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Abstract

In the size-weight illusion (SWI), the smaller of two same-weight, same apparent
material objects is perceived as heavier. The SWI has proved difficult to explain via
traditional Bayesian models, which predict the opposite effect: expected weight from
size (smaller=lighter) should be integrated with felt weight, such that the smaller
object should be perceptually lighter. Other authors have proposed that weight and
density are combined according to Bayesian principles, or that Bayesian models
incorporating efficient coding can predict the SWI via ‘likelihood repulsion’. These
models, however, have been evaluated only under the narrow conditions of typi-

cal SWI stimuli. Here we establish a general model of perceived weight for pairs

of objects that differ in weight and/or density and/or size by varying amounts. In

a visuo-haptic task, participants (N = 30) grasped and lifted pairs of cubes, and
reported their perceived heaviness. We report that the SWI occurs even at very small
density differences, repudiating the idea that the illusion requires a large difference
between expected and felt weight. Across all object pairs, perceived weight was well
described by a model (R? = .98) that includes a positive influence of both objects’
weights and the judged object’s density, but a negative influence of the other object’s
density. Critically, the influence of both densities on perceived weight is strongly
modulated by weight difference, being three times as large for zero/small weight
differences than for large differences. Thus, it is only under the unusual conditions
of typical SWI studies that density affects perceived weight to a substantial extent.
Unlike existing models, that are inconsistent with our more comprehensive dataset,
our descriptive model provides a quantitative, accurate and generalised account of
weight perception for pairs of objects across various weight and size conditions.

Author summary

Knowing how heavy an object is allows us to grasp and lift it efficiently and
without mishaps. Surprisingly, humans make systematic errors when judging the
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weight of objects of different size. For example, when two objects differ in size
but have identical weight, the smaller object feels heavier. This is the ‘size-weight
illusion’. The illusion is strong and reliable and occurs even when we know that
the two objects actually have the same weight. The size-weight illusion demon-
strates that human weight perception doesn’t behave like a weighing scale but
instead takes into account other object features such as size or density, along-
side weight. In this paper, we present a model that allows us to predict perceived
weight in the size-weight illusion and across a wide range of objects of different
weight/size/density, where previous models have failed.

1. Introduction

In the well-known size-weight illusion (SWI) [1], participants are typically presented
with one large and one small object, apparently of the same material, but in fact of
equal weight. On lifting, the smaller object is perceived as heavier than the larger one
(Fig 1A). The illusion is robust, persisting even when the lifter knows that the objects
have equal weight [2,3], and after grasping forces have adapted to the actual weight
of the objects [4].

Although the SWI has long been investigated as a means to understand human
heaviness perception, its mechanism remains largely unexplained (for reviews, see
[2,7,8]). Early descriptive accounts suggested that the SWI is caused by a contrast/
repulsion effect, where the felt weights of the two objects conflict with those predicted
by assuming equal density. Other accounts have suggested that the lifter confounds/
combines felt weight with other physical features (generally density: [9—11]; but also
rotational inertia: [12,13]). Here we briefly describe existing models of weight percep-
tion that have been proposed to explain the SWI. We evaluate these models fully in
section 5, ‘Modelling’, by determining how well they predict our data.

In ‘contrast’ or ‘violated expectations’ accounts it is noted that object size is used
as a predictive feature for object weight [14—16]. Smaller objects are expected to
be lighter than larger objects, particularly when they are apparently made of the
same material — that is, of equal density (see Fig 1B). Upon lifting, the smaller
object is heavier than expected, and this disparity between expectation and sen-
sory evidence is suggested to cause the illusion. Evidence for this conflict between
expected and actual weight comes from the forces used to grip and lift the two
objects. On initial lifts, participants use more force to lift the larger (expected to be
heavier) object than to lift the smaller one [4,17]. These misapplied forces have
thus been suggested to drive the illusion: the larger object is lifted faster and more
easily than expected, and vice versa for the smaller object, producing a mismatch
between the expected and actual sensory feedback [17]. However, it has been
widely reported that grasping forces adjust to the weight of the object after a few
lifts, while the illusion persists [2,4,18,19]).

Because the illusion is at odds with the perceiver’s prior expectations (that the
smaller object should be lighter) the SWI has been labelled ‘anti-Bayesian’ [20,21].
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Fig 1. The size-weight illusion. (A) Typical stimulus presentation for the size-weight illusion (SWI). The subject lifts two objects of equal weight, but
different size. The smaller object is perceived to be heavier than the larger one. See Section 4. Comparison with existing literature, for variants in SWI
methodology. (B) The SWI is ‘anti-Bayesian’. Stimulus pairs are plotted in a two-dimensional stimulus space: log volume ratio (x-axis) and log weight
ratio (y-axis). A value of zero indicates that the two objects have equal volume (or weight). The green markers show SWI stimuli (equal weight but differ-
ent volume) and arrows show the empirical bias, i.e., the perceived weight ratio, for the same stimuli (data taken from the current experiment). The solid
red line represents an equal density prior (log density ratio=0). The dotted red line indicates another plausible prior based on object statistics [5]: the
larger object is heavier but slightly less dense. In the SWI, perceived weight is biased away from these priors. (C) SWI and three hypothetical priors (R~
R,) over log volume ratio and log weight ratio, as suggested by Peters and colleagues [6]. Each prior corresponds to a different density/volume relation-
ship. R, (smaller is denser and heavier: dashed black line) would predict the SWI. R, =equal-density prior (red line); R,=smaller is less dense and lighter
(dotted blue line).

https://doi.org/10.1371/journal.pcbi.1013496.g001

The Bayesian framework has successfully described numerous perceptual phenomena in terms of the integration (gener-
ally a weighted averaging) of prior expectations with current sensory cues [22—-27]. In the SWI, however, the Bayesian pre-
diction is that the smaller object will be perceived as lighter than the larger object, given an assumption of equal density
for the two objects. Fig 1 illustrates this: Fig 1B represents the stimulus space, with different possible combinations of two
stimuli (their weight, volume and density log ratios). Two theoretically plausible, hypothetical priors are shown on these
axes: (i) the larger object is heavier and same-density (solid line), or (ii) the larger object is heavier but slightly less dense
(dashed line, reflecting measured object statistics [5]). Both of these priors predict the opposite of the SWI (green dots
show stimuli, arrowheads give perceived log weight ratio, taken from the current study). The SWI involves biases away
from the theoretically sensible priors, hence the ‘anti-Bayesian’ label. The dashed black line in Fig 1C shows a hypotheti-
cal prior (smaller=heavier) that would predict the SWI. However, this prior is implausible, given environmental statistics in
which size and weight are positively correlated.

