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Abstract

The present study employs the adaptive lattice Boltzmann solver AMROC-LBM to
numerically investigate turbulent flow through a wind tunnel containing porous me-
dia with a blockage ratio of 0.5. The porous structure comprises two interlaced cubic
arrays, designed to emulate a configuration under concurrent experimental investiga-
tion. To resolve turbulence characteristics, a large eddy simulation (LES) framework
is integrated into the lattice Boltzmann method (LBM), enabling accurate capture of
large-scale flow structures while modelling subgrid-scale effects. Our in-house solver
has been rigorously validated against established experimental and numerical bench-
marks, with the results demonstrating close agreement, thereby confirming the relia-
bility of the computational methodology. A scalability analysis confirms the solver’s
computational efficiency on parallel architectures.

Keywords: parallel computing, lattice Boltzmann method, large eddy simulation, dy-
namic mesh adaptation, porous medium, turbulent flow.
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1 Introduction

Porous media are defined by their interconnected void spaces that enable fluid per-
meation. The investigation of fluid dynamics within porous systems has gained con-
siderable research interest due to their prevalence in natural environments and nu-
merous engineering applications, including separation processes, porous combustion
systems, gas drying technologies, hydrocarbon extraction, and pebble-bed nuclear re-
actor designs [1]. This broad applicability has led to substantial research into turbu-
lent flow mechanics on permeable porous surfaces. In the lattice Boltzmann method
(LBM) community, porous media flow is typically approached through two distinct
methodologies: pore-scale simulations that directly resolve fluid-structure interac-
tions, and representative elementary volume (REV)-scale modelling that employs av-
eraging techniques for computational efficiency. While REV methods offer practi-
cal advantages for large-scale simulations, they inherently lack the ability to capture
pore-level flow details. The mesoscopic nature of LBM provides a unique capability
to directly simulate pore-scale dynamics while maintaining computational feasibility.

Recent progress in direct numerical simulation (DNS) has enabled more detailed
turbulence analysis in porous systems, although existing studies remain limited in
scope. Notable work includes Jin and Kuznetsov’s [2] investigation of sphere-packed
porous beds and Kuwata et al.’s [3] study of regular square matrices. However, appli-
cations of large-eddy simulation (LES) have primarily focused on dense, low-porosity
configurations, leaving a significant gap in the modelling of more complex porous
systems. To address this research gap, we present a novel LBM-LES framework in-
corporating structured adaptive mesh refinement (SAMR) that effectively simulates
porous media across the full porosity spectrum, from low to high porosity configura-
tions. This approach builds on the original LBM-LES method developed by Hou et
al. [4] with several key advancements. Our implementation demonstrates significantly
improved computational efficiency compared to DNS-LBM methods, while maintain-
ing high-fidelity solutions [5]. The framework’s robustness is ensured by three major
components: (1) an MPI-parallelized architecture that enables large-scale simulations,
(2) a recursive regularized single-relaxation-time collision operator [6] that provides
superior numerical stability at high Reynolds numbers, and (3) dynamic SAMR which
typically reduces cell count compared to uniform meshing.

The paper is organized as follows: Section 2 details the adaptive LBM-LES frame-
work implemented in AMROC-LBM. Section 3 provides validation studies and results
for the present porous media case. Section 4 analyses parallel scaling performance.
Section 5 summarizes the main findings and conclusions.

2 Adaptive lattice Boltzmann solver

The LBM originated from lattice gas automata and uses the discrete Boltzmann equa-
tion to model the fluid flow by tracking the evolution of a particle distribution func-
tion (PDF), which is the only unknown quantity of the LBM. LBM focuses mainly
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on determining the averaged macroscopic variables, such as density and velocity, by
evaluating the hydrodynamic moments of the distribution function f(x, ξ, t).

2.1 Lattice Boltzmann scheme

The LBM method can be seen as a special finite difference scheme for the kinetic
equation of the discrete PDF as it utilises discrete space x, time and velocity ξ. The
lattice structure in LBM is symbolised by DmQn, where m is the number of dimension
and n denotes the number of particle velocities. Here, all computations are three-
dimensional and 27 unit direction vectors eα are used, which is referred to as D3Q27
model.

