Received XX Month, XXXX; revised XX Month, XXXX; accepted XX Month, XXXX; Date of publication XX Month, XXXX; date of
current version XX Month, XXXX.

Digital Object Identifier 10.1109/0JVT.2025.1234567

3D Spatial Information Compression
based Deep Reinforcement Learning
for UAV Path Planning in Unknown
Environments

Zhipeng Wang, Soon Xin Ng and Mohammed El-Hajjar

School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
Email:{z.wang@soton.ac.uk, sxn@ecs.soton.ac.uk, meh@ecs.soton.ac.uk }

Mohammed El-Hajjar would like to acknowledge the support of the Future Telecoms Research Hub, Platform for Driving Ultimate
Connectivity (TITAN), sponsored by the Department of Science Innovation and Technology (DSIT) and the Engineering and Physical
Sciences Research Council (EPSRC) under Grants EP/X04047X/1, EP/Y037243/1 and EP/X04047X/2.

ABSTRACT In the past decade, unmanned aerial vehicles (UAVs) technology has developed rapidly,
while the flexibility and low cost of UAVs make them attractive in many applications. Path planning for
UAVs is crucial in most applications, where the path planning for UAVs in unknown, while complex 3D
environments has also become an urgent challenge to mitigate. In this paper, we consider the unknown
3D environment as a partially observable Markov decision process (POMDP) problem and we derive
the Bellman equation without the introduction of belief state (BS) distribution. More explicitly, we use
an independent emulator to model the environmental observation history, and obtain an approximate BS
distribution of the state through Monte Carlo simulation in the emulator, which eliminates the need for
BS calculation to improve training efficiency and path planning performance. Additionally, we propose a
three-dimensional spatial information compression (3DSIC) algorithm to continuous POMDP environment
that can compress 3D environmental information into 2D, greatly reducing the search space of the path
planning algorithms. The simulation results show that our proposed 3D spatial information compression
based deep deterministic policy gradient (3DSIC-DDPG) algorithm can improve the training efficiency
by 95.9% compared to the traditional DDPG algorithm in unknown 3D environments. Additionally, the
efficiency of combining 3DSIC with fast recurrent stochastic value gradient (FRSVG) algorithm, which
can be considered as the most advanced state-of-the-art planning algorithm for the UAV, is 95% higher
than that of FRSVG without 3DSIC algorithm in unknown environments.

INDEX TERMS 3D path planning, Deep Reinforcement Learning, 3D Spatial Information Compression,
Unmanned Aerial Vehicles, Unknown Environment, Partially Observable Markov Decision Process.

I. Introduction

HE unmanned aerial vehicles (UAVs) technology has

developed rapidly, making it essential in many appli-
cation scenarios such as logistics transportation [1], weather
forecasting [2], disaster prevention and control [3], wireless
communication [4]-[7] and agriculture [8]. Rotor UAVs
have high flexibility, which is reflected in their motion
flexibility, and in their ability to configure corresponding
components and modules according to the needs of different
application scenarios [9]. However, there are still many
challenges to the implementation of UAVs. For example,

most UAVs fields rely on remote control signals for motion
management, which not only limits the flexibility of UAVs
but also requires human supervision. In addition, as a limited
resource platform, UAVs are in short supply of energy, while
efficient and high-performance path planning can improve
the working endurance of UAVs. Therefore, path planning
and autonomous navigation of UAVs have been actively
researched in recent years [10].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME

A. Background and Motivation

In the past decade, many UAV path planning techniques
have emerged. One major category is sampling based static
path planning algorithms, such as A-star [11], [12], Dijkstra
[13], rapidly-exploring random tree (RRT) [14], [15], prob-
abilistic road-map (PRM) [16], and artificial potential field
(APF) [17] algorithms. These sampling based global static
path planning algorithms require complete environmental
information knowledge and perform well in small-sized 2D
environments, but their training efficiency and path planning
performance are unsatisfactory when the environment size
increases or expands to 3D environments. More importantly,
these algorithms are unable to track the dynamic changes
in the environment and cannot complete path planning
when environmental information is unknown [18]-[20]. The
algorithm proposed in [21] can perform path planning in
3D space, and the probability of finding a path is 20%
higher than traditional PRM algorithms. However, although
the path planning speed of sampling based techniques has
been improved a lot, these techniques cannot meet the real
time and reliability requirement of path planning tasks for
UAVs in 3D environments, due to the extremely large search
space.

For the path planning problem of UAVs in 3D environ-
ments, some biologically inspired optimization algorithms
perform better than sampling based algorithms. For example,
[22] proposed a 3D path planning algorithm for UAVs based
on ant colony optimization (ACO) and it was shown to
be effective in disaster prevention and control scenarios.
Furthermore, a genetic algorithm (GA) based UAVs 3D path
planning algorithm was proposed in [23], which considers
both 3D UAVs paths and multi UAV conflict problems,
which showed high robustness in discrete 3D space.

Deep reinforcement learning (DRL) is considered one of
the promising algorithms for solving UAV path planning
problems [36]. Among all the DRL algorithms, Deep Q-
Network (DQN), actor-critic (AC), and deep deterministic
policy gradient (DDPG) are three commonly used algorithms
for solving UAV path planning problems, especially when
path planning tasks are considered as Markov decision pro-
cess (MDP). An improved DQN algorithm was proposed in
[37], which introduced an empirical value evaluation network
to effectively eliminate path planning drift and improve the
accuracy of path planning. The introduction of experience
replay [38] has improved the network convergence stability
of DRL algorithms such as DQN, DDPG, and AC, while
introducing the problem of key experience sparsity when
using DRL algorithms for path planning tasks [39]-[41]. A
cumulative reward model was proposed in [31] to reduce
the network divergence caused by sparse rewards, and also
introduced a region segmentation algorithm to further reduce
the possibility of intelligent agents trained by multiple DRL
algorithms falling into local optima.

There are still challenges in applying the DRL algorithm
to the UAV path planning in 3D environments. For exam-

ple, there are the challenges of low reliability in complex
environments, low training efficiency in large environments,
and inability to face rapidly changing dynamic environments
[10].When the size of the 3D environment increases, the
search space of the UAVs will exponentially increase, which
undoubtedly poses a challenge to the early random explo-
ration of DRL algorithms. In addition, UAVs have a larger
action space and more decision branches in 3D environments
compared to 2D environments, which leads to problems
such as low training efficiency. Furthermore, the low training
efficiency makes it difficult for DRL based UAV agents to
face rapidly changing dynamic obstacles [10], [28], [34].
Researchers have made great efforts in the path planning
problem of UAVs in 3D environments. For example, [24]
proposed an improved sparse A-star algorithm, which has
been proven to be capable of 3D path planning for UAVs. A
3D tangent (3D-TG) method based on obstacle geometry
information was proposed in [25], which can complete
UAV path planning in a 3D urban environment. In [29], a
high efficient state decomposition deep deterministic strategy
gradient algorithm has been proposed, which has improved
convergence rate, navigation performance, and generalization
ability compared to traditional DDPG algorithms. In [34],
a 3D spatial information compression (3DSIC) algorithm
was proposed and combined with DDPG, which highly
improved the path planning efficiency by compressing the 3D
environment into a 2D environment. However, the original
3DSIC algorithm need to acquire environmental information
for spatial information compression. This cannot be easily
obtained when facing unknown 3D environments.

As mentioned above, another challenge is the uncertainty
of the environment. The path planning of UAVs in unknown
environments is considered a partially observable Markov
decision process (POMDP), and RL is considered one of the
best solutions [26], [35]. However, there are not many studies
considering using DRL methods to solve POMDP problems
in unknown 3D environments. Nguyen [33] proposed a ran-
dom finite set track-before-detect (TBD) multi-object filter to
solve the POMDP problem in UAV path planning. Ragi [26]
proposed a POMDP framework to solve the navigation prob-
lem of UAVs in 2D unknown wind affected environments.
Although [35] proposes a fast recurrent stochastic value
gradient (FRSVG) algorithm that can achieve path planning
in unknown 3D environments through the value gradient
update with recurrent networks, it does not process spatial
information to reduce the redundancy of spatial information.
Therefore, the training efficiency of the FRSVG algorithm
in the POMDP environment can be further improved by
combining it with the 3DSIC algorithm [34] extended to
the PODMP environment. Additionally, unlike DDPG which
updates the network through the policy gradient, FRSVG
can be a typical case of the value gradient algorithm in 3D
unknown continuous environment.

At the time of writing, research on the path planning
problem of UAVs in 3D unknown environments is still very

VOLUME ,

TABLE 1: Novelty comparison with the state-of-the-art literature.

our paper [24] [25] [26] [27] [28] [291 [30] (311 [32] [33] [34] [35]
Partially Observable Markov Decision Process v v v v v
Deep Reinforcement Learning v v v v v v v v
Information Compression v v v

3D environment v v v v v v v v v v
Continuous Workspace v v v v v v v v v v

limited and mainly focus on improving algorithms rather
than information processing.

