

d d _ e_(l/z) X (dlj/do)z — e_(l/z)
f( ijr 0) - 1— e_(l/z)

Another improvement on the original 2SFCA model is the realisation that in addition to the
capacity of the facility, the demand also needs to be weighted according to the crowdedness of
facilities. In other words, there is a need to incorporate people's preferences for facilities, which
are considered to be related to distance (Kanuganti et al., 2016). In practice, when there are
multiple facilities that people can access within a threshold time, this model enhancement
assumes that the closest one with the best service quality will be chosen. Hence, residents in a
population location will make decisions about attending services based on trip distances and
capacity at service points. It also means that a facility within a population catchment will not be
accessed by all residents of that population location. However, according to the 2SFCA formula
above, each facility's supply/demand ratio is calculated using the total head count of a
population location, which means that the traditional 2SFCA overestimates demand (Subal et
al., 2021). Therefore, there is need for an indicator to measure facility crowdedness or offset the
overestimated demand. Given this need, the Huff function has been used to improve the 2SFCA
(Wang, 2018). The Huff function searches for all facilities k that a population centroid i can
approach within the travelling time threshold and compares the performance of a particular
facility j with the rest of the facilities on the distance decay function. If facility j is closer to
population centroid i than other facilities and has more capacity, then facility j will have a higher
Huff value than the other facilities. It will also have a higher likelihood of becoming the

destination of population centroid, /.

Proby = 2/ (41)
Y ZkE[dideO] Skf(dik)

Where Probijis the probability of i choosing .

Based on these two improvements, the improved 2SFCA method can be represented as:

68



Chapter 2

Step1:

S
R, = j

Step 2:

AF = Z Proby;f(d;;)R;
je[dij=d,]

2SFCA and improved versions have been widely used in studies on public facility accessibility,
especially in healthcare studies (Kanuganti et al., 2016, Luo and Qi, 2009, Wang, 2012). The
experience in these healthcare accessibility studies shows that 2SFCA is sensitive to parameter
selection, especially in the choice of distance thresholds. Chen and Jia (2019) pointed out that
variants of the 2SFCA modelyield similar results if the same threshold value is used. This proves
that the threshold value is the main factor that affects the results. A large threshold may smooth
the spatial pattern of the accessibility map, while a small threshold introduces more localised
variations into the result. They also pointed out that since thresholds are also variables in the
distance decay function, it will also affect the performance of the distance decay function. Luo
and Whippo (2012) emphasised the significance of the threshold affecting the accessibility
results. They argue that the distribution of facilities and population differs significantly between
urban and rural areas. As a result, the time urban versus rural residents are willing to spend on
accessing facilities varies, and using the same catchment sizes will overestimate accessibility
in both areas. Therefore, when applying the 2SFCA method, thresholds should be chosen

carefully with attention to the specific application and relevant theory.

As highlighted in previous discussion of global urbanism (see section 2.2.1), urbanisation and
new interventions have made the landscape of basic services in these regions increasingly
complex and fragmented (Coutard, 2008, Smiley, 2020). On the one hand, the emergence of
informal settlements increases the complexity of urban spaces; on the other hand, non-piped
water supply systems play a crucial role in water access in global southern cities (Adams,
2018b, Azunre et al., 2022). Both of these factors can be captured by the 2SFCA method. The
results of this method are influenced by population and facility capacity, and the sensitivity of
the 2SFCA method to parameters corresponds to the spatial heterogeneity of urban water
access. Thresholds in 2SFCA models represent how much time residents are willing to spend
accessing services and the travel modes (walking or driving) used by an area’s inhabitants
(Chen and Jia, 2019). This means that 2SFCA results can be interpreted in terms of the size of
the thresholds: they reveal the distribution of facilities and populations, as well as the social

factors associated with accessibility (Wan et al., 2012). Therefore, 2SFCA can be used to
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analyse the complex water supply landscape in cities of the Global South. However, while the
2SFCA method and its improved versions have been extensively applied in healthcare studies
(Kanuganti et al., 2016, Khashoggi and Murad, 2021, Luo and Qi, 2009, Shao and Luo, 2022, Tao
etal., 2020, Wang, 2012), its application in the water sector remains largely unexplored, despite
repeated calls for more quantitative evidence on water access (Cassivi et al., 2019, Dos Santos

etal., 2017).
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Chapter 3 Research scope and technical resources

Rapid urbanisation in Africa poses significant challenges to land, infrastructure, and service
provision in cities, further exacerbating urban inequality (UN-Habitat, 2022). Sections 2.1 and
2.2 have outlined how this urbanisation intensifies pressure on urban water services. According
to the UN reports on the Sustainable Development Goals (SDGs) (UN-Habitat, 2023b, UN,
2023a), Sub-Saharan Africa (SSA) has some of the highest concentrations of slum populations
and the largest numbers of people lacking access to basic water services. Various initiatives,
such as slum upgrading and delegated management model (DMM), have been introduced to
address these pressing issues, generating diverse responses within the context of urbanisation

in southern cities.

Recent studies have proposed different theories to understand and guide these interventions,
yet they remain constrained by the lack of empirical evidence (Parida and Agrawal, 2023,
Pieterse, 2011). Particularly in SSA, the impact of urban space and water interventions on
service delivery remains largely unknown and uncertain. While graph and access
measurements have been shown to be effective in assessing infrastructure patterns and the
urban environment, neither has been fully developed or applied specifically for water study
purposes (Derudder and Neal, 2018). Since these methods often involve empirically adjusted

parameters, this leaves a research gap.

To address the gaps and establish links between research methods and the theoretical
frameworks of urbanisation and water services in SSA, this study seeks to gather empirical
evidence from cities in SSA by analysing water infrastructure in southern cities from multiple
perspectives. This chapter primarily outlines the selection of the study areas and provides

relevant background information.

3.1 Case study cities: description and rationale

To achieve the research aim of analysing the impact of SSA urbanisation on water supply, the
study area must ideally have rich data on water infrastructure, particularly pipeline data, as this
is essential for applying graph theory and accessibility analyses. Additionally, the area should
share similar urbanisation characteristics, specifically facing challenges of slum expansion and
water access, to ensure the representativeness of the study and allow for broader applicability
of the results across various SSA cities. Based on these criteria, this section reviews available
databases and recent SDG monitoring reports, and provides a description of the urban layout,

road networks, and water infrastructure of the two selected case study areas, Kisumu in Kenya
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and Kigali in Rwanda, both located in East Africa. This description lays the foundation for

interpreting the subsequent analyses.

3.1.1 Rationale for selection of case study cities

An audit of water infrastructure data to assess the data landscape was the first step in selecting
potential study areas from SSA countries. Since the main providers of water services in cities
within SSA are usually governmental or regional/international NGOs/humanitarian
organisations, this audit entailed structured searches of international and regional databases
for water infrastructure and consumer/supplier data. The databases searched included the
World Bank, International Benchmarking Networking, Food and Agriculture Organization, World
Resources Institute, Water Point Data Exchange, OpenStreetMap, openAFRICA, and Africa
Infrastructure Knowledge. For point data, tags related to water infrastructure (e.g. water

treatment plant, pumping station, water tank) were of interest.

Following the searches, it became apparent that very few open data sources cover SSA.
Datasets such as the World Bank and Humanitarian Data Exchange only provide water statistics
and analysis reports for water services. At the same time, the only databases containing
geospatialinfrastructure data are OpenStreetMap (OSM) and Water Point Data Exchange. A
search of OSM showed that, as of 2022, there were only 1,539 pipeline records in Africa, mainly
in South Africa, Libya, and Ethiopia. Since Libya is not an SSA country and Ethiopia's records are
mainly distributed in the rural areas, only South Africa was investigated further. There are 161
records in South Africa, but in many cases, a single pipeline may be associated with multiple

records, meaning the actual number of features is lower.

In comparison, there is a greater availability of point data related to pipelines. The Water Point
Exchange database has 14,434 records for piped water points in SSA countries (as of 2024), with
11,385 of those being public tapstands and kiosks. Sierra Leone and Ghana have the highest
number of water point records. Despite the fact that many searched tags are not available in
Africa, the survey of OSM data shows that there are 18,923 large water points (where larger
amounts of drinking water can be collected) and 21,144 general drinking water in Africa. These
points are mainly located in Uganda, Kenya, and Burkina Faso. The low humber of pipeline
records compared to the high number of ancillary facilities suggests that these SSA countries
have dense piped infrastructures, and their pipeline networks are not yet covered by public
domain databases. These counties include Sierra Leone, Ghana, Liberia, Zambia, Kenya,

Uganda, and Rwanda.

Another key finding from the data audit is that the data quality of public databases such as OSM

and Water Point Data Exchange varies across SSA, largely due to the type of data source. For
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example, Sierra Leone has well-documented water points due to government efforts, while
water point clusters in Liberia are associated with the Liberia Firestone Rubber Company. In
some instances, OSM, as a Volunteered Geographic Information (VGI) platform, can be
incomplete with inconsistent labelling, particularly in Africa. In these cases, utility companies

with established GIS-based asset management systems are the most reliable data sources.

After further investigations, two cities, Kisumu and Kigali, were further filtered from the above
countries as the study areas for this research. Both cities face rapid urbanization and high
proportions of slum populations: slums in Kisumu account for 19% of the city’s area and house
60% of its urban population (Othoo et al., 2020), whereas 77.3% of Kigali’s households live in
slums, covering 79% of the population (Hitayezu et al., 2018, NISR, 2018). Despite the
similarities, their piped water service levels differ significantly. In Kisumu, Kisumu Water and
Sanitation Company (KIWASCO) provides piped water to 8.3% of households within dwellings,
10.9% to yards/plots, and 22.1% via public taps (KNBS, 2019b). Water coverage in Kisumu’s
low-income areas has increased, but unregulated connections remain, creating unsafe
"spaghetti" networks (Boakye-Ansah et al., 2019, LVSWSB, 2021). In contrast, Kigali’s Water and
Sanitation Corporation (WASAC) reported a 50% household water connection rate in 2018, with
about 87% of unplanned settlement households accessing improved water sources (City of
Kigali, 2020a, Hitayezu et al., 2018, NISR, 2018). Additionally, Kisumu was the first city in Kenya
to implement a large-scale water DMM program targeting slums (Nzengya, 2015). By 2022,
KIWASCO had partnered with 41 master operators to manage water delivery in low-income
areas under DMM contracts. Unlike Kigali, where WASAC directly manages all water
infrastructure, Kisumu’s approach includes some decentralized management to address water
accessibility challenges. This contrast provides an opportunity to compare their existing
pipeline networks and explore the interactions between SDG 6 and SDG 11, particularly in terms

of policy impacts.

3.1.2 Urbanisation and infrastructure development in Kisumu
3.1.21 Urban layout

Kisumu County is located in western Kenya. The topography of Kisumu County varies, with
northern regions characterized by hilly terrain and southern regions predominantly consisting of
plains. The county is bordered by Lake Victoria, the world’s second-largest freshwater lake, to
the west, and by mountains to the east. Within this, Kisumu County has a total area of 2,085.9
km?. According to the 2019 census, Kisumu County has a total population of 1,155,574, with
397,957 located in Kisumu City, the third-largest city in Kenya after the capital Nairobi and
Mombasa (KNBS, 2019a).
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Figure 3.1 Map of Kisumu County, showing its constituent 2019 municipal sublocations
including Kisumu City. Names and population counts from the 2019 Kenya census
(KNBS, 2019a) are labelled per each sub-county. The overview map shows Kenya’s

47 counties with Kisumu marked in green.

The name Kisumu stands for the trade of goods, which comes from Kisumu's longstanding
status as a commercial and transportation centre in the Lake Basin region. In 1898, the tip of the
Winam Gulf was designated as the railway terminus for the Kenya-Uganda railway. With this as
the central area, Kisumu City gradually developed into its current size. The name Kisumu can
refer to two entities: Kisumu County and Kisumu City. Kisumu County is one of Kenya's 47
counties and is subdivided into 7 sub-counties (as shown in Figure 3.1). However, 'Kisumu' is
more frequently used to refer to Kisumu City, the study area for this study. The boundaries of
Kisumu City are largely inherited from the previous Kisumu Municipality. Today, Kisumu City is
divided into 25 sub-locations or 10 main areas (Township, East Kolwa, Central Kolwa,
Southwest Kisumu, North Kisumu, Central Kisumu, East Kisumu, West Kajulu, East Kajulu, and

West Kolwa) (Figure 3.2). From the perspective of history and planning, those sub-locations can
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be grouped as central urban areas and informal areas, representing the developed areas in

central Kisumu and less developed areas in peripheral regions, respectively.

: Central
| Kisumu [ T
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U

/

Legend
7 Kisumu Kisumu Sub-

County locations

[0 Lake Victoria

Figure 3.2 10 main administrative areas of Kisumu City.

The central urban areas are the well-planned neighbourhoods for the middle and high-income
residents, including the former European residential area (Milimani), the former Indian
residential area (Kibuye), low and middle-income public housing (Municipal, Railways, Kenya
Post, Kenya Power). These areas originated from colonial-era plans and were characterised by
high levels of service delivery and infrastructure provision (Letema et al., 2014, UN-Habitat,
2005). Apart from colonial planning, a second reason for the distinction between the central
urban areas and the informal areas was the extension of the city’s boundaries in 1972. This plan
increased the city’s total area to 53 km?2. The peri-urban region that was included now fell under
the administration of Kisumu County Council whereas previously, it fell under the rural Kisumu
District administration. This means that the planning policy historically applied to the newly
extended area was the rural standard. Since the rural standard is lower than the urban standard,
there has been a persistent difference between the informal and central areas since then,

resulting in two very different urban configurations within Kisumu (UN-Habitat, 2005).
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Figure 3.3 The slum belt surrounding the central areas in Kisumu (UN-Habitat, 2005).

As shown by Figure 3.3, unplanned informal areas surround the central areas of Kisumu. As a
result of colonial zoning, African communities were isolated from the city’s core and housing
developed without regulation and planning (Letema et al., 2014). In recent years, many
immigrants from other counties have also settled here for employment and entrepreneurial
opportunities. These slums cover approximately 19% of the city and host about 60% of
Kisumu’s urban population (Othoo et al., 2020). These slums and central urban areas form the
boundaries of Kisumu City, beyond which are the vast rural areas and satellite towns of Kisumu

County.

Kisumu City has a higher population but smaller area than the remaining areal units. The urban
population of Kisumu County is 1,155,574, while the Kisumu East (220,997), Kisumu West
(172,821), and Kisumu Central (174,145) are the three sub-counties with the largest populations
in Kisumu County. Due to boundary changes since the last census in Kisumu (in 2009), itis hard
to analyse the spatial distribution and growth rate of the population in more detail.
Nevertheless, it can be concluded that these slums, concentrated in high-population sub-
counties, are home to a significant proportion of Kisumu's population, which increases pressure
on infrastructure. The 2019 Kenya Population and Housing Census Volume IV also notes that
the proportion of population with piped water into dwellings in Kisumu has an extreme

distribution. The average proportion in Kisumu County is 8.3%, with the highest proportion in
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Kisumu Central, at 26.1%. The Seme has the smallest proportion, 0.7%. And for sub-counties

other than Kisumu Central, the figure is no more than 10% (KNBS, 2019b).

3.1.2.2 Water services

Since the 2010 Kenyan constitution made access to safe water a human right, subsequent laws
have divided powers and responsibilities for water and sanitation services (Price et al., 2018).
Each county provides services within its jurisdiction while being regulated by the state. In
Kisumu County, the Municipal Council of Kisumu (MCK) owns all water and sewerage facilities,
and institutions such as the Water Resources Authority are responsible for managing water
resources. Since 2003, the Lake Victoria South Water Services Board (LVSWSB) has been
responsible for executing and implementing water projects and licensing water service
providers. The actual water service provider is Kisumu Water and Sanitation Company

(KIWASCO).

Most of the water in Kisumu County is obtained from Lake Victoria, but some residents also rely
onrivers (such as Kibos, Nyamasaria, Kisian, Kajulu, Mamboleo, Luanda, and Lidango) and
groundwater (Maoulidi, 2010). In central urban areas, the pipelines are mainly managed by
KIWASCO, and their spatial distribution is regular, mainly laid below the streets. Statistics from
the Kisumu County Water Resource Masterplan Draft Report show that in low-income areas
(peri-urban or informal areas), the coverage of the water supply network is still very low
(LVSWSB, 2021). In the absence of supervision, operators in informal areas tend to connect
pipelines to the network in illegal and unplanned ways. The structure of these pipelines is called
a 'spaghetti' network. In addition to inefficient spatial configuration, 'spaghetti' lines also face

safety and quality issues (Boakye-Ansah et al., 2019).

Itis important to consider Kisumu’s water service development within the broader historical
context of Kenya. Following the economic crises and rapid urban population growth from the
1970s onwards, Kenya’s water sector faced severe financial deficits, prompting a series of
reforms. These reforms included the introduction of local authorities and the adoption of
commercial models to manage and operate water infrastructure (Nilsson and Nyanchaga,
2008). This shift in policy aligns with the context discussed in Section 2.2 of the literature review,
where the emergence of public-private partnerships (PPP) and slum upgrading was
emphasised. In Kisumu, water service provision and development were commercialised under
the Kenya Water Act 2002, which provided the legal framework for the introduction of DMM
(GoK, 2002). In Kisumu, KIWASCO is responsible for providing water in bulk to agents (master-
operators), who in turn deliver water to consumers through retail or by establishing pipelines
(Nzengya, 2015). KIWASCO will provide them with basic network extension and maintenance

training. However, in practice, those master-operators tend to build pipeline networks to a lower
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standard for reasons of limited space in slums and cost saving, resulting in poorer-quality

pipeline and water distribution (Nzengya, 2015).

According to the Kisumu County Water Resource Master plan Draft Report (LVSWSB, 2021), the

challenges faced by Kisumu's water and sanitation services are:

1. Growing demand for services. The water demand in 2020 was 78,332 m®/d. Considering
the development of population and income, water demand is expected to be 87,248 m®
/d in 2025, and by 2050, this amount will double.

2. Theinfrastructure needs to be renewed and expanded. Existing water pipelines suffer
from deteriorating condition and poor coverage. The previous stage (the second phase
of the Kisumu Water Supply and Sanitation project) of Kisumu’s infrastructure
development scheme mainly focused on water intake and treatment works,
transmissions mains and storage tanks and ignored network maintenance and
expansion of the secondary distribution system. Therefore, existing pipelines are often
at risk of blockages and leaks. In areas already covered by the network, the capacity of
the network lags behind demand. In low-income areas such as informal areas, water
services coverage remains very low, and even current needs cannot be met.

3. The DMM approach requires improvement and expansion.

4. Datato support network renewal and regular maintenance is lacking.

3.1.2.3 Roads

The road network in Kisumu is managed by three agencies: the Kenya National Highways
Authority (KeNHA), the Kenya Urban Roads Authority (KURA), and the County Government of
Kisumu (Figure 3.4). Due to Kisumu's location, the main arteries serve dual roles: they are both
urban streets and crucial transportation routes connecting other cities. This dual function is one
of the factors influencing road design in Kisumu (County of Kisumu, 2020). Interventions have
been implemented to enhance road accessibility in some Kisumu communities (Khanani et al.,
2021). During the last County Integrated Development Plan of Kisumu period (2018 —2022), 15
km of bitumen standard roads were constructed, significantly improved access and
connectivity within informal settlements (CGK, 2022). However, overall, well-planned streets

are still concentrated in the city centre.
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Figure 3.4 Street jurisdiction in Kisumu (County of Kisumu, 2020).

3.1.3 Urbanisation and infrastructure development in Kigali
3.1.3.1 Urban layout

Like Kisumu, Kigali also originated from trading posts established during the colonial period
(Manirakiza et al., 2019). Along with the city's expansion, in 1964, the first Conceptual Master
Plan for urban planning was presented. Later, in 1990, the Préfecture de la Ville de Kigali (PVK)
was introduced to manage Kigali, which had expanded from 70 to 112 square kilometres. By the
time the Mairie de la Ville de Kigali replaced the PVK in 2000, the area of Kigali had reached 314
square kilometres. Finally, in 2005, the name 'City of Kigali' (CoK) was officially given to this city,
which had grown to 730 square kilometres and consisted of 3 districts, 35 sectors, 161 cells and

1,061 villages (Baffoe et al., 2020b, City of Kigali, 2020b, Manirakiza et al., 2019).

The configuration of urban space and population in Kigali was shaped mainly during the 1990s,
in the post-genocide period (Esmail and Corburn, 2020). In the two decades from 1991 to 2022,
Kigali's population grew from 1.3 million to about 1.75 million (NISR, 2023a, ONAPO, 1991).
According to the 2022 Rwanda Population Census, most of them are located in the Gasabo
district (50.4%) (NISR, 2023b). The high urban population proportion of 86.9% also makes the
City of Kigali the most urbanised province in Rwanda (NISR, 2023b). Meanwhile, Kigali
experienced a rapid increase in the built-up areas between 1984 and 2016, with a net change of

887.9% in high-density buildup areas (Mugiraneza et al., 2019), with the residential area of Kigali
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increased by 20.6% from 2013 to 2018 (City of Kigali, 2020d). As with SSA urbanisation
described in the literature review (section 2.2.1), in Kigali, rapid urbanisation is also
accompanied by informal area expansion (known as akajagari in the local language) or
unplanned settlements as Kigali officials prefer to call them (NISR, 2018). As for the population
currently living in Kigali, about 77.3% of the households live in informal settlements (NISR,
2018), about 79% of the total population (Hitayezu et al., 2018). It is widely recognised that the
emergence of informal settlement in Kigali is linked to the influx of post-genocide migrants. In
the 2022 census, the total number of immigrants in Kigali reached 354,970 (NISR, 2023b).
Hitayezu et al. (2018) estimated that 65% of adult residents living in unplanned settlements are
immigrants who moved to Kigali for geopolitical or economic reasons. Due to the importance
immigrants place on ease of work, these communities tend to be close to well-developed roads
(Hitayezu et al., 2018, Uwizeye et al., 2022). Meanwhile, they are excluded from the small slope
areas that are less hazardous because of Kigali's hilly terrain (Baffoe et al., 2020b, Nduwayezu
et al., 2021, University of Rwanda, 2018). This pattern is consistent with the common
distribution characteristics of urban slums in the global south as summarised by Kuffer et al.
(2017). Overall, the city follows a concentric urban land-use model, extending from the central
business district (CBD) areas to informal settlements on the outskirts, with some high-end
housing scattered on the outermost periphery (Nduwayezu et al., 2016, University of Rwanda,
2018). Baffoe et al. (2020) further divided Kiagli's neighbourhoods into three typologies:
planned, unplanned /informal, and a mixture of the two (neighbourhoods resulting from
upgrading, degradation or amalgamation). The distribution of informal settlements is illustrated

in Figure 3.5.
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Figure 3.5 Map of informal settlements in Kigali (City of Kigali, 2020a). The UN-Habitat and the City of Kigali have classified these settlements into seven types.

The dominant categories include the uphill sloped settlements and overcrowded settlements located in Nyarugenge, which is situated in the city centre.

81



Chapter 3

The distribution of informal settlements in Kigali, while following the general pattern of urban
expansion in SSA, was also influenced by colonial-era policies. Esmail and Corburn (2020) note
that some informal settlements can date back to the colonial period communities and that they
coexisted with planned areas until the Rwandan government intervened. Based on the National
Informal Settlements Upgrading Strategy's classification of informal settlements (MININFRA,
2015a), the informal settlements with long histories include Akabahizi, Munanira, Kimisagara,
Gatenga, Karambo, Nyanza. Nyagatovu, Nyabisindu, Kangondo I, and Kangondo Il (Uwizeye et
al., 2022). In contrast, areas that were the focus of the French Ministry of Cooperation (e.g.,
Kicukiro, Remera, Kimihurura, and Kacyiru) are now the home of the high-income groups

(Benken, 2017).

3.1.3.2 Water services and roads

Before 2014, Kigali's water provision was the responsibility of EWSA, the Energy, Water and
Sanitation Authority (University of Rwanda, 2018), and now the Water and Sanitation
Corporation (WASAC) is in charge of urban water supply (City of Kigali, 2020a). The main water
sources of the Kigali water supply system are the Yanze River, Nyabarongo River and Lake
Mugesera. Water is distributed to consumers from these sources through WASAC's 494km of
pipelines, which cover most of the built-up areas in the city. Urban areas close to the city
centre, such as Muhima, Nyarugenge, Gitega, Kimisagara, Kimihurura, Gikondo, etc., have the
most extensive piped water network. In the past, the water network extension was not planned
according to the future land use or growth. Hence, many existing pipelines do not follow the
road alignments and encroach into property boundaries. This has made maintenance work
challenging to carry out. At the same time, the undulating terrain also adds cost to any

expansion (City of Kigali, 2020a).

Although risks also exist in Kigali's basic service systems, such as water and sanitation (Tsinda
et al., 2020), the overall performance of water services in Kigali remains impressive. In 2018,
WASAC reported that 86% of the Kigali population had access to water within 200m of travel,
while the proportion of the population able to access household water connection reached 50%
(NISR, 2018). The Rwanda DHS report shows that in the City of Kigali, the population with access
to improved drinking water sources (piped water, protected well/spring, etc.) reached 97.4%
(NISR, 2021). Hitayezu et al. (2018) estimate that 87% of households in unplanned settlements
have access to improved water sources, with the value affected by the distance from the main
road. The well-developed water system in Kigali can be explained by the strategy of its master
plan, which is that the expansion of water and other infrastructures should always align with the
city's overall development plan. Uwizeye et al. (2022), Benken (2017), University of Rwanda (UR)
(2018) and Hudani (2020) all find that Kigali has deployed urban plans that incorporate a range
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of policies (e.g., the National Urbanisation Policy (MININFRA, 2015b), and the Vision 2020 (GoR,
2012)), which set strict standards for urban environment in order to form "the Singapore of
Africa". The government expects that the transformed Kigali can serve as an intrinsic economic
driver and hopes that inclusive policies can unite the city's inhabitants during the post-genocide
period (Manirakiza et al., 2019). We can see this in Bolin (2019)'s description of the changes in
Kigali, which Esmail and Corburn (2020) summarise as "a large technological system, with its
harmonised edifices of zoning and legal provisions, which segment and integrate space and
social life." The implementation of these policies has objectively enabled the residents of
Kigali's informal settlements to access public services such as water, sanitation, electricity, and
land registration. Of course, according to the master plan of Kigali, providing basic services to
the residents of the informal settlements does not justify the presence of the informal
settlementin the "modern city with high standards" (Esmail and Corburn, 2020, Uwayezu and de
Vries, 2020). At the same time, paid services, such as healthcare and education, remain
unaffordable for informal settlement residents (Hitayezu et al., 2018, Uwizeye et al., 2022).
Thus, while the small drinking-water supplies (SDWS) projects similar to the DMM also exist in
Kigali (Herschan et al., 2023, University of Rwanda, 2018) , Kigali prefers the formal way to cope

with the increase in demand due to rapid urbanisation (City of Kigali, 2020a).

For the same reason, Kigali's road network (Figure 3.6) exhibits the best connectivity among all
roads in Rwanda. The construction and management of these roads and their traffic fall under
the jurisdiction of the Ministry of Infrastructure (MINIFRA) and its subsidiary agency, the Rwanda
Transport Development Agency (RTDA). They are focusing mainly on improving the standards of
the road network, such as paving roads and establishing clearer road classification and design

criteria (City of Kigali, 2020a).

The layout of existing roads is recognised as being primarily influenced by topography and
strongly linked to the city's layout (Dufitimana and Niyonzima, 2023, Hitayezu et al., 2018). It can
be stated that the expansion pattern of Kigali City is horizontal, and the expansion and
infrastructure development largely adhere to a similar pattern. These newly expanded areas
tend to border existing urban core areas. Correspondingly, streets of new areas evolve along the

city's main roads (Nduwayezu et al., 2021).
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Figure 3.6 Kigali road map (City of Kigali, 2020c). The roads are classified based on capacity and function. Under this classification, the roads in Kigali are

primarily encompassed by the Kigali Ring Road, which is classified as High Capacity.

84



Chapter 3

3.2 Software and packages used

To support the various stages of analysis in this research, a range of software and packages

were employed.

ArcGIS Pro 2.7.3 (Esri) was used extensively for geospatial data editing and analysis. This
included the identification of topological errors in the pipeline network using the topology
validation tool (Chapter 4), spatial statistical analyses such as Global and Local Moran’s |
(Chapter 6), and interpolation methods including inverse distance weighting (IDW) and kernel
density estimation (KDE) (Chapter 6). The calculation of population-weighted centroids
(Chapter 6), the co-location analysis of pipelines (Chapter 4), and the estimation of 2SFCA
accessibility (Chapter 6) were also carried out within this platform. All maps presented in the

analytical chapters were generated using ArcGIS Pro except for Figure 4.5.

AccessMod 5 (Ray and Ebener, 2008) was employed to simulate travel paths as part of the

accessibility analysis in Chapter 6.

For network-based analysis, a combination of R and Python packages was used. The R package
sf(Pebesma and Bivand, 2023) and sfnetworks (van der Meer et al., 2021) were applied for graph
construction and smoothing (Chapter 4, Section 4.2). Package networkx (Hagberg et al., 2008)
and igraph (Csardi and Nepusz, 2006) libraries were used for converting between primal and
dual graph representations and for calculating graph metrics (Chapters 4 and 5). The shp2graph
package (Lu et al., 2018) was employed to detect and visualise self-connected components
within the network (Chapter 4). The OSMnx package (Boeing, 2017) facilitated the downloading
and preparation of OpenStreetMap road data for graph-based analysis (Chapter 4). The Infomap
algorithm (Rosvall et al., 2009) was applied via the MapEquation platform

(https://www.mapequation.org/infomap/) (Chapter 5). Finally, the aricode package (Julien

Chiquet, 2024) was used to compute partition similarity indices (Chapter 5).

Two statistical packages also supported specific analytical tasks. The blandr package (Datta,
2024) was used to conduct Bland-Altman analyses in Chapter 6, while fitdistrplus (Delignette-

Muller and Dutang, 2015) was used for fitting statistical distributions in Chapter 5.
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Chapter 4

Chapter 4 Geometric and topological convergence of urban

networks

The performance of water pipeline networks is closely related to their morphology. In addition to affecting
network robustness (Agathokleous et al., 2017, Bentes et al., 2011, Wang et al., 2019), the topology of a water
pipeline network also influences water transmission efficiency (Torres et al., 2017, Yu et al., 2024) as well as
the complexity of management and maintenance (Godfrey and Howard, 2005a, Lagerberg, 2016). As
highlighted in Section 2.3.1 of the literature review, urban infrastructure networks are a product of the
industrial-era urbanization process in Europe (Coutard, 2008, Coutard and Rutherford, 2015), desighed
primarily to ensure equal access to services for all urban residents. Consequently, infrastructure network
expansion follows two key processes: area expansion and densification (Yang et al., 2017), which involve

connecting new settlements and enhancing coverage in already serviced areas.

