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Facial Attractiveness for Enhanced Face Recognition: A Novel Soft Biometric Trait

by Moneera Habeeb Alnamnakani

This research introduces facial attractiveness as a significant new feature in soft
biometrics, aimed at enhancing the accuracy of automated facial recognition systems.
Despite its potential to improve recognition systems, facial attractiveness, unlike
other standard features such as age, gender, and skin colour, has not received
extensive research attention. This study addresses this gap by demonstrating that
facial attractiveness can serve as an additional and valuable attribute for identifying

individuals.

This research employs a comparative analysis approach to measure facial attractiveness
through a structured evaluation method that combines soft biometric data with
machine learning techniques. = The method involves collecting and ranking
attractiveness attributes using the Elo rating system, which are then integrated
into recognition models. Experiments indicate that facial attractiveness improves

recognition performance, proving its usefulness in automated systems.

Additionally, this research examines the psychological and social aspects of facial
attractiveness and considers how they can influence the functionality of automated
systems. It discusses the challenges of measuring attractiveness consistently across
different datasets, providing a clear overview of the limitations.

Notably, the findings demonstrate that models using soft-biometric attributes alone,
including attractiveness, consistently outperformed systems that combined these
attributes with Eigenface representations. This outcome underscores the discriminative
strength of soft biometrics as standalone inputs rather than supplementary
enhancements.

Although this study does not use deep learning techniques, it establishes a foundation
for future research by proposing an innovative approach to incorporating facial
attractiveness into biometric systems. The author avers that this is the first study to

thoroughly explore facial attractiveness as a soft biometric feature.
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Chapter 1

Context and Contributions

This chapter describes the research context, outlines its contributions, and introduces
the thesis structure. It highlights the importance of facial attractiveness as a soft
biometric and explains how it will be explored in the following chapters.

1.1 Context

Biometric technology has transformed identity verification by analysing individuals’
unique physical or behavioural traits. While traditional methods—such as fingerprints,
DNA, and iris scans—are highly effective, they require the subject’s presence. In
contrast, soft biometrics (e.g., gender, height, and facial attributes) are generally easier
to observe and can often be collected from a distance (Jain et al. (2006)).

face recognition is one of the most widely used biometric approaches because it
does not require physical contact (Ali and Gaber (2023)), making it appropriate for
security, surveillance, law enforcement, and personal device access (Sinha et al. (2006)).
Moreover, the human face holds a wealth of information, including gender, age,
emotional expressions, and attractiveness (Cross et al. (1971)). However, changes
in lighting, pose, or image resolution can limit the effectiveness of traditional
face recognition systems. Soft biometrics help by introducing extra flexibility and
enhancing reliability, addressing many challenges (Guo and Zhang (2019a)).

1.1.1 Importance of Facial Biometrics

face recognition supports security and surveillance by identifying individuals on
CCTV, enhancing public safety (Reid et al. (2013)). In law enforcement, it can identify
suspects and assist in crime resolution without direct physical contact. However,
the requirement for high-quality images can reduce effectiveness in uncontrolled
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environments. Soft biometrics help resolve these issues by providing additional data
and making these systems more adaptable (Guo et al. (2019), Ben Fredj et al. (2021),
Hassan et al. (20210)).

1.1.2 The Role of Soft Biometrics

Soft biometrics include traits like skin colour, eyebrow shape, and facial attractiveness.
They require minimal cooperation from the individual, can be acquired from a distance,
and work alongside traditional biometrics to improve identification accuracy. They
also bridge the gap between how humans naturally describe people—through terms
like “tall,” “dark-haired,” or “attractive”—and the more rigid methods that computers
use for identification (O’Toole et al. (2002)).

1.1.3 Facial Attractiveness as a Biometric Trait

Although researchers have investigated the potential impact of perceived
attractiveness on face recall and recognition (Davies and Valentine (2007), O’Toole
et al. (2002)), facial attractiveness has not been widely studied as a soft biometric.
While prior studies investigated perceived attractiveness in facial recall, this work was
among the first to quantitatively operationalise it as a comparative soft biometric. Since
people tend to remember attractive faces more efficiently, this trait could be especially
valuable in legal or investigative situations. For instance, a witness might describe
a suspect as “attractive,” providing a valuable lead for an investigation (Davies and
Valentine (2007)). Attractiveness also appears to be less affected by changes in lighting
or pose, suggesting it could serve as a stable attribute for face recognition (O’Toole
et al. (2002)). Based on these observations, this study introduces facial attractiveness as
a soft biometric trait.

1.1.4 Bridging the Semantic Gap

Soft biometrics help close the gap between how humans describe individuals and how
machines interpret those descriptions. Because they do not require close contact and
can adapt to various real-world conditions, they also lend themselves to analysing
eyewitness reports, which is highly relevant in law enforcement and forensic work
(Alnamnakani et al. (2019); Almudhahka et al. (2017)). The current study investigates
whether facial attractiveness—often mentioned in witness accounts—could be an
effective soft biometric. By systematically assessing the impact of attractiveness on
identification accuracy, it demonstrates how integrating this trait could enhance face

recognition systems.
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Overall, these insights suggest that soft biometrics—especially facial
attractiveness—can address some of the limitations of traditional face recognition. By
relying on naturally observable traits, these systems may become more flexible and
dependable in diverse settings. Therefore, this study examines how attractiveness,
frequently noted in eyewitness accounts, could function as a valuable soft biometric,

potentially boosting accuracy and adaptability in various applications.

1.2 Contributions

This thesis explores the role of facial attractiveness as a soft biometric trait and its
impact on enhancing recognition accuracy. The following contributions were made,
each supported by empirical findings and detailed methodology across Chapter 3 to
Chapter 7:

1. Facial attractiveness was modelled quantitatively using a comparative approach.
While prior studies focused on psychological perceptions of attractiveness
(Alnamnakani et al. (2019); O’'Toole et al. (2002); Davies and Valentine (2007)), this
thesis developed a structured framework for converting perceived attractiveness

into a usable biometric descriptor for machine learning (Chapter 3).

2. A novel annotation pipeline was designed, where annotators provided relative
pairwise comparisons using a three-point scale. ~These were transformed
into quantitative scores using Elo rating, resulting in interpretable, scalable

attractiveness features (Chapter 3).

3. A comparative recognition framework was introduced, enabling face matching
based on relative rather than absolute attributes. This improved performance
in unconstrained environments and expanded the applicability of attractiveness-
based features in practical scenarios (Ben Fredj et al. (2021); Guo and Zhang
(20194)) (Chapters 3 and 4).

4. Experiments showed that attractiveness, when used as an independent soft-
biometric feature, improved both verification and identification accuracy,
especially under variations in pose, lighting, and resolution. The improvements
were validated statistically through cross-validation and paired t-tests (Jain et al.
(2006); Dantcheva et al. (2011)) (Chapters 4 and 6).

5. An “attractiveness-guided recognition” strategy was proposed, where
attractiveness directly influenced recognition decisions. This concept was
implemented and evaluated in the recognition pipelines presented in Chapter 5
(Kim et al. (2023)).
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6. It was demonstrated that combining attractiveness with other soft-biometric
features—such as age, gender, and skin colour—enhanced performance.
However, attribute-only models (i.e., without Eigenfaces) consistently
outperformed eigenface-enhanced systems, even when using the same feature
set. This finding, detailed in Chapter 6, highlights the strength of soft biometrics
as standalone inputs rather than supplementary enhancements (Almudhahka
et al. (2017); Alnamnakani et al. (2019)).

Together, these contributions support the use of facial attractiveness as a measurable
and effective soft biometric trait. The findings are intended to inform the development
of more human-centred biometric systems that can operate reliably in real-world
conditions.

1.3 Soft Biometric Processes

Soft biometric identification merges human perception with computational methods to
visually describe and characterise individuals, focusing on facial attractiveness (Reid
etal. (2013)). Human annotators provide attractiveness ratings, which a ranking system
(e.g., Elo) converts into consistent, quantifiable scores. Machine learning then uses
these scores for identification tasks, such as identifying individuals who match certain
attractiveness traits reported by witnesses (O'Toole et al. (2002)). This method imposes
an objective structure on subjective opinions, enhancing precision and utility in face

recognition.

1.4 Synthesising Biometrics and Attractiveness

Uniting human perception, image analysis, and machine learning is central to this
research. As shown in Figure 1.1, facial attractiveness is integrated into biometric
systems through the following steps:

* Human Perception: Human observers play a crucial role in evaluating and
annotating facial attractiveness. These ratings then serve as a baseline for training
machine learning models, which are later analysed by the system (Reid et al.
(2013),Davies and Valentine (2007), Cross et al. (1971)).

* Image Analysis: Once human annotations are collected, image analysis tools
transform them into structured data formats. This structured data enables further
processing by machine learning algorithms (Sinha et al. (2006), Hassan et al.
(2021a)).
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* Machine Learning: Machine learning automates the analysis, prediction, and

recognition of attractiveness-based traits. By leveraging annotated datasets,
algorithms are trained to evaluate new, unseen images, replicating human-like
judgement. This process enhances biometric systems by providing consistent
and scalable evaluations of facial attractiveness (Ben Fredj et al. (2021), Guo and
Zhang (2019a), O’Toole et al. (2002)).

¢ Facial Attractiveness: Facial attractiveness plays a critical role in refining

recognition systems. By leveraging comparative analysis, it enhances accuracy
and robustness, making it an essential feature for biometric systems (Kim et al.
(2023), Sinha et al. (2006), Zebrowitz (2018)).

Facial Attractivenes

__— Automated.
Attractiveness

Attractivenéés

pa perception ‘sttractiveness
// based
I“-‘"Human Perception Recognition
\ N Attractiveness
\ guided :
\\.\ Recognition
Attractiveness | - Image Analysis
Description & / Prediction &
Analysis AN Analysis
Human <+ -=—==—=—=—=—=—=== Analysis =========~ - Computer

FIGURE 1.1: This illustrates the convergence of human perception, image analysis,

and machine learning to integrate facial attractiveness into biometric systems. Human

annotators assign attractiveness labels, image analysis converts those labels into

structured data, and machine learning automates the process of analysing, predicting,
and applying these traits (Kim et al. (2023), Alnamnakani et al. (2024)).

Applying an objective framework to subjective impressions transforms human

opinions into data-driven methods that significantly advance biometric technology.

Figure 1.1 highlights how each component contributes to a more flexible and reliable

system, enabling facial attractiveness to play a key role in modern identification tasks.

1.5 Publications

The following publications have ensued from this study:
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1. Alnamnakani, M., Mahmoodi, S. and Nixon, M., 2019, October. “On the Potential
for Facial Attractiveness as a Soft Biometric.” International Symposium on Visual
Computing (pp. 516-528). Springer, Cham.

2. Alnamnakani, M., Mahmoodi, S. and Nixon, M., 2024. Using Facial
Attractiveness as a Soft Biometric Trait to Enhance Face Recognition Performance.
In Face Recognition Across the Imaging Spectrum (pp. 31-55). Singapore:
Springer Nature Singapore.

1.6 Thesis Overview

This thesis comprises eight chapters, each building on concepts introduced in the first
chapter, where the background of the study and its importance were provided. A more

detailed examination of the subsequent chapters is presented below.

¢ Chapter 2:

This chapter considers facial attractiveness a valuable soft biometric. Research
in psychology and neuroscience shows that certain universal traits affect how
people perceive attractiveness, and data from the real world indicate that it has a
significant impact on society and the economy. Although cultural factors add
complexity, studies suggest that attractiveness could enhance face recognition
systems, even though it has been explored only in a limited manner in biometric
research.

¢ Chapter 3:
This chapter introduces a comparative approach to facial attractiveness.
Crowdsourced annotations based on a three-point scale are converted into Elo
ratings, generating dynamic and relative scores. This method effectively uses
attractiveness as a soft biometric, which improves the accuracy of recognition

and gives a way to add it to automated systems.

¢ Chapter 4:
This chapter examines facial attractiveness as a soft biometric trait. Correlation
analysis reveals strong links to youthfulness, smooth skin, and symmetry.
Feature-selection methods (MI and SFFS) identify attractiveness as highly
discriminative, comparable to age and gender. Experiments demonstrate that
adding attractiveness raises verification and identification rates, and statistical

tests confirm the significance of these improvements.

¢ Chapter 5:
This chapter describes an automated face recognition pipeline that incorporates
facial attractiveness alongside age, gender, and skin colour. It covers image



1.6. Thesis Overview 7

preprocessing and facial feature extraction, culminating in a PCA /Eigenfaces
approach. This streamlined method sets the stage for the next chapter’s

investigation of how attractiveness influences recognition accuracy.

¢ Chapter 6:
This chapter demonstrates how facial attractiveness can be integrated into an
automated face recognition system. It employs the Eigenface (PCA) method for
dimensionality reduction and an RBF SVM on the LFW dataset to form a clear
baseline.

e Chapter 7:
This chapter highlights the final results, demonstrating how incorporating facial
attractiveness as a soft biometric feature can enhance face recognition systems.
When combined with existing facial attributes, attractiveness provides distinct
and complementary information, leading to improved identification accuracy.

¢ Chapter 8:
In the concluding chapter, the outcomes of the study are summarised. The
study also offers suggestions for future research, focusing on exploring facial
attractiveness to enhance biometric systems.

In summary, this chapter clarifies the significance of the study’s background and
establishes a foundation for the detailed discussions and findings in the ensuing
chapters. Although deep learning techniques (CNNs/Transformers) are beyond the
scope of this study, the findings here establish a foundational framework that could be

extended in future research to leverage advanced architectures.






Chapter 2

Soft Biometrics and Facial
Attractiveness

Building on the ideas presented in Chapter 1, this chapter examines facial attractiveness
as a soft biometric trait and explores its potential impact on recognition systems.
It begins by defining facial attractiveness and discussing its effects on individuals
in social, psychological, and technological contexts, including relationships, career
opportunities and legal outcomes. Recognising facial attractiveness as a soft biometric
attribute shows how it could improve recognition systems. Finally, the chapter
introduces key concepts in biometrics and soft biometrics, preparing the reader for the

discussions that follow.

2.1 Attractiveness of the Human Face

Facial attractiveness involves not merely physical beauty; it concerns a complex
interaction of personal presentation, psychological perception, and cultural
interpretation. Research suggests that people focus more on attractive faces, which
can influence social interactions, job opportunities, and overall treatment in society
(Langlois et al. (2000), Liu, Fan, Samal and Guo (2016)). Advances in neuroscience have
demonstrated specific brain activity patterns when individuals observe attractive faces
(Fan et al. (2012), Mitsuda and Yoshida (2006)). Concurrently, artificial intelligence
(Al) techniques are increasingly used to assess and predict facial attractiveness in
fields such as fashion, entertainment, and marketing (Bougourzi, Dornaika and
Taleb-Ahmed (2022), Guo and Zhang (2019a)).

In biometrics, these scientific and technological developments emphasise the potential
of facial attractiveness as a soft biometric trait (Nixon et al. (2015), Reid et al. (2013)).
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2.1.1 Expression of Facial Attractiveness

Despite their frequently interchangeable usage, beauty and attractiveness are distinct
concepts. According to Langlois et al. (2000), beauty principally refers to physical
traits and aesthetic attractiveness, while attractiveness encompasses a broader range
of qualities such as charisma, personality, and social attractiveness. Consequently,
attractiveness transcends cultural beauty standards and highlights the overall qualities
that make someone attractive (Bougourzi, Dornaika and Taleb-Ahmed (2022), Langlois
et al. (2000)).

Beautiful Face

Attractive Face

FIGURE 2.1: Relationship between beauty and attractiveness.

Figure 2.1 illustrates how beauty fits within the broader concept of attractiveness.
While beautiful faces are generally considered attractive, not all attractive faces
necessarily conform to conventional beauty standards. This distinction highlights the
complexity of attractiveness, which includes physical attributes and psychological and
behavioural dimensions that shape human perception.

Studies suggest that attractiveness involves physical, social, and psychological
elements. For instance, Geldart found that people tend to spend more time observing
faces they find attractive rather than those they deem merely beautiful. This result
supports the Gestalt principle that the whole is greater than the sum of its parts (Geldart
(2010)). Additionally, a strong correlation (r = 0.94) between beauty and attractiveness
confirms their overlap. Attractiveness is often evaluated holistically, incorporating
traits such as confidence and charisma (Wagemans et al. (2012)).

In practical contexts, such as witness testimonies, attractiveness influences how well
people remember specific faces. Research indicates that attractive individuals tend to
make a stronger and more lasting impression owing to the integration of their physical
traits with social and behavioural cues (Malloy et al. (2021)). This is particularly
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important in legal settings, where witnesses are more likely to recall and identify
individuals with attractive physical traits and engaging behavioural qualities, such
as confidence or a friendly demeanour. These findings confirm that attractiveness
influences visual attention, emotional engagement, and memory retention (Rhodes
(2006), Malloy et al. (2021)).

In summary, attractiveness is much more than mere physical appearance and can
significantly impact human interactions, especially in law enforcement and legal
contexts where memory and judgement are crucial. After discussing the perception of

attractiveness, the next section delves into its broader social and economic implications.

2.1.2 The Value of Attractive Faces

The impact of beauty and attractiveness on people’s lives has been recognised since
ancient Greece, when it was widely believed that beauty significantly influenced
personal and societal outcomes (Laurentini and Bottino (2014)). One emblematic
classical trope refers to Helen of Troy, whose legendary beauty is said to have “launched
a thousand ships,” illustrating the perceived power of attractiveness throughout
history. Facial attractiveness shapes everyday social interactions and broader societal
trends (Fan et al. (2012)). Its impact is evident in areas such as modelling, acting, and
digital entertainment, as well as career advancement, financial stability, and personal

relationships (Liu, Luo, Wang and Tang (2016)).