In this work, we propose a 3D spatial information com-
pression (3DSIC) method that utilizes the topological fea-
tures of spatial information for compression and simpli-
fication, reducing information redundancy while retaining
key information of 3D POMDP environment. Addition-
ally, we introduced an emulator to record and update the
environmental information collected by the UAV through
the sensor system, while making the system satisfy the
POMDP attributes and performing the 3DSIC through the
emulator. More specifically, the Monte Carlo simulation in
the emulator is conducted to obtain the probability of the cor-
respondence between observations and different states, for
solving the uncertainty problem of states and observations
in the POMDP environment. Then, the latest environmental
information in the emulator is used to compress the spatial
environment with the 3DSIC algorithm, and obtain the
compressed 2D observed environment. This simplifies the
navigation problem in the unknown 3D space into a known
environment of 2D path planning problem.

B. Contributions
The contributions of our paper are compared to the literature
in Table 1. Our contributions can be summarized as follows:

o We extend the 3DSIC proposed in [34] to accommodate
the features of POMDP, enabling it to be applied in
completely unknown 3D environments, and achieving
higher online training efficiency compare with DRL
algorithms without 3DSIC.

e We propose the 3DSIC-DDPG algorithm in POMDP
environment, which combines 3DSIC and DDPG algo-
rithm. In addition, we combine the FRSVG algorithm
with the 3DSIC algorithm under POMDP. During train-
ing, UAV agents consider both compressed 3D spatial
information and obstacle distribution information at the
current flight altitude, enabling efficient path planning
training in a cluttered 3D space.

e We use an emulator established based on the ranging
sensor data to replace the belief function. The probabil-
ity of action choice in the history can be produced by
Monte Carlo simulation of the emulator. This eliminates
the permanent impact of bad decisions in the belief

VOLUME

function on training and improves the success rate of
path planning.

e The simulation results show that the training efficiency
of 3DSIC-DDPG is 95.9% higher than that of tradi-
tional DDPG in the 3D POMDP environment, and the
training efficiency of 3DSIC-FRSVG is 96.5% higher
than that of traditional FRSVG in the 3D POMDP
environment.

The rest of the paper is organized as follows. In Sec-
tion I we introduce the system model. In Section III,
we introduce the 3DSIC algorithm, and the 3DSIC-DDPG
algorithm in partially observable environment. In Section
IV, we demonstrate the feasibility of our proposed method
through simulation results and compare with state-of-the-art.
In Section V, we offer our conclusions and propose potential
future directions.

Il. System Model and Problem Formulation

A. System model

In our proposed system, when the destination is given to the
UAY, it can plan a collision-free path from the current loca-
tion to the destination in a completely unknown environment
without any additional instruction. In this paper, we consider
the UAV path planning problem as POMDP continuous 3D
environments. A discrete 3D environment is a 3D mesh
based on division of a real 3D working environment, dividing
space into many fixed sized cube nodes. The motion of UAV's
is seen as a state-transition process within these cube nodes.
Each cube node has its 3D coordinates and sorting number.
Then, we transfer the discrete 3D environment distribution
to a continuous 3D space as we explain in Section III.

The continuous 3D space directly uses the 3D workspace
as the emulator model, where the UAV directly uses the
current 3D coordinates to represent the state Si(x¢, s, 2¢)
and complete interaction with the entire state space, where
xt, y¢ and z; are the 3D coordinates of the UAV at time
t. The motion and flight control in continuous 3D space
are very complex, which are not the focus of this study. In
this contribution, the horizontal flight speed, the horizontal
heading angle, and vertical flight speed are used to represent
the action space a(V;"*, V;?,9;), where V! is the horizontal
flight speed and its value is limited to (0, 2m/s), V,* is the
vertical flight speed and these speeds have 3 option values
(-1m/s, 0, 1m/s), while ¥J; is the horizontal heading angle

(a) Schematic diagram of distance measuring sensor distribution

.W./

(b) Schematic diagram of distance measuring sensor situation

FIGURE 1: Schematic diagram of the distribution of distance
measuring sensors on the UAV.

satisfying ¢; € (0,27) [35]. Hence, the state update of the
UAVs in a continuous 3D environment can be represented
by the following formula:

Tl = Ty + Vt’j_l X cos (yy1) X At

Y1 = Y¢ + Vt}_lH x sin (941) X At

Zt+1 = Zt + ‘/,53_1 x At

In a 3D unknown environment, the UAV only has the
coordinate information of itself and the target point, without
the distribution information of obstacles in the surrounding
environment. UAVs observe the surrounding environment
information through a group of measuring sensors. The
sensor group includes 26 ranging sensors, one sensor directly
above and one sensor directly below the UAV. Eight ranging
sensors are set at every m/4 rad angle in the horizontal
direction of the UAV, and 16 ranging sensors are set at each
horizontal position with 7/12 rad elevation and depression
angles. The sensor layout diagrams are shown in Fig. la.
The observation set O, include the obstacle coordinates

calculated from the distance sensor data. As shown in
Fig. 1b, the coordinates of obstacles in the horizontal di-
rection can be directly calculated using the current drone
coordinates and ranging sensor values. The sensor values
with elevation and depression angles need to be calculated
using trigonometric functions to determine the relative height
and distance. The calculation process can be represented as
follows:

ey

Ah = L x sin(r/12),)

Ad = L x cos(m/12), 3)

where Ah is the relative height, Ad is the relative distance
and L is the ranging sensor value.

B. Energy Consumption Model

The energy consumption model of the UAV is important to
determine the reward model and energy cost penalty. Yan
et al. derived a simplified energy consumption model for
UAVs in [42], which can be used to calculate both the
vertical and horizontal motion energy consumption, where
the energy consumption of UAVs in the vertical motion can
be expressed as:

3|V, + at|)?
P’Uertical(t) =P (1 + |(]2”> @
tip

%

Vi +at||* || V;+at|?

P; 1 _
o < i 4vg 208

(%)

where V; is the initial velocity and a is the acceleration
or deceleration, Py and P; are functions of the speed
related to the physical properties of the UAV and the flight
environment, Uy;, represents the tip speed of the rotor blade
and the mean rotor induced velocity is denoted as vg. In the
horizontal direction, the power consumption at a speed of
v(t) is

Phorizontal (t) = ”F” HV(t)H, (6)

where F is the pulling force, v(t) = ||V, + at| is the
instantaneous velocity at time ¢ . When flying at a constant
speed of V, ||F|| = dopsAV?/2 equals to the fuselage drag
D = pSV? /2, where S is the rotor solidity, A is the rotor
disc area, and p is the air density.

C. Problem Formulation

In this 3D simulation environment, the path planning result
of the UAV can be expressed as an ordered path vector P =
[P1, Py, ..., Past], where P; represents the i-th coordinate
in the path, Py, represents the last node coordinate in the
path. The ordered vector P satisfies the condition P; =
Sstarta Pst = Seno‘lavl3 C P satisfies ﬁ € S,ﬁ ¢ Obs,
where S is the set of all possible states, Sgiq¢ iS the start
location, S.,,4 is the destination coordinate, and Obs is the
set of all obstacles.

Explicitly, we consider the path planning problem of the
UAV as a POMDP, which includes several main parts: state
set S, action set A = ay, transfer function 7'(s’|s, a), observ-
ing space Z, observation probability O and reward function
R(s'|s,a). Note that O is the probability of observing certain
environmental information after performing a specific action
in a specific state. Although POMDP introduces uncertainty,
the Bellman equation can be used to solve the optimal
strategy of the Markov process [43], [44]. Therefore, the

VOLUME ,

DDPG algorithm is also applicable for solving continuous
POMDP problems.

There are four neural networks in the DDPG algorithm,
which are actor network, critic network, target actor network,
and target critic network [29]. The training process of the
DDPG agent is to continuously update these four networks,
making the weights of the target action network approach
the direction of optimal policy. As mentioned earlier, the
update of the target critic network is achieved through the
Bellman equation. The solution of the Bellman equation is
based on the optimal cumulative expectation V*(s), which
can be expressed as follows [45]:

t=n
* _ t I
V*(s) —I'Ié,a:XE ;7 R(St41, A, Sel60%,8) |, (7)

where v is the discount factor, ¢ is the current time index,
0" is the actor network weight. The Q value Q(s,a) is a
function of the action state value, expressed as the expected
accumulation of the action reward value as follows:

Q(st,at) = r(s,a) + ¥Q(st41,0"(st41)), (8

where r(s,a) is the reward value of action a at state s,
0 (si+1) is the action output of the target actor network,
which can be considered as a;; as well. Then we need to
define a loss function to determine the direction of the critic
network update. The Q-value output by the critic network
is expected to be close to the actual value obtained by the
system, so we usually use the time difference mean square
error of the two as the loss function, which can be expressed
as:

L(09) = %Z(y ~Q(s1ail09), (9

where N is the mini-batch size, ¢ is the index for the number
of experience, 69 is the weight of the critic network, and y;
is the practical value of the experience.

