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Abstract
There is a critical unmet need for scalable, accessible and objective diagnostic tests for stratification in dementia. 
Biofluid Raman spectroscopy (RS) due to its simplicity, holistic and label-free nature, is a powerful approach 
that has the potential to offer differential diagnosis across dementia types including Alzheimer’s disease (AD). 
RS is a laser-based optical method that can rapidly provide chemically rich information (‘spectral biomarkers’) 
from biofluids but its utility for AD diagnosis has not been established in a ‘real-world’ context, specifically from 
a clinically heterogenous cohort of patients. We carried out RS measurements on cerebrospinal fluid (CSF) 
samples of patients from a mixed clinical cohort (N = 143). All patients reported cognitive complaints and were 
clinically diagnosed over 2 years with conditions including AD and other neurodegenerative diseases, as well 
as developmental and long-term chronic conditions. Machine-learning algorithms were trained, optimised and 
evaluated on Raman spectra to classify AD from non-AD. AD was classified with 93% accuracy for patients in the 
testing set. Time from sample to classification was < 1 h. Spectral biomarkers explaining AD classification were 
identified and primarily assigned to protein-derived aromatic amino acids, representing a difference in proteome 
signature between AD and non-AD groups. Signals from a subset of spectral biomarkers directly correlated with 
pathological CSF biomarker concentrations including amyloid-β 42, phosphorylated-tau 181, and total tau. This 
pre-clinical study is a first step towards realising the real-world application of RS for dementia diagnosis. Compared 
to current and emerging methods, RS does not require sophisticated instrumentation or specialised labs. It is 
reagentless and simple, offering unprecedented rapidity, scalability, accessibility for dementia diagnosis.
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Introduction
Clinical diagnosis of Alzheimer’s disease (AD) is often 
inconsistent with post-mortem neuropathology at 
autopsy, which is necessary for a definitive AD diagno-
sis [1–3]. Reported accuracies of clinical AD diagnosis 
vary widely [4], in part due to diagnostic inaccuracies and 
patient heterogeneity. To address this, there has been a 
move from a symptomatic definition of AD towards a 
biological definition based on pathological biomark-
ers, including amyloid-β (Aβ) and tau protein biofluid 
levels [3]. However, there is still a need to develop more 
accessible and objective biomarkers that are highly sen-
sitive and specific to AD, whilst retaining stratification 
capability over other clinically overlapping neurodegen-
erative diseases (NDDs). Such biomarkers could improve 
AD diagnosis rate and accuracy, as well as patient cohort 
selection and stratification in drug trials. Furthermore, 
patient selection for AD disease-modifying therapies like 
Lecanemab [5] underscores the importance of identifying 
those most likely to benefit and tailoring interventions 
accordingly.

Current biomarkers for AD include structural and 
functional imaging such as magnetic resonance imaging 
(MRI) and single-photon emission computed tomog-
raphy (SPECT)/positron emission tomography (PET). 
Biofluid markers are routinely utilised, particularly cere-
brospinal fluid (CSF) markers for amyloid, tau and neu-
rodegeneration (ATN), specifically amyloid-β-42 (Aβ42, 
A) phosphorylated tau at site 181 (p-tau, T), and total 
tau (t-tau, N). Several novel biomarkers are emerging as 
candidates to further support AD diagnosis, including 
plasma p-tau 217 [3, 6], as well as omics-based (meta-
genomics, proteomics, metabolomics) biomarkers [7], 
and tau-specific PET ligands [8]. A simpler yet power-
ful solution may be provided by optical spectroscopy. 
Raman spectroscopy (RS) is an optical technique that 
can provide highly selective label-free readouts within 
seconds and has the potential for portability at scale [9]. 
RS is label-free and reagentless and can be carried out 
with a small footprint using portable devices in a range 
of healthcare settings, potentially without the need of 
skilled operators. Biofluids can be analysed directly 
to provide an unbiased and holistic chemical finger-
print based on the vibrational modes of the molecules 
within the sample. The RS-based chemical fingerprint-
ing approach represents the collective characteristics of 
the biofluid and contrasts with the detection of a specific 
molecule or analyte [10]. Therefore, Raman spectros-
copy may have utility in the detection and stratification 
of multiple, if not all, neurodegenerative diseases, open-
ing the door to rapid differential diagnosis and therefore 
timely personalised intervention.

Proof-of-concept studies have demonstrated that 
RS may have clinical utility for the identification of AD 

(the most common cause of dementia) in CSF, but small 
patient sample sizes of 19 [11] and 37 [12] together with 
the lack of comparative clinical gold standards currently 
limit any confidence in clinical validity. Additionally, 
these studies used healthy controls as comparators to 
AD patients, which does not reflect real-world diagnostic 
scenarios as it is unlikely that ‘healthy’ people will seek an 
AD diagnosis. A more appropriate control group will be 
patients who sought dementia diagnoses due to cognitive 
complaints but were deemed to have a condition other 
than AD, such as another neurodegenerative disease. It is 
therefore still not established whether RS can detect AD 
in a clinical cohort, representative of the clinical setting 
or population, with appropriate statistical power.

To address this critical gap, we utilised a mixed clini-
cal cohort of patients (N = 143) who reported cognitive 
complaints and for whom diagnosis was not initially 
clear. CSF samples, taken by lumbar puncture, were used 
for ATN biomarker analysis. We hypothesised that RS 
analysis of CSF can provide unique spectral fingerprints 
of AD-specific pathology/neurodegeneration enabling 
differentiation between AD and non-AD patients even 
in a heterogenous cohort. We tested AD classification of 
Raman spectra using machine-learning (ML) algorithms. 
From the Raman spectra we extracted spectral biomark-
ers specific to AD and assessed their association with 
CSF ATN biomarkers by correlation. Our results demon-
strate an important step towards the clinical translation 
of Raman spectroscopy for supporting AD diagnosis, and 
potentially differential dementia diagnosis, in the future.