However, this concept faces challenges in Africa. Cities in Sub-Saharan Africa (SSA) experience a distinct form
of informal urbanization (see Sections 2.1 and 2.2.1 of the literature review). This not only differentiates their
economic growth patterns from historical European urbanization but also alters spatial development, which in
turn affects infrastructure network performance (Batty, 2012). A study on SSA urban morphology using Accra,
Ghana, as a case study found that urban growth in SSA is characterized by increasing complexity and
fragmented spatial development (Korah et al., 2019). Cobbinah and Niminga-Beka (2017) and Agyemang et al.
(2019) noted that this process is often accompanied by unplanned land-use changes, reflecting spontaneous,
inefficient, and poorly regulated development. These characteristics further affect infrastructure network
morphology and performance. A striking example is the water network in SSA slums. The emergence of slums
is closely linked to urbanization outpacing government capacity, resulting in highly informal settlements
characterized by self-organized management and a lack of formal planning (Azunre et al., 2022, Okyere et al.,
2017, Sheppard et al., 2020). While definitions of slums vary, descriptions across many developing countries
consistently highlight their dense population and built-up environment (Criqui, 2018, MLHUD, 2008, Moreno,
2003, Nolan, 2015, UN-Habitat, 2006). These characteristics are closely associated with urban water supply
challenges (Azunre et al., 2022, Nyika and Dinka, 2023, Richmond et al., 2018, Sinharoy et al., 2019). As
discussed in Section 2.3.1 of the literature review, three key challenges inhibit slum water pipeline network

development:

1. The unplanned buildings and road networks in slums limit the space available for pipeline laying,

thereby making the pipelines have inefficient topology.
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2. Insecure land ownership, low-income levels, and governance failures further weaken pipeline planning
and maintenance in slums.
3. Due to colonial history, the infrastructure baseline in slums differs significantly from that in formal

areas, increasing the cost of further pipeline expansion.

Therefore, assessing water services in SSA cities inevitably requires considering the unique characteristics of

their urban morphology.

Urban morphology is often evaluated through the geometry and topology of street networks. In urban
morphology studies, cities are understood as spatial organisations of different elements—primarily plots,
buildings, and streets—forming recognisable patterns that influence urban life (Araujo de Oliveira, 2022b,
Scheer, 2015). Among these elements, streets are particularly emphasised. Streets serve as the structural
framework of urban organisation, integrating other elements. Compared to street blocks, plots, and buildings,
streets exhibit greater stability throughout urban evolution while also serving as a key representation of a city's
structural characteristics (Araudjo de Oliveira, 2022a, Wang and Gu, 2023). Streets connect new settlements
while linking private spaces, simultaneously delineating public spaces that facilitate the flow of materials and
energy within the city (Kropf, 2014). Therefore, urban amenities and infrastructure networks often follow similar
spatial patterns and evolutionary trajectories to street networks. Consequently, street networks are widely
regarded as simplified schematic representations of urban contexts and are frequently used to classify and
analyse different urban morphologies (Cardillo et al., 2006, Zhang et al., 2023). Numerous studies have
employed street network analysis to investigate various aspects of urban systems. For instance, Dingil et al.
(2018) analysed road data to examine the relationship between infrastructure accessibility and socioeconomic
indicators across different urban typologies. Serra et al. (2016) described six decades of morphological
changes in the Oporto Metropolitan Area through an analysis of street network geometry and topology. Buhl et
al. (2006) identified self-organised urban settlement patterns through street network analysis. Negadi et al.
(2023) assessed urban connectivity by examining fractality and connectivity of street networks. Additionally,
Jang et al. (2024) explored the correlation between street characteristics and urban vibrancy, with population
mobility serving as the indicator of vibrancy in this study. Their findings demonstrate that street features
influence the vibrancy of different age groups at various times of the day. This human mobility pattern is also
considered closely linked to urban morphology (Kang et al., 2012). Some studies have further extended this

approach to examine the impact of slums on urban morphology (Dovey et al., 2020, Kolowa et al., 2024).

The spatial distribution of roads has also been recognised as being closely related to the structure and
performance of pipeline networks. For example, Abdel-Mottaleb and Zhang (2020) assert that there is an

unquantified dependency between urban water supply and transportation networks. Debén et al. (2010) and

87



Chapter 4

Aschilean et al. (2018) highlight that pipeline failure risks are associated with road traffic loads. Mair et al.
(2017) further analyse the shared characteristics of street networks and urban water infrastructure networks.
However, their study is based on three anonymised cities and does not explore the role of urban morphology in
shaping these networks. Additionally, from the network science perspective, urban infrastructure systems—
including water, electricity, and transport networks—can be analysed as an interdependent multilayered
model (Munikoti et al., 2021). Despite this, no existing studies have explicitly established a correlation between
urban morphology and the structural patterns of both road and water pipeline networks. Lorenz et al. (2021)
attempted to compare pipeline network attributes across cities, yet their analysis was not based on a detailed
examination of urban morphology. Moreover, their analysis did not examine pipeline attributes beyond
resilience. Another attempt to analyse the relationship between road and pipeline networks in different cities
comes from Abdel-Mottaleb and Zhang (2020). However, their study relied solely on synthetic pipeline
networks, focusing on the properties of the interface network formed by roads and water networks. Another
relevant study is that of Chegini and Li (2022), which explored the topological relationship between street
networks and belowground urban stormwater systems. However, the stormwater infrastructure considered in
their work is specifically designed to collect runoff and protect streets from flooding, and is thus inherently
more tightly integrated with the street layout. As a result, the observed correspondence in centrality and
spatial positioning between streets and pipelines in their analysis is context-dependent and of limited
generalisability. More importantly, no study has specifically investigated the relationship between the unique

morphological characteristics of SSA cities and their water distribution networks.

The performance of a pipeline network can be measured from multiple perspectives, including reliability, risk,
vulnerability, and resilience (Shuang et al., 2019, Soldi et al., 2015). However, the calculation of these metrics
requires different techniques and an understanding of the hydraulic characteristics and mechanics of the

pipeline (Jensen and Jerez, 2018, Yazdani and Jeffrey, 2011). Such an approach often faces many challenges:

1. The pipelines are located underground, and it is difficult to determine the condition of the network
visually, thus requiring more effort to obtain data (Yu et al., 2024).

2. The pipeline network is a complex system, and its assessment is often accompanied by a number of
constraints, such as dependencies between components, water pressure requirements, and urban
planning requirements, making the analysis difficult (Jensen and Jerez, 2018).

3. Asthe size of the network increases, these constraints become increasingly complex, and new

variables are introduced (Herrera et al., 2015).

Therefore, measuring large urban water and sanitation networks requires a large amount of data as model

inputs (Perelman and Ostfeld, 2011, Torres et al., 2017). The situation is even more complex in low- and
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middle-income countries like most of those in SSA. Consequently, assessing the pipeline configurations in SSA

slums using this method presents significant challenges.

This is where the advantages of graph theory come into play, as it captures the structure of pipelines
associated with the performance of water services. The coverage of water network directly affects residents'
proximity to urban water and sanitation services, while the network structure influences efficiency and
robustness of the water supply. Therefore, compared to traditional methods, graph assessments are
topological in nature and can yield valuable insights into network performance. Given the spatial and policy
differences between cities and between slum and non-slum areas, if there are differences in their pipeline
networks, graph metrics can provide performance indicators relevant to the Sustainable Development Goal
(SDG) 6 and water policies. The results of this assessment are topological, and therefore the results obtained

are comparable between different areas.

Therefore, this chapter examines the relationship between the topology of pipeline networks and SSA urban
morphology from a global perspective, analysing their correlation from both geometric and topological

perspectives. It aims to address two major research gaps:

1. Urban morphology studies have predominantly focused on cities in the Global North. As a result,
variations in urban form across cities in the Global South, particularly SSA, have received limited
attention.

2. Road networks serve as the structural backbone of cities, influencing other infrastructure networks.
However, few studies have explicitly linked the morphological characteristics of road networks with
pipeline networks. Furthermore, existing research has not considered the impact of slum settlements

on this relationship.

To bridge these gaps, this chapter employs a co-location approach to analyse the morphological differences
between roads and pipelines occupying the same spatial locations. Given that road networks serve as
indicators of urban morphology, this approach aims to identify the relationship between pipeline networks and

urban form, specifically by:

1. Quantifying the differences in road networks—and by extension, urban morphology—across cities with
varying types of slum settlements.

2. Assessing the association between urban morphology and pipeline networks and potential
implications for water service provision.

3. Comparing the commonalities between road and pipeline networks across case study SSA cities.
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4.1 Overview of methodology

We here examine the commonalities of three infrastructure networks in Kisumu—road, water pipeline, and
sewer pipeline networks—as well as the road and water pipeline networks in Kigali, via analysis of their
topological and geometrical similarities (Figure 4.1). The urban infrastructure networks within the study area
are first converted into dual graphs and compared using graph theory approaches. In addition to employing
graph theory metrics to analyse general topological characteristics, the dissimilarity method proposed by
(Schieber et al., 2017) was applied. Subsequently, centrality metrics (degree, betweenness, closeness)
obtained from graph analysis were mapped back into geometric space. Through co-location analysis,
overlapping features of water and sewer pipeline networks and road networks, as well as the correlation

between their centrality metrics, were identified.

Kigali

‘Water Pipeline Metwork

Road Metwork

h 4

Sensitivity Analysis » Colocation Analysis

Kisumu

Topology Correction

h 4

Dual Mapping

Y

Graph Analysis

h 4

Water Pipeline Metwork

Road Metwork

Sewer Network

L Graph Dissimilarity

Figure 4.1 Workflow for comparing topological characteristics of road, water and sewerage networks in

Kisumu and Kigali.

4.2 Data preprocessing

Due to data availability constraints, sewer network data for Kigali was not accessible. Therefore, this study
utilized water, sewer, and road networks from Kisumu, along with water and road networks from Kigali. The
road networks primarily served as a reference for identifying urban morphology. To enable the application of
graph methods, which are widely used in network morphology studies, network data were preprocessed before
conversion to graph format. This preprocessing included network feature identification, topological correction,

graph smoothing, and dual mapping.
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4.2.1 Downloading and preprocessing road network data

In the study area, multiple data sources are available for road networks, providing more options than for
pipeline networks. As of February 4, 2024, these sources include the Kenya Roads Board (KRB) (KRB, 2021),
Rwanda Transport Development Agency (RTDA) (RTDA, 2022), Global Roads Inventory Project (GRIP) (Meijer et
al., 2018), and OpenStreetMap (OSM) (OpenStreetMap contributors, 2023). KRB and RTDA are national road
management authorities in Kenya and Rwanda, respectively. The road data from KRB, collected through a
national survey in 2018, covers only the main roads in Kisumu, with a total length of 519,524 meters. Similarly,
RTDA’s dataset includes only National Roads, Class 1 District Roads, and roads in the City of Kigali and other
urban areas. The GRIP Road database, covering the study area, integrates multiple data sources, including
OpenStreetMap. However, due to its primary focus on environmental and biodiversity research such as
GLOBIO (Schipper et al., 2020), the level of detail in GRIP's road data is insufficient for other research
applications. In Kisumu, GRIP's road length is 415,016 meters, while in Kigali, it spans 2,024,631 meters.
Comparatively, the OSM road network in Kisumu has a length of 1,681,830 meters, and in Kigali, the OSM road
length is 5,022,458 meters, including a greater proportion of local roads. Since OSM’s total road lengths are
greater than those of other data sources, and the spatial distribution is more uniform, this chapter uses OSM
as the road data source. The Python package OSMnx (Boeing, 2017) was employed to retrieve OSM road maps

within the boundaries of Kisumu and Kigali as of February 4, 2024.

The OSMnx package provides built-in functionality for processing downloaded road networks from OSM into
planar graphs and performing topological corrections. Since OSM data includes 3D information, such as

bridges, OSMnx:

1. processes the network into a planar graph, preserving only the 2D projection of the road network while
excluding 3D intersections—a standard approach in road network analysis (Boeing, 2018).

2. converts the 2D network into a graph format supported by the NetworkX package (Hagberg et al., 2008).
It represents road network as an undirected primal graph, where road junctions correspond to graph
nodes, and road segments are represented as edges(Anez et al., 1996).

3. Inthis study, street angles and road attributes were not considered in the modelling process to ensure

consistency with the pipeline network representation.

4.2.2 Preprocessing of water pipeline networks

Kisumu's water pipeline network data was obtained from KIWASCO in September 2020, following a formal data

request (Figure 4.2). The raw dataset comprised 21,448 polyline features depicting pipelines with a total length
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of 538,559 meters. In contrast, the sewer network was comparatively smaller, comprising 253 polylines with a

total length of 90,467 meters (Figure 4.3).

Water Pipelines

Kisumu City

- Lake Victoria

Figure 4.2 Piped drinking-water network in Kisumu City. Boundary data created based on the boundary map

produced by the American Red Cross (American Red Cross, 2019)).

92



Chapter 4

Legend
Sewer Pipelines

Kisumu City

[0 Lake victoria

1.54 2.31 3‘%1\93

Figure 4.3 Sewer network in Kisumu City. Boundary data created based on the boundary map produced by

the American Red Cross (American Red Cross, 2019)).

Kigali's water pipeline network data was obtained from the Water and Sanitation Corporation (WASAC) via an

open data repository, WaterGIS (https://github.com/watergis). The data, updated in 2020, comprises a larger

network than that of Kisumu, including 11,072 line segments with a total length of 1,728,445 meters (Figure

4.4).
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Figure 4.4 Piped drinking-water network of Kigali City. Boundary data extracted from the administrative level 1

boundaries of Rwanda in the Common Operational Datasets (CODs) (OCHA, 2023).

4.2.2.1 Manual topology correction for pipeline data

Piped network layers were provided in non-topological shapefile format, so topology-building was necessary.
Theoretically, a city's pipeline network should have no pipelines that are disconnected from the rest of the
network. Therefore, it is assumed that the study area contains only a single connected network; any isolated
pipelines present are considered digitising errors. R’s nt.connect function in its shp2graph library was used

initially to identify self-connected parts within each network (Lu et al., 2018).

As shown in Figure 4.5, there are many self-connected parts in Kisumu's water pipeline network with similar
problems in Kigali. The reasons include topological problems such as overshoots, overlapping pipelines,
misalignment of endpoints and interruptions in line segments (see examples in Figure 4.6). Since the modelling
of pipeline networks follows principles outlined in section 2.4.1, graph metrics will be misleading when
modelling with disconnected network components. Kisumu and Kigali’s piped networks both contain
topologically incorrect points and lines, and the node and edge lists cannot be used to build a graph without

prior correction.
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Figure 4.5 Self-connected parts in the Kisumu network before topological correction, with 1,134 parts plotted in different colours.
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However, on one hand, OSMnx cannot be used to correct topology errors in pipelines as it does
for OSM roads due to incompatibility with the data structure required by the OSMnx package.
On the other hand, ArcGIS Pro’s automated topology correction workflows have limitations
when applied to urban networks. ArcGIS Pro software automatically identifies and handles
polyline topological errors including overlaps, intersects, and dangles. Take dangles, for
example, as shown in Figure 4.6 (A), identified by ArcGIS where endpoints of lines do not touch
other line segments, both real-world consumer endpoints and topologically incorrect
breakpoints. The latter are abundant in Kisumu (Figure 4.6 (B)). However, Figure 4.6 (A) also
shows that in residential areas, the distance between consumer endpoints is often small as
well, so these pipelines without topology errors will also be identified as dangles and be
trimmed or extended in ArcGIS. Since this automated topology correction creates errors, all

pipelines were therefore corrected manually.

Figure 4.6 Common topological errors in water pipeline networks, illustrated with examples
from the Kisumu pipeline network. A. dangles; B. breakpoints in pipelines; C.
isolated pipelines; D. overshoots with large angles; E. isolated parts with small gaps

from the main; F. closed network segments.

After diagnosing potential topological errors in the networks, these errors were subsequently
corrected via the strategies shown in Table 4.1. The principle of the correction is to make as few

changes as possible to the original data. The city's pipeline network shows a certain pattern: the
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main pipelines distributed along the main roads extend in parallel and are rarely connected to

each other. At the same time, the distribution of pipelines in residential areas is often quite

regular. These are also the conditions to be considered when making amendments.

Table 4.1 Potential Topology Errors and Corresponding Correction Strategies in the Study

Networks

Potential Topology Errors

Examples

Correction Strategy

Breakpoints

Figure 4.6 (B)

Isolated pipelines/self-
contained segments

Figure 4.6 (C)

To identify these, a tolerance distance of two
meters is applied; gaps smaller than this
threshold are considered topological errors and
are resolved by reconnecting the segments.

Overshoots with large angles
of extension

Figure 4.6 (D)

Short overshoots or undershoots that deviate
significantly from the angle extending an existing
line feature are considered to be deliberate on
the part of the cartographer and, therefore, very
unlikely to be topological errors and not
corrected.

Isolated parts with small gaps
from the main networks

Figure 4.6 (E)

If an isolated pipe can be connected to the
nearest network section by extending the
undershoots, the connection is made, even if
the distance is considerable (e.g., 10m).

Closed network segments

Figure 4.6 (F)

A pipeline running parallel to the nearest pipe
that cannot be connected is assumed to belong
to a different system and is temporarily
removed.

4.2.2.2 Transforming pipeline data to graph format

During the preprocessing steps, the pipeline networks were first transformed into an undirected

graph through primal mapping (Figure 4.1). Although the direction of water flow is critical for

hydraulic simulations of the network, detailed information (e.g. on pressure head, pipe diameter

and gradient) required for hydraulic analysis is often lacking. As a result, pipeline networks are

frequently treated as undirected graphs, a format in which hydraulic direction is not considered

(Boccaletti et al., 2006, Hwang and Lansey, 2017, Meijer et al., 2018, Yazdani and Jeffrey, 2012a,

Yazdani and Jeffrey, 2012b). Primal mapping is an intuitive modelling method and is commonly

used for graph analyses of water distribution networks (Yazdani and Jeffrey, 2011). In primal

mapping, specific locations (e.g. pipeline and road intersections, reservoirs, consumers and

pumps) are represented as nodes and pipelines are defined as edges between nodes within a

network (Yazdani and Jeffrey, 2011, Yazdani et al., 2011).
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To convert the network into a graph, it is necessary to determine which elements in the raw
network should be retained based on factors such as their attributes and the angles between
them (Marshall et al., 2018, Stavroulaki et al., 2017). Treatment varies from modelling methods
such as space syntax (Hillier and Hanson, 1989), the street name approach (SN), intersection
continuity negotiation (ICN) (Porta et al., 2006), and Hierarchical Intersection Continuity
Negotiation (HICN) (Masucci et al., 2014). Nevertheless, studies of road and pipeline networks
have not considered whether edge attributes or angles between features are the most
appropriate basis for graph modelling (Giudicianni et al., 2018, Hwang and Lansey, 2017,
Marshall et al., 2018, Pagano et al., 2019, Yazdani and Jeffrey, 2012a). Since the case study
networks provide little information on components besides pipelines, only pipelines and

intersections were considered in modelling:

1. Endpoints and intersections of line features were identified
2. And pipelines with the same ID were merged and then split at the intersections.
3. Theresulting shapefile was then read as an sf class object, storing the node and edge

information using R’s sf library (Pebesma and Bivand, 2023).

4.2.3 Graph smoothing

Prior to analysis, graph smoothing (sometimes called pseudo-node removal) was undertaken.
The raw graph object contains vertices that are likely to contribute little to graph structure and
hinder the processing and interpretation of the graph (Ersoy et al., 2011, Hennessey et al., 2008,
Hwang and Lansey, 2017, Ruan et al., 2011, Yu et al., 2024). OSMnx provides a built-in method
for simplifying road networks, which eliminates nodes that do not correspond to intersections or
endpoints while merging edges and preserving geometric attributes (Boeing, 2017). However,
the simplification algorithm in OSMnx is specifically designed for road networks formatted
according to OSM data structures, incorporating real-world connectivity constraints. To
maintain consistency in network simplification across different infrastructure types, this study
instead adopted the R package sfnetworks (van der Meer et al., 2021) for graph smoothing. The
package implements a simplification method by retaining only the endpoints of line segments,
the point from which an edge self-loops (which are excluded in the simplified graph; see Section
2.4.1), and the intersection of multiple edges where at least one of the edges continues through

the intersection (Figure 4.7).

98



Chapter 4

v o 7 O
y i o A e
] L . ‘e, b f. 5 [
. ‘\ i RN £ e ! . Nt
A -:-‘. _._=: PR . \‘. -
o R
T ¢ { O A :
ST o".'/ r _.\..\'"‘ N
| WY 4 | A
" . i - -*
LY " M * L o
‘3 k] TN B l/
. . . by ¥ L S . .o
| y -'.' Y # (. v \. »
h l\ | g \‘ v (S
S os e '] i gl
.‘i- : -~ .. - » -
;“‘"._ _.A.,';:'- - ;
- *, o . o .
/. Ao~ '., -..i"
o - "
. 8 nY
il “‘_. ¢ P

Figure 4.7 (A) Original street network obtained from OSM. (B) Simplified network after pseudo

node removal.

4.2.4 Dual mapping of infrastructure networks

After obtaining the corrected pipeline and road networks, the primal graphs were converted into
dual graphs using igraph. In dual mapping, the edges of the primal graph are represented as
nodes, and connections are established between these nodes if the corresponding edges in the
primal graph share an endpoint. Mathematically, a dual graph is the duality of the primal graph,
which gives it its name; however, in practice, the dual graph is not always a precise dual of the
primal graph (Marshall, 2016). Consequently, some studies use the term line graph to refer to
this type of graph (e.g. Gharaee et al. (2021)). For consistency, this study adopts the term dual

graph throughout the text.

A disadvantage of the dual mapping approach is that when edges are mapped as hodesin a
graph, the geometric characteristics are discarded. However, Porta et al. (2006) also point out

the advantages of dual mapping. In the case of street networks, the number of streets (edges)
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that can be connected to an intersection (node) is finite in primal mapping. However, in a dual-
mapped street network, the number of intersections (edges) that can be connected to a street
(node) is infinite. This structure is closer to the networks in other research fields, thus allowing
for comparisons between networks. Both modelling practices (primal and dual) are commonly
used in studies of infrastructure networks (Adraoui et al., 2024, Giustolisi et al., 2019, Wéber et
al., 2020, Zhang et al., 2017, Zischg et al., 2019). In cases where the focus is on the
representation of network edges, the dual approach is more appropriate. This is particularly
relevant for co-location analysis, where the goal is to compare the spatial overlap of networks.
In such cases, analysing edges rather than nodes is a more reasonable choice, as the
comparison is between roads and pipelines rather than specific locations within the network

(e.g., intersections).

4.3 Graph-based analysis methods

The processed dual graphs were analysed to uncover their commonalities. This involved using
graph metrics to describe network properties, applying D-measure to quantify network

dissimilarity, and identifying overlapping features to extract their centrality patterns.

4.3.1 Graph metrics

The following graph metrics, selected from those introduced in the literature review (Section

2.4.1), were used to assess various aspects of efficiency and stability in urban networks:

e Average shortest path length: the average distance along the shortest paths connecting
two nodes, compared to all possible pairs of nodes in the network.

e Average node degree: the average value of the number of nodes connected to each node
in the network.

e Critical breakdown ratio: the threshold that a network will fail when removing nodes
whose degree exceeds this value.

e Algebraic connectivity: the second smallest eigenvalue of the normalized Laplacian
matrix, reflecting the robustness of the network.

e Spectral gap: the difference between the first and second eigenvalues of the adjacency
matrix.

e Clustering coefficient: the presence of triangular loops in the network.

e Meshedness coefficient: the presence of loops in the network, with a higher value

signifying a more connected network.
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Given that this study focuses on urban morphology rather than on the functional performance of
the pipeline network, indicators emphasizing morphological characteristics were selected. Of
these metrics, average shortest path length is related to the efficiency of the pipelines.
According to Meng et al. (2018), the average path length is strongly correlated with the diameter
and graph radius and, thus, more representative; average node degree, critical breakdown ratio,
and algebraic connectivity are all related to the fault-tolerance of the pipeline, also known as
robustness. This study did not use density of bridges/articulation points as an indicator of
robustness as they are not representative in water distribution networks (Meng et al., 2018). In
addition, two parameters characterise the shape of the network, from which information about
the efficiency and robustness of the network can be obtained: cluster coefficient, and

meshedness coefficient.

Specifically, three graph metrics were employed to identify local network characteristics in the

co-location analysis:

Degree centrality: This metric represents the degree of each node in the dual graph, indicating
the extent to which a pipeline or road is connected to others. In other words, it reflects the
positional importance of an edge within the network. For instance, a node with a degree
centrality of 1 signifies that it has only one connecting edge, meaning the corresponding

road/pipeline is located at the network’s terminus.

Betweenness centrality: This metric measures how frequently a node appears on the shortest
paths between any two nodes in the network. A higher value indicates that the corresponding
pipeline or road plays a crucial role in maintaining network connectivity. If such an element is

removed, other pipelines or roads would require longer topological paths to remain connected.

Closeness centrality: This metric is computed based on the shortest path distance from a
node to all other nodes, reflecting the network’s flow capacity at that node. As an example from
Wang et al. (2011b), in an air transportation network, cities with higher closeness centrality—

indicating proximity to other cities in the graph—tend to exhibit better economic performance.

4.3.2 Network similarity

There is widespread interest in the research and application of network similarities across
various disciplines, including social sciences, medicine, and biology (Barabasi et al., 2011,
Coskun and Koyuturk, 2021, Tarapata and Kasprzyk, 2009, Taylor et al., 2015). Generally, this
issue can be considered as the graph isomorphism problem, which aims to measure whether
two graphs are topologically equivalent. Over the past few decades, numerous techniques have

emerged for studying graph similarity, primarily focusing on proposing effective and
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computationally efficient metrics. Measures include Graph Edit Distance (Bunke and
Allermann, 1983), Singular Value Sequence (Xu et al., 2019), and Graph Fourier Distances
(Lagunas et al., 2018), as well as algorithms based on node scores, such as the SimRank
algorithm (Jeh and Widom, 2002) and Kleinberg's algorithm (Blondel et al., 2004). Their common
concept is to treat the distance between graphs as a measure of their similarity (Shimomura et

al., 2021).

Among these methods, this study employed the D-measure, proposed by Schieber et al. (2017),
to quantify the similarity/dissimilarity of infrastructure networks within the study area. The D-
measure is primarily based on node-to-node connection distances and comprises three
components: the first term compares the networks' distance distributions, capturing global
topological differences; the second term assesses how each element is connected throughout
the network; and the last term analyses differences in the way this connectivity occurs, through
the examination of Katz centrality. Thus, the dissimilarity D(G, G") between graphs G andG' is

defined as:

D(G,G")
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Where network node dispersion (NND) is a measure of the heterogeneity of graph G in terms of

connectivity distances introduced by Schieber et al. (2017):

J(Pq,...,Py)

NND(6) = log(d + 1)

P;(j) being the fraction of nodes that are connected to node i at distance j, leading to the

following equations:
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Where w1, w2 and w3 are arbitrary weights of the terms where w1+w2+w3=1.

Through their experiments, the weights of the three components should ideally be set to 0.45,
0.45, and 1, respectively. Additionally, applying the D-measure to real networks significantly

increases the cost of computing the a-centrality of their graph's complements due to the sparse
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nature of real networks. Therefore, a simplified D-measure was used in this study, considering
only the first two terms of the equation to assess network dissimilarity. When two graphs are
isomorphic, the D-measure returns 0; otherwise, it quantifies the structural differences

between the graphs.

4.3.3 Geometry and topology co-location analysis

Considering the possibility that pipeline and road networks may not be perfectly aligned, as well
as potential data discrepancies leading to network misplacement, network overlap in the co-
location analysis is defined as elements that are mutually parallel within a certain geometric
distance. Similarly, due to considerations of data quality and coverage, road networks, rather
than pipeline networks, were selected for buffer generation. A pipeline is considered to overlap

with aroad if it is located within the buffer of that road.

Buffer width reflects the stringency of the co-location analysis, where increasing the buffer size
not only makes it more likely to capture pipelines overlapping with roads but also inevitably
increases the inclusion of pipeline segments that do not overlap with roads, such as those
crossing streets. Therefore, a sensitivity analysis was conducted to determine the appropriate
buffer width by examining the pipeline length and proportion covered by buffers of different
sizes (in 1-metre increments). Since the degree of alignment between pipelines and roads is
unknown, the assumed buffer width was based on the common lane widths and lane humbers
provided by the road classification frameworks from Kigali and Kisumu (see Tables 4.2 and 4.3).
Alternative buffer distances (i.e., assumed street widths) ranged from 1 to 15 metres for Kisumu
roads and 1to 17 metres for Kigali roads, following methods outlined by Klinkhamer et al.
(2017), Mair et al. (2017) and Klinkhamer et al. (2019). A maximum buffer width of 15 metres for
Kisumu corresponds to the width of a dual-lane road, according to the Kenya Road Design
Manual (Ministry of Roads and Transport, 2023). Meanwhile, 17 meters corresponds to the
maximum road width of high-capacity urban roads in Kigali (City of Kigali, 2020c). By calculating
the proportion of the pipeline network covered by buffers of varying widths, appropriate buffer
widths were selected for the co-location analysis. The underlying logic is that if increasing the
buffer width captures more pipeline fragments running parallel to roads than those crossing
streets, the covered pipeline length should increase rapidly; otherwise, the rate of increase
should slow down. The second derivative of the proportion of overlapping pipelines as the buffer

width increases was used to identify these two growth trends.

103



Table 4.2 Kenya road classification and width (Ministry of Roads and Transport, 2023)

Chapter 4

Most common

streets)

functional class Surface type rL::eeV:rI:;h
Road category and type g
A (international Paved Dual 2*7.3
highways)
B (national
Inter-urban roads | highways) Paved 7.3
C (primary
roads/inter county | Paved 7.0
roads)
D (secondary
roads/inter sub- Paved 7.0
county roads)
Rural roads E (minor roads/ Paved or
6.5-7.0
sub-county roads) | unpaved
F,G,P,S,W,T,U Paved or 55.70
(localroads) unpaved
UA (urban arterial Paved Dual 2+7.3
roads)
Urban roads UC (urban Paved 7.3
collector roads)
UL (local urban Paved 6.0-7.0
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Table 4.3 Rwanda road classification and width (City of Kigali, 2020c).