With the loss function, we only need to use the gradient
descent method to continuously update the network weight
to achieve the purpose of training [46].

Additionally, DDPG also requires agents to conduct large-
scale random explorations in the early stages of training, and
update the neural network through the interaction experience
generated by these random explorations and the environment.
In the DDPG algorithm, the random exploration of UAV
agents is achieved by adding noise to the actions output by
the actor network:

ar = p(se|0") + N, (10)

where N is the noise that follows a Gaussian distribution
with a mean of 0 and variance of 0.2 to 0.05, and 0 is the
network weight for actor network .

The update of the actor network is achieved by maximiz-
ing the Q value of the critic network. Therefore, its objective
function can be expressed as:

J(0") = %ZQ(si,msilH“)IeQ), (11)

VOLUME

where 6" is the actor network weight. Then, we can use
gradient ascent to update the actor network as:

1 L L
Voud = N Z VaQ(s,a|09)V6" 1u(s|0")a = u(s). (12)

The update of the target network is achieved by replicating
the actor network and critic network through soft updates
after a certain period of time. Its specific expression is as
follows:

13)
(14)

09 — 709 + (1 —7)0%
0" 16" + (1 —1)8"

where 7 is the soft update coefficient, which satisfies 7 €
(0,1).

When solving POMDP problems the agent can only infer
the current state based on the observation information zj
to z; of all historical actions ag to a;, because it cannot
obtain accurate state information. This history is described
as hy = zo,21...2t|lag, a1 ...as. From this, we can define
the state function V*(h) and value function Q*(h,a) in
POMDP. It is not difficult to find that h; needs to traverse
all histories in order to obtain the state. As time ¢ increases,
the size of h; will become very large, and the effectiveness
of the information will significantly decrease. To solve this
problem, a probability distribution b(s) of the state space
is usually defined, which can be defined more specifically
as [47] :

bi(s) = Pr(s; = s|hy, bo), (15)
where by is the distribution of the initial state. (15) represents
the probability of being in state s after passing through
history h; under the initial distribution by. Then, we can
derive the state value and Q-value function expressions in
PODMP problem as follows:

V*(b) = max [R(br, a) + 7Y Pr(zbe, a)V* (b-1(a,2))]
(16)

Q*(bt, at) = R(bt, (lt) + Y Z PT'(Zt|bt, at)V*(bt_l(a, Z)),

a7
where b;_1(a, z) is the belief transition from observation z
when executing action a to BS b;_;.

lll. Proposed Information Compression and Path
Planning Techniques

In this section, our proposed 3DSIC algorithm will be intro-
duced in detail. Furthermore, the 3DSIC-DDPG algorithm
will be introduced as a scheme for applying the 3DSIC
algorithm in continuous POMDP 3D space.

A. 3D Spatial Information Compression in POMDP
environment

In [34], we proposed a 3DSIC algorithm, which can be
combined with DDPG algorithm to achieve UAV path plan-
ning in a 3D environment. The proposed techniques in [34]
showed higher training efficiency than the traditional DDPG.
However, the original 3DSIC algorithm proposed in [34]
does not consider the POMDP environment, this means that
the original 3DSIC algorithm cannot handle the uncertainty
between observations and states in POMDP environments,
and relies on known global 3D spatial information which
can not be obtained in a 3D PODMP environment. Thus, in
this paper, we extend the 3DSIC to a POMDP environment
by introducing an emulator to store and update the observed
3D spatial environment. Meanwhile, the emulator can also
adapt to the uncertainty of the POMDP environment through
Monte Carlo simulation in the emulator.

In the POMDP environment, the UAV initially has no
knowledge of any environmental information and only per-
ceives the environment through distance sensors. In this case,
we consider first establishing a discrete emulator for the
surrounding environment of the UAV. The establishment and
update of an emulator require the collection of environmental
information. In this study, we consider using only ranging
sensors to collect environmental information for establishing
and maintaining the emulator. In the scenario shown in
Fig. 2, the heading angle of the drone’s movement is 6,
and the reading of a horizontal ranging sensor is [}’, with an
azimuth angle of 07. The update of the obstacle coordinates
in the horizontal direction can be represented as follows:

Top =z + 1 x cos (0} + 67)
Yob =Y + I} X sin (th +9t2) ,
Zob — %

(18)

where xp, Yop and z,, are the 3D coordinates of the detected
obstacle, z, y and z are the current coordinate of the UAV.
If the distance sensor has an elevation angle of 67, updating
the obstacle coordinates is slightly more complex and can
be expressed as:

Top = x + 1 x cos (67) x cos (6f + 67)
Yob =y + 1§ x cos (07) x sin (6} + 67)
Zob = 2 + I x sin (63)

19)

It is worth noting that our simulation system did not take
into account the pitch angle during the UAV flight, but it
is necessary to consider the pitch angle during the UAV
flight when conducting experiments on real-world UAVs.
In our simulation system, the body of drone is assumed
to maintain horizontal during flight, which means that the
body of the UAV is never tilted, and therefore the range
sensor will not have any additional tilt angle. However, in
the real world, rotary wing drones have a certain inclination
angle during flight, which can cause the range sensor and
the fuselage to tilt together. Therefore, when updating the
emulator, it is necessary to consider the impact of its body

B

AR

Heading

g2

v

FIGURE 2: Schematic diagram of UAV ranging sensors with
heading angle.

tilt on the range sensor. When deploying this model on real-
world UAVs, sensor fusion can be used to correct the offset
caused by the pitch angle for the ranging sensors based on
the flight attitude and pitch angle calculated by the gyroscope
and accelerometer [48], [49].

For the meshed 3D space in the emulator, the spatial
information is first set to binary, where the non-obstacle
node is set to 0, and the obstacle node is set to 1. However,
in the POMDP environment we are considering, the action
space and state space of the drone are both continuous.
Therefore, when the collected environmental information
shows that there are obstacles within the cube represented
by a discrete node, this node is considered an obstacle node
in the emulator. If no obstacles are detected within the cube
represented by a discrete node, the node will be updated as
a free node. Then the 3D space in the emulator is cut in
the direction perpendicular to the Z axis to obtain multiple
2D planes with the same size as shown in Fig. 3. It is
worth noting that during initialization, the entire environment
is unknown and all nodes will be initialized as obstacle
nodes. When the UAV first obtains observation data, it
starts updating environmental information. Therefore, when
compressing information, unexplored unknown areas will
also be treated as obstacles.

Each of the resultant two dimensional planes represents
the distribution of obstacles at its height. The spatial infor-
mation of these planes is two-dimensional, where the m x n
two-dimensional plane space information can be expressed
as:

VOLUME ,

Y
=

FIGURE 3: Schematic diagram of 3D space cutting.

Si11 Siin
S, = Sij21 SiIQ" ,ie(1,2,...,h), (20)
Sim1 Sivm”

where 7 is the number of the plane, S; 11 presents the cube
node of plane ¢, the 2D coordinate of a plane X = 1 and
Y =1 is free space or obstacle. If the value of \S; 11 equals
to 1 then this node is obstacle and if the value of \S; 11 equals
to 0 that means node S; 11 is free space. Then, we can reduce
the dimension of 2D information of each plane, and convert
these 2D information into row vectors as follows:

Sin Siin
Si = Si,’m Siign = (Si1-Sim - Sismn) -
Si,ml Si,mn
(21)

Taking the 3D space of mxnxh as an example, the spatial
information of each 2D plane after dimension reduction can
be combined to obtain the 3D spatial information S, which
can be expressed as:

51’1 Sl,n Sl,mn
S _ 52.’1 SZ,TL 52,-mn (22)
Sh 1 Sh,n Sh,mn

)

Here, the reduced dimension 3D information has not been
compressed. If we conduct information compression now, the
compressed information will contain the obstacle distribution
of all flight height. When planning the path of the UAV, we
only want to consider the obstacle distribution information
of the layers adjacent to the current flight altitude layer of the
UAV. Therefore, we need to introduce a compression field
to limit the range of the 3DSIC method.