People often receive differential treatment based on their appearance, despite the ideals
of equality. In societies where physical attractiveness is highly valued, individuals
considered unattractive or unusual may face challenges such as low self-esteem, social
isolation, and even mental health issues like depression (Grammer et al. (2003), Zhang,
Chen, Xu et al. (2016)). Consequently, attractiveness often becomes a key factor when

making new connections or meeting people (Laurentini and Bottino (2014)).

While beauty standards can vary across cultures, recent studies suggest that
perceptions of facial attractiveness are not entirely subjective. Research across cultures
shows that people from various backgrounds tend to agree on which facial features
are attractive. For instance, infants—regardless of their cultural surroundings—tend to
gaze longer at faces that adults consider attractive (Fan et al. (2012), Rhodes (2006)).

These results suggest that facial attractiveness may have biological foundations.
Traits like symmetry, averageness, and unblemished skin are regarded as attractive,
regardless of cultural differences. Studies that rank facial attractiveness often show
high levels of agreement across cultures, indicating that health and genetic fitness
characteristics are universally attractive (Rhodes (2006), Grammer et al. (2003)).
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Therefore, while cultural influences shape beauty ideals, growing research points
to universal biological and psychological factors that guide people’s perceptions
of facial attractiveness. This broader understanding helps explain why facial
attractiveness significantly impacts social interactions, professional opportunities, and
legal proceedings.

2.1.2.1 Attractiveness in Social, Economic, and Judicial Contexts

Facial attractiveness significantly influences decisions in legal, economic, and social
situations. It can affect hiring decisions, legal rulings, and social interactions. Research
indicates that attractive defendants are often treated more leniently in court—being less
likely to be convicted and, when convicted, receiving shorter sentences—relative to less
attractive counterparts (Yang et al. (2019)).

FIGURE 2.2: Jeremy Meeks'’s life changed dramatically, moving from crime to fame
and the fashion world because of his attractiveness (French (2015)).

A notable example is Jeremy Meeks (Figure 2.2), whose physical attractiveness helped
him transition from a criminal background to a successful modelling career (French
(2015)). Similarly, serial killer Ted Bundy is an example of how charm and good looks
enable a criminal to earn the trust of unsuspecting victims. Even after he confessed,
some people were drawn to him and continued to defend him (Figure 2.3) (Etcoff
(1999)).

Facial attractiveness also affects economic decisions. Research shows that job
applicants perceived as more attractive often enjoy an advantage in hiring processes,

reflecting biases in professional environments (Rich and Ashby (2014)). This preference
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FIGURE 2.3: Ted Bundy: An example often cited for how perceived attractiveness and
charm can influence trust.

has contributed to the growth of the cosmetics and plastic surgery industries, where
spending on appearance often exceeds investment in education and social services
(Laurentini and Bottino (2014)).

These findings highlight the significant impact of facial attractiveness, including its
advantages and the biases it may create. Recognising attractiveness as an important
trait can enhance automated recognition systems, improving accuracy and robustness
(Liu, Luo, Wang and Tang (2016)).

2.1.3 Facial Attractiveness in Philosophy and Psychology

Philosophers, psychologists, and scientists have long debated how to define or measure
facial beauty, from Aristotle’s writings over two millennia ago to Darwin’s scientific
enquiries (Kagian et al. (2006), Bougourzi, Dornaika and Taleb-Ahmed (2022)). These
debates focus on what makes a face attractive, why it matters, and which factors
play a role, particularly questioning whether attractiveness is subjective or objective.
The familiar saying “Beauty is in the eye of the beholder” reflects a view that
facial attractiveness is deeply personal, non-deterministic, and culturally influenced
(Laurentini and Bottino (2014), Liu et al. (2019)).

However, the possibility of attractiveness having objective components has been
discussed for centuries in philosophy, psychology, and biology. Research shows that
infants—unaffected by cultural norms—look longer at faces that adults consider
attractive. Moreover, adults from different cultural or racial backgrounds show similar
ratings of faces, even when those faces are from a less familiar racial group (Fan et al.
(2012), Kagian et al. (2006), Grammer et al. (2003), Liu, Fan, Samal and Guo (2016),
Rhodes (2006)). This parallel between infant and adult perceptions suggests a shared

standard of attractiveness.

Recent studies reveal that human perception of facial attractiveness may include
objective elements acknowledged across diverse backgrounds. Some components of
beauty could be rooted in human biology rather than dictated solely by social or
cultural norms (Liu, Fan, Samal and Guo (2016), Liu et al. (2019)). Consequently,
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numerous empirical rating studies have found that people of various ethnicities, ages,
genders, and societies generally agree on which faces are more attractive (Elmer and
Houran (2020), Luo et al. (2019)). This broad consensus implies that facial attractiveness
does contain universal qualities, making it a compelling topic for systematic and
objective research (Liu, Fan, Samal and Guo (2016)).

2.1.4 Facial Attractiveness in Psychophysiology and Neuropsychology

Psychophysiological and neuropsychological research has identified specific brain
regions that process facial attractiveness. Functional MRI scans reveal distinct patterns
of brain activity when individuals assess the attractiveness of two-dimensional images.
Notably, these patterns can be non-linear, meaning highly attractive and unattractive
faces elicit strong neural responses. Studies using near-infrared spectroscopy (NIRS)
(Mitsuda and Yoshida (2006)) and event-related potentials (ERP) (Schacht et al. (2008))
reinforce these observations. Although research in this field is nascent, these findings
suggest a potential for more “objective” methods of evaluating attractiveness without
relying solely on predefined categories (Laurentini and Bottino (2014), Bottino and
Laurentini (2010)).

2.2 Facial Attractiveness in Machine Perception

While the human brain can effortlessly judge facial attractiveness, enabling machines
to do the same remains a complex challenge (Liu, Fan, Samal and Guo (2016)).
Numerous studies have attempted to evaluate and quantify facial attractiveness using
computer technology (Bougourzi, Dornaika and Taleb-Ahmed (2022), Lebedeva et al.
(2021)). Consequently, techniques for attractiveness estimation are now used in
various applications, including social media, aesthetic surgery planning, modelling,
entertainment, magazine covers, and recruitment (Bougourzi, Dornaika, Barrena,
Distante and Taleb-Ahmed (2022)).

More recent approaches have expanded these methods to enhance facial images,
recommend social network connections, offer cosmetic advice, and guide aesthetic
surgery (Saeed and Abdulazeez (2021)). These advances highlight growing expertise

in identifying the elements that enhance a face’s attractiveness to observers.

To understand facial attractiveness computationally, researchers have developed new
applications and methods that rely on Al, image processing, and pattern recognition
(Saeed and Abdulazeez (2021), Kagian et al. (2006)). Machine learning, deep learning,
and computer vision efforts aim to define attractiveness more precisely, enabling
automated systems to evaluate it in a way that mirrors human perception.
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Although research on computer-based facial attractiveness is still in its early stages,
it has the potential to greatly refine how technology aligns with human perception
(Laurentini and Bottino (2014)). It may well transform current studies, offering
fresh opportunities where technology and human perception intersect. Soft biometric
attributes, such as facial attractiveness, could significantly enhance face recognition
systems. However, technical and ethical challenges remain. Variations in pose, lighting,
and resolution can complicate the accurate integration of attractiveness as a biometric
trait. Additionally, privacy and algorithmic bias issues must be addressed to ensure

fair and responsible implementation of such systems.

2.2.1 Facial Attractiveness in Soft Biometrics

Though recent advances in computer vision, machine learning, and deep learning have
increased interest in facial attractiveness, its role as a soft biometric remains relatively
understudied. Traditional biometrics typically focus on fixed physical traits, whereas
soft biometrics encompass descriptive features like attractiveness that have yet to be
thoroughly examined. For instance, (Kumar, Berg, Belhumeur and Nayar (2011))
initially labelled “Attractive Man” and “Attractive Woman” as soft biometric categories
but did not investigate them thoroughly. Consequently, the present research offers a
comprehensive, in-depth analysis of how attractiveness may affect facial recognition

accuracy and whether incorporating it could improve identification results.

Moreover, this section highlights the significance of facial attractiveness in biometrics
and emphasises its potential impact on various areas of life. It also refers to
neuroscientific findings on facial attractiveness, encouraging researchers to integrate

these insights more extensively into biometric systems.

2.3 Facial Soft Biometrics

Biometrics involves measuring people’s characteristics for identification. Alphonse
Bertillon developed one of the earliest biometric systems, known as “Bertillonage”
in 1879, using anthropometric measurements. Figure 2.4 shows this method on a
Bertillonage identification card (Rhodes (1968)). Nixon et al. (2015) traces how soft
biometrics evolved from Bertillon’s work to modern approaches that extract distinct

measurements from surveillance footage.

Security and law enforcement primarily use hard biometrics, such as fingerprinting,
iris and voice recognition, and DNA profiling. Previous studies often combined
these methods with soft biometric descriptors, but hard biometric approaches typically

require cooperation from individuals, which can be difficult in practice (Kittler
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FIGURE 2.4: Alphonse Bertillon depicted on a Bertillonage identification card (Rhodes
(1968)).

et al. (1998), Reid et al. (2013), Nixon et al. (2015)). This reliance on collaboration
has prompted increased interest in soft biometrics, which focus on visible physical
attributes and observable behaviours rather than strictly fixed traits (Reid et al. (2013)).
Advances in soft biometrics technology also drive this shift. Figure 2.5 illustrates the

various types of biometrics.

Biomftrics
Hard Soft
Physical Behavioural Demogmc Anthropometric  Medical A?i-alition
Face Gait Age Height BMI Hlat
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FIGURE 2.5: Diverse types of biometrics.
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For soft biometric identification, the information must be distinct, memorable, and
easy to describe. These requirements facilitate database searches during identification
and enable the integration of eyewitness descriptions. Researchers then convert these
descriptive traits into labels or measurements for identification purposes, as detailed
by (Nixon et al. (2015), Reid et al. (2013), Arigbabu et al. (2015)).

Work in this field has focused on identifying traits that offer clear, detailed information
about individuals. Figure 2.6 provides an overview of soft biometric techniques and
their application to diverse parts of the human anatomy. Although most facial features
have been extensively studied for biometric recognition, attractiveness has not been a
primary focus (Guo et al. (2019), Almudhahka et al. (2017)).

1 Genderj f Skin Co!or\ /Arm LengtD. " Hneadv..'\realj
Age Nose Length Chest Width Clothing Colour
Ethnicity Lip Thickness Figure Footwear
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A
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FIGURE 2.6: Overview of soft biometrics modalities and human body traits.

Nevertheless, evidence indicates that attractiveness strongly influences how
memorable a face is (Cross et al. (1971), Malloy et al. (2021)). While it can be challenging
to measure, studying facial attractiveness may provide valuable insights into how

people perceive and remember faces.

This section presents an overview of how biometrics has evolved, focussing on
observable physical traits and behaviours. Although interest in facial soft biometrics is
growing, exploring facial attractiveness as a biometric attribute remains relatively new.
A deeper examination of human facial attractiveness could enhance soft biometrics and

improve the overall performance of biometric systems.
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2.4 Facial Attributes of Attractiveness

Research indicates that people worldwide often assess attractiveness primarily by
examining facial appearance, relying on consistent criteria. According to Kumar
et al. (2009), most psychological and biological studies aim to pinpoint the features
that define facial beauty. These visual characteristics, referred to as “attributes” or
“features,” help explain why specific faces appear more attractive. The human face

contains many attributes, each differing in uniqueness, prominence, and salience.

Facial attractiveness is influenced by multiple traits, including skin colour, skin texture,
facial structure, and overall form (Chen and Zhang (2010)). Specific features—such as
small noses, high foreheads, prominent cheekbones, and arched eyebrows—have been
strongly linked to attractiveness (Cunningham (1986)). Meanwhile, the eyes and nose
are often highlighted as particularly important, backed by plastic surgery findings.
Other elements, such as chin shape and eyebrow positioning, have also been studied for
their role in perceived attractiveness (Liu, Fan, Samal and Guo (2016)). Taken together,
these investigations offer valuable insights into the facial factors that shape perceptions
of attractiveness.

Many studies have examined particular traits that affect the degree of attractiveness
of a face. Symmetry is central, as faces with matching left and right sides
are generally considered more attractive (Schmid et al. (2008)). Another key
element is “averageness,” where faces formed by merging multiple individuals
tend to be viewed as more attractive than unique faces, suggesting that standard
features become particularly attractive when combined (Damon et al. (2017)).
Sexual dimorphism—reflecting physical differences between males and females—also
significantly affects perceptions of facial attractiveness. Research consistently shows
that emphasised masculine or feminine characteristics, such as a strong jawline in men
or fuller lips in women, are often regarded as attractive (Liu, Fan, Samal and Guo
(2016), Rhodes (2006), Russell (2003)). Symmetry, averageness and sexual dimorphism
emerge as core attributes that resonate with observers across diverse cultures and
genders (Jones and Jaeger (2019)).

Concurrently, attractiveness remains a complex concept shaped by cultural standards
and personal experience, which makes establishing universal rules challenging (Chen
and Zhang (2010)). Nevertheless, a range of scientific studies across multiple
populations indicates that attractiveness is neither entirely subjective nor impossible to
quantify. These findings provide a broader global framework for understanding facial
attractiveness, suggesting it is not purely subjective or undefinable. Research in this
area has made meaningful strides in identifying factors influencing how individuals
perceive attractiveness, establishing overarching principles widely recognised as

attractive across different cultures and societies (Liu, Fan, Samal and Guo (2016)).
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2.5 Conclusion

This chapter has demonstrated how both cultural influences and universal biological
factors shape facial attractiveness. Attributes such as symmetry, averageness, and
sexual dimorphism consistently emerge as key elements that enhance perceptions
of attractiveness across diverse settings. Moreover, this chapter has shown that
facial attractiveness can affect social interactions, career opportunities, and even
legal outcomes, underscoring its importance as more than just a visual preference.
Identifying its potential as a soft biometric feature highlights emerging possibilities and
ethical considerations for integrating facial attractiveness into advanced recognition
systems.
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Chapter 3
Generating Attractiveness Rankings

This chapter introduces an approach to ranking facial attractiveness through
comparative soft biometrics. ~The primary objective is to generate meaningful
attractiveness rankings by utilising crowdsourced data and a rating system. The
process involves the collection and analysis of comparative labels. By the conclusion of
this chapter, it will be demonstrated how facial attractiveness rankings can serve as a

soft biometric tool to enhance recognition accuracy in automated systems.

3.1 Comparative Soft Biometrics

Traditionally, individuals have been labelled using categorical soft biometrics, which
rely on absolute terms such as ”tall” or ”“short” (Reid et al. (2013), Kovashka
et al. (2016)). However, these labels often fail to capture the nuances required for
comparison. In contrast, comparative soft biometrics emphasise relative relationships.
Instead of categorising someone as “tall”, a statement such as “Person A is taller
than Person B but shorter than Person C” can be made (Parikh and Grauman (2011)).
By capturing these subtle differences, comparative approaches have been shown to
improve identification and retrieval while reducing bias (Almudhahka et al. (2017),
Altwaijry and Belongie (2013)).

As illustrated in Figure 3.1, which presents three individuals (a), (b) and (c), the use of
categorical labels—such as “smiling” or “not smiling”—may fail to capture important
nuances. Instead, it can be observed that (b) smiles more than (c) but less than (a)
(Parikh and Grauman (2011)), providing a more precise assessment. Expanding on
this concept, the work of Mark Nixon on soft biometrics (Nixon et al. (2015)) has
demonstrated that comparative descriptors enhance clarity and accuracy by capturing

distinctions that categorical labels may overlook. Additionally, annotators have been
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(a) Smiling (b) ? (c) Not smiling

FIGURE 3.1: Expression differences among three individuals. Person (a) is smiling,

person (c) is not smiling, and person (b) has an unknown expression. Comparative

attributes show that (b) smiles more than (c) but less than (a) (Parikh and Grauman
(2011)).

found to perceive relative comparisons as more intuitive than absolute categorisations
(Reid et al. (2013)).

In the context of eyewitness identification, the use of comparative techniques has
been found to be beneficial. While traditional systems classify individuals into fixed
categories such as “short” or “tall,” comparative soft biometrics establish relationships,
for example, “taller than A but shorter than C” (Kovashka et al. (2016)). This method
has also been demonstrated to be effective in describing facial expressions —consider an
instance where an individual is labelled as “more expressive than (c) but less expressive
than (a)”- thereby reducing ambiguity and bias (Reid et al. (2013)).

3.1.1 Comparative Attractiveness

Although earlier research has examined relative facial attributes (Reid et al.
(2013), Almudhahka et al. (2017)), body traits (Martinho-Corbishley et al. (2018),
Samangooei et al. (2008)), and clothing features (Jaha and Nixon (2016)), facial
attractiveness as a comparative soft biometric has not been thoroughly investigated.
Attractiveness is influenced by personal and cultural perceptions, rendering simple
binary classifications inadequate. In contrast, comparative attributes mitigate
subjectivity by ranking individuals relative to one another (Reid et al. (2013)). For
instance, as illustrated in Figure 3.2), if person (b) cannot be decisively labelled as

7

"attractive,” a comparative descriptor—"less attractive than (a) but more attractive

than (c)”—provides a more structured and reliable assessment.

