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Abstract

Objective measurement of community participation is essential for evaluating functional
recovery and intervention outcomes in clinical populations, yet current methods rely heav-
ily on subjective self-report measures. This study developed and validated a classification
model to distinguish between home- and community-based activities using stepping and
lying data from activPAL devices. Twenty-four healthy participants wore activPAL 4+
monitors continuously while completing activity diaries over 7 days. A grid search optimi-
sation approach tested threshold combinations for two stepping parameters: straight-line
stepping time (SLS) and continuous stepping duration (CSD). The optimal model achieved
93.7% accuracy across 24-h periods using an SLS threshold of 26 s. The model demonstrated
high precision with a median difference of just 7 min between the predicted and reported
community participation time. Individual variation in model performance highlights the
need for validation in diverse clinical cohorts. This represents a methodological advance
in objective physical behaviour monitoring, enabling accurate classification of home and
community activity from posture data. By identifying not just how much people move but
where they move, the model supports more meaningful assessment of functional mobility
and community participation. This can enhance clinical decision making, rehabilitation
planning, and intervention evaluation. With potential for adoption in clinical pathways and
public health policy, this approach addresses a key gap in measuring real-world recovery
and independence.

Keywords: community participation; activity classification; accelerometry; activPAL;
rehabilitation outcomes; mobility assessment; physical behaviour monitoring; objective
measurement

1. Introduction

Community participation is a key determinant of both mental and physical health,
particularly for populations at risk of isolation, such as older adults [1] and individuals
with chronic conditions [2]. In this study, we adopt a spatial definition of community
participation, defined as time spent away from the primary residence, consistent with the
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rehabilitation literature and capturing opportunities for participation in community life
and social engagement [3,4]. Limited social engagement has been consistently linked to
depression [5] and may contribute to the onset or progression of chronic illnesses over
time [6]. Individuals who seldom leave their homes also engage in less physical activity,
even when indoor exercise is considered [7,8]. In contrast, community-based activities,
such as shopping, commuting, and socialising can promote higher physical activity levels,
which are associated with reduced risks of comorbidities such as obesity [9], poor body
image [10], impaired balance [11], and depression [12]. This highlights the potential of
increased community participation as a preventive and therapeutic strategy across both
clinical and ageing populations, but despite these perceived benefits, many clinical popula-
tions continue to experience restrictions in their ability to engage with their communities,
even following therapeutic or rehabilitative interventions [13-15]. Understanding the
reasons behind limited community participation remains a challenge, in part due to the
lack of consensus on how to best capture community participation, with a range of tools
being used inconsistently across studies [4,16] and the difficulty of measuring participation
directly [17,18]. Many studies have relied on subjective approaches such as self-reported
questionnaires or clinical assessments, which may lack ecological validity [19], are often
influenced by individual bias [20], and often fail to capture the dynamic and contextual
nature of real-world community participation. While physical, psychosocial, and envi-
ronmental factors all influence community participation and engagement, their effects
vary widely between individuals. As a result, both clinical and self-reported assessments
often focus on aspects of physical impairments or activity limitations, rather than directly
measuring participation restriction itself [4].

Wearable sensors offer a promising solution, providing the opportunity for objective
and continuous long-term monitoring of community participation without the need for
patient input. This would offer insights into functional capacity over a sustained period
of daily living, beyond the brief and artificial snapshot of a patient’s abilities seen in
a clinical setting. Such technology could lower patient burden and provide clinicians
and policymakers with actionable data to assess and improve rehabilitation strategies,
healthcare and assistive technology provision, and social policy.

Previous research has explored the use of GPS to track community participation [21,22],
but while GPS offers location-based insight, these devices are power-intensive, requiring
frequent charging, demand complex data processing, and may raise privacy concerns. It
also provides only limited information about the type and context of movement within the
community, requiring additional sensors for activity-specific information [22,23]. Similarly,
fixed-point systems such as door sensors or in-home monitors can detect entry or exit but
offer no insight into the duration, nature, or context of activity beyond those fixed locations.
For example, a door sensor may register someone stepping outside into their garden as
having “left home”, even when no meaningful community participation has occurred.
In contrast, analysing stepping behaviours captured through wearable activity monitors
could offer a low-power, unobtrusive, and scalable method for assessing community
participation. These wearable sensors can be deployed quickly in any setting with minimal
participant burden, whilst posing few privacy concerns and remaining suitable for a
wide range of users, including clinical populations. If stepping patterns can be shown to
reflect meaningful community participation, then this approach would enable continuous,
objective tracking of both the ability to participate in community-based activities and other
functional outcomes over extended periods in a real-world environment. This would
provide a direct, quantifiable measure of real-world community participation, integrating
contributing factors into a single, reliable metric. Such a metric could be used across many
clinical populations and studies to better understand and support community participation.
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In order to develop a classification model from stepping patterns that can differentiate
between movement at home and in the community; it is first important to define the concept
of “home” and “community”. The term “home”, for the purposes of this paper, represents
the primary dwelling where an individual spends the majority of their time and is the place
where an individual would be most likely to sleep on any given night. It is characterised
by the confined space it offers, which will impact movement patterns due to limitations
on the extent of continuous movement possible in any given direction. “Community”
activity, meanwhile, captures any duration of time that an individual spends away from
their home. Activities under this category could include visits to the residences of friends,
family, or acquaintances and also include periods spent on exercise, shopping, or socialising
outside of their own home, as well as any form of employment. It can therefore consist of
activity that falls within both constrained and unconstrained environments.