High-
Cafsg:y Major Arterial Roads Minor Arterial Roads Collector Roads
Type Roads
Bus Rapid Link Bus Commercial | Residential Rural
Trunk Roads Transport Roads CBD Throughfare Routes Streets Streets Road
Desirable
Ece)::rve 37-44m 34-37m 34-40m 34-37m | 28-37m 22-27m 27 m 27 m 18-22m 18-22m
Width
Typical
number of 2-5lanes | 2-4lanes | 2-3lanes | 2-3lanes | 2-3lanes | 1-2lanes 1-2 1-2lanes 1-2lanes | 1-2lanes
lanes per lanes
direction
Minimum
Carriagewa 3.5mper | 35mper | 3.5mper | 3.5mper | 3.5mper 3.5mper | 3.5m per 3.5 m per 3 m per 4 m per
. g y lane lane lane lane lane lane lane lane lane lane
Width
Median
Width 4m 1-4m 1-4m 0.6-4m 0.6 m 0.6m 0.6m 0.6-2m - -
Hard 3m i i i i i i i i i
Shoulder
Easement/ | 5 _gm | 2.5-6m - - - - - - - 2-3.5m
Verge
Footway - - 1.5mmin | 1.5mmin | 1.5 mmin 1.5m min 2mmin 2mmin 1.5 m min -
1.5m 1.5 mmin
Cycleway - - 1.5mmin | 1.5mmin | 1.5mmin | 1.5mmin min, or .oromit ’ 1.5 m min -
omit
Planting Strip - - 2m 2m 2m 2m 2m 2m 2m -
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4.4 Results

The results are analysed from three perspectives to examine the relationship between urban
morphology and pipeline networks. First, an overview of the topological properties of the
networks in each city is provided, offering insights into their commonalities and, by extension,
the influence of the urban environment on infrastructure network structures. Based on the same
dual graphs, network dissimilarity was also calculated for networks within each city.
Subsequently, different buffer widths were tested against the length of piped infrastructure
elements that overlapped with roads, and the buffer widths that best captured network overlap
patterns were selected for co-location analysis. The co-location analysis extracted overlapping
urban networks and compared the centrality of overlapping elements in pairs, enabling a spatial

and morphological comparison of network differences.

4.41 Topological characteristics of study infrastructure networks

Table 4.4 shows that the Kisumu sewer network exhibits a simple structure, characterised by
high betweenness and closeness metrics, along with a relatively high average shortest path

length. This simplicity is associated with lower overall connectivity and limited stability.

The table also reveals that the road networks in both Kisumu and Kigali exhibit lower link
density. Moreover, the road networks demonstrate significantly lower betweenness and
closeness centrality, along with higher average shortest path lengths compared to other
networks. The clustering coefficient and meshedness are both indicators of faces or loopsin a
network, but they show opposing trends. The former identifies triangular loops, as discussed in
literature review 2.4.1, which are typically rare in urban networks, while meshedness indicates
that road networks tend to contain more square loops. This suggests that, in both cities, road
networks are inherently less efficient than piped networks in terms of connectivity but exhibit

greater robustness.

An analysis of network degree further supports this observation (Figures 4.8 and 4.9). In both
networks, the water network exhibits a right-skewed distribution, with a few high-degree nodes
(corresponding to edges in the network). This indicates the presence of hubs within the network,

enhancing connectivity efficiency while reducing the water network’s resilience to risks.
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Table 4.4 Summary of graph theory metrics for the dual representation of road, water, and

sewer networks in Kisumu and Kigali

Kisumu Kigali
Water Road Sewer Water Road
Number of nodes 4076 11616 348 6721 35191
Number of edges 6690 22203 547 10781 69839
Link Density 0.0008 0.0003 0.0091 0.0005 0.0001
Mean Degree Centrality 3.2826 3.8228 3.1437 3.2082 3.96914
Mean Betweenness Centrality | 0.0092 0.0044 0.0447 0.0054 0.0020
Mean Closeness Centrality 0.0275 0.0200 0.0630 0.0276 0.0141
Cluster Coefficient 0.4944 0.4006 0.4571 0.4307 0.3909
Meshedness Coefficient 0.3210 0.4558 0.2894 0.3022 0.4923
Average Shortest Path Length | 38.541 52.576 16.478 37.546 71.769
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Figure 4.8 Degree distribution of the Kisumu water pipeline, road, and sewer pipeline
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Figure 4.9 Degree distribution of the Kigali water pipeline and road networks.
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Using the D-measure, pairwise dissimilarity comparisons of infrastructure networks from both
study cities were conducted. Since a value of 0 indicates two isomorphic networks, while larger
values signify greater structural differences, the results reveal several key patterns (Table 4.5).
First, infrastructure networks generally all exhibit high structural similarity. Second, the
similarity between Kisumu’s road and water networks is higher than that observed between
Kigali’s road and water networks. Third, Kisumu’s sewer network shows markedly high
dissimilarity compared to other networks. Finally, networks of the same type display the highest
similarity: both the water and road networks in Kigali and Kisumu exhibit relatively low
dissimilarity, with the similarity between the two cities’ water networks being particularly
pronounced. To further check this finding, the study additionally compared the dissimilarity
between Kisumu’s pipeline networks and Kigali’s road network, as well as between Kigali’s
pipeline networks and Kisumu’s road network. The results suggest that, broadly speaking,
infrastructure networks within the same city are more structurally similar to one another than to

networks of the same type in another city.

Table 4.5 Dissimilarity index between road, water, and sewer networks

Kisumu Water | Kisumu Road | Kisumu Sewer | Kigali Water | Kigali Road

Kisumu Water 0

Kisumu Road 0.146 0

Kisumu 0.290 0.357 0

Sewer

Kigali Water 0.072 0.161 0.315 0

Kigali Road 0.277 0.152 0.427 0.284 0
4.4.2 Sensitivity analysis of buffer size effects on network co-location

The results of the sensitivity test (Figure 4.10) indicate that as the buffer size increases, the

increase in the length of water and sewer pipelines covered by roads follows a pattern similar to

a logarithmic distribution. The second derivative results (Figure 4.11) further show that the

trends in both cities can be divided into three phases, corresponding to rapid, moderate, and

slow increases in the proportion of covered pipeline length. The point at which the increase

slows down occurs at a buffer width of 10m in Kisumu, while in Kigali, it occurs at 11 meters.

Accordingly, the buffer width for co-location analysis of Kisumu roads was set at 10 meters,

aligning with the standard road width (including shoulders) of approximately 10 meters in Kenya
(Ministry of Roads and Transport, 2023). In this case, the covered length of the water pipeline is
371,496.4 meters, constituting 69.624% of the entire network length. The covered length of the
sewer pipeline is 52,888.12 meters, representing 58.0246% of the total sewer network length.
Meanwhile, in Kigali, with a buffer width of 11 meters, the road network overlaps with
1,378,317.75 meters of water pipelines, accounting for 79.47% of the total pipeline network

length.
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Figure 4.10 Sensitivity analysis of additional street width and covered network length below the

roads.
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Figure 4.11 Second derivative distribution of the proportion of pipeline length covered by road
buffers at different widths. Panel A shows Kisumu, where the proportions of water and sewer
pipelines were averaged in the analysis. Panel B shows Kigali, focusing solely on the water
pipelines.

4.4.3 Co-location of infrastructure networks

The initial geographic visualization of network degree centrality (Figures 4.12 and 4.13) reveals

that high-degree edges appear in all three networks, extending beyond the central region. In
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both cities, road networks generally exhibit a decreasing degree trend from the core outward.
Notably, Kigali's road network features multiple high-degree clusters, as reflected in the degree
distribution (Figure 4.9), whereas the pipeline network does not exhibit a similar pattern. This
observation aligns with the structural differences highlighted by the graph metrics, which
indicate that pipeline networks have a more evenly distributed structure compared to road

networks.

The maps also provide insight into potential spatial correlation of high-degree distribution. For
instance, in Kisumu, water pipelines exhibit relatively high degree within slums (see Section
3.2.2), aphenomenon not observed in the road network. Conversely, in regions where road
degree is high, pipelines do not display a similarly high-degree distribution. However, high-

degree sewer pipelines tend to co-locate with high-degree roads.
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Figure 4.12 Remapping of the dual graph degree to the primal space for the Kisumu road
network, water pipeline network, and sewer pipeline network of Kisumu. The box
highlights the different distributions of high-degree roads and pipelines within the
same area (A), while showing similar distributions between roads and the sewer

pipeline network (B).
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Figure 4.13 Remapping of the dual graph degree to the primal space for the Kigali road network

and water pipeline network. The two panels show the overall distribution

differences of high-degree roads and pipelines across the area.

We further examined centrality by applying a sensitivity test to extract pipelines overlapping with

roads using the buffers (Figures 4.14 and 4.15). By analysing the degree, betweenness, and
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closeness centrality distributions for co-located features across the five infrastructure

networks, several patterns emerge:

Degree distribution: In both cities, the degree distributions of the networks are generally
uniform (Figures 4.14 (A)(B), Figure 4.15 (A)). There is no significant dependency between the
degrees of pipelines and roads. However, high-degree roads tend to overlap with low-degree
pipelines (as shown in the example area in Figure 4.12 (A)), a trend that is slightly less

pronounced in sewer pipelines (Figure 4.12 (B)).

Betweenness centrality: High-betweenness edges in one network tend to overlap with low-
betweenness edges in the other (Figure 4.14 (C)(D), Figure 4.15 (B)). However, in Kigali, some

high-betweenness pipelines overlap with roads exhibiting a wider range of betweenness values.

Closeness centrality: There is no correlation between the closeness centrality of roads and
sewers, suggesting a lack of significant planning coordination between the two networks (Figure
4.14 (F)). However, in both cities, water pipelines exhibit an approximately linear relationship
with road closeness (Figures 4.14 (E)(F), Figure 4.15 (C)), meaning that high-closeness roads

tend to overlap with high-closeness pipelines.
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Figure 4.14 Dual mapping local graph metrics (node degree(A and B), betweenness(C and D),

and closeness(E and F)) of co-located roads, water and sewer pipelines in Kisumu.
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closeness (C)) of co-located roads and water pipelines in Kigali.
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4.5 Discussion

Urban infrastructure networks are shaped by urban morphology, leading to commonalities in
network structure across cities of similar scale. The study posits that SSA cities, facing
comparable urbanisation challenges, exhibit shared characteristics in their infrastructure
networks. These commonalities can be identified by examining the structural similarities
between road networks and water and sanitation networks. To assess them from both
topological and geometric perspectives, the study applied a dual transformation to the
networks, measured their graph properties, calculated network distances, and analysed the

centrality metrics of pipelines co-located with roads.

We find that despite differences in scale and national context, infrastructure networks in SSA
cities exhibit remarkable commonalities, even though the networks in the two cities were
developed independently. Notably, infrastructure networks, including water pipelines, share a
high degree of similarity with road networks. Graph metrics reveal a consistent pattern in which
road networks tend to be more structurally robust compared to water networks. More
specifically, networks of the same infrastructure type exhibit higher similarity, as demonstrated
by the D-measure. Moreover, infrastructure networks within the same city tend to be more
similar to each other, while differences between roads and water networks in Kisumu and Kigali
also follow similar patterns. The centrality analysis of co-located networks further reinforces
this observation, as the distribution trends of centrality measures in co-located elements are

strikingly similar across both cities.

In studies of African cities, urbanization patterns are generally characterized by a concentration
of population in the central business district (CBD), with a rapid decline in transport network
density and accessibility towards the urban periphery, in contrast to European cities (Antos et
al., 2016). This observation aligns with the study's graph analysis (Table 4.4) and degree
distribution maps (Figures 4.12 and 4.13), which show that in both Kisumu and Kigali, the degree
of dual road networks decreases outward from the centre, accompanied by relatively low link
density. A critical factor shaping SSA urban morphology and network structure is informality,
which introduces heterogeneity in both spatial patterns and network properties. Studies on
urban form have identified two primary typologies: organically developed road networks,
shaped by historical and geographical factors, exhibiting irregular patterns, and planned road
networks, which follow structured, grid-like patterns due to formal urban planning interventions.
For instance, Wang (2015) compared the road networks of Beijing and London, revealing the
contrast between Beijing’s top-down planned grid structure and London’s self-organized tree-
like network. Similarly, Alobaydi and Rashid (2024) classified Baghdad’s urban form into six

categories based on organic and grid-based structures, each shaped by different historical
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periods. Comparable studies on African cities have also categorized urban forms into irregular
and well- structured patterns. Baffoe et al. (2020b) classified Kigali’s neighbourhoods into
formal, informal, and mixed types based on their planning characteristics, while Steyn (2012)
highlighted the morphological disparities between slums and formal settlements in Kisumu. The
predominant urban form inevitably influences overall street network properties (Serra et al.,
2016). This relationship was examined through graph analysis. The network metrics (Table 4.4)
and degree distribution plots (Figures 4.8 and 4.9) indicate that the degree of road intersections
in both cities is close to four. In the dual graph representation, degree corresponds to the
number of intersections along a road. A grid-based layout would typically yield higher degree
values due to the increased number of dual connections. For example, Porta et al. (2006)
reported degree values of 8 and 6 for street samples in San Francisco and Barcelona,
respectively, while Wang (2015) found that the average degree in the dual graph of Beijing (a
grid-based city) was 5, compared to 3.6 in London (a self-organized city). Based on this
comparison, the road networks of Kisumu and Kigali exhibit characteristics more aligned with
self-organized structures. The spatial distribution of high-degree roads, as visualized in the
degree maps (Figures 4.12 and 4.13), further supports this distinction. In Kisumu, high-degree
roads are concentrated in formal areas and a few well-planned slums, while in Kigali, the
pipeline network displays widespread clustering of high-degree nodes. These cluster locations
align with household living condition analyses by Akinyemi and Bigirimana (2012) and the
community survey conducted by Baffoe et al. (2020b). These graph indicators also align with
existing knowledge on the distribution of slums in both cities. In Kisumu, slums vary in their
degree of planning—Manyatta, for instance, has a more structured road network compared to
Obunga and Bandani (UN-Habitat, 2005). In contrast, reports on Kigali indicate that regular
residential land is consistently distributed throughout the city (Antos et al., 2016, City of Kigali,
2020c).

The similarity between road morphology and pipeline networks highlights the influence of urban
morphology on infrastructure development. Previous studies have shown correlations between
road networks and pipeline networks, with degree distributions of roads, urban drainage
networks, and water distribution networks fitting Pareto distributions (Klinkhamer et al., 2019).
Based on an analysis of urban drainage networks, the authors argue that urban networks evolve
through preferential attachment while being constrained by factors such as cost and available
space. Building on these insights, this study identifies differences in the graph-theoretic
properties of road and infrastructure networks within the dual space in Kisumu and Kigali. These
differences manifest both in global performance and spatial distribution of graph attributes. In
Kisumu, the graph indicators suggest that roads exhibit greater structural stability than water

networks, which in turn are more stable than sewer networks. Conversely, global centrality
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measures indicate that network efficiency follows the opposite trend. A similar pattern is
observed in Kigali, suggesting that these differences may stem from variations in urban network
development principles. Studies on road network evolution indicate that urbanisation involves
two predominant processes—densification and exploration—which dominate at different
stages of city development (Gudmundsson and Mohajeri, 2013, Mohajeri and Gudmundsson,
2014, Strano et al., 2012). Over time, urban networks tend to mature and transition towards
more structured grid patterns (Strano et al., 2012). However, pipeline networks face additional
constraints, leading to greater variability in their construction. Ozanne (2011) notes that the
primary determinant in pipeline network construction is the shortest path between origin and
destination, as cost considerations play a crucial role. However, additional factors such as land
ownership and environmental constraints (e.g. terrain and soil conditions) must also be
accounted for. These factors are inherently linked to urban morphology. First, population
distribution influences pipeline terminal locations, and population patterns are recognised as
key drivers of urban expansion (Achibet et al., 2014), which in turn affects the distribution and
density of buildings (Prieto-Curiel et al., 2023). Second, slums often exhibit insecure land tenure
and tend to develop in steep or marginal areas (McCartney and Krishnamurthy, 2018). This is
particularly evident in Kigali, where, due to its topography, slums are predominantly located on

steep hillsides and marshy lowlands (Manirakiza et al., 2019).

Spatially, there are differences in the centrality distribution of infrastructure networks between

Kisumu and Kigali. The degree maps (Figures 4.12 and 4.13) indicate two possible scenarios:

Densely developed areas with intensive infrastructure:
The co-location of high-degree edges is likely prevalent in areas characterised by a
concentration of infrastructure. These regions typically exhibit significant urban development

and a high demand for multiple types of infrastructure.

Critical arterials of urban connectivity:
Co-located high-degree edges may align with key urban arteries, which serve as major
transportation or utility routes. These critical corridors play a fundamental role in the overall

functionality and connectivity of the city.

Similarly, the colocation analysis of betweenness centrality for roads and pipelines reveals
notable differences. One contributing factor is the disparity in the spatial coverage of road and
pipeline networks, meaning that well-developed pipeline systems do not necessarily
correspond to the communities connected by road networks. This suggests a potential
imbalance in the development of road and pipeline infrastructure in both cities, which
correlates with neighbourhood distribution. In Kigali, certain high-betweenness pipelines

overlap with roads exhibiting diverse betweenness values. Conversely, the absence of
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correlation between road network closeness centrality and sewer networks indicates a lack of
significant planning coordination between these two systems. However, water pipelines exhibit
an approximately linear relationship with road network closeness in both cities, implying that
roads with high closeness centrality tend to overlap with water pipelines of similarly high
closeness. This finding underscores the influence of urban accessibility on the spatial

organisation of essential infrastructure.

In contemporary urban network research, substantial attention has been given to infrastructure
studies. However, there remains a gap in understanding the relationship between urban
morphology and infrastructure beyond road networks, particularly in the context of SSA
urbanisation. This study contributes to filling gap by employing graph analysis of urban road
networks to characterise SSA urban morphology. The study first proposes a workflow to address
data quality issues posed by data deficiencies in SSA countries, including strategies for topology
correction, graph smoothing, and simplification. Using methods such as D-measure and co-
location analysis, the study provides empirical evidence on how the unique urban forms of SSA
cities influence infrastructure development. Additionally, this analysis offers insights into the
issue of urban scaling, which concerns the variation of urban indicators across cities of different
sizes (Pumain and Guerois, 2004). The findings reveal a relatively stable relationship between
road and pipeline networks in Kisumu and Kigali, despite their differing scales. This observation
aligns with previous research on human interaction networks(Schlapfer et al., 2014). Itis
important to note that, beyond the D-measure used in this study, various approaches exist for
assessing graph similarity (i.e., graph isomorphism). For instance, information-theoretic
methods define graph similarity through information compression (Coupette and Vreeken,
2021). Meanwhile, Graph Neural Network (GNN) (Gori et al., 2005) and Graph Convolutional
Network (GCN) approaches also assess graph similarity in the graph signal processing way, a
framework that treats network features as signals (Dong et al., 2020, Ma et al., 2021, Ortega et
al., 2018). Furthermore, Kolowa et al. (2024) highlight the association between unplanned, low-
density sprawl—a characteristic of SSA cities—and street accessibility. By evaluating network
connectivity, they find that the presence of informal settlements does not always correlate with
urban sprawl in SSA. This suggests that assessing the impact of slums, a defining feature of SSA
urbanisation, on pipeline networks requires further investigation. This topic is explored in

greater depth in the next chapter.

4.6 Conclusion

Urban morphology has a significant role in shaping infrastructure networks in SSA cities.

Through graph analysis, the study demonstrate the structural relationships between road and

122



Chapter 4

pipeline networks in Kisumu and Kigali, revealing the characteristics of infrastructure in SSA
cities and their relationship with urban morphology. The application of graph metrics provides
empirical evidence on how SSA's unique urban forms influence infrastructure distribution.
Furthermore, the results of D-measure and colocation analysis indicate that while road and
pipeline networks exhibit a relatively stable relationship across cities of different scales,

variations in their connectivity and coverage suggest imbalances in infrastructure development.
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Chapter 5 An analysis of pipeline network topology

and urban environment in Kisumu and Kigali

This chapter forms the basis of a paper accepted for publication as:
‘Graph and Community Detection Analysis of Pipeline Network Configuration and
Urban Morphology in Kisumu and Kigali,” accepted for publication in the Journal of

Water Resources Planning and Management.

The Sustainable Development Goal (SDG) 6 incorporates safely managed drinking water as an
indicator, defined as on-premise improved water sources, including piped water (WHO/UNICEF,
2018). Achieving this goal necessitates specific requirements for the infrastructure of urban
piped systems. As urban populations grow, service demand often outpaces infrastructure
development (Adams et al., 2019). This disparity makes it challenging for formal water services
to reach all residents, deviating from the ideal of networked cities. In informal settlements, two
distinct piped water configurations exist. On one hand, the adverse locational factors of
informal settlements, coupled with a lack of spatial planning, lead to chaotic pipe layouts,
which increase the difficulties of water provision, management, and maintenance (as discussed
in Section 2.3). On the other hand, some governments have implemented interventions to
enhance water services and pipeline infrastructure within slums. To assess the pipeline
characteristics of slums in the contexts of Kisumu and Kigali, this research analyses two
primary factors: 1. The impact of slum conditions on piped water supply, and 2. The effects of

measures taken by Kisumu on pipeline configurations.

5.1 Motivation and objectives

Urbanisation in Sub-Saharan Africa (SSA) is largely attributed to the expansion of informal
settlements, which often lack spatial planning and are located in disadvantaged areas. Previous
research on SDG 11 (concerning the upgrading of slums) shows that the unplanned dense
buildings within slums create a particular pattern of road networks, affecting residents' spatial
access to services (Brelsford et al., 2018). For similar reasons to other services, the limited
space within slums also constrains pipeline laying for water and sanitation. Pipelines in slums,
therefore, are expected to have distinctive morphology, which impacts the delivery of water

services, as discussed in the literature review (Section 2.3).

Given the obstacles faced by governments in improving urban water supply, a range of
alternative service delivery models has been proposed for SSA, with community-based

paradigms gaining attention in recent years (Adams et al., 2019, Dos Santos et al., 2017). In the
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case of delegated management models (DMM), for instance, this policy has been implemented
in the slums of some cities, assigning the construction and operation of household connections
to small-scale water providers (individuals or local entrepreneurs closely linked to the
community). This approach is perceived as a potential solution for delivering sustainable water
and sanitation services in slums (see Section 2.2). One of the anticipated improvements
brought by these small-scale water providers is the enhancement of the spatial configuration of
pipelines (World Bank, 2009). The distribution of pipelines significantly impacts the delivery of
water services; however, the spatial configuration of pipelines in slums has not been studied

previously.

As demonstrated in the previous chapter, graph methods offer advantages in analysing urban
networks. However, a few studies have applied graph theory to the field of water, with most of
these located in the USA (Hwang and Lansey, 2017, Porse and Lund, 2016, Yazdani and Jeffrey,
2010), the UK (Yazdani and Jeffrey, 2012a, Yazdani and Jeffrey, 2012b), Italy (Pagano et al., 2019)
and other developed countries. Research on water pipeline networks in LMICs remains sparse.
Existing research has not explored the use of graph-theoretic methods to analyse the impact of

urban communities or policies on pipeline networks. This chapter therefore aims to:

1. Develop a workflow for evaluating the connectivity and resilience of pipeline networks
via graph theory metrics within two data-sparse case study cities in SSA, namely Kisumu
and Kigali.

2. Assess the utility of the InfoMap algorithm for detecting pipeline communities and
informing urban water service planning in the study areas.

3. Interpret the differences in pipeline distribution within urban areas through graph
analysis and community detection outputs, taking into account the DMM and

distribution of slums.

5.2 Overview of methodology

The analysis process was divided into three parts (Figure 5.1), utilizing the primal graphs of
water pipeline networks in Kisumu and Kigali constructed in the previous chapter. Since there
was no specific analytical objective concerning edge relationships, the study retained the
primal graph format in this chapter without performing further dual mapping, as this facilitates
the interpretation of metrics. Additionally, the global graph metrics were applied to the primal
graphs, and the distribution of their centrality metrics was summarised using commonly
employed statistical distributions. Finally, the Infomap algorithm (Rosvall et al., 2009) was used
to identify discrete communities within the Kisumu and Kigali pipeline networks based on their

topology. The distribution of detected communities was then interpreted based on the pattern
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of slums. The communities in Kisumu were also examined based on the pipelines managed
under DMM. In the first two steps, the networks of Kigali and Kisumu were treated as
unweighted and undirected. Considering that the continuity of water supply is one of the
standards defining safely managed water (“available when needed”) as stated by WHO/UNICEF
(2018), vulnerability weights were assigned to both sets of pipelines during the community
detection step. The following sections will sequentially address the delineation of slums and
pipelines managed under DMM, as well as the data preparation, analysis, and community

detection steps.

Graph Analysis

Weighting and Imputation
Topology Correction —» Modelling (—> Graph ommunity Detection ——{Community

% Data Preparation
| \

Delineztion
W v
Kigali water Pipeline Kisumu Water Pipeline DMM Pipeiines /Immn Neighborhoods.

Community Similarity
Test

Network Network Map

Figure 5.1 Flowchart of the major stages in graph analysis and community detection. Pipeline
networks from Kisumu and Kigali were pre-processed for graph theory analysis and
weighted for community detection. The community similarity test involved
comparing the pipeline communities of Kigali and Kisumu with the Million
Neighborhoods map, as well as a separate comparison of Kisumu's communities

with the DMM information.

5.3 Data preparation

The pipeline networks of Kisumu and Kigali were selected to address the research objectives. To
analyse the impact of slums and water management measures on these networks, it was first
necessary to delineate both the pipelines within slums and those managed under the delegated
management model. Additionally, considering concerns about network vulnerability, the
material and diameter attributes of the pipelines were weighted and imputed for community

detection.

5.3.1 Delineation of slums

As described in Chapter 4, Kisumu’s water pipeline network is sourced from KIWASCO, while
Kigali’s network originates from the GIS for Water project. Both network data were topologically
corrected and constructed to be converted into a simple primal graph prior to subsequent

analysis.
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To compare the morphological differences between pipelines in slums and other areas, it was
first necessary to extract the pipelines within slum regions. Identifying slum areas is often
challenging, with different studies adopting various approaches (Kuffer et al., 2016). In this
study, the Million Neighborhoods map (Brelsford et al., 2018) provided under licence by the
University of Chicago's Mansueto Institute for Urban Innovation was used (see Figures 5.2 and
5.3). Brelsford et al. (2018)’s Million Neighborhoods map assumes that topology, or spatial
connectivity rather than geometry, determines the city's form. Since slums are characterised by
unplanned spatial layouts, it is difficult for people living in slums to access services and
infrastructure. Therefore, slums can be recognized through their access networks (roads,
streets, and paths). The Million Neighborhoods map uses a metric called block complexity to
measure the connectedness of a city block. In a dual-mapped graph where the internal parcels
are represented by nodes, block complexity refers to the number of iterations required to
continuously derive the dual of the graph until it converges into a trivial tree graph, reflecting the
difficulty of travelling inside the block. As a result, the Million Neighborhoods map can be
considered a slum map representing the complexity of the neighbourhoods (Chen et al., 2022b).
Areas with higher complexity mean that street access from an area’s buildings is more difficult,
a characteristic of slums. In Figure 5.2, areas with high block complexity in Kisumu generally
decrease from south to north, while Figure 5.3 shows that in Kigali, they decrease from west to
east. Additionally, a slum distribution map for Kisumu from the United Nations (UN-Habitat,
2005) and a land use map from the Kigali master plan (City of Kigali, 2020a) were used to help

identify slums in Kisumu and Kigali.
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Figure 5.2 The million neighborhoods map of Kisumu, constructed based on the urban
footprint of 2020. A higher value for a city block indicates the higher probability of
that block being a slum. Data sources: Million Neighborhoods map, 2023 version

(Brelsford et al., 2018).
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Figure 5.3 The million neighborhoods map of Kigali, constructed based on the urban footprint
of 2020. A higher value for a city block indicates the higher probability of that block

being a slum. Data sources: Million Neighborhoods map, 2023 version (Brelsford et

al., 2018).

To further assess the impact of water management measures on the pipeline network, pipelines
were classified based on their management model. Among the two study areas, DMM is
exclusively implemented in Kisumu, where it is referenced in the attributes under the 'remarks'
field. Kisumu pipelines with the following remarks are managed under DMM: “DMM”, “Managed
by DMM”, “Mauna DMM”, “Nyawita Residence DMM Network”, “Pamoja Trust Funded”,
“Obukase DMM Network”. These pipelines were delineated for the community similarity
analysis. Figure 5.4 shows that a considerable portion of pipelines in slum and rural areas is

currently managed under DMM.
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Figure 5.4 Pipelines managed under DMM in Kisumu City, highlighted in green. The inset maps display DMM pipelines located within two neighbourhoods.
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5.3.2 Assignment and imputation of weights for Community Detection

Weights can be regarded as additional information about the network. Incorporating weights
into graph analysis can yield more accurate assessments of the network, whether in simulating
water flow (Scibetta et al., 2013) or evaluating the vulnerability of water pipelines (Delaunois et
al., 2014, Kleiner and Rajani, 2001, Mavin, 1996, Wilson, 2010). Furthermore, the use of weights
in community detection provides additional insights (Bramson, 2022, Haghbayan et al., 2021,
Law et al., 2019). By incorporating weights into community detection, nodes with similar
weights tend to cluster in the same community. Considering SDGs, safely managed water
services should be available when needed and thus free from the interruptions arising from the
breakage of vulnerable pipelines. Therefore, in community detection, the vulnerability of the
pipeline material was used to identify communities with similar levels of vulnerability (either

structurally or materially) (Figure 5.1).

In a water network, the weights can be physical properties such as geographic distance and
pipe diameter or abstract properties such as nodal demand or construction cost (Yazdani and
Jeffrey, 2012b). However, the required information for commonly used vulnerability models
(Almheiri et al., 2020) cannot be found in the attribute tables of Kisumu and Kigali’s pipelines.
The attribute fields of Kisumu’s pipeline network include diameter, length, roughness, minor
loss (i.e., energy loss due to water flow through pipeline components), service status, pipe
material, zone, date mapped, installation date, and network type (distribution mains or
transmission mains). Additionally, the 'remarks' field captures operational status, operator
information, and associated risks. The attributes of Kigali’s pipeline network are similar to those
of Kisumu but also include the names of pipeline operators. From the statistical analysis of the
attributes of the corrected and modelled pipeline networks, it is evident that key attributes
related to pipeline conditions, such as roughness, minor loss, and nominal pressure, are either
null or contain questionable values across both networks. Statistics on the attributes that are

relatively well-preserved in both networks are presented in Table 5.1.
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Table 5.1  Statistics on selected properties of case study water pipelines following topological
correction
Kisumu Kigali
Number of pipelines | 4,293 14,172
Average length (m) 123.5842 120.6493
Average diameter 60.9457 101.34189

(mm)

Material (percentage
of total number)

PVC (84.25%)

PVC (71.81%)

Gl (6.80%)

Gl (8.19%)

Steel (3.61%)

Steel (1.40%)

PPR (3.07%)

PPR (0.08%)

AC (1.96%)

Iron (1.55%)

HDPE (0.30%)

HDPE (11.56%)

total number)

DI (3.51%)
Missing data
(1.91%)
Date mapped/year of | 2014 (24.64%) 1890-2022
installation 2015 (14.98%)
(years/percentage of 2016 (15.70%)
total number)
2017 (10.34%)
2018 (0.63%)
Missing data Missing data
(33.71%) (47.40%)
DMM (percentage of | 39.00% N/A

*Note: Missing diameter values are not included in the statistical calculations.