By avoiding rigid, subjective labels, this comparative approach aligns with the findings
of (Nixon et al. (2015), Almudhahka et al. (2017)), demonstrating how comparative
soft biometrics enhance recognition accuracy. Consequently, these techniques establish
a strong foundation for utilising attractiveness as a soft biometric. This section
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( a) Attractive (b)? ( ¢ ) Unattractive

FIGURE 3.2: Attractiveness comparisons among three individuals. Person (a) is
considered attractive, and person (c) is considered less attractive. The clearest
description for (b) is that (b) is more attractive than (c) but less attractive than (a).

emphasises how comparative attributes form a robust basis for soft biometrics,

particularly in the context of attractiveness.

3.2 Comparative Labels

Comparative labels serve as the foundation of this research, allowing individuals to
be ranked based on attributes such as facial attractiveness. The following subsections
outline the use of the Likert scale, the process of collecting crowdsourced data, and the
advantages of compressing the Likert scale to enhance recognition accuracy in facial
recognition tasks.

3.2.1 Design and Implementation

The backbone of this study is formed by comparative labels, which are used to rank
individuals based on specific traits. A three-point Likert scale (‘more’, ‘same’ and
‘less”) has been employed due to its simplicity and reliability (Reid et al. (2013)).
This compressed scale has been shown to enhance consistency and reduce ambiguity
compared to traditional five-point scales. To address uncertain cases and minimise
noise, an option for ‘Cannot Determine” was included, ensuring higher data quality.
As illustrated in Figure 3.3, the combination of this scale with an increased number
of comparisons has resulted in improved recognition accuracy. It has been observed
that as the number of individuals compared within a larger pool increases, recognition
accuracy improves. For example, when 15 individuals are compared to a larger dataset,
better results are achieved than when only five individuals are compared. Therefore,
maximising the number of comparisons and utilising a three-point Likert scale is

essential for obtaining optimal results (Almudhahka et al. (2016)).
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FIGURE 3.3: Demonstration of improved recognition accuracy using a compressed

Likert scale compared to a non-compressed scale, particularly as the number of

comparisons increases. The three-point Likert scale, combined with increasing

comparisons from 5 to 15, significantly enhances annotation consistency and
recognition performance (Almudhahka et al. (2016)).

3.2.2 Likert Scale Compression in Comparative Soft Biometrics

The pioneering research of Reid and Nixon on soft biometrics for facial recognition
(Reid et al. (2013)) introduced a method for classifying facial features through
comparative approaches, thereby reducing bias. Subsequent studies (Almudhahka
et al. (2017)) have verified that such comparative classification enhances recognition

accuracy.

This improvement is particularly evident when a compressed three-point Likert scale
is employed for comparisons, such as in the assessment of attractiveness, rather
than a more detailed five-point scale. The three-point scale categorises responses
as 1 (more attractive), 0 (same) and -1 (less attractive). In contrast, the five-point
scale provides greater granularity, with categories such as 2 (much more attractive),
1 (more attractive), 0 (same), -1 (less attractive) and -2 (much less attractive). The
simplified three-point scale reduces complexity, facilitating swifter and more reliable

comparisons.

As illustrated in Figure 3.3, the combination of this streamlined scale with an increased
number of comparisons (e.g., comparing an individual with 10 or 15 others rather than
just five) has been shown to significantly improve accuracy. This method highlights
the practical advantages of simplified comparative scales in human identification
systems. By ensuring uniform judgements, this technique reinforces the effectiveness
of comparative soft biometrics in evaluating facial attractiveness within automated

systems.
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3.2.3 Crowdsourcing Annotations

Annotations were collected using the Appen platform (formerly known as Figure
Eight) (Confidence to Deploy Al with World-Class Training Data (2025)), providing access
to a diverse range of annotators from various cultural and demographic backgrounds
(Martinho-Corbishley et al. (2015)). Ensuring response reliability was a critical aspect
of the data collection process. Predefined questions with known correct answers were
used to filter out unreliable annotators (Welinder and Perona (2010)). Annotators were
required to maintain a minimum accuracy rate of 70% to continue participating in the
tasks. Detailed instructions and examples were provided to ensure consistency and
reduce ambiguity (Kovashka et al. (2016)).

3.3 Crowdsourcing of Comparative Attractiveness Traits

In this section, the crowdsourcing approach used to collect comparative judgements
on facial attributes is described. A large and culturally diverse group of annotators
was engaged, minimising social annotation bias and ensuring the generation of
robust ground truth data for subjective tasks such as facial attractiveness evaluation
(Martinho-Corbishley et al. (2015)). Modern platforms, such as Amazon Mechanical
Turk and Appen, have facilitated the rapid recruitment of hundreds of annotators,
producing results that would otherwise require months of manual work (Kovashka
et al. (2016), Welinder and Perona (2010)).

Appen (formerly CrowdFlower and Figure Eight)! was selected due to its global
contributor network, quality assurance tools, and reliability checks—particularly the
use of ‘gold-standard” questions to detect dishonest responses (Kovashka et al. (2016)).
By adhering to best practices from (Welinder and Perona (2010)), these questions
were designed to minimise errors in facial recognition tasks by requiring annotators
to maintain an accuracy rate of at least 70%. Additional guidelines provided by
(O'Toole and Phillips (2017)) further reduced errors by providing explicit instructions
and systematic accuracy checks. Various strategies for ensuring the collection of valid

annotations through crowdsourcing are illustrated in Figure 3.4

Overall, Appen’s platform was utilised as an efficient and reliable method for obtaining
comparative attractiveness labels. A diverse and consistent dataset was ensured
through its extensive contributor base, strong quality control measures, and adherence

to best practices.

Ihttps://www.appen.com/
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Which shoe is more ornamented?

FIGURE 3.4: Strategies for collecting corresponding annotations (Kovashka et al.
(2016)).

3.3.1 Comparative Attractiveness Traits

In the previous chapter, facial attractiveness was emphasised based on studies that
identified key features such as symmetry, cheekbone prominence, and forehead
proportions (Cunningham (1986)). For these attributes to function effectively as soft
biometric identifiers, they must be both memorable and easy to describe. Consequently,
six additional traits — ‘symmetry’, facial hair, ‘skin smoothness’, ‘proportions’, ‘jaw size’
and ’attractiveness’ — were incorporated alongside the 16 attributes from the earlier
study (Almudhahka et al. (2016)). Contributions by (Nixon et al. (2015)) have further
demonstrated that the integration of established and newly identified features can

enhance biometric accuracy.

To evaluate these traits, comparative labels were applied using a three-point bipolar
scale (1 = ‘more’, 0 = ‘same’, -1 = ‘less’), with a ‘cannot see” option for ambiguous
cases. This approach was designed to minimise inconsistencies in data and maintain
annotator agreement, as illustrated in Table 3.1. By employing a comparative soft
biometrics approach to address the subjective nature of attractiveness, these methods

ensure simplicity and reliability.
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TABLE 3.1: Facial attributes used in this study, including traits relevant to
attractiveness.

Soft Traits 1 0 -1 -2
Age More old Same More young Cannot see
Attractiveness Less Attractive =~ Same More attractive Cannot see
Cheek shape More flat Same  More prominent  Cannot see
Chin length More long Same More short Cannot see
Eyebrow length More long Same More short Cannot see
Eyebrow thickness More thick Same More thin Cannot see
Eyes size More large Same More small Cannot see
Face length More long Same More short Cannot see
Face width More wide Same More narrow Cannot see
Facial hair Less facial hair ~ Same  More facial hair ~ Cannot see
Forehead hair Less forehead hair Same More forehead hair Cannot see
Gender More masculine ~ Same More feminine Cannot see
Jaw size More narrow Same More wide Cannot see
Lip thickness More thick Same More thin Cannot see
Nose length More long Same More short Cannot see
Nose width More wide Same More narrow Cannot see
Nose-mouth distance More Short Same More Long Cannot see
Proportions More average Same Less average Cannot see
Figure (Shape) More fat Same More thin Cannot see
Skin colour More dark Same More light Cannot see
Skin smoothness Less smooth Same More smooth Cannot see
Symmetry Less symmetrical Same More symmetrical Cannot see

3.3.2 Facial Attractiveness Dataset

Previous research on comparative soft biometrics has been conducted using various
datasets. The Multi-Biometric Tunnel (MBT) dataset has been utilised for this purpose
(Tome et al. (2014)). Additionally, the SCUT-FBP5500 dataset has been frequently
employed in studies on facial attractiveness (Liang et al. (2018)), see Figure 3.5.

While many previous studies have relied on constrained datasets, the Labelled Faces
in the Wild (LFW) dataset (Almudhahka et al. (2017)) has been selected for this work
due to its representation of a broader range of individuals encountered in daily life.
The LFW dataset introduces real-world challenges in facial recognition (Huang et al.
(2008)), including variations in lighting conditions, facial expressions, poses and lower-
resolution images. Although it is smaller than some alternative datasets, it remains
widely used for studying facial recognition in unconstrained environments, such as
surveillance. The dataset contains 13,233 facial images representing 5,749 individuals
(Almudhahka et al. (2017)), as shown in Figure 3.6. Another widely recognised dataset
is CelebA (Liu et al. (2018)), which contains over 200,000 celebrity images annotated for

40 attributes, including attractiveness. CelebA has been extensively employed in facial
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FIGURE 3.5: Images from the SCUT-FBP5500 benchmark dataset with varying facial
features and attractiveness ratings (Liang et al. (2018)).
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recognition, attribute prediction, and attractiveness studies, contributing to a deeper

understanding of how attractiveness is perceived in celebrity faces.

FIGURE 3.6: Samples from the LFW dataset, showing unconstrained images under
different conditions.

The LFW dataset was selected for this study to assess attractiveness under more
realistic conditions, thereby reflecting typical human observations. Promising results
using comparative attributes on LFW were also reported by (Almudhahka et al. (2017)).
Consequently, human facial attractiveness is explored in this research within the LFW
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View 1 subset, starting with 100 subjects, each contributing four samples from the LFW-
MS4 subset 2. The LFW-MS4 subset includes a minimum of four samples per subject,
comprising a total of 430 subjects, and is part of the LFW View 1 dataset (Almudhahka
et al. (2017)). These initial samples will be expanded to encompass the entire dataset to

obtain deeper insights into perceived attractiveness in unconstrained settings.

3.4 Experiment Design to Capture Attractiveness Attributes

The design and methodology used to obtain comparative judgements of facial
attractiveness through crowdsourcing are described. A structured question-and-
answer procedure was implemented using the Appen platform and the LFW dataset.
These approaches support the primary objective of this study, which is to introduce
attractiveness as a soft biometric trait.

3.4.1 Question and Answer Design

The Appen platform was configured to collect comparative attractiveness labels using
the LFW dataset. Each annotator was presented with two faces—one on the left and the
other on the right—and was asked to provide a label, as shown in Table 3.1. A sample
of the comparison interface is shown in Figure 3.7. This format is based on standard
psychometric methods (Thurstone (1927), Martinho-Corbishley et al. (2018)).

The interface was simplified, and response time was expedited through the use of
vertically aligned radio buttons. Each contributor was permitted to answer up to
four pages of questions, with each page containing 44 annotations (22 comparisons
per page). Test questions were incorporated to assess contributor accuracy and ensure
the reliability of responses. Priority was given to Level-1 contributors who achieved a
minimum accuracy of 70%, thereby enhancing both speed and data quality.

3.4.2 Response Analysis

A total of 36,170 judgements (35,927 trusted and 243 untrusted) were collected for 1,720
subject images at a cost of $1,140.76. The distribution of labels for attractiveness and
related traits across these subjects is illustrated in Figure 3.8. Notably, far fewer ‘same’
labels were assigned by annotators compared to ‘more’ or ‘less,” suggesting that subtle
differences in attractiveness were perceptible to them.

The low frequency of ‘same’ labels suggests that subtle differences in attractiveness
can be detected by participants, reinforcing its value as a dynamic and robust

’http://github.com/almudhahka/1fw-ms4
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More Attractive
Same
Less Attractive
Cannot See

FIGURE 3.7: Sample question on the Appen (formerly Figure Eight) platform.
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FIGURE 3.8: Distribution of comparative labels for attractiveness and related traits
among 1,720 subjects.

soft biometric. A lower occurrence of ‘same’ responses also minimises ambiguity,
making participant preferences more apparent. = This uncommon occurrence
highlights the difficulty of determining whether two individuals are equally attractive
and demonstrates how comparative assessments could be applied in biometric

applications.
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3.4.3 Discussion

Confidence scores generated by Appen were used to measure annotator agreement,
ranging from 0.62 to 0.90 for ‘Average Comparative Attractiveness’. As shown in
Table 3.2, higher confidence scores (e.g. 0.87 or 0.90) were often observed for the ‘more
attractive’” and ‘less attractive’ labels, indicating strong consensus. In contrast, lower
scores (e.g. 0.65 or 0.76) were commonly assigned to ‘same’ judgments, suggesting

greater difficulty in achieving agreement on equal attractiveness.

Average Comparative . Less Attractive Same Same Same More Attractive
Attractiveness
Confidence Score 0.75 0.65 0.79 0.62 0.87

Average Comparative . Less Attractive Less Attractive More Attractive Less Attractive Same
Attractiveness
Confidence Score 0.79 0.73 0.90 0.82 0.76

TABLE 3.2: Confidence scores for “Average Comparative Attractiveness” across
different subjects.

These scores were calculated by summing the trust scores of contributors who selected
a given response and dividing by the total trust scores for all responses. For instance, a
confidence score of 0.6166 was assigned to the ‘more attractive” label.

sum of trust scores for the response

confidence score =
sum of all trust scores

Overall, greater agreement was demonstrated by contributors when comparing faces as
‘more’ or ‘less’ attractive, whereas identifying them as equally attractive proved more
challenging. This outcome underscores the significance of comparative judgments in
soft biometric tasks and highlights how confidence scores contribute to data quality

when evaluating subjective traits such as attractiveness.
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3.5 Relative Attractiveness Ranking

Facial attractiveness can be assessed through attribute-based comparisons, in which
individuals are ranked based on specific traits such as ‘age’, ‘skin colour” or ‘gender’.
Rather than relying on a single overall score, rankings for individual traits provide
more detailed comparisons. By combining these rankings into a single profile, a unique
feature set is generated for each subject, which can be utilised in biometric systems for
identification or differentiation. This structured approach is particularly valuable when
precise measurements are unavailable (Reid et al. (2013), Almudhahka et al. (2017),
Parikh and Grauman (2011), Nixon and Aguado (2019)).

3.5.1 Ranking Methods

Two main methods are commonly used to rank facial attributes: the ELO Rating
System and RankSVM. The ELO Rating System, originally developed for chess players
(Jung and Jung (2025), Elo (1978)), updates each individual’s score after pairwise
comparisons. In the context of facial “attractiveness,” each person is initially assigned
a default score (e.g., 1500). When two individuals, A and B, are compared, and A
is judged to be ‘more attractive,” A’s score increases while B’s decreases. Through
multiple comparisons, these scores adjust automatically without requiring pre-labelled
data, making the ELO system well-suited for subjective tasks such as attractiveness
assessment (Dangauthier et al. (2007)).

In contrast, RankSVM is a supervised learning algorithm that relies on labelled datasets
(Parikh and Grauman (2011)). For example, a dataset may categorise individuals as
‘more,” ‘same’, or ‘less” attractive while including attributes such as ‘age’ or ‘gender.’
The RankSVM model is trained to rank new individuals accordingly but must be
retrained whenever new data is introduced, reducing its flexibility. Nevertheless,
RankSVM performs exceptionally well when sufficient labelled data is available and

high-precision rankings are required (Burges et al. (2005)).

The ELO system is ideal for flexible, iterative attractiveness measurements that
do not require preexisting labels. RankSVM, on the other hand, excels when a
well-organised, labelled dataset is available. Although RankSVM provides accurate
rankings, additional effort is required to manage data updates.

3.5.2 Multi-Attribute Rank Profiles

Instead of being assigned a single attribute score, each facial attribute (such as ‘age’,
‘skin colour’, or ‘gender’) is given a separate rank, which is then combined into a

single rank profile for each individual. Through this process, a unique profile is
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created, capturing an individual’s relative standing across multiple traits. Consider

three individuals (A, B, and C), who are ranked across three attributes:

* Age: Aisranked #1, Bis #2, and C is #3.
¢ Skin Colour: B is ranked #1, C is #2, and A is #3.

¢ Gender: Cis ranked #1, A is #2, and B is #3.
These rankings are then merged into a rank profile:

e Person A: (1, 3,2)
e Person B: (2,1, 3)

e PersonC: (3,2,1)

Such profiles result in distinct feature sets that encapsulate multiple dimensions of each
face. These profiles can be utilised by a biometric system to identify or differentiate
individuals without dependence on a single score (Alnamnakani et al. (2019)). Through
the systematic use of comparative data, this technique enhances identification accuracy

by considering multiple attributes simultaneously.

3.5.3 Elo Rating System Implementation

The ELO rating system, originally conceived for chess (FIDE (n.d.), Elo (1978)), has
been adapted here to assess facial attributes such as attractiveness (see Figure 3.9).
Ratings are dynamically updated through pairwise comparisons, in which individuals
are judged as ‘more’, ‘less’, or ‘same’ in attractiveness (FIDE (n.d.), Nixon and Aguado
(2019)). Unlike methods that require fully labelled datasets, ELO relies solely on these

pairwise outcomes, making it well-suited for subjective assessments.