The aim of this research is to develop an objective method for measuring community
participation using stepping patterns recorded from wearable activity monitors, with the
intention of creating an outcome measure for use by healthcare professionals and pa-
tients. This objective was achieved by developing an activity classification model ca-
pable of distinguishing between home- and community-based activities using stepping
data from activPAL wearable devices. The model focuses on identifying primary daily
transitions—specifically the first departure from home and final return each day—which
serve as reliable indicators of community engagement. This paper presents the data
collection methodology, describes the systematic development and optimisation of the clas-
sification algorithm using grid search techniques, and reports on model performance across
multiple evaluation metrics, including accuracy, F1 score, and transition timing precision.

2. Materials and Methods
2.1. Participants

A convenience sample of 24 participants was recruited to participate in the study
(male = 13; female = 11). This sample size (n = 24) aligns with or exceeds sizes commonly
used in many free-living sensor validation studies [24—27]. The mean participant age was
36.0 + 13.5, the mean height was 173.7 + 9.0 cm, and the mean weight was 76.4 + 12.8 kg. All
participants declared that they had no injuries or illnesses that may impact their mobility.
Two participants were retired, two worked part-time in an office-based job, and 20 worked
full-time (17 in office-based jobs, 1 as a veterinary surgeon, 1 as a volunteer at a large
sporting event, and 1 in retail). The mean number of days normally worked outside of
the house for those in employment was 3.8, with a number of participants having hybrid
working patterns, sometimes working from home and at other times from their place
of work. All participants gave informed consent, and the study was approved by the
University of Salford’s School of Health and Society Research Ethics Panel (ref. 6444).
Once consent had been given, they were familiarised with the study protocol before data
was collected.

2.2. Data Collection

The activPAL 4+ activity monitor was selected to record activity data for this study
due to its integrated magnetometer, enabling the measurement of straight-line stepping
times (and therefore turning frequency) during individual stepping events, as well as
the classification of posture behaviours such as lying, standing, and stepping. Analysing
behaviour data determined by the proprietary activPAL algorithms reduces computational
demands by minimising reliance on complex accelerometer data processing whilst still
providing high-resolution details of activity.
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Participants were given an activPAL 4+ device (PAL Technologies Ltd., Glasgow,
UK) to wear for seven days on their thigh and asked to take part in their normal daily
activities throughout data collection. The activPAL 4+ was affixed to the mid-anterior
aspect of their chosen thigh using hypoallergenic tape, following the standard protocol
described and illustrated elsewhere [26,28]. Thigh-worn accelerometers are considered
the “gold-standard” method for capturing movement data across a 24-h cycle [29]. The
recommended activPAL wear time for adequate data collection is 7-14 days to allow for
daily variation in activity levels throughout the week [30]. However, for the purposes
of this work, the number of occurrences of community and home activity were of more
importance than a person’s specific patterns of activity, and therefore the lower limit of
7 days was chosen to ensure adequate data storage and battery life whilst still allowing
sufficient time for an adequate number of activity bouts.

An external validation method was required to accurately determine participants’
locations during data collection and enable labelling of sensor data for development
and evaluation of the classification model. Various methods have previously been used
to establish an individual’s location, including direct observation, GPS, and self-report
tools [31,32]. While technologies such as GPS or Bluetooth- or Wi-Fi-based positioning have
been explored for location detection, they present several limitations that make them less
suitable for this type of study. GPS is often unreliable indoors and in built-up environments,
where location data may be missing or imprecise [33-35]. Conversely, Bluetooth- and
Wi-Fi-based positioning systems are prone to errors outdoors, where infrastructure is
sparse or inconsistent [36,37]. Furthermore, these technologies impose significant battery
demands on wearable devices, which limits feasible wear time and limits the suitability of
such systems for multi-day or long-term monitoring. Therefore, self-reported diaries were
selected due to their simplicity in data processing for long-term monitoring compared with
other methods, the ability to report reasons for leaving home, and successful use in other
studies using activPALs [21,35,38,39].

