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Abstract
Nonnegative Matrix Factorization (NMF) is the problem of approximating a given non-
negative matrix M through the product of two nonnegative low-rank matrices W and H .
Traditionally NMF is tackled by optimizing a specific objective function evaluating the
quality of the approximation. This assessment is often done based on the Frobenius norm
(F-norm). In this work, we argue that the F-norm, as the “point-to-point” distance, may not
always be appropriate. Viewing from the perspective of cone, NMF may not naturally align
with F-norm. So, a ray-to-ray chordal distance is proposed as an alternative way of measuring
the quality of the approximation. As this measure corresponds to the Euclidean distance on
the sphere, it motivates the use of manifold optimization techniques. We apply Riemannian
optimization technique to solve chordal-NMF by casting it on a manifold. Unlike works
on Riemannian optimization that require the manifold to be smooth, the nonnegativity in
chordal-NMF defines a non-differentiable manifold. We propose a Riemannian Multiplica-
tive Update (RMU), and showcase the effectiveness of the chordal-NMF on synthetic and
real-world datasets.

Keywords Nonnegative Matrix Factorization · Manifold · Chordal distance · Nonconvex
Optimization · Multiplicative Update · Riemannian gradient
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1 Introduction

Given a nonnegative matrix M ∈ R
m×n+ and a rank r ≤ min{m, n}, the goal of Nonnegative

Matrix Factorization (NMF) is to find factor matrices W ∈ R
m×r+ and H ∈ R

r×n+ such
that M ≈ WH [1]. NMF is commonly achieved by minimizing the Frobenius norm (F-

F. Esposito and A. Ang: These authors contributed equally to this work.

B Flavia Esposito
flavia.esposito@uniba.it

1 Department of Mathematics, Università degli Studi di Bari Aldo Moro, Bari, Italy

2 School of Electronics and Computer Science, University of Southampton, Southampton, United
Kingdom

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-025-01548-8&domain=pdf
http://orcid.org/0000-0002-2791-9610


Journal of Global Optimization

Fig. 1 Left: Picture of a rank-3 NMF. Data points (in black) that represent the columns of M encapsulated by
a polyhedral cone generated by r = 3 columns w1, w2, w3 (in red). Right: The sphere S

2+ in the nonnegative

orthant R3+. The black dot is closer to the blue dot in Euclidean distance, but closer to the pink dot in chordal
distance, which is equivalent to the geodesic arc length on the sphere

norm) ‖M −WH‖F =
√∑

i j (Mi j − (WH)i j )2 (where Mi j is the (i, j)th-entry of M) that

measures the quality of the approximation.
For M ≈ WH with nonnegativity constraints, the point cloud M is contained within a

polyhedral cone generated by the r columns of W with nonnegative weights encoded in H ,
see Fig. 1. This conic view of NMF suggests that the point-to-point distanceMi j −(WH)i j in
the F-norm does not naturally fit NMF. In this work, we propose to replace F-norm by a ray-
to-ray distance that we call chordal distance, detailed in the next section. We are interested
in solving

argmin
W≥0,H≥0

{
F(W , H):=1

n

n∑
j=1

(
1 − 〈m: j ,Wh: j 〉

‖m: j‖2‖Wh: j‖2
)}

, (Chordal-NMF)

where the objective function F : R
m×r × R

r×n → R is defined as the chordal distance
between WH and M, ‖ · ‖2 is the Euclidean norm, 〈·, ·〉 is the Euclidean inner product, and
m: j is the j th column of M. The nonnegativity constraints ≥ 0 is element-wise, where 0
is zero matrix of the appropriate size. For simplicity, we assume M ∈ R

m×n+ has no zero
column, and M is normalized that ‖m: j‖2 = 1 in (Chordal-NMF). We give the motivation
of using ray-to-ray distance in §1.1.
Contribution. Our contributions are 3-folds.

1. We propose a new model (Chordal-NMF). To the best of our knowledge, such problem
is new and has not been studied in the NMF literature.

2. Solving Chordal-NMF is nontrivial, it is a nonsmooth nonconvex and block-nonconvex
problem. We propose a Block Coordinate Descent (BCD) algorithm with Riemannian
Multiplicative Update (RMU) for solving Chordal-NMF.

• We derive the Riemannian gradient of the objective function F .
• The nonnegativity constraints in Chordal-NMF introduce nondifferentiability in the

manifold andmake somemanifold techniques ineffective.We propose RMU to solve
the nonsmoothness issue in the optimization. In particular, we show that, if the initial
variable in the algorithm is feasible, the whole sequence is guaranteed to be feasible.

3. We showcase the effectiveness of the Chordal-NMF in §4.
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Paper organization. In the remaining of this section, we describe the overall algorithmic
framework on solving Chordal-NMF, as well as the motivation of the chordal distance. In
§2 we review Riemannian optimization techniques. In §3.1 and §3.2 we discuss how we
update the variable H and W , respectively. §4 contains the experiments and §5 sketches the
conclusion.
Notation. We use {italic, bold italic, bold italic capital} letters to denote {scalar, vector,
matrix} resp.. For a matrix A, we denote a: j its j th column, a j : its j th row, and A
 its
transpose. We denote (M)i j or Mi j the i j component of M. The notation 〈ξ , ζ 〉 denotes the
Euclidean inner product in the standard basis, and ‖ξ‖2 denotes the Euclidean norm of ξ .
For a vector v �= 0, we denote v̂ = v/‖v‖2 the unit vector of v. If v = 0 we define v̂ to be
any unit vector. We use [θ ]+:=max{0, θ} element-wise.
Useful tools.We list two tools. The first one is useful for deriving the Euclidean gradient of
the objective function.

Proposition 1 Let f (x) = 〈Ax + b, c〉/‖Dx + e‖2 with A ∈ R
m×n, b ∈ R

m, c ∈ R
m, D ∈

R
p×n, e ∈ R

p and Dx + e �= 0, the Euclidean gradient ∇ f , is

∇ f (x) = ‖Dx + e‖22A
c− 〈Ax + b, c〉D
(Dx + e)

‖Dx + e‖32
.

We put the proof in the appendix.

Wemake use of tensor product in this work. Let V andW be two vector spaces with inner
product. Let v ⊗ w ∈ V ⊗ W be the tensor product of v ∈ V , w ∈ W , then

〈v, x〉w = (w ⊗ v)x. (1)

BlockCoordinateDescent (BCD).WeuseBCD to solve theChordal-NMF, seeAlgorithm1,
where we also hide the factor 1/n.

Algorithm 1 BCD for Chordal-NMF, with a starting point (W0, H0)

1: for k = 1, 2, ... do
2: for j = 1, 2, ..., n (update Hk+1 column-wise) do

3: h-subproblem h: j ,k+1 = argmax
h≥0

〈m: j ,Wh
〉

‖Wh‖2 .