Nonetheless, Bayesian models of the SWI have been proposed [6,28]. Peters and colleagues [6] proposed a Bayesian
model that includes three sub-priors over the relationship between the log volume ratio of two objects and their log density
ratio (shown in Fig 1C). Each sub-prior represents a categorical density relationship; R,: objects have equal density, R,
smaller objects are denser and heavier than larger ones and R,: smaller objects are less dense (much lighter) than larger
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objects. Predicted biases in weight perception depend on the volume and density ratios of the stimuli and thus which sub-
prior dominates perception. When a stimulus pair is encountered, the current sensory evidence (i.e., the sensed density
and volume ratios of the two objects) is integrated with a prior over the density relationship of the two objects, which incor-
porates the three subpriors R, ,. The sub-prior that dominates perception, i.e., that dictates the direction of any perceptual
bias, depends on the current sensory evidence. When a typical SWI stimulus pair (e.g., log weight ratio=0, log volume
ratio=0.5) is encountered, the ‘smaller is denser and heavier’ prior (R, in Fig 1C) dominates, resulting in a size-weight
illusion. It is not clear whether the model can account for weight perception more broadly as it was only evaluated on pairs
of equal-weight objects (i.e., typical SWI stimuli).

Wei and Stocker [29,30] have suggested that contrast effects analogous to the SWI, i.e., biases away from a prior,
can be predicted by Bayesian models incorporating efficient coding of stimulus properties [31,32]. They note that when
efficient coding maximises Fisher information (i.e., to reflect the stimulus distribution in the environment), this results in
likelihoods that are systematically skewed with a long tail away from the peak of the prior. If a symmetric loss function is
also employed (selecting the mean rather than the maximum of the posterior: L2 loss), estimates will be systematically
biased away from the prior, relative to the peak of the likelihood (‘likelihood repulsion’), see ‘Modelling’ section for more
detail. Recently, Bays [28] has proposed Bayesian models of the size-weight and material-weight [33] illusions that incor-
porate efficient coding and priors reflecting natural statistics. In the case of the SWI, the prior reflects a positive associa-
tion between size (volume) and weight. However, whilst Bays’ model provides predictions of perceived weight across the
whole volume-weight space, it has only been tested on Peters and colleagues’ [6] dataset.

Other authors suggest that we are unable to fully separate density and weight [34], or proactively combine them [11].
Under these models, denser objects are systematically perceived as heavier. Indeed, weight and density estimation
appear to be closely related: the difference in estimated weight increases with increasing density difference [34]; objects
of greater weight are reported as denser [35], and weight discrimination is improved when density varies in the same
direction as weight [36]. Within typical SWI stimuli, weight is kept constant such that density is negatively correlated with
volume. Thus, size contributes to the illusion because it is used to infer density [9,11,37].

Wolf and colleagues [10,11] have proposed a cue-integration model in which perceived weight is a weighted average
of two heaviness estimates, one derived from the object’s felt weight and one derived from the object’s inferred density.
Because denser objects tend to be heavier, the authors suggest that it is adaptive/Bayesian to combine estimates of
weight and density when estimating weight, to obtain more reliable (less noisy) weight estimates. It is not clear, however,
why we should combine weight and density information in this way, when volume information is available to condition the
density-weight relationship. Not only is density a poor cue to weight (when not conditioned on size) but the two estimates
will also have correlated noise (thus negating some benefits of integration).

In general, the focus on density rather than volume in existing explanations of the SWI seems somewhat counterintui-
tive. After all, weight and volume are directly sensed, whereas density must be inferred from the other two. Nonetheless,
previous models and the long-standing ‘violated expectations’ narrative have focussed on density. The expectation that
adjacent objects, apparently comprised of the same material, will have similar densities seems reasonable.

is predicted by all of the above models. SWI demonstrations tend to use fairly large, obvious differences in object volume,
in order to obtain a reliable illusion. However, under small conflicts between expected weight (based on size, under an
assumption of equal density) and direct sensory evidence, these estimates might be integrated. We know that integra-
tion occurs for small conflicts but breaks down under conditions of large conflict [40,41], but this has not been tested in
the context of the SWI. If integration (the opposite of the SWI) occurs under small conflicts, while the SWI only occurs
with large conflicts, this would be broadly in line with the idea that the SWI is driven by violated weight expectations. Yet,

it should be noted that an absence of integration does not directly account for the contrast effect observed in the SWI.
Integration under small conflicts would be consistent with Peters and colleagues’ model [6], with integration driven by their
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equal density sub-prior (see above). Under small density differences (log density ratios close to 0) the sensory evidence is
close to the equal density sub-prior, and the model thus predicts integration, i.e., attraction towards equal density.

However, integration under small density differences would be at odds with models in which weight and density are
confounded/integrated in general [10,11]. Furthermore, it is unclear whether a conflation of weight and density can
account for perceived weight in all situations (such as when a smaller object is less dense and therefore much lighter
than a larger one), or only in the specific and non-accidental conditions of SWI stimuli, when weight is held constant and
volume varies.