The participants recorded the start time of any new activity or location change, accom-
panied by a brief activity description. Although not essential for identifying community-
based activity, these descriptions facilitated anomaly detection, such as exercise at home
or walking in large indoor environments, and may support future analyses of movement
behaviours. Participants were also requested to record any periods when the sensors were
removed (e.g., during bathing or sleeping).

2.3. Data Processing

The collected data was processed from the thigh-worn sensor using PALanalysis (PAL
Technologies Ltd., Glasgow, UK) and exported as “Stepping Bouts” with the GHLA v2.2
algorithm, and thus each period of continuous stepping was classed as a separate event.
The activity diaries were digitised and then loaded into Python (version 3.11.3) to allow
the sensor data to be labelled as occurring in the home or the community according to the
diary classifications.

3. Model Development
3.1. Feature Extraction

It is expected that short periods of stepping and frequent turning will be prevalent
in most indoor locations, both at home and in constrained public environments such as
offices, restaurants, and shops, due to limited spatial layouts and regular interactions with
furniture, walls, or other people. These physical constraints tend to produce similar move-
ment patterns across various indoor settings. However, by analysing broader behavioural
patterns before, during, and after such events, it may be possible to distinguish between



Sensors 2025, 25, 4979

50f20

environments and determine which restricted areas are community-based, and which
represent a person’s primary residence or home.

The differing intent behind an individual’s behaviour at home versus in the community
also plays a key role in shaping movement patterns. Activities performed outside the home,
such as commuting, shopping, or socialising, often involve longer, more purposeful bouts
of movement, including walking in straight lines, riding in vehicles, or walking longer
distances uninterrupted. In contrast, behaviour at home typically includes more fragmented
and less goal-directed movements, frequent transitions between short activities (standing
and stepping), shorter periods of straight-line stepping, and longer durations of sedentary
behaviour or rest.

To support the classification of home versus community settings, several features
were selected:

¢  Continuous stepping duration: Longer uninterrupted stepping bouts may indicate
purposeful movement through larger environments, common in community settings
such as commuting or walking outdoors. In contrast, shorter, fragmented bouts are
more typical in constrained home environments.

¢  Straight-line stepping time: Time spent walking in relatively straight paths is likely
longer in open or semi-open community environments (e.g., footpaths, work corridors,
and parks) and shorter at home due to frequent turns and obstacles.

* Time spent on transport: Transport usage is an obvious indicator of being in the
community, particularly for commutes or social outings. Such periods could not occur
when someone is at home.

*  Periods of sleeping or lying down: Extended periods of low activity or rest, particularly
at night, are typically associated with being at home. These can serve as temporal
anchors to help classify other activities relative to the home setting.

3.2. Differences in Behaviours at Home Versus in the Community

To determine whether certain durations of continuous stepping duration (CSD) or
straight-line stepping (SLS) occur exclusively at home or in the community, we identified
the 99th percentile cut-off thresholds for stepping events in each location, based on the
labelled data. The 99% threshold was chosen to include the vast majority of events while
excluding outliers At home, 99% of CSD events were shorter than 54.7 s, and 99% of SLS
events were shorter than 22.9 s. In contrast, community-based activity included CSDs up to
555.0 s and SLS durations up to 248.3 s. While many events of shorter durations occurred
across both settings, these results clearly indicate that longer-duration stepping events are
highly unlikely to occur at home.

Figure 1 presents an example of CSDs and SLS durations overlaid on a 24-h timeline
distinguishing home (blue) and community (red) locations, with 99% threshold values
represented by the height of the coloured horizontal bars. The figure illustrates that events
exceeding the home-based thresholds were rare at home but common in the commu-
nity. However, it also reveals a substantial number of shorter-duration stepping events,
including those with high turning frequency, occurring outside the home. Therefore,
while long-duration stepping events can be used to identify community-based activity,
additional methods are needed to detect community activity from events containing shorter-
duration bouts.
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Figure 1. Durations overlaid with self-reported data for (a) continuous stepping duration and

(b) straight line stepping time. The horizontal bars represent the self-reported data, with the bar
height equal to the 99% thresholds.