The algorithm of LBM starts by setting the initial values of the distribution func-
tions using the discrete equilibrium distribution function derived from non-dimensional
prescribed macroscopic variables, and it is common practice to implement LBM inter-
nally on the non-dimensional unit lattice. The heart of the algorithm is split into two
steps: streaming and collision. The streaming step models the shifting of a distribution
function in the direction of motion from one node to the adjacent node, i.e.,

f̌α(x, t) = fα(x− eα, t). (1)

The collision step in our case uses a regularized BGK (Bhatnagar-Gross-Krook) col-
lision operator [6] with forcing term Fα as

fα(x, t+∆t) = f̌ (0)
α (x, t) + (1− ω)f̌ (1)

α (x, t) + Fα(x, t). (2)

The dimensionless relaxation frequency ω relates to the fluid’s kinematic viscosity
through ν = c2s

(
1
ω
− 1

2

)
∆t, where cs = 340m/s represents the speed of sound

(constant for all simulations) and ∆t denotes the physical time step. In Eq. (2),
the post-propagation state is indicated by the ˇ superscript. The equilibrium f

(0)
α and

non-equilibrium f
(1)
α = fα − f

(0)
α components of the distribution function are com-

puted using Malaspinas’ regularized recursive (RR) formulation [6]. Our implemen-
tation employs the recursive approach up to order 6 for both equilibrium and non-
equilibrium parts. It has been established among the research community that this
RR-BGK scheme is stable and accurate at high Reynolds numbers.

The conversion from non-dimensional lattice distributions to physical quantities
requires proper scaling based on the physical time step ∆t and physical grid spacing
∆x of the Cartesian mesh, utilizing the lattice speed c = ∆x/∆t. In LBM, the macro-
scopic variables are obtained by taking moments of the distribution function. The gas
density ρ and the velocity vector u are evaluated by a simple rescaling of the 0th and
1st moments of the PDF with a reference density ρ0 and the lattice speed, respectively.
i.e.

ρ = ρ0
∑
α

fα, u = c
∑
α

eαfα. (3)

The total pressure can be computed from the density as p = c2s(ρ − ρ0) + p0, where
cs = cc̃s is the speed of sound and p0 is the ambient pressure. The lattice speed of
sound c̃s is equal to 1/

√
3 for D3Q27.
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2.2 Adaptive mesh refinement

The present lattice Boltzmann implementation utilizes a uniform Cartesian grid dis-
cretization. To achieve improved accuracy with enhanced computational efficiency,
a block-structured adaptive mesh refinement (SAMR) methodology is employed [7].
This approach organises computational cells into distinct rectangular grids, each con-
taining a halo of ghost cells for boundary condition implementation and synchroni-
sation, as detailed in [7]. The mesh widths of two adjacent levels follow the relation
∆xc/∆xf = ∆tc/∆tf = r, where the superscript f refers to the fine mesh and c refers
to the coarse mesh. The simultaneous refinement of spatial and temporal mesh width
is fully consistent with the explicit nature of the LBM. By implementing the LBM
operations using cell-centred data structures, the method integrates naturally with the
recursive AMR framework. Additional implementation information on adaptive LBM
within the AMROC framework is available in [8].

The multi-level grid structure requires proper transfer of distribution functions
across refinement boundaries. When transferring from fine to coarse grids, distribu-
tion functions of fine cells surrounding a coarse cell are averaged. The transition from
coarse to fine involves both spatial and temporal interpolations to create the fine dis-
tribution functions from surrounding coarse cells [8]. Distribution functions between
levels are further modified by the approach described by Dupuis and Chopard [9],
where the non-equilibrium part is rescaled as

f c
α(x, t) = f f→c(0)

α (x, t) +
rωf

ωc
f f→c(1)
α (x, t), (4)

f f
α(x, t) = f c→f(0)

α (x, t) +
ωc

rωf
f c→f(1)
α (x, t), (5)

and ωc and ωf are the non-dimensional relaxation frequencies of the coarse and fine
level, respectively. This approach ensures the continuity in density and velocity, which
depends on the equilibrium part, as well as on the strain-rate tensor Sij .

2.3 Large eddy simulation

To make turbulent flow simulations computationally feasible at technically relevant
Reynolds numbers, the small scales of turbulence are not explicitly resolved but in-
stead modelled using large eddy simulation. In this work, the Smagorinsky model [10]
is employed, which accounts for the effects of unresolved turbulent eddies through an
eddy viscosity term νt added to the kinematic viscosity ν. The eddy viscosity is com-
puted from the filtered strain rate tensor Sij as

νt = (Csm∆x)2|S|, (6)

where the coefficient Csm(x, t) is locally evaluated and |S| =
√

2SijSij . The eval-

uation of Sij follows the consistent strain formulation introduced by Malaspinas and
Sagaut [11]. The total effective viscosity in the simulation combines the molecular
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viscosity ν with the turbulent contribution νt, consequently modifying the relaxation
parameter ω in the numerical scheme as

ω⋆ =
c2s∆t

(ν + νt) + c2s∆t/2
. (7)