Here we asked: can we develop a generalised model of weight perception for varied combinations of size, weight and
density? To this end, we measured perceived weight for pairs of cubes from a large stimulus set in which volume, and/
or weight, and/or density were varied in small steps. Stimulus pairs could have equal or different density, and if different,
the denser cube could be larger or smaller than the less dense cube. Size and density were uncorrelated in the full set
to prevent learning of unusual size-weight associations. For each stimulus pair, participants viewed and lifted both cubes
(see Fig 1A) before reporting each of their weights (i.e., magnitude estimation). To preview the main findings: 1) The SWI
occurred even at very small size (density) differences and thus does not rely on large conflicts. 2) Perceived weight was
positively correlated with the true weight of both the judged and other stimulus, in addition to the judged object’s density.
3) The effect of both objects’ densities on perceived weight was strongly modulated by the weight difference between the
two objects: three times larger at small/zero weight differences than at large weight differences. In fact, the other object’s
density had an effect only when the two objects had similar weight, when it was negatively associated with the judged
object’s perceived weight. Thus, density affects weight perception, but this effect is much larger in the specific and pecu-
liar conditions of typical studies of the SWI. We provide a model (R?=.98) that captures biases in perceived weight in the
SWI and across the full stimulus set. In addition, we compare this model to existing models of the SWI, and to a novel
efficient-coding Bayesian model of the SWI.

2. Materials and methods
2.1 Ethics statement

The experiment was approved by the University of Southampton Psychology Ethics Committee (No 47316.A1-A3); all
participants gave written prior informed consent.

2.2 Participants

Thirty naive participants (age M = 21.4, SD = 5.6 years) from the University of Southampton Psychology student commu-
nity took part in the experiment; undergraduate students were compensated for their participation with course credits. All
reported normal or corrected-to-normal eyesight and no upper limb impairment.

2.3 Stimuli

Stimuli were 15 plastic cubes (3D-printed in black polylactic acid, see Fig 2A — 2B). Each cube was filled with sand,
polystyrene pellets, and/or brass to create the desired volume, weight and density values for the different stimulus sets,
depicted in Fig 2A. The centre of mass of the cubes remained at the geometric centre and the filling did not move inside
the cubes during lifting. A panel concealed at the bottom kept the appearance homogeneous. Weight was measured with
a 0.1g resolution.

The complete stimulus set included three subsets (Fig 2B — 2C), corresponding to different volume/weight relationships:
1) Equal density (red): weight increased linearly with volume (as for ‘normal’ same-material objects); 2) Equal weight
(green): density decreased with increasing size (typical SWI stimuli); 3) Increasing density with increasing size (blue):
both weight and density increased with size. The middle cube (volume, weight, density: 750cm?, 375g, 0.5g/cm?®) was
common to all three subsets. Volumes within each set increased in 100 cm? steps, with the addition of 50 cm?® steps below
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Fig 2. Stimulus set. (A) Full stimulus set, with 500 cm? stimulus for scale on the left. (B) Stimulus volume as a function of weight. (C) Stimulus density
as a function of weight.

https://doi.org/10.1371/journal.pcbi.1013496.9002

and above the middle stimulus in the fixed density set. Minimum (maximum) volume, weight, density differences across
any stimulus pair were: 50 (250) cm?, 25 (200) g, 0.02 (0.18) g/cm?, respectively. Density ratios for stimulus pairs were in
the range 0.47-0.97 (less dense/ denser stimulus), 0.58—0.89 g/cm? for equal weight (SWI) stimulus pairs. This contrasts
with previous work, where smaller ratios (bigger differences) in density have been explored (largest ratios for classic SWI
pairs: 0.67 [42], 0.64 [43], 0.51 [44]; a larger ratio of 0.87 was tested by Wolf and colleagues [11] using same-volume
pairs).

2.4 Task and trials

Stimuli were presented in pairs. In each trial, participants simultaneously grasped and lifted both cubes in full visuo-haptic
conditions (as in Fig 1A) and verbally reported both objects’ weights using magnitude estimation. The paired presentation
(common in SWI experiments), alongside magnitude estimation, allowed us to model the perceived weight of each object
in addition to the pair’s difference in perceived weight or ratio of weight estimates. Thus, we could evaluate models that
consider judgements of absolute perceived weight [11,28] in addition to models that only consider the relative perception
of stimulus pairs [6].

To reduce variability and response drift that can be associated with magnitude estimation, we provided a reference
object at the beginning and at regular intervals throughout the experiment. The reference object was part of the stimulus
set (see below, 2.6). Experimental trials included all possible stimulus pairs (same- and different-subset pairs), excluding
pairs of identical stimuli. This gave 105 unique pairs and 133 pairs in total (trials including the middle/common stimu-
lus were repeated due to a coding error). Each stimulus pair was presented twice, with left and right position switched
between the two trials (266 trials in total). Trials were randomised for each participant.
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2.5 Setup

The participant and the experimenter sat at opposite sides of a table covered in thick felt to muffle auditory cues to the
objects’ weights. Two numbers (1’ and ‘2’) marked the positions of the stimuli on the table (centre-to-centre distance
between stimuli, centre of stimuli to table edge: both 20cm) and served to remind participants the order in which to report
their estimates. A frame-mounted black curtain was used to control stimulus presentation, such that the participant only
ever saw the two stimuli of the current trial. A desktop computer running MATLAB [45] was used to randomise stimulus
presentation and record participant responses.

2.6 Procedure

The experiment was completed in two identical laboratory sessions on separate days, each lasting 60—-90 minutes. At

the beginning of each session, participants were told that their task was to lift the two cubes and provide an estimate of
their weight, in arbitrary units. They were presented with the middle cube of the stimulus set (750cm?, 3759, see Fig 1A —
1C) as the reference stimulus, and told that this had a weight of ‘50’ (arbitrary units), and that they will have to judge the
weight of each cube in reference to this (‘If you think that one cube weighs half of the reference weight you will say 25. If
you think that it weighs double the reference weight you will say 100. You can use any number, just use the number that
best represents the weight of each cube’). The reference was presented again every 20 trials (in addition to featuring in
some of the stimulus pairs). On each trial, participants were instructed to look at the stimuli while lifting. Exploration mode
was not restricted: participants were free to grasp and lift the cubes as they thought best; they were not restricted to use
index and thumb only. This was done to provide the most reliable size estimates [11]. The number of lifts within each trial
was also not restricted. Trials were not timed, but participants were encouraged to give an answer if they waited more
than 30 seconds (approx.).