As well as stepping events, the activPAL 4+ detects periods of lying, separating them
into “primary lying” and “secondary lying” through an algorithm that identifies the longest
continuous period of predominantly non-upright events each day. Primary lying periods
represent the longest period and are assumed to contain the main period of sleep; therefore,
these periods are referred to as “sleep” for the purposes of this paper. Secondary lying
periods are any additional long periods of lying that are disconnected from the primary
lying period, and they are therefore referred to as “lying” for the purposes of this paper. Of
550 total sleeping and lying events, only 9 occurred in the community, and all of these were
“secondary lying”. All “primary lying” (sleeping) events occurred whilst the participants
were at home. This means that periods of sleeping can be assumed to always occur whilst
an individual is at home, whilst “secondary lying” is less reliable and therefore cannot.
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Seated transport (e.g., time spent in a car or on a bus or train) cannot occur at home.
However, when comparing the times during which seated transport events were identified
by the activPAL monitors with self-reported data, it was found that whilst the vast majority
(453 out of 569) of seated transport events occurred in the community, there was a notable
remainder (20%) that occurred at home. Seated transport is detected by the prorietarty
(GHLA) activPAL algorithm via increased noise while in a seated position, but discrepancies
occur at times distant from when the participant reported returning home. This suggests
that this algorithm may be oversensitive in this instance, possibly recording fidgeting or
other repetitive movements as transport, rather than these discrepancies arising from errors
in the self-reported data.

Therefore, the features chosen to analyse for the creation of the classification
model were the following:

1.  Continuous Stepping Duration: The duration of a stepping bout.

2. Straight Line Stepping Time: The longest continuous period during a stepping bout
in which the participant’s direction of movement remains relatively straight, defined
by a heading change of less than 45°.

3. Sleep: Encompassing periods of sleep (primary lying).

While the features described above can be derived using proprietary analysis algo-
rithms built into the activPAL 4+, they represent general behavioural constructs that are
not exclusive to this device. All selected features, including stepping duration, straight-
line walking, and periods of sleep, can be identified using alternative activity monitors
equipped with an accelerometer and magnetometer, or other sensors capable of capturing
movement and orientation. For example, turning can be detected using changes in heading
derived from magnetometer data or estimated from gyroscope signals [40,41], while step-
ping durations and cadence can be extracted from accelerometer-derived gait cycles [42,43].
Similarly, sleep detection has been demonstrated with a variety of wearable sensors [44,45].
Therefore, the underlying principles of this classification method are transferable to other
devices, provided that comparable signal features are available.

3.3. Identifying Transition Events

While prolonged CSD and SLS durations are rarely observed at home, shorter-duration
events also occur outside the home. As such, labeling only longer-duration events as
community-based would lead to misclassification of the many shorter bouts that take
place in settings like offices, restaurants, or shops—community environments where space
constraints limit movement. To address this, prolonged CSD and SLS events can be treated
as transitional markers that help contextualise periods of more limited mobility or sedentary
behaviour. By leveraging the sequential nature of time series data in this way, this approach
enables more accurate classification of stepping patterns by interpreting each activity in
relation to its surrounding temporal context.

Figure 2 highlights the large number of stepping events each day that would meet
the criteria for a transition event if using the 99% thresholds defined earlier (CSD > 54.7 s,
SLS > 22.9 s). While most of these events occurred within self-reported periods of com-
munity activity (as expected), not all represent a movement between a person’s home and
the community. In some cases, multiple transition-like events may occur within a single
transition period, or several may take place in the same community location as part of
sustained engagement with that environment. For instance, a prolonged walking bout
may reflect physical activity or intra-location movement rather than travel between distinct
places. Transitions may also occur between two non-home locations. To better distinguish
between these cases, we defined two categories of transition events:
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*  Primary transitions: Movements between the participant’s primary location (where
they stay overnight) and any other location. They are either leaving or returning home.
*  Secondary transitions: Movements between two non-primary locations. This includes
extended walking bouts that meet the transition criteria but occur within the context of
ongoing community engagement (e.g., walking commutes or moving between shops).

. Home N Not at Home W Transitions

Continuous Stepping | I | l | | |
Duration
Stralgthetpl;:':‘eg 1 I | l | | |
Self-reported
Data _ Mon!a!
00:'00 03;00 06;00 09;00 12;00 15;00 18:‘00 21;00
Continuous Slg?:gti?ogn | I ] | |I ‘ I.” I
Stralgthetplginneg_ I ] | ””I ” I
S e ————————
Data | : . ) . . ; . Tuesda
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Stralgthetpl;ir:‘eg 4 I” | | I " "
Self-reported
Data '_v . i . . . . We!nes!a!
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Time of day

Figure 2. Visualising the locations and durations of potential transition events according to the
transition criteria (CSD > 54.7 s, SLS > 22.9 s), with any stepping event meeting the criteria high-
lighted in orange. Periods of white in the self-reported data symbolise a period of not wearing the
activPAL sensor.

To incorporate these transitions into a classification model, we implemented the
stepwise process summarised in Figure 3. First, all periods of sleep were identified and
labelled. Next, all events meeting the transition criteria were identified and classified as
either primary or secondary transitions as described above. Finally, any time interval
between two primary transitions that included a period of sleep was classified as home,
while all other time was classified as community. The beginning of a leave transition
marked an immediate reclassification from home to community, and the end of a return
transition triggered an instant reclassification back to home.