Materials and methods
Study design
The current study utilised 143 CSF samples collected 
from patients with cognitive complaints referred to Wes-
sex Cognitive Disorders Clinic at University Hospital 
Southampton NHS Foundation Trust between 2014 and 
2021 for diagnostic lumbar puncture to assess neurode-
generative pathology. Cases were referred from second-
ary memory centres or general neurology because the 
diagnosis was not clear at the point of referral. Final diag-
noses of AD or non‑AD were established by neurologists 
after comprehensive clinical work‑up, including cognitive 
screening, neuroimaging using Technetium-99 m exam-
etazime single-photon emission computed tomography 
(HMPAO SPECT) and CSF biomarker analysis, over 
a follow‑up period of up to two years. All CSF samples 
that had been annotated with patient data including 
age, sex, clinical diagnosis and biomarker concentra-
tions were collected and used for this study. Inclusion 
criteria for the current study were referral for cognitive 
complaints with query of dementia, availability of AD 
CSF biomarker results, and availability of CSF sample for 
Raman analysis. Exclusion criteria were not applied. The 
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cohort was divided into two groups including AD and 
non-AD (Table  1) based on clinical diagnosis that used 
a combination of clinical test scores, brain imaging, and 
CSF biomarker results. The research objectives were to 
classify CSF samples into AD and non-AD groups based 
on cross-sectional analysis using Raman spectroscopy 
measurements in combination with machine-learning. 
The investigator was blinded to patient diagnosis during 
spectroscopy measurements and data preprocessing and 
unblinded at the machine-learning stage as all models 
used as supervised.

CSF samples
CSF biomarker concentrations for Aβ42, total tau, and 
p-tau 181 were measured by the UKAS accredited Neu-
roimmunology and CSF laboratory at the National Hos-
pital for Neurology and Neurosurgery at Queen Square 
London using the INNOTEST (Fujirebio) enzyme linked 
immunosorbent assays (ELISA) system until 2020, and 
the Lumipulse G (Fujirebio) chemiluminescent immu-
noassay since 2020 (each of which has compatible results 
[13]). Aβ42 was automatically corrected within the Lumi-
pulse software to retain equivalence with the original 
Innotest results. The cutoffs for positive results used 
were: Aβ42 < 680 pg/m, ptau >56 pg/ml, total tau >355 
pg/ml. The PLM scale (Paris-North Lille Montpellier bio-
marker scoring system) [14] was used to support the clas-
sification of AD based on the presence of Aβ42, p-tau and 
total tau (A, T, N) biological markers. Positivity for all 3 
biomarkers indicates very high likelihood of AD (>90%), 
2 biomarkers indicates high likelihood of AD (>75%), 1 
biomarker indicates low likelihood of AD (< 25%), and 0 
biomarkers indicates very low likelihood of AD (< 10%). 
The AD group included different AD variants (amnestic, 
speech, visual), as well as AD with other chronic comor-
bidities. Diagnoses in the non-AD group spanned a range 
of clinical conditions including dementia caused by other 
NDDs, as well as developmental and chronic conditions 
not related to neurodegeneration. A full list of clini-
cal diagnoses can be found in Supplementary Table 1. 
Samples were collected as part of two studies that were 
approved by the Research Ethics Committee (REC:20/
NW/0222 and REC:15/SC/0231). Written informed con-
sent was provided at the time of the lumbar puncture by 

participants or their next of kin, including permission for 
the storage of excess CSF and use in research studies.

Sample handling and storage
A minimum of 2  ml of CSF was collected from each 
participant by lumbar puncture and centrifuged within 
30 min in Starstedt polypropylene tubes. 500µL were ali-
quoted in an Elkay polypropylene tube, frozen at − 70 °C 
and sent for clinical diagnostic analysis to the Neuro-
immunology and CSF laboratory at University Col-
lege London Hospitals NHS Foundation Trust (UCLH). 
Remaining sample was frozen and stored at − 80 °C. For 
this research study, these samples were thawed, aliquoted 
(40  µl), and flash frozen in liquid nitrogen, and stored 
at − 80  °C locally. Samples were anonymised and ran-
domised so that researchers were blinded to each partici-
pant’s underlying condition during sample preparation 
and spectral preprocessing.

Sample preparation for Raman spectroscopy
CSF samples were thawed in room temperature (RT) 
water and vortexed well. CSF salts were exchanged for 
double-distilled H2O (ddH2O) using a 10  kDa MWCO 
filter (Vivaspin) as described below. Filters were first 
washed thoroughly by two 4-minute spins in 500  µl 
ddH2O at 12,000 x g in a tabletop microcentrifuge at 
20 °C. Filtrate, collected in the bottom compartment, was 
discarded. 40  µl CSF was then added to the top part of 
the filter and diluted to 500  µl with ddH2O and centri-
fuged for 10 min at 12,000 x g, 20 °C. This process of dilu-
tion and filtration was repeated three times. The desalted 
CSF was then transferred to a fresh tube and vortexed 
well. 1 µl of the desalted CSF was deposited onto an alu-
minium coated (1000Å) microscope slide (SUBSTRATA, 
ANGSTROM Engineering®) and allowed to dry in a 
small, vented container at RT for 30 min.