For each pair of subjects, A and B, a record is made of who is judged more or less
attractive. The following equations then update their ratings, assuming both start at
1500:

R%:RA—FK(SA—EA), (3.1)

5 = Rp + K(Sp — Es). (3.2)

Where:



34 Chapter 3. Generating Attractiveness Rankings

FIGURE 3.9: Arpad Elo, the creator of the ELO rating system (Arpad Elo (n.d.)).

* Ry, Rp are the current ratings for subjects A and B, and R/;, R are the updated

ratings after the comparison.

¢ S ,,Sg are the observed outcomes for A and B:

+1: ”“"More”
0.5: ”"Same”

0: ”"Less”

* K is a sensitivity factor regulating how much each comparison shifts a subject’s
rating.

The change in rating is also dependent on U, the scaling factor that modulates the
impact of rating differences on probabilities. An example of initial and updated ratings
for 10 subjects is presented in Table 3.3.

An expected outcome (E) is also calculated for each subject based on current ratings:

Es= (3.3)

(Rg—R4)

1+10 o
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(3.4)

Role of K and U.

* K (Sensitivity Factor): Larger values of K result in more significant changes per

comparison, whereas smaller values lead to more gradual adjustments.

¢ U (Scaling Factor): A large U reduces the system’s sensitivity to rating gaps,
causing slower adjustments, while a small U increases responsiveness but may
reduce stability.

80
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FIGURE 3.10: Effect of different U values on ELO updates.

Figure 3.10 illustrates how varying U influences the speed and stability of updates:
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¢ U > 40: Smooth updates with minimal fluctuation.
¢ U = 10: Balanced stability and responsiveness.

¢ U = 1: Rapid changes but possible oscillations.

In practice, varying U affects convergence speed rather than the eventual rank order;
in our experiments, the final ranking remained unchanged. Equations (3.5) and (3.6)
rewrite E4 and Ep via Q4 and Qp:

Es=—, Ep=— (3.5)

Rp-Ry Rp—Rp

Qa=1+1007 , Qp=1+10"¢ (3.6)
In Elo-based attractiveness evaluations, the expected outcomes (E4, Ep) are governed
by the rating difference (R4 — Rp). When two individuals possess nearly identical
ratings, each is given approximately a 50% chance of being deemed ‘more attractive’.
However, a large gap strongly favours the higher-rated individual, with E approaching
1. The parameter U determines the extent to which rating gaps influence these
probabilities: a smaller U (e.g. 10) results in quicker updates, while a larger U (e.g. 40)
produces smoother but slower changes. In this study of 430 subjects, U = 10 is selected
to achieve a balance between speed and stability. Meanwhile, K can be assigned a
moderate value (e.g. 24) to ensure that ratings adjust meaningfully without dramatic
fluctuations. Prior research (Alnamnakani et al. (2019), Alnamnakani et al. (2024))
relied exclusively on ordinal ranks, whereas ELO scores are updated dynamically after

each comparison, providing a finer-grained measure of differences in attractiveness.

The principles of ELO and the relationship between rating differences and expected
outcomes are explained in the sources cited (Almudhahka et al. (2017), Elo (1978), FIDE
(n.d.), Federation (n.d.)). Although values such as U = 10 or U = 40 are less commonly
used - since classical chess ELO often employs 400 in the exponent — these references
provide details on how the standard formula can be adapted for subjective tasks, such
as evaluating attractiveness. An example of final Elo-based attractiveness rankings
from LFW is presented in Figure 3.11. The most attractive faces are shown in the top
row, while the least attractive are displayed in the bottom row. Although U influences
the speed at which these final rankings emerge, it does not affect their relative order.

The ELO system offers a flexible and data-efficient approach to ranking facial
attractiveness through pairwise comparisons. Scores are updated continuously,

allowing subtle differences and subjective perceptions to be captured without the need
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FIGURE 3.11: Final Elo-based attractiveness rankings, the top row represents the most
attractive.

for extensive pre-labelled data. Although parameters such as K and U affect the rate of
change, the final ranking remains stable, making ELO a suitable method for real-world

attractiveness evaluations.

3.6 Conclusion

This chapter presented a comparative soft biometrics approach for evaluating facial
attractiveness. Data were collected through crowdsourcing, and attractiveness
rankings were generated using pairwise comparisons. Methods such as the ELO Rating
System were reviewed, illustrating how iterative updates can effectively capture subtle
differences without requiring extensive pre-labelled data. Bias was reduced, and more
nuanced insights into subjective traits like attractiveness were provided by focusing
on relative assessments. The results indicate that when analysed comparatively, facial
attractiveness shows potential as a soft biometric feature for real-world identification

tasks.
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Chapter 4

Facial Attractiveness Soft Biometrics
Analysis

A more comprehensive investigation is required to understand how facial
‘attractiveness’ interacts with other soft biometric attributes and contributes to
identification and recognition. In this chapter, various analytical methods are
highlighted, with particular emphasis on correlation analysis and an evaluation of the

discriminative power of ‘attractiveness’.

4.1 Correlation Analysis

A correlation analysis was conducted to examine potential interdependencies among
the 22 facial attributes (see Table 3.1), including ‘attractiveness’. This approach
provides insight into how different attributes relate to one another and determines
whether specific traits offer distinct information for identification or classification.
Additionally, correlation matrices show how one feature’s strength may depend on
another.

To assess whether ‘attractiveness’ correlates with the other 21 facial soft biometric
attributes, prior research was referenced, which considered the discriminative power
of “attractiveness” alongside other attributes (Alnamnakani et al. (2019)). The Pearson
correlation coefficient was employed to systematically measure the linear relationships
among different facial traits (Abdullah (1990)).
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4.1.1 The Pearson Correlation Coefficient

The Pearson correlation coefficient (r) measures the linear association between two
variables. In the context of facial traits, r indicates how strongly two facial attributes

co-vary. Its values range from -1 to +1 (Benesty et al. (2009)):

¢ r = +1: a perfect positive linear relationship
¢ r = —1: a perfect negative linear relationship

¢ r = 0: no linear relationship

The r moves farther from zero (positive or negative), the correlation becomes
stronger. Equation (4.1), adapted from (Gonzalez-Sosa et al. (2018), Abdullah (1990)),
demonstrates the method used to calculate r :

Lo Oxy Yica(xi —%)(yi — 9) (4.1)
oxoy /i (xi — X))/ (yi — )2

Here, X and Y are two facial attributes (e.g., attractiveness and skin smoothness), ¥ and
i are their mean values, oxy is their covariance, and o, oy their standard deviations.

The value of r lies between —1 to +1.

Figure 4.1 presents an updated heatmap of the Pearson correlation coefficients among
the 22 facial attributes examined in this study. Stronger positive correlations are
represented by darker shades of blue, while lighter shades (approaching white)
indicate weaker or negative correlations. Since each attribute is perfectly correlated
with itself, the diagonal cells are assigned a value of 1.0. Meanwhile, Table 4.1 focuses
on the “attractiveness’ attribute, displaying its correlation with each feature. Together,
these two figures provide insights into the relationships among the attributes and
highlight those that have the most significant impact on “attractiveness’.

In Table 4.1, ‘skin smoothness’ is shown to have the highest correlation with
‘attractiveness’, followed by ‘age” and ‘symmetry’. Within this dataset, individuals
with smoother skin, more youthful features and balanced “proportions” are generally
rated as more attractive. Meanwhile, moderate correlations are observed for ‘gender’,
facial “proportions” and overall face shape, whereas nose length” and ‘chin length’

exhibit minimal influence on “attractiveness’ ratings.

In Figure 4.2, examples are provided of individuals considered highly attractive, who
often possess smoother skin and youthful characteristics, as well as those deemed
less attractive, who typically display contrasting attributes. These findings support
the notion that ‘symmetry’, ‘gender” and “proportions’ play a critical role in shaping

perceptions of ‘attractiveness’.
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Heatmap of Pearson’s Correlation Among 22 Facial Attributes
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FIGURE 4.1: Heatmap of Pearson’s correlation among all 22 facial attributes, including
attractiveness.

The findings confirm that ‘attractiveness’ is most strongly influenced by ‘skin
smoothness’, ‘age’, ‘symmetry” and specific ‘gender’-related aspects. By recognising
these correlations, practical applications in face recognition and image processing can

be better informed, leading to reduced bias and improved model performance.

4.1.2 Comparison with Previous Study

A comparison of the present correlation matrix (Figure 4.1) with that of a previous
study (Almudhahka et al. (2016)), Figure 4.3 reveals several similarities. Although
‘attractiveness” was not directly measured in (Almudhahka et al. (2016)), youthful
and feminine traits were emphasised, reflecting the importance of ‘age” and ‘gender’
observed in the current study. Additionally, both studies identified eyebrow features
(‘'eyebrow length” and ‘eyebrow thickness’) as significant factors in shaping facial

impressions.
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TABLE 4.1: Pearson’s r values for the correlation between attractiveness and 21 other
facial attributes.

Facial Attribute Correlation ()
Skin Smoothness 0.79
Age 0.73
Symmetry 0.72
Gender 0.56
Proportions 0.54
Figure (Shape) 0.46
Forehead Hair 0.39
Face Width 0.39
Nose Width 0.38
Jaw Size 0.30
Eyebrow Length 0.29
Nose-mouth Distance 0.29
Eye Size 0.26
Lip Thickness 0.24
Eyebrow Thickness 0.20
Cheek Shape 0.18
Facial Hair 0.14
Skin Colour 0.06
Face Length 0.03
Nose Length 0.01
Chin Length 0.01

FIGURE 4.2: (Top) Faces that are highly attractive are often associated with

youthfulness and smooth skin. (Bottom) Faces are rated lower in attractiveness,

typically having the opposite traits. These observations align with common views
on attractiveness.

However, certain differences have also been noted. For instance, (Almudhahka et al.
(2016)) reported a stronger negative relationship between ‘nose-mouth distance” and
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FIGURE 4.3: Previous Pearson’s r correlations for selected shared semantic facial
features Almudhahka et al. (2016).

‘nose length’, whereas only a weaker connection is observed in this study. Furthermore,
the influence of ‘lip thickness” and ‘eye size’ on perception differs slightly, possibly due
to variations in sample size or annotation methods.

Overall, Almudhahka et al. (2016) primarily focused on associations between facial
traits, ‘gender” and overall facial structure, whereas the present study extends this
perspective by demonstrating that many of the same traits—particularly those related
to youthfulness and balanced ‘proportions’—also’ exhibit strong correlations with
‘attractiveness’. In both studies, ‘chin length’ and ‘nose length’ appear to have
minimal influence. Meanwhile, broader attributes such as ‘age” and ‘gender” display
high correlations (Samangooei et al. (2008), Tome et al. (2014)), suggesting that older
individuals tend to receive lower “attractiveness’ scores, while those perceived as more

feminine typically attain higher ratings.
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4.2 Discriminative Power of Attractiveness

In this context, an investigation is conducted to determine whether the “attractiveness’
attribute enhances identification performance when combined with other facial
features. In the following subsections, Mutual Information (MI) and Sequential
Floating Forward Selection (SFFS) are applied to evaluate the extent to which
‘attractiveness’ contributes to the recognition of individuals. The outcomes generated
by these two methods are then compared.

4.21 Mutual Information for Discriminating Facial Attributes

MI is a fundamental measure in information theory that quantifies the extent to which
knowledge of one random variable (e.g., a facial attribute) reduces uncertainty about
another (e.g., a person’s identity) (Pohjalainen et al. (2015)). As expressed in Equation
(4.2), Ml is defined using Shannon entropies:

MI(X,Y) =I(X,Y)

H(X) - H(X | Y)

H(Y) - H(Y | X)
H(X)+H(Y)-H(X,)Y),

(4.2)

+

where H(X) and H(Y) are the entropies of X and Y, respectively, and H(X | Y) and
H(Y | X) denote their conditional entropies. The term H(X,Y) represents the joint

entropy of X and Y. Shannon entropy for a random variable X is given by:

— Y p(x) In[p(x)] and H(Y)=-) p(y) In[p(y)]. (4.3)

xeX yeY

The conditional and joint entropies appear in Equations (4.4), (4.5), and (4.6):

HX[Y)==Y ) plxy) In[px|y)], (4.4)

xeXyeY

HY[X)=-) ) pyx) In[p(y | x)], (4.5)

yeY xeX

=Y Y p(xy) In[p(x,y)]. (4.6)

xeXyeY

Here, p(x | y) denotes the conditional probability of x given y.
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In a soft biometric context, let X represent the ratings (or class labels) of a facial
attribute (e.g. ‘attractiveness’), and let Y indicate an individual’s identity. According to
Equation (4.2), a higher value MI(X, Y) suggests that knowledge of X reduces more
uncertainty about Y. Consequently, an attribute with high MI is considered more

discriminative, as it significantly decreases ambiguity regarding a person’s identity.

Mutual Information Scores by Feature

Gender 1 ]4.83
Facial Hair | .53
Age - 184

Forehead Hair § ]1 .59

Attractiveness 1 ]1 5

Skin Smoothness 136
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NoseWidth]  Joee
Skin Colour - 0.53
Eyebrow Length *:0.52
Lip Thickness 1 0.5
Face Length 0.45
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Nose Length 0.42
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Jaw Size

Chin Length 0.36
Eyes Size 1 0.33
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FIGURE 4.4: The discriminative power of ”attractiveness” and 21 other facial
attributes, measured by their mutual information with identity.

Figure 4.4 presents the MI values for 22 facial attributes (including ‘attractiveness’),
illustrating their effectiveness in distinguishing individuals (Guo and Nixon (2008)).
Notably, ‘attractiveness’ ranks among the top attributes, with an MI value of
1.50, surpassing many other facial features. This suggests that knowledge of an
individual’s ‘attractiveness’ rating provides valuable information for identification,
thereby reducing uncertainty about their identity. In contrast, attributes with lower MI
values, such as ‘proportions” and ‘nose-mouth distance,” contribute only marginally to

distinguishing individuals.

Similarly, ‘age’ emerged as the most discriminative attribute overall, while
‘gender’ also exhibited a notably high MI value. Emphasising attributes like
‘attractiveness’—which achieved one of the highest MI scores—can therefore be
advantageous in soft biometric frameworks by providing an additional dimension for

facial differentiation.
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4.2.1.1 Discretising Continuous Features

The discriminative power of soft biometric traits was assessed using Mutual
Information (MI). However, it is widely recognised that directly applying MI to
continuous features may introduce estimation bias if the data is not properly

preprocessed.

To mitigate this issue, a quantile-based discretisation approach was applied using
KBinsDiscretizer, which divides each continuous feature into 10 ordinal bins
containing approximately equal numbers of samples. This transformation results
in balanced categorical features that facilitate more accurate MI estimation through
probability mass functions. These discretised features were subsequently analysed
using mutual_info_classif, with discrete_features=True specified to ensure the

appropriate entropy-based calculation.

This step was critical because MI is based on discrete probability distributions. If
features remain in continuous form, those with high variance—such as Elo-based
Attractiveness—may be underestimated relative to binary features like Gender. This
underestimation is a well-known artefact when applying MI directly to continuous

values.

This approach is endorsed by the official scikit-learn documentation, which advises:

“If features are continuous, it is recommended to discretise them before
using this function.”
(Scikit-learn documentation, 2024) 1

Following this correction, Figure 4.5 Attractiveness emerged as one of the most
informative features, reaffirming its discriminative significance when MI is estimated

correctly.

4.2.1.2 Constructing Joint and Marginal Distributions

To better understand the estimation of MI from data, a joint probability distribution
p(x,vy) is constructed. Table 4.2 presents an illustrative example in which both variables
X and Y take on ordinal values ranging from 1 to 10, with each cell p(x, y) representing
the joint probability of observing X = xand Y = y.

The marginal distributions p(x) and p(y) are computed by summing across rows and
columns, respectively. These are then used to calculate the Shannon entropy for each
variable:

Inttps://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_
info_classif.html


https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
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Mutual Information Scores by Feature (With Discretisation)
Gender | J1.862
Age 1 .81
Forehead Hair | 1707
Aftractiveness | |1 665
Skin Smoothness IW 658
Figure (Shape) 1 1499
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FIGURE 4.5: Mutual Information scores for 22 facial attributes after applying quantile-
based discretisation. Attractiveness ranks prominently among the most informative
features.
TABLE 4.2: Example joint probability table p(x,y) for x,y € {1,...,10}. Marginal
distributions p(x) and p(y) are listed along the bottom row and rightmost column.
X\Y 1 2 3 4 5 6 7 8 9 10 plX,Y)
1 0 1] 0 0 0.05 0 0.05 ] 0 0 0.1
2 0.1 0 0 0 0 0 0 0 0 0 0.1
3 0 0 0 0 0 0 0 0.025 0.025 0.05 0.1
- 0 0.025 0.075 0 0 0 0 0 0 0 0.1
5 0 0 0.025 0.075 0 0 0 1] 4] 0 0.1
6 0 0 0 0 0 0.075 0 0.025 0 0 0.1
7 0 0 0 0 0.025 0 0.025 0 0.025 0.025 0.1
0 0.075 0 0.025 0 0 0 0 0 0 0.1
0 ] 0 0 ] 0 0.025 0.025 0.025 0.025 0.1
0 ] 4] 0 0.025 0.025 4] 0.025 0.025 0 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 _
H(X) = =) p(x) In[p(x)], H(Y)=-)_p(y) In[p(y)] (4.7)
X Y
The joint entropy is given by:
(4.8)

H(X,Y)=-=)_) p(xy) In[p(x,y)].
Xy
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Mutual Information can then be calculated as:

[(X;Y) = H(X) + H(Y) — H(X,Y). (4.9)

A high MI score indicates that knowing X reduces the uncertainty in predicting Y.
In contrast, if X and Y are statistically independent, then I(X;Y) ~ 0. These equations
help clarify the theoretical foundation for MI and support the conclusion that attributes
with higher MI scores are more valuable for identity recognition. In this context,
Attractiveness demonstrates strong discriminative capability when computed with
appropriate preprocessing.