Figure 4 shows a key limitation with this method, as only periods of sleep were
determined to definitely occur at the primary locus, if a participant returned home in the
middle of the day before leaving again, the classification model could not identify this.
To account for this, and for the purpose of conducting a sensitivity analysis to enable
optimisation of critical thresholds, the diary data was “bookended”. This involved ignoring
any self-reported returns home during the day and treating all time between the first
departure from home and the final return that day as community-based activity in the
reference data. Because the participants rarely slept during these brief returns, and the
model depends on sleep to confirm one’s presence at home, such periods were inherently
misclassified. By bookending the data in this way, we introduced a controlled simplification
of the reference data that allowed for a more consistent evaluation and optimisation of
transition thresholds, avoiding the variability introduced by unidentifiable midday home
periods, which would otherwise bias the results.
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Figure 4. The classifier consistently misidentified activity at home as occurring in the community
when participants returned home during the day, as there was no period of sleep.

3.4. Sensitivity Analysis and Threshold Optimisation

A grid search was used to identify the optimal combination of thresholds for each
parameter [46]. For both CSD and SLS durations, thresholds were tested across a range
from 0 to 200 s initially at 10-s intervals, and then a smaller defined range based on the
initial results at 1-s intervals, resulting in a comprehensive grid of possible threshold
pairings. Due to the relatively small sample size (n = 24) and the high variability between
participants, the grid search was conducted using the full dataset rather than separate
training and testing splits.

Four different methods of combining the parameters were tested to determine the
impact of each parameter, both individually and together, on the output:

e CSD only;

e SLSonly;

e (CSDorSLS;

e (CSDandSLS.

For each combination of thresholds, the algorithm’s prediction of a home or community
location was evaluated against the self-reported labels provided by the participants. For
the purpose of this analysis, the self-reported data was treated as the ground truth. This
approach allowed for the identification of threshold values that yielded the highest model
performance when compared with participants’ self-reporting.

To evaluate the performance of the classification model and determine the optimal
threshold values for CSDs and SLS durations, multiple performance metrics were calculated.
These were accuracy, F1 score, sensitivity, specificity, and precision. Accuracy and F1 score
were used as the primary ranking criteria for threshold optimisation. Accuracy measures
the proportion of correct predictions across all classes (in this case, all events (including
stepping, lying, sitting, and standing) whether at home or in the community), providing
a general sense of model performance. However, in scenarios where the distribution of
classes (home and community) is imbalanced or where false positives and false negatives
carry different consequences, accuracy can be misleading without additional analysis, as
it may be biased toward the majority class [47]. The F1 score, as the harmonic mean of
precision and recall, offers a more informative measure in such scenarios by ensuring that
the performance for both classes is adequately represented [48,49]. The accuracy and F1
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scores were calculated per day of recorded data, with the median result taken to limit the
impact of outliers and individual participant bias on the results. Individual participant bias
is particularly important to consider in activity classification models, as the participants may
have had vastly different mobility patterns, living arrangements, or adherence to the study
protocol, which could lead to systematically higher or lower classification performance
for certain individuals. While the dataset contained a substantial number of datapoints
(120,649), the relatively small number of participants (24) meant that extreme values from
individual participants could disproportionately influence mean-based summary statistics.

4. Results
4.1. Classification Model Performance

The optimal thresholds found during the grid search for each logic type are shown
and ranked in Table 1. Optimal thresholds were chosen based on the highest F1 score and
then accuracy, with ties broken by the lowest threshold value. All combinations produced
strong classification performance, with all approaches except CSD-only achieving over 90%
accuracy during waking hours. The CSD-only logic reached a slightly lower accuracy of
88.5%, suggesting that CSD is the less informative of the two parameters.

Table 1. Top performing CSD and SLS thresholds for each logic type with “bookended” self-reported
data and only during waking periods.

. CSD SLS - - e
Logic Threshold  Threshold F1 Score Accuracy Sensitivity Precision Specificity
SLS only 0 26 0.929 0.918 0.933 0.964 0.956
CSD only 77 0 0.900 0.885 0.854 0.950 0.931
CSD or SLS 95 26 0.920 0.902 0.933 0.954 0.906
CSD and SLS 0 26 0.929 0.918 0.933 0.964 0.956

Thresholds refer to optimal values based on the highest F1 score, with ties broken by the lowest threshold value.

Several findings support SLS as the more valuable parameter for community detection.
First, the SLS-only model achieved strong performance (92.9% F1 score), matching the
performance of combined approaches. Second, the optimal CSD and SLS thresholds
included a CSD value of 0 s, effectively making this equivalent to SLS-only classification.
Third, when using CSD-or-SLS logic, the optimal CSD threshold increased substantially
to 95 s, compared with 77 s for the CSD-only approach, suggesting that the SLS threshold
(26 s) is typically met first, making the CSD component redundant.