Raman spectroscopy
A Renishaw inViaTM Qontor microscope system was 
used for Raman spectroscopy. Briefly, the Raman sys-
tem was calibrated to the 520 cm− 1 reference peak of the 
internal silicon substrate prior to each experiment. The 
charge-coupled device (CCD) detector and spectrom-
eter slit areas were aligned using the auto align function 
and the laser spot was manually aligned to the centre of 
the crosshairs using the camera. The desalted dried CSF 
droplets were located and brought into focus using a 
Leica DM 2500-M bright field microscope and an auto-
mated 100  nm-encoded XYZ stage. Spectral data were 
collected, and parameters were determined using Ren-
ishaw WIRE5.5 software. The samples were excited using 
a 785  nm laser at 50% power focused through a Leica 
50x long working distance objective (numerical aper-
ture = 0.5). Laser power at the sample was approximately 

Table 1  CSF sample cohort
Clinical diagnosis Age 

(mean ± SD)
Sex 
(%M / %F)

Number of patients

Non-AD 68 ± 11 71 / 29 76
AD 64 ± 9 43 / 57 67
Total 66 ± 10 65 / 35 143
Footnotes: CSF (cerebrospinal fluid), SD (standard deviation) AD (Alzheimer’s 
disease)
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6.25 mW. Each Raman spectrum was collected for 30 s, 
consisting of two 15 s measurement acquisitions.

Thirty spectra were collected from the dried droplets. 
Only the bottom half of each droplet was measured, as 
seen through the camera. All raw spectra consisted of 
1015 variables and detected using a Peltier cooled CCD 
(1024 pixels × 256 pixels) after dispersion through a 
1800 L/mm diffraction grating with a range of 659 cm− 1 
− 1761 cm− 1 with a resolution of 1.09 cm− 1. As multiple 
acquisitions were acquired per spectrum, cosmic rays 
were removed manually using the WIRE5.5 zap function 
after each spectral measurement. Background spectra 
from the aluminium surface were measured in 3 roughly 
evenly spaced locations around the measured region 
of the dried droplet using equivalent Z distances as for 
each sample measurement. All spectra were background-
subtracted using an average of the three spatially inde-
pendent spectra of the aluminium surface for each CSF 
droplet.

Spectral preprocessing
Preprocessing and multivariate analysis were performed 
using the IRootLab plugin (0.15.07.09-v) for MATLAB® 
R2023a [15]. High-frequency noise was removed using 
the Haar-wavelet denoising function with 6 decomposi-
tion levels. A fifth-order polynomial was used to remove 
fluorescence background. The ends of each spectrum 
were then anchored to the axis using the rubberband-
like function. Spectral intensity normalization was 
applied using vector normalisation and spectra were 
standardised for outlier removal by principal compo-
nent analysis (PCA). Identified spectral outliers were 
removed from the dataset for each patient. PCA was also 
applied at the level of patient resulting in the removal of 2 
patient’s spectra from downstream analysis due to chemi-
cal contamination of sample (likely from blood during 
lumbar puncture).

Spectral biomarker feature extraction
The Mann-Whitney U-Test per Raman shift of the spec-
trum was used to identify the variables that were most 
different between Non-AD and AD groups using all 3139 
spectra in the training dataset. 10 spectral regions were 
identified, and the area of each region (A) was calculated 
to reduce the data from each region into a single variable. 
These 10 variables were used for clustering and classifi-
cation (see classification). Chemical assignment of each 
region was based on the literature values. Linear discrim-
inant analysis (LDA) was used for clustering non-AD and 
AD samples using all ten spectral biomarker values as 
input variables. LDA was performed using the IRootLab 
plugin (0.15.07.09-v) for MATLAB® R2023a [15].

Classification
Samples remaining after the removal of outliers (n = 141) 
were randomly split into a training set (113 patients, 80%) 
and a testing set (28 patients, 20%) whilst retaining class 
balance. This resulted in 3139 independent Raman spec-
tra in the training dataset and 766 independent Raman 
spectra in the testing dataset. Model hyperparameters 
are shown in Supplementary Table 2. For classification 
of the complete Raman fingerprint, two different types of 
classification models were utilised; a convolutional neu-
ral network (CNN) and a linear support-vector machine 
(SVM) via the MATLAB® Classification Learner appli-
cation. For extracted features (see spectral biomarker 
feature extraction) a bagged decision tree model was 
utilised. Feature reduction using PCA (for the CNN and 
SVM only) and misclassification costs were optimised 
manually through iterations, followed by hyperparam-
eter tuning using default optimizable settings for each 
model. Specifically, 5 separate models were generated for 
the training dataset using a Bayesian optimization pro-
cedure of 20 iterations of hyperparameter optimisation 
with ‘expected improvement per second plus’ for each of 
the models. The models were trained and validated using 
the training data and 5 k-fold cross validation. The best 
optimised model, of the 5 models, was then exported to 
MATLAB® to retrain a further 10 times, each time shuf-
fling cross-validation groups, to assess model variabil-
ity by SEM (standard error of the mean). Each of the 10 
retrained models were evaluated on the unseen patient 
spectra (testing set) for classification of the unseen data 
into 2 distinct groups (Non-AD and AD). Classified spec-
tra were grouped per patient to provide a classification 
score (%) for each patient based on the number of spectra 
that correctly classified the patient into AD or non-AD 
groups. Averaged scores were used to construct the final 
receiver-operating characteristic (ROC) curves to evalu-
ate the robustness of the classification model generated.

Feature importance
Global LIME (local interpretable model-agnostic expla-
nations) and partial dependence analysis were performed 
using the MATLAB® Classification Learner application 
explain function. Global LIME was performed using all 
3139 spectra in the training dataset using a tree model 
and a kernel width of 0.5. Partial dependence maxima 
were extracted from the highest score from the partial 
dependence plot for each feature.