4.2.2 Sequential Floating Forward Selection

SFFS (Rtuickstief$ et al. (2011)) is another feature-selection method that, unlike MI,
does not evaluate each attribute in isolation. Instead, SFFS analyses attributes as
components of an expanding subset. Initially, an empty set is used, and features
that improve classification are incrementally added. After each addition, a backward
elimination step is applied to remove the least effective feature if its exclusion enhances
performance. This process continues until no further improvements can be achieved
(Pudil et al. (1994), Jaha and Nixon (2017), Brahnam and Jain (2010)). In this study,
SFFS produced the following ordered list of facial soft traits from the 22 candidate
attributes. Through this iterative process, a subset of 18 features was identified as the
most relevant for the identification process. These selected features are:

1. Gender

2. Age

3. Attractiveness

4. Chin Length

5. Eyebrow Length

6. Eyebrow Thickness
7. Eye Size

8. Face Length

9. Facial Hair
10. Forehead Hair

11. Lip Thickness
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12. Nose Length

13. Nose Width

14. Nose-mouth Distance
15. Figure (Shape)

16. Skin Colour

17. Skin Smoothness

18. Symmetry

Based on this ranking, ‘attractiveness” remains among the top attributes, highlighting
its significance in the identification process. Furthermore, the inclusion of ‘gender’
alongside various facial geometry traits suggests that demographic and morphological
features collectively contribute to the overall discriminative power of the system.

Although MI and SFFS do not produce identical rankings, their agreement in
identifying ‘attractiveness’ as a high-impact feature and recognising that certain
attributes (such as ‘cheek shape” and ‘proportions’) hold less value increases confidence
in the final subset selection. These findings indicate that “attractiveness’ serves as a
key soft-biometric factor in face recognition systems, enhancing both the speed and

accuracy of identification.

4.3 Influence of Attractiveness on Face Recognition

This section examines facial “attractiveness’ as a soft biometric attribute for verification
and identification. The chosen similarity measure and experimental setup are
introduced, the impact of ‘attractiveness’ is explored and the effect of its removal is
discussed. Finally, comparisons with previous work are presented, and the statistical

significance of including “attractiveness’ in face recognition is demonstrated.

4.3.1 Similarity Measure and Experimental Setup

The Euclidean distance is employed in this study for comparing biometric feature
vectors (Nixon and Aguado (2019)). Specifically, to identify or verify an unknown
subject, the Euclidean distance is computed between each subject in the probe set and
all subjects in the gallery set, generating a distance matrix. This procedure is illustrated

in Equation 4.10:
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F

de(X,Y) = | Y (x(i) —y(i))?, (4.10)

i=1

Where dp(X,Y) denotes the Euclidean distance between X and Y. Here X represents
the probe feature vector and Y represents the gallery feature vector. X and Y contain
F features in the same order; in this study, F = 22 corresponds to the number of soft

facial biometric features forming each biometric signature (Ross (2007)).

4.3.1.1 Cross-Validation and Experimental Setup

To evaluate both verification and identification, Leave-One-Out Cross-Validation
(LOOCV) Kohavi (1995) was applied to a dataset consisting of N total samples (1,720
images from 430 subjects). In each iteration, a single sample was designated as
the test (probe) set, while the remaining N — 1 samples were utilised for training
(gallery). This process was repeated N times, ensuring that each image was tested
exactly once. Although LOOCV maximises data usage and reduces variance compared
to a single train—test split (Kohavi (1995)), an increase in computational overhead is
introduced. Nevertheless, LOOCV often provides more reliable performance estimates
for moderate-sized datasets.

This chapter uses the initial LOOCYV subset (1,720 images: 430 identities with exactly four
images each). The expanded dataset (4,964 images with at least four images per identity),
documented in Chapter 5, is used in Chapters 6—7.

In certain comparative experiments (Sections 4.3.4 and 4.3.5), a four-fold cross-
validation scheme was employed instead, facilitating a broader analysis of how
various attributes, including ‘attractiveness’, influence classification under different

partitioning strategies. Two primary classifiers were utilised:

¢ k- Nearest Neighbour (k-NN): Based on Euclidean distance in the feature space.

¢ Random Forest (RF): Constructs multiple decision trees and aggregates their
predictions through majority voting (Breiman (2001)).

Classification accuracy, along with the standard error, was computed across the cross-
validation folds to ensure that observed improvements were not merely due to chance.
Paired statistical tests (e.g. a paired f-test) were conducted to compare performance
with and without the ‘attractiveness’ feature. The resulting p-values (e.g., p < 0.05)
indicated whether the improvements were statistically significant. Where relevant, 95%

confidence intervals were also reported to provide an uncertainty bound.
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4.3.1.2 Additional Repeated Cross-Validation Experiments

In addition to the LOOCYV described above, comparative experiments were conducted
using a Repeated Stratified k-Fold Cross-Validation approach (Kohavi (1995), Scikit-
Learn (n.d.)). Specifically, a value of k = 4 was selected and repeated 10 times,
resulting in a total of 40 train-test splits. In each iteration, three folds (75% of the
data) were assigned for training, while one fold (25%) was designated for testing,
ensuring that each sample was tested exactly 10 times. This approach was adopted
in accordance with biometric testing guidelines outlined in (International Organization
for Standardization (2006)) to generate multiple independent accuracy estimates and
mitigate the bias that may arise from a single data split (Hastie et al. (20090)). In
the same manner as LOOCYV, standard uncertainty metrics—including mean accuracy,
standard deviation, standard error, and confidence intervals—are reported. Paired
statistical tests (e.g., t-tests) are applied to determine whether performance differences
(e.g. with vs. without the “attractiveness’ feature) are statistically significant rather than

occurring by chance.

4.3.2 Effect of Attractiveness on Verification

Verification is used to determine whether two images belong to the same person (i.e.
a one-to-one matching scenario) (Jain, Ross and Prabhakar (2004), Jain and Li (2011)).
In this study, Euclidean distance dg(-, -) is used to measure the similarity between two
feature vectors (see Equation 4.10). Where x; and x; represent the feature vectors of
samples i and j, respectively, and F denotes the total number of features. To evaluate
how effectively the system distinguishes same-subject (genuine) pairs from different-
subject (impostor) pairs, the mean intra-class distance pintra and the mean inter-class

distance pinter are computed.

Figure 4.6 illustrates histograms of intra- and inter-class distributions, both with and
without “attractiveness’, while Table 4.3 presents the corresponding mean distances.
The inclusion of ‘attractiveness’ increases pinter more than pingra, thereby reducing
false acceptances and rejections and improving overall verification (Duda et al. (2000),
Bishop (2006), Jain, Ross and Prabhakar (2004), Ross (2007)).

Table 4.3 demonstrates that incorporating ‘attractiveness” results in a greater increase
in the inter-class distance compared to the intra-class distance, thereby consistently

enhancing verification accuracy across normalised and raw data.

These results confirm that the inclusion of ‘attractiveness’” expands the
genuine-impostor gap and enhances verification performance. In summary,

incorporating ‘attractiveness’ leads to lower intra-class distances and higher inter-class
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Euclidean Distances: Normalized vs Raw, With vs Without Attractiveness
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FIGURE 4.6: Histograms of intra-class (blue) and inter-class (red) Euclidean distances

for normalised (top) vs. raw (bottom) features, with and without Attractiveness. The

mean distances (Table 4.3) reveal a wider intra-/inter-class gap when Attractiveness is
included.

TABLE 4.3: Mean and standard deviation of Euclidean distances for both normalised
and raw data (with vs. without Attractiveness).

Configuration Intra-Class Inter-Class

Normalized Features
With Attractiveness 1.275(0.281)  2.068 (0.423)
Without Attractiveness  1.260 (0.281)  2.016 (0.403)
Raw Features

With Attractiveness 25.521 (5.629) 41.389 (8.458)
Without Attractiveness 25.320 (5.636) 40.290 (8.156)

distances, thereby reducing false acceptances and rejections while increasing the

overall reliability of verification.
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4.3.3 Effect of Attractiveness on Identification

The Cumulative Match Characteristic (CMC) curve serves as a key metric for
evaluating the effectiveness of retrieval-based recognition (DeCann and Ross (2013),
Chellappa et al. (2001), Jain, Ross and Prabhakar (2004)). This curve illustrates the
frequency with which the correct identity appears within the top-k ranked matches
(Jain and Li (2011), Grother et al. (2010), Phillips et al. (2000)). In this study, k extends
to 430, corresponding to the total number of subjects (identities).

Let N probe images be given. For each probe image i, a ranked list of gallery images is
generated by sorting in ascending order of distance (or descending order of similarity).
The position (rank) of the correct identity for the i probe is determined as follows:

rank; = min{ r | id(m;,) =id(i)}, (4.11)

where 71;, is the r-th image in the sorted list for probe i, and id(-) returns the subject
ID. The CMC at rank k is then calculated as:

1
N :

1

1=

CMC(k) = 1(rank; < k), (4.12)

Il
—_

where 1(-) represents an indicator function that equals 1 if its argument is valid and
0 otherwise. Thus, CMC(k) quantifies the probability that the correct identity appears
within the top-k results.

Figure 4.7 illustrates the effectiveness of all 22 facial attributes in identification,
comparing it to scenarios in which a single attribute—such as ‘attractiveness’, ‘age’,
‘gender’ or ‘skin colour’-is omitted. Table 4.4 summarises the recognition rates (Rank-

1, Rank-5, Rank-10) following feature normalisation.

TABLE 4.4: Identification results (Rank-1, Rank-5, and Rank-10) under different
attribute configurations.

Configuration Rank-1 Rank-5 Rank-10
All (22) 52.00% 78.75%  88.50%
No Attractiveness (21) 49.25% 78.50%  85.75%
No Age (21) 48.00% 75.75%  84.75%
No Gender (21) 49.25% 77.00%  87.25%

No Skin Colour (21) 49.00% 77.50%  86.25%

As shown in Table 4.4, ‘attractiveness’ contributes significantly to identification
accuracy. When “attractiveness’ (21 traits) is excluded, Rank-1 accuracy decreases from
52% to 49.25%, indicating a notable decline in performance. In comparison, ‘age’
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CMC Curve Comparison (Normalized)

1.0

o)
e
[¢°]
ot
=
K=
4
o]
9
=
= 0.4
)
S
—o— All (22)
0.2 1 @ - No Attractiveness (21)
—A-- No Age (21)
-+¢-- No Gender (21)
=¥%- No Skin Color(21)
0.0 +— . . .

10 11 12 13 14 15 16 17 18 19 20
Rank

—_
N
[
g
(@]
o
A
0 -
©

FIGURE 4.7: CMC curves (ranks 1 to 20) comparing identification performance with
all 22 attributes (All) and by removing one attribute at a time (Attractiveness, Age,
Gender, Skin Colour).

appears to be even more critical, as its removal results in a further drop to 48% at
Rank-1. While an increase in ‘attractiveness’ is observed, ‘gender” and ‘skin colour’
decrease by approximately the same amount — about 2.75%-3% less than when all 22
attributes are included. The advantage of incorporating all attributes remains evident
at higher ranks, such as Rank-5 and Rank-10. With all traits considered, the system
achieves 78.75% at Rank-5 and 88.50% at Rank-10, compared to 78.50% and 85.75%

when ‘attractiveness’ is omitted.

Overall, these findings demonstrate that ‘attractiveness’ significantly enhances
recognition rates, with an effect size comparable to that of ‘gender” and ‘skin colour’
but lower than that of ‘age’. The inclusion of “attractiveness’ increases the likelihood of
correctly identifying a subject at lower ranks, thereby improving the system’s overall

performance.

4.3.4 Effect of Removing Attractiveness and Other Attributes

A closer examination of the outcomes was conducted by removing each facial attribute
(‘age’, ‘attractiveness’, ‘gender’, ‘skin colour’) under both k-NN and RF. As noted in
the broader literature on soft biometrics (Dantcheva et al. (2016), Jain and Park (2009))
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Detailed Analysis for k-NN and Random Forest
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FIGURE 4.8: Comparison of k-NN and Random Forest accuracy across five scenarios
(All 22 attributes, No Age, No Attractiveness, No Gender, No Skin Colour)

and specifically in multi-attribute face analysis (Kittler et al. (1998)), ‘secondary’ traits
such as ‘age’, ‘gender” and “skin colour” have been shown to enhance the reliability of
face-recognition systems. The data presented here is derived from a four-fold cross-
validation process.

1. k-NN Results

All (22): 50.75%,

No Age (21): 45.00% (1 5.75%),

No Attractiveness (21): 48.25% (] 2.50%),
No Gender (21): 48.25% (] 2.50%),

No Skin Colour (21): 45.75% ({ 5.00%).

Removing either ’Attractiveness’” or ‘Gender” lowers accuracy from 50.75% to
48.25% (approximately 2.5%), suggesting that both attributes offer comparable
benefits in k-NN. In contrast, when ‘age’ is excluded, a 5.75% decrease is
observed, while the removal of ‘skin colour” results in an accuracy reduction
of approximately 5%. Although these differences are not exceptionally large,
‘attractiveness” remains valuable and demonstrates a level of significance
comparable to ‘gender” in this classifier. This finding aligns with research
indicating that facial ‘attractiveness’ can enhance memorability and recognition

rates (Alnamnakani et al. (2024)). Additionally, previous studies on soft
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biometrics (Jain, Dass and Nandakumar (2004), Jain and Park (2009)) have shown
that even subtle attributes can improve recognition when primary biometric cues

are insufficient.

2. Random Forest Results

All (22): 88.75%,

No Age (21): 87.00% (1 1.75%),

No Attractiveness (21): 87.00% (] 1.75%),
No Gender (21): 79.75% (] 9.00%),

No Skin Colour (21): 87.25% ({ 1.50%).

When either ‘attractiveness” or ‘age’ is removed, a decrease in accuracy of
approximately 1.75% is observed (from 88.75% to 87%), indicating that both traits
play similarly important roles in RF. However, the most pronounced impact is
observed with the removal of ‘gender’, which results in a 9% drop (Mékinen
and Raisamo (2008)). In contrast, eliminating ‘skin colour” reduces accuracy
by approximately 1.5%. Overall, ‘attractiveness’ exhibits behaviour similar to
that of ‘age’ or ‘skin colour’, supporting claims that the integration of multiple
soft-biometric traits — such as “attractiveness’, ‘gender” and ‘age’” — can enhance

classification and authentication (Dantcheva et al. (2016)).

TABLE 4.5: Comparison of k-NN and Random Forest accuracies under different
attribute configurations.

k-NN Random Forest
Scenario Accuracy A Accuracy A
All (22) 50.75% - 88.75% -
No Age (21) 45.00%  -5.75%  87.00%  -1.75%
No Attractiveness (21)  48.25%  -2.50%  87.00%  -1.75%
No Gender (21) 48.25%  -2.50%  79.75%  -9.00%

No Skin Colour (21) 45.75%  -5.00%  87.25%  -1.50%

Under k-NN, the removal of ‘attractiveness’ resulted in an accuracy decrease of
approximately 2.5%, mirroring the effect of omitting ‘gender’. In RE, the exclusion
of ‘“attractiveness’ led to a reduction in accuracy of 1.5%-1.75%, which aligns with
the impact observed when ‘age’ or ‘skin colour” was removed. Although four-
fold cross-validation limited the sample size and introduced potential variability, the
overall findings indicate that the incorporation of “attractiveness’ consistently yields
performance levels close to — or slightly below — those of core attributes. Rather
than being less influential, “attractiveness” demonstrates its value as a complementary

feature, as accuracy consistently declines whenever it is excluded.
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These results build on established face-recognition research, which acknowledges
the critical roles of traits such as ‘age’” and ‘skin colour” (Chen et al. (2014))
and demonstrates that ‘attractiveness’ can contribute to measurable improvements
(Alnamnakani et al. (2024)). In certain cases, its impact approaches that of more
traditionally recognised attributes, reinforcing the argument for its inclusion as a
soft-biometric characteristic. Furthermore, early classifier-fusion studies (Kittler et al.
(1998)) suggest that the combination of ‘age’, ‘gender” and ‘skin colour” enhances the
robustness of recognition systems. Consequently, ‘attractiveness’ emerges as a crucial
feature that consistently improves performance, underscoring its potential to enhance

face-recognition accuracy across diverse settings.

4.3.5 Comparison with the Previous Study

Beyond the CMC analysis, additional experiments were conducted using the same
dataset as in previous studies (Almudhahka et al. (2017), Alnamnakani et al. (2019)).
Specifically, Almudhahka et al. (2017) reported an identification accuracy of 57.21%
using 24 facial attributes, while Alnamnakani et al. (2019) achieved 71.50% with k-NN.

In this study, a RF classifier was applied to 22 attributes (including ‘attractiveness’),
trained using a four-fold StratifiedKFold validation scheme with MinMax
normalisation. The results, both with and without the ‘attractiveness’ attribute,

are presented in Table 4.6.

TABLE 4.6: Identification accuracy (%) on the same dataset from (Almudhahka

et al. (2017) and Alnamnakani et al. (2019)), comparing our approach to previous

studies. ‘RF (All Attributes)’ = our method with the attractiveness attribute, ‘RF (No
Attractiveness)’ = our method without attractiveness.

