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Abstract

Nonnegative Matrix Factorization (NMF) is the problem of approximating a given non-
negative matrix M through the product of two nonnegative low-rank matrices W and H.
Traditionally NMF is tackled by optimizing a specific objective function evaluating the
quality of the approximation. This assessment is often done based on the Frobenius norm
(F-norm). In this work, we argue that the F-norm, as the “point-to-point” distance, may not
always be appropriate. Viewing from the perspective of cone, NMF may not naturally align
with F-norm. So, a ray-to-ray chordal distance is proposed as an alternative way of measuring
the quality of the approximation. As this measure corresponds to the Euclidean distance on
the sphere, it motivates the use of manifold optimization techniques. We apply Riemannian
optimization technique to solve chordal-NMF by casting it on a manifold. Unlike works
on Riemannian optimization that require the manifold to be smooth, the nonnegativity in
chordal-NMF defines a non-differentiable manifold. We propose a Riemannian Multiplica-
tive Update (RMU), and showcase the effectiveness of the chordal-NMF on synthetic and
real-world datasets.
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1 Introduction

Given a nonnegative matrix M € R " and a rank » < min{m, n}, the goal of Nonnegative
Matrix Factorization (NMF) is to find factor matrices W € R*" and H € R/" such
that M ~ WH [1l]. NMF is commonly achieved by minimizing the Frobenius norm (F-
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Fig.1 Left: Picture of a rank-3 NMF. Data points (in black) that represent the columns of M encapsulated by
a polyhedral cone generated by r = 3 columns wy, wy, w3 (in red). Right: The sphere Sg_ in the nonnegative
orthant ]Ri. The black dot is closer to the blue dot in Euclidean distance, but closer to the pink dot in chordal
distance, which is equivalent to the geodesic arc length on the sphere

norm) |[M — WH | = \/ZU(MU — (WH),-j)2 (where M;; is the (i, j)th-entry of M) that
measures the quality of the approximation.

For M ~ W H with nonnegativity constraints, the point cloud M is contained within a
polyhedral cone generated by the r columns of W with nonnegative weights encoded in H,
see Fig. 1. This conic view of NMF suggests that the point-to-point distance M;; — (W H);; in
the F-norm does not naturally fit NMF. In this work, we propose to replace F-norm by a ray-
to-ray distance that we call chordal distance, detailed in the next section. We are interested
in solving

argmin {F(W Hy=1 Z <1 - M)} (Chordal-NMF)
W>0, H>0 ' ng lm.jl2llWhjl2) |

where the objective function F : R™*" x R"*" — R is defined as the chordal distance
between WH and M, || - ||» is the Euclidean norm, (-, -) is the Euclidean inner product, and
m_; is the jth column of M. The nonnegativity constraints > 0 is element-wise, where 0
is zero matrix of the appropriate size. For simplicity, we assume M € R’}™" has no zero
column, and M is normalized that ||m.; |2 = 1 in (Chordal-NMF). We give the motivation
of using ray-to-ray distance in §1.1.

Contribution. Our contributions are 3-folds.

1. We propose a new model (Chordal-NMF). To the best of our knowledge, such problem
is new and has not been studied in the NMF literature.

2. Solving Chordal-NMF is nontrivial, it is a nonsmooth nonconvex and block-nonconvex
problem. We propose a Block Coordinate Descent (BCD) algorithm with Riemannian
Multiplicative Update (RMU) for solving Chordal-NMF.

e We derive the Riemannian gradient of the objective function F'.

e The nonnegativity constraints in Chordal-NMF introduce nondifferentiability in the
manifold and make some manifold techniques ineffective. We propose RMU to solve
the nonsmoothness issue in the optimization. In particular, we show that, if the initial
variable in the algorithm is feasible, the whole sequence is guaranteed to be feasible.

3. We showcase the effectiveness of the Chordal-NMF in §4.
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Paper organization. In the remaining of this section, we describe the overall algorithmic
framework on solving Chordal-NMEF, as well as the motivation of the chordal distance. In
§2 we review Riemannian optimization techniques. In §3.1 and §3.2 we discuss how we
update the variable H and W, respectively. §4 contains the experiments and §5 sketches the
conclusion.

Notation. We use {italic, bold italic, bold italic capital} letters to denote {scalar, vector,
matrix} resp.. For a matrix A, we denote a.; its jth column, a;. its jth row, and AT its
transpose. We denote (M);; or M;; the ij component of M. The notation (&, ¢) denotes the
Euclidean inner product in the standard basis, and ||&||> denotes the Euclidean norm of &.
For a vector v # 0, we denote » = v/||v||2 the unit vector of v. If v = 0 we define v to be
any unit vector. We use [0]1:=max{0, 0} element-wise.

Useful tools. We list two tools. The first one is useful for deriving the Euclidean gradient of
the objective function.

Proposition 1 Let f(x) = (Ax + b, c)/||Dx +e|y withA e R"™" b eR", ceR", D €
RP*" e € R? and Dx + e # 0, the Euclidean gradient V f, is

IDx +el3ATc — (Ax + b,¢)D" (Dx + e)

Vfkx) =
| Dx +ell3

We put the proof in the appendix.

‘We make use of tensor product in this work. Let V and W be two vector spaces with inner
product. Let v ® w € V ® W be the tensor product of v € V, w € W, then

(v, x)w = (w S v)x. (D

Block Coordinate Descent (BCD). We use BCD to solve the Chordal-NMF, see Algorithm 1,
where we also hide the factor 1/n.

Algorithm 1 BCD for Chordal-NMF, with a starting point (W, H)
l: fork=1,2,..do

2:  for j =1,2,.., n(update Hy| column-wise) do
3 h-subproblem | fm:j, Wh)

: -subproblem | k. ; r41 = argmax —————.