Partial correlation analysis
Partial correlation analysis was performed using IBM 
SPSS Statistics (v30) software. Adjustments were made 
for age and sex to find associations between classifier 
output scores and diagnostic scale of the patient’s PLM 
status (Paris-North Lille Montpellier biomarker scoring 
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system), as well as between extracted features (spectral 
biomarkers) and log-transformed CSF biomarker levels, 
specifically Aβ42, total tau, and p-tau levels. The cutoffs 
for positive results used were: Aβ42 < 680 pg/m (ptau > 56 
pg/ml, total tau > 355 pg/ml). Total tau biomarker results 
were not available for 7 patients, so these patients were 
removed from partial correlation analysis for total tau. 
Two-sided P < 0.05 was considered statistically sig-
nificant. We used False Discovery Rate (FDR) analysis 
to control for multiple comparisons for the extracted 
features and CSF biomarkers, accounting for 30 com-
parisons in total. Specifically, the Benjamini-Hochberg 
method was used with an FDR < 5% considered statisti-
cally significant. Scatter plots were used to illustrate the 
correlations.

Results
Subhead 1: generation of an AD-specific Raman signature
We measured Raman spectra of 143 CSF samples that 
were collected by lumbar puncture acquired from 
a cross-section of patients with neurological symp-
toms and stored in the University of Southampton Tis-
sue Bank. The study cohort consisted of 67 AD patients 
and 76 non-AD patients (Table  1) who were diagnosed 
clinically by neurologists after comprehensive clinical 
work‑up, including cognitive screening, neuroimag-
ing using Technetium-99 m exametazime single-photon 
emission computed tomography (HMPAO SPECT) and 
CSF biomarker analysis, over a follow‑up period of up to 
two years.

We have previously shown that proteins at physiologi-
cal concentrations can be measured directly by Raman 
spectroscopy when samples are dried in droplets ≤ 1  µl 
using a method known as droplet deposition Raman 
spectroscopy (DDRS, [16, 17]). To utilise this method, 
salts and sugars were removed from CSF samples by 
centrifugal filtration before air drying on an aluminum 
surface in an array for DDRS. 30 Raman spectra were 
collected from each dried CSF droplet using a near-infra-
red laser (785 nm). Samples from up to 6 patients were 
thawed, desalted, dried and measured per experiment in 
a blinded fashion. The experimental and analytical work-
flow for the present study is depicted in Fig. 1.

Raman spectra collected from CSF samples were pre-
processed using established routines [17–19] and spec-
tral outliers were removed using principal component 
analysis (PCA, see methods). The CSF Raman fingerprint 
is expectedly dominated by peaks that can be attributed 
to proteins (Fig. 2A), including the characteristic phenyl-
alanine ring-breathing mode at 1003 cm− 1, the extended 
protein amide III region between 1200 and 1350 cm− 1, 
and the protein amide I region between 1600 and 1700 
cm− 1. Interfering signals from salts and from sugars were 
removed by the filtration step and were subsequently 

undetectable by RS (Supplementary Fig. 1). 2 CSF sam-
ples in the N = 143 cohort were identified as outliers 
(Supplementary Fig. 2) and these samples had notably 
darker colored solution, likely caused by blood contami-
nation during lumbar puncture. Raman spectra from 
these 2 samples was subsequently excluded from the 
study analysis resulting in a final spectral dataset from 
141 CSF samples.

As the sample cohort was heterogeneous, we initially 
sought to generate a Raman signature that was specific 
to AD. To do this, we utilised the PLM scale [14] that 
is used to support the classification of AD based on the 
presence of Aβ42, p-tau and total tau (A, T, N) biologi-
cal markers. Positivity for all 3 biomarkers indicates very 
high likelihood of AD (>90%), 2 biomarkers indicates 
high likelihood of AD (>75%), 1 biomarker indicates low 
likelihood of AD (< 25%), and 0 biomarkers indicates very 
low likelihood of AD (< 10%). For the non-AD group we 
selected Raman spectra from samples with a PLM score 
of 0, and for the AD group we selected Raman spectra 
from CSF samples with a PLM score of 2–3 as well as 
amyloid positivity (A+). Amyloid positivity was selected 
because tauopathy samples that were in the CSF cohort 
may have positivity for T and N and therefore a PLM 
score of 2. This resulted in a total of 94 samples (non-AD 
= 46, AD = 48). To find Raman signals specific to AD, we 
utilised a simple feature selection method developed pre-
viously [20] to generate a ‘spectral barcode’ for AD (Fig. 
2B). We observed 9 regions of the Raman spectrum that 
were significantly different between the non-AD and AD 
spectra (P < 0.01). We applied PCA to these AD spectral 
barcodes and generated a loadings spectrum highlight-
ing the weight/coefficient of region (Fig. 2C) and a scatter 
plot depicting the clustering of transformed spectral bar-
codes across PC1 and PC2 axes (Fig. 2D). Using a linear 
cutoff, 84% of the spectral barcodes were clustered with 
their correct class (non-AD or AD).

Subhead 2: interpretable AD classification using Raman 
spectral barcode
We next wanted to identify the regions of the Raman 
spectrum that were most important for AD classification 
in the complete heterogenous cohort (N = 141), regard-
less of ATN biomarker status. We wanted to generate 
‘spectral biomarkers’ to allow the assignment of chemi-
cal information and correlations with ATN biomarker 
concentrations. The Raman spectra were first randomly 
partitioned into a training set consisting of spectra from 
80% of the CSF samples (113 samples, 3139 spectra), and 
a testing set consisting of spectra from 20% of the CSF 
samples (28 samples, 766 spectra). The training set was 
used for feature selection, as well as to train, validate, and 
optimise the ML model, whilst the testing set, unseen by 
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the model during the optimization process, was used for 
model evaluation.