Since the spatial information is discrete, the compressed
field also needs to be discrete. For example, if we only
consider the current layer of the UAV flight altitude and the
upper and lower 2 layers adjacent to the current layer, the
compression field will have 5 elements. In the Section IV,

VOLUME ,

we will study the effect of the number of layers to compress.
The compression field can be expressed as a row vector f3,
whose dimension is determined by the number of layers to
be compressed. For example, with 5 layers compression, (3
can be represented as:

5
B=(p1 p2 ps pa ps),0<pi <L) pi=1, (23)
i=1
where p; is the compression coefficient of the i-th layer from
bottom to top in the compression field.
If we do the dot product operation for the compression
factor § and the spatial information of the corresponding
layer after dimension reduction .S, we can get:

Sc=p-8
S11 S1in S1mn
= (Pl,Pz,pg,p4,p5) . 5.21 S.Qn S2Tnn
Ss1 S5, S5m§2)
= (S(1) 8e(@) o Selm) .. Se(mm),

where S. (i) is the compressed spatial information element.
For the example of compressing 5 layers, it can be expressed
as:

Se(i) = p1 % S1i + p2 X Soi + p3 X S3;+ 25)
Pa X Sa; + ps X Ssiyi € (1,2,...,mn).

Here, if the compressed row vector is restored to two-
dimensional plane information, the two-dimensional plane
information is 3D spatial information weighted by the com-
pression factor weight of the current layer and the adjacent
upper and lower four layers of spatial information. Its
physical meaning can be explained as follow: if the value
of a node is not 1, it means that there must be a layer in the
3D space adjacent to the current layer that can pass through
the node without collision. If a node value is 1, it means that
the current layer and adjacent layers cannot pass through the
node.

The original 3D environment information may lose spatial
information after being compressed into 2D environment
using the 3DSIC. The information entropy of the informa-
tion loss changes according to the size of the compressed
environment and is affected by the probability of obstacle
distribution in the environment. The loss of information
entropy after applying the 3DSIC is shown in Fig. 4, where
we consider the actual size of the compressed environment
to be 500 times of the square of the environment size
value shown in the figure. For example, if the size of the
environment is 3 x 3, the actual environment size compressed
is 3% x 500, since the resolution is 0.1 for the x and y
axis, and the number of layers to compress is 5. We can
see that the loss of information increases with the size of
the environment, and at the same time, the information
entropy caused by compression is the highest when the

X

=
w o
;B

N

Information Entropy

08 ~
1 Environment size

Probability of obstacle distribution

FIGURE 4: Information entropy loss after 3DSIC.

probability of obstacle distribution is 0.5 as shown in Fig. 4.
Considering that obstacles in urban environments are mainly
made up of buildings, due to gravity, the vertical changes of
obstacles are relatively small, so the information loss caused
by compression is not significant.

B. 3DSIC-DDPG in Continuous POMDP Environment
The output of the 3DSIC algorithm is a 2D normalized map.
This map is discrete, so we can directly combine 3DSIC and
DDPG algorithms to use the compressed normalized discrete
map as the weight coefficients for the DDPG reward model
and penalty value model. Therefore, the final reward value
for each state transition can be expressed as:
R(st,at, St+1) = (1 — C(St+1)) X T‘(St, at)+
C(st41) X (Pe(ar) + peot(s141)),

where R(st, at, s¢+1) is the final reward value of transition
(st,at, St41, R), C(St41) is the value at position s;yq in
compressed normalized discrete map, p.(a;) is the motion
energy cost punishment of action a;, and p.o;(s¢+1) is the
collision punishment of position s, in the original 3D map.

In a 3D continuous environment, we can also divide the
3D environment into many equally sized cube nodes, and
then use these nodes to compress 3D spatial information.
However, since the workspace and action space are both
continuous, the coordinates of the UAV may not be integers.
Therefore, for each node, there is a corresponding range
Crange(x) and Crgnge(y), and when the current coordinates
of the UAV are in the range of node (3, j), that is when z; €
Crange(x;) and y, € Crange(y;), the UAV is considered to
be in node cube (i,7). Similarly, obstacles in a continuous
environment can also be stored in a discrete emulator. When
any detected obstacle exists inside a discrete cube, it is
considered an obstacle cube. The state-action history of the
drone is obtained by sampling on a continuous timeline, and
the state information of each sampling point includes the
current 3D coordinates, heading angle, horizontal velocity,

(26)

and vertical velocity of the drone. This enables discrete
emulator to store the history of continuous state-actions
of drones in continuous 3D space and the distribution of
obstacles in the searched environment. It is worth noting
that we need to set the duration At of each action to
precisely allow the UAV to switch altitude to the integer
z index of discrete 3D environment, which can be presented
as Vi x At = Azindeq.

When the environment is considered as a 3D PODMP
environment, obtaining the compressed state is still difficult,
although the compressed map is also probability distribution
driven. The conventional solution is to use BS b:(s) to
represent the probability of being in state s in the current
observation history h;. After using the 3DSIC, there are
not many possible combinations of s and h; due to the
compression of reward space and interaction space to 2D.
Hence, we propose an independent emulator that updates
the environmental information in the emulator based on
all observation histories, where the emulator is an agent
modeled environment based on observation information.
After compression, we use Monte Carlo simulation of the
current action a; and observation history information h; in
the simulator to represent the distribution of BS for state
s, thereby avoiding directly calculating BS b;(s|h¢, bo, at).
More specifically, it avoids using a huge table to store
historical observation results. It can be observed that when
the number of Monte Carlo simulations is large enough, the
probability distribution and belief distribution obtained from
the simulation are roughly equal. Therefore, we can directly
use the probability distribution obtained by Monte Carlo
simulation of the emulator as the observation probability
o, and use the corresponding historical h;, action a;, and
reward value R; as state transition experiences into the
experience pool, which is (o, ht, at, Ry). The framework
of the 3DSIC-DDPG algorithm in POMDP environment is
shown in Fig. 5. Unlike traditional DDPG, the observation
data and experience obtained by the UAV agents interacting
with the environment will not be directly stored in the
experience pool or used for training. The observation data
are first used to build the emulator, which does not need
to include all environmental information, but only need to
model the environment based on historical observations.
Then, when new experience arises, Monte Carlo simulation
is first performed through the emulator to obtain the prob-
ability of certain actions occurring. With the emulator, we
can use Eq. (17) to update the Q values without using table
or linked lists to save history.

By conducting Monte Carlo simulations in the emulator,
we can easily obtain the mapping distribution of observation
history, states and actions. The belief state obtains a mapping
of uncertainty between observations and states by introduc-
ing the belief function b(-) into the uncertain properties of
the POMDP, while the emulator obtains an approximation
of the uncertainty mapping between states and observations
through Monte Carlo simulation and introduce it into the

VOLUME ,

Optimizer

Value Gradient

(Z,0uhrauR) | (@uhuanRy) Sl i
Target actor
network 6+

Target Critic

Emulator network 6%

Store (o,h,a,Ry)

Experience Pool

Sample a mini-batch (o,,h,a;,R;)

FIGURE 5: Framework Diagram of 3DSIC-DDPG in
POMDP environment.

loss function in the POMDP environment. It is not difficult
to obtain its representation in POMDP by replacing the state
s in the update equation of the critic network:

_ 1 ny 9Q (hi, a;)

where ¢ is the time index and h! is the history from the
emulator of experience ¢. Then, the actor network can be
updated with the state s replaced by history h as well. It can
be expressed as:

aQ (ht, 0 (ht|eQ")) aom (ht|or
s ey 2) e i)
(28)

The pseudo-code of 3DSIC-DDPG is shown in Algorithm
1. It is worth noting that in a continuous 3D POMDP
environment, each C(-) records compressed value of each
node and a specific range constraint for each node, so
the node value C(h;) can be determined by the z and y
coordinates of h;.

IV. Simulation Results

In this section, computer simulations are used to validate, and
analyze the algorithms proposed in this paper. The simulation
environment is considered as a 3D POMDP environment, and
we will test the impact of combining our proposed 3DSIC
and policy gradient algorithm DDPG on training efficiency
and path planning performance in POMDP environment. In
addition, we will also combine 3DSIC with FRSVG [35] to
test the impact of 3DSIC algorithm on the value gradient
algorithm. Our benchmark schemes for comparison are the
traditional DDPG algorithm and the traditional FRSVG
algorithm.