=0 IWh,
4:  end for
" (m.;, Wh.;
S: W-subproblem | Wy 4| = argmaX{F(W; H) = Z MH .
W>0 — Whijlz2 Jlg_pg
j= k+1

6: end for

Chordal-NMF is asymmetric. Usually considering that NMF in F-norm is symmetric:
IM—WH|p=|M"—HT"WT |, we can use the same procedure updating H to update
W (with a transpose). Chordal-NMF is asymmetric: it measures the cosine distance between
m_; and Wh.;, not between the rows m;. and w; . H. This leads to the W-subproblem and
H-subproblem have different structure, and we use different approaches to solve the sub-
problems. We solve H-subproblem column-wise as in line 3 in Algorithm 1, to be discussed
in §3.1. We solve W-subproblem matrix-wise, to be discussed in §3.2.
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1.1 Deriving and motivating chordal distance

From the conic view of NMF (see introduction), the geometry of chordal distance can be
seen as the Euclidean distance between unit vectors on the sphere. Writing |[M — W H ||3. =
Zj |m.; — Wh; ||%, if both m.; and Wh.; have unit £;-norm, then by the Euclidean inner
product (&, ¢) = ||&]l211¢|l2 cosO(&, &) with 6(&, ¢) the angle between the vectors &, &, we
have

n n
%HM— WH| = 2(1 — (m.;, Wh:j>) - 2(1 — cos O(m.;, Wh;j)). )
j=1 j=1
While the normalization of m.; is assumed, the normalization of Wh.; is important here.
Note that enforcing Wh.; to have unit £, —norm forms a nonconvex constraint.
The expression (2) tells that the normalized Euclidean distance is the cosine distance.
Cosine distance is insensitive to the length of vector, see Fig.1 for an example.

e Quotient space interpretation. From (2), we define a new objective in (Chordal-NMF)
for measuring the distance between m.; and Wh.; by angle. The division of the norm
[Wh.j||2 in (Chordal-NMF) collapses all vectors x that are proportional to Wh onto a
single point on the unit sphere. In this way, the chordal distance becomes purely angle-
based, since the length information is ignored.

e Haversine interpretation. Navy navigation [2] makes use of the haversine hav(6):=(1—
cos6)/2,where 0 = d/r is the central angle, defined as the distance d between two points
along a great circle of the sphere, normalized by the radius of the sphere r. The expression
1 —cosé in (2) is hav(0) with r = 1.

e Sphere interpretation. In R” with Euclidean inner product (u, v) and norm ||u|, =
(u, u), the map & — &/|&|» in (Chordal-NMF) sends nonzero vector §& € R™ to
the (nonconvex) unit sphere "~ ':={& € R™||&|l, = /(£, &) = 1}. Considering u #
0, v # 0, the following function

(u, v)

fchord CR™ x R™ — [0,2] U {oo} U {iﬁoo} as u, v~ |2— Zm,

can be seen as the Euclidean distance between two unit vectors &, 9 on S~ since

]EChord(usv):\/<|u S v _ 0 >:‘

el lloll2 llellz2 vl

u v

lul2 vz

= [l — o]
2

For this function it should be noted that:

- f_chord is undefined at u = 0 and/or v = 0, it take oo or complex values £+/—100.
— fehord 1s nondifferentiable with respect to (wrt.) parallel unit vectors as fchord (&, ¥):=

J2—2=10].

— In the Euclidean case, fchord is non-convex wrt. #, v and the pair (u, v).

These undesirable properties lead to choice of chordal distance below.

Definition 1 On S~ with inner product (u, v), we define

Fsgehord : S x ST 5 [0,4] s w, v > 2 — 2(u, ).

Given the above discussion and the fact that the chordal distance is non-Euclidean, we
employ Riemannian optimization methods in this work.

@ Springer



Journal of Global Optimization

2 Background of optimization on manifold

In this section, we discuss about nonnegative-constrained optimization, then we review man-
ifold optimization. Lastly, we present the Riemannian Multiplicative Update with some

analysis.
Let E be a linear space (e.g., R", R"*") with an inner product (-, -)r and an induced
norm || - ||g. Given a differentiable function f : E — R and the nonnegative orthant

X:={x € E|x > 0}, consider the minimization problems

restriction

Po :argmin f(x) st. x e M, x € X & Pp:argmin f(x) s.t. x € X,
x xeM
with the constraint set M:={x € E | h(x) = 0} under the defining function % (x). We focus
on convex compact set M being a smooth embedded submanifold of R”, where h(x) is
many-times continuously differentiable.

In Euclidean optimization, x € M is a constraint in (Pp). We “remove” such constraint
using a restricted function f'|, : M — R. Here f is the extension of f|,  that extends
dom f | v from M to E. In this way, (Pp) can be written as a constrained manifold opti-
mization (Py), which can further be converted into a unconstrained problem using indicator
t(x): E - RU{+4oo} that t(x) = 0if x € X and ((x) = +oo if x ¢ X. The problems
are related, solving one of them will help solving the others. Below we review approaches in
manifold optimization on solving these problems.

2.1 Nonnegative-constrained manifold optimization

Solving (Py) directly by manifold techniques is nontrivial. Manifold optimization refers to
an optimization on a smooth (differentiable) manifold. The set X' is nonsmooth, same for
M :=MNX! (assumed nonempty). Thus, several manifold optimization techniques do not
have convergence guarantee for solving (Pp). The indicator ¢ is a nonsmooth convex lower
semicontinuous (1.s.c) function [3], making (1) written in indicator form not satisfying the
assumptions in some existing works in nonsmooth Riemannian optimization, e.g. Projected
Gradient Descent on Riemannian Manifolds [4], Riemannian proximal gradient [5], and
Manifold proximal gradient [6].

Dual methods: not strictly feasible. We can also solve (Pp) by Riemannian Augmented
Lagrangian multiplier (RALM) [7] or solve (P;) using Riemannian Alternating Direction
Method of Multipliers (RADMM) [8]. The sequence generated by these methods is not
strictly-primal-feasible and it is dangerous to use an infeasible variable to update the other
block of variables in the BCD framework. Therefore they are not feasible for our application.
Euclidean projected gradient is infeasible. We can solve (Pp) by Euclidean projected

gradient descent (EPG). The projection proj o, (z) = argmin % lx—z ||2E takes an alternating
xeMy
projection method such as the Dykstra’s algorithm [9] to solve, which can be expensive for

our purpose.
Manifold projection-free method is expensive. Projection-free method, such as the Rieman-
nian Frank-Wolfe (RFW) [10], has an expensive subproblem that requires the computation
of exponential map and geodesic.