Using our spectral barcoding method, 10 spectral 
regions were extracted from the training data and are 
shown as bars on the Raman spectrum in Fig. 3A. These 
regions are notably similar to those observed in the 
clean AD cohort in Fig. 2, with some small shifts in fre-
quency and area, as well as the addition of the 1370 cm− 1 
region. To create univariate values for each region/bar, 
area under the curve (A) was calculated for each spectral 
region, with red bars representing an increase in feature 
area in AD spectra relative to non-AD spectra, and blue 
bars representing a decrease in feature area in AD spec-
tra relative to non-AD spectra. We named the features 
#1 - #10 and ranked them based on the statistical sig-
nificance between non-AD and AD spectral areas, with 
feature 1 being most significant. Features 1 and 2, which 
are both related to the frequency of the Phenylalanine 

peak ~ 1003  cm− 1, were the most significant features 
between non-AD and AD groups and are shown in isola-
tion for clarity in Fig. 3B. We applied linear discriminant 
analysis (LDA) to these 10 spectral features (spectral bio-
markers) to assess clustering of the 141 samples into AD 
and non-AD groups (Fig. 3C). Using a linear cutoff, 21% 
overlap was observed between the two groups, with 77% 
of non-AD samples and 80% of AD samples correctly 
assigned.

The LDA loadings in Fig.  3D revealed that feature 
4  A(1328  cm− 1 -1338  cm− 1) had the largest coefficient 
and most explained cluster assignment, with smaller con-
tributions from all features except feature 7 A(1189 cm− 1 
-1203  cm− 1). The spectral region for feature 4 is shown 
in Fig. 3E and shows the difference between the average 
spectrum for non-AD samples (red) and AD samples 
(blue).

Fig. 1  Schematic of workflow. A. Sample preparation for Raman spectroscopy. B. Preprocessing of Raman spectra for analysis. C. Analytical methods for 
classification of Raman spectra and identification of spectral biomarkers
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We next wanted to assess whether an interpretable 
classification model could be trained to classify AD in the 
testing group using only these 10 spectral biomarkers. To 
do this, we trained a bagged decision tree model for AD 
classification using all the spectra collected for each CSF 
sample in the training set after outlier removal to aug-
ment our data and improve model training [12]. This was 
followed by the post-hoc binning of classification scores 
for each spectrum at the level of sample. ROC (receiver 
operating characteristics) curves and the area under the 
curves (AUC) were used to evaluate the efficacy of the 
models visually and quantitatively We observed accept-
able accuracy for the optimised model for spectral classi-
fication (Supplementary Fig. 4) for both the training data 
(AUC = 0.71) and the testing data (AUC = 0.79). Figure 
3F shows the ROC curves constructed for the bagged 
decision tree when the spectra are binned at the level of 
sample for the training data (AUC = 0.80) and the testing 

data (AUC = 0.92), suggesting that optical biomarkers 
extracted from the training data are generalisable to the 
whole sample cohort. There was positive correlation 
between the decision tree classification score and PLM 
biomarker status for each patient (r = 0.60, p < 0.001) 
(Fig. 3G; Table 2).

We assessed the importance of spectral features of the 
decision tree model using multiple approaches. First, 
we applied global LIME (local interpretable model-
agnostic explanations) analysis, which estimated that 
feature 1 A(1003 cm− 1 − 1010 cm− 1) assigned to phe-
nylalanine [21], feature 4 A(1328 cm− 1 − 1338 cm− 1), 
assigned to tyrosine [22], and feature 2 A(996 cm− 1 − 
1001 cm− 1) assigned to phenylalanine [21], contributed 
the most to AD classification based on an average local 
feature importance for all spectra (Fig. 3H). This is in line 
with the initial statistical analysis used to generate the 
spectral barcode as features were numbered in order of 

Fig. 2  Generation of an AD-specific Raman signature. A. Average Raman spectra collected from CSF samples of 141 patients of whom 66 received a 
clinical diagnosis of Alzheimer’s disease (AD, blue trace) and 75 received a clinical diagnosis other than AD (non-AD, red trace). Key regions of the Raman 
fingerprint are annotated. B. Raman spectral barcode generated from identified spectral features using the Mann-Whitney U-test per Raman shift be-
tween high confidence non-AD (n = 46) and AD spectra (n = 48). The average reference spectrum is shown in grey and spectral biomarker regions are 
shown in red (increased area in AD mean spectrum relative to non-AD) and blue (decreased area in AD mean spectrum relative to non-AD). C-D. Principal 
component analysis (PCA) of spectral biomarkers for the N = 94 sample dataset. The PCA loadings (C) and the scatter plot for the transformed data across 
the PC1 and PC2 axis (D) and are shown. A linear cutoff is depicted as a dotted line
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Fig. 3 (See legend on next page.)

 



Page 9 of 15Devitt et al. Alzheimer's Research & Therapy          (2025) 17:228 

statistical significance (features 1–10). We next calculated 
the partial dependence (PD) of each feature to show their 
individual effect on model prediction (Fig. 3I). The top 
3 features based on maximum PD score were feature 2 
A(996 cm− 1 − 1001 cm− 1), feature 9 A(1366 cm− 1 − 1374 
cm− 1), assigned to tyrosine [22], and feature 4 A(1328 
cm− 1 − 1338 cm− 1). The partial dependency plot for each 
feature revealed a linear relationship between each spec-
tral biomarker and prediction score (Supplementary Fig. 
4). For each method of analysis feature 2 A(996 cm− 1 − 
1001 cm− 1), specifically arising from phenylalanine ring-
breathing vibrations, was represented within the top 3 
features for feature importance and is therefore likely to 
be important for prediction of AD. Feature 2 A(996 cm− 1 
-1001 cm− 1) also correlated with PLM status (r = -0.20, P 
= 0.03), although the strongest correlation was observed 
for feature 3 A(740 cm− 1 -771 cm− 1, r = 0.25, P = 0.009), 
which represents a skeletal bond vibration from trypto-
phan [23]. Of the 10 features, 4 further features were cor-
related with PLM status, including feature 1 A(996 cm− 1 
− 1001 cm− 1), feature 4 A(1328 cm− 1 − 1338 cm− 1), fea-
ture 6 A(1480 cm− 1 − 1496 cm− 1), assigned to histidine 
[24], and feature 10 A(1747 cm− 1 − 1751 cm− 1), assigned 
to esters [25].