Based on the statistical results, the material and diameter of the pipelines are the two attributes
with the highest completeness. This study, therefore, adopted the index table proposed by
Marzouk et al. (2015). The weight index can be used for the evaluation of the pipeline
vulnerability even in the absence of detailed data. They estimated the factors that play a
significant role in the pipeline's deterioration based on feedback from water experts and
calculated the weights for different factors. The weight index for the study pipeline networks

was obtained, as shown in Table 5.2.
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Table 5.2 Factor weights and grading scales for creating network weights reflecting pipeline

vulnerability to breakages (derived from Marzouk et al. (2015))

Factor Factor weight Factor grade scales (Scores)
1 2 3 4 5
Ductile Cast
Pipe material type 0.05 PVC Steel Iron Iron Asbestos
Pipe diamete (mm) | 0.09 >300 300 200 150 <100

Table 5.2 presents two key factors for assessing the condition of pipelines: material and
diameter, with vulnerability weights of 0.05 and 0.09, respectively, among a total of 20 factors.
The grade scale corresponds to the contribution of different materials and diameters to pipeline
deterioration, where 1 represents minimal contribution, and 5 represents the maximum. Based

on the provided index, the weights for the pipelines in Kisumu and Kigali can be calculated.

The pipelines in both cities are mainly made of plastic pipelines, i.e. PVC (Polyvinyl Chloride),
HDPE (High-density Polyethylene), and PPR (Polypropylene Random Copolymer) pipelines. The
materials used in the Kisumu network are PVC, Steel, Gl (Galvanized Iron), AC (Asbestos-
cement), PPR, HDPE (Table 5.1). PVC, PPR, and HDPE were classified as types of plastic,
whereas Gl, despite its name, is often made from mild steel sheets and was therefore classified
as steel. The materials used in Kigali's pipelines are similar to those in Kisumu's network,
including DI (Ductile Iron), Iron, GI, PVC, PPR and HDPE (Table 5.1). Table 5.1 shows that the
average pipeline lengths in Kisumu and Kigali are similar, but Kisumu has a smaller average
diameter. Subsequently, the two grade scales for each pipeline are multiplied by their
corresponding factor weights and summed to obtain the vulnerability weight for that pipeline, as

suggested by Marzouk et al. (2015).

Although the material and diameter are the two most complete attributes of Kisumu and Kigali
pipelines, there are still gaps in the Kigali network, with 138 missing diameter records and 271
missing material records. Due to the small number of pipelines with missing properties, a
multiple imputation method, the sequential imputation of missing values (IMPSEQ) (Verboven et
al., 2007a) was used to impute both fields. This method is considered the best approach for

imputing missing data in the water distribution system (Kabir et al., 2020, Osman et al., 2018).

The basic principle of IMPSEQ, similar to other multiple interpolation methods, is to impute
results via iteration. The IMPSEQ method treats the missing values in the pipeline networks as
Missing at Random (MAR), a prerequisite for many imputation techniques (Lin and Tsai, 2020,
Newman, 2014, Woods et al., 2024). In other words, it estimates missing data values based on
observed variables. The IMPSEQ method divides the dataset into missing matrices D,,,;;c and

complete matrices D, and sorts the variables among D,,,;cc based on the number of missing
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values. The variables with the least missing values are estimated first by minimising the
determinant of the covariance matrix of D,,,;ss, where (Verboven et al., 2007b)

t—1 1 . .
COU(Dmiss) = Tcov(Dcom) + ? (Dmiss - Dcom)(Dmiss - Dcom)

And tis the number of observed values, D, is the average of the observed values.

The above steps are repeated until the imputation of the dataset is complete.

5.4 Topological analysis

In this chapter, the evaluation of the pipeline networks in Kisumu and Kigali is primarily based
on their graph metrics and community distribution (Figure 5.1). The former focuses on the
overall network structure, while the latter examines the organization of nodes within the
network. The same graph metrics as in the previous chapter were used, but, due to the focus on
urban features, dual mapping was not applied. Further exploration of these results, including
geospatial re-mapping, circuit extraction, and graph similarity analysis, can reveal how the

pipelines perform and function in the real world.

Due to the lack of flow data, hydraulic records and empirical data, Kisumu and Kigali's networks
were treated as unweighted and undirected in graph analysis (see section 4.2.1). The metrics
were calculated using the networkx (Hagberg et al., 2008) and igraph libraries (Csardi and

Nepusz, 2006).

5.4.1 Extraction of pipeline circuits

In addition to evaluating the overall performance of the network, some of the graph theory
metrics listed in Section 4.3.1 can also be used to assess the importance of individual pipelines
within the network. Urban pipeline networks consist of transmission and distribution systems,
with the former connecting water sources to the distribution systems and the latter supplying
water to individual users. From a topological perspective, the branches of the pipeline network
that do not contain loops are called trees (Deuerlein, 2008). In a tree graph, there is only one
path between any two nodes, and subgraphs of the tree are also trees, making it possible to
identify them through graph generalisation. As mentioned in Section 2.4.1, several
generalisation methods exist. Here, the threshold-based approach was applied to generalise
the graph by iteratively removing nodes with a degree of 1, along with their connected edges
(Zhou et al., 2010), which are also called leaves (Mair et al., 2017). This method has been
applied in simplifying both pipeline and road networks (Hwang and Lansey, 2017, Maschler and
Savic, 1999, Pung et al., 2022).
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Additionally, edge betweenness was used to highlight important edges in the network. The
definition of edge betweenness centrality is similar to that of node betweenness centrality—it
represents the number of shortest paths passing through a given edge. In infrastructure
networks, edges with high betweenness centrality are critical high-capacity routes (Giustolisi et
al., 2019, Yamaoka et al., 2021). Therefore, pipelines with high betweenness centrality were

highlighted to represent the key topological structure of the network.

5.4.2 Community detection

5.4.2.1 Selection of algorithms

The algorithm selected for community detection should exhibit high accuracy, meaning that the
output partitions should closely align with real-world communities. However, algorithms
behave differently between networks, so there are no universal guidelines for selecting
algorithms (Ghasemian et al., 2019, McCarthy et al., 2019, Peel et al., 2017). In the context of
this chapter, where the community structure of the real network is unknown, based on the
literature review (Sections 2.4.2 and 2.4.3), the Infomap algorithm was chosen for the following

reasons:

1. Breadth and depth of algorithm use: InfoMap has been applied to a wide range of
application scenarios(Farage et al., 2021, Hong and Yao, 2019, Hu et al., 2021, Mangioni
et al., 2020, Velden et al., 2017), generating algorithmic insights, improvements and
robust software for its implementation (Smiljani¢ et al., 2023).

2. Performance: Lancichinetti and Fortunato (2009) consider Infomap to be one of the
best performing algorithms. Agreste et al. (2017) also point out that “Infomap algorithm
showcased the best trade-off between accuracy and computational performance.” The
comparison by Wickramasinghe and Muthukumarana (2022) also indicates that Infomap
performs well in sparse networks. Given that infrastructure networks are often sparse,
this makes the Infomap algorithm a suitable choice for the analysis.

3. Resolution of output detected communities: Infomap has the advantage of resolution.
Fortunato and Barthélemy (2007) indicate that many modularity-based algorithms suffer
from an inherent resolution problem in that they cannot identify communities smaller
than a certain size. Their minimum resolvable community size depends on the total size
of the network and the degree of interconnection of the modules. This is because
modularity-based algorithms (For example, the Newman-Girvan modularity described in
the literature review 2.4.2) work by comparing network clusters with those in a random
network. As the network size increases, the expected number of connections between

clusters in the random network decreases. Therefore, when connections exist in the
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clusters of a large-scale network, they will be treated as strong connections, resulting in
two communities with different characteristics being merged. In contrast, Kawamoto
and Rosvall (2015) demonstrate that Infomap performs well in terms of resolution.

4. Hierarchical community classification: Real-world networks are often hierarchical,
and Infomap can detect their hierarchical structure. In large systems, there is often a
hierarchical relationship between communities, with smaller communities being part of
communities at a higher level. This structure can improve the efficiency and stability of
the system. Therefore, identifying the hierarchical structure is essential to
understanding the network's performance. Many other algorithms do not have this

capability (Lancichinetti et al., 2011).

This study used the multi-level method of Infomap. If a community is still subdividable,
according to the map equation, the multi-level Infomap algorithm will continue to partition the
network until all communities are indivisible, thus dividing the network into various levels of
communities. Due to Infomap being a heuristic algorithm, the trial number was set to 50 to
obtain a best-performing partition (with the shortest description length) from the 50
calculations. In Infomap, Markov time refers to the coding frequency of the random walker’s
path, thus controlling the expected community size. The Markov time was set to 1, as Poorthuis
(2018) suggests that a Markov time in the range of 0.6 to 1.1 helps to detect meaningful city
structure. Setting it to 1 means that the random walker’s position is encoded at each step. In
addition, unweighted graphs were used to evaluate the impact of incorporating vulnerability

index values as weights into the InfoMap workflow.

5.4.2.2 Validation of the community’s structure

Infomap outputs communities at different levels, and only some are meaningful in a real-world
context. Therefore, without prior knowledge of true community structure, it is important to find
reliable methods to evaluate the output of the community detection algorithm (Signorelli and
Cutillo, 2022). The Community Structure Validation (CSV) index proposed by Signorelli and
Cutillo (2022) was used in this study to test the structural strength of the output communities.
This approach follows similar principles to the modularity and Order Statistics Local
Optimization Methods (OSLOM) (Lancichinetti et al., 2011) in assuming that the density of
connections within a community is higher than the density of connections between
communities. It compares the observed connections with a hypergeometric null model, as
proposed by Lancichinetti et al. (2010). For undirected networks, the hypergeometric null model

is defined as (Signorelli et al., 2016):

Ng~hypergeom(n = dy, K = dg, N = dy)
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Where Vis the node set of a graph, whilst A and B are node subsets A and B. dg4, dg, d, denote

the total degrees of sets A, Band V.
CSV evaluates two types of hypotheses for each community pair C,.and Cj:
Internal density of a community C,. is tested by: Hy: . = 12 vs. Hy: g > 1,

where L, denotes the expected number of links between nodes in C,., and 2, is the

corresponding null expectation from the hypergeometric model.
External sparsity between communities C,and Cj is tested by: Hy: tt,.s = uds vs. Hy: tps < 12

where u,.; denotes the expected number of links between nodes in sets C,.and C,, and ul; is the

corresponding null expectation from the hypergeometric model.

If both null hypotheses are rejected in large proportions for a given type | error a, it upholds the
idea that there is a clear community structure in the network. In other words, given the
significance level, the CSV index specifies to what extent the structure of the network conforms
to the definition of a community based on statistics describing the connections in a network.
The CSV ranges from 0 to 1, and the closer the value is to 1, the clearer the community
structure. In addition, Signorelli and Cutillo (2022) introduced the weighted CSV, which weights
the CSV based on the strength of rejecting the null hypothesis. Like the original CSV, it ranges
from 0 to 1. Both CSVs were applied in this study. The CSVs are influenced by the size of the
network, and given the size of the Kisumu and Kigali networks, their CSVs results should be
reliable according to Signorelli and Cutillo (2022)’s tests. The code is available from

https://github.com/mirkosignorelli/csv.

5.4.2.3 Partition similarity

The interpretation of the output of community detection can be seen as an extension of Section
5.4.2.2. In this context, the DMM attribute and the million neighbourhoods map (complexity
index) serve as ground truth partitions. Measuring the distance between these partitions can
further uncover the similarity between network communities and the real-world environment
(Bramson, 2022, Law et al., 2019). According to Fortunato and Hric (2016), techniques for
measuring the distance between two partitions can be categorised into pair counting, cluster
matching and information theory. Commonly used metrics include the fraction of correctly
detected vertices, adjusted Rand index (ARI), adjusted mutual information (AMl), and
normalised mutual information (NMI) (Danon et al., 2005, Girvan and Newman, 2002, Liu et al.,

2019, Vinh et al., 2009).
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In this chapter, the metrics used to measure the distance between partitions are ARl and AMI
(Vinh et al., 2009). The Rand index measures the overlap of communities to indicate the
similarity between two partitions, while mutual information assesses the entropy of two
discrete variables (partitions) (Liu et al., 2019). In other words, the mutual information measures
the information needed to infer a partition given the other partition (Dao et al., 2020). The term
'adjusted' refers to the adjustment for chance. In the test of the Rand index and mutual
information, Vinh et al. (2009) found that an increase in the number of communities in a
partition leads to higher Rand index and mutual information values that are independent of
ground truth. ARI and AMI correct this bias, ensuring that the ARI and AMI of randomly generated
partitions are fixed given ground truth. In other words, the accuracy of the two metrics is not
affected by the number of communities. Both metrics range from 0 to 1, with 1 meaning that the
two partitions are identical and 0 meaning that the similarity between the two is the same as

that of any two random graphs.

In this chapter, the blocks in the Million Neighborhoods map, whose boundaries are from Maxar
Technologies Inc and Ecopia.Al, were taken as communities. These blocks were dissolved
based on the complexity index classification of Brelsford et al. (2018), and the IDs of the
dissolved blocks were given to the pipeline network nodes that spatially overlapped with them
to form a new partition. The partitions were further refined in the analysis of the impact of DMM
on the pipeline network, where nodes within the same dissolved community that belong and do
not belong to the DMM pipeline are further partitioned into different communities. In other
words, partitions related to slum distribution were generated based on the Million
Neighborhoods Map, and the Kisumu partition was refined according to DMM information by
creating additional communities. Following division, the average degree, betweenness, and
closeness centrality of pipeline nodes within areas of varying block complexity and within DMM
areas were computed as an initial comparison of communities. Then, both sets of partitions
were then used to measure the relevance of pipeline topology to the distribution of slums and

DMM areas using ARl and AMI.

5.5 Results

In the results section, the global performance of the water networks was first presented by
evaluating graph metrics of the Kisumu and Kigali primal graphs. The subsequent section
focuses on the centrality measures derived from these metrics and interprets their distribution
in relation to the characteristics of each city. As one of the most widely recognised graph
metrics in network analysis, centrality has been demonstrated to provide insights into the

configuration of key pipelines that are critical for transmission. The differences in centrality
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performance between Kisumu and Kigali were explored. The final parts analyse the community
structure of the study area networks. Communities, representing tightly connected groups
within the network, often correspond to real-world regional characteristics. Therefore, this
section examines the relationship between slum distribution and network communities within
the study areas and further interprets the connection between Kisumu’s pipeline communities

and the DMM.

5.5.1 Graph analysis for Kisumu versus Kigali

The pipeline networks of Kisumu and Kigali were simplified through graph generalisation and
pipelines with high edge betweenness centrality were highlighted in Figures 5.5 and 5.6. The
simplified pipeline networks in both cities form circuits surrounding vital urban areas. In
Kisumu, the simplified pipelines are predominantly located in the southern part of the city
(Figure 5.5), whereas in Kigali, the density of major pipelines decreases from west to east (Figure
5.6). The overlap of high centrality pipelines with the simplified network suggests that circuit
pipelines play a crucial transmission role and thus have higher importance. Furthermore, the
maps show differences in the pipeline layout within slums/unplanned settlements between
Kisumu and Kigali. Kisumu slums have more tree-like structures that are excluded from the

simplified map, while Kigali has a more connected network in slums.
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Figure 5.5 Maps of simplified pipeline (A) and edge betweenness centrality distribution (B) in
Kisumu. Both distributions highlight critical pipelines from the perspectives of degree and

betweenness.

140



Chapter 5

Legend
— Simplified network

— Original network

Legend
Betweenness

High

Medium

Low

Figure 5.6 Maps of simplified pipeline (A) and edge betweenness centrality distribution (B) in
Kigali. Both distributions highlight critical pipelines from the perspectives of degree and

betweenness.

Table 5.3 provides additional key properties of the pipeline networks. Firstly, it can be seen from
the number of nodes and edges that after smoothing and fixing the topology, Kigali has

a larger network size than Kisumu. Nevertheless, despite differences in network scale, most
graph metrics between the two cities show only minor differences, demonstrating the

robustness of the graph metrics under various city contexts.
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Table 5.3 Graph attributes and measurements for the water networks

Kisumu Kigali
Nodes 3,911 6,254
Edges 4,076 6,721
Average node degree 2.0844 2.1493
Normalized betweenness centrality 0.0100 0.0060
Normalized closeness centrality 0.0264 0.0267
Cluster coefficient 0.0054 0.0143
Meshedness coefficient 0.0212 0.0374
Average shortest path length 40.0610 38.7395
Algebraic connectivity 0.0001 0.0001
Spectral gap 0.2715 0.0010

The average node degree hardly varies with the network size. According to Giudicianni et al.
(2018), itranges from 2 to 4.5 in water distribution networks, with a lower value representing
less robustness. The table shows that both have relatively low average node degrees,
suggesting the low redundancy characteristic of water systems, as Wéber et al. (2020)

demonstrated, and Kisumu's network is more sparsely connected (Yu et al., 2024).

The average shortest path length and clustering coefficient are used to assess the orderliness of
a network. The average shortest path length measures the steps required to link nodes across
the network. At the same time, the clustering coefficient indicates the number of loops or faces
of a network, reflecting how tightly nodes are connected. Ordered networks typically score high
on both metrics. Kigali's clustering coefficient and meshedness are considerably higher than
Kisumu's. Combined with the slightly larger degree and smaller average shortest path length,
metrics suggest that the Kigali network is connected more efficiently. This aligns with Kigali's
development emphasis on planning for urban infrastructure (see section 3.2). Additionally, the
clustering coefficient and average shortest path are indicators of small-world networks, which
are widely observed in real-world systems and characterized by dense local clusters connected
by few inter-cluster links (Schnettler, 2009). Kigali's higher clustering coefficient and shorter
average path length suggest that its network is more likely to exhibit small worldliness
compared to Kisumu. However, specific metrics are required to formally identify a small-world

network (Neal, 2018), so this conclusion remains tentative.

Spectral gap and algebraic connectivity are low in both networks, which is expected due to the
inherent sparsity of infrastructure systems. Spectral gap indicates how the network is
connected. The larger the network, the smaller spectral gap generally is, as small spectral gap
values suggest more critical bottlenecks or bridges that can split the network into two or more
isolated parts (Yazdani and Jeffrey, 2012a). Based on this metric, it can be concluded that Kigali
lacks long pipelines connecting distant regions, to which network size and terrain may

contribute. However, Kigali surprisingly has greater algebraic connectivity than Kisumu,
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meaning network bisection is more challenging in Kigali (Zeng et al., 2017). It also implies that
there are no clear high-density and low-density clusters in Kigali, or that its pipeline network has

more evenly distributed clusters, as evidenced by the low average shortest path length.

5.5.1.1 Network centrality

Degree, betweenness, and closeness are three commonly used network metrics for assessing
edge importance, making it essential to measure them further. Although it is not possible to use
the distribution to describe the pattern of degrees due to the small range, it can be noted that
both networks tend to be right-skewed. As illustrated in Figure 5.7, nodes with a degree of 2 in
both networks have a low frequency, primarily due to the removal of pseudo-nodes during graph
smoothing. Additionally, Figure 5.7 indicates that degree distributions in the Kisumu and Kigali
networks exhibit a high frequency of nodes with degrees 1 and 3, which correspond to endpoints
and the T-junction of pipelines respectively. In other words, the networks may have many tree-

like branch pipelines.
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Figure 5.7 Degree distribution of the Kisumu and Kigali networks.

Figures 5.8 and 5.9 show similar distributions for betweenness and closeness centrality, which
are well-represented by Weibull and lognormal distributions. This finding is consistent with the
reported centrality distribution of roads in Hong Kong (Lan et al., 2022). However, the functions
of the two networks have subtle differences. The Weibull function better fits Kisumu's

betweenness and closeness with low Akaike information criterion (AIC) and Bayes information
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criterion (BIC). In contrast, the lognormal distribution performs better for Kigali's centrality
data. This suggests that, for both networks, the betweenness and closeness are heavy-tailed,

and there are "backbone" pipelines with high centralities in the networks (Fornito et al., 2016a).
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Figure 5.8 Betweenness distribution of the Kisumu and Kigali networks.
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Figure 5.9 Closeness distribution of the Kisumu and Kigali networks.

The centrality maps (Figures 5.10 and 5.11) show the difference between betweenness and
closeness in the two study areas more clearly. In both Kigali and Kisumu, nodes with high
betweenness centrality are the minority and are distributed regularly, the same as the
distribution shown in Figure 5.8. In Kisumu, high betweenness nodes are distributed along the
direction of its urban sprawl (County of Kisumu, 2013). If compared with the Million
Neighborhoods map, it can be observed that these points are also distributed at the boundaries
of informal and formal areas, where pipelines and buildings form distinct neighbourhood
boundaries. In Kigali, the high betweenness pipelines roughly form a Y-shape, which overlaps
considerably with the three main pipelines outlined in the Kigali master plan (City of Kigalli,
2020a). Nodes with high closeness centrality that can effectively connect to others are mainly
located in the central area of Kisumu. In particular, a gradual decrease in closeness can also be
found at the boundary between Kigali’s formal and informal areas, with low closeness nodes

roughly distributed within the unplanned settlements.
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Figure 5.10 Betweenness centrality maps for Kisumu (A) and Kigali (B). Betweenness centrality indicates the importance of a pipeline in connecting various parts

of the network. Darker colours represent higher centrality values.

147



Chapter 5

Legend

Closeness
Qo

0195
0245
0288

0333

0418

0124
0196
0246
0289
0334

Qo

Qo

[ )

@

ess Areas (Slum

Low Acc

Proxy)

148



Chapter 5

Legend

Closeness

QO 0.0124-0.0195
© 0.0196 - 0.0245
@ 0.0246 - 0.0288
@ 0.0289-0.0333
@ 0.0334-0.0418

Low Access Areas (Slum
Proxy)

ca p (o fogpe .
o% S 'JP\/%:" ° = ‘o\_ 057 7\1,15 23 3.45 4 ¢ m/. o o &
Figure 5.11 Closeness centrality maps for Kisumu (A) and Kigali (B).Closeness centrality reflects the ease with which a pipeline can reach all other nodes.
Darker colours represent higher centrality values.
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5.5.2 Validation and interpretation of the results of community detection

Table 5.4 shows that the community detection stopped at the seventh layer for Kisumu's
weighted network, the eighth layer for Kisumu’s unweighted network, and the eighth layer for
both Kigali's weighted and unweighted networks. Both weighted and unweighted CSVs were
employed to assess the outputs at these layers. The CSV values range from 0 to 1, with higher
values indicating a partition that is more likely to exhibit a clear community structure. Since the
CSV calculation excludes clusters with fewer than 5 nodes, the values fluctuate as the levels
increases and the granularity of the output becomes finer. However, considering the scale of
the study network, the initial few layers of Infomap output, which are identified as having strong
community structure based on the CSVs, remain reliable. According to Table 5.4, Infomap
identifies community structures more efficiently in Kisumu's weighted network as it reaches the
maximum CSV values faster. It can be seen that the CSV values reach the maximum of the
Kisumu networks in the weighted first level (Figure 5.12) and unweighted second level, with
these levels having a similar number of communities. Kigali is the opposite, as its unweighted
rather than weighted network reaches the maximum CSV values more quickly (Figure

5.13). Moreover, Kigali and Kisumu have similar numbers of communities at the layers where

their maximum CSV values occur.

Table 5.4 Number of communities detected from case study water piped networks using the

Infomap algorithm, together with associated CSV index values.

Kisumu Kigali
. . Numberof | ooy | Weightedcsy | NUMPeTOf | ooy | Weighted CSV
Hierarchical level communities communities

Level1 | 14 1.000 1.000 2 0.667 | 0.667
Level2 | 71 0.466 0.358 15 1.000 | 1.000
Level 3 | 328 0.023 0.016 92 0.378 | 0.302
Weighted Level4 [ 1365 0.009 0.009 479 0.013 | 0.009
network Level5 | 3096 0.037 0.036 2182 0.005 | 0.005
Level 6 | 3805 0.400 0.400 4957 0.015 | 0.015
Level 7 | 3911 n/c n/c 6170 0.250 | 0.250

Level8 | n/c n/a n/a 6254 n/c n/c
Level1 | 2 0.667 0.667 9 1.000 | 1.000
Level2 [ 12 1.000 1.000 52 0.654 | 0.573
Level3 | 74 0.361 0.270 306 0.046 | 0.029
U . Level4 | 378 0.016 0.011 1526 0.005 | 0.004

nweighted

network Level5 | 1766 0.010 0.009 4346 0.010 | 0.010
Levels | 3151 0.023 0.023 5927 0.065 | 0.063
Level7 | 3879 0.400 0.400 6223 0.500 | 0.500

Levels | 3911 n/c n/c 6254 n/c n/c
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Figure 5.12 Kisumu Thiessen polygon map of weighted communities at level 1, where the CSVs

reach their maximum value.
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Figure 5.13 Kigali Thiessen polygon map of weighted communities at level 2, where the CSVs

reach their maximum value.

5.5.2.1 Kisumu

As shown in Table 5.5, the number of pipelines in Kisumu initially increases and then decreases
with rising levels of neighbourhood morphological complexity. This trend contrasts with the
distribution of the number of neighbourhoods across the same complexity levels, which exhibits
a consistent decline—from 2,287 blocks at complexity level 1, to 910, 233, and 52 blocks at
levels 2, 3, and 4, respectively. Although exact density cannot be computed due to variations in
neighbourhood size, it is evident that most pipelines are located within moderately complex

areas.

When viewed through the lens of DMM, the total number of pipelines under DMM and non-DMM
management in Kisumu is roughly equal. However, the proportion of DMM-managed pipelines
increases with morphological complexity. The degree and betweenness of DMM pipeline nodes
are generally lower than those for other areas with the same settlement complexity level. This
indicates that DMM pipelines primarily serve as branch lines for water distribution to
consumers. In addition, both average degree and betweenness centrality decline as settlement

morphological complexity increases and areas become more slum-Llike, with the decline being
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particularly pronounced for betweenness. On the other hand, closeness centrality remains
relatively stable across all areas, suggesting that it is less associated with local settlement

structural characteristics.

Table 5.5 Statistics of centrality metrics for Kisumu pipelines, categorised by neighbourhood

morphological complexity and DMM status

Complexity Mean Mean
Class DMM* | Count | Mean Degree | Betweenness Closeness
0 250 2.3080 0.0144 0.0292
1 1 54 2.2037 0.0234 0.0212
0 1007 | 2.1887 0.0132 0.0268
2 1 708 2.0508 0.0085 0.0256
0 582 2.0928 0.0109 0.0264
3 1 905 1.9746 0.0064 0.0255
0 169 1.9704 0.0099 0.0274
4 1 236 1.9576 0.0048 0.0289

*DMM code: 0 indicates non-DMM pipelines; 1 indicates DMM-managed pipelines.

ARI and AMI are two metrics used to measure the similarity between partitions. Figure 5.14
show that the trends in ARI and AMI for the Kisumu partitions are similar across levels. Overall,
the value of AMI is always higher than the ARI for the same partition, and both AMI and ARl are
higher when DMM partition is used as the “ground truth” compared to when only slum data is
used. The figure also shows some subtle trend variations. The AMI of the weighted graph peaks
at community level 2 (Figure 5.15), while the unweighted graph shows a rightward trend, peaking
at community level 3, which has a similar community number to the second layer of the
weighted graph. These findings suggest that weighting the pipeline network aids in the discovery
of real-world communities. The largest ARI values of slums and DMM are both observed in the
second layer of the weighted network. Interestingly, the ARI peaks for slums and DMM areas

from the unweighted network are observed in the second layer rather than the third.
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Figure 5.14 AMI and ARl distributions for weighted and unweighted communities in Kisumu. The
figure illustrates the distance between Kisumu's pipeline communities and
partitions derived from the Million Neighborhoods map, as well as the DMM

partitions refined from the former.

Figure 5.15 Kisumu Thiessen polygon map of weighted communities at level 2, where the AMI

and ARl reach their maximum values.
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5.5.2.2  Kigali

Table 5.6 reveals a markedly different pattern of pipeline distribution in Kigali compared to
Kisumu. On the one hand, the number of neighbourhoods in Kigali also decreases with
increasing morphological complexity, from 4,536 at level 1 to 2,137, 376, and 119 at levels 2, 3,
and 4, respectively. However, in contrast to Kisumu, pipelines in Kigali are densely concentrated
in the least complex neighbourhoods. In addition, the centrality metrics of pipelines in Kigali
exhibit the same trends observed in Kisumu: both degree and betweenness centrality decline

with increasing morphological complexity, while closeness centrality remains relatively stable.

Table 5.6 Statistics of centrality metrics for Kigali pipelines, categorised by neighbourhood

morphological complexity.

Complexity Mean Mean

Class Count Mean Degree Betweenness Closeness
1 2192 2.2359 0.0069 0.0267
2 2603 2.1425 0.0058 0.0267
3 842 2.0689 0.0062 0.0268
4 617 1.9806 0.0038 0.0266

Figure 5.16 shows that Kigali also has a higher AMI than ARI. The key difference between Kigali
and Kisumu lies in how AMI and ARI respond to the weighting and unweighting of the networks.
In contrast to Kisumu, Kigali's weighted networks are more right-skewed than unweighted
networks with AMI/ARI peaking at level 3 for weighted networks (Figure 5.17) but level 2 for
unweighted networks, a pattern also reflected in statistics. In addition, there is no clear
relationship between the maximum values of AMI and ARI. The maximum ARI occurs in the third
level of the weighted network and the second level of the unweighted network, corresponding to

the CSV of communities. The third level of both graphs has the maximum AMI.
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Figure 5.16 AMI and ARl distributions for weighted and unweighted communities in Kigali. The

figure illustrates the distance between Kigali's pipeline communities and partitions

derived from the Million Neighborhoods map.

Figure 5.17 Kigali Thiessen polygon map of weighted communities at level 3, where the AMI and

ARl reach their maximum values.