Method / Attributes Mean Accuracy (%) Std. Devw.
Study in Almudhahka et al. (2017) (24 attrs) 57.21 -
Study in Alnamnakani et al. (2019) (k-NN) 71.50 -
RF (All Attributes) (22 attrs) 87.00 -
RF (No Attractiveness) (21 attrs) 84.75 -

As shown in Table 4.6, an average accuracy of 87% is attained across four folds,
surpassing both 57.21% (Almudhahka et al. (2017)) and 71.50% (Alnamnakani et al.
(2019)), despite the use of fewer total attributes (22 vs. 24). Moreover, the removal
of the “attractiveness” attribute reduces accuracy to approximately 84.75%, indicating
that “attractiveness’ contributes approximately 2.25 percentage points. This finding
aligns with the verification results (Section 4.3.2), highlighting the added value of
facial ‘attractiveness” in a soft-biometric framework and leading to improved face-

recognition accuracy.
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100 Comparison of Accuracy: Previous Studies vs. Current Study

87.00%

84.75%

Identification Accuracy (%)

Study Previous Study Previousn(k-NN) Our RF Our RF
(24 attrs) (+Attractiveness) (-Attractiveness)

FIGURE 4.9: Comparison of our study (Random Forest) with previous works
(Alnamnakani et al. (2019) and Almudhahka et al. (2017)). Accuracy values are shown
for RF including and excluding the attractiveness attribute.

Incorporating ‘attractiveness’ into a soft-biometric framework has been shown to
provide significant benefits, as these results demonstrate, leading to a substantial
improvement in face recognition accuracy.

4.3.6 Statistical Validation of the Attractiveness Feature

To assess whether the accuracy reduction following the removal of the “attractiveness’
feature is statistically significant, a paired t-test was conducted on the per-fold
accuracies obtained in Section 4.3.3. Specifically, for each of the four folds, the
accuracy difference between configurations that included ‘attractiveness” and those
that excluded it was calculated.

A standard paired t-test was then applied to these differences to compute the t-statistic,
while the corresponding p-value was derived from a t-distribution with (N — 1)
degrees of freedom, where N the total number of folds (Kohavi (1995), Hastie et al.
(2009b), Moore, D. S. and McCabe, G. P. and Craig, B. A. (n.d.)).

The resulting t-statistic and p-value are presented in Table 4.7. A p-value below 0.05
indicates that the observed accuracy reduction is unlikely to have occurred by chance,
confirming a statistically significant difference at the 95% confidence level (Moore, D.
S. and McCabe, G. P. and Craig, B. A. (n.d.)).
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TABLE 4.7: Paired t-test results comparing the A11(22) vs. No Attractiveness
scenarios in the Random Forest experiments across four folds. A p-value below 0.05
indicates a statistically significant difference.

Scenario Comparison t-stat p-value Significance
All(22) vs. No Attractiveness -2.341  0.032  Significant (p < 0.05)

This result indicates a statistically significant difference, demonstrating that the
removal of ‘attractiveness’ leads to a genuine decline in performance rather than a
random fluctuation. These findings align with those presented in (Ross (2007), Jain,
Ross and Prabhakar (2004)) in Chapter2, which emphasise the strong discriminative

power of “attractiveness’ and its value as a soft biometric attribute.

Moreover, its consistent effect across all four folds highlights the practical relevance of
‘attractiveness’ in face-recognition pipelines—particularly in real-world settings, where
even minor improvements can significantly reduce error rates. In other words, the
inclusion of “attractiveness’ is not only theoretically advantageous but also provides a

measurable benefit in the accurate verification and identification of individuals.

By confirming that the observed performance improvement is not coincidental, these
findings underscore the practical significance of integrating ‘attractiveness’ into face-
recognition systems. Even a moderate enhancement, when consistently observed
across all folds, can substantially decrease error rates in applied scenarios, reinforcing
the role of ‘“attractiveness’ as a key soft biometric feature.

4.4 Conclusion

This chapter explored facial ‘attractiveness’ in relation to other facial attributes as
a soft biometric trait. Correlation analysis revealed a strong association between
‘attractiveness” and ‘skin smoothness’, as well as ‘age’” and ‘symmetry’, suggesting
that youthful and balanced features contribute to perceptions of ‘attractiveness’.
Furthermore, results from MI and SFFS demonstrated that “attractiveness’ possesses

substantial discriminative power, comparable to that of ‘age” and ‘gender’.

Subsequent experiments indicated that the integration of ‘attractiveness’ into face-
recognition pipelines enhances both verification—by increasing the gap between
genuine and impostor scores—and identification—by improving Rank-1 accuracy.
These improvements remained consistent across various cross-validation methods,
highlighting the value of ‘attractiveness’ as a supplementary feature that reduces

errors.

Overall, the significance of ‘attractiveness’ as a notable soft biometric attribute was

underscored in this chapter. The analyses presented demonstrated how ‘attractiveness’
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correlates with other facial traits and enhances identification performance. These
findings may contribute to advancements in soft biometric frameworks, ultimately

aiding in the development of fair and accurate face-recognition systems.
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Chapter 5

Automated Face Recognition
Pipeline

Automated facial recognition (AFR) is used to identify and verify individuals from
facial features. While attributes such as ‘gender’, ‘skin colour’, and ‘age” are common
in AFR systems, the role of ‘facial attractiveness’ remains under-explored. This chapter
examines whether adding ‘attractiveness” improves overall accuracy and compares
it against existing soft biometrics to determine whether it enhances or complicates

recognition.

The chapter first outlines the AFR pipeline and then details feature extraction and
classification. These steps form the basis for the next chapter, which evaluates the

experimental results. See Figure 5.1 for a visual overview.

‘Andy’

FIGURE 5.1: Outline of the processes for face detection and recognition (Olszewska
(2016)).
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5.1 Automated Face Recognition Overview

AFR is a biometric technology that employs algorithms and artificial intelligence to
match facial features against a reference database (Berle and Berle (2020), Adjabi et al.
(2020)). Recent advances in deep learning and computer vision have significantly
enhanced AFR’s capabilities, as noted in (Li and Deng (2020)). Various algorithms
address this task, each offering specific benefits depending on project objectives and
available resources (Trigueros et al. (2018)). Deep neural networks perform optimally
when there are extensive datasets to work with. Conversely, traditional methods such
as Principal Component Analysis may suffice when data or computational power is

limited.

Studies by (Berle and Berle (2020), Adjabi et al. (2020)) indicate that AFR’s effectiveness
varies by application. Wang and Deng (2020) discuss how deep learning can
improve accuracy while highlighting the challenges posed by limited data and model
complexity. Meanwhile, Trigueros et al. (2018) emphasises the importance of aligning
algorithm choice with real-world conditions and available resources. AFR typically
includes face detection, alighment, and cropping before generating deep or classical

embeddings. See Figure 5.2 for a visual overview.

Face Crop, Align Feature Face
Detect & Resize Extraction Recognition

FIGURE 5.2: Components of Automated Face Recognition (AFR).

5.1.1 Importance of Automated Face Recognition

AFR is regarded as critical in security, surveillance, law enforcement, identity
verification, and interactive systems. Its rapid and precise identification has enhanced
public safety, personalised digital services, and secure access control. According to
Turk and Pentland (1991a), Olszewska (2016), AFR locates faces, extracts features,
and compares them to a stored database. Although deep learning has greatly
advanced AFR, classical methods like Principal Component Analysis remain practical
when data or computational power are constrained (Trigueros et al. (2018)). It has
been acknowledged that soft biometric factors can influence recognition accuracy, as
discussed in (Nixon and Aguado (2019)).
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5.1.2 Historical Development of Face Recognition

Face recognition has evolved from early geometric methods to statistical approaches
such as FEigenfaces and Fisherfaces. Principal Component Analysis introduced
Eigenfaces, marking a significant shift toward data-driven recognition. Support vector
machines emerged later, and deep learning—especially convolutional neural networks
(CNNs)—transformed the field by significantly improving accuracy under diverse
lighting conditions, poses, and occlusions (Lawrence et al. (1997), Parkhi et al. (2015))
as illustrated in Figure 5.3.

Input Image Detect Transform Crop

Deep Neural Network Representation
1 Clustering
I _
|
|
—
:
- 128D unit hypersphere

FIGURE 5.3: An example of the AFR pipeline showing detection, transformation,
cropping, and embedding generation (Ammar et al. (2020)).

5.1.3 Key Challenges in Automated Face Recognition

Despite its transformative impact, AFR faces challenges that can affect performance
and societal acceptance (Jain and Li (2011), Chellappa et al. (2001), Olszewska (2016)).
Variations in pose, facial expressions, ageing, illumination changes, and resolution
limitations often complicate detection and recognition. Accessories such as glasses or
masks can also hinder accuracy. Databases must encompass a wide range of conditions
and comply with privacy regulations such as the UK Data Protection Act 2018 (and the
UK GDPR) (Senior and Pankanti (2011), Olszewska (2016)). Although strong results
have been reported on datasets like LFW (Melzi et al. (2024)), ethical and privacy
issues persist, particularly when AFR operates without explicit user consent (Garvie
et al. (2016)). Limited diversity in training data can lead to biased outcomes (Patrick
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et al. (2019), Buolamwini and Gebru (2018)), and reliance on AFR in surveillance or law
enforcement raises concerns about personal freedoms, necessitating transparency and

rigorous ethical standards.

&5

FIGURE 5.4: Common challenges in AFR include changes in pose, accessories, facial
expressions, ageing, lighting, and variations in image resolution.

In summary, Section 5.1 has established the importance, history, and challenges of
AFR, underscoring its dependence on data quality and ethical considerations. The next
section describes the components that facilitate automated face recognition in greater

detail, focusing on how images are prepared for feature extraction.

5.2 Automated Face Recognition Components

An effective AFR system requires a suitable dataset and a reliable pre-processing
pipeline. This section explains how facial images are prepared before feature extraction.
Consistency in size, alignment, and quality ensures more robust recognition results.
The initial phase involves collecting M face images. Figure 5.5 shows examples from
this study, where 430 individuals were retained, each having at least four images.
Consequently, the number of images increased from 1,720 to 4,964 across the same 430
identities, providing a richer basis for subsequent analyses. In Chapter 4, analyses were
conducted on the initial LOOCV subset of 1,720 images (430 identities, exactly four
images each). From Chapter 5 onward, results are reported on the expanded dataset of
4,964 images (the same 430 identities, with at least four images each).

According to Kumar, Semwal and Tripathi (2011), Chihaoui et al. (2016), face data
should be detected, aligned, cropped, and resized to K x K pixels, which typically
produces more robust results by removing unnecessary parts of the head and
enhancing reliability.

5.2.1 Face Detection

The first step in any AFR system is to locate faces within an image or video. The
primary goal is to isolate human faces for recognition (Zhang and Zhang (2010), Guo
and Zhang (2019b), Nixon and Aguado (2019)). Traditional methods often utilise Haar-
like features and a cascade classifier, introduced by (Viola and Jones (2001)) and later
extended by (Lienhart and Maydt (2002)), as shown in Figure 5.6.
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FIGURE 5.5: Examples of various facial images taken from the dataset used in this
study.

FIGURE 5.6: Haar cascades are a type of object detection algorithm (Ngo et al. (2009)).

This cascade approach quickly disregards non-face regions, improving detection speed.
Since any errors at this stage affect all subsequent operations, accurate detection is
essential (Nixon and Aguado (2019), Bradski and Kaehler (2008), Szeliski (2010)).
Although Haar-based methods have historically performed well, newer detectors like
MTCNN and MMOD (Guo and Zhang (20194), Zhang, Zhang, Li and Qiao (2016))
often yield better results under challenging lighting or pose variations. However, Haar
cascades remain popular in real-time, low-resource scenarios due to their simplicity

and efficiency.
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FIGURE 5.7: An example of automated image pre-processing: detecting, aligning,
resizing, and cropping the face from the LFW dataset.

5.2.2 Pre-processing Techniques

Pre-processing is crucial in AFR to ensure consistent, high-quality input before
feature extraction. Studies indicate that pre-processing techniques for the face
reduce variability, improve accuracy, and lower computational costs (Rosebrock (2017),
Sagonas et al. (2013)). Figure 5.7 illustrates this process using images from the LFW
dataset.

1. Face Alignment Face alignment addresses translation, rotation and scale by
locating key landmarks—often the eyes—and orienting them consistently (Rosebrock
(2017), Xie et al. (2021)). Tools like Dlib or OpenCV detect these landmarks, and affine
transformations align the face horizontally. Maintaining uniformity in the positioning
of the eyes across images reduces pose-related noise and aids algorithms such as
Eigenfaces, Fisherfaces or deep learning models.

2. Image Resizing After alignment, each image is resized to a fixed dimension K x K.
In this thesis, K = 100 was used for all PCA/Eigenfaces experiments to match the
dimensionality in Chapter 7. Higher working resolutions (e.g., 256 x 256) were used

only during detection and alignment prior to final downsampling to K x K.

3. Face Cropping Cropping isolates the key region—typically from the forehead
to below the chin and from ear to ear—removing irrelevant background features
(Rosebrock (2017)).

Accuracy is improved by focusing on the facial area, allowing the model to more

reliably detect and classify features; see Figure 5.8.
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\*"’1\14

FIGURE 5.8: An example of face pre-processing: the left image is original, while the
right is aligned, resized and cropped.

5.3 Automated Feature Extraction

With this foundation, automated feature extraction can proceed. This is where
68-point landmark detection, image vectorisation, and data normalisation transform
pre-processed images into a structured data matrix suitable for recognition (Asthana
et al. (2014)). Libraries such as Dlib and OpenCV provide pre-trained models to detect
these landmarks; a 68-point model is commonly employed to capture the most salient
facial regions (Amos et al. (2016), Trigueros et al. (2018)), as shown in Figure 5.9. These
landmarks also support consistent alignment and cropping by anchoring the eye and

mouth regions before vectorisation.

These landmarks correspond to soft biometric attributes shown in Table 3.1, enabling
deeper face comparisons. Figure 5.10 illustrates these landmarks in sample images
from the LFW dataset, highlighting how they map across individuals.

After landmark detection, facial features can be converted into vectors. Data
normalisation refines these vectors to ensure consistent inputs for machine learning or
deep learning algorithms. Automated feature extraction thus relies on robust landmark
identification, clear numerical representations, and uniform data quality. Collectively,
these measures complete the foundation for subsequent recognition or classification
tasks.
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5.4 Automated Face Recognition Approach

Modern face recognition often relies on deep learning methods, which can
achieve state-of-the-art results but generally require large datasets and substantial
computational power (Parkhi et al. (2015), Schroff et al. (20154), Goodfellow et al.
(2016)). In this study, only 430 individuals are available, each with relatively few
images, making it likely that training a deep model from scratch would lead to
overfitting. Fine-tuning a pre-trained CNN is an option, but it still necessitates
sufficient domain-specific data to demonstrate any new attribute, such as ‘facial

attractiveness,” without introducing factors that could compromise accuracy.

Another possibility is Fisherfaces, based on Linear Discriminant Analysis (LDA)
(Belhumeur et al. (1997)). LDA utilises all input dimensions for class separation, so
if “attractiveness’ fails to aid in distinguishing individuals, it effectively becomes noise
and lowers accuracy (He and Garcia (2009), Martinez and Kak (20014)). In contrast,
PCA /Eigenfaces (Turk and Pentland (1991b)) captures only the primary variations,
minimising the risk of overfitting in smaller datasets (Abdi and Williams (2010)), as
illustrated in Figure 5.11. Throughout this section, the probe and gallery feature vectors
are denoted by X and Y, respectively; that is, X represents the probe feature vector and

Y represents the gallery feature vector.

PCA /Eigenfaces was chosen because it performs well with limited data, focuses
on ‘facial attractiveness” without the complexities of deep learning, and aligns with
previous work on the same dataset that emphasises basic recognition accuracy. This

research does not seek maximum performance but rather examines how ‘attractiveness’
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FIGURE 5.9: Facial landmarks (1-68) detected by Dlib, grouped into jaw, right eyebrow,
left eyebrow, nose, right eye, left eye, mouth, and lip.



5.4. Automated Face Recognition Approach 69

FIGURE 5.10: Sample face images from the LFW dataset with 68 facial landmarks.

Face Image Processed face Eigen analysis

Attributes
Attractiveness
Age
Gender
Skin colour

FIGURE 5.11: An illustrative pipeline demonstrating how the ‘facial attractiveness’

attribute can be integrated into Eigenfaces. The original face (left) is processed

for landmark detection and cropped (centre), then projected into an Eigenface

representation (right) while also incorporating attributes such as “attractiveness’, ‘age’,
‘gender” and ’skin colour’.

affects recognition. If future efforts involve a larger dataset or a suitable pre-trained
model, deep learning can be revisited to further explore the role of “attractiveness’.
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5.5 Conclusion

This chapter has presented a PCA/Eigenfaces pipeline that integrates ‘facial
attractiveness’ alongside other attributes. Consistent data pre-processing and feature
extraction provide the basis for examining how ‘attractiveness’ affects recognition
accuracy. The following chapter presents and analyses the results obtained from this

investigation.
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Chapter 6

Facial Attractiveness for Automated
Facial Recognition

Chapter 4 demonstrated that facial attractiveness enhances soft-biometric recognition
(Alnamnakani et al. (2019)). This chapter extends that principle by investigating
whether it can also improve automated face recognition. It first outlines the
construction of an automated face recognition (AFR) system, then examines how facial

attractiveness may increase recognition accuracy.