Figure 4A shows the partial correlation matrix between 
the 10 extracted features (intensity area, A) and each of 
the 3 CSF biomarker concentrations (pg/ml) after adjust-
ing for age and sex. Total tau biomarker results were not 
available for 7 patients, so these patients were removed 
from partial correlation analysis for total tau. After 
false discovery rate (FDR) correction using the Ben-
jamini Hochberg adjustment, 4 significant associations 
were observed of the 30 tested. Feature 4  A(1328  cm− 1 
-1338  cm− 1, tyrosine) negatively correlated with 
p-tau concentration (r = -0.299, P = 0.005), feature 
3  A(740  cm− 1 − 771  cm− 1, tryptophan) positively corre-
lated with p-tau concentration (r = 0.298, P = 0.005), and 
total tau concentration (r = 0.259, P = 0.023), and feature 
6  A(1480  cm− 1 − 1496  cm− 1, histidine) positively corre-
lated with Aβ42 concentration (r = 0.257, P = 0.020). Scat-
ter plots depicting the correlations between CSF spectral 

biomarkers and CSF ATN markers are shown in Fig. 4B-E 
respectively.

Subhead 3: AD classification using the whole Raman 
fingerprint
As the Raman fingerprint is a superposition of signals, 
that is, combined chemical information from many mol-
ecules, we next wanted to assess classification without 
limiting the spectral range. To reduce the feature space, 
we retained 95% of the variance extracted from the whole 
Raman fingerprint using PCA to train binary (AD vs. 
non-AD) ML models with integrated feature selection 
algorithms to classify the spectra. We selected two dif-
ferent model architectures – support vector machine 
(SVM) and convolutional neural network (CNN). The 
SVM model is an all-purpose classifier that relies on data 
transformation using the kernel method before linear 
separation of classes, whilst the CNN can better learn 
unknown and complex features in datasets for classifica-
tion but has a higher computational cost. Whilst neither 
method can be easily interpreted, they are each powerful 
in terms of ‘black box’ classification.

The ROC curves per spectrum for the optimised CNN 
and SVM models on the training set are shown in Sup-
plementary Fig. 5 (cross-validation: AUC for CNN = 0.79, 
for SVM = 0.75) and generalised well to the study cohort 
as demonstrated by the ROC curves for the testing set 
(evaluation: AUC for CNN = 0.79, for SVM = 0.73). The 
corresponding ROC curves for each sample in the train-
ing set is shown in Fig.  5A (cross-validation: AUC for 
CNN = 0.96, for SVM = 0.94). Similar classification was 
observed for the samples in the testing set (evaluation: 
AUC for CNN = 0.92, for SVM = 0.93, Fig.  5B). Each 
model demonstrated improved classification accuracy in 
comparison to the bagged decision tree model in Fig. 3, 
but at the cost of model interpretability. Classification 
model performance metrics are summarised in Table 3.

We wanted to understand how closely our CNN and 
SVM classification models corelated with Aβ42, p-tau 
and total tau (A, T, N) biological markers used for ante-
mortem Alzheimer’s disease diagnosis. We controlled for 

(See figure on previous page.)
Fig. 3  Interpretable AD classification using Raman spectral barcode. A. Raman spectral barcode generated from identified spectral features between 
non-AD and AD spectra using the training dataset. The average reference spectrum is shown in grey and spectral biomarker regions are shown in red 
(increased area in AD mean spectrum relative to non-AD) and blue (decreased area in AD mean spectrum relative to non-AD). B. Spectrum enhanced 
for clarity of the phenylalanine peak including feature 1 (red) and feature 2 (blue). C-E. Linear discriminant analysis (LDA) of spectral biomarkers for the 
complete N = 141 sample dataset. The scatter plot for the transformed data across the LD1 axis (C) and the LDA loadings (D) are shown. Feature 4 is 
highlighted in the loadings (arrow) and the average Raman spectra for non-AD (red) and AD (blue) are shown (E). F. Receiver operating curve (ROC) 
analysis was performed for validation of the training data (orange curve) and evaluation of the testing data (blue curve). Raman spectra were separated 
into training and testing data at an 80:20 ratio at the level of patient. The bagged decision tree model was trained and optimised on the training data 
and evaluated on the testing data. Model operating points (MOP) representing sensitivity and specificity cutoffs for each model are depicted as a point 
on each curve. G. Partial correlation analysis of PLM biomarker status and Raman classification score for each patient CSF sample for the bagged decision 
tree model controlling for age and sex. 95% confidence intervals are depicted as minor lines on each side of the regression lines. H. Global LIME (local 
interpretable model-agnostic explanations) analysis to determine feature importance to model classification. I. Table summarising each feature based on 
analyses. Adjusted P values are displayed after false detection rate (FDR) analysis for 10 correlations using the Benjamini-Hochberg method with FDR < 5% 
considered statistically significant, *P < 0.05, **P < 0.01
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age and sex in each case and observed a positive correla-
tion between the CNN score and PLM biomarker status 
(r = 0.64, p < 0.001, Fig. 5C), and between the SVM score 
and PLM biomarker status (r = 0.63, p < 0.001, Fig.  5D), 
slightly higher than observed for the interpretable bagged 
decision tree model in Fig. 3.