A. Training efficiency of DDPG agent in complex 3D
POMDP environment

We consider using complex urban environments as simula-
tion environments, which have complex 3D obstacle layouts
and are POMDP environments for UAVs that rely on sensors

VOLUME ,

Algorithm 1 DDPG algorithm based on 3D spatial informa-
tion compression in continuous 3D POMDP environment

Initialize experience replay memory M to capacity 7.
2: Randomly initialize the actor network u(s|0*) with
weight 6%,
Randomly initialize the critic network Q(s, a|0%) with
weight 69,
4: C9py networks x4 and @) to get target networks p, and

for episode = 1 to M, do
6: Initialize a random process N for action exploration.
Initialize compressed normalized map by execute
3DSIC algorithm with 8 and hq(z).
g fort=1toT, do
Select action a; = p(hy|0") + N; and execute a,
to get observation 0;1.
10: if ht_;,_l(Z) 7é ht(Z) then
Update compressed normalized map by execute
3DSIC algorithm with 8 and hyyq(2).
12: end if
Calculate reward R, = (1 — C(4,7)) x 7(ht, ar) +
C(Zaj) X (pe(at) +pcol(ht+l))axt+l S Crange(xi)
and Yt+1 € Crange(yj)
14: Save the transition set (o¢, hy, ar, Ry) into M.
Sample random mini-batch I from M
16 Setyl = RE4+4Q ("™, u/ (hF]67)]69).
Update critic network by minimizing the loss: L =
B 55 (- @t at) 225
18: Update actor network using BPTT: VguJ =
aQ(nt,0* (ht162")) a6 (nt|0*
45 5 20050 (50%)) o (1)
Update target networks after K steps
99" — 709 + (1 — 7)Y
Or 7O 4+ (1 — 7)0
20: end for
end for

to perceive environmental information. Hence, we chose a
block near the Museum of London and used a shadow index
algorithm [50] to estimate the height of buildings in the
environment through satellite images. The satellite image
is shown in Fig. 6. Then, a 100-cube 3D environment is
modeled based on the result of buildings’ distribution and
height.

In order to compare the training efficiency and path plan-
ning quality of DDPG algorithm using 3DSIC and DDPG
algorithm not using 3DSIC, the reward value curve of each
agent during the training process is recorded and used for
comparison. To avoid the influence of special circumstances,
we use 10 different random number seeds to train 10 3DSIC-
DDPG agents and 10 DDPG agents. In addition, for fairness,
each group of 3DSIC-DDPG and DDPG agents will use
the same random number generator seed to ensure similar
early random exploration experiences. The quality of path

% cadel A6
FIGURE 6: Satellite image o
ment.

f the real experimental environ-

planning will be compared with the total number of actions
in the path based on the results of path planning tests
after training. A lower number of actions means that the
total length of the path is shorter. The hyper-parameters of
the neural network training for 3DSIC-DDPG and DDPG
are shown in Table 2. In the reward model for all DRL
agents, after considering the energy consumption during
horizontal and vertical movements of the UAV, as well as
the computational cost of updating the 2D map using 3DSIC
after altitude changes, the average comprehensive cost per
action during horizontal movement is one-fourth of that
during vertical movement. Hence, the penalty value for all
horizontal movements is —0.5, and the penalty value for
vertical movements is —2. This setting reduces the frequency
of UAVs changing their flight altitudes. Furthermore, [31]
found that the above traditional reward model can cause data
sparsity in the experience pool and proposes a cumulative
reward model that can effectively solve the problem of sparse
rewards caused by traditional reward models. The cumulative
reward model in the 2D environment can be represented as:

C
\/(36 —za)? + (y — ya)? x D(%y,l)7
(29)

where (z,y) is the destination coordinates, [is the size of
the safety range, C' is a reward constant, and D is the spatial
obstacle density in the adjacent space of the current node.
More explicitly, the value of C' could be half of or less than
the reward value for arriving at the destination, while D can
be expressed as:

Reward(z,y,l) =

1+ Obs(x,y,l
D(x’y’l):S(x;l))’

where S(x,y,l) is the measure of area in the adjacent
area in size [square of the current coordinate (x,y). The
2D form of the cumulative reward model can be directly
applied to compressed 2D environments by setting the value

(30)

TABLE 2: Hyper-parameters of the 3DSIC-DDPG and
DDPG model.

Parameter Value Definition
The sampling size of
I m+n each training, m and n are the
size of m X n environment.
o 0.95 Discount factor
mXxXn Capacity of experience
K x 50000 pool.
Learning rate of actor
T 0.001 C.
and critic networks
OInit 1.0 Initial exploration variance
OMin 0.05 Final exploration variance
M 100000 Maxi.rn.um nu.mber of
training episodes
K 10 Steps delay of target
networks update
(0.1, 0.2, 0.4,
B8 compress factor
0.2, 0.1)

of Obs(x,y,l) to the sum of the node values within the
range [of (z,y) nodes in the compressed map, because
the compressed value also contains information from all
compressed layers. If we consider applying the cumulative
reward model to the original 3D environment, we need to
extend it to 3D, which can be expressed as:

C
TV (@—24)+(y—va)2+(2=24)> x D(2,y,2,1)’

R(z,y,z,1) (31)

where z is the current z coordinate and z, is the z coordinate
of the destination, while the evaluation of D(x,y, z,1) uses
the volume to replace the area measurement.

Furthermore, the value calculation of the reward model
can take into account both the 3D environment information
before 3DSIC and the compressed 2D environment after
3DSIC. Hence, there are 2D and 3D reward evaluation
methods for traditional reward and cumulative reward model.

In this experiment, the neural network for 3DSIC-DDPG
and DDPG has 32 inputs which are 6 3D coordinates
elements and 26 ranging sensor data, and it has 3 outputs
corresponding to vertical velocity, horizontal velocity and
horizontal direction angle, with two fully connected hidden
layers, where each layer contains 256 neurons, then con-
nected with a long-short term memory (LSTM) layer with
size of 256 between fully connected layers and output layer.
The schematic diagram of the actor network structure is
shown in Fig. 7.

Fig. 8 shows the average learning curve of 10 3DSIC-
DDPG agents and 10 DDPG agents. The 3DSIC-DDPG
agents converge on average at 18626 episodes, while the
traditional DDPG agents converge at 39460 episodes. The
training efficiency of 3DSIC-DDPG agents is 2.118 times
that of traditional DDPG agents. However, during path plan-

VOLUME ,

Fully Connected Fully Connected
256 Neurons 256 Neurons

LSTM
256 Neurons

32 Inputs
3 Outputs

FIGURE 7: Actor neural network structure of 3DSIC-DDPG
and DDPG

1000

-1000 -

-2000 -

-3000 -

Reward

-4000 -

-5000

DDPG-BS
3DSIC-DDPG-Emulator| |
3DSIC-DDPG-BS
DDPG-Emulator

-6000

-7000

8000
0 0.5 1 1.5 2 25 3 35 4
Training episode number x10%

FIGURE 8: Learning curve of 3DSIC-DDPG and DDPG in
3D POMDP Environment

ning testing, we found that not all actor networks obtained
from the convergence points of 3DSIC-DDPG agents passed
the path planning test, indicating that the quality of path
planning was lower than expected. Meanwhile, we also
noticed that all actor networks trained for a period of time
after using converged episodes can pass path planning tests.

From our analysis, we find that the convergence of the
critic network is faster than that of the action network, which
is described in [51] as an overestimation of the action net-
work. In other words, as long as the actor is given more time,
the actor network can converge, or the Twin-delayed deep
deterministic policy gradient (TD3) structure can be used to
introduce four networks to eliminate overestimation of the
actor network [51]. This can greatly increase the complexity
of the system. Hence, we consider simultaneously detecting
the total number of actions at the end of each episode and
drawing action curves to track the convergence of the actor
network. In addition, we also used rewards per action (RpA)

VOLUME ,

4500

DDPG-BS
3DSIC-DDPG-Emulator | |
3DSIC-DDPG-BS
DDPG-Emulator

4000

3500

3000

2500

Number of Actions

2000

1500

1000

500

0 0.5 1 15 2 25 3 3.5 4
Training episode number <10%

FIGURE 9: Actions curve of 3DSIC-DDPG and DDPG in
3D POMDP Environment

15

Reward per action
1)
w

-15
DDPG-BS
ot 3DSIC-DDPG-Emulator | |
3DSIC-DDPG-BS
DDPG-Emulator
25 g . : § = - :
0 0.5 1 1.5 2 25 3 3.5 4

x10*

FIGURE 10: Reward per action curve of 3DSIC-DDPG and
DDPG in 3D POMDP Environment

Training episode number

as a tracking measure for the convergence of the entire
system.

The experimental results are shown in Fig. 9 and Fig. 10,
which indicate that the actual convergence position of
the actor network of 3DSIC-DDPG-Emulator is at 19851
episodes, while the action network of DDPG-BS converges
at 38904 episodes. The convergence of the entire system is
consistent with that of the actor network, and compared to
traditional DDPG, the 3DSIC-DDPG algorithm has a 95.9%
improvement in training efficiency. Additionally, the agents
using the emulator converge earlier than those using the
BS. In theory, using an emulator can reduce the impact
of learned experiences on environmental changes, while BS
cannot adapt well to environmental changes.

In addition, to verify the actual performance improvement
caused by the increase in training efficiency, we designed a

11

TABLE 3: Probability of collision free path planning for
different DDPG algorithm in dynamic environment.