4: end for

5: W-subproblem Wk+1 = argmax
W≥0

{
F(W; H) =

n∑
j=1

〈m: j ,Wh: j 〉
‖Wh: j‖2

}∣∣∣∣
H=Hk+1

.

6: end for

Chordal-NMF is asymmetric. Usually considering that NMF in F-norm is symmetric:
‖M − WH‖F = ‖M
 − H
W
‖F , we can use the same procedure updating H to update
W (with a transpose). Chordal-NMF is asymmetric: it measures the cosine distance between
m: j and Wh: j , not between the rows mi : and wi,:H . This leads to the W-subproblem and
H-subproblem have different structure, and we use different approaches to solve the sub-
problems. We solve H-subproblem column-wise as in line 3 in Algorithm 1, to be discussed
in §3.1. We solve W-subproblem matrix-wise, to be discussed in §3.2.
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1.1 Deriving andmotivating chordal distance

From the conic view of NMF (see introduction), the geometry of chordal distance can be
seen as the Euclidean distance between unit vectors on the sphere. Writing ‖M −WH‖2F =∑

j ‖m: j − Wh: j‖22, if both m: j and Wh: j have unit �2-norm, then by the Euclidean inner
product 〈ξ , ζ 〉 = ‖ξ‖2‖ζ‖2 cos θ(ξ , ζ ) with θ(ξ , ζ ) the angle between the vectors ξ , ζ , we
have

1

2
‖M − WH‖2F =

n∑
j=1

(
1 − 〈

m: j ,Wh: j
〉) =

n∑
j=1

(
1 − cos θ(m: j ,Wh: j )

)
. (2)

While the normalization of m: j is assumed, the normalization of Wh: j is important here.
Note that enforcing Wh: j to have unit �2−norm forms a nonconvex constraint.

The expression (2) tells that the normalized Euclidean distance is the cosine distance.
Cosine distance is insensitive to the length of vector, see Fig.1 for an example.

• Quotient space interpretation. From (2), we define a new objective in (Chordal-NMF)
for measuring the distance between m: j and Wh: j by angle. The division of the norm
‖Wh: j‖2 in (Chordal-NMF) collapses all vectors x that are proportional to Wh onto a
single point on the unit sphere. In this way, the chordal distance becomes purely angle-
based, since the length information is ignored.

• Haversine interpretation.Navy navigation [2]makes use of the haversine hav(θ):=(1−
cos θ)/2, where θ = d/r is the central angle, defined as the distance d between two points
along a great circle of the sphere, normalized by the radius of the sphere r . The expression
1 − cos θ in (2) is hav(θ) with r = 1.

• Sphere interpretation. In R
m with Euclidean inner product 〈u, v〉 and norm ‖u‖2 =√〈u, u〉, the map ξ �→ ξ/‖ξ‖2 in (Chordal-NMF) sends nonzero vector ξ ∈ R

m to
the (nonconvex) unit sphere Sm−1:={ξ ∈ R

m |‖ξ‖2 = √〈ξ , ξ 〉 = 1}. Considering u �=
0, v �= 0, the following function

f̄chord : Rm × R
m → [0, 2] ∪ {∞} ∪ {±√−1∞} as u, v �→

√
2 − 2

〈u, v〉
‖u‖2‖v‖2 ,

can be seen as the Euclidean distance between two unit vectors û, v̂ on S
m−1, since

f̄chord(u, v) =
√〈 u

‖u‖2 − v

‖v‖2 ,
u

‖u‖2 − v

‖v‖2
〉
=
∥∥∥∥

u
‖u‖2 − v

‖v‖2
∥∥∥∥
2

= ‖û − v̂‖2.

For this function it should be noted that:

– f̄chord is undefined at u = 0 and/or v = 0, it take ∞ or complex values ±√−1∞.
– f̄chord is nondifferentiable with respect to (wrt.) parallel unit vectors as f̄chord(û, v̂):=√

2 − 2 = |0|.
– In the Euclidean case, f̄chord is non-convex wrt. u, v and the pair (u, v).

These undesirable properties lead to choice of chordal distance below.

Definition 1 On Sm−1 with inner product 〈u, v〉, we define
fsq-chord : Sm−1 × S

m−1 → [0, 4] : u, v �→ 2 − 2〈u, v〉.
Given the above discussion and the fact that the chordal distance is non-Euclidean, we

employ Riemannian optimization methods in this work.
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2 Background of optimization onmanifold

In this section, we discuss about nonnegative-constrained optimization, then we reviewman-
ifold optimization. Lastly, we present the Riemannian Multiplicative Update with some
analysis.

Let E be a linear space (e.g., Rn,Rm×r ) with an inner product 〈·, ·〉E and an induced
norm ‖ · ‖E . Given a differentiable function f : E → R and the nonnegative orthant
X :={x ∈ E | x ≥ 0}, consider the minimization problems

P0 : argmin
x

f (x) s.t. x ∈ M, x ∈ X restriction⇐⇒ P1 : argmin
x∈M

f (x) s.t. x ∈ X ,

with the constraint set M:={x ∈ E | h(x) = 0} under the defining function h(x). We focus
on convex compact set M being a smooth embedded submanifold of Rn , where h(x) is
many-times continuously differentiable.

In Euclidean optimization, x ∈ M is a constraint in (P0). We “remove” such constraint
using a restricted function f

∣∣M : M → R. Here f is the extension of f
∣∣M that extends

dom f
∣∣M from M to E . In this way, (P0) can be written as a constrained manifold opti-

mization (P1), which can further be converted into a unconstrained problem using indicator
ι(x) : E → R ∪ {+∞} that ι(x) = 0 if x ∈ X and ι(x) = +∞ if x /∈ X . The problems
are related, solving one of them will help solving the others. Below we review approaches in
manifold optimization on solving these problems.