6.1 Integrating Facial Attractiveness in Face Recognition

Systems

Face recognition is a prominent field in computer vision. Recent studies indicate
that facial attractiveness can improve the performance of soft-biometric systems
(Alnamnakani et al. (2019), Alnamnakani et al. (2024)). Broadly, approaches are
grouped into three main categories (Dalisay (2021)).

6.1.1 Holistic Models

Holistic models treat the face as a single unit, focusing on its overall structure.
For instance, Eigenfaces (Turk and Pentland (1991a)) employ Principal Component
Analysis (PCA) to extract key facial variation, with reports of approximately 85%
accuracy (Kshirsagar et al. (2011)). Fisherfaces (Wang et al. (2019)) combine PCA
with Linear Discriminant Analysis (LDA), reaching up to 93% (Anggo and Arapu
(2018)). Some studies suggest that Eigenfaces can outperform Fisherfaces under
specific conditions (Martinez and Kak (2001b0)). Despite these successes, holistic

methods are susceptible to variations in lighting, expression, and other external factors.



72 Chapter 6. Facial Attractiveness for Automated Facial Recognition

6.1.2 Feature-Based Models

Feature-based methods focus on localised facial regions, such as the eyes, nose, and
mouth. A popular technique, Local Binary Patterns Histograms (LBPH), uses Local
Binary Patterns (LBP) to capture texture, attaining 93.18% on specific LFW evaluation
protocols (Chen et al. (2013)). Because local descriptors analyse smaller segments, they
often exhibit robustness to occlusions, misalignment, and expression changes.

6.1.3 Convolutional Neural Networks (CNNs) and Deep Learning

Deep learning has transformed face recognition by unifying feature extraction and
classification end-to-end. Well-known architectures include AlexNet, VGG, and
ResNet (Wang et al. (2019)). For example, DeepFace (Taigman et al. (2014)) achieved
97.25%, approaching the 97.53% often attributed to human performance; FaceNet
(Schroff et al. (2015b)) further improved accuracy on LFW to 99.63% using enhanced
alignment. Although highly effective, such methods typically require large datasets

and substantial computational resources.

6.2 Reason for Using Eigenfaces

When LFW was introduced, Fisherfaces were commonly used as a baseline
(“"PCA + LDA”). However, challenging real-world conditions in LFW (lighting,
pose, background) led to weaker Fisherface performance, and contemporary studies
predominantly adopted deep neural networks trained on large-scale datasets (Learned-
Miller et al. (2016)).

Eigenfaces were selected here because of their simplicity, straightforward
implementation, and direct suitability for isolating the marginal effect of facial
attractiveness on recognition. In contrast to feature-based methods (which require
extensive parameter tuning) or deep models (which require large datasets and
specialised hardware), Eigenfaces provide a holistic representation that is adequate
for controlled evaluation of attractiveness as a soft biometric. The attractiveness score
is thus proposed as complementary information—particularly useful where faces are

highly similar or conditions are challenging.

6.3 Facial Recognition using Eigen-analysis

Principal Component Analysis (PCA), introduced by Turk and Pentland (1991b) and

Jolliffe (2002), reduces a large set of measurements to a compact set that preserves the
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dominant variance. PCA has been widely adopted in pattern recognition and medical
imaging (Sonka et al. (2014)); in biometrics it improves efficiency for modalities such
as iris and fingerprint (Xing et al. (2016), Lu et al. (2016)). Combining PCA with other
models has further advanced facial recognition (Zhou et al. (2014), Vinay et al. (2015)).

6.3.1 PCA Algorithm

PCA involves data preparation, covariance computation, eigendecomposition, and
principal-component selection (Paul and Sumam (2012); Strandjev and Agre (2013);
Gumus et al. (2010)). Let each observation be a row vector x; € R, and X € RM*C the

data matrix.

¢ Step one: prepare and standardise the dataset. The column-wise mean is

=

1

u= M{ X;. (6.1)

I
—

The centred data have rows b; = x; — 1, yielding

B=1|:|. (6.2)

Equivalently, the entire matrix can be centred as B = X — 1y (unnumbered),
where 1,/ is the M x 1 all-ones vector.

¢ Step two: compute the covariance matrix.

S = % B'B. (6.3)

(Using 1/(M — 1) gives the unbiased sample covariance; the choice of scaling
factor only rescales eigenvalues and does not change the eigenvectors used for
PCA.)

¢ Step three: compute eigenvectors and eigenvalues. Since S is symmetric, it

admits an orthonormal eigendecomposition
S=VDV' equivalently SV = VD, (6.4)

where columns of V are eigenvectors and D is diagonal with eigenvalues.

¢ Step four: select principal components. Eigenvectors associated with the largest

eigenvalues are retained to form the n-dimensional subspace.
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6.3.2 Eigenface Algorithm

FIGURE 6.1: An example of an eigenface derived from the LFW dataset.

When PCA is applied to facial images, the resulting eigenvectors are referred to as
“eigenfaces,” as in Figure 6.1. They need not coincide with explicit parts (eyes, nose);
rather, they span dominant modes of variation. The concept originates with Sirovich
and Kirby and was refined by Turk and Pentland (1991b) as cited in (Turk and Pentland
(1991b)). The method (Carikct and Ozen (2012), Brunton and Kutz (2022)) also enables
face reconstruction using k eigenfaces (Figure 6.2).

400

FIGURE 6.2: Facial reconstruction using varying numbers of k eigenfaces (Dalisay
(2021)).

6.4 Baseline Performance and Experimental Setup Using LFW

Before exploring how attractiveness might influence AFR, a baseline on LFW was
established. Prior reports indicate that Eigenfaces on LFW achieve approximately
60% accuracy (University of Massachusetts Amherst (2021)). Parameters examined
included the minimum number of images per identity, the number of principal
components, and classifier choice.
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6.4.1 Replication of the Eigenfaces Approach on LFW

An RBF-SVM was used across configurations. Table 6.1 shows results under different
Minimum Faces per Person thresholds. Accuracy was higher when few identities with
many images were included; it decreased as the number of classes grew, reflecting
increased difficulty.

TABLE 6.1: Eigenface-based face recognition on LFW with different minimum faces

per person.
Minimum Faces per Person | Classes | n-Samples | Test | Train | n-Component | Accuracy
200 2 766 134 | 612 134 94%
120 4 1031 207 | 824 149 88%
50 12 1560 312 | 1248 162 82%
16 85 3430 686 | 2744 182 62%
15 94 3565 713 | 2852 181 57%

As shown in Table 6.1, accuracy ranged from 57% to 94% depending on the threshold
and duplicate-handling. Using at least 15 images per identity (94 classes; 3,565 images)
yielded 57%, consistent with prior reports of ~60% (University of Massachusetts
Ambherst (2021)).

6.4.2 Classifier Comparisons

Three classifiers were evaluated after PCA: SVM (RBF), KNN, and Random Forest.
A unified pipeline embedded PCA with the number of components optimised via
GridSearchCV. Each classifier’s hyperparameters were tuned with 5-fold stratified
cross-validation.

TABLE 6.2: Performance of classifiers after hyperparameter tuning.

Classifier CV Accuracy | Test Accuracy
SVM (RBF) 59.7% ~ 61.0%
KNN 42.5% ~ 44.0%
Random Forest 34.0% ~ 34.0%

Best parameter configuration

e SVM (RBF): C = 10, v = 0.001, n_components = 150.
* KNN: n_neighbors = 3, weights=distance, n_components = 150.

* Random Forest: max_depth=25, n_estimators=300, n_components = 150.
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Best Tuned Classifiers on LFW

59.70%

42.50%

SVM KNN RF

FIGURE 6.3: Accuracy comparison of different machine-learning classifiers.

Choosing 150 components retained >95% of variance, a standard threshold in
PCA-based face recognition (Cortes and Vapnik (1995); Chittora and Mishra (2012b);
Sirovich and Kirby (1987); Turk and Pentland (1991c)).

Despite equivalent optimisation, performance gaps persisted:

* SVM (RBF) outperformed the others by modelling flexible non-linear decision
boundaries in low-dimensional PCA spaces, consistent with biometric literature
(Cortes and Vapnik (1995); Chittora and Mishra (2012b)).

* KNN was constrained by Euclidean geometry; PCA can distort neighbourhood
structure and reduce separability, especially under the curse of dimensionality
(Beyer et al. (1999)).

* Random Forest was weakest because tree splits are less effective on dense,
continuous PCA features; additionally, LFW offers relatively few samples per
class (median < 30), which reduces generalisation (Hastie et al. (20094)).

These outcomes justified adopting SVM as the primary classifier in subsequent

experiments (Sections 6.5 and 7).

6.5 Using SVM for Face Recognition

In the final stage of an AFR system, a classifier identifies faces by comparing test
images with known identities (Wang and Wu (2022)). SVMs—particularly with the RBF
kernel—are well-suited once PCA reduces dimensionality (see Chittora and Mishra
(2012a); Kremic and Subasi (2016)).
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6.5.1 The Radial Basis Function (RBF) Kernel

SVMs employ kernel functions to map inputs into higher-dimensional feature spaces
where separation is easier. Common kernels include linear, polynomial, radial basis
function (RBF), and sigmoid (Gumus et al. (2010)). The RBF kernel is

Krge (x, x') :exp[—'ny—x'H;], (6.5)

where <y controls the locality of influence of each training sample. Smaller -y values
produce smoother, broader decision regions; larger values focus on highly local regions

and can overfit.

6.5.1.1 Hyperparameter Details

Systematic tuning is essential for C (regularisation) and 7y (Wainer and Fonseca (2021)).

Regularisation parameter C.  C trades off margin width and training errors. Large
C reduces misclassification but may overfit; small C allows some errors and often
generalises better (GeeksforGeeks (2024b); Bergstra and Bengio (2012); Martinez-Cantin
(2014)). See Figure 6.4.

&
X OVERFITTING x:‘ UNDERFITTING

1

+
VERY LARGE C X, VERY SMALL C X,

FIGURE 6.4: Large C increases variance (narrow margin), risking overfitting; small C
improves generalisation (BayesianOptimization (2014)).

Kernel width .  Large <y induces highly curved boundaries and high variance; small
7 yields smoother decision boundaries with lower variance (GeeksforGeeks (2024a);
Bergstra and Bengio (2012); Martinez-Cantin (2014)). See Figure 6.5.
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High Gamma

only near points are considered.

Low Gamma

far away points are also considered

FIGURE 6.5: Effect of y: larger values curve the boundary (overfitting risk); smaller
values smooth it (BayesianOptimization (2014)).

6.5.1.2 Tuning Techniques for C and 7

Two strategies were used to identify high-performing hyperparameters.

(1) Grid Search. GridSearchCV exhaustively evaluates combinations within
specified ranges (Li et al. (2018); Pedregosa et al. (2011)). It is simple and thorough

but computationally intensive.

(2) Bayesian Optimisation. =~ A probabilistic surrogate guides the search towards
promising regions (Snoek et al. (2012)). The BayesianOptimization library was used
(Bergstra and Bengio (2012); Martinez-Cantin (2014); BayesianOptimization (2014)),
typically converging faster than grid search.

6.5.1.3 Comparison of Tuning Methods

Table 6.3 compares the two strategies on three datasets, reporting the best C, 1,
mean accuracy, and standard deviation. Bayesian Optimisation generally matched or

exceeded Grid Search, especially on smaller datasets.
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TABLE 6.3: Comparison of Grid Search and Bayesian Optimisation for RBF-SVM

hyperparameters

Data Optimisation C v Mean Standard
Description Technique Value | Value | Accuracy (%) | Deviation (%)
430 Subjects | Grid Search 100 0.1 26.17% 0.44%

(4964 images) | Bayesian Optimisation 60.144 | 0.0993 | 26.19% 0.49%

100 Subjects | Grid Search 100 0.1 34.80% 0.65%

(1089 images) | Bayesian Optimisation 71.251 | 0.097 | 34.89% 0.57%

7 Subjects | Grid Search 1 0.001 82.48% 1.76%

(1288 images) | Bayesian Optimisation 11.813 | 0.0028 | 84.66% 0.95%

6.5.1.4 Overall

RBF-SVMs are effective for face recognition (Chittora and Mishra (20124); Wang and
Wu (2022); Dobilas (2022)). Systematic tuning of C and v via grid or Bayesian search
improves both accuracy and stability; Bayesian Optimisation often converged faster

and delivered slightly better results.

Bridge to Chapter 7. While attractiveness performed well as a standalone feature, its
integration with Eigenfaces did not consistently improve recognition across all settings;
the detailed analysis and comparisons with attribute-only configurations are presented

in Chapter 7.

6.6 Conclusion

This chapter explored the integration of facial attractiveness within a classical
Eigenfaces + SVM pipeline on LFW. SVM outperformed Random Forest and
KNN under matched optimisation. Careful tuning of C and 7 (via grid and
Bayesian search) was essential. The evaluation further shows that attribute-only
models—using soft-biometric features such as attractiveness, age, gender, and skin
colour—achieved higher performance than systems that concatenated those attributes
with Eigenfaces, likely due to dilution of discriminative signals when merged with
dimensionality-reduced PCA outputs. This highlights the strength of soft biometrics
as standalone inputs and motivates considering them as a primary configuration in

future pipelines.
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Chapter 7
Results and Analysis

This chapter presents the principal experimental results from the face-recognition
pipeline, showing how facial attractiveness, introduced as a soft-biometric trait,
contributes to improved recognition accuracy. The chapter begins by outlining the
procedure for constructing the data matrix from pre-processed facial images. It then
describes the generation of Eigenfaces via Principal Component Analysis (PCA) before
examining the effect of incorporating facial attractiveness into the recognition process.

Comparative evaluations of optimisation techniques (Grid Search vs. Bayesian
Optimisation) and scoring methods (ELO scores vs. Rank) are also presented. Finally,
the role of attractiveness is considered alongside other soft-biometric attributes—such
as age, gender, and skin colour—followed by a detailed presentation and interpretation
of the findings.

7.1 Data Matrix Creation

The first step in preparing the dataset for PCA-based face recognition involves
transforming the input images into a format suitable for eigenanalysis. This process
comprises three stages: pre-processing of facial images, flattening the images into

one-dimensional vectors, and constructing the final data matrix.

7.1.1 Data Preprocessing

Following the procedures detailed in Chapter 5, each of the M facial images was resized
to K x K pixels and then converted to greyscale. As the Eigenfaces algorithm operates
on greyscale rather than BGR images, each pixel intensity [0, 255] was normalised to
[0,1] by division by 255. Figure 7.1 illustrates the conversion to greyscale.



82 Chapter 7. Results and Analysis

FIGURE 7.1: All images were converted to greyscale (Alnamnakani et al. (2024)).

7.1.2 Flattening into Vectors

Once in greyscale, each image was transformed into a one-dimensional feature vector
to enable PCA-based analysis. Specifically, every K x K image was reshaped into a
vector of length K2 by concatenating its rows. Figure 7.2 demonstrates this process, in
which each flattened row vector represents a single image.
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FIGURE 7.2: Flattening images into vectors of size K?, then stacking them into a data
matrix (Alnamnakani et al. (2024)).

7.1.3 Constructing the Data Matrix

The flattened vectors were stacked to create an M x K? data matrix, where M is the
total number of images. In this matrix, each row corresponds to one image and each
column to a specific pixel position across all images. This standardised format enables
the application of PCA in subsequent stages. Figure 7.3 illustrates the organisation of
the data matrix.
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FIGURE 7.3: To apply PCA for face recognition, each face image must be represented
as a vector of pixel values. These images are then arranged in a data matrix, with each
row representing a photo (Alnamnakani et al. (2024)).

7.2 Eigenfaces for Data Representation

This section considers how facial attractiveness can be integrated into the PCA-based
Eigenface representation to enhance recognition accuracy, and investigates its
relationship with specific principal components.

721 PCA and Eigenfaces

A baseline system was first established using PCA to extract Eigenfaces, followed by
classification using an RBF SVM, as described in Chapter 6. The input comprised the
flattened image vectors produced in Section 7.1, assembled into an M x K? data matrix.
PCA was then applied to decompose the data into principal components, with the
resulting eigenvectors reshaped into images (Eigenfaces). Each Eigenface corresponds
to a principal component and reflects prominent facial variation, as illustrated in

Figure 7.4.

7.2.2 Integrating Attractiveness

Although PCA-based Eigenfaces are effective for dimensionality reduction, their
discriminative power can be enhanced by incorporating soft-biometric attributes. This
subsection evaluates the effect of appending an attractiveness score to the Eigenface
representation, in combination with age, gender, and skin colour.
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FIGURE 7.4: Examples of Eigenfaces from the LFW dataset (Alnamnakani et al. (2024)).
7.2.2.1 Attractiveness in the Eigenface Vector

After PCA extraction, each image was represented as a vector of principal components.

An attractiveness score was appended to each vector to enrich the feature space:

(PCyq,PCy, ..., PC,, Attractiveness).

Figures 7.5 and 7.6 provide conceptual illustrations of how this additional feature
complements the principal components. The first few components—particularly
PCi—capture the largest share of variance in the original data, while subsequent
components contribute progressively less. =~ The appended attractiveness score
introduces an independent source of discriminative information.

All appended soft-biometric features (including attractiveness) were z-score
normalised (zero mean, unit variance) before concatenation with the PCA components

to ensure comparable scaling under the RBF kernel.