Speed of o
number of . Collision-free
Type of agent . dynamic
collision paths rate
obstacles
3DSIC-DDPG 102 0.1 m/s 89.8%
3DSIC-DDPG 109 0.2 m/s 89.1%
3DSIC-DDPG 146 0.5 m/s 85.4%
DDPG 127 0.1 m/s 87.3%
DDPG 174 0.2 m/s 82.6%
DDPG 218 0.5 m/s 78.2%

validation experiment by implementing trained 10 3DSIC-
DDPG models and 10 traditional DDPG models in an
environment with dynamic obstacles at different rates of
change. The dynamic obstacle is a small cube with a size
of 1m x 1m x 1m, with a distribution density of 0.5% and
movement speeds of 0.1m/s, 0.2m/s and 0.5m/s. Please
note that in this simulation, dynamic obstacles are added
in the path planning stage rather than in the training stage.
Additionally, note that the 0.5% distribution density is used
as an example and any other distribution density value would
work. We conducted 1000 simulations for each agent and
fixed the pseudo-random generator seeds as 1 to 1000 with
the same random number generator type. The simulation
results are recorded in Table 3. Based on the simulation
results, it can be seen that the collision-free probabilities of
3DSIC-DDPG and the DDPG agents are both close to 90%,
when there are obstacles with a motion speed of 0.1m/s in
the environment. Although the collision-free probability of
DDPG agents is only 78.2% when the obstacle movement
speed increases to 0.5m/s, 3DSIC-DDPG can still maintain
a collision-free probability of 85.4%.

B. Training efficiency of value gradient agent in complex
3D PODMP environment

In addition to policy gradient updates, there are also value
gradient methods for updating deep reinforcement learning.
For example, [35] proposed a fast recurrent stochastic value
gradient (FRSVG) algorithm. In order to comprehensively
test the effectiveness of 3DSIC, we use a combination
of 3DSIC and FRSVG for training and compare it with
traditional FRSVG to evaluate training efficiency and path
planning quality.

Fig. 11 shows the average learning curve of 10 3DSIC-
FRSVG agents and 10 FRSVG agents. Similarly, the FRSVG
algorithm also experiences overestimation of actors, so we
use the actions curve and reward per action curve to represent
the convergence process of the system, as shown in Fig. 12
and Fig. 13, respectively. The simulation results show that
the average convergence position of 3DSIC-FRSVG agents
is 19541 episodes, while the average convergence position
of traditional FRSVG agents is 38417 episodes. Compared

1000

— FRSVG
| 3DSIC-FRSVG

-1000 -

-2000

-3000

Reward

-4000 -

-5000 -

-6000 -

7000 \ \
0 0.5 1 15 2 25 3 3.5 4
Training episode number <10%

FIGURE 11: Learning curve of 3DSIC-FRSVG and FRSVG
in 3D POMDP Environment

— FRSVG
= 3DSIC-FRSVG | |

Number of Actions
N
o
(=]
(=]

2000

1500 |

1000 |

500

0 015 1 1.‘5 2 2‘.5 3 3j5 4

Training episode number x10*
FIGURE 12: Actions curve of 3DSIC-FRSVG and FRSVG
in 3D POMDP Environment

to FRSVG, the training efficiency of 3DSIC-FRSVG has in-
creased by 96.5%. It is worth noting that the 3DSIC-FRSVG
algorithm may encounter overfitting problems. When this
problem occurs, the path planning test can pass, but all
agents have very similar learning and action curves with
very small variances. This may result in the trained neural
network lacking universality in path planning problems.
The displayed simulation results are the training results of
3DSIC-FRSVG agents with dropout and data enhancement
utilized.

To compare the impact of combining 3DSIC with different
reward models on training efficiency, we simulated four
different embedding methods of reward models in a complex
forest environment of 20 cubes. The simulation results are
shown in Fig. 14, where ”2D traditional reward” denote the
evaluated reward value in the compressed 2D environment,

VOLUME ,

15

FRSVG
3DSIC-FRSVG

Reward per action
S
(4]

0 015 ‘; ‘1.‘5 é 2‘.5 Z") 3.‘5 4

Training episode number <10%
FIGURE 13: Reward per action curve of 3DSIC-FRSVG and
FRSVG in 3D POMDP Environment

and 73D traditional reward” means the evaluated reward
value in the original 3D environment before 3DSIC pro-
cessed for the traditional reward scheme. Similarly, the 2D
cumulative reward” and ”3D cumulative reward” denote that
of the cumulative reward scheme. Note that for every reward
model we trained 10 agents to obtain the average learning
curve. It can be observed that the combined cumulative
reward model after compression shows the highest train-
ing efficiency. The 2D traditional reward scheme and 3D
cumulative reward scheme converge very closely in terms
of the training episode number. On the other hand, the 2D
traditional reward curve increases faster than that of the 3D
cumulative reward curve at the early training stage. This
indicates that the 3D cumulative reward model may have
higher efficiency in larger environments compared to the
2D traditional reward model. Moreover, these simulation
results also indicate that the compressed environment with
3DSIC still has information redundancy. More specifically,
evaluating reward values in the original 3D environment
takes into account more environmental information than
evaluating reward values in the 2D environment after 3DSIC.
In this case, similar convergence episode number of the 2D
traditional reward scheme and the 3D cumulative reward
scheme illustrate that in some situation, considering less
spatial information can achieve similar training efficiency.
This means that the training efficiency improvement brought
by the 3DSIC algorithm may be even greater with well
designed reward evaluation method.

C. Path planning performance of 3DSIC-DDPG and
3DSIC-FRSVG

In theory, the path planned by combining 3DSIC algorithm
and DRL algorithm is difficult to be globally optimal.
However, in the POMDP environment, it is hard for the DRL
algorithms to achieve global optimal path planning results

VOLUME ,

100

-100 2D Traditional Reward | |

3D Traditional Reward
=== 3D Cumulative Reward | 1
2D Cumulative Reward

-200

-300

Reward

-400 |

-500

-600 -

=700 |7

800 . . .
0 500 1000 1500

Training episode number

2000

FIGURE 14: Learning curve of traditional reward model and
cumulative reward model in 3D POMDP environment

without using the 3DSIC algorithm. From the action curve
simulation results shown in Fig. 9 and Fig. 12, it can be seen
that there is no significant difference in the number of actions
of the converged path between the 3DSIC-DRL algorithms
and the DRL algorithms without 3DSIC. In addition, we
plotted a set of path planning results for 3DSIC-DDPG,
DDPG, 3DSIC-FRSVG, and FRSVG algorithms in a 3D
simulation environment, as shown in Fig. 15 and Fig. 16.
Among them, the red paths are the paths planning result
without using the 3DSIC algorithm, while the green paths
are planned by 3DSIC-DDPG or 3DSIC-FRSVG. It can be
observed that the path planning quality of DDPG and 3DSIC-
DDPG is similar, and the path planned after information
compression is not worse than using DDPG directly, while
the total number of actions is sometimes less than traditional
DDPG. The path planning quality of 3DSIC-FRSVG is
slightly inferior to traditional FRSVG, as evidenced by the
fact that the average number of actions taken by 10 3DSIC-
FRSVG agents (885.9 actions) is 19.7 more than that of
FRSVG (866.2 actions). However, from Fig. 16, we can see
that the path planned by traditional FRSVG is shorter but
more risky, since sometimes it is very close to obstacles. On
the other hand, 3DSIC-FRSVG agents will choose to travel
in a safer location.

Additionally, besides path length and training efficiency,
the reliability of path planning is crucial. To compare the
collision free path planning probabilities of DDPG with and
without 3DSIC in POMDP environment, we conducted 5
rounds of training on 3DSIC-DDPG with emulator, 3DSIC-
DDPG with belief function, DDPG with emulator, and
DDPG with belief function. Then, we added random ex-
ploration noise to each trained agent and conducted 100
path planning tests, where we also recorded the number and
probability of collision free path planning. The simulation
results are shown in Table 4. If the Agent type name

13

FIGURE 15: Path planning result of 3DSIC-DDPG and
DDPG in 3D POMDP Environment, where the red path is
planned by DDPG agent, while the green path is planned by
3DSIC-DDPG agent.

FIGURE 16: Path planning result of 3DSIC-FRSVG and
FRSVG in 3D POMDP Environment, where the red path is
planned by FRSVG agent, while the green path is planned
by 3DSIC-FRSVG agent.

contains (e), it indicates the mapping between observations
and history states is obtained through an emulator. While
the agent type with (b) indicates that the mapping between
observation and the history state is obtained through the BS.
It can be seen from the simulation results that using 3DSIC
to compress spatial information does indeed have an impact
on the reliability of path planning. However, when exploring
noise with very small variance, the impact can be almost
ignored. In addition, when the noise variance is small, the
impact of using an emulator or BS mapping observation
on the reliability of path planning cannot be determined.
Additionally, when the variance of random exploration noise

TABLE 4: Probability of collision free path planning for
different DDPG algorithm with emulator and belief state.