Our solution: Riemannian multiplicative update (RMU). In this work we provide a
projection-free method that only requires the computation of the Riemannian gradient part

! For any point x in the boundary of M, there does not exist a R”-homeomorphic neighborhood in M.
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grad f. To tackle these technical issues, we propose a cost-effective Riemannian multiplica-
tive update (RMU) for solving Problem (). Our approach is motivated by the research of
NMF [1, §8.2]. The advantages of RMU are

o The expensive projection proj 4, is not required.
e Unlike the dual approaches, if the initial variable in the algorithm is feasible, the whole
sequence is guaranteed to be feasible, see Proposition 2.

We introduce RMU in §2.3, before that we review Riemannian optimization below.

2.2 Background of Riemannian optimization

Riemannian optimization, or manifold optimization, has a long history [11-18]. So we give
the minimum material on manifold optimization for the paper.

Submanifold and ambient space. Let E be an Euclidean space withdim (E) > k, with inner
product (-, -), and induced norm || - ||. Considering the smooth function /1 : E — R¥, with
Dh(x)[v] = (gradh(x), v) g its differential with full rank & for all x such that 4 (x) = 0, the
set M:={x € E | h(x) = 0} is an embedded submanifold of E of dimension dim E —k (see
[18, Ch7.7]). In this work we focus on 4 in the form i (x) = (x, x) g — 1. For a manifold M
in E, we call E the ambient space of M. In this work, all ambient spaces are some specific
linear vector space E, such as R” and R™*",

e In the h-subproblem, M is the “shell” of an ellipsoid, it has 1 dimension lower than its
ambient Euclidean space R".
e In the W-subproblem, M is the “shell” of a twisted spectrahedron.

Tangent space and projection. Let ker be the kernel of a matrix, the tangent space
of M at a reference point x, denoted as T, M, is defined as the kernel of Dh(x), i.e.,
Ty M:=kerDh(x) = {v € E | Dh(x)[v] = 0}. Tx M collects vectors v € E that is tangent
to M at x. The orthogonal projection to 7y M is the linear map projy o : M — T M
characterized by the following properties [18, Ch3, Def3.60]:

o Range: Im(projz, pq) = Te M,
e Projection: projz, 4 © Projz, oq = Projr, a4
e Orthogonality: (u — projy, o (u), y) = Oforall y € Ty M and u € M.

In this work, we have manifolds defined by smooth functions & [18, §7.7], we use the
orthogonal projection projr, o : E — TxM, based on orthogonal decomposition of a
vector space as v = proijM(v) + Dh(x)*[a], where Dh(x)*[«] is the adjoint of DA (x)[v],
and o € R plays the role of the dual variable (technically called covector) as the solution
of argmin ;g [lv — Dh(x)*[a]ll% = (Dh(x)*)"[v], where t is pseudo-inverse. This gives
projp, p(v) = v — Dh (x)*[(Dh (x)*)T[v]]. Note that if the tangent space projy, 4 equals
the ambient space, then the projection is not necessary.

Remark 1 (Notational difference) In [18, Ch3, Def3.60] proj, denotes orthogonal projec-
tion, here for indicating orthogonal projection from E to Ty M, we use projz, -

Retraction. A point x that is originally sitting on a manifold M may go outside M after a
gradient operation, so we need to pull it back onto M. This can be achieved by a particular
smooth map, known as the retraction R : Ty M — M with v — Ry (v). A retraction maps
a point on the tangent space TxM onto M such that each curve c(t) = R, (tv) satisfies
¢(0) = x and ¢/(0) = v [18, Ch3, Def3.47]. There are different ways to perform retractions,
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such as exponential map and metric retractions [18, §3.6]. However, in general, to obtain
the exponential map of a manifold, one requires to solve a differential equation. Thus, for
computational efficiency, we consider the metric retraction R, (v) = argmin yeE lx 4+ v —
y ||% s.t. h(y) = 0[18, §7.7]. Note that R (v) is possibly non-unique and hard to compute.
Among all the retractions we focus on

X +v

Ry(V)i=—m.
<) lx + vl g

(Metric retraction)
Riemannian and Euclidean gradient. Given a (restricted) function f | MM R with
its smooth extension f : E — R, let V f(x) be the Euclidean gradient of f in the standard
Euclidean basis at a pointx € E, the Riemannian gradient of f | \ defined on M, denoted as
grad f | > At apoint z, wrt. the reference point x, is the Euclidean gradient V f(z) projected
onto T, M. That is grad f ‘ (@) = projg, y(V f(z). For the sake of cheap computational
cost, we endow the manifold with the standard Euclidean metric?. To ease the notation, we
write f | g as f taking the natural extension.

2.3 Riemannian Multiplicative Update (RMU)

In this work, we propose a RMU for solving Chordal-NMF in the form of (P;). RMU is
a modified Riemannian gradient descent (RGD) update: x 1 = Ry, (avr), where vy =
—grad f (xi) is the (negative) Riemannian gradient of f at x;. RMU is projection-free, and
it guarantees the nonnegativity of x by selecting a special element-wise stepsize such that
Xj41 stays within X'. Below we review Euclidean Multiplicative Update (EMU) and then we
generalize it to the Riemannian case.

Euclidean MU (EMU). EMU was first proposed in [19-21], and gained popularity in NMF
[1]. EMU can be done via a “element-wise sign decomposition” of the Euclidean gradient
V) = Vtf(x) — V™ f(x), where V¥ f(x) > 0 and V™ f(x) > 0. Let denote © the
element-wise product and @ the element-wise division, for solving a nonnegative-constrained
Euclidean optimization problem, the EMU step has the form

Xepl = Xk OV fxp) @ VY f(xp), (EMU)

which is obtained by choosing an element-wise stepsize & = x; @ VT f (x) in the Euclidean
gradient descent step xx4+1 = xx — aV f(xx), see [22] for the derivation®.
RMU. Now we generalize EMU. First, a Riemannian gradient grad f (x) always admits
element-wise sign decomposition* grad f (x) = grad™ f(x) — grad™ f (x).