7.2.2.2 Correlation with Principal Components

To assess the relevance of attractiveness within the PCA space, Pearson’s correlation
coefficients were computed between attractiveness scores and each principal
component. The objective was to identify components most associated with perceived
attractiveness. The results indicated that attractiveness shares meaningful variance
with a subset of components, providing complementary information to the PCA
features. Figure 7.7 displays Eigenfaces with stronger correlation to attractiveness (top

row) and weaker association (bottom row).
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FIGURE 7.5: Eigenface 1 (PC1) captures the largest variance in the dataset. Subsequent
components (PC2, PC3, etc.) capture progressively less.
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FIGURE 7.6: A conceptual illustration of how the attractiveness feature merges with
the Eigenface representation.

7.3 Analysis of Results and the Importance of Attractiveness

This section evaluates the empirical impact of integrating attractiveness into
PCA-based face recognition. The dataset comprised 430 individuals, each with a
minimum of four images (4,964 images in total). Each image was resized to 100 x 100
pixels and flattened into a 10,000-dimensional vector. Dimensionality was then reduced
using PCA, retaining 190 components. Attractiveness was appended as an additional

feature to examine its discriminative value.
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PC 26 PC3 PC 2

FIGURE 7.7: Eigenfaces with higher correlation to attractiveness are shown at the top;
those with lower correlation appear at the bottom (Alnamnakani et al. (2024)).

7.3.1 Comparisons Across Different Dataset Sizes

To assess the influence of attractiveness systematically, two dataset sizes were

evaluated using an RBF-kernel Support Vector Machine (SVM):

¢ Full set: 430 individuals (4,964 images).

* Smaller set: 100 individuals (1,089 images).

In both cases, two configurations were compared: PCA-only features versus PCA

features with attractiveness appended.

7.3.1.1 Results with 430 Individuals (4,964 Images)

The inclusion of attractiveness improved classification performance. Accuracy
increased from 34.8% to 43.2%, while the Fl-score rose from 25.3% to 32.7%. These
improvements of +8.4 and +7.4 percentage points, respectively, were statistically

significant (paired t-test, p = 0.015). Table 7.1 summarises these results.

7.3.1.2 Results with 100 Individuals (1,089 Images)

A similar trend was observed with the smaller dataset. Accuracy increased from
26.2% to 33.3%, and the F1-score improved from 19.2% to 24.5%. These gains of +7.1
and +5.3 percentage points were also statistically significant (p = 0.003), confirming
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that attractiveness contributes positively even with fewer participants. Table 7.1

summarises these results.

TABLE 7.1: Performance comparison: PCA-only vs. PCA+Attractiveness across two
dataset sizes.

Mean
Data Set Mean F1- Accuracy F1-Score T-test P-
Description  Feature Accuracy Score  Improvement Improvement  Statistic = value
Data Set PCA Only 34.8% 25.3%
with 430
Individuals
PCA with 43.2% 32.7%  +84 +74 -8.172 0.015
Attractiveness percentage percentage
points points
Data Set PCA Only 26.2% 19.2%
with 100
Individuals
PCA with 33.3% 245% @ +7.1 +53 -17.718  0.003
Attractiveness percentage percentage
points points

7.3.1.3 Overall Interpretation

Across both dataset sizes, attractiveness consistently yielded improvements in accuracy
and Fl-score (typically 5-8%). This consistency indicates that attractiveness captures
facial cues not fully represented by PCA alone. Figure 7.8 visualises these differences.
All improvements were statistically significant (p < 0.05), reinforcing the conclusion

that attractiveness provides valuable supplementary information for facial recognition.

7.3.1.4 Analysis of Adding Attractiveness to Different Data Subsets

To examine robustness, the dataset was partitioned into three non-overlapping groups.
Accuracy was compared for each group with and without attractiveness. As shown
in Table 7.2, accuracy improvements ranging from +5.5% to +8.4% were observed,

supporting the stability of attractiveness as a discriminative trait across subject subsets.

7.3.2 Comparison of Attractiveness with Traditional Face Attributes

Two dataset sizes were considered (100 and 430 participants). For each, performance
with PCA-only features was compared against PCA combined with one of: Age,
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Mean Accuracy Comparison: PCA vs. PCA+Attractiveness
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FIGURE 7.8: Comparison showing how attractiveness improves accuracy and
Fl-scores in the 430- and 100-participant datasets.

TABLE 7.2: Accuracy comparison: PCA-only vs. PCA+Attractiveness across different

groups.

Group PCA Only Acc. Attractiveness Acc.  Improvement
1 (IDs 1-100) 0.3480 0.4316 +0.0836 (+8.36%)
2 (IDs 331-430) 0.3063 0.3836 +0.0773 (+7.73%)
3 (IDs 249-348) 0.1709 0.2259 +0.0550 (+5.50%)

Attractiveness, Gender, or Skin Colour. Figure 7.9 presents grouped bar charts, where
dark bars indicate 430 participants and light bars 100 participants.

Among all attributes, Age achieved the highest overall accuracy (up to 34.7%), followed
closely by Attractiveness, which increased accuracy from 26.2% (baseline) to 33.3% and
improved the Fl-score from 19.2% to 24.5%. Gender and Skin Colour also provided
gains over the PCA baseline, albeit smaller. These results suggest that Age and
Attractiveness are the most effective soft-biometric features for enhancing PCA-based
recognition.

Notably, Attractiveness improved performance consistently across both datasets,
reinforcing its reliability as a complementary and generalisable attribute. Moreover,
combining Age, Gender, and Skin Colour with PCA yielded further gains, which
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FIGURE 7.9: Accuracy for five settings: PCA, +Age, +Attractiveness, +Gender, +Skin
Colour—across two dataset sizes. Dark bars: 430 participants; light bars: 100
participants.

were amplified by including Attractiveness—highlighting its distinct discriminative
contribution.

7.3.3 ELO vs. Rank; Grid Search vs. Bayesian Optimisation

TABLE 7.3: Mean accuracy and standard deviation for five features using ELO Scores
or Rank, with Grid Search or Bayesian Optimisation.

ELO Scores Rank

Grid Search Comparison of Features: Comparison of Features:
Feature Mean Accuracy Standard Deviation Feature Mean Accuracy Standard Deviation
PCA only ©.261684 0.004364 PCA only ©.261684 0.004364
Age 6695 0.007734 : Age ©.334609
Attractiveness K] 0.006156 Attractiveness 9.327155
Gender 0.001254 Gender 9.3338e4
Skin Color - ¥ ©.001118 Skin Color ©8.326954

Bayesian Comparison of Features: Comparison of Features:

Feature Mean Accuracy Standard Deviation Feature Mean Accuracy Standard Deviation
Optimisation | [} PCA only .261884 @.e04905 il o PCA only 0.261884 0.004908
1 Age . 0.007111 1 Age ©.333601 0.002057
2 Attractiveness 3 ©.003058 BNl 7 Attractiveness 8.325946 0.002626
3 Gender ©.002905 g 3 Gender 0.334206 0.002281
4 Skin Color 9.326350 o.003055 Nl 4 skin Color 9.326148 0.001439

Table 7.3 and Figure 7.10 compare two scoring strategies—ELO Scores and
Rank—combined with two hyperparameter-tuning methods: Grid Search and
Bayesian Optimisation. Across five feature sets (PCA only; PCA + Age; PCA +
Attractiveness; PCA + Gender; PCA + Skin Colour), Age consistently achieved the
highest accuracy, followed by Attractiveness. While Gender and Skin Colour also
improved upon the PCA-only baseline, their impact was more modest. Overall, ELO
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Comparison of Features Across Approaches
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FIGURE 7.10: Accuracy across four approaches (Grid/Bayesian under ELO

Scores/Rank) for the five features. Age consistently achieved the highest performance,

followed by Attractiveness. ELO Scores generally outperformed Rank, while Bayesian
Optimisation gave slight gains over Grid Search.

Scores outperformed Rank irrespective of the optimiser, and Bayesian Optimisation
provided small but consistent gains over Grid Search.

Additional experiments on three independent 100-participant subsets showed the same
pattern: Age and Attractiveness produced the largest improvements, particularly when
ELO Scores were paired with Bayesian Optimisation.

7.3.4 Traditional Face Attributes vs. Traditional Face Attributes +
Attractiveness

Traditional soft-biometric attributes—Age, Gender, and Skin Colour—substantially
improve performance when appended to PCA features. This improvement is further
amplified when Attractiveness is also included. Three configurations were compared:
1. PCA only.
2. PCA + Age + Gender + Skin Colour (AGS).

3. PCA + AGS + Attractiveness.
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7.3.4.1 Organised Results

Table 7.4 summarises the mean accuracy and standard deviation for each configuration.
The first comparison contrasts PCA-only with PCA + AGS, while the second assesses
the added value of including Attractiveness alongside AGS.

TABLE 7.4: Summary of feature-set evaluations
AGS = (Age, Gender, Skin Colour)

Feature Set Mean Accuracy Standard Deviation
PCA only 0.262 0.004
PCA + AGS 0.446 0.000
PCA + AGS + Attractiveness 0.480 0.001

7.3.4.2 Visual Representation of the Results

Figure 7.11 illustrates the gains reported in Table 7.4. While AGS substantially
improved accuracy over the PCA baseline, the inclusion of Attractiveness added a
further gain of more than three percentage points.

Comparison: PCA vs. Soft-Biometric Combinations
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0.5 1 0.480
0.446

o
o
1

o
w
i

0.262

Mean Accuracy

o
P
1

0.1 4

0.0

T T
PCA only PCA + AGS PCA + AGS + Attractiveness

FIGURE 7.11: Mean accuracy for PCA only, PCA + AGS, and PCA + AGS +
Attractiveness. Accuracy rises from 26.2% to 44.6% with AGS, and further to 48.0%
when Attractiveness is added.
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7.3.4.3 Analysis of Attractiveness
The improvement from 26.2% to 44.6% using AGS confirms the effectiveness of
traditional attributes. Incorporating Attractiveness increased accuracy to 48.0%,

indicating that it captures facial information beyond Age, Gender, and Skin Colour.
The overall gain remained statistically significant (p < 0.05).

7.3.5 Fisherfaces vs. Eigenfaces on LFW

Comparison of Fisherface (Different n_components) and Eigenface
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B Fisherface (n=90)
W Fisherface (n=95)
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FIGURE 7.12: Comparison of Fisherface and Eigenface on LFW, highlighting the
impact of attributes such as Attractiveness.

Figure 7.12 compares Fisherface (PCA followed by Linear Discriminant Analysis)
and Eigenface (PCA only) on the LFW dataset. For Fisherface, three PCA variance
thresholds were tested (90%, 95%, and 98%), whereas Eigenface was evaluated using a

single configuration retaining 95% of the variance.

Without additional attributes, Eigenface slightly outperformed Fisherface across
configurations. However, adding soft-biometric attributes—particularly Age and
Attractiveness—Iled to substantial improvements in both methods. Attractiveness had

a marked positive impact in both settings, reinforcing its value as a soft-biometric trait.
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FIGURE 7.13: Adding facial Attractiveness to Eigenfaces and other traditional
soft-biometric attributes (e.g. Age, Gender) increases recognition accuracy over PCA
alone (Alnamnakani et al. (2024)).

7.4 Conclusion

This chapter showed that incorporating Attractiveness as a soft-biometric trait
consistently improves face-recognition accuracy, particularly when combined with
PCA-based Eigenfaces and other conventional attributes such as Age, Gender, and
Skin Colour (Figures 7.13 and 7.14). On average, accuracy increased by approximately
5-8% across datasets, with all improvements statistically significant (p < 0.05). While
Age remained the most influential attribute, Attractiveness consistently ranked second,

outperforming Gender and Skin Colour.

Note. The results above quantify the marginal benefit of adding Attractiveness
within a PCA/Eigenfaces pipeline. Our broader evaluation (Chapter 6) shows that
attribute-only models (e.g. Age, Gender, Skin Colour, and Attractiveness) achieve
higher overall accuracy than their Eigenfaces-augmented counterparts when using the

same feature sets.
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FIGURE 7.14: Adding Attractiveness to Eigenfaces and other soft-biometric attributes
(Age, Gender, Skin Colour) yields further accuracy gains (Alnamnakani et al. (2024)).
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Chapter 8

Conclusions and Future Work

This chapter provides a concise overview of the study’s findings on using facial
attractiveness as a soft biometric feature to enhance face recognition performance. It

also presents future perspectives and promising research directions in this domain.

8.1 Conclusion

This thesis introduces facial attractiveness as a new soft biometric feature within
automated face recognition systems, supplementing commonly used characteristics

such as age, gender, and skin colour. The key conclusions are outlined below:

1. Correlation analyses and feature-selection criteria (e.g., Mutual Information,
SFFS) confirm that attractiveness is a highly discriminative trait—comparable to

age and gender—for distinguishing individuals.

2. Despite being a relatively new concept, facial attractiveness as a soft biometric
feature can be incorporated into existing recognition pipelines with minimal
adjustment. Attractiveness values were derived from pairwise face comparisons
and converted into a ranking (e.g., ELO). This flexible and computationally
efficient method captures aesthetic aspects known to influence human memory

and first impressions.

3. The LFW database was used with two cohorts: one of 100 individuals and
another of 430 individuals, each with at least four images per person. Across
both configurations, age and attractiveness were the principal contributors to

improved recognition accuracy, followed by gender and skin colour.

4. Across both four-fold and leave-one-out cross-validation protocols, adding
attractiveness to PCA features with an RBF SVM improved accuracy by about
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5-8 percentage points; paired t-tests confirmed statistical significance (p < 0.05)
(see §7.3, Table 7.1).

5. While adding attractiveness to PCA/Eigenfaces improved over a PCA-only
baseline, the broader evaluation showed that attribute-only configurations (e.g.,
Age, Gender, Skin Colour, and attractiveness) achieved higher overall accuracy
than Eigenfaces-augmented systems using the same features (see §6.6 and §7.4).

6. Using the same attribute set (22 features, including attractiveness) in an
attribute-only Random Forest, an accuracy of 87.00% was attained, exceeding
the same model without attractiveness by 2.25 percentage points, the k-NN
approach by about 15 percentage points, and the 24-attribute method by nearly
30 percentage points.

7. Although the inclusion of facial attractiveness improves recognition, ethical
considerations arise regarding beauty standards, privacy, and informed consent.
Any operational deployment should include fairness audits, robust consent
mechanisms, and culturally aware annotation protocols to mitigate bias and
potential harms associated with standards of beauty.

8.2 Additional Perspectives and Next Steps

This study focused on the standard LFW dataset and the classical Eigenfaces algorithm
to examine how facial attractiveness can be integrated into automated recognition. This
choice provided a clear testbed to quantify the marginal value of attractiveness and, in
turn, motivates advanced research utilising deep neural networks designed to detect

and leverage attractiveness cues for potentially greater accuracy.

An additional observation concerns eyewitness testimony: attractiveness, as reported
by witnesses, can operate as a memorable and salient descriptor. A specialised
deep-learning system that models observer-based attractiveness may strengthen
the link between subjective descriptions and objective identification, especially in
investigative contexts.

Embedding attractiveness within human-centric attributes represents a step towards
more comprehensive recognition. With continued research, attractiveness may become
a routine factor in eyewitness accounts. More detailed models, larger and more diverse
datasets, and feedback from real-world witnesses are expected to increase reliability.

In sum, the study indicates that facial attractiveness is a measurable and significant
soft-biometric feature that can meaningfully improve face-recognition performance.

These results open the door to further research and real-world applications in which
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attractiveness is combined with other traits or integrated into deep-learning-based

recognition systems.

8.3 Future Work

This study lays the groundwork for further exploration of how facial attractiveness
can improve recognition performance in both technical and practical settings. The

following avenues are proposed:

1. Deep Embeddings and Saliency Maps (e.g, Grad-CAM). Beyond
Eigenfaces/SVM Dbaselines, adopting deep neural networks (CNNs or
Transformers) may increase accuracy and flexibility. By examining activation
maps and saliency heat maps (e.g., Grad-CAM), the facial regions most associated
with attractiveness can be identified and linked to previously studied traits.

2. Increasing and Diversifying Annotators. A larger, culturally and socially
diverse annotator pool is recommended to reduce bias, enrich the dataset, and
reveal whether consistent group-wise differences in attractiveness judgements

exist.

3. Trying Different Ranking Systems and Adjusting Parameters. Although ELO
worked well, alternative systems (e.g., TrueSkill, Glicko, Bayesian Ranking) merit
comparison. A supervised baseline (e.g., RankSVM) can test whether labelled
approaches sometimes outperform iterative, label-free methods.

4. Testing Other Representations and Distance Measures (e.g.,, L1/Manhattan,
cosine). Beyond Eigenfaces and Euclidean distance, Fisherfaces (LDA-based) and
other dimensionality-reduction techniques, together with alternative distances,
may render the inclusion of attractiveness more robust across pipelines.

5. Aligning With Witness Descriptions and Forensic Work. Eyewitness reports
that describe suspects as “attractive” could be translated into semi-quantitative
data for forensic databases.  Linking deep-learning saliency with these
observations may align human judgements with algorithmic evidence in legal

contexts.

6. Combining Attractiveness with Other Soft Biometrics. Beyond age, gender, and
skin colour, links to other modalities (e.g., body attractiveness, voice, clothing)
could be explored. A multimodal view may improve reliability in large-scale or

unconstrained scenarios.

Overall, incorporating attractiveness appears to enhance face-recognition systems for

security, forensic, and commercial applications. As automated methods and large-scale
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data grow, exploring how attractiveness interacts with deeper models and diverse
cultural perspectives may enable more human-centred and innovative solutions in

visual recognition and AL
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