3. Results

Participants’ magnitude estimates were transformed into grams and then normalised to remove individual differences in
how the response scale was used: Each participant’s estimates were multiplied by the ratio of their individual grand mean
across stimuli to the grand mean across all participants (thus, after normalisation, each observer had the same mean
response). Outliers per condition were then removed iteratively: for each object within each stimulus pair, values more
than 5 SDs, then 4 SDs, and 3.5 SDs from the mean across observers were removed (65 datapoints in total, or 0.4%).
Data were re-normalised after each iteration. All further analyses were conducted on the resulting dataset.

Weight estimates for within-subset pairs (i.e., both objects from the same subset) are shown in Fig 3, alongside model
fits (see below, Equations 1-2). Data have been collapsed across repetitions within participants and SE bars show
inter-observer variation. We present the perceived weight of the judged object (i.e., the object within each pair whose
weight is being reported) in terms of its own properties (weight/density) and the properties (weight/density) of the other
object in the pair. Each object in turn was considered the judged object.

For equal density, i.e., ‘normal’ object pairs (Fig 3A — 3B), weight estimates were highly correlated with the true weight
of the judged object, as expected. However, they were also positively correlated with the weight of the other object
(denoted by symbol size in Fig 3A; see the vertical spread corresponding to weight of other object); note that this is an
averaging, rather than a contrast effect. The difference in perceived weight between the two objects was linearly related
to stimulus weight difference (Fig 3B; data are symmetrical in all difference plots (B, D, F) as each object in each stimulus
pair serves as ‘judged’). We asked participants to estimate the individual weights of the two objects in each pair (not to
estimate the difference between their weights). However, a control experiment confirmed that these two tasks produce
mutually consistent data (see S1 Supporting Information).

Weight estimates for the equal weight (SWI) pairs are shown as a function of the judged object’s density (x-axis) and
the other object’s density (symbol size, Fig 3C). In line with the SWI, perceived weight was positively correlated with
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Fig 3. Results for within-subset stimulus pairs. Perceived weight (A, C, E) and difference in perceived weight (B, D, F) for within-subset stimulus
pairs, averaged across participants, error bars show+1 SEM. Solid lines/open symbols show the model predictions (described below, Equations 1 and
2). The dashed lines indicate veridical perception. Grey markers indicate pairs that included the reference stimulus (either as judged or other object).
(A-B) Equal density pairs: (A) Weight estimates as a function of stimulus weight; symbol size indicates the weight of the other stimulus in the pair.

(B) Data re-expressed as difference in perceived weight, as a function of weight difference. (C, D) Equal weight (SWI) pairs: (C) Weight estimates as

a function of stimulus density; symbol size indicates the density of the other stimulus in the pair. Fig A (panel A) in S1 Supporting Information shows
weight estimates as a function of stimulus volume. (D) Data re-expressed as difference in perceived weight as a function of density difference; symbol
size indicates the average object density. Fig A (panel B) in S1 Supporting Information shows the difference in estimated weight as a function of volume
difference. (E, F): Increasing density pairs: (E) Symbol size indicates the other stimulus’ weight; (F) Data re-expressed as difference in perceived weight,
as a function of weight difference; symbol size indicates the average object density.

https://doi.org/10.1371/journal.pcbi.1013496.g003

object density: denser (and smaller) stimuli were perceived as heavier (see the overall positive slope of the data). Per-
ceived weight was also negatively correlated with the other object’s density, the judged object appearing heavier when
judged next to less dense (larger) objects (see the vertical spread of data points in Fig 3C). The data are re-expressed as
difference in perceived weight as a function of density difference in Fig 3D. The magnitude of the SWI (i.e., deviation from
veridical perception) increases with density difference, as expected, but still occurs with small density (or volume) differ-
ences. Thus, we find no evidence for integration of expected and sensory weight estimates under small conflicts.

Lastly, in the increasing density pairs (Fig 3E), weight estimates were positively correlated with the object’s weight, but
also correlated with the other object’s weight (as in the equal-density pairs; see vertical spread of data in Fig 3E). Fig 3F
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shows that the difference in perceived weight increases linearly with true weight difference. In this set, weight (or weight
difference) is correlated with density (or density difference); the effect of density contributes to the increased slope of the
data, relative to veridical perception (identity line). All of the effects described above were observed regardless of whether
or not the reference stimulus was included in the stimulus pair (grey markers in Fig 3).

Fig 4A summarises results for all trials, including across-subset pairs (i.e., objects within a pair are from different
stimulus subsets), in a format that illustrates the variable influence of density on perceived weight. For every stimulus pair
(represented by a dot), the difference in perceived weight (y-axis) is presented as a function of stimulus weight difference
(x-axis) and stimulus density difference (colour). Lines show the model fit (see Equation 2 below). The overall slope of
the data shows the strong relationship between true weight difference and the difference in perceived weight. The vertical
spread of the different colours shows the effect of density difference on the difference in perceived weight. The two are
not independent: there is a central ‘bulge’, where the effect of density is larger (more vertical spread). In other words, the
effect of density (or density difference) on perceived weight (or difference in perceived weight) is strongly modulated by
stimulus weight difference, being much greater for small/zero weight differences. Fig 4B summarises the influence of the
two objects’ densities on perceived weight, as captured by the model’s density coefficients (see below). The conflation of
weight and density is dramatically increased under the conditions of typical size-weight stimuli, where weight difference is
zero.

4. Comparison with existing literature

The basic SWI (smaller/denser objects are perceived as heavier than their larger, equal weight counterparts) has been
confirmed via a wide array of experimental paradigms. Stimuli have been presented singly (e.g., [46,47]) or in pairs.
Paired stimuli are lifted sequentially using the preferred hand (e.g., [4,6,48]) or simultaneously, one per hand [49-52];
simultaneous and sequential lifting yield SWIs of similar magnitude [53]. Studies that measure fingertip forces (e.g.,
[4,48,54]) usually employ sequential lifting; only one force-sensitive handle is needed, and any hand-dependent force
differences are eliminated. A few studies involving heavier objects used bimanual [38,55] or even team lifting of single
objects [56,57]. Plaisier and Smeets [58] elicited the SWI without any lifting: participants applied lateral force to objects
suspended on strings.

