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Abstract

Liquid biopsies have emerged as a key tool that enables personalized medicine, enabling precise detection of bio-
chemical parameters to tailor treatments to individual needs. Modern biosensors enable real-time detection, precise
diagnosis, and dynamic monitoring by rapidly analyzing biomarkers such as nucleic acids, proteins, and metabolites
in bodily fluids like blood, saliva, and urine. Despite their potential, many biosensors are still constrained by mono-
functionality, sub-optimal sensitivity, bulky designs, and complex operation requirements. Recent advances in stimuli-
responsive smart materials present a promising pathway to overcome these limitations. These materials enhance
biomarker signal transduction, release, or amplification, leading to improved sensitivity, simplified workflows,

and multi-target detection capabilities. Further exploration of the integration of these smart materials into biosensing
is therefore essential. To this end, this review critically examines and compares recent progress in the development
and application of physical, chemical, and biochemical stimuli-responsive smart materials in biosensing. Emphasis

is placed on their responsiveness mechanisms, operational principles, and their role in advancing biosensor per-
formance for biomarker detection in bodily fluids. Additionally, future perspectives and challenges in developing
versatile, accurate, and user-friendly biosensors for point-of-care and clinical applications using these smart materials

are discussed.
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Introduction

Individual differences in molecular, physiological, and
environmental exposure have been demonstrated to
induce inter-individual variation in disease processes,
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making a single cure-all solution unlikely. In this context,
personalized medicines tailor treatment strategies for
each patient’s unique characteristics by analyzing their
physiological functions and biochemical parameters.
Emerging approaches, such as DNA sequencing, high-
throughput proteomics, advanced imaging techniques,
and liquid biopsies have been developed to enable the
real-time detection and monitoring of disease-related
biomarkers [1-4]. Among these approaches, liquid biop-
sies, which analyze disease-related biomarkers present
in bodily fluids, have recently gained growing attention
[5, 6]. Due to the readily accessible sample sources like
urine, sweat, saliva, peripheral blood, etc., liquid biopsies
provide a minimally invasive, repeatable, and real-time
approach to diagnosing diseases and monitoring over-
all health. Because bodily fluids contain a wide range of
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biomarkers, such as circulating tumor DNA (ctDNA),
exosomes, and specific proteins, liquid biopsies have the
potential as a versatile tool for detecting these biomark-
ers and providing valuable insights into disease status.
These advantages establish liquid biopsies as a leading
approach for developing emerging diagnostic tools for
clinical applications.

The promising clinical applications of liquid biopsies
have spurred the development of detection devices for
facilitating their routine use in hospitals and at home.
The most notable example is a biosensor, which converts
the concentration of a biological analyte in a fluidic sam-
ple into a measurable signal such as a change in color,
fluorescence, or electric current [7]. A biosensor typi-
cally consists of three parts: a receptor for recognizing
biomarkers, a signal transducer, and a signal analyzer. In
a biosensor, the receptor selectively recognizes a target
biomolecule, triggering a specific biochemical reaction
on the transducer and finally leads to a readable output.
Based on the working mechanism of the transducer, bio-
sensors can be categorized into several types, including
optical, electrochemical, magnetic, thermal, and piezo-
electric [8-12]. These integrated receptor-transducer
devices provide specific quantitative or semiquantitative
information with high sensitivity, accuracy, and fast turn-
around time [13].

Smart materials change their physical or chemical
properties in response to external stimuli, including ions,
biomolecules, thermal, acoustic, light, electric, and mag-
netic fields. These stimuli-responses can be harnessed to
improve key aspects of detection strategies, such as tar-
get release and recognition, as well as signal transduction
and reporting. Their integration simplifies operations and
enhances biosensing performance compared to conven-
tional biosensors lacking such materials. For example, the
receptor functionalized by ion- or bio-responsive mate-
rials can specifically recognize multiple target analytes
simultaneously without generating interference, enhanc-
ing versatility and selectivity of the sensing performance
[14-16]. In addition, smart materials that are responsive
to light, electrical, or thermal stimuli are capable of sim-
plifying and minimizing the transducing microsystem by
triggering various physicochemical or biochemical reac-
tions [13, 17—-19]. Their obvious changes in physical prop-
erties such as fluorescence and conductivity benefit the
signal readout [20, 21]. Mechano- and thermo-responsive
materials could also serve as signal amplifiers by control-
ling the release of biomarkers [22, 23]. Therefore, smart
materials bring great benefits, such as enhanced selectiv-
ity, versatility, and temporal controllability to biosensors
and pave the way for broader applications.