2.4 Boundary conditions

The block-structured AMR framework naturally handles boundary conditions through
ghost cells. Non-Cartesian boundaries are represented on the cell-based Cartesian
mesh by a scalar level set function that stores the distance to the boundary surface. A
fluid cell is treated as an embedded ghost cell if the distance value in the cell centre is
negative. For computing signed distance functions from triangulated surface meshes, a
specially designed algorithm [7] is used. For ghost cells at non-Cartesian boundaries,
the no-slip boundary condition is applied by imposing zero velocity at the boundary
location. This is achieved through an interpolated bounce-back scheme following
Bouzidi et al. [12] using linear interpolation. Prior to the streaming step, each discrete
lattice distribution function that would propagate from a ghost cell into a fluid cell is
appropriately replaced using

fα(xg, t) = 2qfᾱ(xg + eα, t) + (1− 2q) fᾱ(xg + 2eα, t), q < 0.5, (8)

and

fα(xg, t) =
1

2q
fᾱ(xg + eα, t) +

(2q − 1)

2q
fα(xg + eα, t), q > 0.5, (9)

where the parameter q is calculated as q = ||xf − xw||/||xf − xg|| and eᾱ is the
direction opposite to eα.

2.5 Mass flow rate conservation

The numerical simulations conducted in this work employ periodic boundary condi-
tion in streamwise direction. To maintain a constant mass flow rate throughout the
computational domain, a volumetric force is applied exclusively in the upper section
of the channel, which remains unobstructed by the porous medium. This forcing term
is incorporated during the collision step, as described in Eq. (2), and is computed
according to the discrete forcing scheme developed by Guo et al. [13] as

Fα(x, t) =
(
1− ω

2

)
wα

[
eα − u/c

c̃2s
+

(eα · u/c)
c̃4s

]
F. (10)

The force F is calculated in an iterative way using

F = ρ

(
u2
τ

H

∆t2

∆x
+

(< Ub > − < U >s)

∆t

∆t2

∆x

)
. (11)
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(a) (b)

(c) (d)

Figure 1: (a) Suga’s porous test section, (c) present porous test section and (b, d)
streamwise slices for statistical averaging.

Here, uτ is the friction velocity of the fully developed flow, H is the height of the
channel free flow, < Ub > is the channel free flow target bulk velocity, < U >s is the
instantaneous spatial average of the streamwise (x-direction) velocity in the free flow
region, recomputed each iteration on the coarsest grid level.

3 Porous flow simulation

3.1 Computational setup

Two porous flow configurations are considered to demonstrate the fidelity of the cur-
rent solver. The first configuration uses the porous flow setup of Suga et al. [14] for
methodology validation, while the second configuration corresponds to an ongoing
collaborative experimental study. Both configurations feature flow through rectangu-
lar conduits partially filled with porous materials, although with different geometric
structures. The porous test sections and streamwise slices from −Ly/2 to Ly/2 of
the flow domains are illustrated in Figure 1. For Suga’s configuration (Figure 1a), the
rectangular duct dimensions are Lx × Ly × Lz = 8.7H ×H × 2H in the streamwise,
spanwise, and vertical directions, respectively. Similarly, the current configuration
(Figure 1c) has dimensions 8H × 4H × 2H . A periodic boundary condition is ap-
plied in the streamwise direction. No-slip conditions are applied at the duct walls
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Figure 2: Comparison of contour plot for mean streamwise velocity of current work
(right) with published work [14] (left) at Y-Z plane.

Figure 3: Comparison of contour plot for secondary flow intensity of current work
(right) with published work [3] (left) at Y-Z plane.

and porous structure by using the half-way bounce-back method and the interpolated
bounce-back Bouzidi scheme (see Section 2.4), respectively.

3.2 Validation test problem

To validate our approach, Suga’s test case is simulated without considering the effect
of temperature difference between the top and bottom walls, while the side walls re-
main adiabatic. The porous medium consists of square bars of size D/H = 0.06,
and the distance between the bar centres is ℓ = 4.33D. The porosity (ϕ) and non-
dimensional permeability (K) are 0.77 and 7.6 × 10−5, respectively. For our simu-
lation, we used bar size D = 6 mm, clear fluid height H = 10 cm, domain length
L = 87 cm, total height of test section 20 cm, and spanwise distance 10 cm. The bulk
velocity for present simulation is fixed at 10 m/s to maintain the flow at a Reynolds
number of Re = UbH/ν = 7400.