2.1 Nonnegative-constrainedmanifold optimization

Solving (P0) directly by manifold techniques is nontrivial. Manifold optimization refers to
an optimization on a smooth (differentiable) manifold. The set X is nonsmooth, same for
M+:=M∩X 1 (assumed nonempty). Thus, several manifold optimization techniques do not
have convergence guarantee for solving (P0). The indicator ι is a nonsmooth convex lower
semicontinuous (l.s.c) function [3], making (P1) written in indicator form not satisfying the
assumptions in some existing works in nonsmooth Riemannian optimization, e.g. Projected
Gradient Descent on Riemannian Manifolds [4], Riemannian proximal gradient [5], and
Manifold proximal gradient [6].
Dual methods: not strictly feasible. We can also solve (P0) by Riemannian Augmented
Lagrangian multiplier (RALM) [7] or solve (P1) using Riemannian Alternating Direction
Method of Multipliers (RADMM) [8]. The sequence generated by these methods is not
strictly-primal-feasible and it is dangerous to use an infeasible variable to update the other
block of variables in the BCD framework. Therefore they are not feasible for our application.
Euclidean projected gradient is infeasible. We can solve (P0) by Euclidean projected
gradient descent (EPG). The projection projM+(z) = argmin

x∈M+

1
2‖x− z‖2E takes an alternating

projection method such as the Dykstra’s algorithm [9] to solve, which can be expensive for
our purpose.
Manifoldprojection-freemethod is expensive.Projection-freemethod, such as theRieman-
nian Frank-Wolfe (RFW) [10], has an expensive subproblem that requires the computation
of exponential map and geodesic.
Our solution: Riemannian multiplicative update (RMU). In this work we provide a
projection-free method that only requires the computation of the Riemannian gradient part

1 For any point x in the boundary ofM+, there does not exist a Rn -homeomorphic neighborhood in M.
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grad f . To tackle these technical issues, we propose a cost-effective Riemannian multiplica-
tive update (RMU) for solving Problem (P1). Our approach is motivated by the research of
NMF [1, §8.2]. The advantages of RMU are

• The expensive projection projM+ is not required.
• Unlike the dual approaches, if the initial variable in the algorithm is feasible, the whole

sequence is guaranteed to be feasible, see Proposition 2.

We introduce RMU in §2.3, before that we review Riemannian optimization below.

2.2 Background of Riemannian optimization

Riemannian optimization, or manifold optimization, has a long history [11–18]. So we give
the minimum material on manifold optimization for the paper.
Submanifold and ambient space.Let E be an Euclidean spacewith dim(E) > k, with inner
product 〈·, ·〉, and induced norm ‖ · ‖. Considering the smooth function h : E → R

k , with
Dh(x)[v] = 〈gradh(x), v〉E its differential with full rank k for all x such that h(x) = 0k , the
setM:={x ∈ E | h(x) = 0k} is an embedded submanifold of E of dimension dim E−k (see
[18, Ch7.7]). In this work we focus on h in the form h(x) = 〈x, x〉E − 1. For a manifoldM
in E , we call E the ambient space of M. In this work, all ambient spaces are some specific
linear vector space E , such as Rr and Rm×r .

• In the h-subproblem, M is the “shell” of an ellipsoid, it has 1 dimension lower than its
ambient Euclidean space Rr .

• In the W-subproblem, M is the “shell” of a twisted spectrahedron.

Tangent space and projection. Let ker be the kernel of a matrix, the tangent space
of M at a reference point x, denoted as TxM, is defined as the kernel of Dh(x), i.e.,
TxM:=kerDh(x) = {v ∈ E | Dh(x)[v] = 0}. TxM collects vectors v ∈ E that is tangent
to M at x. The orthogonal projection to TxM is the linear map projTxM : M → TxM
characterized by the following properties [18, Ch3, Def3.60]:

• Range: Im(projTxM) = TxM;
• Projection: projTxM ◦ projTxM = projTxM;
• Orthogonality: 〈u − projTxM(u), y〉 = 0 for all y ∈ TxM and u ∈ M.

In this work, we have manifolds defined by smooth functions h [18, §7.7], we use the
orthogonal projection projTxM : E → TxM, based on orthogonal decomposition of a
vector space as v = projTxM(v) +Dh(x)∗[α], where Dh(x)∗[α] is the adjoint of Dh(x)[v],
and α ∈ R plays the role of the dual variable (technically called covector) as the solution
of argmin α∈R ‖v − Dh(x)∗[α]‖2E = (Dh(x)∗)†[v], where † is pseudo-inverse. This gives
projTxM(v) = v − Dh(x)∗

[
(Dh(x)∗)†[v]]. Note that if the tangent space projTxM equals

the ambient space, then the projection is not necessary.

Remark 1 (Notational difference) In [18, Ch3, Def3.60] projx denotes orthogonal projec-
tion, here for indicating orthogonal projection from E to TxM, we use projTxM.

Retraction. A point x that is originally sitting on a manifold M may go outside M after a
gradient operation, so we need to pull it back onto M. This can be achieved by a particular
smooth map, known as the retraction R : TxM → M with v �→ Rx(v). A retraction maps
a point on the tangent space TxM onto M such that each curve c(t) = Rx (tv) satisfies
c(0) = x and c′(0) = v [18, Ch3, Def3.47]. There are different ways to perform retractions,
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such as exponential map and metric retractions [18, §3.6]. However, in general, to obtain
the exponential map of a manifold, one requires to solve a differential equation. Thus, for
computational efficiency, we consider the metric retraction Rx(v) = argmin y∈E ‖x + v −
y‖2E s.t. h( y) = 0 [18, §7.7]. Note thatRx(v) is possibly non-unique and hard to compute.
Among all the retractions we focus on

Rx(v):= x + v

‖x + v‖E . (Metric retraction)

Riemannian and Euclidean gradient. Given a (restricted) function f
∣∣M : M → R with

its smooth extension f : E → R, let ∇ f (x) be the Euclidean gradient of f in the standard
Euclidean basis at a point x ∈ E , the Riemannian gradient of f

∣∣M defined onM, denoted as
grad f

∣∣M, at a point z, wrt. the reference point x, is the Euclidean gradient ∇ f (z) projected
onto TxM. That is grad f

∣∣M(z) = projTxM∇ f (z). For the sake of cheap computational
cost, we endow the manifold with the standard Euclidean metric2. To ease the notation, we
write f

∣∣M as f taking the natural extension.

2.3 RiemannianMultiplicative Update (RMU)

In this work, we propose a RMU for solving Chordal-NMF in the form of (P1). RMU is
a modified Riemannian gradient descent (RGD) update: xk+1 = Rxk (αvk), where vk =
−grad f (xk) is the (negative) Riemannian gradient of f at xk . RMU is projection-free, and
it guarantees the nonnegativity of x by selecting a special element-wise stepsize such that
xk+1 stays within X . Below we review Euclidean Multiplicative Update (EMU) and then we
generalize it to the Riemannian case.
Euclidean MU (EMU). EMU was first proposed in [19–21], and gained popularity in NMF
[1]. EMU can be done via a “element-wise sign decomposition” of the Euclidean gradient
∇ f (x) = ∇+ f (x) − ∇− f (x), where ∇+ f (x) ≥ 0 and ∇− f (x) ≥ 0. Let denote � the
element-wise product and� the element-wise division, for solving a nonnegative-constrained
Euclidean optimization problem, the EMU step has the form

xk+1 = xk � ∇− f (xk) � ∇+ f (xk), (EMU)

which is obtained by choosing an element-wise stepsize α = xk �∇+ f (xk) in the Euclidean
gradient descent step xk+1 = xk − α∇ f (xk), see [22] for the derivation3.
RMU. Now we generalize EMU. First, a Riemannian gradient grad f (x) always admits
element-wise sign decomposition4 grad f (x) = grad+ f (x) − grad− f (x).