In this review, we explore how smart materials enhance
the performance and expand the application scope of

Page 2 of 49

biosensors that are specially designed for detecting bio-
markers in bodily liquids (Fig. 1). We provide a system-
atic overview of biosensors based on emerging smart
materials, including mechano-, light-, electro-, mag-
netic-, thermo-, ion-, and bio-responsive types. Next, we
elucidate the responsive mechanisms of these materials
and their working principles when integrated into bio-
sensor systems. This review complements other recent
reviews on the biomedical applications of smart materi-
als, focusing on the latest developments in the creation
of advanced biosensors. We aim to provide researchers
with a clear picture and comprehensive understanding
of how smart materials can be integrated into biosens-
ing systems and how their stimuli-responsive properties
can be harnessed to enhance the performance of biosen-
sors, which can serve as an inspiring reference for further
design of versatile and advanced biosensors.

Mechano-responsive materials enabled biosensors
Mechano-responsive materials, including force-respon-
sive or ultrasound-responsive materials, have gained sig-
nificant attention for their applications in flexible devices
and non-invasive detection in liquid biopsies. In the pres-
ence of mechanical forces, piezoelectric materials can
generate electrical signals to monitor blood pressure and
pulse. As a non-invasive mechanical wave, ultrasound
can carry mechanical energy through various mediums.
Thus, motion states of smart materials such as nanoro-
bots can be remotely manipulated to increase the plasma
level of biomarkers, facilitating downstream analysis.
This section summarizes mechano-responsive materials
in biosensing, such as micro- and nanobubbles, acoustic
nanorobots, piezoelectric materials, and liquid metals.

Micro- and nanobubbles

The term micro- and nanobubble usually refers to a hol-
low nanoparticle filled with a gas wrapped by a layer of
functional biomaterials [24]. Depending on their generat-
ing mechanism, nanobubbles can be grouped into three
categories: phase-changeable nanodroplets, gas vesicles,
and engineered microbubbles. Phase-changeable nan-
odroplets are formed by encapsulating nontoxic per-
fluorocarbon (PFC) liquid phase with biomaterials such
as poly(lactic-co-glycolic) acid (PLGA), albumin and
liposomes at the sub-micron scale (Fig. 2A-i) [25]. Due
to its high vapor pressure and low surface tension, the
PEC liquid phase in the phase-changeable nanodroplets
is stabilized at the nanoscale and remains in the liquid
state until triggered by ultrasound [26, 27]. When sub-
jected to sufficient acoustic pressure, these nanodroplets
undergo a liquid—gas phase transition and transform into
nanobubbles. This phenomenon, termed acoustic drop-
let vaporization (ADV), provides a thermodynamically
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Fig. 1 Smart materials enabled biosensors for liquid biopsy and their applications

favorable way to generate nanobubbles in situ, expanding
them to diameters up to ten times their original size [28].

Gas vesicles (GVs) are air-filled protein organelles first
discovered in cyanobacteria in 1965 [29]. GVs typically
adopt cylindrical or spindle-shaped nanostructures with
lengths varying from 100 nm to 2 um and widths rang-
ing from 45 to 200 nm (Fig. 2A-ii). The amphiphilic char-
acteristic of the 3-nm-thick protein shell enables gas to
freely permeate in and out of GVs” hollow nanostructures
while keeping inside free of the aqueous phase. When
the applied acoustic pressure is above the designed criti-
cal collapse pressure of GVs, protein shells are cracked
and air inside is released to the surrounding medium,
resulting in the formation of nanobubbles. Thus, GVs
are expected to serve as seeds for nanobubble produc-
tion [30]. Besides the indirect generating mechanism
above, micro- and nanobubbles can also be manufac-
tured directly. Tiny gas bubbles with a diameter of 1-10
pum are enclosed in the lipid shell, which is covered with
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ligands that interact with the exterior environment (e.g.,
proteins, small molecules and cells) (Fig. 2A-iii). [31, 32]
These engineered microbubbles are biocompatible and
small enough to target a specific region inside capillaries.