5.6 Discussion

In this study, graph theory and community detection methods were applied to the water pipeline
networks of Kisumu and Kigali to investigate their performance, hierarchy, community structure,
and vulnerability. By converting the primary elements of the pipeline networks into graph nodes
and edges, the relationship between the networks and the urban environment was highlighted.
Compared to other water pipeline networks studied in literature (Giudicianni et al., 2018), both
cities have lower average node degrees (close to 2), indicating line graph properties with
relatively lower robustness. Other metrics from Table 5.3 show that Kisumu has a more uneven
pipeline distribution than Kigali. Furthermore, Kigali's network is more similar to the small-world

network, with dense clusters and fewer connections between them.
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In the graph simplification, more branch pipelines were excluded in Kisumu's slums than in
Kigali's. Since the excluded pipelines have tree structures that are less costly but less reliable in
infrastructure networks (Han et al., 2020), the simplification of the pipeline networks implies
differences in planning tendencies within the slums of the two cities. Kigali’s well-developed
water system in slums aligns with the city’s overall development plan. Uwizeye et al. (2022),
Benken (2017), Jaganyi et al. (2018) and Hudani (2020) have found that Kigali has implemented
urban plans incorporating various policies, such as the National Urbanisation Policy (MININFRA,
2015b) and Vision 2020 (GoR, 2012). These initiatives aim to transform Kigali into an intrinsic
economic growth driver while fostering inclusivity in the post-genocide period (Manirakiza et al.,
2019). As a result, these policies have objectively facilitated access to public services, including
water, sanitation, electricity, and land registration, for residents of Kigali's slums. Simplified
pipeline maps and centrality distribution maps also show significant spatial structural
differences between formally planned settlements and slums in both cities. High betweenness
centrality nodes are concentrated along the main urban arteries and the boundaries of the city’s
central areas, overlapping with urban loops. The closeness centrality of both cities' networks

decreases from their centres outward to the slums.

Statistical results for centrality emphasize the similarities between the two study networks.
Both cities have a high number of intersections with a degree of 3 (Figure 5.7), consistent with
the degree distribution patterns observed in road networks of over eighty global cities
(Badhrudeen et al., 2022). The betweenness and closeness centrality distributions of the two
networks are similar and can be represented via Weibull and lognormal distributions, which are
flexible and can be transformed into Gaussian and power-law distributions. This supports
Broido and Clauset (2019)’s conclusion that many networks are better described by
distributions other than the power-law one. However, there are also topological differences
between the study networks. On the one hand, as network size increases, the connectivity of
water distribution networks tends to decrease, making them more prone to fragmentation
(Giudicianni et al., 2018). On the other hand, urban infrastructure networks are influenced by
urban morphology and historical factors (Nor et al., 2021, Yazdani and Jeffrey, 2012a). For
example, Xue et al. (2022) and Mengistie et al. (2023) observe that cities in developed countries
have significantly more homogeneous road networks than those in developing countries.
Similarly, Kut et al. (2016) note that cities with similar historical backgrounds may exhibit similar
graph-theoretic properties. Kisumu's development has always been centred around the
Kanyakwar Plain near Lake Victoria, expanding outward from its colonial city core. Kisumu's role
as a transportation hub linking eastern and western Kenyan cities has significantly influenced its
urban growth and infrastructure development (County of Kisumu, 2013, County of Kisumu,

2020, LVSWSB, 2021) , which explains the spatial configuration of its pipelines and why its high-
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betweenness pipelines do not align with large-diameter north-south pipelines (Figure 5.5).
Meanwhile, although Kigali also experienced social and spatial heterogeneity, urban planning
has played a significant role in its urbanization (Ananga et al., 2019, Baffoe et al., 2020a, Baffoe
et al., 2020b, LVSWSB, 2021, Manirakiza et al., 2019). This may account for the subtle variations

in algebraic connectivity and centrality distributions between the two cities.

The distribution of centrality metrics across the two cities is not without pattern. As shown in
Tables 5.5 and 5.6, the properties of pipelines are closely associated with the morphological
characteristics of neighbourhoods. In Kigali, pipelines are concentrated in the least complex
neighbourhoods; the better planned a neighbourhood is, the more pipelines it tends to contain.
This pattern differs from that observed in Kisumu, reflecting the divergent urban planning
strategies of the two cities. The trend in Kigali corresponds to a city-wide strategy that
emphasises the upgrading of entire neighbourhoods into higher-standard residential areas,
rather than implementing targeted interventions in water infrastructure alone. Conversely, the
pipeline distribution in Kisumu suggests a pattern of infrastructural intervention in response to
specific settlement conditions. Notably, in both cities, the degree and betweenness centrality of
pipelines decrease with increasing morphological complexity, regardless of the overarching
planning strategies. This supports the conclusion drawn in Chapter 4—namely, that the spatial
properties of urban networks are closely tied to neighbourhood typologies. It is also worth
highlighting the role of DMM-managed pipelines, whose proportion increases with
neighbourhood complexity. These pipelines tend to exhibit lower betweenness centrality,

indicating that they primarily function as branch lines within informal settlements.

Community detection sheds further light on the relationship between urban environments and
water infrastructure. A key conclusion is that the distribution and vulnerability of pipelines in
Kisumu and Kigali are closely related to the distribution of slums. From a graph theory
perspective, the pipeline networks in Kisumu and Kigali can be partitioned into a similar number
of weighted communities (Table 5.4). Given that Kigali’s network is larger than that of Kisumu,
the fact that both cities have a similar number of detected communities supports the view that
Kigali's pipeline system is more evenly distributed. Moreover, graph similarity analysis,
considering slums as “ground truth”, shows that the topology and vulnerability of the pipelines
in both cities are strongly related to slum distribution. This result agrees with Buhl et al. (2006),
who observed that street networks in slum areas exhibit unique characteristics. The AMI and ARI
values (Figures 5.14 and 5.16) indicate that Kisumu has more heterogeneous pipeline networks
in slums than Kigali. Notably, higher AMI and ARl values are concentrated in the first three
partition levels, after which both measures gradually decline. This trend is reinforced by the CSV

results, which indicate that partition structures are strongest in these initial layers, supporting

158



Chapter5

the interpretation that early partitions capture meaningful features of the network relevant to

slum distribution.

Additionally, graph similarity findings suggest that Kisumu’s DMM policies are also associated
with the layout of pipelines. DMM pipelines operate as distinct subsystems managed and
constructed by master-operators, aiming to replace the chaotic 'spaghetti' network with a more
structured one (World Bank, 2009). Comparison of pipeline-derived communities with the DMM
partitioning of urban space yielded higher similarity scores, indicating that the topology of DMM
pipelines distinctly differs from that of other slum pipelines. This finding partially addresses
Nzengya (2015)’s concern that there is a lack of evidence to show whether DMM genuinely

improves the layout of pipeline networks within slum areas.

These findings contribute to bridging urban science and network studies. Researchers in city
science emphasize the need to understand cities and urban planning both through urban
processes and infrastructural form, particularly graph theory properties (Brelsford and Martin,
2021). Southern cities face challenges with fragmented networked services, and there is
consensus on the impact of urban governance difficulties and slums on these networks.
Nevertheless, infrastructure in southern cities, particularly in slums, is often overlooked in
graph theory research, and there is limited understanding of the factors influencing urban
network layout and how to measure these impacts, especially in developing countries (Neal et
al., 2021). This chapter contributes to addressing these issues by providing insights into the
pipeline topology of the study areas and developing a workflow for adapting graph theory

methods to the characteristics of available data in LMIC cities.

This chapter adopted the same network preprocessing methods and graph metrics as those
employed in Chapter 4, but placed greater emphasis on the analysis of the performance of

water networks. As a result, the graph approach in this chapter is subject to certain limitations:

1. Graph metrics provide only an initial answer to questions regarding water networks.
Both empirical and hydraulic data are still necessary to establish a direct link between
network topology and management activities. As Yazdani and Jeffrey (2011) point out,
topological analysis alone provides an incomplete picture of network resilience, as
financial and operational management, geographical context and the urban space
heavily influence the structure of the network.

2. Graph analyses of infrastructure often vary in their modelling methods (Marshall et al.,
2018, Pueyo et al., 2019, Zhou et al., 2010), such as whether to use primary or dual
mapping, and how to correct and simplify network topology. Each method has its own
particular applications, but in practice, this methodological diversity can affect the

reliability and generalizability of the results (Giustolisi et al., 2019, Marshall et al., 2018).

159



Chapter5

3. Many existing studies of water network topology rely on synthetic networks, which do
not always reflect the characteristics of real-world networks (Momeni et al., 2023, Paez
and Filion, 2017, Yu et al., 2024). As a result, conclusions drawn from graph studies of
pipeline networks still require validation through further research based on real

networks in SSA regions.

The analytical workflow is also constrained by data limitations. The absence of installation date
records for pipeline data restricted this analysis to a cross-sectional study, limiting further
exploration of temporal causal relationships between urban environmental change, policies,
and subsequent pipeline network evolution. Additionally, inconsistencies in digital pipeline
mapping considerably increased the analytical workload, diminishing reproducibility and
preventing hydraulic simulations. Therefore, it is encouraged that utilities improve the
management of geospatial data, particularly by systematically recording attributes such as
pipeline installation dates (even if only approximately for the oldest network segments),
materials, and diameters. This will enable more detailed evaluations of pipelines and facilitate

spatio-temporal analysis of network evolution.

Furthermore, the study acknowledge the inherent limitations of community validation methods.
The method relies on prior knowledge to identify environmental factors. In this study, the
assessment of slum impacts is based on the Million Neighborhoods Map. However, in practice,
there are multiple approaches to identifying slums (Kuffer et al., 2016, McCartney and
Krishnamurthy, 2018, Smit et al., 2017). Improving the accuracy of slum infrastructure analysis
will thus ultimately depend on further understanding of slum morphology. The study may also
overlook other influential factors related to pipeline distribution. In particular, the mountainous
terrain of Kigali undoubtedly influences both settlement distribution and the laying of pipelines,
presenting a promising direction for future research. Researchers may consider employing the

workflow established in this study while incorporating detailed elevation data.

5.7 Conclusion

The expansion of slums is a key feature of urbanization in SSA. Slums are characterized by
dense populations, overcrowded buildings, lack of tenure and security, and chaotic
management, all of which have hampered efforts to improve water access. This chapter
examined the state of water services in the slums of Kisumu and Kigali by applying graph theory
and community detection methods, offering insights into pipeline networks and their
relationship with the urban environment in developing countries. Graph metrics provide a
valuable overview of pipeline networks, especially in locations where information is scarce,

while the Infomap algorithm reveals the networks’ hierarchical and clustering structure,
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indicating their response to urban environmental change and policy. The results show that
Kisumu and Kigali share similar topological characteristics common to southern cities.
Furthermore, both government intervention and the spatial configuration of the slum are
significantly associated with the pipeline layout. The findings contribute to a deeper
understanding of urban networks in developing countries and offer insights for improving water

infrastructure in such contexts.
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Chapter 6 Measuring the spatial accessibility of water

kiosks in Kisumu

The structure and performance of pipeline networks represent only part of the urban water
landscape. According to the WHO/UNICEF Joint Monitoring Programme (JMP), improved water
services are further classified into safely managed, basic, and limited water services based on
accessibility, availability, and quality (WHO/UNICEF, 2018). Under these standards, in 2022, 2.2
billion people still lacked safely managed drinking water, with 1.8 billion people lacking on-
premises drinking water (UN, 2024). Accessibility on-premises is the most common limiting
factor for safely managed drinking water services in Sub-Saharan Africa (SSA). In 2022, nearly
half (45%) of the 1.2 billion people in SSA relied on water collected outside their homes, a
proportion significantly higher than in other regions (WHO/UNICEF, 2023a). This indicates that a
large portion of the population relies on public water sources, such as kiosks, public taps, and
boreholes, for basic and limited services. For example, Uganda's 2021 census showed that 8%
of households used public taps during the dry season, with this number risingto 11.3% in the
wet season—both higher than the proportion of households using piped water in dwellings
during the same period (UBOS, 2022). Similarly, Kenya's 2019 census reported that 9.9% of
households nationally used public taps or standpipes, which was higher in urban areas,
reaching 15.6% (KNBS, 2019b). These shared water sources greatly extend water coverage in
low-income communities (Post and Ray, 2020). To comprehensively evaluate water access in
urban areas, it is essential to assess these diverse water sources in addition to conducting

graph theory analyses of water pipeline networks.

Among shared sources, water kiosks—micro-enterprises that sell piped water to households
without direct pipeline connections—play a crucial role in supplying water in many African
cities. Despite their importance, assessments of kiosks have primarily relied on field surveys
and interviews (Adams, 2018b, Falcone et al., 2023, Nel et al., 2023, Opryszko et al., 2013).
While such methods provide valuable insights, they fail to account for the influence of urban-
scale environmental factors—such as the distribution of infrastructure and population—on
water access. Consequently, they fall short in quantifying the geographic accessibility of kiosks,
which is crucial for understanding and improving urban water systems. Thus, this chapter aims
to quantify geographic access to kiosk water within Kisumu using the two-step floating
catchment area (2SFCA) method. To evaluate how spatial representation of population affects
accessibility metrics, the method integrates three gridded population map datasets with water
kiosk locations to estimate the supply and demand ratio. Additionally, the relationship between

kiosk accessibility and road networks is analysed due to their close interconnection.
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6.1 Introduction

Shared or communal water sources have a long history in Africa (Nilsson, 2011) and come in
various forms, including standpipes, kiosks, water tankers, household resellers, and water
vendors (Chitonge, 2014). The proliferation of shared water sources aligns with the emergence
of the informal sector and public-private partnerships (PPPs) in urbanization (Section 2.2.3).
Urbanization poses two major challenges in water management: a mismatch between water
supply and demand, and the unequal distribution of water resources (Dos Santos et al., 2017,
Rebelo and Matos, 2022). Access to improved water sources in SSA is influenced by factors
such as household characteristics (e.g. income, gender, and education) as well as urban
planning and historical policies (Antunes and Martins, 2020, Armah et al., 2018, Tetteh et al.,
2022). Higher-income groups are more likely to have piped water connections, but even so,
these sources may be unstable (Ngben and Yakubu, 2023, Zuin et al., 2011). As an alternative,
residents in SSA are increasingly forced to rely on shared water sources, spending more time
and money on accessing water (Chakraborty, 2022, Pierce, 2017, Sarkar, 2022). Therefore,
shared water sources play an essential role in supplying water to low-income areas, as shown
by studies in Kampala, Uganda (Isoke and van Dijk, 2014, Tumwebaze et al., 2023), Lilongwe,
Malawi(Adams, 2018b), Lusaka, Zambia, and Cape Town, South Africa (Nel et al., 2023).

Among shared water sources, water kiosks are fixed-location facilities that may include water
storage and treatment systems, where consumers can purchase water (sometimes alongside
other goods). Water kiosks have a long history in Kenya. Since the colonial era, kiosks or
standpipes have been used to supply water to African settlements in Kenya (Nilsson, 2011).
After the 1970s, due to economic decline and concerns over self-sufficiency, these community
water distribution systems were considered as an alternative formal solution for providing water
in low-income areas (Nilsson, 2011, Sarkar, 2022). Boakye-Ansah et al. (2022) note that shared
water sources, including water kiosks, are often managed through agreements between asset
holders—such as government agencies—and intermediaries, which may include NGOs,
community organizations, individuals, or private water vendors(Adams, 2018b, Contzen and
Marks, 2018, Opryszko et al., 2013). In addition to the KIWASCO utility directly selling bulk water
to kiosk operators within the network that it operates, Kisumu’s delegated management model
(DMM) incorporates water kiosks (Schwartz and Boakye-Ansah, 2023). In this model, the Kisumu
Water and Sewerage Company (KIWASCO) delivers bulk water to metered Master Operators
who manage DMM pipelines. These operators then sell some of this water to consumers

indirectly through kiosk vendors (Nzengya, 2015).

Studies on water kiosks highlight risks of availability, affordability, quality, and accessibility.

Water interruptions in kiosks occur for two main reasons: either the service provided by
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suppliers to the kiosks is disrupted, or kiosk operators choose to provide water only during
limited hours due to cost considerations or personal commitments (Boakye-Ansah et al., 2022,
Schwartz and Boakye-Ansah, 2023). A study in Malawi (Adams, 2018b) observed that, in such
cases, consumers were compelled to switch to alternative water sources. Affordability is
another major concern for kiosk users. Despite official pricing set by local authorities, the cost
of water sold at kiosks often exceeds these regulated prices. Respondents consistently reported
higher expenditures on water purchased from kiosks compared to private connections. In a field
study conducted in Kisumu in 2017 and 2018, for example, water from kiosks (Ksh 0.2/litre) was
priced higher than the official domestic tariff (Ksh 0.06/litre) for the first 6,000 litres of water
consumed (Boakye-Ansah et al., 2022). The elevated costs are largely attributed to the presence
of intermediaries, a pattern also observed in Nairobi, Kenya (Ondigo et al., 2018), Kampala,
Uganda (Tumwebaze et al., 2023), and Kumasi, Ghana (Adusei et al., 2018). To address these
challenges, Kisumu and other SSA cities have recently introduced prepaid dispensers (PPDs) in
kiosks. Through PPDs, customers can purchase water at kiosks using tokens with pre-
purchased credit. Replacing relatively unreliable operators with these automated systems is
seen as a way to ensure more consistent water supply, and lower kiosk water prices (Adusei et

al., 2018, Boakye-Ansah et al., 2022, Schwartz and Boakye-Ansah, 2023).

Accessibility is another key metric when assessing the efficiency and functionality of water
services. The time spent collecting water is closely linked to the amount of water households
can access (Devi and Bostoen, 2009). If the time required (including queuing and collection) is
excessive, residents tend to reduce the frequency of water collection, and the amount of water
collected is also inversely proportional to the time (Boakye-Ansah et al., 2022, Cassivi et al.,
2019). Adams (2018b) and Boakye-Ansah et al. (2022) reported that queuing times in their study
areas often far exceeded the time required to travel to and from the water source. Combined
with the need for multiple trips per day, this imposes a significant burden on households,
exacerbated by unstable supply schedules (Adams, 2018b). As women and girls primarily bear
the responsibility for water collection, this issue raises concerns about gender equality and
safety, especially when water must be collected at night (Rusca et al., 2017). Additionally, water
quality can be impacted during collection. While studies by Zuin et al. (2011) and Tumwebaze et
al. (2023) found that kiosk water quality was generally good and well-regarded, other research
highlighted post-collection contamination risks. Cassivi et al. (2021), Wright et al. (2004) and
Shields et al. (2015) all highlighted the deterioration in water quality between the source and

stored water, implying contamination during collection, transport, or storage.

Several studies have shown that both water source types and access exhibit spatial
heterogeneity (Deshpande et al., 2020, Dongzagla et al., 2022, Tetteh et al., 2022). Velzeboer et

al. (2018) pointed out that the distribution of kiosks is influenced by landowners and urban
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chiefs and therefore does not always reflect residents' needs, often resulting in uneven
coverage and further complicating water allocation practices. Lawhon et al. (2018) and Rusca
and Cleaver (2022) emphasized that analysing such heterogeneity in water infrastructure can
provide insights into broader socio-political dynamics. However, due to the diversity of water
sources, the instability of supply, the difficulty of monitoring consumption, and issues of data
quality, water usage analysis often faces significant limitations (Nauges and Whittington, 2010).
Current studies on access to water points are often based either on self-reported water
collection distances and times (Adams, 2018a, Adams, 2018b, Isoke and van Dijk, 2014, Kayaga
etal., 2020, Tumwebaze et al., 2023, Zuin et al., 2011), which may deviate from actual distances
(Crowetal., 2013, Ho et al., 2013), or on direct estimations of Euclidean distances between
water points and households (Cassivi et al., 2021). Such surveys are likely to contain biases
arising from sampling errors or inaccuracies in the survey instruments (Bartram et al., 2014).
Additionally, interview-based studies have failed to capture the variation in water access across

the urban scale.

Therefore, a city-scale quantitative accessibility analysis is necessary to examine the spatial
heterogeneity of urban water distribution, an area that remains underexplored. Among studies
on infrastructure accessibility, a commonly used approach is the 2SFCA method. The 2SFCA
measurement originates from the gravity-based model, which captures both supply-demand
dynamics and spatial distance in accessibility analysis (Luo and Wang, 2003). By introducing
catchment areas to constrain the scope of accessibility, it overcomes the sensitivity of gravity-
based accessibility measurements to area delineation (see Literature Review 2.5). Since its
calculations are based on the spatial distribution of populations and facilities, the results not
only capture spatial disparities in access but also reflect the rationality of facility distribution,
making it a suitable choice for this study. The 2SFCA method and its improved versions have
been widely applied in public facility accessibility research, particularly in healthcare studies
(Kanuganti et al., 2016, Luo and Qi, 2009, Wang, 2012). However, to the best of available
knowledge, only one study by Mahuve and Tarimo (2022) has employed the 2SFCA method in
water accessibility research. Their study focused on improving the travel impedance function
within the 2SFCA framework. Through a sample survey, they estimated the population within the
rural wards of Dodoma Urban District in Tanzania and used this as a basis to compare their
2SFCA model with previous models. The main aim of their study was not to address the

knowledge gap in the distribution of urban water resources.

Therefore, current research on water access primarily relies on field surveys, which estimate
water demand based on small-scale population data. However, this approach also limits the
scope of such studies, whereas large-scale infrastructure accessibility analyses typically

involve the use of aggregated population data (Mizen et al., 2015, Stepniak and Jacobs-Crisioni,
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2017). This aggregation method represents a unit—such as a neighbourhood—using a single
point, assuming the entire population is concentrated at that point. The accessibility of that
point is taken to represent the accessibility of the entire neighbourhood. This process can utilise
large-scale population surfaces as the basis for aggregation, with population estimations relying
on assumptions about the city. However, discrepancies between these assumptions and
reality—such as variations in occupancy rates across different neighbourhoods—can lead to
fluctuations in surface performance. For example, Palacios-Lopez et al. (2019) demonstrated
the relationship between the covariates' quality and the population dataset's performance. They
pointed out that the quality of a model that uses covariates to estimate population, such as
LandScan, is affected by the availability of information. Hence, the performance of population
models is constrained by the heterogeneity of study areas (Palacios-Lopez et al., 2019). This
problem is particularly significant in slums, where some characteristics are often not covered
by urban covariates, resulting in an underestimation of slum populations (Hanberry, 2022,
Thomson et al., 2021). Thus, when population-weighted centroids are used instead of areal
centroids, the population distribution affects not only demand estimates but also the location
of centroids, which, in turn, impacts accessibility estimations in these areas. Considering the
expansion of slums in SSA, if the 2SFCA method is to be applied to measure water accessibility
in SSA urban areas, the performance of population datasets must be assessed—a factor that

remains unclear.

Furthermore, in 2SFCA calculations, urban layout plays a significant role in shaping water
access through the road network. The configuration of urban elements varies across regions,
reflecting the factors that drive differences in infrastructure distribution within cities. Generally,
variations in urban morphology are primarily identified through differences in street network
topology, as street networks serve to partition urban space and facilitate material flows (Kropf,
2014, Zhang et al., 2023). The Million Neighborhoods Map (Brelsford et al., 2018) in the previous
chapter uses the hierarchical structure of road networks as an indicator of neighbourhood
morphological complexity, exemplifying a common approach to capturing urban-scale
morphological characteristics through the use of centrality measures. These measures reveal
how different areas within a city are organized and highlight material connectivity within the
urban fabric (Akbarzadeh et al., 2019, Porta et al., 2012, Wang et al., 2011a, Zhao et al., 2016).
Studies utilising road network centrality have identified links between urban amenities,
population distribution, and infrastructure accessibility. Specifically, when network distances
are used instead of straight-line distances, the topology of roads directly impacts the number of
accessible facilities. However, research has yet to establish a direct link between infrastructure

accessibility and urban morphology or road topology.
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Therefore, to enhance the assessment of urban water services, this chapter takes water kiosks
as a case study, aims to develop a workflow for applying 2SFCA to water services, and evaluates
its effectiveness in quantifying water access at the city scale using secondary data. Due to data
availability, kiosks in Kisumu are selected. Given the relationship between 2SFCA analysis,

population data, and urban morphology, the objectives of this study are as follows:

1. Develop a workflow to evaluate geographic water accessibility using the 2SFCA method
and develop recommendations for applying 2SFCA to water services.

2. Examine the spatial patterns of 2SFCA results, incorporating spatial autocorrelation
analysis.

3. Assess the impact of different population surfaces on 2SFCA geographic water access
measures and examine the sources of their variations.

4. Investigate the relationship between water source access and road centrality to explain

accessibility in relation to urban layout.

6.2 Methodology

The study area is the urban region of Kisumu. Background information on the city's urban and
water services can be found in Section 3.2. Formal water services in urban Kisumu are primarily
provided by a single major service provider, KIWASCO, which directly contracts with water
kiosks, exceptin DMM areas. To simplify the analysis, the study scope is limited to exclude
small-scale community supplies and self-supply systems present in urban and peri-urban
areas. The population using kiosks is estimated by excluding households with domestic piped

connections based on domestic water meter density.

Measurement of infrastructure accessibility often relies on place-based approaches (see
Section 2.5.1). In this chapter, an adjusted 2SFCA method was applied to measure the
accessibility of water kiosks in Kisumu. The calculations were performed using different
population datasets, allowing for a sensitivity analysis of how population data products affect
the results. This analytical approach helped mitigate the influence of disparities between
population data products on the estimation of kiosk accessibility. All three population datasets
and facility distribution data are from 2020, meaning the results reflect kiosk accessibility in that
year. The results were further utilized to identify patterns in kiosk access distribution and
examine related factors through spatial analyses. The main workflow of the study is illustrated

in the figure below (Figure 6.1).
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Figure 6.1 Flowchart of the major stages in kiosk accessibility analysis. Population datasets,
kiosks, and environmental datasets were used as inputs for AccessMod to estimate
travel time between populations and facilities, which was then applied in the 2SFCA
model analysis. Following the computation of accessibility results, their spatial

distribution patterns were examined.

6.2.1 2SFCA methodology and spatial accessibility analysis

The 2SFCA method was first introduced by Luo and Wang (2003) to measure spatial
accessibility by calculating the supply-demand ratio for specific locations. Subsequent
enhancements to the 2SFCA, such as the i2SFCA (Wang, 2018) and H2SFCA (Tao et al., 2020),
adhere to similar principles (Stacherl and Sauzet, 2023) and involve two steps: calculating the
facility's score (R;) and the accessibility of population location i(Af) (see section 2.5.2). The
Gaussian function (Dai, 2010) was employed as the distance decay function as it continuously
discounts accessibility, providing a more realistic representation of travel processes. When
compared with various distance decay functions, the Gaussian model exhibited a higher
average similarity coefficient with other models, indicating that models using this function
better approximate actual accessibility (Chen and Jia, 2019). To account for variations in facility
attractiveness when multiple kiosks are accessible within a travel time threshold, the Huff
model (Huff, 1963) was incorporated. This model considers facility capacity and travel distance
to compute the probability of a facility being chosen, assigning higher preference to kiosks
located closer to the population. As distance is the primary factor in discounting accessibility,
this adjustment helps to avoid unnecessary discounting in calculations, providing a more
accurate representation of water collection behaviour. This adjusted 2SFCA approach, which
integrates the Huff model, is also known as the 3SFCA (Liang et al., 2023). The calculation was

performed in two steps:

Step1: Computation of the capacity-to-population ratio R; for kiosk j

S
R = )
/ Zke[dkjscio] Pkf(dkj)PrObkj
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Step 2: Computation of accessibility Af at each population location i

A{: = Z PTObUf(dU)R]
Jjeldij=do]

Where:

Sjis the capacity of kiosk j;

Pyis the population of centroid k;

dkj is the distance between centroid k and kiosk j within the catchment (d,);

f(dkj) is the distance decay between two locations k and j, which takes a Gaussian form:

o~ (1/2)%(dij/dg)*~e~ (/2
f(dij) = T

Proby is the probability that the population-weighted centroid k selects kiosk j as the water

source:

Sif (dij)
Yke[dye<do] Skf (dik)

PTObij =

Similar to other accessibility measures, the results of the 2SFCA method Af hold no intrinsic
meaning in isolation; their significance emerges only when compared across different regions
(Dalvi and Martin, 1976, Miller, 2018). Consequently, analysing the patterns of accessibility
scores within the study area becomes more critical. To assess the agreement between outputs,
Spearman’s rank correlation coefficient and Bland-Altman plots (Bland, 1986) were employed,
with the latter used to estimate and display the limits of agreement between input variables. The
blandr package in R (Datta, 2024) was used to perform Bland-Altman analyses. Additionally, this
chapter utilised the Global and Local Moran’s | tools (Anselin, 1995, Getis and Ord, 1992) to
analyse the spatial patterns of accessibility scores derived from the 2SFCA results. The Moran’s
I index is commonly used to evaluate whether a spatial feature exhibits spatial autocorrelation
with its neighbouring features. In other words, it highlights the statistically significant spatial
clustering patterns of accessibility values across the study area. The default distance threshold
was used for the Moran’s | tools to ensure that each input feature had at least one neighbour.
This choice excluded other similar clustering tools, such as Incremental Spatial
Autocorrelation. Global Moran's |, range from -1 to 1, representing perfect dispersion and
perfect clustering, respectively. Local Moran's |, on the other hand, classifies spatial
autocorrelation into hot spots, cold spots. Compared to another tool provided by ArcGIS,

Optimized Hot Spot Analysis, Local Moran’s | also identifies spatial outliers. After obtaining the
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2SFCA outputs, both EAs with no access and those with no data were treated as zero, indicating
that these EAs could not access water kiosks. The outputs were then subjected to statistical
analysis. The results from different population datasets were normalised, and pairwise
differences were computed. Global and Local Moran’s | were used to examine both each 2SFCA

output and the differences between the normalised outputs.

The relationship between accessibility and the urban environment was analysed by measuring
the correlation between the topological properties of roads and the accessibility scores.
Betweenness and closeness were used to measure the characteristics of road nodes in the
primal graph due to their widespread application in urban studies (Jiang and Claramunt, 2004,
Kirkley et al., 2018, Serra and Hillier, 2019, Shang et al., 2020, Shi et al., 2024, Wang et al.,
2011a). Both metrics have been recognized as indicators of network robustness and
accessibility, as well as their associations with urban layout, land use, and facility distribution

(see Sections 2.4.1).

To compare accessibility and centrality within a unified framework, the centrality values
obtained were smoothed using spatial interpolation techniques. The choice of interpolation
method should not significantly affect the results. In this chapter, inverse distance weighting
(IDW) and kernel density estimation (KDE) were used. IDW is a distance-based spatial
interpolation algorithm that estimates unknown values based on weighted averages of known
values within the neighbourhood. KDE, on the other hand, is a non-parametric method that
estimates the probability density. Specifically, it uses the density of data within a defined range
(window) to estimate the value at the window centre. In the context of centrality measurements,
KDE has been regarded as effective in capturing neighbourhood characteristics (Liu et al., 2015,
Liu et al., 2016). The parameters of IDW and KDE, such as power and bandwidth, produce
slightly different interpolation results. However, as analysing these effects is beyond the scope
of this chapter, a power of 2 was used for IDW as the default. This parameter only reflects the
influence of values and is not related to any real physical process. Considering the catchment
and travel scenarios of the study area (see Section 6.3.3.3), along with the search distance
derived from Moran’s | analysis—where each EA has at least one neighbour at approximately
1,450 meters—a bandwidth of 1,500 meters was applied for KDE. The output pixel size was set

to 50 x 50 meters.