We generalize (EMU) to the Riemannian case in Proposition 2, where we prove that the
nonnegativity of the update is preserved by RMU without projection. The key idea of the
proof is the metric retraction and the choice of step-size « that acts component-wise on the
update direction vy.

Proposition 2 (RMU) Denote vy, = —gradf(xy) the anti-parallel direction of the Rie-
mannian gradient of a manifold M at xy, and let Ry, be the metric retraction onto M.

2 The complete Riemannian gradient is computed using metric tensor. Let g be the metric tensor of M and
let Gy denotes the matrix representation of g, then gradf|M(z) = G;lproijM Vf(z).
V™ fxp)

T . We do not use this convention because it
VT f(xp)

3 In the literature (EMU) is written as xg4| = X

confuses with metric retraction for our purpose.
4 For any object b, it can be written as b = bt — b~ with bt = max (0, b) and b~ = max(0, —b).
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If a nonnegative xy is updated by xiy1 = Ry, (e © vi) with an element-wise stepsize
o =x; Qgrad” f(x;) € E, then xi41 > 0 and is on M.

Proof The term o © (—grad f (x;)) with & = x; @ grad™ f(x;) can be computed as

—a O grad f (x)) = (xx @ grad™ £ (x1)) © (grad™ f (xy) — grad® f (x4))
= x; O grad™ f(xx) © grad ™ f (xx) — x.
The element-wise operations as linear transformations in general do not preserve the tangent

condition of a manifold into a point. However here we can still apply (Metric retraction) on
—a O grad f(xy), the xj terms got canceled and gives

xp — o © grad f(xg)
Fort = Ry~ 0 Ol f () = o G e ez
_ xpOgrad” f(x) @ grad” f (xy)
ek © grad” f(xp) @ grad® f (i)l
The ratio between grad™* f and grad™ f is nonnegative as its parts are nonnegative by defi-

nition, the denominator is nonnegative, therefore x| is nonnegative if x; is nonnegative.
O

Proposition 2 also gives a convergence condition to a critical point:

o Ifthe solution lies strictly inside the nonnegative orthant, this corresponds to grad f (x) =
0, which is equivalent to grad™ f(xx) = grad™ f(xx). That is, the convergence of the
sequence {xy }ren can be easily checked by comparing grad™ f(x) and grad™ f (xy).

e Otherwise, in the constrained setting, convergence is characterized by the KKT conditions
on M NRYL.

As RMU is projection-free, it has a lower per-iteration computational cost, making it
suitable for Chordal-NMF.
We are now ready to move on to the explicit update of H and W.

3 Subproblems in the algorithm

In this section, we discuss how to solve the subproblems in Algorithm 1.

3.1 Column-wise h-subproblem over ellipsoid

Here we discuss how to solve the h-subproblem. We re-formulate the h-subproblem on k&
over the ellipsoid 5;;le as

argmin {qb(h)::l —(m.j, Wh)} sit. h e Rfk N 5;‘}1“,, (h-manifold-subproblem)
h

where we assume W has full rank, the ellipsoid 5;‘}1W C R’ defined by a Positive Definite
(PD) matrix WT W € R"™*" ig

Entw=le <R [(6.8)

To ease notation, sometimes we write (§, ) -1 as (§,¢)e and ||§]lgr—1  as [|§]le. We
wTw wTw

=(WTWE, &) = 1] CR. (Ellipsoid)

r—1
SWTW
remark that:
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Table 1 Summary of objects. Top: for & and A = W T W. Bottom: For W and Aj= h;jh;;

Name / Reference Definition / expression
Manifold of & (Ellipsoid) s;;l:={.s eR"| (A, &) = 1}
Tangent space of 82_1 at ¢ (3) T;é’;‘_l 2={§ eR" | (A&, ) = 0}
, - . , (A9)®?
Project § onto 7; £, (Proposition 3) Proj . or—1 & =\1r—- 5
¢%a IAZl;
) - t+é
Retraction (Proposition 4) Re() = ——
P ¢ e +¢le
Manifold of W (Shell of twisted spectrahedron) Mj::{W € R™XT | (W, W>Al/2 = 1}
J
Tangent space of M ; at Z (6) TZMjIZ{W e R"™*r ! (W, ZAj)F = 0}
. y . (Z4))®
Project W onto Tz M j(Proposition7) projp, p; (W) = (I — 3 w
j 1ZAj 112
Z+W
Retraction (Proposition 8) Rz(W) = S
1Z+ Wi 2
J

e Asasubsetof R, the set £ r}l is a smooth submanifold [18, Def3.10] and we can show
that the inner product (&, ¢)¢ is a Riemannian metric [18, Prop3.54].

e Theset Ry, N & " _TIW is a nonsmooth manifold: R’, has sharp corners at the boundary.
See §2 for discussion on the issues caused by such non-smoothness.

Tools on ellipsoid manifold. The tools to solve (h-manifold-subproblem) by RMU is sum-
marized in Table 1 and detail in the following paragraphs.

Tangent space. Let A:=W " W and the function 1(£§) = (A&, &) — 1, we denote 52’1 as the
manifold and its differential D (§)[¢] = 2(AE, ¢). The tangent space of 5:{1 at a reference
point ¢ € 6‘2_1 , is defined as the set

T,y =={& € R | (AL, §) = 0} = KerDh(?). 3)

Projection onto tangent space, and Retraction. Consider D/ (§)[¢], we define its adjoint

operator as DA (§)*[a] = 2w A, where o takes the value o@ = % (H‘:i”% obtained by solving
2

the least squares problem o = argmin HS —Dh(Z)*[«] ”; Now by the previously defined
aeR

Dh(&)*[«] and @, we have the projector projT; e (&) = & — Dh(¢)*[] as shown in the
following proposition.