Discussion
In this study, we conducted Raman spectroscopy (RS) 
analysis of CSF samples from patients in a mixed clini-
cal cohort. Our main aim was to assess the utility of RS 
for the classification of AD in a population with high 
clinical heterogeneity and thus reflecting the real-world. 
ML models were first trained to identify AD using 
Raman spectral fingerprints collected from 113 CSF 
samples and then evaluated on previously unseen spec-
tra collected from 28 CSF samples. The optimised SVM 
model achieved 93% classification accuracy with 26 of 
28 patients correctly classified as AD or non-AD during 
model evaluation. We also extracted features from the 
Raman fingerprint and used these as spectral biomarkers 
to develop an interpretable classification model for AD. 
These spectral biomarkers explained the majority, but 
not all, of the classification from the Raman fingerprint. 
Spectral biomarkers for AD primarily arose from pro-
tein-derived aromatic amino acid vibrations, the intensity 
of which directly correlated with biological CSF markers 
for AD, including Aβ42, phospho-tau 181 (p-tau), and 
total tau concentrations. Whilst these results support the 
utility of RS in aiding the clinical diagnosis of AD, larger 
cross-sectional studies are required to assess whether 
such high levels of discriminative accuracy are retained at 
a population level.

To date, two small proof-of-concept studies have used 
RS approaches to detect AD in human CSF. RS in com-
bination with artificial neural networks and SVM dis-
criminant analysis was used to identify AD with 84% 
accuracy in a cohort of 37 patients [12], whilst another 
study utilised a surface-enhanced variant of RS (SERS) in 
combination with a CNN to identify AD with 92% accu-
racy in a cohort of 19 patients [11]. Despite small sam-
ple sizes, these studies provided initial evidence that AD 
signatures could be detected in CSF using RS. However, 
distinguishing AD from healthy controls is unlikely to be 

useful outside of population level screening, for which 
extracting CSF by lumbar puncture is not appropriate. 
CSF is often taken for ATN antibody biomarker analysis 
as part of the diagnostic pathway for AD [3] and RS has 
the potential to supplement such antibody markers and 
aid diagnostic decisions as demonstrated in this study. 
The advantages include; (1) RS is label-free and does not 
require antibodies or dyes, (2) RS requires very little sam-
ple with 40 µl CSF used for filtration and then 1 µl used 
for RS measurement, (3) RS measurement and classifica-
tion can be automated and performed in seconds.

Larger proof-of-concept studies have demonstrated 
that RS can be used to detect AD from healthy controls in 
blood serum, N = 56 [26], N = 48 [27], and plasma, N = 47 
[28, 29]. Although none of these studies met the follow-
ing criteria: comparison to a gold standard of diagnosis, 
interpretable classification, a testing dataset for model 
evaluation, and n >20. Blood is a much more accessible 
biofluid for both diagnostics and screening and contains 
far higher protein levels (60–80 mg/ml) than CSF (0.15-6 
mg/ml), also making it more amenable for RS analysis. It 
remains unknown whether RS can accurately classify AD 
using blood samples from a mixed clinical cohort as dem-
onstrated for CSF in the present study. As well as limited 
clinical studies, a current barrier to the translation of RS 
is the size and cost of lasers and spectrometers. In the 
present study, we used a research-grade system, but sys-
tem portability is possible [30], allowing large reductions 
in cost.

For the study cohort, the first limiting factor is sample 
size (n = 143), which is relatively small considering the 
clinical heterogeneity observed within the population. 
Further to this, confirmation of AD diagnosis by post-
mortem neuropathology was not possible as the work 
was conducted ante-mortem. Therefore, mixed patholo-
gies cannot be ruled out and it is unknown how these 
may impact the Raman fingerprint. Importantly, rates of 
accuracy for clinical diagnosis of AD vary depending on 
disease stage and has been observed at 83% for patients 
with a clinical diagnosis of probable AD [4]. In the pres-
ent study, pathological ATN biomarkers and in many 
cases SPECT imaging were used to provide a robust 
clinical diagnosis for each patient to maximise diagnostic 
confidence. A subset of the sample cohort has also been 

Table 2  Correlation for classification score per model corrected for age and sex
Model architecture Model input variables Correlations

PLM biomarker 
status

A biomarker 
concentration

T biomarker 
concentration

N biomark-
er concen-
tration

CNN PCs from Fingerprint 0.64* -0.47* 0.55* 0.41*
SVM PCs from Fingerprint 0.63* -0.43* 0.54* 0.41*
Bagged decision tree Extracted features 0.60* -0.42* 0.40* 0.33*
Footnotes: * Indicates corrected P values representing significant correlations at P < 0.001, PLM (Paris-North Lille Montpellier biomarker scoring system), A (amyloid-
β42), T (phosphorylated tau at site 181), N (total tau), CNN (convolutional neural network), SVM (support-vector machine)
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Fig. 4 (See legend on next page.)
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classified in a previous research study (N = 105) using 
AD-specific immunogenic inflammatory markers that 
correlated with total tau and p-tau levels [31], giving fur-
ther confidence in clinical diagnosis. We also noted that 
the sex of the sample population was skewed towards 
male patients (65%). We addressed this by controlling for 
sex in all partial correlation analyses. Whilst the clinical 
cohort was representative of a tertiary centre, it remains 
unclear whether these results are generalisable to the 
broader population of patients with Alzheimer’s disease, 
such as older individuals.

For the sample preparation, CSF samples were filtered 
using a microcentrifuge and spin filter to remove inter-
ference from sugars and salts. Whilst this simplified 
both measurement and analysis, such sample processing 
may hinder clinical translation, with cheaper and sim-
pler solutions required such as one-step capillary sepa-
ration [32]. Whilst our correlation analyses suggest that 
variation in classification score has a molecular basis, it is 
possible that this can also be impacted by measurement 
heterogeneity. Much research effort is being directed 
towards the development of quality control or standards 
of practice for spectroscopic measurement pipelines [33].