Variance of o
number of . Collision
Type of agent . exploration
collision paths . free rate
noise
3DSIC-DDPG(e) 44 0.05 91.2%
3DSIC-DDPG(b) 31 0.05 93.8%
3DSIC-DDPG(e) 82 0.2 83.6%
3DSIC-DDPG(b) 127 0.2 74.6%
DDPG(e) 26 0.05 94.8%
DDPG(b) 29 0.05 94.2%
DDPG(e) 118 0.2 76.4%
DDPG(b) 152 0.2 69.6%

increases, the probability of collision free path planning
using agents with emulators is significantly higher than
that using agents with BS. This is also consistent with the
analysis that bad experiences in the BS can have a permanent
impact on the system. In addition, simulation results indicate
that using 3DSIC can provide agents with resistance to
random exploration noise. However, this feature has two
aspects: on one hand it reduces the sensitivity of the trained
agent to noise, while on the other hand its ability to track
environmental changes will be weaker.

V. Conclusions

In this paper, we extended the 3DSIC algorithm to a 3D
unknown environment. Additionally, we derived the Bellman
equation representation in the POMDP case and constructed
an independent emulator to update the environmental infor-
mation. We first obtained an approximate solution of the
belief state distribution through Monte Carlo simulation.
Then, we combined the 3DSIC and the DDPG algoritm
for a POMDP environment. Our proposed 3DSIC algorithm
can efficiently plan paths in unknown 3D environments,
where the simulation results show that our proposed 3DSIC-
DDPG algorithm has a 95.9% improvement in training
efficiency compared to the traditional DDPG algorithm in
the 3D POMDP environment. Compared with the FRSVG
algorithm, using the 3DSIC algorithm could improve the
training efficiency by 96.5% in the 3D PODMP environment,
while maintaining the quality of the path planning.

REFERENCES

[1] Suttinee Sawadsitang, Dusit Niyato, Puay Siew Tan, Ping Wang,
and Sarana Nutanong. Shipper Cooperation in Stochastic Drone
Delivery: A Dynamic Bayesian Game Approach. IEEE Transactions
on Vehicular Technology, 70(8):7437-7452, 2021.

[2] Jiapeng Yin, Peter Hoogeboom, Christine Unal, Herman Russchen-
berg, Fred van der Zwan, and Erik Oudejans. UAV-Aided Weather
Radar Calibration. [EEE Transactions on Geoscience and Remote
Sensing, 57(12):10362-10375, 2019.

[3] Shams ur Rahman, Geon-Hwan Kim, You-Ze Cho, and Ajmal Khan.
Positioning of UAVs for throughput maximization in software-defined
disaster area UAV communication networks. Journal of Communica-
tions and Networks, 20(5):452-463, 2018.

VOLUME ,

(4]

[5

—

[6

—_

[7

—

[8

—_

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Ming Yan, Rui Xiong, Yan Wang, and Chunguo Li. Edge Computing
Task Offloading Optimization for a UAV-Assisted Internet of Vehicles
via Deep Reinforcement Learning. IEEE Transactions on Vehicular
Technology, 73(4):5647-5658, 2024.

Mingze Zhang, Mohammed EI-Hajjar, and Soon Xin Ng. Intelligent
Caching in UAV-Aided Networks. IEEE Transactions on Vehicular
Technology, 71(1):739-752, 2022.

Mingze Zhang, Yifeng Xiong, Soon Xin Ng, and Mohammed El-
Hajjar. Deployment of Energy-Efficient Aerial Communication Plat-
forms With Low-Complexity Detection. IEEE Transactions on Vehic-
ular Technology, 72(9):12016-12030, 2023.

Ming Yan, Chien Aun Chan, André F. Gygax, Chunguo Li, Am-
palavanapillai Nirmalathas, and I Chih-Lin. Efficient Generation of
Optimal UAV Trajectories With Uncertain Obstacle Avoidance in MEC
Networks. IEEE Internet of Things Journal, 11(23):38380-38392,
2024.

Jeongeun Kim, Seungwon Kim, Chanyoung Ju, and Hyoung Il Son.
Unmanned Aerial Vehicles in Agriculture: A Review of Perspective of
Platform, Control, and Applications. IEEE Access, 7:105100-105115,
2019.

Caiwu Ding and Lu Lu. A Tilting-Rotor Unmanned Aerial Vehicle for
Enhanced Aerial Locomotion and Manipulation Capabilities: Design,
Control, and Applications. IEEE/ASME Transactions on Mechatronics,
26(4):2237-2248, 2021.

Harrison Kurunathan, Hailong Huang, Kai Li, Wei Ni, and Ekram
Hossain. Machine Learning-Aided Operations and Communications
of Unmanned Aerial Vehicles: A Contemporary Survey. I[EEE Com-
munications Surveys and Tutorials, 26(1):496-533, 2024.

Gang Tang, Conggiang Tang, Christophe Claramunt, Xiong Hu, and
Peipei Zhou. Geometric A-Star Algorithm: An Improved A-Star
Algorithm for AGV Path Planning in a Port Environment. [EEE
Access, 9:59196-59210, 2021.

Haoxin Liu and Yonghui Zhang. ASL-DWA: An Improved A-Star
Algorithm for Indoor Cleaning Robots. [EEE Access, 10:99498-
99515, 2022.

Nelapati Lava Prasad and Barathram Ramkumar. 3-D Deployment
and Trajectory Planning for Relay Based UAV Assisted Cooperative
Communication for Emergency Scenarios Using Dijkstra’s Algorithm.
IEEE Transactions on Vehicular Technology, 72(4):5049-5063, 2023.
Jie Qi, Hui Yang, and Haixin Sun. MOD-RRT*: A Sampling-Based
Algorithm for Robot Path Planning in Dynamic Environment. /EEE
Transactions on Industrial Electronics, 68(8):7244-7251, 2021.

Reza Mashayekhi, Mohd Yamani Idna Idris, Mohammad Hossein
Anisi, Ismail Ahmedy, and Thsan Ali. Informed RRT*-Connect: An
Asymptotically Optimal Single-Query Path Planning Method. IEEE
Access, 8:19842-19852, 2020.

Pritam Ojha and Atul Thakur. Real-Time Obstacle Avoidance Algo-
rithm for Dynamic Environment on Probabilistic Road Map. In 2021
International Symposium of Asian Control Association on Intelligent
Robotics and Industrial Automation (IRIA), pages 57-62, 2021.
Zhenhua Pan, Chengxi Zhang, Yuanging Xia, Hao Xiong, and Xi-
aodong Shao. An Improved Artificial Potential Field Method for Path
Planning and Formation Control of the Multi-UAV Systems. [EEE
Transactions on Circuits and Systems II: Express Briefs, 69(3):1129—
1133, 2022.

Jiayi Sun, Jun Tang, and Songyang Lao. Collision Avoidance for Co-
operative UAVs With Optimized Artificial Potential Field Algorithm.
IEEE Access, 5:18382-18390, 2017.

Jiankun Wang, Wenzheng Chi, Chenming Li, Chaoqun Wang, and
Max Q.-H. Meng. Neural RRT*: Learning-Based Optimal Path
Planning. IEEE Transactions on Automation Science and Engineering,
17(4):1748-1758, 2020.

Jingcheng Zhang, Yugiang An, Jianing Cao, Shibo Ouyang, and
Lei Wang. UAV Trajectory Planning for Complex Open Storage
Environments Based on an Improved RRT Algorithm. [EEE Access,
11:23189-23204, 2023.

Matej Novosad, Robert Penicka, and Vojtech Vonasek. CTop-
PRM: Clustering Topological PRM for Planning Multiple Distinct
Paths in 3D Environments. IEEE Robotics and Automation Letters,
8(11):7336-7343, 2023.

Yuting Wan, Yanfei Zhong, Ailong Ma, and Liangpei Zhang. An
Accurate UAV 3-D Path Planning Method for Disaster Emergency
Response Based on an Improved Multiobjective Swarm Intelligence

VOLUME ,

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Algorithm.
2023.

Yu Wu, Kin Huat Low, Bizhao Pang, and Qingyu Tan. Swarm-Based
4D Path Planning For Drone Operations in Urban Environments. /EEE
Transactions on Vehicular Technology, 70(8):7464-7479, 2021.

Zhe Zhang, Jian Wu, Jiyang Dai, and Cheng He. A Novel Real-Time
Penetration Path Planning Algorithm for Stealth UAV in 3D Complex
Dynamic Environment. IEEE Access, 8:122757-122771, 2020.

Huan Liu, Guohua Wu, Ling Zhou, Witold Pedrycz, and Ponnuthu-
rai Nagaratnam Suganthan. Tangent-Based Path Planning for UAV
in a 3-D Low Altitude Urban Environment. /EEE Transactions on
Intelligent Transportation Systems, 24(11):12062—-12077, 2023.
Shankarachary Ragi and Edwin K. P. Chong. UAV Path Planning
in a Dynamic Environment via Partially Observable Markov Decision
Process. IEEE Transactions on Aerospace and Electronic Systems,
49(4):2397-2412, 2013.