The vast majority of SWI studies have employed magnitude estimation; subjects ascribe a value to each object’s
perceived weight. In some, no explicit reference or scale is provided, as in absolute magnitude estimation (e.g., [47]) or

—Judged object
— Other object

>
W

300

3
=]
S

e
°

N
N

o

w

() ' ' ' @ y '
S &/ o
S 7 200
2 250 ”% 023 & A
_» 3 [}
§ 1'/" 4 01 a k2 100 Effect of density
53 Y * o
§ O g o § 8 o
Sy 4 1 -
c 4 019 @
Y. £ 2 -100
@ & = Q@ o =
§ 250 o Z _o_zg a H
] /‘% 83 Y -200 83
E / g £ -0.3 o £
o 300 .o
-500 -250 0 250 500 -500 -250 0 250 500
Weight difference, g Weight difference, g
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https://doi.org/10.1371/journal.pcbi.1013496.9004
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when using bounded estimates (e.g., 1-10; [54]) with the requirement to adhere to a single scale throughout sometimes
made explicit (e.g., [11]). Without an explicit reference scale, observers must rely on an established scale (e.g., grams,
learnt from multiple reference objects), or use an idiosyncratic scale defined by the first stimulus and their response to it.
These strategies may be prone to noise (uncertainty) and drift. For bounded estimates, subjects may be forced to change
their scale if an ‘out of range’ stimulus is encountered. Other studies, therefore, provide an explicit reference object. This
object may be part of the experimental stimulus set (e.g., the current study; [39,59] or a separate object [46]. Peters and
colleagues [6] used a moving reference scale: one object within each pair was labelled as ‘10’ on each trial. Only a few
studies have rejected magnitude estimation in favour of a two-alternative, ‘which object is heavier (lighter)’ task (e.g.,
[20,50,51].

Despite the variety in methodology, some commonalities emerge within and across studies: (i) a SWI is observed, (ii)
larger density differences result in a larger SWI, and (iii) the availability of haptic size information results in a larger illusion
(for a meta-analysis, see [8]). Within the data from our equal-weight trials (Fig 3C — 3D) a clear SWI is present, and its
magnitude increased with increasing density differences. Importantly, however, the present study goes beyond these
demonstrations of the classic SWI: we place it in the broader context of weight perception and systematically explore how
the weights and densities of objects interact to predict perceived weight (as highlighted by Fig 4). The following section
evaluates existing and new models of weight perception, with respect to how well they account for this richer dataset.

5. Modelling
5.1 Model of perceived weight

Our model captures perceived weight (w,) for all stimulus combinations, as a function of the weight and density of the
judged (w,, d,) and other object (w,, d,). We note that in any task involving magnitude estimates we cannot, as experi-
menters, know how a participant’s internal perceptions map on to their reported judgements. This is the classic El Greco
problem of perception: perceptual biases can affect perception of all objects, including reference objects [60,61]. For
this reason, we do not focus on absolute perceptual biases (i.e., stimulus X is perceived as Y units heavier than its true
weight). Instead, we focus on how estimated weight is modulated by the properties of the stimulus and the context (i.e.,
the other object within the pair), as captured by the model.

Our model is presented as a schematic in Fig 5A, which shows the 5 components of the model, and described formally
by Equation 1; perceived weight is positively correlated with both objects’ weights and the judged object’s density. When
the two objects’ weights are similar (as in the SWI), the two objects’ densities have an additional influence (dictated by a
Gaussian over weight difference). The model (Equation 1) explains 98% of the variance in the full dataset:

Wy = C+ Biwy + Bady + Bswy + (Bydh + B5d2)N (|wy —wa

0.5%) (1)

Fig 5B shows how the model fit improves with each additional component (i.e., components 1-5, as in Fig 5A) of the
model.

Our model was fitted to perceived weight estimates for single objects (w,). Accordingly, the difference in perceived
weight (W, — w,) between two stimuli can be predicted via the following equation:

(W1 —Wa) = (B, — Bs)(Wy —Wa) + Ba2(d; —db) + (B, — B5)(d) — da) N(jwy — w5, 0,07) ()

Perceived weight is positively correlated with the object’s weight (3, =1.23) and its density (3,=126.43), and with the other object’s
weight (3,=0.13). However, when the two objects have similar weight, the effect of the object’s density is magnified, and the other
object’s density also has an effect. This interaction between weight difference and the effect of density is captured by a Gauss-
ian centred on a weight difference of 0. The density of the judged object positively influences its perceived weight (3,=27814),
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Table A in S2 Supporting Information). X =N (|w1 - w2| , 0, o?).

https://doi.org/10.1371/journal.pcbi.1013496.9005

whereas the other object’s density has a negative influence (3,=-17919). Sigma for the Gaussian component is 76.44. Fig 4B
shows the influence of both objects’ densities as a function of weight difference: the combined influence of the two densities on
perceived weight is approximately three times larger for zero weight differences than for large weight differences. All analyses were
done in MATLAB [45] and optimal coefficients (minimising the summed squared residuals (SSR) in the pooled data) were identified
via gradient descent. To prevent over-fitting, we used leave-one-out cross-validation on the normalised dataset, leaving out each
participant in turn. This method ensures that every component in the model improves its ability to predict data from new observers
[62—64]. Alternative candidate models are presented in Table A in S2 Supporting Information alongside model comparison sta-
tistics. Given that volume and weight are directly sensed, whereas density must be inferred, we also tested models including the
objects’ volumes (v,, v,) instead of density as predictors, but these were inferior, see Table B in S2 Supporting Information.

Whilst our model provides an excellent quantitative account of perceived weight, it does not explain why our sensory
system computes perceived weight in this way. Below we explore whether a Bayesian model incorporating efficient coding
might provide a more theoretically appealing account of biases in weight perception. We then compare our models to
those previously proposed to explain biases in weight perception.