The interaction plot in Figure 5 further illustrates this relationship, showing that CSD
threshold values only meaningfully impact F1 scores when SLS thresholds are very low
(0-10 s). At higher SLS thresholds, the F1 scores remained relatively stable across CSD
values before eventually decreasing at very high CSD thresholds. This pattern confirms
that SLS is the primary driver of classification performance, and suggests that using SLS
alone could reduce computational complexity without compromising model performance.

Despite SLS being the stronger parameter, the CSD-only model still achieved 88.5%
accuracy, indicating that CSD can provide reliable classification when SLS time is unavail-
able, such as when using older activPAL sensors without magnetometers that cannot detect
turning events. All logic-types demonstrated robust performance at their optimal values,
suggesting good generalisability across individuals.
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Figure 5. Interaction plot showing how the F1 score alters with different combinations of CSD and
SLS thresholds when the stepping event must meet both of the threshold values. The bars along the
bottom of the plot show the prevalence of events by CSD.

When the optimal thresholds identified from the bookended analysis were applied to
the original self-reported data (including both mid-day transitions and periods of sleep),
the results showed a notable shift in performance patterns (Table 2). Most importantly, the
CSD-only logic achieved a higher accuracy (94.7%) compared with the SLS-only approach
(93.7%), reversing the performance hierarchy observed in the bookended analysis.

Table 2. Top performing CSD and SLS thresholds for each logic type on the original self-reported
data over 24-h periods.

CSD

SLS

Logic Threshold  Threshold Accuracy F1 Score Sensitivity  Specificity Precision
SLS only 0 26 0.937 0.815 0.936 0.997 0.868
CSD only 77 0 0.947 0.816 0.911 1.000 0.879
CSD or SLS 95 26 0.936 0.811 0.964 0.991 0.819
CSD and SLS 0 26 0.937 0.815 0.936 0.997 0.868

It is important to emphasise that the bookended approach remained the most appropri-
ate method for threshold optimisation in this context. The bookended analysis eliminated
the confounding effect of mid-day transitions, which the model cannot reliably detect due
to the similar activity patterns that may occur in both home and community environments
during the middle of the day. By focusing on the clear behavioural transitions—when
people definitively leave home for the first time and return home for the last time each day—
the bookended approach provided the most accurate assessment of the model’s ability to
identify these critical transition points, which is the primary objective of this classification
system. The performance differences observed when applying these thresholds to the full
dataset highlight the complexity of location classification and reinforce why the bookended
approach was necessary for robust threshold optimisation. The bookended analysis specifi-
cally focused on identifying the precise timing of the first departure from home and the
final return home. For that reason, the remaining analysis used the classification model
with SLS-only logic and a threshold of 26 s.
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The optimised classifier (SLS-only, 26 s) achieved a median daily accuracy of 93.7%
when applied to the full 24-h dataset (Table 2). While this strong overall performance
demonstrates the model’s effectiveness, there was notable variation between individuals,
with participants 11, 12, and 15 exhibiting consistently lower daily accuracy across multiple
days (Figure 6). This inter-individual variation suggests that despite efforts to develop a
generalisable model, performance may be influenced by participant-specific factors such
as differences in daily routines, activity patterns, or mobility behaviours. For instance,
participants with lower accuracy scores may have frequently used seated transport modes,
which were excluded from model development. Additionally, some participants may have
had more complex daily movement patterns, with frequent brief excursions from home,
making it challenging for the model to accurately classify mid-day location changes. It is
important to note that much of the classification errors likely stem from the model’s inherent
limitation in detecting mid-day transitions rather than errors in identifying the primary
departure and return transitions that the model was specifically optimised to detect.

100 -
Median = 93.7%

80

=]

60 |

=]

40 1

Daily waking time accuracy (%)
o

20

o

o
|

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Participant ID
Figure 6. Daily accuracy of the classification model evaluated on the original self-reported data,
separated by participant. Each bar represents one day. Accuracy is not consistent across days
or participants.

4.2. Time Between First and Last Transitions

Beyond overall classification accuracy, the precision of transition timing is particularly
important for practical applications of this model. The time in between the first and last
transition of each day could provide an insight into the ability of a person to access their
community, with longer durations between first leaving and last returning home suggesting
a better physical ability due to either leaving and returning home multiple times during
a day, or remaining out for extended periods. In contrast, shorter durations may suggest
reduced physical ability, fatigue, or a lack of motivation or opportunity to remain active in
the community beyond essential tasks.