After performing the interpolation, the mean interpolated values within each enumeration area
(EA) were calculated for subsequent correlation with accessibility scores. To compare outputs
from different population datasets and examine the relationship between road centrality and

accessibility distribution, Spearman’s correlation coefficient was used to measure the
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relationships between accessibility maps and between interpolated road centrality and

accessibility maps.

6.3 Datasets and parameterization for the study area

6.3.1 Data audit of gridded population datasets

The measurement of kiosk accessibility involves a methodological issue that requires
clarification: spatial aggregation. Spatial aggregation refers to the practice of classifying
individual data into geographic regions. In analysis, this means using smaller spatial units
(points, lines, or areas) to represent original spatial data within the same spatial extent. In this
study, the direct impact of spatial aggregation on accessibility is that different estimations of
population distribution in population datasets influence the aggregation outcomes. For
instance, if population data underestimate the population in a given area, the aggregation
results may either retain or mitigate this bias, depending on the boundaries used for

aggregation.

To evaluate the sensitivity of 2SFCA outputs to the choice of population dataset and mitigate its
impact on the assessment, seven gridded population datasets available for the study area

(Table 6.1) were assessed.
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Table 6.1 Summary of gridded population datasets available for the study area

Spatial Constrained
Dataset Source Resolutio Available Input Variables Method by built
n Year (s) settlement
extent
Facebook Connectivity
. . Lab and.Centerfor National census data Convolutional neural
High Resolution International Earth . -
. . from CIESIN, binary network for building .
Settlement Layer Science Information 30m 2015 e . - Constrained
settlement layer from classification, informing
(HRSL) Network (CIESIN) - DigitalGlobe imager opulation distribution
Columbia University g gery pop ’
(2016)
European Commission Raw census data from
rop CIESIN’s GPW,
Joint Research Centre modified using UN Disaggregation based on
Global Human (JRC) and Center for g. . gereg N
. World Population built-up area distribution,
Settlement International Earth 250m/1k 1975- e . . .
. . . Prospects 2019 (UN, classification, and density Constrained
Population (GHS- Science Information m 2030
2020) and UN World from the Global Human
POP) Network (CIESIN) s
. . . Urbanization Settlement Layer.
- Columbia University
(2020) Prospects 2018 (UN,
2019).
. Multi-variable dasymetric
. . Sub-national census . .
Oak Ridge National 2000 - counts. spatial data modeling, interpolation
LandScan Global Laboratory (ORNL) Tkm o b . ’ | using LandScan distribution, | Constrained
2022 high-resolution - .
(2021) . adjusted to geographical
imagery. .
characteristics.
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Semi-automated dasymetric
modelling (Stevens et al.,
2015), Random Forest

WorldPop-Global- WorldPop (Bondarenko National census data, moc.Iel (RF), gn;lded . .
. 100m 2020 . population prediction using Constrained
Constrained etal., 2020) ancillary datasets. . . .
geospatial covariates, final
adjustments aligned with
UN population estimates
(UN, 2020).
WorldPop-Bespoke . 2009 and 2019 RF models combined with
WorldPop (Gadiaga et census data from . . .
Country Model 100m 2022 , . geospatial covariates for Constrained
(WOPR) - Kenya al., 2023) Kenya’s National opulation estimation
y Bureau of Statistics. Pop )
As above WorldPop global
WorldPop-Global- 2000- National census data, constrained data but does Unconstraine
Unconstrained WorldPop (2018) 100m 2020 ancillary datasets. not use built settlement data d
to constrain population
. National census data D|saggregat|(?n using a ?.’0
Center for International . arc-second grid, population
Earth Science from various sources |y i) e d by land area
Gridded Population Information Network 1km 2000 - (around 2010), proportion within each pixel Unconstraine
of the World (GPW) (CIESIN) - Columbia 2020 boundary data, d

University (2018)

United Nations
population estimates.

minimal additional
geographic data (only water
masks used).
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These gridded population datasets can be classified based on the type of modelling
used to create them (Leyk et al., 2019). A dataset is ‘top-down’ if the model
disaggregates census data or other complete population counts to cells, informed by
some (or no) auxiliary data. ‘Bottom-up’ population datasets are those that use
household survey data (i.e. small census surveys performed at local level) and ancillary
data, to predict population in the cells between the surveys. All population data in the
table are generated using the top-down approach. Population datasets differ in how
many ancillary datasets are used to produce them. Some datasets incorporate
geospatial covariates, including human settlements, built settlement extent, night light
intensity, road networks, land cover and land use type, climatic factors, water features,
and terrain elevation and slope (Palacios-Lopez et al., 2019) to generate weighting
layers. In contrast, datasets such as GPW and GHS-POP are directly aggregated or
disaggregated with very few or no covariates. Another key distinction is whether the
dataset is constrained or unconstrained by built settlement extent during the
aggregation or disaggregation process. Constrained models will only assign populations
to settled or built-up areas, whereas unconstrained models will potentially assign a

value to any cell (Thomson et al., 2022b).

6.3.2 Overview of study datasets

To ensure that the population-weighted centroids are representative, three population
datasets available for Kisumu were selected to estimate the population likely to access
kiosks: WorldPop Global Constrained (Bondarenko et al., 2020), WorldPop Global
Unconstrained (WorldPop and CIESIN, 2018), and the GHS-POP (Schiavina et al., 2020),
all of which provide population estimates for 2020. All three datasets are top-down
models but differ in their degree of modelling, covariates, and methodologies (Table
6.1). Notably, both WorldPop Global Constrained and GHS-POP constrain population to
areas of built settlement, meaning that they are more likely to provide accurate and
detailed distributions of population. GHS-POP uses GHS-BUILT-S (GHS-
BUILTS_GLOBE_R2022A, version 1.0) as its input for built-up areas, whereas WorldPop
Constrained primarily relies on building footprint data from Maxar/Ecopia. Additionally,
GHS-POP differs from the other two datasets in terms of its modelling approach: it

either proportionally allocates population to built-up areas based on density or applies
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areal weighting to distribute population to non-built-up areas (Freire et al., 2016). In
contrast, both WorldPop datasets use the RF algorithm (Stevens et al., 2015) to create a
weighting surface for the dasymetric redistribution of census counts. Thus, WorldPop
Constrained and GHS-POP differ from WorldPop Unconstrained in whether built
settlements are used as a constraint, while the WorldPop datasets and the GHS-POP
dataset differ in the complexity of their modelling approaches. The use of the three
datasets enables an assessment of how population surfaces with varying

characteristics influence accessibility analysis.

The metadata for other datasets used by the analytical methods described in Section

6.2, apart from population data, is summarised in Table 6.2 below:

175



Chapter 6

Table 6.2 Characteristics of geospatial datasets used in kiosk accessibility estimation (excluding population data)

Purpose in Year
Study Name Represented Source Access Type
Administrative wards American Red Cross
. 2019 (https://data.humdata.org/dataset/administrative- | Open Access
in Kenya .
wards-in-kenya-1450)
Delineating
the study
area Kenya Urban Centres | 2019 (Macharia et al., 2021) Open Access
KIWASCO service Kisumu Water and Sanitation Company
coverage 2020 (KIWASCO) By Request
Estimating
population
reliant on
KIWASCO meter Kisumu Water and Sanitation Company
off- density 2020 (KIWASCO) By Request
premises
water
sources
Calculating
population- | Kisumu Enumeration | ,,q Kenya National Bureau of Statistics (KNBS) By Request
weighted Areas
centroids
Estimating | KIWASCO water Kisumu Water and Sanitation Company
traveltime | facilities maps 2020 (KIWASCO) By Request
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The Ministry of Economy, Trade, and Industry

DEM 2011 (METI) of Japan and the United States National Open Access
Aeronautics and Space Administration (NASA)
FAO Water Productivity Open-access portal
Land cover (WaPOR)
classification 2022 (https://data.apps.fao.org/catalog/iso/69be3461- Open Access
320f-40a6-93d7-faded3db77d1)
OpenStreetMap Foundation (OSMF) &
Open Street Map 2023/07 Contributors (downloaded via https://overpass- Open Access
(OSM) Road

turbo.eu/)
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The Kisumu City administrative wards map, produced and updated by the American Red
Cross, contains 1,450 administrative wards across Kenya, with the version used in this
study updated in April 2019. The Kenya urban centres map (Macharia et al., 2021)
delineates urban centres based on a population threshold of 2,000, with boundaries
digitised from 2019 data. The KIWASCO coverage map, obtained in September 2020,
defines the service boundaries of KIWASCO, encompassing the available kiosks.
Similarly, the meter density map, also acquired from KIWASCO, represents the spatial
distribution of piped water meters, aiding in the identification of populations using
household connections. The enumeration areas (EAs) map, sourced from the Kenya
National Bureau of Statistics (KNBS), includes the 2009 EA boundaries, as the 2019
version was unavailable at the time. This dataset was accessed in October 2020
through the Water & Waste project, with EA-based results providing higher-resolution
spatial analyses. Additionally, the KIWASCO water facilities map, obtained in
September 2020, includes shapefiles of water kiosks and the pipeline network,
identifying 299 kiosks (Figure 6.2). The Digital Elevation Model (DEM), extracted from the
ASTER Global DEM Version 2 (NASA and METI, 2011), was chosen over Version 3 due to
its enhanced void-filling and data cleanup. Land cover information was sourced from
the 2022 Africa and Near East land cover classification map (FAO, 2020), based on the
FAO-developed Land Cover Classification System (LCCS). The road network dataset
(OpenStreetMap contributors, 2023), downloaded from OpenStreetMap, provides
classifications and speed limits for roads within Kisumu City. Prior to analysis, all
datasets were projected to a uniform coordinate system, Arc 1960 UTM Zone 36S,

ensuring spatial consistency.
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Figure 6.2 Spatial distribution of water kiosks in Kisumu.

6.3.3 Data preparation and 2SFCA parameter adjustments

6.3.3.1 Study area delineation

Narrowing the study area to the KIWASCO service coverage helps eliminate the
influence of water sources other than kiosks on the accuracy of calculations. This
information can be obtained from the KIWASCO coverage area map. Furthermore, since
this study focuses on urban water access, the service boundary should be delineated
with reference to the Kisumu City map and the Urban areas map. EAs located within the
boundary were used as units for the 2SFCA analysis. The difference in map coverage
also needs to be considered in this step. Since the EAs map is from 2009 and later EA
boundaries were unavailable, it has a different administrative boundary from the other
maps from 2019. Therefore, EAs were selected and extracted only if they were located

within:

1. the 2019 boundaries of Kisumu City.
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2. Kisumu's urban areas.

3. the KIWASCO coverage area.

The extracted EAs map includes 847 EAs. The average population of the units in 2009
was 389.8, and the average number of households in 2009 was 99.5, with an average
area of 583,155.6 square metres of EAs. All data used subsequently was clipped to this

boundary.

6.3.3.2 Spatial representation of demand for off-premises water services

In the 2SFCA analysis, the use of population-weighted centroids is considered
preferable to geometric centroids in reducing spatial aggregation errors when
estimating distances, particularly network distances (Mizen et al., 2015, Stepniak and
Jacobs-Crisioni, 2017). Therefore, this chapter employs population-weighted centroids
rather than areal centroids to calculate population locations. For data consistency, the
2020 population estimates of the WorldPop Global Constrained, WorldPop-Global-
Unconstrained population, and GHS-POP datasets were used. To simplify calculations,
it was assumed that the population relying on kiosks corresponds to those without
household water connections. As a result, the population using household water
connections was excluded from the calculation of population-weighted centroids.
Using the meter density map obtained from KIWASCO, which indicates the density of
households with water connections in Kisumu, and the 2019 Kenya Population and
Housing Census Volume Il (KNBS, 2019a), which provides the total population and
number of households in each sub-location, the weighted centroids for the population

accessing kiosks were derived. The calculation was carried out in the following steps:

1. Convert the sub-location household size provided by the census into a raster
format.

2. Multiply the household size layer by the meter density layer using the raster
calculator to generate a distribution raster for the population using household
connections.

3. Subtract the household connection population raster from the overall
population surface to obtain the raster for the population relying on kiosks. As
the meter density distribution does not perfectly align with the population data

and there may be errors in the WorldPop product, some cells in the resulting
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raster had negative values. These cells were reclassified as 0, indicating that the
population in these cells exclusively uses piped water.

4. Use the 'Zonal Statistics as Table' tool to calculate the population using kiosks
within each EA.

5. Convertthe raster data to points and assign EA names to the points based on
their spatial locations.

6. Use the 'Mean center' tool to obtain the population-weighted centroids, using

population values as weights.

6.3.3.3 Defining catchment areas and travel scenarios

Catchment size plays a crucialrole in 2SFCA analyses. It reflects the analyst's prior
knowledge of the study area and determines the model's sensitivity to spatial
heterogeneity (as discussed in Section 2.5.2). The JMP framework adopts a 30-minute
benchmark for round-trip access to basic improved water sources (i.e., 15 minutes one
way) (WHO/UNICEF, 2018). However, in practice, water collection times in SSA vary
considerably (Adams, 2018b, Cassivi et al., 2018, Dongzagla et al., 2020, Hopewell and
Graham, 2014). In Kisumu, the time required to fetch water from borehole kiosks ranges
from 10 minutes to over 30 minutes (Akelo and Nzengya, 2023). Therefore, earlier
studies on the 2SFCA method have emphasised that catchment sizes should be
adjusted according to local travel conditions (Luo and Whippo, 2012, McGrail and
Humphreys, 2009), which led to the development of the variable catchment 2SFCA
approach (Chen and Jia, 2019). Notably, the 15-minute water collection time (one way)
refers to individuals, whereas when using population-weighted centroids instead of
actual population locations, applying the same threshold would underestimate
coverage and significantly reduce the number of accessible kiosks (Bryant Jr and
Delamater, 2019). Consequently, this study used 30 minutes as the one-way travel time

threshold.

Before estimating water collection paths, it is essential to understand the travel
behaviours of Kisumu’s inhabitants. Macharia et al. (2021) reviewed transport patterns
in Kenya, noting that in the capital region, 83% of trips for all purposes include walking
as a mode of travel, with 41% of the trips in the city comprising walking only. In smaller
cities, the reliance on walking increases significantly. Meanwhile, 65% of adults in

urban slums walk to work. Although commuting travel modes differ from those used to
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access basic services, literature addressing this distinction is scarce. As mentioned by
Watmough et al. (2022) in their study of access to healthcare facilities in Uganda, it is
difficult to get information on the speeds of boda bodas or matutus (two transport tools
that are also popular in Kenya). Considering that water collection is a daily activity with
a low likelihood of involving transport tools, this study also considered only walking,
aligning with numerous studies that use walking speed and walking distance as key
parameters (Boakye-Ansah et al., 2019, Cassivi et al., 2019, Crow et al., 2013, Kim et al.,
2020, Pickering and Davis, 2012).

Additionally, Watmough et al. (2022) provide insights into travel speeds across different
landscapes. Their study leverages LCCS and estimates walking speeds on various land
cover types and roads based on published data. These walking speed estimates were

utilized to model travel scenarios.

6.3.3.4 Modelling Travel Paths with AccessMod

The distances used in access analysis should reflect real-world distances between
populations and facilities (Apparicio et al., 2017, Mizen et al., 2015). Therefore,
AccessMod 5 (Ray and Ebener, 2008) was used for this study to calculate network

distances and travel times between locations.

AccessMod 5, developed by the World Health Organization, is widely used for analysing
interactions between populations and service facilities such as healthcare centres
(Hierink et al., 2023, Macharia et al., 2023). Its core functionalities include computing
service areas, simulating healthcare referral pathways, and estimating facility
accessibility. Unlike the Network Analyst functionality within ArcGIS, which assumes
that travel occurs primarily on road networks, AccessMod simulates travel on an
impedance surface, built using land cover, road, and DEM data. This surface accounts
for travel speeds adjusted for terrain, slope and travel direction, enabling the
calculation of travel times from any point on the map, regardless of proximity to roads.
This approach is more reflective of the realities in SSA, where water collection often
involves traversing varied terrain before reaching the road network. For example,
residents in Malawi have complained that in addition to dangerous road conditions,
they have to pass through a variety of hazardous terrain during water collection (Adams

etal., 2022). A study on geographical accessibility to urban centres in Kenya also
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assumed a travel scenario where walking occurs across areas without road coverage
(Macharia et al., 2021). In addition, since population-weighted centroids are an
aggregation of the gridded population surface, they are not necessarily connected to
roads. Therefore, it is reasonable that this study used Accessmod 5 in estimating travel

paths.

6.4 Results

In this section, the accessibility values for the three population datasets are presented.
While the population data influenced the distribution of population centroids and the
calculation of demand, all other parameters and environmental factors were consistent
across the three computations. This means that the differences in the results are mainly
due to variations in population estimates. After obtaining the results, the commonalities
and differences within the spatial outputs of the three datasets were analysed,
including comparisons of their global and local Moran's | statistics, correlation
coefficients, and normalized accessibility values. Additionally, the relationship between
urban environments and water access was explored by examining the centrality of
roads and their similarity to kiosk accessibility through Spearman correlation

coefficient.

6.4.1 Differences between population products.

The GHS-POP dataset utilizes the Gridded Population of the World v4 as its data source,
which uses Kenya's 2009 national census in estimating the population in the study area.
This data source is consistent with those used by both the WorldPop Constrained and
Unconstrained datasets. However, differences in population disaggregation methods
employed by the three datasets result in variations in population density and spatial
distribution estimates within the study area, as shown in Table 6.3 and Figure 6.3. The
spatial distribution of high population density values is consistent across the three
datasets, with concentrations observed in Kisumu’s slums (see Section 3.2.2).
However, the sharpness of the boundaries defining these high-value regions varies, with
the WorldPop Unconstrained dataset showing the most distinct boundaries. A greater
presence of no data cells (hollow) can be observed in the WorldPop Constrained

dataset (Figure 6.3 (A)).
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Table 6.3 Summary statistics for population datasets in the study area

Population Lacking On-Premises Piped
Population datasets Total Population Estimates Water
WorldPop 409482 340805
Constrained
WorldPop 397346 326010
Unconstrained
GHS-POP 457834 397123

D Study Area
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512.924

lD

0 0.97 1.95 3.9 5.85 7.8
Miles
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Figure 6.3 Total population estimates per grid cell in the study area from different
datasets: WorldPop Constrained (A), WorldPop Unconstrained (B), and
GHS-POP (C).
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6.4.2 Mapping accessibility

The accessibility maps derived from these datasets also exhibit differences, as
illustrated in Figure 6.4. "No data" indicates areas where no population is distributed,
possibly due to the resolution limitations of the population datasets, while "No access"
refers to areas where the population cannot access water based on the calculation.
When accessibility scores for both cases are treated as zero, the unconstrained

accessibility dataset shows the highest mean and standard deviation (see Table 6.4).

The figure reveals that in all three outputs, most EAs with high accessibility scores are
concentrated in central Kisumu, particularly in Manyatta A, Manyatta B, Migosi, and
Kasule, which host a dense network of water kiosks (Figure 6.2). It indicates heavy
reliance on and easy access to these kiosks in these areas. Interestingly, the pattern
aligns with the Thiessen polygon map presented in Chapter 5 (Figure 5.15), suggesting
that both may be associated with the city’s spatial layout. Notably, the highest
accessibility values for all three datasets are observed in Dunga EA in Nyalenda B

sublocation, located in the study area's southernmost area.

Spatial differences in accessibility scores are evident among the three datasets. The
WorldPop Unconstrained derived accessibility dataset tends to estimate higher values
in the central region, while the WorldPop Constrained derived dataset provides high
estimates for the northern and western areas. In comparison, the GHS-POP derived
accessibility dataset alighs more closely with the WorldPop Constrained dataset but

shows lower accessibility estimates in the central region.
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Figure 6.4 2SFCA accessibility results for EAs in Kisumu. A. WorldPop constrained

dataset; B. WorldPop unconstrained dataset; C. GHS-POP dataset.

Table 6.4  Statistics of accessibility outputs for different population datasets

WorldPop Unconstrained
WorldPop Constrained Grid Grid GHS-POP Grid
Mean 0.0016 0.0018 0.0015
Median 0.0017 0.0017 0.0015
Std Dev 0.0010 0.0012 0.0008
Maximum 0.0046 0.0063 0.0038
6.4.3 Comparison of accessibility across population datasets

The study also conducted pairwise comparisons of the three outputs, calculating the

correlation coefficients between them, as well as the Global and Local Moran’s | indices

of the differences between the normalized accessibility scores. While the former

illustrates the similarity between the outputs, the latter reveals the distribution of their

differences. Table 6.5 shows that the three population datasets generally exhibit high

similarity. However, the unconstrained output demonstrates lower similarity to both the

WorldPop constrained and GHS-POP outputs, which is consistent with the previously

observed results.

1
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Table 6.5 Spearman correlations between accessibility outputs (derived from 847

EAs, p values <0.001).

Output Spearman
WorldPop

WorldPop Unconstrained 0.9809
Constrained Grid Grid
WorldPop
Constrained Grid GHS-POP Grid 0.9862
WorldPop
Unconstrained 0.9679
Grid GHS-POP Grid

The Bland-Altman plot provides a visual assessment of the agreement between
accessibility outputs (Figure 6.5). The X-axis represents the EA-level mean of each pair
of input data, while the Y-axis shows their difference. The plots below are based on a
95% confidence interval. The mean differences across the three comparisons are
relatively small (close to 0); however, notable variations exist in the upper and lower
limits of agreement. Specifically, the WorldPop Constrained and WorldPop
Unconstrained pairs, as well as the WorldPop Unconstrained and GHS-POP pairs,
exhibit similar ranges for their upper and lower limits, whereas the WorldPop
Constrained and GHS-POP pair has a much narrower range. This suggests a higher level
of agreement between the WorldPop Constrained and GHS-POP datasets. Additionally,
the distribution of points indicates that the differences between the WorldPop
Constrained and GHS-POP outputs are more evenly spread compared to the other two

pairs.
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C Bland-Altman Plot
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Figure 6.5 Bland-Altman plots comparing accessibility scores by Enumeration Area.
(A) WorldPop Constrained vs. WorldPop Unconstrained, (B) WorldPop
constrained vs. GHS-POP, and (C) WorldPop Unconstrained vs. GHS-POP.
The significance levelis set at 0.95. The three dashed lines represent, from
top to bottom, the upper limit of agreement, the average difference, and the

lower limit of agreement.

Spatial autocorrelation analysis further revealed the geographic distribution of kiosk
accessibility (Figure 6.6). Global Moran’s | results indicate significant clustering of kiosk
accessibility within Kisumu, although the degree of clustering varies slightly across the
three 2SFCA outputs. The order of clustering intensity, from highest to lowest, is
WorldPop constrained (0.9077), GHS-POP (0.9039), and WorldPop unconstrained

(0.8855). All results have p-values far below 0.001 and z-scores exceeding 96.

The Local Moran’s | analysis, on the other hand, corroborates the locations of high
accessibility values observed in the previous section. It clearly illustrates a pattern

where kiosk accessibility decreases from the centre of Kisumu outward.
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Figure 6.6 Global and local Moran's | of accessibility for EAs in Kisumu. A. WorldPop
constrained dataset; B. WorldPop unconstrained dataset; C. GHS-POP
dataset. It shows whether areas with high or low accessibility scores are

surrounded by similar regions.

The Global Moran’s | index of differences reveals that the differences between the
WorldPop Unconstrained accessibility dataset and both the WorldPop Constrained and
GHS-POP datasets are pronounced with stronger clustering. This suggests that the
population estimates in the unconstrained population dataset likely differ significantly
in their spatial distribution from the other two datasets. The study further normalised
the 2SFCA results and calculated the pairwise differences, followed by Moran’s |
analysis of these differences, as shown in Figure 6.7. The differences between the
constrained and unconstrained accessibility datasets are primarily observed in central
urban areas, where accessibility is higher. In contrast, both datasets exhibit
considerable agreement in the more remote areas of Kisumu. On the other hand, the
differences between GHS-POP and the other two datasets are concentrated in areas
with lower accessibility. However, GHS-POP and unconstrained accessibility datasets

demonstrate significant agreement in the central areas.
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Global Moran’s index: 0.6248

C

Legend

I High-High Cluster
High-Low Qutlier
Low-High Outlier

B Low-Low Cluster
Not Significant

>

Miles
0 1.02 2.05 4.1 6.15 8.2

Figure 6.7 Global and local Moran’s | of the differences in normalized accessibility
scores between population datasets. A. WorldPop Constrained vs.
WorldPop Unconstrained; B. WorldPop Constrained vs. GHS-POP; C.
WorldPop Unconstrained vs. GHS-POP.

6.4.4 Correlation analysis of road centrality and kiosk accessibility

The analysis of road centrality within Kisumu reveals that areas with high road centrality
overlap to some extent with the distribution of kiosk accessibility, while also extending
into the central urban area (industrial area). An exception is observed in the IDW results
of betweenness centrality, where high values roughly form the shape of the road
network. This pattern is likely due to the nature of betweenness, which reflects the
number of shortest paths passing through a node and is closely related to traffic
efficiency. Consequently, betweenness values are concentrated along major roads and
decay rapidly in the IDW interpolation. This rapid decay limits the influence of high
betweenness on surrounding areas, leading to a lower correlation coefficient with kiosk

accessibility in the analysis (Table 6.6).
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Additionally, while both closeness and betweenness KDE interpolations overlap the
same two regions with dense kiosk distributions (Figure 6.8), their distributions exhibit
distinct differences. Betweenness KDE features two core areas of concentration, thus
demonstrating a stronger correlation with 2SFCA accessibility compared to closeness
KDE interpolation, as shown in Table 6.6. Moreover, regardless of the interpolation
method, the correlation between road centrality and the population datasets
consistently follows the order: WorldPop Constrained > WorldPop Unconstrained >

GHS-POP.
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Figure 6.8 Interpolation of road betweenness and closeness using IDW and KDE. A. IDW Interpolation of betweenness; B. IDW Interpolation of

closeness; C. KDE Interpolation of betweenness; D. KDE Interpolation of closeness.
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Table 6.6 Spearman correlation coefficient (derived from 847 EAs, p values <0.001).

Kernel IDW
Betweenness Closeness Betweenness | Closeness
WorldPop 0.6147 0.5390 0.3473 0.6386
Constrained
WorldPop. 0.6002 0.5370 0.3258 0.6150
Unconstrained
GHS-POP 0.5637 0.4931 0.3139 0.5962

6.5 Discussion

Due to the widespread challenges of urbanisation faced by SSA countries, shared water sources
play a critical role in urban water supply systems. Investigating the accessibility of water kiosks
provides valuable insights into the heterogeneous distribution of water resources in southern
city environments and contributes to monitoring progress toward SDG 6. This study employed
the 2SFCA method to analyse the spatial distribution of accessibility to water kiosks within the
study area. Widely applied in healthcare research, this method has been shown to effectively
capture the distribution of facilities and populations, as well as the social factors associated
with accessibility (Chen and Jia, 2019, Kanuganti et al., 2016, Luo and Qi, 2009, Wan et al.,
2012, Wang, 2012). However, it has not yet been applied to urban water accessibility
assessments. Building on previous 2SFCA studies in healthcare and secondary data on the
study area and SSA cities, the 2SFCA model was configured to account for population
aggregation, catchment and travel scenarios. The results derived from WorldPop and GHS-POP
datasets consistently show that EAs with high values are concentrated in regions where kiosks
are most densely distributed, with accessibility declining outward from this central zone (Figure

6.4).

Further analysis differentiated the outputs produced using different population datasets. The
significant differences emerge between the outputs generated from WorldPop Unconstrained
data and those derived from the constrained datasets (WorldPop Constrained and GHS-POP
data). WorldPop Constrained and GHS-POP exhibit higher spatial similarity in their 2SFCA
estimates, with more comparable clustering patterns (Figure 6.6). However, accessibility scores
derived from GHS-POP population data are generally lower. Analysis of the disparities reveals
that the differences in accessibility scores between constrained and unconstrained datasets

appear in similar regions (Figure 6.7).

In centrality analyses, nodes with high betweenness typically align with roads characterized by
high transport efficiency, whereas nodes with high closeness represent convenient

transportation hubs (Casali and Heinimann, 2019, Lan et al., 2022). These metrics are closely
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linked to urban planning and land-use types. In the study area of Kisumu, correlation analyses
revealed a positive relationship between road betweenness and closeness centrality and the
2SFCA results (Table 6.6). The IDW interpolation of closeness has a spatial distribution similar
to 2SFCA accessibility, with a decay pattern radiating outward from regions with high values.
Furthermore, KDE interpolations of both betweenness and closeness cover two areas densely
populated with kiosks. Rui and Ban (2014) noted that built-up areas and urban greenbelts are
positively associated with various centralities. Similarly, Mengistie et al. (2023) highlighted that
urban socioeconomic attributes, such as walkability, block size, and GDP, positively correlate
with both betweenness and closeness. Overall, road centrality tends to decrease with
increasing distance from the central business district (CBD). Shi et al. (2024) emphasized the
strong relationship between closeness centrality and the distribution of residential life facilities,
noting that road centrality exerts a greater influence on the distribution of urban facilities than
population distribution. Liu et al. (2015) further pointed out that, beyond betweenness, the
density of road centrality positively correlates with road density. As centrality density increases,
construction land expands and becomes more compact. From these, three main inferences can

be drawn:

1. Areas with higher 2SFCA values are concentrated in the central study area, including
Manyatta A, Manyatta B, Migosi, and Kasule. These areas are characterized by a dense
distribution of kiosks and high centrality values. Therefore, the observed high
accessibility in these areas is likely not coincidental, as kiosks are primarily intended to
serve residents who lack access to household piped water. These high 2SFCA areas are
located within Kisumu's slums (Okotto-Okotto et al., 2015), where the high population
and building densities are more likely to lead to high road centrality values and densities.
However, it should be noted that the correlation between the KDE of closeness and
accessibility is lower than that of the KDE of betweenness. Visually, high values of
closeness are concentrated in the industrial area located in Bandari. Due to the dense
concentration of low-income households residents in this area, it has been classified as
a slum by UN-Habitat (2005), (2020). This suggests that in Manyatta and its surrounding
areas, where kiosk accessibility is high, the contribution of road patterns to accessibility
is limited. Instead, the high accessibility in these areas is primarily attributed to the
density of major urban roads with high betweenness.