Fatemeh Rekabi-Bana, Junyan Hu, Tomas Krajnik, and Farshad Arvin.
Unified Robust Path Planning and Optimal Trajectory Generation for
Efficient 3D Area Coverage of Quadrotor UAVs. IEEE Transactions
on Intelligent Transportation Systems, 25(3):2492-2507, 2024.

Hao Xie, Dingcheng Yang, Lin Xiao, and Jiangbin Lyu. Connectivity-
Aware 3D UAV Path Design With Deep Reinforcement Learning.
IEEE Transactions on Vehicular Technology, 70(12):13022-13034,
2021.

Lijuan Zhang, Jiabin Peng, Weiguo Yi, Hang Lin, Lei Lei, and Xiaoqin
Song. A State-Decomposition DDPG Algorithm for UAV Autonomous
Navigation in 3-D Complex Environments. /EEE Internet of Things
Journal, 11(6):10778-10790, 2024.

Hu Teng, Ishtiag Ahmad, Alamgir Msm, and Kyunghi Chang. 3D
Optimal Surveillance Trajectory Planning for Multiple UAVs by Using
Particle Swarm Optimization With Surveillance Area Priority. IEEE
Access, 8:86316-86327, 2020.

Zhipeng Wang, Soon Xin Ng, and Mohammed EI-Hajjar. Deep
reinforcement learning assisted uav path planning relying on cumu-
lative reward mode and region segmentation. /IEEE Open Journal of
Vehicular Technology, 5:737-751, 2024.

Chao Wang, Jian Wang, Yuan Shen, and Xudong Zhang. Autonomous
Navigation of UAVs in Large-Scale Complex Environments: A Deep
Reinforcement Learning Approach. IEEE Transactions on Vehicular
Technology, 68(3):2124-2136, 2019.

Hoa Van Nguyen, Hamid Rezatofighi, Ba-Ngu Vo, and Damith C.
Ranasinghe. Online UAV Path Planning for Joint Detection and
Tracking of Multiple Radio-Tagged Objects. IEEE Transactions on
Signal Processing, 67(20):5365-5379, 2019.

Zhipeng Wang, Soon Xin Ng, and Mohammed El-Hajjar. A 3d spatial
information compression based deep reinforcement learning technique
for uav path planning in cluttered environments. /EEE Open Journal
of Vehicular Technology, 6:647-661, 2025.

Yuntao Xue and Weisheng Chen. A UAV Navigation Approach Based
on Deep Reinforcement Learning in Large Cluttered 3D Environments.
IEEE Transactions on Vehicular Technology, 72(3):3001-3014, 2023.
Ronglei Xie, Zhijun Meng, Lifeng Wang, Haochen Li, Kaipeng Wang,
and Zhe Wu. Unmanned Aerial Vehicle Path Planning Algorithm
Based on Deep Reinforcement Learning in Large-Scale and Dynamic
Environments. IEEE Access, 9:24884-24900, 2021.

Liangheng Lv, Sunjie Zhang, Derui Ding, and Yongxiong Wang. Path
Planning via an Improved DQN-Based Learning Policy. IEEE Access,
7:67319-67330, 2019.

David Silver Volodymyr Mnih, Koray Kavukcuoglu. Human-level
control through deep reinforcement learning. Nature, page 529-533,
2015.

Shimin Gong, Meng Wang, Bo Gu, Wenjie Zhang, Dinh Thai Hoang,
and Dusit Niyato. Bayesian Optimization Enhanced Deep Reinforce-
ment Learning for Trajectory Planning and Network Formation in
Multi-UAV Networks. [EEE Transactions on Vehicular Technology,
72(8):10933-10948, 2023.

Minah Seo, Luiz Felipe Vecchietti, Sangkeum Lee, and Dongsoo
Har. Rewards Prediction-Based Credit Assignment for Reinforcement
Learning With Sparse Binary Rewards. IEEE Access, 7:118776—
118791, 2019.

Matvey Gerasyov and Ilya Makarov. Dealing With Sparse Rewards
Using Graph Neural Networks. IEEE Access, 11:89180-89187, 2023.

IEEE Transactions on Cybernetics, 53(4):2658-2671,

15

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

Hua Yan, Yunfei Chen, and Shuang-Hua Yang. New Energy Con-
sumption Model for Rotary-Wing UAV Propulsion. [EEE Wireless
Communications Letters, 10(9):2009-2012, 2021.

Amit Konar, Indrani Goswami Chakraborty, Sapam Jitu Singh,
Lakhmi C. Jain, and Atulya K. Nagar. A Deterministic Improved
Q-Learning for Path Planning of a Mobile Robot. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 43(5):1141-1153, 2013.
Dongcheng Li, Wangping Yin, W. Eric Wong, Mingyong Jian, and
Matthew Chau. Quality-Oriented Hybrid Path Planning Based on A*
and Q-Learning for Unmanned Aerial Vehicle. IEEE Access, 10:7664—
7674, 2022.

Kyriakos G. Vamvoudakis and Nick-Marios T. Kokolakis. 2020.
Jiehong Wu, Ya’nan Sun, Danyang Li, Junling Shi, Xianwei Li,
Lijun Gao, Lei Yu, Guangjie Han, and Jinsong Wu. An Adaptive
Conversion Speed Q-Learning Algorithm for Search and Rescue UAV
Path Planning in Unknown Environments. [EEE Transactions on
Vehicular Technology, 72(12):15391-15404, 2023.

Michael C. Fowler, T. Charles Clancy, and Ryan K. Williams. In-
telligent Knowledge Distribution: Constrained-Action POMDPs for
Resource-Aware Multiagent Communication. [EEE Transactions on
Cybernetics, 52(4):2004-2017, 2022.

Grigore Stamatescu, Iulia Stamatescu, Dan Popescu, and Cristian
Mateescu. Sensor fusion method for altitude estimation in mini-UAV
applications. In 2015 7th International Conference on Electronics,
Computers and Artificial Intelligence (ECAI), pages SSS-39-SSS-42,
2015.

Reham Abdelfatah, Ahmed Moawad, Nancy Alshaer, and Tawfik
Ismail. UAV Tracking System Using Integrated Sensor Fusion with
RTK-GPS. In 2021 International Mobile, Intelligent, and Ubiquitous
Computing Conference (MIUCC), pages 352-356, 2021.

Nada Kadhim and Monjur Mourshed. A Shadow-Overlapping Algo-
rithm for Estimating Building Heights From VHR Satellite Images.
IEEE Geoscience and Remote Sensing Letters, 15(1):8-12, 2018.
Xugiong Luo, Qiyuan Wang, Hongfang Gong, and Chao Tang. Uav
path planning based on the average td3 algorithm with prioritized
experience replay. /EEE Access, 12:38017-38029, 2024.

Zhipeng Wang received the B.Eng. degree
in telecommunication engineering from Chengdu
University of Information Technology, Chengdu,
China, in 2019. He received the M.Sc. degree (First
class) in electronic communication and computer
engineering from the University of Nottingham,
U.K,, in 2020. He received the Ph.D. degree in
electronic and electrical engineering form the Uni-
versity of Southampton, U.K. in 2025. His cur-
rent research interests include deep reinforcement
learning, high dimensional information compres-

sion, UAV autonomous navigation, 3D path planning, partially observable
Markov decision process.

Dr Soon Xin Ng(S’99-M’03-SM’08) received the
B.Eng. degree (First class) in electronic engineer-
ing and the Ph.D. degree in telecommunications
from the University of Southampton, U.K., in 1999
and 2002, respectively. He is currently a Professor
of Next Generation Communications at the Univer-
sity of Southampton. His research interests include
adaptive coded modulation, coded modulation,
channel coding, space-time coding, joint source
and channel coding, iterative detection, OFDM,
MIMO, cooperative communications, distributed

coding, quantum communications, quantum error correction codes, joint
wireless-and-optical-fibre communications, game theory, artificial intelli-
gence and machine learning. He has published over 300 papers and co-
authored two John Wiley/IEEE Press books in this field.

Mohammed El-Hajjar (M’02, SM’14) is a Pro-
fessor of Signal Processing for Wireless Communi-
cations in the School of Electronics and Computer
Science in the University of Southampton. He is
the recipient of several academic awards and has
published a Wiley-IEEE book and more than 100
IEEE journal and conference papers and in excess
of 10 patents. Mohammed’s research interests in-
clude the design of intelligent and energy-efficient
transceivers, MIMOs, millimeter wave commu-
nications, non-terrestrial networks and machine

learning for wireless communications. Mohammed’s research is funded
by the Engineering and Physical Sciences Research Council, the Royal
Academy of Engineering and many industrial partners.

VOLUME ,