Given the clinical significance of this measure, accurate detection of these key daily
transitions is essential. Figure 7 demonstrates the model’s performance in capturing these
critical time points, showing that the daily median time away from home was 8 h and
32 min according to self-reports, compared with the 8 h and 25 min predicted by the model,
a difference of just 7 min. This close alignment between the predicted and reported values
indicates that the model successfully identified the timing of the first departure and final
return home with high precision.

While some outliers were present, where the predicted times deviated substantially
from the reported times, these likely represent days when the model either missed a genuine
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transition or incorrectly identified a false transition. However, the overall pattern demon-
strates robust performance, with the median absolute difference between the predicted and
reported time away from home being just 40.1 min across all participant days. Considering
that this encompassed potential errors in both the first departure and final return transi-
tions, this suggests an average timing accuracy of approximately 20 min per transition, a
level of precision that includes the influence of recall bias in the participants’ self-reporting.

These results confirm that the optimised SLS-based classifier can reliably quantify
daily community participation durations by accurately detecting when individuals first
leave home and when they make their final returns each day, providing a valuable objective
measure for assessing community engagement patterns.
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Figure 7. Time away from home for each day of recorded data with more than 12 h, according to the
bookended self-reported data and the classification model (predicted).

4.3. Day Detection

Building on the model’s ability to detect individual transitions, a broader application
involves determining whether a patient accessed their community on any given day, a
binary classification that can serve as a valuable tool for monitoring functional recovery
and community engagement, particularly for individuals with significant health challenges.
For this analysis, a community day was defined as any day in which at least one primary
transition occurred (indicating movement between home and the community), while a
home day was defined as a day with no primary transitions detected.

The classification model achieved a high overall accuracy of 94.8% in distinguishing
between home and community days. However, the performance varied considerably be-
tween the two categories due to the highly imbalanced nature of the dataset. Of the 155 total
participant-days analysed, only 17 were true home-only days, and these represented the
most challenging cases for the classifier. Specifically, 5 of the 17 home days (29.4%) were
incorrectly classified as community days, while only 3 of the 138 community days (2.2%)
were misclassified as home days.

This imbalanced performance likely reflects both the nature of the participant sample
and the inherent difficulty in detecting the absence of activity. The limited number of home-
only days stems from the demographic characteristics of this pilot study population; none
of the 24 participants reported illness or injury affecting mobility, and the majority (20 out
of 24) were in full-time employment. Consequently, most participants maintained regular
community participation patterns throughout the study period. However, the intended
clinical application of this classification model involves populations where individuals
are more likely to experience mobility limitations and may spend greater proportions of
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time at home due to illness, rehabilitation, or reduced work capacity. In such populations,
the proportion of home-only days would be substantially higher, potentially improv-
ing the model’s ability to learn and accurately classify these patterns. While the model
demonstrated strong overall performance in this pilot sample, its accuracy specifically
for home-only days may not yet be fully representative of real-world clinical applications
where such days are more prevalent.

5. Discussion and Conclusions

This study presents the development and validation of an activity classification model
capable of distinguishing between home- and community-based activity with high accu-
racy across 24-h periods. Through systematic threshold optimisation using a grid search
approach, the optimal model was identified as using straight-line stepping (SLS) time
with a 26-s threshold to detect walking bouts that occur outside the home environment.
This model achieved a 92.9% F1 score and 91.8% accuracy when evaluated against the
critical first departure and final return home transitions each day and 93.7% accuracy when
applied to full 24-h datasets.

The model’s strength lies in its focus on primary transitions, namely movements
between home and community that are anchored by sleep periods at home. By leverag-
ing the sequential nature of time series data and participants” natural sleep-wake cycles,
the algorithm reliably identifies when individuals first leave home and when they make
their final return each day. However, this approach has inherent limitations; the model
does not detect brief mid-day returns home that do not involve sleep periods, which likely
contributed to some classification errors observed in the full dataset analysis.

The threshold optimisation revealed important insights about the relative value of
different stepping parameters. While both straight-line stepping time and continuous
stepping duration proved effective for classification, SLS emerged as the superior parameter.
This was evidenced by the strong performance of the SLS-only model and the finding that
optimal combined thresholds effectively reduced to SLS-only classification (with CSD
thresholds of 0 s). The interaction analysis further demonstrated that CSD has a meaningful
impact on performance only when the SLS thresholds are extremely low, confirming SLS as
the primary driver of classification accuracy. Nevertheless, the CSD-only approach achieved
88.5% accuracy, making it a viable alternative when magnetometer data is unavailable in
older activPAL devices.

5.1. Clinical Applications and Validation Considerations

The model demonstrated particular strength in detecting community access days,
achieving 94.8% overall accuracy in distinguishing between days when participants ac-
cessed the community versus staying home entirely. However, performance was notably
imbalanced due to the healthy, employed study population; while only 2.2% of community
days were misclassified, 29.4% of home-only days were incorrectly identified. This reflects
both the rarity of home-only days in this active population (17 out of 155 total days) and
the inherent challenge of detecting the absence of community activity.