We generalize (EMU) to the Riemannian case in Proposition 2, where we prove that the
nonnegativity of the update is preserved by RMU without projection. The key idea of the
proof is the metric retraction and the choice of step-size α that acts component-wise on the
update direction vk .

Proposition 2 (RMU) Denote vk = −grad f (xk) the anti-parallel direction of the Rie-
mannian gradient of a manifold M at xk , and let Rxk be the metric retraction onto M.

2 The complete Riemannian gradient is computed using metric tensor. Let g be the metric tensor of M and
let Gx denotes the matrix representation of g, then grad f

∣∣M(z) = G−1
x projTxM∇ f (z).

3 In the literature (EMU) is written as xk+1 = xk
∇− f (xk )
∇+ f (xk )

. We do not use this convention because it

confuses with metric retraction for our purpose.
4 For any object b, it can be written as b = b+ − b− with b+ = max(0, b) and b− = max(0, −b).
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If a nonnegative xk is updated by xk+1 = Rxk (α � vk) with an element-wise stepsize
α = xk � grad+ f (xk) ∈ E, then xk+1 ≥ 0 and is on M.

Proof The term α � (−grad f (xk)) with α = xk � grad+ f (xk) can be computed as

−α � grad f (xk) = (
xk � grad+ f (xk)

)� (
grad− f (xk) − grad+ f (xk)

)

= xk � grad− f (xk) � grad+ f (xk) − xk .

The element-wise operations as linear transformations in general do not preserve the tangent
condition of a manifold into a point. However here we can still apply (Metric retraction) on
−α � grad f (xk), the xk terms got canceled and gives

xk+1 = Rxk
(− α � grad f (xk)

) = xk − α � grad f (xk)
‖xk − α � grad f (xk)‖E

= xk � grad− f (xk) � grad+ f (xk)
‖xk � grad− f (xk) � grad+ f (xk)‖E .

The ratio between grad+ f and grad− f is nonnegative as its parts are nonnegative by defi-
nition, the denominator is nonnegative, therefore xk+1 is nonnegative if xk is nonnegative.

��
Proposition 2 also gives a convergence condition to a critical point:

• If the solution lies strictly inside the nonnegative orthant, this corresponds to grad f (xk) =
0, which is equivalent to grad− f (xk) = grad+ f (xk). That is, the convergence of the
sequence {xk}k∈N can be easily checked by comparing grad− f (xk) and grad+ f (xk).

• Otherwise, in the constrained setting, convergence is characterized by theKKTconditions
on M ∩ R

n+.
As RMU is projection-free, it has a lower per-iteration computational cost, making it

suitable for Chordal-NMF.
We are now ready to move on to the explicit update of H and W .

3 Subproblems in the algorithm

In this section, we discuss how to solve the subproblems in Algorithm 1.

3.1 Column-wise h-subproblem over ellipsoid

Here we discuss how to solve the h-subproblem. We re-formulate the h-subproblem on h
over the ellipsoid Er−1

W
W
as

argmin
h

{
φ(h):=1 − 〈m: j ,Wh〉

}
s.t. h ∈ R

r+ ∩ Er−1
W
W

, (h-manifold-subproblem)

where we assume W has full rank, the ellipsoid Er−1
W
W

⊂ R
r defined by a Positive Definite

(PD) matrix W
W ∈ R
r×r is

Er−1
W
W

:=
{
ξ ∈ R

r
∣∣ 〈ξ , ξ

〉
Er−1
W
W

:=〈W
Wξ , ξ
〉 = 1

}
⊂ R

r . (Ellipsoid)

To ease notation, sometimes we write 〈ξ , ζ 〉Er−1
W
W

as 〈ξ , ζ 〉E and ‖ξ‖Er−1
W
W

as ‖ξ‖E . We

remark that:
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Table 1 Summary of objects. Top: for h and A = W
W . Bottom: For W and A j = h: j h
: j
Name / Reference Definition / expression

Manifold of h (Ellipsoid) Er−1
A :=

{
ξ ∈ R

r
∣∣ 〈Aξ , ξ

〉 = 1
}

Tangent space of Er−1
A at ζ (3) Tζ Er−1

A :=
{
ξ ∈ R

r
∣∣ 〈Aξ , ζ

〉 = 0
}

Project ξ onto Tζ Er−1
A (Proposition3) proj

TζEr−1
A

(ξ) =
(
Ir − (Aζ )⊗2

‖Aζ‖22

)
ξ

Retraction (Proposition4) Rζ (ξ) = ζ + ξ

‖ζ + ξ‖E
Manifold of W (Shell of twisted spectrahedron) M j :=

{
W ∈ R

m×r
∣∣ 〈W ,W

〉
A1/2j

= 1
}

Tangent space ofM j at Z (6) TZM j :=
{
W ∈ R

m×r
∣∣ 〈W , ZA j

〉
F = 0

}

Project W onto TZM j (Proposition7) projTZM j
(W) =

(
I − (ZA j )

⊗2

‖ZA j‖2F

)
W

Retraction (Proposition8) RZ(W) = Z + W
‖Z + W‖

A1/2j

• As a subset ofRr , the set Er−1
W
W

is a smooth submanifold [18, Def3.10] and we can show
that the inner product 〈ξ , ζ 〉E is a Riemannian metric [18, Prop3.54].

• The set Rr+ ∩ Er−1
W
W

is a nonsmooth manifold: Rr+ has sharp corners at the boundary.
See §2 for discussion on the issues caused by such non-smoothness.

Tools on ellipsoid manifold. The tools to solve (h-manifold-subproblem) by RMU is sum-
marized in Table 1 and detail in the following paragraphs.
Tangent space. Let A:=W
W and the function h(ξ) = 〈Aξ , ξ〉 − 1, we denote Er−1

A as the
manifold and its differential Dh(ξ)[ζ ] = 2〈Aξ , ζ 〉. The tangent space of Er−1

A at a reference
point ζ ∈ Er−1

A , is defined as the set

TζEr−1
A :={ξ ∈ R

r | 〈Aζ , ξ 〉 = 0} = KerDh(ζ ). (3)

Projection onto tangent space, and Retraction. Consider Dh(ξ)[ζ ], we define its adjoint
operator as Dh(ξ)∗[α] = 2αAξ , where α takes the value α = 1

2
〈Aζ ,ξ〉
‖Aζ‖22

obtained by solving

the least squares problem α = argmin
α∈R

∥∥ξ − Dh(ζ )∗[α]∥∥22. Now by the previously defined

Dh(ξ)∗[α] and α, we have the projector projTζEr−1
A

(ξ) = ξ − Dh(ζ )∗[α] as shown in the

following proposition.