5.2 Efficient coding Bayesian ratio model

Traditionally, Bayesian models have been employed to account for perceptual biases towards a prior (i.e., towards the
most frequent or probable stimuli). Examples in the literature include biases for light-from above [65], isotropy assump-
tions when interpreting foreshortening [40], global convexity of surfaces [66], and ‘slow and smooth’ motion [67]. However,
as described by Wei and Stocker [29,30], Bayesian models incorporating efficient coding of stimulus features can also
predict repulsion biases, i.e., biases away from the prior. Given that the SWI (and not integration) is observed even for
very small density differences, we asked whether such a model might provide a quantitative, Bayesian model of the SWI
as a ‘repulsion’ effect, where perception is biased away from a prior for equal density. Wei and Stocker [29,30] show that
the expected perceptual bias b (6p) for a stimulus value 6y from a stimulus distribution 6 can be predicted from the prior,
p(9) (in fact from the slope of its squared reciprocal), as in Equation 3:

b (o) = Co(1/p(0)*)1 (3)

where C, is a constant.
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We present a simple model that includes a prior over the relationship between two objects’ weights and volumes:
i.e., the two dimensions of log weight ratio and log volume ratio, as depicted in Fig 1B. Such a prior, if aligned with the
log weight ratio=log volume ratio unity line (solid red line in Fig 1B), represents the assumption that the two objects
have equal density. Perceptual biases away from this prior would be consistent with the ‘contrast’ or ‘repulsion’ expla-
nation of the SWI that has prevailed for decades [2,7]. Thus, similar to Bays [28], we use the work of Wei and Stocker
[29,30] to model the seemingly anti-Bayesian bias in the SWI as repulsion away from the prior. Unlike Bays’ model,
our ratio model predicts biases in perceived weight ratio for pairs of objects, given a prior over their weight and vol-
ume ratios. Bays’ model fits the perceived weight of single objects (see below, 5.3). For pairs of objects, considering
ratios of weight, volume and/or density (rather than their differences) is a natural choice: any two of these ratios define
the third, as (w,/w,)/(v,/v,) = d,/d,. Taking the log ratio gives a useful symmetry: log(w,/w,) = -log(w,/w,); allowing us to
predict the same magnitude of bias, irrespective of which object in a pair is designated as object 1. To fit the model,
we calculated the ratio of weight estimates on each trial for each participant. Like Peters and colleagues [6], we did
not ask participants to provide ratio estimates, as we expected they might be unfamiliar with using ratios. Our prior
is defined by a mixture of three bi-variate Gaussians centred on [0, 0], i.e., equal weight and volume (Fig 6A). This
mixture model allowed us to explore variations in the shape of the prior; there is no reason to assume that it should
be a perfect bivariate Gaussian. Model parameters and model comparisons given priors of different complexity are
provided in Table C in S2 Supporting Information.

Similarly to Bays [28], we employ the simplifying assumption that perceptual estimates of volume ratio are relatively
precise, and thus not significantly affected by the prior. Indeed, there is no clear evidence that objects with unexpected
weights (e.g., typical SWI objects) cause biases in volume perception (i.e., a ‘weight-size illusion’ [68,69]). Thus, we
estimated the expected bias in perceived log weight ratio by taking a slice through the prior at the true value of log volume
ratio (e.g., vertical dashed line in Fig 6A) and finding the slope of this 1D prior with respect to log weight ratio (Fig 6B). If
volume ratio judgements were also available, one could drop the simplifying assumption, and simultaneously fit biases in
log weight ratio and log volume ratio. The resultant fitted prior would have a slightly different shape.

We fitted the model via gradient descent to optimally predict biases in perceived log weight ratio, averaged across par-
ticipants, for all unique stimulus pairs (N=105). Fig 6A shows the best fitting prior, whose orientation is close to an equal
density prior (solid red, identity line), but is in fact rotated slightly towards larger objects being heavier and slightly less
dense (dashed red line), in keeping with the object statistics reported by Peters and colleagues [5]. The empirical biases
in perceived log weight ratio are shown in (C) and those predicted by the fitted prior are shown in (D). The model accounts
for perceived log weight ratio well, with 12 parameters (R?=.988; see Table C in S2 Supporting Information). However,
goodness-of-fit is poorer than our descriptive model (Equation 1, 7 parameters), when parameters are optimised to mini-
mise the SSR in perceived log weight ratio (R2=.991, see also cross-validation errors, Table A in S2 Supporting Informa-
tion). Nonetheless, this efficient-coding Bayesian model provides a theoretically appealing account of the SWI; biases in
perceived log weight ratio are minimal close to the d, =d, identity line (solid red lines in Fig 6C — 6D) and increase with log
density ratio, broadly in line with repulsion away from an equal-density prior. Indeed, biases in log weight ratio correlate
quite strongly with log density ratio (R?=.691).