For the analytical method, we required ‘black-box’ 
CNN and SVM classifiers for the most accurate clas-
sification of AD samples. These algorithms are prone to 
overfitting and their lack of interpretability reduces con-
fidence in their application [34]. To offset these prob-
lems, we further trained an interpretable classification 
model [35] based on features extracted from the Raman 
spectrum, i.e. spectral biomarkers. Whilst an increase in 
error rate was observed for classification, this approach 
enabled us to assign specific spectrochemical informa-
tion to AD classification. Whilst these spectral biomark-
ers may not relate precisely to the features selected by the 
black-box classifiers, they provide an interpretable expla-
nation of class identity. This enabled us to correlate spec-
tral biomarkers to biological CSF markers resulting in 4 
associations between 3 spectral biomarkers and all 3 CSF 
biomarkers (Aβ42, p-tau, and total tau). It is important to 
note that peaks in the Raman spectrum are not necessar-
ily independent and can be correlated. They are a super-
position or fingerprint of the vibrations arising from all 
molecules in a given mixture and are therefore akin to an 
’omic signature. We therefore propose that ‘spectromic’ 
signatures should be considered holistically during classi-
fication, and interpretable classification should be used to 

uncover associations with known biomarkers supporting 
mechanistic understanding hence enhancing confidence 
in classification.

Our interpretable classification model not only iden-
tified the spectral features driving AD classification but 
also enabled evaluation of their biological relevance. The 
most significant features corresponded to vibrational 
modes of protein-derived aromatic amino acids (phe-
nylalanine, tyrosine, tryptophan) and histidine. Similar 
Raman markers, albeit with different patterns, have been 
reported in breast cancer tissue, likely reflecting the delo-
calised π electron systems of aromatic residues and their 
relatively large Raman scattering cross section [36]. These 
Raman shifts are also consistent with large scale CSF and 
brain proteomic studies in AD, which have repeatedly 
shown altered abundance of proteins spanning synaptic, 
vascular, and metabolic pathways [37, 38]. More than 
1,000 proteins display altered abundance between AD 
and control CSF [39], thereby highlighting the basis for 
the changes observed in the Raman spectral fingerprint. 
Although our current data do not permit identification 
of specific proteins, the observed correlations between 
these spectral features and established CSF biomarkers 
(Aβ42, p-tau 181, total tau) support a plausible mecha-
nistic link to AD related neurodegeneration.

Our study is the first to show the feasibility of apply-
ing the simple, holistic and label-free (unbiased) spectral 
biomarker approach using RS for dementia diagnosis on 
a real-world cohort. Importantly, samples from patients 
with other neurodegenerative diseases and long-term 
chronic conditions were clearly distinguished from 
patients clinically diagnosed with AD supporting the 
fact that RS provides a biochemical fingerprint, which 
will be disease-specific because the pathological pro-
cesses are distinct in different diseases. We showed that 
Raman spectral biomarkers arising from protein-derived 
aromatic amino acids primarily explained spectral dif-
ferences between the AD and non-AD CSF, likely due 
to proteomic changes specific to AD. Whilst the appli-
cation of RS to dementia diagnosis remains a research 
field in relative infancy, our study demonstrates util-
ity in a real-world population and suggests that there is 
potential for future clinical translation after larger and 
more diverse clinical studies. Finally, as this method is 
holistic and does not rely on a specific analyte, the full 
potential of Raman spectroscopy can be realised if spec-
tral biomarkers are identified that are specific to other 

(See figure on previous page.)
Fig. 4  Correlation of spectral biomarker signals with ATN biomarker concentrations. A. Correlations between extracted Raman features (area within 
spectral range) and log transformed CSF antibody biomarker concentrations (Aβ42, p-tau, total tau). The partial correlation coefficients (r) were adjusted 
for age and sex. Adjusted P values are displayed after false detection rate (FDR) analysis for 30 correlations using the Benjamini-Hochberg method with 
FDR < 5% considered statistically significant. A. Heatmap matrix for all 30 partial correlations displaying adjusted partial correlation coefficient (r) in blue 
for positive correlations and red for negative correlations, Adjusted P values are shown for each correlation: *P < 0.05, **P < 0.01. B-E. Scatter plots of ex-
tracted Raman features, and log transformed CSF antibody biomarker levels for statistically significant correlations
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Table 3  Classification model performance metrics (based on testing dataset)
Model Accuracy AUROC Sensitivity Specificity PPV NPV F1-score
CNN 89% 0.92 85% 93% 92% 88% 88%
SVM 93% 0.93 92% 93% 92% 93% 92%
Bagged decision tree 86% 0.92 77% 93% 91% 82% 83%
Footnotes: Accuracy (proportion of all cases correctly classified), AUROC (area under the receiver operating characteristic curve), CNN (convolutional neural 
network), F1-score (harmonic mean of precision and recall), PPV (positive predictive value/proportion of true positives), NPV (negative predictive value/proportion 
of true negatives), Sensitivity (true positive rate), Specificity (true negative rate), SVM (support-vector machine)

Fig. 5  AD classification using the whole Raman fingerprint. A-B. Receiver operating curve (ROC) analysis was performed for validation of the training data 
(A) and evaluation of the testing data (B). Raman spectra were separated into training and testing data at an 80:20 ratio at the level of patient. CNN (blue 
traces) and SVM (red traces) models were trained and optimised on the training data and evaluated on the testing data. Model operating points (MOP) 
representing sensitivity and specificity cutoffs for each model are depicted as a point on each curve. D-E. Partial correlation analysis of PLM biomarker 
status and Raman classification score for each patient CSF sample for CNN (C) and SVM (D) models controlling for age and sex. 95% confidence intervals 
are depicted as minor lines on each side of the best fit line
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diseases that cause dementia including but not limited 
to vascular dementia (VaD), frontotemporal dementia 
(FTD) and dementia with Lewy bodies (DLB), to facili-
tate the stratification of clinically overlapping neurode-
generative diseases. Compared to current and emerging 
methods including blood-based biomarkers, the Raman 
spectroscopy approach neither requires sophisticated 
instrumentation or specialised labs nor reagents and can 
be implemented in a variety of clinical and healthcare 
settings without the need of skilled operators potentially 
offering unprecedented scalability and accessibility that 
can transform dementia diagnosis.
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