Proposition 3 The map projTζEr−1
A

: Rr → TζEr−1
A that bring ξ onto the tangent space at

the reference point, ζ , defined as

projTζEr−1
A

(ξ) = ξ − 〈Aζ , ξ〉
‖Aζ‖22

Aζ , (proj-ellips)

is an orthogonal projector.
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Proof Using formula (1), we have (proj-ellips) equals to the following matrix form

ξ − 〈Aζ , ξ 〉
‖Aζ‖22

Aζ =
(
Ir − (Aζ )⊗2

‖Aζ‖22

)
ξ =: Pξ .

To show that (proj-ellips) is a projector onto the tangent space of the reference point ζ we
use the definition of orthogonal projector in §2.2.

First, the range of projTζEr−1
A

, denoted as Im
(
projTζE

)
, is exactly TζEr−1

A , since

ξ = ξ − 〈Aζ , ξ 〉
‖Aζ‖22

Aζ ⇐⇒ 〈Aζ , ξ 〉
‖Aζ‖22

Aζ = 0
Aζ �=0⇐⇒ ξ ∈ TζEr−1

A .

Second, we show that projTζEr−1
A

is idempotent by showing P is idempotent

P2 = Ir − (Aζ )⊗2

‖Aζ‖22
− (Aζ )⊗2

‖Aζ‖22
+ (Aζ )⊗2

‖Aζ‖22
(Aζ )⊗2

‖Aζ‖22︸ ︷︷ ︸
=0

= P .

We show projTζEr−1
A

is orthogonal by showing P is orthogonal. As A is symmetric, so

P
 = P . Being symmetric and idempotent, P is orthogonal [23, §0.9.13]. ��
Proposition 4 (metric retraction) The map Rζ : TζEr−1

A → Er−1
A defined as

Rζ (ξ) = ζ + ξ

‖ζ + ξ‖E
TζEr−1

A= ζ + ξ√
1 + ‖ξ‖2E

, (R-ellipsoid)

is a metric retraction for the manifold Er−1
A .

We give the proof of the proposition in Appendix B.
Riemannian Gradient. We solve (h-manifold-subproblem) using RMU discussed in §2.3.
The Riemannian gradient gradφ(hk) = projThk E∇φE (hk), is

gradφ(hk) =
(
Ir − (Ahk)⊗2

‖Ahk‖22

)(
− W
m: j

)
= (Ahk)⊗2

‖Ahk‖22
W
m: j

︸ ︷︷ ︸
grad+φ

−W
m: j︸ ︷︷ ︸
grad−φ

,

where we used both: (proj-ellips), (1), the fact that hk ∈ Er−1
A , and the Euclidean gradient of

hk through Proposition1.
Then, the RMU under metric retraction discussed in §2.3 is

h: j,k+1 = z
‖z‖Er−1

A

, where z = h: j,k � grad−φ(h: j,k)[h: j,k] � grad+φ(h: j,k)[h: j,k].

3.2 The finite summatrix-wiseW-subproblem

Now we discuss how to solve the W-subproblem in Algorithm 1. Let 〈·, ·〉F = Tr(·
·) be the
Frobenius inner product, B j :=m: jh
: j and A j :=h: jh
: j (not the A, B defined in §3.1), we
rewrite the W-subproblem as

argmax
W≥0

{
F(W) =

n∑
j=1

〈B j ,W〉F√〈W ,WA j 〉F

}
. (W-subproblem)
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Note that if a column h j is zero, the corresponding term is removed in the sum.
To solve (W-subproblem), we first consider n = 1. We have a manifold which we name

“shell of a single twisted spectrahedron”. Table 1 summarizes the results of RMU on such
manifold. See Appendix C for the derivation of manifoldM j , the tangent space TZM j , the
projection and the retraction.

Lemma 5 (RMU update on W ) If n = 1, we update W as

W k+1 = W k � grad− f j (W k)[W k] � grad+ f j (W k)[W k]∥∥∥W k � grad− f j (W k)[W k] � grad+ f j (W k)[W k]
∥∥∥
A1/2
j

, (4)

where grad f j (W) = (ZA j )
⊗2

‖ZA j‖2F
B j

︸ ︷︷ ︸
grad+ f j (W)

− B j︸︷︷︸
grad− f j (W)

.

For (W-subproblem) with n ≥ 2, having multiple fractions makes the problem hard to
solve. First, there is no a single manifold to guarantee 〈W ,WA j 〉F = 1 for all the denomina-
tors. Second, the computation cost of manifold approach for n ≥ 2 is high: it takes O(2m2)

cost to compute the adjoint, with a projection step that has no closed-form solution. Details
are reported in §D of the Appendix.

Wedonot solve (W-subproblem)withn ≥ 2usingRMU(which is designed forn = 1), For
illustration, we also considered a consensus-averaging approach between all the manifolds,
which we call avgRMU. The motivation was that the manifolds can conflict with each other
in RMU, so averaging provides a natural “relaxation” to fit RMU in the intersection of the
manifolds. We remark that later we found that experiments show that this approach performs
worse than the Euclidean method, and we do not use it as our main solution.

Furthermore, we try two alternative methods.
EPG for (W-subproblem)W k+1 = [W k −η∇F(W k)]+ with a stepsize η ≥ 0. In the update,
we compute the gradient by quotient rule, ∇〈W ,WA j 〉F = WA j + WA


j , A


j = A j and

Proposition 1 as in the following proposition.

Proposition 6 The Euclidean gradient for F(W) in (W-subproblem) is

∇F(W) =
n∑
j=1

B j

〈W ,WA j 〉1/2F

− 〈B j ,W〉FWA j

〈W ,WA j 〉3/2F

. (5)

Fractional Programming (FP). We solve (W-subproblem) using FP by the Dinkelbach
transform [24] and Jagannathan’s iteration [25] with the EPG.

4 Experiment

In this section we first perform testing on verifying the effectiveness of RMU on the sub-
problems, then we test the performance of Chordal-NMF on synthetic and real datasets.