Tempting as it is to break out the champagne and toast our Bayesian brains, this may be premature. Closer inspection
yields some difficulties with this model. First, the model is agnostic regarding how the bias in log weight ratio is split across
the two objects. A reasonable assumption is that the prior has equal and opposite effects on the perceived weights of
the two objects. However, this is not observed (see Fig B in S2 Supporting Information); there is only a weak correlation
(R?=.283) between biases in estimates of log weight ratio and biases in estimates of log w, and log w,. In fact, biases in
estimates of log w, and log w, are largely independent of the two objects’ relative densities (R?=.215), in contrast to what
we would expect given repulsion from an equal density prior. The pattern of bias in log weight ratio is fairly well approxi-
mated by a model that predicts each object’s perceived weight from its weight and density, that is, independently of any
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B. The solid red line is the identity line (i.e., equal density), and the dashed red line shows the orientation of the fitted prior (plotted over the stimulus
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A), given the 1D slice through prior (solid black line). Efficient coding of stimulus properties results in skewed likelihoods with a long tail away from the
peak of the prior. The posterior is also skewed. When a symmetric loss function is chosen, e.g., the mean of the posterior (L2, blue dashed line), a bias
away from the prior is predicted, i.e., the posterior estimate is shifted away from the prior peak, relative to the peak of the likelihood. Measurement noise
(expected to be skewed in stimulus space) further increases the predicted repulsive bias [29]. (C-D) Biases in perceived log weight ratio. Contour lines
show the prior; black dots show the stimulus pairs; arrows show the magnitude and direction of the bias for each pair, with SWI conditions in green; the
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https://doi.org/10.1371/journal.pcbi.1013496.9006
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interaction between the two objects (R?, biases in log weight ratio=. 847 see Table A in S2 Supporting Information). This
suggests that, although empirical biases are consistent with repulsion from an equal-density prior (Fig 6B), this might not
be the underlying mechanism. It is worth noting that any pattern of bias can be explained with a complex enough prior.
Observed and predicted biases in judgements of log w, and log w, are shown in Fig B in S2 Supporting Information.
Second, a key feature of Wei & Stocker [29,30] is that the model gives predictions for both biases and reliability (discrimina-
tion thresholds or estimate variability). According to the efficient coding model, more frequently observed stimuli are represented
more precisely, such that discrimination thresholds are proportional to the reciprocal of the prior (see Efficient-coding Bayesian
ratio model in S2 Supporting information, for fitting of response variance). At the individual observer level, our data provide
poor estimates of discrimination (only two estimates per pair). However, at the group level, a systematic pattern is clear (see in
Fig C in S2 Supporting Information). Empirical response variance is well predicted by the absolute log weight ratio (R?=.532);
observers’ judgements of relative weight are most reliable when the two objects’ weights are similar. Log volume ratio adds
little explanatory power (R?=.557, for regression model predicting response variance from log weight and log volume ratios).
Predictions from the efficient coding Bayesian model follow the opposite pattern: modelled response variance depends primarily
on log volume ratio (R?=.765) and far less on log weight ratio (R2=.86, for regression model including both log volume and log
weight ratios). In fact, the empirical pattern of response variance is better predicted by log weight ratio than by the modelled pat-
tern of response variance (R?=.532 vs R?=.444). For a variety of perceptual tasks, Wei & Stocker’s approach explains both the
pattern of bias and the pattern of response variance (or discrimination thresholds) with a single fitted prior [30]. Unfortunately,
that is not the case for perceived weight, and is therefore unlikely to represent the underlying mechanism of the SWI. (We also
considered, and rejected, Bayesian models of perceptual bias involving a 2D prior over differences in weight and differences in
volume or density, see ‘Efficient-coding Bayesian ratio model’ in S2 Supporting information).

5.3 Other models

Here we explore how well existing models of weight perception by Bays [28], Peters and colleagues [6], and Wolf and
colleagues [11] (see Introduction) explain our data.

Bays [28] proposed a Bayesian model of the SWI, which, as above, predicts biases away from the prior, given effi-
cient coding and an L2 loss function [29]. However, rather than considering object pairs, Bays’ model employs a bivariate
Gaussian prior over the perceived weight and volume of single objects, i.e., a positive association between weight and
size. Fig D in S2 Supporting Information shows the model’s fit to our data. We extended the model to incorporate a mix-
ture of Gaussians prior (see Table D in S2 Supporting Information for model parameters and model comparisons). Whilst
the model captures the mean bias for each stimulus reasonably well, it cannot capture the way in which perceived weight
is modulated by the other object in the pair, nor is it consistent with the pattern of response variance (Fig E in S2 Sup-
porting Information). As noted above, Bays’ [28] model predicts biases in the estimated weights of single objects, given a
prior over the properties of single objects. However, one might suggest fitting Bays’ model directly to the log ratio of the
perceived weights of object pairs (i.e., putting aside the empirical estimates of individual objects’ weights). This analysis is
described in S2 Supporting Information.

As described in the Introduction, Peters and colleagues [6] assume a prior over weight and density ratio that is com-
prised of three sub-priors, representing three different classes of weight-density relationships (here re-expressed as
weight-volume relationships, see Fig 1C). Fig 7 compares the empirical biases in perceived log weight ratio (A) to the
predicted biases from the best-fitting model parameters (B). Sub-priors (represented by dashed lines) are encoded as
bivariate Gaussians (see Table E in S2 Supporting Information for model parameters and model comparisons). Unfortu-
nately, the model cannot account for the set of biases in perceived log weight ratio across all stimulus pairs (R2=0.413). It
predicts a negative influence of log density ratio for some stimulus pairs; the predicted effect depends on where the stimuli
lie relative to the three sub-priors. For example, in pairs of equal-volume (different weight, density) stimuli, log weight ratio
is predicted to be underestimated as log density ratio, log weight ratio increase, whereas empirically it is overestimated.
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Fig 7. Peters and colleagues’ model of perceived weight. (A) Empirical biases in perceived log weight ratio. Dotted lines show the optimal three
sub-priors from Peters and colleagues’ [6] model when fitted to our data. Black dots show the stimulus pairs; arrows show the magnitude and direction of
the bias, with SWI conditions in green. (B) Predicted biases according to Peters and colleagues’ [6] model.

https://doi.org/10.1371/journal.pcbi.1013496.9007

Finally, we evaluated Wolf and colleagues’ [11] model fit to our data. In this model, perceived weight is a weighted average
of weight and density estimates, weighted according to their relative reliabilities. Estimates are modelled as power functions
of the corresponding physical feature. As we didn’t manipulate the reliability of size information, the model reduces to:

W= W+ Bod (4)

The model provides a good account of perceived weight (R?=.96). Fig F in S2 Supporting Information shows the fit to our
data, for comparison with Fig 3; for model parameters and model comparisons see Table F in S2 Supporting Information).
However, like Bays’ [28], it does not capture the contextual effects of the other object, including the observation the influ-
ence of density is strongly modulated by weight difference (as shown in Fig 4A).

We note that Wolf and colleagues [11] model perceived weight and density as power functions of their physical coun-
terparts. However, additional exponent parameters for weight or density were not statistically supported by our data.
Wolf and colleagues had a 5:1 ratio of heaviest to lightest stimuli, compared to our 3.3:1 ratio. It is possible that, given an
increased range of stimulus weights/densities, our descriptive model would need to similarly include power functions of
weight and/or density, in tandem with an intercept of 0.