The mechanisms and phenomena of nanobubbles
responsive to ultrasounds are various, which gives them a
position in biomedical applications such as cargo delivery
and ultrasound imaging [33, 34]. For the description here
and the discussion in the following sections, we will focus
exclusively on nanobubbles’ applications in biosensing,
their barrier-breaking effect, which indirectly enhances
sensing performance by promoting extratumoral bio-
marker release into bodily fluids [22, 35-38]. As shown
in Fig. 2A, obtained microbubbles would periodically
oscillate with a relatively small deformation in a process
known as stable cavitation if the pressure amplitude of
the acoustic field is below the critical cavitation pressure.
After that, at sufficiently high amplitudes, microbub-
bles would undergo rapid growth and violent collapse
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Fig. 2 Responsive mechanisms of micro- and nanobubbles under ultrasound stimuli and their working principles when applied in biosensors. A
Schematic illustration of the generation of micro- and nanobubbles through i phase-changeable nanodroplets, ii gas vesicles and iii engineered
microbubbles under an ultrasound field. The generated nanobubbles undergo cavitation and final implosion as acoustic pressure increases. B The
working principle underlying nanobubbles’applications in detecting biomarkers in bodily fluids. Their barrier-breaking effect improves detecting
sensitivity by facilitating extratumoral biomarker release. PFC: perfluorocarbon; GV: gas vesicles; ctDNA: circulating tumor DNA; miRNA: microRNA;

cfDNA: cell-free DNA; gPCR: quantitative polymerase chain reaction

(also called inertial cavitation) while causing powerful
mechanical influences. Although there is no consensus
on the cause of the barrier-breaking effect, emerging evi-
dence has demonstrated that this effect is mediated by
stable cavitation [33]. By combining this barrier-breaking
effect of microbubbles with focused ultrasounds (FUS),
sonobiopsy technology has been proposed to help enrich
circulating disease-specific biomarkers for noninvasive
molecular diagnosis. When FUS active microbubbles are
at a targeting site, localized cavitation exerts pressure on
cell connections in biological barrier membranes and
loosens intercellular tight junctions, enabling a transient
increase in permeability to molecules and matter [27].
Therefore, microbubbles can be generated and activated

to cavitate at the targeted position in vivo by FUS in a
non-invasive manner. Such localized cavitation mechani-
cally breaks biological barriers to release biomarkers such
as circulating tumor DNA (ctDNA), microRNA (miRNA)
and cell-free DNA (cfDNA) into bodily fluids like blood,
improving the accuracy and sensitivity of the subsequent
liquid biopsy using real-time quantitative polymerase
chain reaction (qQPCR) and droplet digital polymerase
chain reaction (ddPCR) (Fig. 2B) [39].

Among all biological barriers, particular attractions are
drawn to the blood-brain barrier (BBB), a unique vas-
cular structure characterized by specialized tight junc-
tions. While this endothelial tissue efficiently protects
the brain from unwanted metabolites and pathogens, it
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also prevents brain tumor-derived molecular biomark-
ers from entering the bloodstream [40]. Such a side-effect
leads to poor sensitivity and accuracy of blood-based lig-
uid biopsy (blood LBx) for brain-related diseases due to
deficient concentrations of related circulating biomarkers
in the blood [33, 41, 42]. To tackle this challenge, Chen
et al. developed a FUS-based liquid biopsy (sonobiopsy)
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technique by combining FUS with microbubbles, provid-
ing a complementary approach to improve biomarker
sampling and indirectly enhance detection performance
[43]. A mouse glioblastoma multiforme (GBM) model
was used to compare the plasma levels of cfDNA with
sonobiopsy or conventional blood LBx (Fig. 3A-i). After
sonobiopsy treatment, the cfDNA concentration in
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Fig. 3 Applications of microbubble-assisted focused ultrasound (FUS)-induced BBB opening in biosensing. A Sonobiopsy for minimally invasive
detection of glioblastoma-derived ctDNA. i The system set up. ii-v Concentration of ctDNA and cfDNA in plasma after ultrasound treatment.
Reproduced with permission [43]. Copyright 2022, lvyspring International Publisher. B Ultrasound-mediated BBB opening for increasing cfDNA
plasma level. i Representative fluorescent images of cfDNA plasma level at various time points post sonication on mouse head. ii-iv Optimal
acoustic power and optimal blood collection time post sonication. Reproduced with permission [44]. Copyright 2021, Oxford University Press. BBB:
blood-brain barrier; cfDNA: cell-free DNA; ctDNA: circulating tumor DNA; US: ultrasound only; MB: microbubble only; SS: single sonication; DS:

double sonication
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the blood increased (Fig. 3A-ii) and the plasma level of
mononucleosomal ¢fDNA (140-230 bp) was enhanced
approximately by twofold compared with blood LBx
(Fig. 3A-iii). To further validate the potential for the clini-
cal application of sonobiopsy, ctDNA mutation detection
was conducted in a porcine GBM model. The sonobi-
opsy group showed a 270-fold elevation in the EGFRVIII
ctDNA level (Fig. 3A-iv) and a ninefold raise in the TERT
C228T ctDNA level (Fig. 3A-v). With ddPCR, sonobi-
opsy enhances the diagnostic sensitivity for EGFRVIII
and TERT C228T from 7.14% to 64.71% and from 14.29%
to 45.83%, respectively. This work demonstrated, for the
first time, that sonobiopsy improved the detecting sen-
sitivity of two tumor-specific mutations in both mouse
and porcine GBM models, paving the way for promoting
sonobiopsy to clinical applications.

To obtain a better downstream analysis of glioma-
derived biomarkers, Sonabend et al. investigated the
optimal variables including collecting time for blood fol-
lowing sonication and FUS parameters in an intracranial
glioma mouse [44]. Sodium fluorescein was used to visu-
alize BBB disruption at different time points post sonica-
tion ranging from 2 min to 24 h as shown in Fig. 3B-i. The
increase in acoustic pressure from 0.3 MPa to 0.4 MPa
significantly enhanced the cell-free DNA (cfDNA) con-
centration in plasma from 13.63 ng mL ™" to 36.9 ng mL™*
30 min post-sonication (P =0.0039, Student’s 2-tailed
t-test) (Fig. 3B-ii). Under the same ultrasound param-
eters, cfDNA concentrations significantly increased at
15 min post-sonication, peaked at 60 min (46.54 vs 13.01
ng mL™! for ultrasound only, P= 0.0027, Student’s two-
tailed t-test), and eventually returned to baseline levels by
24 h post-sonication (Fig. 3B-iii). This trend was consist-
ent with the change in fluorescent intensity in Fig. 3B-i.
Figure 3B-iv shows that 2 sequential sonication (DS)
treatments significantly elevated cfDNA levels compared
to single (SS) treatments (64.32 vs 22.54 ng mL™!, P=
0.0166, Student’s 2-tailed t-test). This study demonstrated
that cfDNA released by FUS-mediated BBB opening into
the blood circulation is influenced by time and sonica-
tion parameters, providing important considerations for
future investigations relative to US-mediated BBB open-
ing-induced enrichment of brain tumor biomarkers.

Acoustic nanorobots

Acoustic nanorobots represent a series of artificial
nanomachines that convert acoustic energy into mechan-
ical motions. According to their structure, nanorobots
can be roughly divided into four categories: sphere,
rod/wire, tube, and cup/shell. Inspired by machines in
nature such as vesicular, spermatozoa and bacteria, vari-
ous functionalized nanoparticles are designed to fur-
ther improve their stability, biocompatibility, and intake

Page 6 of 49

efficiency in vivo (Fig. 4A). In addition to the structure
of acoustic nanorobots, careful consideration should also
be given to their size and components. The size is related
to resonance frequency, motion speed, and bioavail-
ability. Smaller sizes (lower than 200 nm) typically allow
nanomotors to have greater propulsion speed and higher
efficiency in penetrating deep organs, while larger-sized
acoustic nanorobots are more stable and have a larger
surface area for immobilizing biomolecules [45]. As for
the components, metal materials are currently preferred
because they can receive more acoustic radiation than
polymers [46]. These design considerations of acoustic
nanorobots have been comprehensively discussed in pre-
vious review articles [47].