2. Population datasets predict population distributions differently, leading to variations in
results. The density and spatial distribution differences among population datasets
stem from variations in their disaggregation methods. In addition to the significant
differences in population distribution estimates between the constrained and

unconstrained datasets due to the use of built-up areas, the limitations of the datasets
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also include the accuracy of auxiliary data for built-up areas in GHS-POP (Yin et al.,
2021), and the resolution of input variables (e.g., nighttime lights and land cover types) in
WorldPop's random forest approach (Thomson et al., 2022a). In a further analysis based
on slum populations, Breuer et al. (2024) also pointed out that the quality of input
census data may affect the accuracy of population estimates. In accessibility
calculations, the estimation of demand and travel distance depends on the spatial and
numerical accuracy of population datasets, which affects the results. For example, a
study on gridded population data's impact on healthcare accessibility in SSA highlighted
that population data characteristics directly influence the estimated number of people
covered by healthcare facilities (Hierink et al., 2022). Since road betweenness and
closeness centrality are related to travel efficiency, and the distribution of kiosks directly
influences the travel distance for water access, both are key factors that affect the
distribution of accessibility. Based on the maps of the two factors and the accessibility
outputs, as well as the correlation coefficient between road centrality and accessibility
outputs, the WorldPop Constrained dataset likely more accurately reflects the
population disparities within the study area. This finding aligns with other studies on
population dataset characteristics (Kuffer et al., 2022, Thomson et al., 2021).

In the study area, kiosks partially meet the water needs of residents in informal
settlements. This is primarily due to the dense distribution of kiosks within informal
settlements and the construction of highly connected urban roads. However, residents
in certain slums still face difficulties in accessing water. On the other hand, previous
research also indicated that queueing times in certain slums, such as Manyatta and
Migosi, are longer than in others, such as Nyalenda (Sima et al., 2013). Based on this
observation of kiosk capacity and the findings on kiosk accessibility, it is recommended
that the service capacity of kiosks be increased in high-accessibility areas such as
Manyatta and Migosi. Additionally, improving connectivity between informal settlements
in the Nyalenda area and other regions should be prioritized. In other words, in terms of
water access, improvements in overall layout should be considered after the

development of arterial roads.

The 2SFCA workflow established in this study effectively captured the spatial characteristics of

urban water access. The travel mode for water collection in the study area was set as walking,

as noted by Crow et al. (2013) and Kim et al. (2020), who observed that residents in Kenya

typically fetch water on foot. Based on this scenario, a 30-minute catchment (one-way trip

distance threshold) was applied. Previous research has highlighted that catchment size in

2SFCA analysis should vary by region, as excessively large or small catchments fail to capture

accessibility patterns (Chen and Jia, 2019, Luo and Whippo, 2012). A secondary reason for
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adopting a 30-minute threshold instead of the 15-minute standard recommended by the JMP is
the findings of Akelo and Nzengya (2023) , which indicate significant variation in water collection
times from kiosks in Kisumu. A more fundamental reason is that the JMP’s 15-minute threshold
refers to household-level water access, whereas in this study, EAs rather than household-level
population inputs were used. Applying the original threshold could exclude some kiosk
destinations that would otherwise be accessible. To account for this, the catchment area was
expanded while introducing a Gaussian distance decay function to appropriately discount
accessibility scores. This adjustment provides a more realistic representation of local water-
fetching behaviours. The inclusion of the Huff model further enhances this representation. As a
place-based accessibility model, 2SFCA emphasises the role of distance in accessibility;
therefore, weighting accessibility scores based on kiosks’ distance to consumers is a more
reasonable and practical approach. The results confirm that these localised adjustments are
appropriate. The workflow can be transferred to areas where water points are well mapped or
applied to broader water accessibility measurements by incorporating predictive techniques for

water points (Yu et al., 2019b).

Beyond indicating the relationship between accessibility and urban morphology, the similarity
between road centrality and accessibility also suggests that, at least from the perspective of
travel efficiency, the WorldPop constrained dataset performs better within the study area.
However, this conclusion requires careful consideration. The accuracy of population estimates
in urban areas with slums may fluctuate due to the unique characteristics of these settlements.
Comparative studies in South Asia have shown that GPW, GHS-POP, WorldPop, and LandScan
exhibit varying errors across countries, particularly in areas with high population densities and
rapid population growth (Yin et al., 2021). Consequently, all population datasets tend to
underestimate the population in slums (Breuer et al., 2024, Thomson et al., 2021, Thomson et
al., 2022a). Given that kiosks' users are expected to be densely concentrated in slums, all
selected population datasets likely overestimate kiosk accessibility. This underestimation of
population arises primarily from the inability to accurately delineate slum boundaries and
update population distribution patterns accordingly (Breuer et al., 2024, Kuffer et al., 2016,
Thomson, 2020). With more precise slum delineation, this issue can be mitigated, thereby
improving the accuracy of the WorldPop constrained dataset (Thomson et al., 2022b).
Therefore, in well-established slums, where buildings are adequately identified, this should not
pose a significant problem. Population maps (see Figure 6.3) indicate that slum populations in
Kisumu are effectively captured, which likely explains the superior performance of the
constrained dataset in this context. However, this finding may not be generalizable to other
cities, as other SSA cities may have newly emerging slums, where the advantages of the

constrained dataset are less pronounced. Moreover, given the factors influencing the
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performance of population datasets as discussed earlier, it is essential to examine the data

sources and covariates when applying these population products in other urban contexts.

The current study and its methodological configuration have some limitations. The observed
decline in accessibility from the centre outward is partly attributable to the disadvantaged
positional status of population centroids located at the periphery of the study area when
calculating accessibility. Therefore, catchment size should be adjusted to account for this
effect. Moreover, the population in the study area was divided into two groups: those using
household piped water and those using kiosks. However, this method oversimplifies the water
supply situation in Kisumu. On one hand, itis common in developing countries for households
to use multiple water sources (Daly et al., 2021, Nauges and Whittington, 2010), meaning that
those with access to household piped water may also use water kiosks. On the other hand,
urban residents in SSA often supplement their water supply with alternative sources. The study
did not account for other shared water sources in Kisumu, such as self-supply water sources.
Consequently, the estimation of demand for kiosks in the 2SFCA analysis does not fully capture
the complexities of water usage patterns, nor does it entirely reflect the accessibility of shared
water sources. Additionally, the analysis is based on the distance and travel time between
facilities and populations. While this approach provides a broader picture of urban water
fetching compared to small-scale, field-based studies, it overlooks factors such as time spent
on water purchase, pumping, and queuing. Although this does not impact urban-scale
infrastructure planning, it implies that the 2SFCA results may not effectively reflect residents’

actual water-fetching experiences.

It is worth noting that this study is also affected by the Modifiable Areal Unit Problem (MAUP)
resulting from spatial aggregation. Spatial aggregation is often employed for three main reasons:
(1) certain patterns can only be revealed at specific scales (Heuvelink, 1998, Marceau et al.,
1994, Seyfried and Wilcox, 1995); (2) data for the study area may be incomplete or anonymized
to protect privacy; and (3) spatial aggregation reduces computational demands. In accessibility
analyses, aggregation is frequently applied to population data when measuring distances
between populations and amenities (Chen, 2019, Fransen et al., 2015, Kiani et al., 2021, Xing et
al., 2020), primarily for the third of these reasons. Origin-destination matrices grow
exponentially with the number of units, increasing calculation times. In the 2SFCA analysis
presented in this chapter, EAs, which are considered relatively detailed, were used as
aggregation units for population-weighted centroids. This approach cannot fully overcome the
errors introduced by the MAUP (Bryant Jr and Delamater, 2019, Wong, 2009). Compared to
individual-level data, the use of EAs tends to overestimate accessibility, particularly in areas
with low population densities (Wang et al., 2023). Additionally, MAUP also influences the

comparison of accessibility derived from different population datasets as these datasets exhibit
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variations across different scales and regions. As a result, using boundaries with varying

granularity introduces inherent biases.

In summary, this study demonstrates that 2SFCA results can be used to provide urban planning
recommendations to the government and highlight directions for water facility improvements.
Planning efforts should focus on integrating both the urban layout and the distribution of water
facilities. Given the negative correlation between water quantity and accessibility distance
(Cassivi et al., 2019, Marti nez-Santos, 2017), these findings also contribute to research on
water usage and water-related diseases. However, more accurate 2SFCA parameters, including
kiosk capacity, travel thresholds, and population estimates, are needed to address the
aforementioned limitations, requiring further detailed information. Future research could also
incorporate field surveys to obtain records of queueing times at kiosks to improve these
estimates. Additionally, analysing other shared water sources beyond kiosks would be

beneficial for a more comprehensive understanding of water access patterns in SSA.

6.6 Conclusion

Shared water sources play a vital role in urban water supply systems in developing countries
and have received attention in the pursuit of achieving SDG 6. In monitoring access to shared
water sources, evaluations that consider spatial determinants are essential for providing
policymakers with accurate and actionable information (Devi and Bostoen, 2009). Using
Kisumu’s kiosks as a case study, this study employed 2SFCA method to estimate accessibility,
incorporating the distribution of population and kiosks while accounting for the decay effects of
network distance on accessibility. Three gridded population datasets—WorldPop constrained,
WorldPop unconstrained, and GHS-POP—were used to evaluate how different population
disaggregation methods influence accessibility estimates and to ensure robust conclusions.
The outputs were further analysed in relation to road centrality metrics to explore the impact of
the urban environment on accessibility. Findings reveal that several slums within the study area,
such as Manyatta and Migosi, achieved relatively high accessibility scores. This outcome is
consistent across all three population datasets. The correlation analysis between accessibility
and road centrality highlights two key conditions for improving water access for slum residents:
a dense distribution of kiosks and strong transportation connectivity between the community
and other parts of the city. Thus, improving accessibility in slums requires not only increasing
kiosks but also enhancing the development of urban arterial roads. This study contributes to a
deeper understanding of urban water heterogeneity and social inequality and provides valuable

insights for advancing the goals of SDG 6.

203



Chapter 7

Chapter 7 Discussion

The rapid urbanisation of Sub-Saharan Africa (SSA) has given rise to significant challenges in
water supply and governance. Water access, encompassing both the provision of water and its
proximity to residents, has been highlighted as a critical issue in the Sustainable Development

Goals (SDGs) agenda. This study has examined these challenges across three key chapters.

In Chapters 4 and 5, an assessment of the overall and regional structural characteristics of
pipeline networks provided insights into how urban development in SSA influences the
configuration of water infrastructure networks. Notably, pipeline networks within slums exhibit
significant structural differences compared to other urban areas. Chapter 6 further explored the
demand and spatial distribution of shared water sources, revealing a strong alignment with the

spatial organisation of urban layouts.

Building on these analyses, the following sections discuss how these findings contribute to a
deeper understanding of urbanisation, informality, and the heterogeneity of urban water
services in SSA, thereby supporting the overarching research objective of advancing progress
towards the SDGs (Section 7.1). This discussion outlines the broader implications of the study
for research and practice in water service provision (Section 7.2). Finally, key considerations
regarding the limitations and transferability of the findings, as well as future research directions
informed by this study, are explored in Sections 7.3-7.6, with a particular focus on their

potential to enhance future practice.

71 Evaluation of thesis objectives

Objective 1: Assess the extent of topological and geometrical commonalities road and

water/wastewater networks in SSA cities.

Observations of urban infrastructure network topology, combined with insights into pipeline
network operation and maintenance, suggest that urban layout shapes pipeline structure,
thereby affecting water service delivery (Section 2.3). Accordingly, Chapter 4 aimed to evaluate
the hypothesis that, given shared urbanisation trends in SSA, and the role of roads and pipeline
networks in urban planning, it should be possible to identify correlations between road and
pipeline networks, with these relationships being influenced by the presence of informal

settlements and other aspects of SSA urbanisation.

To achieve this, the study first developed a workflow for evaluating the connectivity and

resilience of pipeline networks using graph theory metrics within two data-sparse case
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study cities in SSA, followed by an analysis that quantified the differences in road networks
between Kisumu and Kigali. These cities exhibit similarities in urban evolution, as described by
Antos et al. (2016), where rapid spatial decay from the city centre is reflected in the graph
properties of the road networks. The presence of both irregular and well-structured patterns
influences the overall road network characteristics in the study areas. Given the differences in
urban layout and informal settlement distribution between Kisumu and Kigali, their respective
graph-theoretic properties display subtle variations—Kigali’s road network exhibits lower
connectivity efficiency but greater stability compared to that of Kisumu (see discussion in

Chapter 4 for details).

Furthermore, the study assessed the commonalities between road and pipeline networks
across the case study SSA cities. The findings in Chapter 4 indicate that infrastructure
networks in both Kisumu and Kigali share common topological characteristics. The sewer
network in Kisumu demonstrates lower structural stability than other networks, and its
centrality measures show weaker correlations with those of the road network. By contrast,
water pipeline networks consistently exhibit high structural similarity with road networks, with
co-located roads and pipelines in both cities displaying comparable distributions of
betweenness and closeness centrality. This suggests that pipelines in SSA follow common,
scale-independent spatial configurations that are linked to urban morphology. Consequently,
this finding not only identifies recognisable structural features in urban infrastructure networks,
but also highlights the link between their spatial patterns and urbanisation—a connection that

has so far lacked empirical support in research on cities of the Global South.

Objective 2: Assess spatial and topological differences in water networks between slums

and planned urban areas.

This objective focused on a city-scale analysis of urban environmental factors. Building on the
previous chapter, Chapter 5 developed a workflow for evaluating the heterogeneity of
pipeline networks using the Infomap community detection algorithm. It examined the
variability of water networks within the city by integrating local information to identify distinct
network characteristics. Slum proliferation and delegated management model (DMM) were
considered as potential influencing factors. Slum proliferation is prominent in SSA cities and is a
possible explanation for the observed differences between urban infrastructure networks and
road networks in the previous chapter. DMM, on the other hand, represents a prevalent
community-led governance approach in SSA slums (see literature review 2.2.3). Both can be
broadly regarded as products of informality in SSA urbanisation. The findings indicate that both
factors correlated with pipeline network morphology. In addition to slums versus non-slums,

pipelines managed under DMM also differ from other pipelines.
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Objective 3: Quantify geographic accessibility to kiosk water using the two-step floating

catchment area (2SFCA) model.

Given the widespread reliance on shared water sources as part of household water
provisioning, Chapter 6 investigated whether water point accessibility, like pipeline
network topology, is shaped by urban form. Specifically, the study developed a workflow to
evaluate geographic water accessibility using the two-step floating catchment area
(2SFCA) method and provided recommendations for its application to water services. It
also examined how different population attribution methods, accounting for the Modifiable
Areal Unit Problem (MAUP), perform in 2SFCA analyses within SSA cities and correlates
2SFCA results with road network centrality. The findings reveal that water point accessibility
exhibits spatial heterogeneity within the study area, affected by two primary factors: the
distribution of water sources and the spatial configuration of roads or overall accessibility.
Moreover, access maps derived from constrained population datasets align more closely with

the urban layout as indicated by the road network.

7.2 Research contributions

The primary contributions of this study are twofold. First, there are methodological
contributions (Section 7.2.1): the application of graph-theoretic approaches and the 2SFCA
method remains either unexplored or only minimally utilised in water research in LMICs. Thus, a
key contribution of this study is the establishment of workflows for applying these methods in
combination with urban planning data to characterise water distribution patterns in Global
South cities. Following the sequence of methods employed within the overall research
workflow, Section 7.2.1 presents the methodological contributions arising from the applications
of topological correction, network generalisation, and community detection (Section 7.2.1.1),
followed by the application of 2SFCA method to assess communal water point access (Section

7.2.1.2).

Second, through the application of these methods, this study identified key spatial
characteristics of water service provision in SSA. These findings not only address existing gaps
in empirical observations of urban water systems in SSA but also contribute to a more nuanced
understanding of urbanisation theories. Section 7.2.2 first summarises the study’s key findings
before reviewing gaps in existing theories on Southern urbanism and discussing how these

results help bridge those gaps.
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7.2.1 Methodological contributions

7.21.1 Application of network analysis methods to water pipeline infrastructure

In Chapters 4 and 5, this PhD study employed graph methods to study urban networks. As
discussed in Chapter 4, graph-based analysis approaches to infrastructure often vary in their
modelling methods (Marshall et al., 2018, Pueyo et al., 2019, Zhou et al., 2010). Existing
research on infrastructure network modelling has largely focused on road networks. In
contrast, approaches for processing pipeline networks for graph-based analysis remain
underexplored, while existing analyses of pipeline networks using graph theory are largely
confined to case studies in high-income countries. This study established a modelling and
analysis workflow tailored to SSA pipeline network layers. During the data preprocessing stage,
an evaluation and topological correction of the collected pipeline and road network data were
conducted. Depending on the specific analytical objectives, the networks were modelled as
dual and primal graphs in Chapters 4 and 5, respectively, and were standardised through graph

smoothing to ensure consistency in their representation.

1. Atopological correction workflow for water network layers in low-resource settings

The scarcity of graph analysis of water pipeline networks is not only constrained by the limited
availability of data in LMICs (Yu et al., 2024), but also by issues of data quality. This not only
includes the widespread problem of missing records, as exemplified in leakage analyses
(Kirstein et al., 2019, Wu et al., 2024), but also frequent spatial and topological errors arising
from infrastructure network management practices (Khaleghian and Shan, 2023, Solomakhina
et al., 2016). In this PhD research, severe topological errors were likewise observed in pipeline
datasets across both SSA case study regions. As a result, although topological approaches have
been proposed as a simplified alternative to hydraulic modelling (Santonastaso et al., 2021),

such analysis often remains unfeasible due to the lack of coherent topology in available data.

Topological correction is rarely addressed in the structural analysis of water pipeline networks,
as hydrodynamic simulations typically rely on well-structured, real or simulated network data
that do not require topological adjustments. As noted in Chapter 4, the issue of topological
correction has been discussed only in a limited number of studies, primarily in the context of
road network preprocessing—for instance, the Shp2graph package by Lu et al. (2018) and the
OSMnx package introduced by Boeing (2017). However, existing correction functions are not
suitable for pipeline networks. Therefore, this study develops an approach for topological

correction specifically tailored to pipeline networks.

207



Chapter 7

Addressing topological errors can be regarded as a form of network reconstruction, as precise
knowledge of the actual pipeline distribution or the causes of errors remains unknown, similar
to the challenges posed by missing data (Chittor Sundaram et al., 2020). Drawing on experience
with urban network patterns, the PhD study proposed a set of topological correction rules in
Chapter 4, such as using angles and distances to differentiate between topological errors and
original/correct network structures. These correction rules could serve as a methodological
reference for future studies on the topology of piped infrastructure in LMICs, facilitating the
correction of raw datasets, improving data usability, and enabling the undertaking of additional

case studies.
2. Water network generalisation

Before analysis, the representation of pipelines was addressed. As noted earlier, variations in
data quality and mapping standards can lead to inconsistencies in analysis. Existing network
generation techniques were all developed in relation to specific application contexts (Blagus et
al., 2014, Cheng and Scherpen, 2021, Dias et al., 2018, Goyal et al., 2021, Maschler and Savic,
1999, Zhou et al., 2010), such as visual clarity or computational efficiency. Given that the
networks in the study areas are relatively small, this thesis is less concerned with reducing
network size for computational efficiency. Instead, the study focuses on ensuring consistency in
network representation. In this study, the network was modelled as a simple graph, as is
common in hydraulic studies (Goyal et al., 2021, Mah and Shacham, 1978, Momeni et al., 2023).
Based on the generalisation principles, two main approaches were adopted in the PhD study.
First, during the identification process, as many elements as possible were retained in the
graph. This decision was made given that reducing the number of elements derived from the
original network may lead to the loss of spatial properties, thereby hindering spatially informed
analyses—such as the co-location analysis conducted in Chapter 4—from capturing certain
spatial relationships. Subsequently, a simplification process was conducted by removing
pseudo-nodes that do not contribute to the network structure, which are most likely
introduced due to issues in network mapping. This approach ensures that graph-theoretical
metrics derived from different networks maintain a consistent mathematical meaning. The
simplification method was further developed in Chapter 5, where the extraction of pipeline
circuits was largely guided by research on network simplification (Pung et al., 2022). This
process is also related to the identification of tree structures and convex hull extraction in
network analysis (Deuerlein, 2008, Subelj, 2018). As a result of these steps, the networks are
free from errors that may stem from data quality or capture issues. The resulting graphs
preserve essential network characteristics—such as those relevant to hydraulic function—while

exhibiting a consistent mathematical representation. This enables broader comparative and
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structural analyses. For example, in Chapters 4 and 5, the two graphs were analysed in both

primal and dual forms, using nodes and edges, respectively, as units of analysis.

3. Applications of community detection

As shown in Table 2.5 of the literature review (Section 2.4.3), the application of community
detection algorithms in infrastructure networks remains limited. Within existing studies on
water networks, such algorithms have primarily been employed for the identification of District
Metering Areas (DMAs), but not for examining the inter-relationship between urban form and
water infrastructure. A few exceptions, such as Bramson (2022) and Law et al. (2019), have
extended the range of applications by associating community structures within road networks
with urban neighbourhoods. This approach inspired the PhD study, which adopts community
detection as the principal quantitative method for identifying environmental factors associated
with pipeline structure. For this purpose, the research implemented community detection
algorithms, complemented by interpolation, structural validation, and partition similarity
assessments (Chapter 5). These approaches have not been previously applied to water
network analysis, nor have they been explored from the perspective of water-urban

morphology/governance interactions.

This research introduces a combined approach that integrates multiple imputation with an
interview-based vulnerability framework. The sequential imputation of missing values
(IMPSEQ), a multiple imputation method that iteratively estimates missing entries, has
performed strongly in water distribution systems (Kabir et al., 2020, Osman et al., 2018). This
study also employed the pipeline deterioration factor scale developed by Marzouk et al. (2015).
The integration of these two methods effectively addressed the weighting requirements for
community detection in this study and may offer a generalisable solution for handling

missing vulnerability-related attributes in a wide range of pipeline networks.

Following the implementation of community detection, this study incorporated a structural
validation step to filter Infomap’s multilayer outputs. Unlike validations that aim to evaluate the
performance of community detection algorithms—typically by comparing detected
communities with benchmark partitions that exhibit known community structures (Javed et al.,
2018)—this study treated community detection outputs as a form of network attribute to be
interpreted in relation to environmental variables. In such contexts, no ground truth exists
against which results can be directly assessed. Therefore, Community Structure Validation
(CSV) was employed to evaluate the structural strength of the resulting partitions. This
approach has not been widely applied. The application of CSV demonstrated its ability to
evaluate the overall structural validity of partitions across spatial scales. The results indicate

that the most structurally meaningful layers in both networks are concentrated within the first
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three partition levels, a finding that corroborates the patterns observed in the subsequent
partition similarity analyses. However, it was also observed that, due to its inherently
conservative definition of community structure, the method tends to disregard smaller-scale
communities at higher hierarchical levels, retaining only the larger ones and thereby reducing
the size of the input partition. Thus, the methodological contribution of this application is
twofold: the incorporation of CSV into a workflow to enhance community detection for
infrastructure networks, alongside recommendations on interpreting CSV outputs across

hierarchical levels.

To assess the correlation between the output partitions and environmental and governance
characteristics, this study employed Adjusted Rand Index (ARI) and Adjusted Mutual
Information (AMI), two metrics commonly used to measure the distance between partitions.
Specifically, slum coverage and DMM information were combined to generate environmental
partitions. This approach demonstrates a transferable method for aligning urban infrastructure
networks with spatially distributed environmental data, with high potential for adaptation to a

range of socio-spatial indicators beyond slum coverage.

In summary, Chapter 5 consolidates methods originally developed in other domains and
contributes a coherent workflow for analysing the relationship between network structure and
urban morphology or governance. While none of the individual techniques are novel in
themselves, their integrated application to the analysis of water infrastructure networks,
particularly in the context of LMICs, is original and accompanied by detailed
methodological guidance. Furthermore, the proposed framework is readily adaptable, offering

a flexible analytical structure that can be extended beyond water infrastructure or SSA cities.

7.2.1.2 Development of recommendations for applying 2SFCA models to water

services

In the analysis of water point accessibility, the 2SFCA model was employed. As noted in
Section 6.5, this accessibility model has not been applied in urban water supply studies,
and it has only been used by a single rural study for assessing water point access (Mahuve
and Tarimo, 2022). The general effectiveness of the 2SFCA approach is known to be influenced
by several factors, particularly parameter settings such as threshold distances and distance
decay functions (see Section 2.5.2). Previous studies have highlighted the importance of
context-specific travel scenarios in ensuring the model’s ability to capture realistic accessibility
patterns (Chen and Jia, 2019, Wan et al., 2012). Accordingly, parameter calibration is essential
when applying the 2SFCA model to urban contexts, where travel behaviours and spatial
configurations differ from other settings. In addition, as noted in Chapter 6, the impact of

population data on accessibility outcomes remains insufficiently understood. Prior studies have
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shown that different modelling approaches and covariates can lead to substantial variations
across population datasets for the same area, which in turn affect accessibility estimations.
Moreover, due to the scale and zoning effects of the MAUP, differences between population
products in representing demand distribution may be amplified or mitigated by aggregation

practices, yet this interaction remains underexplored.

To tailor the 2SFCA model for analysing water point access in urban SSA settings, this
study refined both the parameterisation and population modelling components. Drawing on
field-specific literature and case-specific observations, key parameters, such as travel mode,
catchment threshold, and distance decay, were adapted to reflect realistic water-fetching
practices in Kisumu. To simplify the complex water access landscape in Kisumu, this study
excluded piped connections and other unrecorded communal sources, thereby focusing the
analysis on one communal improved water source, namely water kiosks. Therefore, the study
first estimated the population with access to piped water by multiplying domestic water meter
density with mean household sizes per enumeration areas (EAs). These populations were
excluded from the analysis, as their water needs were assumed to be met by piped
connections. The remaining population was aggregated by EA and represented using
population-weighted centroids to model demand for shared water points. Walking was adopted
as the assumed travel mode, consistent with the findings of Crow et al. (2013) and Kim et al.
(2020) on water collection in Kenya. A 30-minute one-way catchment threshold was selected
to account for the spatial distribution of water points and to avoid underrepresenting
accessible sources. Given that EAs rather than households were used as the population
aggregation unit, the 15-minute threshold recommended by the JMP was deemed unsuitable in
this context. The Gaussian distance decay function was introduced, and the Huff model was
incorporated to weight accessibility scores based on proximity, capturing both the reduced
likelihood of distant water collection and the impact of urban clustering of water points on
destination choice. These access parameterisation choices, along with the rationale behind

them, may inform future water access research in urban contexts across SSA.

To compare how different population datasets perform in accessibility modelling in SSA urban
contexts, this study included three datasets with substantial differences in modelling
approaches, covariate selection, and methodological assumptions: WorldPop Global
Constrained, WorldPop Global Unconstrained, and the GHS-POP. Both the WorldPop
Constrained and GHS-POP datasets incorporate built settlement extents as constraints in their
population distribution processes. To reduce the influence of the scale effect of the MAUP, EAs
were used as the unit of aggregation when computing population-weighted centroids. Despite
this, notable variation in accessibility patterns remained across the datasets, indicating

that differences in population allocation still affect spatial estimates of access. Among the
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three, the two constrained datasets produced more consistent results with each other, while
the unconstrained WorldPop dataset diverged more substantially. Notably, the WorldPop
Constrained dataset exhibited the highest spatial alignment with road centrality patterns,
potentially due to the inclusion of detailed building footprints in its modelling workflow, which
constitutes a further theoretical advantage of constrained models in capturing the influence of
urban form on accessibility. Given the 2SFCA model’s sensitivity to spatial distribution and
distance, this alighment indicates that the WorldPop Constrained dataset is the most

reliable population data source for water access analysis in this setting.

7.2.2 Evidential and theoretical contributions

In SSA, the advancement of both SDG 6 (clean water and sanitation) and SDG 11 (sustainable
cities and communities) faces pressing challenges, notably reflected in the rapid expansion of
slums and the difficulties in providing adequate water services (UN-Habitat, 2023b, UN-Habitat,
2023c, UN, 2023a). The SDGs proposed by the United Nations exhibit multiple interlinkages,
both in their conceptual definitions (Coopman et al., 2016, Le Blanc, 2015) and in regional
implementation practices (Griggs et al., 2017, Herrera, 2019), whereby actions targeting a
particular indicator inevitably influence the achievement of other goals, either positively or
negatively (Abson et al., 2017, Nilsson et al., 2016). Specifically, SDG 6 and SDG 11 have been
recognized to exhibit both synergies and trade-offs (see Section 2.1.3). In practice, SSA’s water
and slum challenges are closely tied to rapid urban population growth, stemming from a
fundamental mismatch between service provision and urban demand. This leads to both
conceptual and spatial intersections between slums and unmet water needs (Adams et al.,
2019, Dos Santos et al., 2017). Regarding piped water services, earlier studies suggest that slum
expansion contributes to intra-urban disparities in service provision (Lagerberg, 2016, Mapunda
etal., 2018, Shushu et al., 2021). Moreover, due to the path-dependent nature of network
evolution, pipeline infrastructure within slum areas often exhibits distinct structural features,
which likely affect service performance, as summarized in Section 2.3.2. Meanwhile, water
access studies on both water source types and accessibility exhibit spatial heterogeneity
(Deshpande et al., 2020, Dongzagla et al., 2022, Tetteh et al., 2022). However, despite these
insights, systematic and spatially explicit evidence on the coupled relationship between
slums and water infrastructure remains scarce. In particular, few studies quantitatively
explore the mechanisms through which piped and non-piped water access are shaped by urban
spatial structure. This evidential gap poses two key challenges. First, from a knowledge
perspective, the absence of empirical data hinders a systemic understanding of how urban
planning affects both marginalised urban populations and the infrastructure systems that serve

them. Second, from a policy perspective, interventions—such as slum upgrading or water utility

212



Chapter 7

reform—often lack a nuanced grasp of this spatial interaction, impeding the development of
targeted, context-sensitive strategies. A case in point is the DMM implemented in Kisumu,
which was explicitly designed to address water supply issues within slums by replacing the
chaotic 'spaghetti' network with a more structured one (World Bank, 2009). While such
initiatives directly respond to the challenges outlined above, there is to date no empirical
evidence on their effectiveness, highlighting the need for further empirical evaluation (Nzengya,
2015). This study addressed this gap by applying an integrated analytical framework that
combines urban morphology and water infrastructure analysis, revealing that pipeline
topology is shaped by broader urban environments, including both physical form and
governance strategies such as the DMM. This approach enabled the empirical
identification of spatial interactions and trade-offs between SDG 6 and SDG 11 at the intra-

urban scale.