4.1 RMU on h-subproblem andW-subproblem

Test on updatingH.We compare RMU andmethodsmentioned in §2.1 on synthetic datasets
randomly generated under normal distribution N (0r , Ir ) with negative entries replaced by
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Fig. 2 Left: A typical convergence of the four methods: EPG, RMU, RADMMand RALM. In the y-axis, Fmin
refers to the smallest achieved F value across the methods. The smaller subplot is zooming the first 7× 10−3

seconds. In this test, we have (m, r) = (5, 3) and RMU is the fastest methods with strict feasibility. Right:
the results on different settings of (m, r). A ranking vector (x, y, z, ...) means the method has x times out of
100 runs having the best performance, y times out of 100 runs having the 2nd performance, and so on. There
are four methods, and the fifth number indicate how many times the method produces an infeasible solution (
having negative values) in the end

Fig. 3 Typical convergence of three methods: EPG, avgRMU and FP

zero. We performed Monte Carlo trials on datasets with different settings of (m, r). Fig. 2
shows a typical convergence of the objective function.RMUis among the fastestmethodswith
strict feasibility. RADMM (Riemannian ADMM in §2.1) is also fast, while EPG and RALM
(Riemannian Augmented Lagrangian multiplier method) has the worst convergence. In the
test, we run at most 105 iterations, or stop the algorithm when the ‖h j,k − h j,k−1‖ ≤ 10−12.
Test on updating W. As RMU for the whole sum F(W) in (W-subproblem) is compu-
tationally infeasible, we consider averaging the RMU for each manifold. We compare the
performance of three methods: EPG, avgRMU and FP. We run experiments on two synthetic
datasets randomly generated under zero-mean unit variance Gaussian distribution with neg-
ative entries replaced by zero. We performed 100 Monte Carlo runs on two datasets sizing
(m, n, r) = (10, 25, 4) and (m, n, r) = (100, 100, 4). Fig. 3 shows the typical convergence
of three methods. Generally EPG is the fastest method. For (m, n, r) = (10, 25, 4), 99 times
out of 100 MC runs EPG is the fastest and 96 times out of 100 runs FP is the 2nd fastest. For
(m, n, r) = (100, 100, 4), 93 times out of 100 MC runs EPG is the fastest and 93 times out
of 100 runs FP is the 2nd fastest. avgRMU is the slowest in all the 100 runs for both cases.
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4.2 Testing Chordal-NMF on synthetic dataset

How Chordal-NMF is applied. Given a data matrix M, we remove all zero columns, then
we normalize each column by its �2−norm. After that we run Chordal-NMF on M and get
the decomposition WH . According to the preliminary test results, for the h-subproblem, we
perform RMU (§3.1), and for the W-subproblem, we perform EPG (§3.2).
Benchmark. We compare Chordal-NMF with the classical F-norm NMF (FroNMF) based
on the algorithm HALS [1, Ch8.3.3]. We set the rank of Chordal-NMF equal to the one
in FroNMF. In the experiments, all the methods start with the same initialization, where
elements inW0, H0 are generated under uniform distribution U[0, 1]. The experiments were
conducted in MATLAB 2023a5 in a machine with OS Windows 11 Pro on a Intel Core 12
gen. CPU 2.20GHz and 16GB RAM.
Synthetic dataset. We use a dataset Mε,δ = W trueH

ε,δ
true with ε > 0, δ > 0 as

W true =
⎡
⎣
0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

⎤
⎦ , Hε,δ

true =
⎡
⎣
1 − ε δ(1 − ε) ε δε ε δε

ε δε 1 − ε δ(1 − ε) ε δε

ε δε ε δε 1 − ε δ(1 − ε)

⎤
⎦ .

The matrix W true represents a cone in R
3 (see Fig. 4). The matrix Hε,δ

true represents how we
generate the six columns of Mε,δ by conic combination of columns of W true under a small
perturbation ε and an attenuation δ. The perturbation ε represents how much the columns of
Mε,δ deviate from the columns of W true, while the attenuation δ represents how much the
columns M :2, M :4, M :6 in Mε,δ have their norm scaled downward. For δ getting smaller, it
is getting harder for FroNMF to recover H true, while it is less a problem for Chordal-NMF
since the angle between the data columns are invariant to the attenuation δ. See Fig. 4 for an
illustration.

We construct Mε,δ across different values of (ε, δ), and run Chordal-NMF and FroNMF
on each instance of Mε,δ generated. Then we extract the matrix H produced by the last
iteration of the each method, and calculate the relative error between H and Hε,δ

true as ‖H −
Hε,δ

true‖F/‖Hε,δ
true‖F . Fig. 4 shows the heat-map of the results across different values of (ε, δ),

showing that Chordal-NMF on average has a better recovery of H than FroNMF, especially
for the case when δ is small. We also compute the relative error on the matrix W , where
we found that the result on Chordal-NMF gives exactly the same performance as the one
obtained from the FroNMF6.

4.3 Testing Chordal-NMF on real-world data

NMFfinds applications in real-world data analysis [1]. An example is EarthObservation (EO)
in remote sensing. EO typically involves the utilization of hyperspectral images, which are
stored as matrices and can be effectively analyzed through NMF for unmixing purposes [26].
A conventional approach in this context involves addressing the standard NMF problem
by minimizing the point-to-point F-norm [27]. However, in this section, we introduce a
comparative analysis between the performance of FroNMF and the Chordal-NMF proposed
in this work.
The EODataset.We chose a cloudy multispectral image due to its relevance in highlighting
the advantages of employing Chordal-NMF compared to standard FroNMF for analyzing

5 The MALTAB code is available at https://github.com/flaespo/Chordal_NMF.
6 Both Chordal-NMF and FroNMF gives a 4.02% relative error on W .
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Fig. 4 Left: the plot of W true (the red, blue, green ray) and M(0.1, 0.3) (the black rays). Right: The relative
error ‖H − Hε,δ

true‖F/‖Hε,δ
true‖F for the two methods, where left gird (the first six columns) is the result from

FroNMF, and the right grid (the last six columns) is the result from Chordal-NMF. In the grid, the x-axis is
the value of δ (in log-scale) and the y-axis is the value of ε (in log-scale)

multispectral images under various cloudiness conditions. Our goal is to provide an illus-
tration of how Chordal-NMF can better manage the presence of cloud conditions, thereby
presenting itself as a useful alternative for conducting image analysis for EO. Here the matrix
M is a cloudy multispectral image in an area of Apulia region in Italy, from the Copernicus
space ecosystem7. We use a reference image obtained in cloudless conditions as the ground
truth8

The reconstruction.We run FroNMF andChordal-NMFon the cloudy dataM with the same
initialization W0, H0 obtained from random uniform distribution U[0, 1]. We run Chordal-
NMF and FroNMF with 5000 iterations. For FroNMF, we run the implementation from [1].
For Chordal-NMF, we run BCD with 25 iterations for each column on h:, j to update H , and
1 iteration of matrix-wise EPG update for W . The values of the Chordal function for the
methods are: 0.1906100 (Initial Value), 0.0014398 (Chordal-NMF), 0.001279 (FroNMF). It
took ChordalNMF 2775 seconds (about 0.5 second per iteration), while it took FroNMF 2
seconds. Fig. 5 shows an RGB representation of the ground truth (cloudless reference image),
the cloudy data M, and the reconstruction obtained from Chordal-NMF and FroNMF on M.
Further analysis on the three selected areas. In Fig. 5, three boxes were chosen to represent
three distinct cloud conditions: the red box is a cloudy area, the cyan box is a less-cloudy
areas, and the yellow box is a cloudless area.We compute the spectral signatures of the pixels
in these areas, and their mean behavior is plotted in Fig. 6. We numerically compared these
spectral profile vectors by two criteria:

1. SID-SAM between the spectral profile vectors. Given two spectral profile vectors
t = [t1, ..., tN ] and r = [r1, ..., rN ], we compute p = t/‖t‖2, q = r/‖r‖2, and then we
compute the SID-SAM [28] of the spectral information divergence (SID) and the spectral
angle mapper (SAM), defined as SID-SAM = SID × tan α, where

SID =
N∑
i=1

pi log
pi
qi

+
N∑
i=1

qi log
qi
pi

, α = cos−1

⎛
⎝

N∑
i=1

ti ri

/√√√√
( N∑

i=1

t2i

)( N∑
i=1

r2i

)⎞
⎠ .

2. �2-norm of the difference between the spectral profile vectors. That is, ‖t −
tChordalNMF‖2 and ‖t − tFroNMF‖2.

7 Pixel size rows:150, cols:290 and bands:12. Data from https://dataspace.copernicus.eu/
8 The cloudy image and the cloudless image are obtained in the same condition (except the cloudiness) with
a temporal difference of 5 days.
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Fig. 5 The RGB image of a scene. Top left: the cloudless reference image. Top right: the cloudy data image.
Bottom left: the reconstruction obtained by FroNMF. Bottom right: the reconstruction obtained by Chordal-
NMF. In the images, the three color-boxes are selected areas under different cloundiness in which we perform
further quantitative analysis

Fig. 6 From left to right: the spectral signatures of the pixels in the red/cyan/yellow box in Fig.5. In all the
three cases, the spectral profile of obtained by Chordal-NMF is on average closer to the cloudless reference
spectral profile

Table 2 The numerics of the pixels in the three boxes

Red box Cyan box Yellow box
Compared with cloudless SID-SAM �2 SID-SAM �2 SID-SAM �2

Cloudy data 2.2559 0.2655 0.0633 0.2154 0.0807 0.1594

FroNMF 2.0214 0.2650 0.5518 0.1901 0.3574 0.1458

Chordal-NMF 0.2090 0.2116 0.1486 0.1487 0.1161 0.1161

Results are reported in Table 2 for the three areas, in which Chordal-NMF achieves a
better performance.

On the cloudy image recovery, we see that Chordal-NMF is always better than FroNMF
regardless of the cloudiness of the image by achieving a lower SID-SAM value and a lower
�2-norm value. For example, in the red box, Chordal-NMF seems to have a better recovery
of the region under the cloud.
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Fig. 7 The Samson dataset and the rock abundances map of the decompositions. From left to right: the data,
the abundance maps obtained form FroNMF and Chordal-NMF

Performance on Samson dataset We test our approach also on a benchmark dataset for
EO applications: Samson dataset [1]. In this image, there are 95 × 95 pixels, each pixel is
recorded at 156 channels. This dataset is not challenging as many analyses have been already
carried out [27]. Even if it is well known from the literature that there are three targets
in the image, we want to highlight how Chordal-NMF is better at extracting the rock/soil
component. Fig. 7 shows the abundance map from the FroNMF and Chordal-NMF. We can
see that the Chordal-NMF is able to recover rock under shadow water regions near the coast
better than FroNMF.

5 Conclusion

In this work, we introduced a NMF model called Chordal-NMF, which is different from
the classical NMF using a point-to-point Euclidean distance, Chordal-NMF uses a ray-to-
ray distance. Based on the geometric interpretation that NMF describes a cone, we argued
that chordal distance, which measures the angle between two vector in the nonnegative
orthant, is more suitable than the Euclidean distance for NMF. Under a BCD framework,
we developed a new projection-free algorithm, called Riemannian Multiplicative Update to
solve the Chordal-NMF, where Riemannian optimization technique is used. We showcase
the effectiveness of the Chordal-NMF on the synthetic dataset and real-world multispectral
images.

A The proof of Proposition 1

Proof Let h(x) = (g ◦ f )(x) = (
f (x)

)2 where g : R → R : x �→ x2 is convex, increasing
(on R+) and differentiable, then by chain rule ∂(g ◦ f )(x) = g′( f (x))∂ f (x), which gives

∇h(x) = 2 f (x)∇ f (x) = 〈Ax + b, c〉
2‖Dx + e‖2 ∇ f (x). (chain-rule)

Now by the definition h(x) = (
f (x)

)2, so

∇h(x) = ∇
((〈Ax + b, c〉

)2

‖Dx + e‖22

)
. (grad-h)
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Equate (chain-rule) and (grad-h) gives ∇ f (x) = ‖Dx + e‖2
〈Ax + b, c〉∇

((〈Ax + b, c〉)2
2‖Dx + e‖22

)
. By

assumption Dx + e �= 0, we use quotient rule ∇ f

g
= g∇ f − f ∇g

g2
to arrive at

∇ f (x) = ‖Dx + e‖2
〈Ax + b, c〉

‖Dx + e‖22∇
(〈Ax + b, c〉)2 − (〈Ax + b, c〉)2∇‖Dx + e‖22

2‖Dx + e‖42
= ‖Dx + e‖22∇

(〈Ax + b, c〉)2 − (〈Ax + b, c〉)2∇‖Dx + e‖22
2〈Ax + b, c〉‖Dx + e‖32

= ‖Dx + e‖222〈Ax + b, c〉A
c− (〈Ax + b, c〉)22D
(Dx + e)

2〈Ax + b, c〉‖Dx + e‖32
= ‖Dx + e‖22A
c− 〈Ax + b, c〉D
(Dx + e)

‖Dx + e‖32
.

��

B The proof of Proposition 4

In this appendix, we give the proof of Proposition 4 for themetric retraction over the ellipsoid.

Proof To show that (R-ellipsoid) is a retraction, we use the definition of retraction in §2.2.
Consider a continuous curve c : R → Er−1

A , that is smooth for all variables (ζ , ξ) ∈ R
r ×R

r ,

defined as c(t) = Rζ (tξ) = (ζ + tξ)/

√
1 + t2‖ξ‖2E . Then c(0) = ζ and

c′(0) := dc(t)

dt

∣∣∣∣
t=0

= ξ − tζ‖ξ‖2E
(1 + t2‖ξ‖2E )

√
1 + t2‖ξ‖2E

∣∣∣∣
t=0

= ξ .