The actuation mechanisms of ultrasound-driven
nanomotors vary according to their geometric structures.
Nanosphere in an acoustic field is propelled by acoustic
radiation force [48]. In this process, the nanosphere is
pushed to neighboring pressure nodes (PN, i.e., points
in a standing acoustic wave where the pressure remains
minimal or zero) and assembled into a shape consistent
with that of acoustic PNs. By modulating the frequency
and phase of applied acoustic waves, PNs’ positions in the
acoustic wavefield are dynamically changed, and arbitrary
motions of the nanosphere in the planer are achieved [49,
50]. Researchers have found that Janus microspheres can
twist and partially rotate under ultrasound, which can be
explained by the uneven pressures of both sides and the
density asymmetry-induced streaming flow on its bound-
aries [51]. For nanorods with a concave and convex end,
the non-uniformity in shape could lead to an uneven dis-
tribution of acoustic pressures along the rod, producing
the propulsion [52]. Tubular nanorobots are triggered by
ultrasound-induced vaporization. Phase change materi-
als (i.e., PFC emulsions) can be loaded inside nanotubes
and generate nanodroplets in situ [53]. In the presence
of short ultrasound pulses, acoustic microdroplets will
vaporize and generate a large amount of energy, which
shoots the nanotube in a “bullet-like” manner. This pro-
jectile motion based on ultrasound-induced vaporiza-
tion can achieve a promising average velocity of 6.3
m s~ (about 58,000 body lengths s™!) [53]. As for the
nanoshell, the motion mechanism is attributed to acous-
tic streaming induced by both its asymmetric structure
and oscillating bubbles. Gas nanobubbles can be trapped
and stored inside the cavity of the nanocup, and can be
excited to cavitate internally by FUS. This oscillating
bubbles-induced streaming allows controlled on-demand
propulsion and rotational motion of the nanoshell [54].

Based on the above mechanisms, motion modes of
nanorobots could be manipulated by ultrasound in a
non-invasive and biocompatible way. Therefore, acous-
tic nanorobots functionalized with fluorescent probes
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can serve as intracellular sensors to detect biomark-
ers in real-time (Fig. 4B-i). This “OFF-ON” fluorescent
strategy develops the accuracy for sensing biomarkers
with an extremely low concentration at the single cell
level [55-57]. In addition, through amplifying fluores-
cent signals by aggregation-induced emission, acoustic-
based assembly of functionalized nanorobots is another
method to improve detecting sensitivity (Fig. 4B-ii) [58—
60]. For example, Califano et al. presented an ultrasound-
powered gold nanowire (AuNWs)-based nanomotor
for detecting Human papillomavirus (HPV)-associated
oropharyngeal cancer (OPC) in vivo [61]. These AuN'Ws
comprised graphene oxide (GO) and dye-labeled single-
stranded DNA (ssDNA). This fluorescent probe was
quenched by hindering the FRET effect due to the n—m
interaction between GO and the dye-labeled ssDNA. In
the acoustic field, AuN'Ws were internalized into human
OPC cells and specially combined with HPV16 E6
mRNA, resulting in a fluorescence recovery due to the
displacement of the quenched dye ssDNA probe from the
surface of AuNWs (Fig. 5A-i). The fluorescence recovery
ratio increased with the higher target RNA concentra-
tions, and HPV-positive cells in the ultrasound group

showed greater fluorescence recovery at all concentra-
tions compared to static and control groups (Fig. 5A-ii).
Incubated with nanomotors, HPV-negative cells as con-
trol produced neglectable fluorescence (0.01 au), while
HPV-positive cells in the static group produced a detect-
able signal (0.43 au). After ultrasound treatment for 15
min, HPV-positive cells produced a signal 2.3 times more
intense than that in the static group (FI, 0.98 au) due to
more efficient nanomotor penetration into cells (Fig. 5A-
iii, iv). This work demonstrated the promising application
of the nanomotor-based “OFF-ON” fluorescent strategy
in HPV-OPC detection in vivo.