6. Discussion

We investigated perceived weight in a set of stimuli which varied in weight and/or volume, and/or density in small steps.
We report several novel findings: 1) The SWI occurs even at very small density (size) differences; 2) Across all stimuli,

an object’s weight and density appear confounded/integrated to estimate weight; 3) Perceived weight is affected by the
weight of the other object in a pair but is largely invariant to the other object’s density. 4) However, the influences of both
objects’ densities on perceived weight are strongly modulated by weight difference. The negative, or ‘contrast’ effect of the
other object’s density only appears for pairs of similar weight.
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Our descriptive model captures the above effects, providing an excellent account of perceived weight (R?=.98). It
captures the SWI as well as biases in perceived weight across a range of variations in pairings of stimulus weight and
density. Additionally, we evaluated a novel efficient-coding Bayesian model of perceived weight ratio, alongside previously
proposed models of the SWI. Here we discuss our findings within the existing literature.

The magnitude of the SWI increased, as expected, with increasing density (size) difference [6,34,38,39]. We extended
this, by measuring the SWI with smaller density differences than those previously tested. We hypothesised that under
small conflicts, the SWI might reverse (i.e., to show integration: smaller stimuli would be perceived as lighter). However,
the SWI was clearly present for all equal-weight pairs, at odds with the idea that the SWI is driven by a (substantial) con-
flict between expected and perceived weight.

Our results are inconsistent with Peters and colleagues’ [6] Bayesian mixture model. Also, at a conceptual level, the
subdivision of the continuous world of size and volume/density into three relatively narrow categories is difficult to
reconcile with environmental statistics. The best fitting parameters for our data assign a prior probability of near 0 to
equal-density objects (R,, see Fig 7, and Table E in S2 Supporting Information). The other two sub-priors encapsulate the
expectation that smaller objects are either much heavier and denser (R,) or much lighter and less dense than larger ones
(R,), both at odds with reported natural statistics for everyday liftable objects [5].

The efficient-coding Bayesian ratio model provides a theoretically appealing account of the SWI, predicting a
repulsion away from a plausible equal-density prior. However, neither our efficient-coding Bayesian ratio model, nor
that recently proposed by Bays [28] satisfactorily account for our pattern of data. Whilst our efficient-coding model
provides a reasonable fit to the empirical biases in perceived log weight ratio, it fails to account for the observed
pattern of response variance, and does not explain biases in perceived weight for individual objects. As noted
above, Bays’ model [28] does not account for contextual bias effects found in our data (i.e., the influence of the other
object’s weight and, in certain conditions, its density), and neither is it consistent with empirical patterns of response
variance.

So, is the SWI Bayesian after all? We don’t think so; the SWI does not appear to be caused by repulsion from an
equal-density prior. It is reasonable to assume that the perceptual system does expect same-material objects to be
same-density. Indeed, the sensorimotor system may rely on an object’s size, together with density expectations for
classes of objects/materials to infer the weight of a stimulus prior to lifting [14]. Such expectations presumably drive the
initial (erroneous) forces used when lifting SWI objects [4]. However, the illusion persists after forces quickly adapt to the
true weights [4] and the SWI is just as large when same-density cues are reduced, i.e., when the colour or surface mate-
rial of the two stimuli differs [54,70]. Thus, while we may employ an equal-density prior, this does not seem to underlie the
perceptual SWI.

In general, perceived weight was modulated by density; denser objects are perceived as heavier than less dense
objects, consistent with previous literature [11]. In line with Wolf and colleagues [10,11] weight appears to be routinely con-
founded/integrated with density information. This is consistent with previous evidence that the SWI still occurs when the
smaller objects is slightly lighter (but still denser) than the larger object [18,46]. However, our data reveal that the effect
of density is substantially increased when equal-weight objects are encountered, as in the typical size-weight illusion
paradigm. Thus, like Bays’ [28] model, Wolf and colleagues’ [11] model fails to capture the contextual effects of the other
object. Rather, these models predict biases in perceived weight that occur in single-object judgements (see, e.g., [71]).

Our data and model reveal the role of contextual effects in the classic SWI (where weight is typically held constant)
and highlight the error in generalising from these data to weight perception in general. Our model falls short of providing
a complete model of weight perception, because we focussed on pairs of objects. Further work might determine how
the model could be expanded to capture weight perception in a wider variety of contexts. For single objects presented in
sequence, for example, one could replace the other object’s properties with a weighted combination of previously encoun-
tered stimuli.
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Wolf and colleagues [11] also showed that when the reliability of (visual or haptic) size information is reduced, density
has less effect on the final heaviness estimate. In the limiting case, when size information is completely absent (objects
lifted via strings/a handle, and no vision), the illusion disappears [11,39,72]. Our model of weight perception does not
encapsulate the additional effect of varying the reliability of size estimation; this would be accommodated by reducing the
coefficients associated with density to reflect the availability of visual-haptic size cues (8,, §,, B, Equation 1).

7. Conclusions

Our study situates the SWI in the broader context of weight perception under varied conditions (combinations of volume,
weight, and density) allowing us to evaluate different models of weight perception, including our own.

Our explorations reveal that, whilst the SWI magnitude increases with size/density difference, it occurs even for small
density differences. Second, we showed that typical SWI experiments using same-weight, different-size pairs have
inflated the apparent role of density in weight perception more generally. The effect of density on perceived weight is sub-
stantially smaller when two objects of different weights are encountered. Our simple model provides an excellent account
of perceived weight under various combinations of size, weight, and density. However, we still don’t know why weight is
estimated in this way. Why does density affect weight perception, and why is this effect magnified when weight differences
are small?

We explored different avenues to reconcile the SWI within the Bayesian framework, given the appeal of finding a model
that provides a more explanatory account of weight perception in the SWI and beyond. However, none of the Bayesian
models we tested, including efficient-coding models that do predict biases away from a prior, could successfully account
for our data.
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