For transition timing precision—a critical measure for clinical applications—the model
demonstrated remarkable accuracy. The median difference between the predicted and self-
reported total time away from home was just 7 min. This level of precision, which accounts
for potential errors in both departure and return transitions, and likely self-report errors,
suggests that the model can reliably quantify daily community participation durations
within clinically meaningful time frames.
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5.2. Limitations and Future Directions

Several important limitations must be acknowledged. The model was developed
using data from 24 able-bodied, healthy participants, most of whom were in full-time
employment. This population exhibited consistently high community participation, which
may not reflect the activity patterns of clinical populations with mobility limitations, chronic
conditions, or reduced work capacities. The low prevalence of home-only days in this
sample means the model’s performance on such days may not generalise to clinical settings
where extended home periods are more common.

While the sample size is typical for early-stage free-living validation studies and ade-
quate for establishing feasibility, a conventional train and test split was not implemented
because participants exhibited substantial day-to-day variation in activity patterns. This
included differences in commuting methods and durations, employment type (sedentary
versus physically active), hybrid working routines, and frequency of brief excursions from
home. With a small sample, splitting the dataset risked reducing the representation of
this behavioural diversity in either subset, potentially destabilising threshold optimisation.
Larger and more heterogeneous samples in future work will allow the use of dedicated
training and testing splits or cross-subject validation to formally confirm model perfor-
mance across clinical populations and real-world variability.

This lack of cross-subject validation or use of a dedicated testing set means the re-
ported model performance may reflect some degree of overfitting. Notably, individual
variation in model performance was observed, with some participants showing consistently
lower daily accuracies. This suggests that, despite efforts to develop a generalisable ap-
proach, participant-specific factors such as unique mobility patterns, frequent use of seated
transport, or complex daily routines may influence the model’s effectiveness. Additional
challenges may arise when applying this model to less mobile clinical populations who rely
heavily on seated transport for community access. In this study, activPAL-detected seated
transport events were excluded from the classification features due to the tendency of the
proprietary analysis algorithms to detect vehicular movement even when participants were
stationary at home, which would have introduced false detection of community activity.
For clinical cohorts, it may be necessary to include seated transport data and adjust classifi-
cation thresholds to better reflect different patterns of mobility and community access.

Future research should therefore focus on validating the model in larger, more diverse
clinical cohorts and exploring approaches to improve detection of mid-day home periods
and accommodate individual behavioural patterns. Additionally, training and testing
splits or cross-validation should be implemented to better evaluate model generalisability.
As some of the observed misclassification may be attributable to inaccuracies or self-
reporting bias in activity diaries, future studies may also consider incorporating GPS
or other location-sensing technologies as supplementary validation tools to help reduce
ground-truth uncertainty.

5.3. Broader Impact and Applications

This classification model offers several valuable applications for clinical practice and re-
search. The ability to objectively quantify community access days provides a novel outcome
measure for rehabilitation and intervention studies. The precise timing of daily transitions
enables calculation of community participation duration, offering insights into functional
capacity and recovery progress. Furthermore, because the model utilises stepping data
from activity monitors, it enables comprehensive analysis of in-community physical activity
patterns, including step count, cadence, and other mobility metrics that provide additional
context about participants’ physical capacity while engaged in community activities.
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The model’s potential extends beyond individual monitoring to intervention evalu-
ation. As demonstrated in previous research, where an early version of this model was
used alongside prosthesis wear time algorithms to assess prosthetic interventions [50], this
approach can support comprehensive evaluation of clinical outcomes. Such integrated
approaches could inform evidence-based clinical decision making and contribute to the
development of more effective rehabilitation strategies.

Although this study used features derived from the activPAL 4+ activity monitor,
the classification approach is based on behavioural patterns that are device-agnostic. Future
implementations could apply similar logic using other wearable devices equipped with
inertial sensors, making the method widely applicable across research and clinical settings.

In conclusion, this study developed a robust, computationally efficient classification
model that provides objective, quantitative measures of community participation patterns.
With 94% accuracy in distinguishing home and community activity and precise transition
timing detection, this model represents a valuable tool for clinical assessment, intervention
evaluation, and research into community participation patterns. Importantly, the use of a
wearable activity monitor enables the simultaneous collection of traditional physical activity
metrics such as step count, sedentary time, and postural transitions without increasing
participant or patient burden. This integration enhances the practicality and scalability of
the approach for both clinical and research applications. Future validation in diverse clinical
populations will be essential to realise its full potential for informing clinical practice, public
health policy, and the design of more accessible community environments.
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