Proposition 3 The map projng,-_l R — T 5:;1 that bring & onto the tangent space at
A
the reference point, ¢, defined as

(AL.§)
lAgI3

Projr, gr- 6 =§- Ag, (proj-ellips)

is an orthogonal projector.
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Proof Using formula (1), we have (proj-ellips) equals to the following matrix form
(A2, §) _ap*
£ — 5 AL = I, § =: PE.
1ALl 1A I3

To show that (proj-ellips) is a projector onto the tangent space of the reference point { we
use the definition of orthogonal projector in §2.2.
. . . . -1 .
First, the range of proj e denoted as Im (prOJ T g), is exactly T; EQ , since

(AL, &) (AL, &) ALH£0 o
A < A =0 & e T, 5 .
lAZ|2 A2 ¢ fely

Second, we show that proj e is idempotent by showing P is idempotent
A

f=¢-

2y _ADT (A (ADTE (AN
IACIZ A3 1A¢13 1ACIB
=0

We show projT; ! is orthogonal by showing P is orthogonal. As A is symmetric, so

PT =P Being symmetric and idempotent, P is orthogonal [23, §0.9.13]. O
Proposition 4 (metric retraction) The map Ry : Ty 82_1 — S:l_l defined as
$+E mey o4&

is a metric retraction for the manifold 52_1.

Re (&) =

(R-ellipsoid)

We give the proof of the proposition in Appendix B.
Riemannian Gradient. We solve (h-manifold-subproblem) using RMU discussed in §2.3.
The Riemannian gradient grad¢ (hy) = proj Ti, eVoe(hy),is

Ah.)®2 Ah.)®2
gradep (hy) = <1, - %)(— Wim;) = AR T, — W,
”Ahk”z ||Ahk||2 ~—
—_— grad™ ¢
grad™¢

where we used both: (proj-ellips), (1), the fact that hy € £ 2_1 , and the Euclidean gradient of
hy. through Proposition 1.
Then, the RMU under metric retraction discussed in §2.3 is

———, wherez = h.j © grad” ¢ (h.j )[h:; 1] @ grad™ ¢ (h.j 1)k k]

jk+1
l2llgr

3.2 The finite sum matrix-wise W-subproblem

Now we discuss how to solve the W—subproblem in Algorithm 1.Let (-, )p = Tr(-T-) be the
Frobenius inner product, B j:=m. h and A;:=h. h (not the A, B defined in §3.1), we
rewrite the W-subproblem as

" (B;, W)
L } (W-subproblem)

argmax {F(W) Z\/W

w=0
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Note that if a column k; is zero, the corresponding term is removed in the sum.

To solve (W-subproblem), we first consider n = 1. We have a manifold which we name
“shell of a single twisted spectrahedron”. Table 1 summarizes the results of RMU on such
manifold. See Appendix C for the derivation of manifold M ;, the tangent space Tz.M ;, the
projection and the retraction.

Lemma5 (RMU update on W) If n = 1, we update W as
Wi © grad™ fj(W)IWi] @ grad® f;(W)[Wi]

Wit = ) 4)
| Wi © grad™ fi(WolWil @ grad* f;(WoIWil|
J
where grad f; (W) = %Bj— B;
1ZAjlI7 ——
T grad” f;(W)
grad* f;(W)

For (W-subproblem) with n > 2, having multiple fractions makes the problem hard to
solve. First, there is no a single manifold to guarantee (W, WA ;)g = 1 for all the denomina-
tors. Second, the computation cost of manifold approach for n > 2 is high: it takes O (2m?)
cost to compute the adjoint, with a projection step that has no closed-form solution. Details
are reported in §D of the Appendix.

We do not solve (W-subproblem) withn > 2 using RMU (whichis designed forn = 1), For
illustration, we also considered a consensus-averaging approach between all the manifolds,
which we call avgRMU. The motivation was that the manifolds can conflict with each other
in RMU, so averaging provides a natural “relaxation” to fit RMU in the intersection of the
manifolds. We remark that later we found that experiments show that this approach performs
worse than the Euclidean method, and we do not use it as our main solution.

Furthermore, we try two alternative methods.

EPG for (W-subproblem) Wy = [W; —nV F(Wy)], with astepsize n > 0. In the update,
we compute the gradient by quotient rule, V(W, WA ;)p = WA; + WA}—, A;r = Aj; and
Proposition 1 as in the following proposition.

Proposition 6 The Euclidean gradient for F (W) in (W-subproblem) is

" B (B;, W)rWA ;
VF(W) = Z ’ 7z~ . - 3/21' ®)
(W, WA ) (W, WA;),

Fractional Programming (FP). We solve (W-subproblem) using FP by the Dinkelbach
transform [24] and Jagannathan’s iteration [25] with the EPG.

4 Experiment

In this section we first perform testing on verifying the effectiveness of RMU on the sub-
problems, then we test the performance of Chordal-NMF on synthetic and real datasets.

4.1 RMU on h-subproblem and W-subproblem

Test on updating H. We compare RMU and methods mentioned in §2.1 on synthetic datasets
randomly generated under normal distribution A(0,, I,) with negative entries replaced by
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Y T "___'__ —E:A% (m,r) = (5,3) Rankings
| T— | | RADwM EPG (47,20, 26, 7, 0)
E 10 "-..,: —-=RALM RMU (53, 47, 0, 0, 0)
s RADMM (0,7, 16, 0, 77)
10708, — { RALM (0, 26, 31, 14, 29)
s " (m,r) = (100,10) | Rankings
e e e EPG (5, 87, 8, 0, 0)
0154 RMU (95, 5, 0, 0, 0)
: : : : -~ RADMM (0, 5, 0, 0, 95)
0 5 10 TiIIle15 20 25 pALM (0361, 5, 31)

Fig.2 Left: A typical convergence of the four methods: EPG, RMU, RADMM and RALM. In the y-axis, Fiip
refers to the smallest achieved F' value across the methods. The smaller subplot is zooming the first 7 x 1073
seconds. In this test, we have (m,r) = (5, 3) and RMU is the fastest methods with strict feasibility. Right:
the results on different settings of (m, r). A ranking vector (x, y, z, ...) means the method has x times out of
100 runs having the best performance, y times out of 100 runs having the 2nd performance, and so on. There
are four methods, and the fifth number indicate how many times the method produces an infeasible solution (
having negative values) in the end