So R is a retraction for Er−1
A . ��

C Derivation of content in Table 1

Consider (W-subproblem) with n = 1. Following the discussion in §3.1, we get grid of the
denominator 〈W ,WA1〉F in by introducing a constrainedproblemargmaxW≥0〈B j ,W〉F s.t.
〈W ,WA1〉F = 1.We note that A1 is a rank-1 symmetric positive semi-definite (PSD) matrix
with two eigenvalues: a single positive eigenvalue and 0withmultiplicity r−1.Moreover, A1

has its square-root A1/2
1 , so 〈W
W , A1〉F = 〈W
W , A1/2

1 A1/2
1 〉F = 〈WA1/2

1 ,WA1/2
1 〉F =

〈W ,W〉A1/2
1

allows us to define the manifold M1 as

M1 =
{
W ∈ R

m×r | 〈W ,W〉A1/2
1

− 1 = 0
}
. (Shell of twisted spectrahedron)

The term spectrahedron [29] refers to the eigen-spectrum of a matrix behaves like a polyhe-
dron, while the word “twisted” refers to the linear transformation A1.
Tangent space. On a singleM j , let h(W) = 〈W ,WA j 〉F − 1 defineM j , its differential is
Dh(Z)[Z] = 2〈WA j , Z〉F. The tangent space ofM j at a reference point Z ∈ M j , denoted
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as TZM j , is

TZM j :=
{
W ∈ R

m×r
∣∣ 〈ZA j ,W〉F = 0

}
= KerDh(W). (6)

Projection onto tangent space, and Retraction. We define the adjoint operator of

Dh(W)[Z] as Dh(W)∗[α] = 2αWA j , where α takes the value α = 1

2

〈W , ZA j 〉F
‖ZA j‖2F

obtained

by solving the least squares problem α = argmin
α∈R

∥∥W −Dh(Z)∗[α]∥∥2F. Now by Dh(W)∗[α],
α, the definition of projector onto tangent space [18, Def3.60], and the property of orthogonal
projector [18, Eq.7.74], we have the projector projTZM j

(W) = W − Dh(Z)∗[α] as shown
in the following proposition.

Proposition 7 The map projTZM j
: Rm×r → TZM j that brings W onto the tangent space

at the reference point Z defined as

projTZM j
(W) = W − 〈ZA j ,W〉F

‖ZA j‖2F
ZA j (7)

is an orthogonal projector.

Proof The proof follows the same arguments used in the proof of Proposition 3. ��
Proposition 8 (Retraction) The map RZ : TZM j → M j defined as

RZ(W) = W + Z
‖Z + W‖A1/2

j

TZM j= Z + W√
1 + ‖W‖2

A1/2
j

, (R)

is a metric retraction for the manifold M j .

Proof For a continuous curve c : R → M j that is smooth for all (W , Z) ∈ R
m×r × R

m×r ,
defined as

c(t) = RZ(tW) = Z + tW√
1 + t2‖W‖2

A1/2
j

.

We have c(0) = Z and the following so (R) is a retraction for M j :

c′(0) := dc(t)

dt

∣∣∣∣
t=0

=
W − t‖W‖2

A1/2
j

Z
(
1 + t2‖W‖2

A1/2
j

)√
1 + t2‖W‖2

A1/2
j

∣∣∣∣
t=0

= W .

��

DDetails of manifold approach for W-subproblemwith n = 2

Consider n = 2 in (W-subproblem). By the fact that the Cartesian products of manifolds are
manifolds, we consider product space M1 × M2. Define

M[2] =
{
W ∈ R

m×r
∣∣h(W) = 02

}
where h : Rm×r → R

2 : W �→
[〈W ,WA1〉F − 1
〈W ,WA2〉F − 1

]
.

(Spectrahedra)
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Wecall themanifoldM[2] “spectrahedra” as it is constructed by spectrahedron.We now com-
pute its tangent space. Following arguments in §3.1 and §C, we have the following results
that we hide the proofs. The function h in (Spectrahedra) has the differential Dh(W)[Z] =
2

[〈WA1, Z〉F
〈WA2, Z〉F

]
. The tangent space of M[2] is the set TZM[2]:=

{
W
∣∣ 〈WA1, Z〉F =

〈WA2, Z〉F = 0
}
, its adjoint is

Dh(W)∗[α] = 2α1WA1 + 2α2WA2 = 2W(α1A1 + α2A2).

Let vec be vectorization and let ⊗K be the Kronecker product, now the α that minimizes∥∥W − Dh(Z)∗[α]∥∥2F also minimizes

∥∥∥vec
(
W − 2Z(α1A1 + α2A2)

)∥∥∥
2

2
=
∥∥∥vec(W) − 2(I ⊗K Z)vec

(
α1A1 + α2A2

)∥∥∥
2

2

=
∥∥∥∥vec(W) − 2(I ⊗K Z)

[
vecA1 vecA2

] [α1

α2

] ∥∥∥∥
2

2
.

To simplify the notation, let SZ = (I ⊗K Z)[vecA1 vecA2], where the subscript Z
indicates the dependence of Z. Now α is the root of the following normal equation

S

Z SZ

[
α∗
1

α∗
2

]
= 1

2
S

ZvecW �⇒ α∗ = 1

2
(S


Z SZ)−1S

ZvecW = 1

2
S†ZvecW .

Now the orthogonal projector projTZM[2] : Rm×n �→ M[2] is

projTZM[2](W) = W − 2Z
2∑
j=1

1

2

(
S†ZvecW

)
j
A j = W − 2Z(α∗

1 A1 + α∗
2 A2). (8)

The Riemannian gradient is then

gradF(W) = 2projTZM[2]
(
∇F(W)

)
(8)= ∇F(W) − 2Z(α∗

1 A1 + α∗
2 A2). (9)

Note that the value of α∗
1 and α∗

2 in (9) is an implicit function of Z and ∇F(W) as we have

that

[
α∗
1

α∗
2

]
= 1

2

⎡
⎣
(
S†Zvec∇F(W)

)
1(

S†Zvec∇F(W)
)
2

⎤
⎦ . So the explicit expression of the Riemannian gradient

is

gradF(W) = ∇F(W) − Z
(
S†Zvec∇F(W)

)
1
A1 − Z

(
S†Zvec∇F(W)

)
2
A2.

Then we compute grad+F = max{gradF, 0} and grad−F = max{−gradF, 0} to proceed
with RMU.

In conclusion, we can see that to run RMU on M[2], there are challenges:

• the computation of α∗, which includes the computation of SZ ∈ R
m2×2, S†Z ∈ R

2×2, in
which all these terms have to be re-computed in each iteration.

• the computation of the metric projection onto M[2] itself is a difficult problem.
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