A comparative analysis was conducted to evaluate the similarity between the mean
streamwise velocity contours obtained from the present simulation (Re = 7400) and
experimental results reported by [14] at Re = 7700. The results reveal the forma-
tion of a single primary vortex structure, with its core located at the centroid of the
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Figure 4: Comparison of time and spatial averaged velocity profile (top left), stream-
wise normal Reynolds stress (R11) (top right), and vertical normal Reynolds
stress (R22) (bottom) with Suga’s numerical and experimental results.

clear fluid domain, irrespective of the Reynolds number. In contrast to confined duct
flows bounded by impermeable walls [15], the current configuration exhibits distinct
flow characteristics due to wall permeability. Notably, secondary vortices are absent
in the present case, as fluid momentum can dissipate through the porous boundaries
(Figure 2). The velocity contour demonstrates a characteristic depression near the
upper symmetry plane, indicative of downward fluid motion. This downward flow
is subsequently redirected upward along the vertical walls following interaction with
the porous wall, demonstrating the significant influence of permeability on bulk flow
patterns. We performed a qualitative comparison (Figure 3) of the secondary flow
between our simulation at Re = 7400 and the results of [3] at Re = 3500. It is inter-
esting to observe comparable patterns between the current results with reference DNS
data, despite the difference in Reynolds number, indicating the weak Reynolds num-
ber dependence of secondary flows in similar geometries at fully turbulent regimes.
The secondary flow, a characteristic feature of turbulent duct flows, was visualized
using contours of the cross-flow velocity magnitude defined as

√
v2 + w2/Ub. The

peak secondary flow intensities are approximately 7% and 6% of the bulk velocity for
current results and the reference data, respectively.

Figure 4 presents a quantitative comparison of turbulence statistics between the
current simulation and published experimental data [3, 14] at Re = 7400. The analy-
sis includes both time- and spatially averaged velocity profiles and normal Reynolds
stress components. Spatial averaging was performed on the slices as shown in Fig-
ure 1b. The simulation results demonstrate satisfactory agreement with the reference
experimental data, particularly in the clear fluid region.
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Figure 5: Contour of instantaneous velocity vector magnitude (top), vorticity vector
magnitude (bottom) at X-Z plane.

It should be noted that the current computational model does not account for con-
jugate heat transfer effects. This simplification contributed to the observed discrep-
ancies in the porous region, where thermal effects are most pronounced. However,
in the clear fluid region, the model shows reasonable agreement, since the reference
work [3] similarly neglected buoyancy effects.

3.3 Present test problem

This section deals with the preliminary investigation of turbulent flow through a porous
medium composed of periodic square bars with dimensional characteristics that cor-
respond to the configuration of ongoing collaborative experimental work. The porous
structure features square bars of side length D = 12.7 mm arranged with a centre-
to-centre spacing of ℓ = 2D = 25.4 mm, yielding a porosity ϕ = 0.486. The com-
putational domain replicates the experimental dimensions with a clear fluid height
H = 76.2 mm, streamwise length L = 608 mm, and spanwise width of 304 mm.

For the half-blockage configuration, the Reynolds number based on porous block
height reaches 40, 371 at the maximum bulk velocity of 8 m/s. The permeability is
estimated as K = 4.67×10−7 mm2 using the Ergun equation K =

d2pϕ
3

150(1−ϕ)2
, where dp

represents the porous particle diameter equivalent to side length. The fluid properties
correspond to air at 293 K with a fixed Prandtl number Pr = 0.71. To characterize the
turbulent flow dynamics, Figure 5 illustrates contour maps of instantaneous velocity
and vorticity vector magnitudes while using separate data range scaling for the clear
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(a) (b)

(c) (d)

Figure 6: Contour of (a) mean streamwise velocity, (b) secondary flow intensity, (c)
streamwise velocity fluctuations, and (d) vertical velocity fluctuations.

fluid and porous regions. The unobstructed fluid domain exhibits developed turbulent
flow features, evidenced by high-intensity velocity fluctuations and vortex structures.
Limited flow penetration is observed in the first layer of the porous matrix, attributable
to the low porosity (ϕ = 0.486) and consequent high flow resistance.

Quantitative analysis reveals a peak velocity magnitude of 12.0 ± 0.5 m/s in the
clear fluid region, representing a 50% overshoot relative to the prescribed bulk velocity
8 m/s. This significant velocity enhancement arises from flow acceleration in the core
region, driven by wall confinement effects of the sidewalls and top wall to maintain
mass conservation. Within the porous medium, the velocity field decays sharply to a
maximum of 1.5± 0.2 m/s. The vorticity field shows analogous behaviour, with peak
magnitudes of 5100± 200 s−1 in the clear fluid region, compared to attenuated values
of 1000±50 s−1 within the porous matrix. The presence of vortex structures along the
porous boundary layer indicates partial preservation of turbulent features, although at
significantly reduced intensity.