(m,n,r) = (10,25,4) (m,n,r) = (100,100,4)
' ! i —EPG

0.16

0.15

min

=70.14

k) —

=
=0.131
LQO 3

0121

0 0.002 0.004 0.006 0.008 0.01 0 0.05 0.1 0.15 0.2 0.25
Time Time

Fig.3 Typical convergence of three methods: EPG, avgRMU and FP

zero. We performed Monte Carlo trials on datasets with different settings of (m, r). Fig. 2
shows a typical convergence of the objective function. RMU is among the fastest methods with
strict feasibility. RADMM (Riemannian ADMM in §2.1) is also fast, while EPG and RALM
(Riemannian Augmented Lagrangian multiplier method) has the worst convergence. In the
test, we run at most 10° iterations, or stop the algorithm whenthe ||k x —hj ;1] < 10712,
Test on updating W. As RMU for the whole sum F(W) in (W-subproblem) is compu-
tationally infeasible, we consider averaging the RMU for each manifold. We compare the
performance of three methods: EPG, avgRMU and FP. We run experiments on two synthetic
datasets randomly generated under zero-mean unit variance Gaussian distribution with neg-
ative entries replaced by zero. We performed 100 Monte Carlo runs on two datasets sizing
(m,n,r) = (10,25,4) and (m, n, r) = (100, 100, 4). Fig. 3 shows the typical convergence
of three methods. Generally EPG is the fastest method. For (m, n, r) = (10, 25, 4), 99 times
out of 100 MC runs EPG is the fastest and 96 times out of 100 runs FP is the 2nd fastest. For
(m,n,r) = (100, 100, 4), 93 times out of 100 MC runs EPG is the fastest and 93 times out
of 100 runs FP is the 2nd fastest. avgRMU is the slowest in all the 100 runs for both cases.
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4.2 Testing Chordal-NMF on synthetic dataset

How Chordal-NMF is applied. Given a data matrix M, we remove all zero columns, then
we normalize each column by its £2—norm. After that we run Chordal-NMF on M and get
the decomposition W H. According to the preliminary test results, for the h-subproblem, we
perform RMU (§3.1), and for the W-subproblem, we perform EPG (§3.2).

Benchmark. We compare Chordal-NMF with the classical F-norm NMF (FroNMF) based
on the algorithm HALS [1, Ch8.3.3]. We set the rank of Chordal-NMF equal to the one
in FroNMF. In the experiments, all the methods start with the same initialization, where
elements in W, H are generated under uniform distribution /[0, 1]. The experiments were
conducted in MATLAB 2023a> in a machine with OS Windows 11 Pro on a Intel Core 12
gen. CPU 2.20GHz and 16GB RAM.

Synthetic dataset. We use a dataset M€ = W HSS

true With e > 0,6 > O as

0.80.10.1 1—€eéd(l—¢) € de € 3
Wiwe = | 0.1 0.8 0.1 ,Hfr’lfe = € Se 1—€d6(l—€) € Se
0.10.10.8 € Se € de 1—€d6(1l —¢)

The matrix W represents a cone in R3 (see Fig.4). The matrix H fr’l‘fe represents how we

generate the six columns of M €8 by conic combination of columns of W under a small
perturbation € and an attenuation §. The perturbation € represents how much the columns of
M deviate from the columns of W e, while the attenuation & represents how much the
columns My, M4, M .¢ in M€% have their norm scaled downward. For § getting smaller, it
is getting harder for FroNMF to recover H e, While it is less a problem for Chordal-NMF
since the angle between the data columns are invariant to the attenuation §. See Fig. 4 for an
illustration.

We construct M€% across different values of (e, 8), and run Chordal-NMF and FroNMF
on each instance of M generated. Then we extract the matrix H produced by the last

iteration of the each method, and calculate the relative error between H and H T?l?e as |H —

H fr’fe lr/IH fr’lfe || . Fig. 4 shows the heat-map of the results across different values of (¢, §),
showing that Chordal-NMF on average has a better recovery of H than FroNMEF, especially
for the case when § is small. We also compute the relative error on the matrix W, where
we found that the result on Chordal-NMF gives exactly the same performance as the one

obtained from the FroNMF®.

4.3 Testing Chordal-NMF on real-world data

NMF finds applications in real-world data analysis [1]. An example is Earth Observation (EO)
in remote sensing. EO typically involves the utilization of hyperspectral images, which are
stored as matrices and can be effectively analyzed through NMF for unmixing purposes [26].
A conventional approach in this context involves addressing the standard NMF problem
by minimizing the point-to-point F-norm [27]. However, in this section, we introduce a
comparative analysis between the performance of FroNMF and the Chordal-NMF proposed
in this work.

The EO Dataset. We chose a cloudy multispectral image due to its relevance in highlighting
the advantages of employing Chordal-NMF compared to standard FroNMF for analyzing

5 The MALTAB code is available at https://github.com/flaespo/Chordal_NMF.
6 Both Chordal-NMF and FroNMF gives a 4.02% relative error on W.

@ Springer


https://github.com/flaespo/Chordal_NMF

Journal of Global Optimization

a |

2 H MDY N 0D D>D AN

Fig.4 Left: the plot of Wy (the red, blue, green ray) and M (0.1, 0.3) (the black rays). Right: The relative

error |H — H fﬁfe /I H fr’fe || 7 for the two methods, where left gird (the first six columns) is the result from
FroNMEF, and the right grid (the last six columns) is the result from Chordal-NMF. In the grid, the x-axis is
the value of § (in log-scale) and the y-axis is the value of € (in log-scale)

multispectral images under various cloudiness conditions. Our goal is to provide an illus-
tration of how Chordal-NMF can better manage the presence of cloud conditions, thereby
presenting itself as a useful alternative for conducting image analysis for EO. Here the matrix
M is a cloudy multispectral image in an area of Apulia region in Italy, from the Copernicus
space ecosystem’. We use a reference image obtained in cloudless conditions as the ground
truth®