The overarching approach of this study is to examine the performance of road networks, water
and sanitation infrastructure, with particular attention to how these associations vary across
slum and non-slum areas, as well as under different management regimes. In sub-Saharan
Africa, urban water provision encompasses both piped and non-piped sources. This study
focuses exclusively on two improved water sources, pipelines and water kiosks, which are
representative examples of piped and non-piped water supply, respectively. The morphology and
management of pipeline networks influence maintenance and water supply stability (see
Section 2.3.2). The research findings indicate that, despite differences in scale and national
context, infrastructure networks in SSA cities exhibit remarkable commonalities in their
structural configuration, with connectivity and robustness being closely linked to urban
morphological characteristics (see Chapter 4). Notably, the D-measure and co-location analysis
of road and water networks—particularly the linear relationship observed in co-located road and
pipeline closeness centrality—highlights two key points: (1) urban morphology has a strong
relationship with infrastructure networks, and (2) the road and water networks of two case study
SSA cities share common morphological characteristics. The significance of this study lies in
highlighting the influence of urbanisation in the Global South on the configuration of water
systems. Crucially, the influence is independent of specific conditions such as city size or
geographical location, as evidenced by structural similarities observed across comparable types
of infrastructure in different cities. The findings provide a foundation for analysing the
relationship between slums and water network configurations. Previous studies, despite their
efforts to compare water infrastructure networks across cities using graph-theoretical
approaches, have generally failed to reach clear conclusions due to the absence of quantitative
measurements (Abdel-Mottaleb and Zhang, 2020, Lorenz et al., 2021, Mair et al., 2017). Further

analysis (Chapter 5) examined the spatial configuration of pipeline layouts within the study
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cities. The results demonstrate that the heterogeneity of network structures within the cities,
where both government intervention and the spatial configuration of slums are related to the
variations in pipeline network structures at the intra-urban level. These findings are further
supported by graph metrics and supplementary contextual information. In particular, pipelines
in Kisumu managed under DMM show distinct characteristics in community detection,
indicating that they tend to form discrete, self-contained subsystems compared to pipelinesin

other areas.

Regarding water kiosks, existing studies, such as Adams (2018b) and Boakye-Ansah et al. (2022)
listed in Chapter 6, have largely relied on small-scale surveys and interviews. While valuable for
uncovering specific local details and consumer experiences, these studies do not offer broader
spatial or quantitative insights into access patterns. As a result, they provide limited guidance
for large-scale urban planning or policy formulation. Chapter 6 reveals that EAs with high
accessibility values are concentrated in certain slums where kiosks are most densely
distributed. This variation between slums in kiosk availability also corresponds with earlier
findings of prolonged queuing times in other slum areas with lower kiosk density (Sima et al.,
2013). Accessibility declines outward from these areas. Meanwhile, for water points like kiosks,
the relative spatial distribution of these points in relation to the population directly affects their
accessibility and, consequently, water consumption (Boakye-Ansah et al., 2022, Cassivi et al.,
2019, Devi and Bostoen, 2009). This pattern can also be linked to urban morphology, as it
overlaps with the KDE and IDW interpolation results of road network centralities, which serve as
indicators of major urban road density. This finding is consistent with the commonly observed
heterogeneity of water provision in SSA cities (Deshpande et al., 2020, Dongzagla et al., 2022,
Tetteh et al., 2022), but offers more data-driven evidence and identifies the spatial factors that

may most effectively enhance access.

Our study provides a robust quantitative framework to address these gaps by demonstrating that
the heterogeneity of both pipeline and water point services can be recognised by a common
environmental factor, urban morphology. Urban morphology is determined by the spatial
organisation of city elements—primarily plots, buildings, and streets (Araujo de Oliveira, 2022b,
Scheer, 2015), among which streets are commonly used as a basis for analysis (Araujo de
Oliveira, 2022a, Wang and Gu, 2023). In the PhD study, road networks were used as a reference
in both Chapters 4 and 6, while Chapter 5 employed the Million Neighborhoods Map, a dataset
that also utilises urban morphology to identify slums. Urban morphology influences pipeline
placement by determining spatial divisions, leading to structural variations within slums. Due to
differences in construction guidelines between streets and pipeline networks, a systematic
centrality difference between the two was observed. As a result, the PhD study observed similar

infrastructure metrics across both cities in Section 4.4. This was further validated through
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community detection and partition similarity assessments, which confirmed that pipeline
structures within slums exhibit distinct network characteristics. Additionally, in Kisumu,

community detection revealed that the DMM had a notable impact on pipeline topology.

For water points, the study’s findings align with intuitive expectations: urban morphology and the
spatial distribution of water sources are both associated with accessibility. In Kisumu, the
clustering of high accessibility scores overlapped with densely distributed kiosk areas and
regions with high road centrality. These findings provide further evidence that SSA cities exhibit
identifiable structural patterns that influence both infrastructure provision and residents' daily
lives. Furthermore, pipeline network arrangements and water interventions (including both DMM
pipelines and kiosks, the latter of which in Kisumu is also linked to the DMM) represent an
attempt to formalise informality. The observations indicate that formal and informal networks
exhibit distinct morphological characteristics. Neoliberal water governance policies have made
measurable progress, aligning with Harris (2020), who argues that while neoliberal reforms are
often perceived as a withdrawal of formal governance and require careful scrutiny, they have

nonetheless objectively improved essential services.

Overall, these findings provide strong evidence to support the developing theories of
Southern urbanisation. Since the 1960s, scholars have proposed varying interpretations of
informality, offering insights into how it should be conceptualized and positioned within the
urban context. A systematic review of urban studies indicates that the focus on cities in the
Global South is increasing (de Castro Mazarro, 2023). This shift has been accompanied by
changes in both policy and research perspectives, moving from the experiences of northern
cities to the realities of southern cities, as well as a transition from urban renewal strategies to
subaltern urban governance (Brenner and Schmid, 2015, Sheppard et al., 2013). Scholarship
has advanced alternative theories of urbanisation that seek to incorporate Southern urban
experiences into a more inclusive theoretical framework, while also exploring the underlying
drivers and conceptualisation of such practices (Parida and Agrawal, 2023). This theoretical
trend in Global South urban studies, along with the associated developments in slum and water
policies, is described in the literature review (Section 2.2). In this context, merely increasing the
number of studies on cities in the Global South does not necessarily enhance understanding of
their development; rather, it risks reinforcing fragmented perspectives on specific cities.
Therefore, research on Southern cities, particularly on informal slums, is essential for

deepening the understanding of Southern urbanisation.

Studies of Southern urbanisation primarily focus on how to approach the existence of slums.
The subaltern perspective recognizes the value of the activities of slum residents, rather than

viewing them merely as objects to be excluded. From another angle, the resistance of slum
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residents to slum clearance activities can also be seen as an expression of subaltern power (Fix
and Arantes, 2022). This is the reason behind slum upgrading policies discussed in the literature
review and the introduction of the DMM / public-private partnership (PPP) model for improving
slums. The current research demonstrates that such intervention policies, distinct from full
public actions, can effectively change service provision in neighbourhoods. The deeper
conceptual issue that the theories address is how to identify the poverty entities that
require governance. As Roy (2014) pointed out, since the SDGs focus on eliminating urban
inequality and poverty, recognizing and understanding the poverty entities that need
improvement in cities becomes a key issue. This involves determining which rights or conditions
should be seen as essential for urban residents. As noted in the literature review 2.2.1, different
countries define slums in various ways, reflecting their understanding of urban inequality.
Alizadeh and Prasad (2024) advocate for The right to the city, which views the rights of excluded
urban residents as a basis for identifying urban inequality. Following this perspective, in the
PhD study, whether measuring network structures or water kiosk access, the essence is to
treat access to basic services as a universal right for urban residents, and, based on this,
quantitatively assess the risks of being excluded from these rights. Through comparison with
areas commonly regarded as slums, valid similarities in their distribution were found, indicating
that service provision can be viewed as a key indicator of urban inequality. This suggests
that the observed inequalities reflect broader, shared patterns of urban development
imbalances. Therefore, the evidence contribution, which concerns inequalities in access to

water services, is not limited to the context of slum-free cities or Southern urbanisation.

7.3 Research limitations and uncertainties

The limitations of the study can be divided into three categories. The first category consists of
the shortcomings arising from practical implementation, which can be improved with more
accurate information. The second category refers to the inherent limitations of the research
methods and approach; these limitations are intrinsic to the methods used and can only be
addressed by employing alternative approaches. The third category stems from external factors,
such as policy frameworks and socio-economic conditions, which impose contextual

constraints on the research.

Limitations that can be addressed through acquiring more robust information: First, the
lack of access to temporal data restricted this analysis to a cross-sectional study. In such
cases, causal inference is generally inappropriate without additional supporting information
(Kesmodel, 2018). As a result, this study was limited in its ability to explore temporal

relationships between urban environmental change, policy interventions, and the evolution of
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pipeline networks. Specifically, the study was unable to determine whether the observed
relationships hold consistently over time or confirm a causal link between urban morphology

and networks.

In the 2SFCA analysis, | simplified the water access situation within the study area by applying
the same catchment size to both the population centroids of peripheral and internal EAs. The EA
boundaries for Kisumu were derived from the 2009 Kenya Census rather than the more recent
2019 Census, due to data availability. Moreover, this study did not account for the diversity of
water sources within the study area. In this study, kiosk demand was estimated by subtracting
the population using piped water from the total population. However, in many developing
contexts, including Kisumu, households often rely on multiple water sources for different
purposes (Daly et al., 2021, Okotto et al., 2015). Due to the lack of detailed data on how water
use is allocated across sources in Kisumu, this study adopts a simplified estimation approach
that does not fully reflect such complexities. Moreover, the travel scenarios and distance decay
parameters were set based solely on existing literature rather than field surveys in Kisumu.
Therefore, the access analysis results may differ from actual water collection conditions. These
limitations, similar to those in graph-based analysis, could be improved with further

investigations and the collection of field data.

Inherent uncertainties stemming from modelling assumptions and data limitations: Further
challenges arise from the application of graph theory and the 2SFCA method. The interpretation
of topological attributes is influenced by other similar studies. On one hand, there is no
established standard for how to apply graph measures to infrastructure networks, which
introduces methodological variations in network modelling and representation, such as
whether to use primal or dual mapping, and how to correct and simplify network topology. This
results in potential differences in the interpretation or significance of the graph metrics
employed. For example, Hwang and Lansey (2017) pointed out that removing or retaining
pseudo-nodes within the same network can result in different meshedness values. This implies
that differences in modelling assumptions can render network indicator values non-comparable
across studies. This issue is also related to the availability of data. Many studies of water
network topology rely on synthetic networks, which do not always reflect the characteristics of
real-world networks (Momeni et al., 2023, Paez and Filion, 2017, Yu et al., 2024), thus
undermining the comparability of the study’s findings with other studies. Another limitation of
graph theory analysis is that, although network topology is closely linked to the hydraulic
performance of pipeline networks, it should only be viewed as a preliminary basis for network
resilience analysis. As Yazdani and Jeffrey (2011) point out, topological analysis alone provides
an incomplete picture of network resilience, as financial and operational management,

geographical context and the urban space heavily influence the structure of the network.
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In addition, several inherent uncertainties in the accessibility analysis cannot be resolved
through the acquisition of better data or the adoption of alternative methods. First, gridded
population datasets are inherently predictive in nature and rely on modelling assumptions that
introduce uncertainty. Although this study compared multiple population datasets through
assessing their alignment with road centrality patterns, the results can only indicate relative
performance. Second, household-level data on population distribution and water access would
offer higher accuracy but are often unavailable due to geoprivacy concerns and the limited
spatial coverage of detailed surveys. Third, despite being a critical component of actual water
access, unimproved water sources are often informal, transient, and difficult to monitor,
making them challenging to incorporate into spatial models with consistency and reliability. As
a result, analyses of water access are inevitably subject to uncertainty, since actual service
levels can only be approximated rather than precisely measured.

Limitations arising from socio-economic and governance factors: Moreover, the
interpretability of this study is subject to variability due to governance and socio-environmental
factors. A notable limitation lies in the definition of slums in Chapter 5. Extracting urban
structure and community information is challenging due to the lack of widely accepted
definitions for communities (Harris, 2020). This is particularly true for slums (Kuffer et al., 2016).
In this study, slum boundaries were derived from the Million Neighborhoods Map and
supplemented using UN-Habitat slum maps. Although the Million Neighborhoods Map also
accounts for population distribution, it fundamentally relies on the analysis of road network
layouts, meaning its results may still differ from studies employing alternative slum
identification methods. Another greater source of uncertainty arises from the fact that, due to
political and social factors, slums exhibit a wide variety of forms and compositions (Smit et al.,
2017, Taubenbock et al., 2018), and definitions differ across countries and even between cities.
Consequently, using a broad classification of slums or informal settlements may result in
variability in analyses of slums in relation to urban pipelines, depending on the criteria applied.
This limitation cannot be fully resolved until a unified framework for defining community and
slum boundaries is established. Furthermore, in the community validation section of Chapter 5,
other environmental factors potentially affecting pipeline distribution may have been
overlooked. Variations between slums in terms of population, infrastructure conditions, and
income levels, as well as differences in terrain and the priorities of government strategic
planning, may exert additional influence on the configuration of pipeline networks within

communities.

Similarly, the study also reveals that urban morphology plays a role in water access. However, in
Kisumu, water kiosks display a notably clustering distribution. Considering that the

establishment of water kiosks is often shaped by power dynamics (Velzeboer et al., 2018), this
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dense distribution suggests that kiosk placement is likely influenced by governmental decisions
or environmental factors. It may also reflect heterogeneity in community demand for kiosk
services. Therefore, an analysis focusing solely on access cannot fully capture the relationship
between supply and demand, and the layout of the road network represents only one of the

factors influencing access.

7.4 Transferability and scalability of the research

Although the setting of parameters requires local knowledge, the analysis approaches
employed in this study are not dependent on the characteristics of specific cities and can be
applied to other cities, including graph similarity measures, community detection algorithms,
co-location analysis, and the 2SFCA model. Graph methods treat networks as the mathematical
representations, preserving only the connectivity between nodes, while other attributes are
incorporated as alternative weights. Moreover, network metrics are designed to account for the
varying numbers of nodes and edges within the network. The study’s findings also show that
graph-based analyses exhibit characteristics that are scale-independent, especially in the case
of co-location analysis. While this study adopted a specific community detection algorithm,
Infomap, it is important to note that no single algorithm is universally optimal. Due to the
absence of a definitive ground truth and the context-dependent nature of algorithm
performance—summarised in the no ground truth and no free lunch theorems (Fortunato and
Hric, 2016, McCarthy et al., 2019, Peel et al., 2017), researchers seeking to apply this workflow

to other networks should be cautious about how algorithm choice may affect results.

The 2SFCA model, as a place-based accessibility assessment approach, is fundamentally an
application of Tobler’s First Law of Geography (Tobler, 1970), evaluating accessibility by
measuring the supply-to-demand ratio and the spatial proximity between them. Therefore, the
workflow developed can be applied where information on population, water points, and travel
scenarios is available. Among these, population datasets are relatively well-developed, with
many offering global coverage—such as the HRSL, GHS-POP, LandScan, and WorldPop global
layers listed in Section 6.3.1, as well as the forthcoming WorldPop Global 2. Considering the
differences observed in the performance of population datasets in 2SFCA analysis and their
timeliness, some additional population indicators can also be used to assist in population
estimation (Tan et al., 2021). However, population datasets differ in accuracy depending on
modelling approaches, input covariates, and data availability—particularly in slums, where
covariates such as building footprints may be insufficient or outdated (Hanberry, 2022,
Palacios-Lopez et al., 2019, Thomson et al., 2021). As this study has shown that constrained

datasets performed better within slum areas of the study region, we recommend careful
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evaluation of population layers when applying the 2SFCA workflow to other contexts. On the
other hand, studies have already established global and national-level travel scenario models.
For example, Macharia et al. (2023) calculated the geographic accessibility of public primary
schools in Kenya, using Accessmod software to construct travel paths, a method also employed
in the current study. Weiss et al. (2018) created global city accessibility maps, also employing
the friction surface modelling method. Watmough et al. (2022) constructed travel time maps to
the nearest health facility across Uganda, Tanzania, Zimbabwe, and Mozambique. These
examples highlight the increasing availability of large-scale population and travel scenario

data, which supports the application of the 2SFCA model.

However, the application of the 2SFCA model requires a detailed and georeferenced
inventory of communal water points to construct travel paths between populations and
specific sources. While several countries—such as Sierra Leone, Liberia, Uganda, and
Tanzania—have national-level water point databases, studies have highlighted persistent
quality issues, including procedural, observational, and conceptual errors (Foster, 2013, Yu et
al., 2017). These issues, arising from both local contexts and general limitations in water point
mapping, can introduce errors when combined with population estimates (Verplanke and
Georgiadou, 2017, Yu et al., 2017). The study’s data audit also shows that the generation of
population data products relies on census data, which means that when applying the 2SFCA
analysis in other areas, there may be discrepancies between the model outputs and actual
supply-demand conditions. Nevertheless, the method remains promising in contexts where
the reasonably complete and up-to-date inventories of water points are increasingly
available through systematic mapping campaigns and the digitization of utility records. In
addition, platforms such as the Water Point Data Exchange (WPdx), the International
Benchmarking Network for Water and Sanitation (IBNET), SIASAR, and the JMP offer valuable
reference sources to support broader application and calibration of the model at city or national

scales.

Our focus is on addressing urban inequalities, particularly in spatial and water services. Apart
from the availability of pipeline data, the only criterion for selecting study areas was that they
should face challenges of slum expansion and water access. This criterion ensures the
representativeness of the study and allows for transferability of the results across various SSA
cities. Therefore, the two selected cities differ significantly in other aspects, such as city scale,
spatial layout, infrastructure development history, and water policies (Section 3.2). Despite
these differences, both cities still exhibit similar infrastructure patterns, as demonstrated by the
findings in Chapters 4 and 5. This suggests that the observed relationships between urban form
and infrastructure may also hold in other SSA cities with urban inequalities, regardless of their

other conditions. Furthermore, as previously discussed, the development of urban
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infrastructure—whether in southern or northern cities—is constrained by similar factors. The
study’s focus on slums and water services in SSA cities fundamentally reflects a broader
pattern of urban water distribution inequalities. From the perspective of comparative theory,

this research eventually contributes to the understanding of global urban development.

7.5 Implications for urban water service delivery and planning

In this PhD study, the application of graph theory methods demonstrates significant potential
for evaluating pipeline networks and informing pipeline planning, particularly in LMICs where
data on pipelines is often scarce. However, it remains important to maintain comprehensive
records of pipeline infrastructure to support accurate network performance assessments. As
noted in the limitations, the absence of installation date records hinders the possibility of
conducting longitudinal studies on pipeline networks. Therefore, utilities are encouraged to
improve the management of pipeline data and maintain detailed records of installation dates. In
addition, documenting other physical attributes such as pipe diameter and materialis also
recommended, as this information can contribute to more accurate weight estimations in
network analysis.

As highlighted in the literature review (Section 2.2.3), the implementation of PPP projects, such
as the DMM, has been subject to considerable criticism worldwide. Many of these projects have
either failed (Ameyaw and Chan, 2015, Zhang and Tariq, 2020) or are perceived to have shown
no significant performance improvements compared with publicly managed initiatives
(Chenoweth and Bird, 2018). As a result, PPPs are often regarded as involving substantial risks.
On the other hand, from the perspective of slum upgrading, existing research has demonstrated
that the public-oriented nature and social engagement inherent in PPPs can bring significant
benefits to upgrading projects (Brown-Luthango et al., 2017, Svensson et al., 2003). In this
context, the extent to which PPPs can improve existing conditions becomes a crucial question.
For water provision, given the crucial role of pipeline networks in determining water access and
their long lifespan, which implies long-term impacts, it is also essential to examine their
physical configuration. Evidence from Chapter 5 indicates that pipelines implemented under
the DMM project exhibit distinct characteristics compared to other areas. Since one of the key
motivations behind the DMM deployment is to improve the disordered "spaghetti” pipelines
commonly found in slum communities (World Bank, 2009), the results suggest that these
interventions have successfully enhanced water distribution networks in slums. Although
the nature of this impact—whether positive or negative—remains unclear, it nevertheless
provides an important indication that PPPs have the potential to continue or expand their role in

improving water provision in slum areas through interventions in the pipeline network.
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Furthermore, this suggests the feasibility of the Southern urban-style transformation towards

sustainable water management advocated by (Herslund and Mguni, 2019).

This research also indicates that there are still certain shortcomings in the current placement of
DMM endpoints. In the Kisumu area, there are two operational management models for water
kiosks. One is managed by the DMM master operators, who collaborate closely with the utility.
The other is operated directly by the utility and kiosk operators as separate actors, without the
involvement of master operators. The DMM kiosks are mainly concentrated in Nyalenda, while
the kiosks in Manyatta follow the latter model (two areas identified in Chapter 6) (Gilson et al.,
2025). According to a survey by Nzengya (2018), it was observed that the number of people
queuing at kiosks in Nyalenda is significantly higher than in Manyatta, despite the kiosks in
Nyalenda offering lower prices. The study’s observations support this phenomenon, as
Nyalenda shows lower access levels in the accessibility analysis, while the areas around
Manyatta have higher water access. The former pattern is likely primarily related to supply
shortages and may also indicate affordability constraints where limited competition leads to
higher prices (Section 6.5). Therefore, while DMM kiosks play a role in extending water access to
underserved communities, their limited distribution constrains broader impact. This finding
points to the importance of expanding kiosk provision, particularly in areas with
constrained access and limited inter-kiosk competition. Policymakers may consider
introducing spatially targeted support mechanisms, such as start-up financing, training
programmes, and streamlined administrative procedures, to facilitate the entry of new kiosk

operators and reduce barriers to service provision.

From an urban planning perspective, one of the major challenges faced by cities in the Global
South is how to address the expansion of slums that accompanies rapid urbanisation. While in-
situ slum upgrading has been implemented in many contexts (Bolton, 2020), research has also
pointed out that some projects have achieved only limited improvements in residents’ access to
basic services(Edith et al., 2019, Patel, 2013). This places higher demands on infrastructure
planning.

Adopting a morphological perspective, this study highlights several key considerations for

planners:

1. The results indicate a strong relationship between the pipeline network and the
distribution of slums within the study area. This suggests that the poor condition of
infrastructure in slums is closely related to the spatial configuration of service facilities.
Consequently, improvements in accessibility and performance should be grounded in
modifications to the spatial layout of these facilities.

2. Infrastructure upgrading should not only focus on the internal spatial planning of

222



Chapter 7

slums, but also take into account their interaction with facilities in adjacent areas, as
well as their location within the wider urban infrastructure network — for example, their
distance from main roads or trunk pipelines, and their connectivity with other communities.
3. The overlap between roads and pipelines indicates that slum upgrading plans need
to consider how the allocation of public space influences the spatial distribution and
interaction of multiple infrastructure networks. Furthermore, due to the spatial
misalignment between road and pipeline networks caused by their different core layouts
and design principles, planners must also recognise that such interactions are constrained
by local conditions, for example, the locations of reservoirs, treatment plants and trunk
lines, or the road structure of well-developed areas such as CBDs or historically established

neighbourhoods.

7.6 Future directions for research

Future research can address the gaps identified in this study and expand on its findings. As
noted in the limitations section, the current study has methodological shortcomings. Future

work can improve the framework by:

1. Enhancing the identification of urban inequality. In this study, the assessment of slum
impacts is based on the Million Neighborhoods Map, but future research could explore
alternative approaches to identifying slums (Kuffer et al., 2016, McCartney and
Krishnamurthy, 2018, Smit et al., 2017). Whether for slum-related research or for
applying this framework to other cities, it is essential to clarify what urban inequality
means in the specific research context and how disadvantaged areas should be
identified. This remains an important aspect for future research.

2. Exploring the complexinteractions between water points, population distribution,
and urban morphology to refine 2SFCA assessments. This is crucial for further
developing accessibility analyses to improve water service provision.

3. Leveraging alternative methods for measuring network similarity beyond the D-
measure. Neural network-based approaches have gained traction in urban morphology
research. For instance, Kempinska and Murcio (2019) employed Variational
Autoencoders (VAEs) to encode urban street networks into low-dimensional
representations, enabling quantitative analysis of CNN without prior domain knowledge.
Ma et al. (2024) utilized GCN-based models to predict the complexity and connectivity of
street networks across cities. These methods can provide comparative insights and

enable broader network analysis. Additionally, methods assessing node similarity within
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networks, such as SimRank* (Yu et al., 2019a), can also help quantify regional

characteristics within the network.

The robustness of the research can be further improved through enhanced data collection and
analysis. As discussed in Section 7.2.1, the topological correction of the network essentially
involves a reconstruction of the data based on prior knowledge. Collaborating with individuals
who possess contextual expertise, such as engineers familiar with the local network, could
improve the reliability of the corrected network and enhance its alignment with the real-world
infrastructure. With more detailed temporal data, future studies could also analyse the
evolution of pipeline networks and further depict the relationship between urban morphology
and pipeline infrastructure. Additionally, as highlighted by Sambu (2016), water governance
strategies in Africa have undergone significant changes over the past few decades. Therefore, a
longer-term observation of pipeline networks would provide deeper insights into how policies
have influenced the configuration of urban networks. Previous studies have made noteworthy
attempts in this area. For instance, by examining graph metrics of Hong Kong's road network
over time, Lan et al. (2022) demonstrated that urban networks exhibit a specific evolutionary
trajectory. In the study of the changing graph properties of Paris's road network over two
centuries, Kirkley et al. (2018) found that centrality indicators were insensitive to changes in the
urban spatial layout. Similarly, Krueger et al. (2017) observed that, over several decades, water
distribution and sanitary sewer networks in an Asian city displayed nearly stable graph
characteristics that were independent of urban settings, suggesting that infrastructure evolution
follows generic mechanisms. Given the similar phenomena observed in the study,
conducting such research in SSA regions would likely yield insights into evolutionary
trajectories for infrastructure. Furthermore, Sulem et al. (2024) proposed a method for
detecting change-points by comparing the similarity of continuously changing graphs. This
suggests that the graph similarity analysis techniques employed in the study could also be

further enhanced when applied to the analysis of temporal data.

As highlighted in the limitations section, more robust 2SFCA estimation require records
including kiosk capacity, travel thresholds, queueing times at kiosks, and population estimates
for kiosk usage (or other water sources, depending on research objectives). Therefore,
incorporating detailed field surveys to improve these estimates with detailed and up-to-date
information would be valuable in future studies. This requires further communication and
investigation with utilities and master operators within the study area to gather information
about project implementation and kiosk operations (e.g., water pricing, service coverage,
operating hours) and to understand their challenges. This should help refine the reliability of the

model and provide more meaningful and realistic interpretations of water services.
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Furthermore, with access to additional data, future studies could examine the implications
of the observed topology and accessibility characteristics using the analytical framework
developed in this study. As reviewed in Section 2.3.2, a range of studies has demonstrated that
pipeline topology is associated with key aspects of water service, including leakages(Adraoui et
al., 2024), hydraulic characteristics(Torres et al., 2017, Yu et al., 2024), energy consumption
for water supply(Zhao et al., 2020), and asset management(Godfrey and Howard, 2005a).
Therefore, future research could apply the methodological framework developed in this study to
identify structural heterogeneity in networks and examine whether such differences are
reflected in operational outcomes. For example, by developing a geo-referenced database of
pipeline breakage incidents, researchers could compare failure frequencies between informal
and formal areas and assess whether these are associated with specific topological features or
community structures. Similarly, future studies could explore the relationships between
2SFCA-based accessibility and other attributes of water services. Several studies have
investigated the affordability of kiosks and reported spatial disparities in water prices
(Adams, 2018b, Adusei et al., 2018, Boakye-Ansah et al., 2022, Nzengya, 2018, Ondigo et al.,
2018, Tumwebaze et al., 2023). These price differences are often linked to variations in the
density and spatial distribution of water points, which may reflect levels of market competition
or monopoly. Notably, Nzengya (2018) reported spatial variations in water pricing in Kisumu,
and these patterns appeared to correlate with the accessibility results derived in the PhD study,
which likewise accounted for the spatial distribution of water sources. These findings suggest
that the results of 2SFCA analysis may serve as a useful proxy for understanding affordability. If
price data were available, it would be possible to examine such correlations more directly,
similar to how this study related road network centrality to water point accessibility. This
approach could also be extended to investigate broader dimensions of service delivery,

including availability, affordability, and water quality.

The findings of this study also open several new directions. For example, integrating
accessibility analysis with network analysis, as demonstrated in Kranioti et al. (2022)’s study,
where accessibility between locations was used to construct network edges. Moreover,
multilayer network research has increasingly focused on the interdependencies among urban
infrastructure systems Building on this perspective, future research could advance efforts to
conceptualise infrastructure as an interconnected system by adopting a multilayer network
approach, thereby examining structural interactions or synchronisation across co-located
networks such as water, electricity, gas, and roads (Boccaletti et al., 2014, Kivela et al., 2014).
Furthermore, this PhD study annotated network features using slum and DMM information, in
order to examine their associations with network structure. This approach could be extended to

other network or environmental factors. One possible direction could involve adopting the

225



Chapter 7

method proposed by Muller et al. (2020) to delineate slope-based zones, assigning networks
within the same landslide risk area to a common community. By comparing the resulting

partitions, future research could assess whether such factors influence network structure.
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Chapter 8 Conclusion

Urbanisation in the Global South has resulted in diverse urban forms and water service delivery
practices, exhibiting characteristics distinct from those of the Global North. Previous research,
which predominantly relies on surveys and interviews, has largely failed to capture the broader-
scale characteristics and influencing factors of water service provision. This study contributes
to filling the gap in quantitative evidence by applying graph theory and accessibility measures to
examine the spatial heterogeneity of water services in Sub-Saharan African (SSA) cities. Further,
the relationships between water services and contextual factors such as water supply policies
and community characteristics are explored. Chapters 4 and 5 employed graph methods to
assess the performance of piped networks from two different SSA cities (Kisumu, Kenya; and
Kigali, Rwanda). The findings revealed that the water pipe networks in the two cities exhibited
remarkable similarities, with network attributes strongly associated with the commonalities
observed in SSA urbanisation. Building on this, differences in urban planning strategies between
the two cities were reflected in variations in network connectivity and robustness. The presence
of slums contributed to the formation of distinct community structures within the piped
networks of both cities, which were further differentiated by water interventions specifically
targeting slums. The analysis of access to water kiosks addressed a significant research gap
concerning the spatial distribution of off-premises water supply in SSA cities and potentially
explained variations in kiosk water pricing across slums. The analysis revealed that, beyond
supply and demand factors, the characteristics of shared water provision are also associated
with road centrality. Furthermore, the study indicated that access estimates derived from
population datasets that are constrained by built settlement extent exhibited a stronger

correlation with road centrality, suggesting a closer alignment with urban spatial structures.

This research established an analytical workflow that applies methodologies developed in other
fields to the study of water infrastructure, enabling a comprehensive and large-scale
assessment of both piped and non-piped water services within the unique context of SSA. In
doing so, the study contributes to bridging existing gaps in the literature on water practices in
the region, while also shedding light on the interaction between SDG 6 and SDG 11 via the lens
of water infrastructure. Building upon the findings of this study, future researchers and urban
planners may gain deeper insights into the dynamics of urban development, thereby informing
more equitable and sustainable urban planning practices and advancing towards the

achievement of the SDGs.
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