Figure 6 portrays the contours of the normalized streamwise mean velocity u/Ub

and the secondary flow intensity
√
v2 + w2/Ub along with the turbulence intensities.

The turbulence intensities are quantified through the root-mean-square (rms) of veloc-
ity fluctuations: u′

rms =
√

u′2 (streamwise) and v′rms =
√

v′2 (vertical), where u′ and
v′ represent the fluctuating velocity components. Similar to Suga’s case, a large single
primary vortex is observed in clear fluid section without any secondary vortex flow as
seen in Figure 6a. Figure 6b shows a key difference in secondary flow topology be-
tween solid and porous walls. The classic eight-vortex pattern in solid-wall ducts [15]
disappears entirely under porous-wall conditions. The peak secondary flow intensi-
ties were approximately 8.75% of the bulk velocity (8 m/s). This indicates enhanced
momentum transport through the porous interface in comparison to the solid-wall ref-
erence case.

Figures 6c and 6d demonstrate the three-dimensional wall effects on turbulent fluc-
tuations, presenting the rms of both streamwise (u′

rms) and vertical (v′rms) velocity
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Figure 7: Comparison of turbulent flow statistics: time and spatial averaged velocity
profile (left), and normal Reynolds stress components (right).

components normalized by the bulk mean velocity (Ub). The results reveal a signif-
icant enhancement of turbulent characteristics above the porous wall, in agreement
with previous findings for porous-walled turbulent channel flows [3,15]. This intensi-
fication is attributed to increased flow penetration and unsteady momentum exchange
at the porous interface. Interestingly, the vortex structure exhibits some similarities
with that of solid duct flows [15], due to the low porosity and the orderly configura-
tion of the solid blocks.

Figure 7 presents the time and spatially averaged velocity and normal Reynolds
stress components. Spatial averaging was performed over the slices as shown in Fig-
ure 1d. The comparison is made with [14] to demonstrate that the current flow char-
acteristics follow similar trends while exhibiting distinct features due to differences in
Reynolds number, porous structure, and flow geometry.

4 Scalability test

A scalability analysis was also performed to evaluate the parallel performance of the
current implementation, as presented in Figure 8. The study examined two distinct
computational approaches: a uniform mesh configuration and an adaptive mesh refine-
ment (AMR) scheme with three levels of hierarchical refinement. The dynamic mesh
adaptation employed a vorticity magnitude threshold of 400.0 s−1 for the domain
configuration described in Section 3.2. Strong scaling benchmarks conducted on the
ARCHER2 system utilized a uniform mesh of 1392×160×320 cells (7.127×107 total
cells), with performance metrics derived from averaged wall-clock times per timestep
during the initial 80 iterations.

The adaptive simulations initiated from a base grid of 174 × 20 × 40 cells, with
dynamic addition of up to three refinement levels while refined in all spatial directions
by factor 2. Although the speed-up achieved by AMROC decreases with increasing
CPU count compared to the uniform mesh case, the adaptive approach provides net
computational savings in terms of the wall-clock time. Figure 8(b) presents a detailed
breakdown of computational costs, showing the averaged wall-clock times per time
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(a)

(b)

Figure 8: (a) Scalability of AMROC with or without refinement comparing with ideal
linear scaling, (b) scaling of main operations.

step for different operations. The analysis reveals that, with the exception of partition-
ing and grid recomposition, the cost of the majority of operations decreases almost
linearly as the number of CPU cores increases. Interestingly, with increasing core
counts, the recomposition phase becomes a major computing barrier and one of the
main causes of the simulation’s total cost.

5 Conclusions

This study demonstrates the effectiveness and robustness of the adaptive AMROC-
LBM solver integrated with large eddy simulation for modelling turbulent flows in
porous media. By validating the numerical framework against benchmark experi-
mental and numerical data, the solver has shown good accuracy in capturing both
mean flow structures and turbulence statistics within porous configurations. The re-
sults reveal that there are an accelerated streamwise velocity and vortex structures in
the clear fluid region and attenuated turbulence penetration within the porous matrix.
The scalability analysis confirms the solver’s capability to perform large-scale simula-
tions efficiently on parallel architectures, particularly when leveraging adaptive mesh
strategies. Although the current model does not incorporate conjugate heat transfer
effects, its ability to resolve key hydrodynamic features of porous flows positions it as
a valuable tool for future investigations. Further work will extend the solver to include
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thermal coupling and explore broader classes of porous geometries.
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