The reconstruction. We run FroNMF and Chordal-NMF on the cloudy data M with the same
initialization W, H( obtained from random uniform distribution /[0, 1]. We run Chordal-
NMF and FroNMF with 5000 iterations. For FroNMF, we run the implementation from [1].
For Chordal-NMF, we run BCD with 25 iterations for each column on k. ; to update H, and
1 iteration of matrix-wise EPG update for W. The values of the Chordal function for the
methods are: 0.1906100 (Initial Value), 0.0014398 (Chordal-NMF), 0.001279 (FroNMF). It
took ChordaINMF 2775 seconds (about 0.5 second per iteration), while it took FroNMF 2
seconds. Fig. 5 shows an RGB representation of the ground truth (cloudless reference image),
the cloudy data M, and the reconstruction obtained from Chordal-NMF and FroNMF on M.
Further analysis on the three selected areas. In Fig. 5, three boxes were chosen to represent
three distinct cloud conditions: the red box is a cloudy area, the cyan box is a less-cloudy
areas, and the yellow box is a cloudless area. We compute the spectral signatures of the pixels
in these areas, and their mean behavior is plotted in Fig. 6. We numerically compared these
spectral profile vectors by two criteria:

1. SID-SAM between the spectral profile vectors. Given two spectral profile vectors
t=1t1,...tyland r = [r1, ..., rny], we compute p = t/||t||2, g = r/||r]2, and then we
compute the SID-SAM [28] of the spectral information divergence (SID) and the spectral
angle mapper (SAM), defined as SID-SAM = SID x tan «, where

N ) N ) N N al
SID = ZPilOg% +Z%’103%s o = cos”! Z’i”/ (Zzﬁ)(Zr?)
i=1

i=1 L=l ! i=1 i=1

2. {>-norm of the difference between the spectral profile vectors. That is, ||t —
tChordaiNMF |2 and || — tFroNmE 12

7 Pixel size rows:150, cols:290 and bands:12. Data from https://dataspace.copernicus.eu/

8 The cloudy image and the cloudless image are obtained in the same condition (except the cloudiness) with
a temporal difference of 5 days.
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Fig.5 The RGB image of a scene. Top left: the cloudless reference image. Top right: the cloudy data image.
Bottom left: the reconstruction obtained by FroNMF. Bottom right: the reconstruction obtained by Chordal-
NMEF. In the images, the three color-boxes are selected areas under different cloundiness in which we perform
further quantitative analysis

= cloudy data ==ground truth == cloudy data ==ground truth == cloudy data==ground truth
0.5 = FroNMF Chordal-NMF == FroNMF Chordal-NMF FroNMF Chordal-NMF
80.4 \ L /,-‘
g 7\ \
Eo o =T | //
\ \
o2 / \
-~ /
0.1
H 3 [ 8 10 12 2 B 3 s 10 22 3 3 0 2
Band number Band number Band number

Fig. 6 From left to right: the spectral signatures of the pixels in the red/cyan/yellow box in Fig.5. In all the
three cases, the spectral profile of obtained by Chordal-NMEF is on average closer to the cloudless reference
spectral profile

Table 2 The numerics of the pixels in the three boxes

Red box Cyan box Yellow box
Compared with cloudless SID-SAM > SID-SAM 1% SID-SAM 1%
Cloudy data 2.2559 0.2655 0.0633 0.2154 0.0807 0.1594
FroNMF 2.0214 0.2650 0.5518 0.1901 0.3574 0.1458
Chordal-NMF 0.2090 0.2116 0.1486 0.1487 0.1161 0.1161

Results are reported in Table 2 for the three areas, in which Chordal-NMF achieves a

better performance.

On the cloudy image recovery, we see that Chordal-NMF is always better than FroNMF
regardless of the cloudiness of the image by achieving a lower SID-SAM value and a lower
£>-norm value. For example, in the red box, Chordal-NMF seems to have a better recovery
of the region under the cloud.
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rock from FroNMF rock from odaI-NMF

Fig.7 The Samson dataset and the rock abundances map of the decompositions. From left to right: the data,
the abundance maps obtained form FroNMF and Chordal-NMF

Performance on Samson dataset We test our approach also on a benchmark dataset for
EO applications: Samson dataset [1]. In this image, there are 95 x 95 pixels, each pixel is
recorded at 156 channels. This dataset is not challenging as many analyses have been already
carried out [27]. Even if it is well known from the literature that there are three targets
in the image, we want to highlight how Chordal-NMF is better at extracting the rock/soil
component. Fig. 7 shows the abundance map from the FroNMF and Chordal-NMF. We can
see that the Chordal-NMF is able to recover rock under shadow water regions near the coast
better than FroNMF.

5 Conclusion

In this work, we introduced a NMF model called Chordal-NMF, which is different from
the classical NMF using a point-to-point Euclidean distance, Chordal-NMF uses a ray-to-
ray distance. Based on the geometric interpretation that NMF describes a cone, we argued
that chordal distance, which measures the angle between two vector in the nonnegative
orthant, is more suitable than the Euclidean distance for NMF. Under a BCD framework,
we developed a new projection-free algorithm, called Riemannian Multiplicative Update to
solve the Chordal-NMF, where Riemannian optimization technique is used. We showcase
the effectiveness of the Chordal-NMF on the synthetic dataset and real-world multispectral
images.

A The proof of Proposition 1
Proof Let h(x) = (go f)(x) = (f(x))2 where g :R — R :x > x2 is convex, increasing
(on R ) and differentiable, then by chain rule 9(g o f)(x) = g’(f(x))d f (x), which gives

Vhix) = 2f(x)Vf(x) = %Vﬂx} (chain-rule)

Now by the definition i (x) = (f(x))z, SO

<(Ax+b, c))2
v =V ———— . -h
h ( |Dx + el2 ) (grad-h)
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2
D Ax +b,c
Equate (chain-rule) and (grad-h) gives V f(x) = IDx +ell2 V<(< >) >

(Ax + b, ¢) 2| Dx + ell3
Vf—fV

assumption Dx + e # 0, we use quotient rule vi = w

4 8

to arrive at

IDx +el2 |Dx + |2V ((Ax + b, c))” — ((Ax + b, )’ V|| Dx + e|2
(Ax + b, ¢c) 2| Dx + ell}

_IDx + €3V ({Ax + b, )’ — ((Ax + b, )’ V[ Dx + e]3

- 2(Ax + b, ¢)| Dx +e|3

_IDx +e32(Ax + b.c)A e — ((Ax +b.¢))*2D T (Dx +¢)

B 2(Ax +b,c)|Dx +e|3

_ IDx +e|3ATc — (Ax +b.c)DT(Dx +e)

N | Dx +ell3 '

V) =

B The proof of Proposition 4

In this appendix, we give the proof of Proposition 4 for the metric retraction over the ellipsoid.

Proof To show that (R-ellipsoid) is a retraction, we use the definition of retraction in §2.2.
Consider a continuous curve ¢ : R — 5:{1, that is smooth for all variables (¢, &) € R” xR”,

defined as c¢(t) = Ry (t€) = (¢ +1£)/\/1+ t2||3;'||§. Then ¢(0) = ¢ and

i) £ —1Llglz _
A li=0 (4 2512),/1 + 21812 =0
So R is a retraction for EZ_I. O

C Derivation of content in Table 1

Consider (W-subproblem) with n = 1. Following the discussion in §3.1, we get grid of the
denominator (W, W A|)g inby introducing a constrained problem argmax y,~ (B j, W)F s.t.
(W, WA )r = 1. We note that A is a rank-1 symmetric positive semi-definite (PSD) matrix
with two eigenvalues: a single positive eigenvalue and O with multiplicity r — 1. Moreover, A |
has its square-root A}/z, so (WIW,ADg=(W'W, A}/zA}/z)F = (WAi/z, WA}/2)F =
(W, W) Al allows us to define the manifold M as

M, = [W e R™ | (W, W) an—1= 0]. (Shell of twisted spectrahedron)
1

The term spectrahedron [29] refers to the eigen-spectrum of a matrix behaves like a polyhe-
dron, while the word “twisted” refers to the linear transformation Aj.

Tangent space. On a single M, let /(W) = (W, WA )r — 1 define M, its differential is
Dh(Z)[Z] = 2(W A, Z)r. The tangent space of M at a reference point Z € M ;, denoted
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as Tz M, is
Ty M= W e R"™ |(ZA;, W) = 0] = KerDh(W). ©)
Projection onto tangent space, and Retraction. We define the adjoint operator of
1 (W, ZA;
Di(W)[Z] as Dh(W)*[a] = 2a W A ;, where « takes the value @ = 3 W obtained
F

by solving the least squares problem o = argmm || W —Dh(Z)*[«] ||F Now by Di(W)*[«],
o, the definition of projector onto tangent space [18 Def3.60], and the property of orthogonal

projector [18, Eq.7.74], we have the projector pI”OJTZMj (W) = W — Dh(Z)*[a] as shown
in the following proposition.

Proposition 7 The map ijTzMj :R™" — Tz M that brings W onto the tangent space
at the reference point Z defined as

projpya, W) = w — E20WE gy, @)
Tz M; =W-——""5

o Izay

is an orthogonal projector.

Proof The proof follows the same arguments used in the proof of Proposition 3. O

Proposition 8 (Retraction) The map Rz : TzM; — M defined as
WH+Z  1M; Z+W

Z+W T aowe
” ”A;/Z 1+ ”W”Al,/2

is a metric retraction for the manifold M .

Rz(W) = (R)

Proof For a continuous curve ¢ : R — M that is smooth for all (W, Z) € R™*" x R"™*",
defined as

Z+tW

c(t) = Rz(tW) = ————.
L+ 2 W2,
Jj

We have ¢(0) = Z and the following so (R) is a retraction for M ;:

W —t|W|?, ,Z
A}

=0 2 2
! (1 —|—t2||W||A}/2> 1+r2||W||A.1/_/2 ’

= W.
=0

D Details of manifold approach for W-subproblem with n = 2

Consider n = 2 in (W-subproblem). By the fact that the Cartesian products of manifolds are
manifolds, we consider product space M| x M,. Define

M = [W e R™|h(W) = 02] where i : R™*" — R*: W +—> [<W’ WAur - 1]

(W, WA — 1
(Spectrahedra)
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We call the manifold M%) “spectrahedra” as it is constructed by spectrahedron. We now com-
pute its tangent space. Following arguments in §3.1 and §C, we have the following results
that we hide the proofs. The function / in (Spectrahedra) has the differential DA(W)[Z] =

(WAL, Z)r 2 - 2
2 . The tangent space of M!? is the set Ty M! ]::{W WA, Z)g =
|:<WA2, Z)p g P VA | ( 1 B

(WA, Z)p = 0}, its adjoint is
Dh(W)*[a] = 201 WA +200WA) = 2W (a1 A1 + apA»).

Let vec be vectorization and let ®k be the Kronecker product, now the o that minimizes
2 e
|| W — Dh(Z)*[e] ||F also minimizes

2 2
Hvec(W —2Z(a1 A + OQAQ)) H2 - Hvec(W) —2(I ®k Z)Vec<oz1A1 + otzAz) H2

2
vec(W) —2(I ®k Z) [VecA1 vecAz] |:le| .
2112

To simplify the notation, let Sz = (I ®k Z)[vecA; vecA,], where the subscript Z
indicates the dependence of Z. Now « is the root of the following normal equation

! 1 1 .
S;Sz [Z%] = ES;vecW = of = E(S—ZFSZ)’IS—erecW = ES{ZvecW‘
Now the orthogonal projector projz, pq2r : R™*" Mg

2
1
Projp, e (W) = W =223 E(S;vecw) A = W 2Z(l Al +aiAd).  (8)

j=1 !

The Riemannian gradient is then

®

grad F(W) = 2projTZM[z](VF(W)) O VEW) - 2Z(@i A +aiAr).  9)

Note that the value of «f and o in (9) is an implicit function of Z and VF (W) as we have

S vecVF (W
that[aT:|=% (Zvec ( )>1

i : . So the explicit expression of the Riemannian gradient
« (SzvecVF(W))2

2

is
grad F(W) = VF(W) — Z(S}veeVF(W))lAl - Z(S}veeVF(W))ZAZ.

Then we compute grad™ F = max{gradF, 0} and grad~ F = max{—gradF, 0} to proceed
with RMU.
In conclusion, we can see that to run RMU on M2, there are challenges:

. S . 2 .

e the computation of «*, which includes the computation of Sz € R™ x2 8 E € R?*2 in
which all these terms have to be re-computed in each iteration.

e the computation of the metric projection onto M?! itself is a difficult problem.
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