As another notable example, Zhang et al. proposed a
ratiometric fluorescence platform enhanced by acoustic
radiation forces for qualifying carcinoembryonic anti-
gen (CEA) levels in human saliva samples (Fig. 5B-i)
[62]. Red-fluorescent europium metal—organic frame-
works (Eu-MOFs) conjugated with anti-CEA mono-
clonal antibody (Eu-MOF-mAbl) nanospheres and
green-fluorescent  fluorescein  isothiocyanate-labeled
anti-CEA monoclonal antibody, termed as mAb2-FITC,
act as the capture and reporter probes, respectively. In
the presence of target CEA, the dual-emission sandwich
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complex Eu-MOF-mAb1-CEA-mAb2-FITC was formed.
As the target CEA increased, the green fluorescence of
the dual-emission sandwich complex was dramatically
enhanced, leading to a change in the sample fluores-
cence from the red of the capture probe to the green of
the reporter probe. This shift was significantly amplified
and enabled visual detection even by the naked eye under
ultrasound activation. In the experiments, the fluores-
cence color of the aggregated nanospheres considerably
changed from red to green with the increasing concentra-
tions of CEA (0-30 ng mL™") under a 254 nm UV lamp

(Fig. 5B-ii) With the assistance of a smartphone, the ratio
value of the green-to-red channel (G/R value) was ana-
lyzed, which exhibited a good linear relationship with the
CEA concentration in the range of 0.1-20 ng mL™" with
R?= 0.9908 (Fig. 5B-iii). In quantifying the CEA concen-
tration in the saliva samples of two volunteers, the results
from this integrated ratiometric fluorescence platform
were consistent with those from the commercial enzyme-
linked immunosorbent assay (ELISA) kit (Fig. 5B-iv).
This investigation designed an integrated dual-emission
platform and lowered the limit of detection to 0.012 ng
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mL ™! with the help of acoustic-induced aggregation, vali-
dating the usefulness of the proposed strategy for clinical
and household usage.

Piezoelectric materials

Piezoelectric materials have been receiving increasing
attention since it was first proposed by the Curie broth-
ers in 1880 [63]. The piezoelectric effect can be observed
in both organic (e.g., polyvinylidene fluoride (PVDF)
polymer) and inorganic (e.g., lead zirconate titanate
(PZT)) materials with a non-centrosymmetric structure
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(Fig. 6A-i,ii). Such an asymmetric arrangement of atoms
leads to electric dipoles within the material that keep
the material electrically neutral when free of mechani-
cal force. However, when piezoelectric materials are
subjected to stress, the balance state of electric dipoles
is disrupted due to the displacement of atoms or mol-
ecules from their original position, and hence net posi-
tive and negative charges appear on the opposite sides of
the materials (Fig. 6A-iii). Because this conversion from
mechanical force to potential change is a molecular phe-
nomenon, piezoelectric materials are sensitive to minor

iii
Pb2*
o
Tit+, Gré

Current

@

PZT Compression

Biomarker

Signal

> >

Generation

Blood propagation-induced
mechanical deformation

Detecting

Potential difference

Processing

Integration of filtered
arterial-pulse waves

sensing

Blood pressure

Branchial artery

) | I

)
| S [ P | A
it |t [ A~ i~ i~ i
Wi ion e el

. |

|
Nt fh S|~
g 1% \‘rn

|
i1
el

| |

LAl I

1 M

T
o el o Pl Bl Sl F e

~ N NN
> Bending 0° Bending 30° Bending 45° Bending 30
£l 11 1 1 | I
T05s
& 30
1} v
= 20|
at E— I
2 AN
€ 10 s 2 2
E - - = =
Vein <~ Sensor  Backpressure E’ g - 5 N
Supporting E T e I -~ -
bone w N ) A 3.l
10 Y 32
i
Blood vessel 20 Systolic BP Diastolic BP

Fig. 6 Representative examples of piezoelectric materials and their application in biosensing. A-i, ii Schematic illustrations of two types

of piezoelectric materials and iii the piezoelectric property. B The working principle underlying piezoelectric materials application in detecting
blood pressure. C A thin, soft, miniaturized system (TSMS) using piezoelectric material PZT 5H for continuous wireless monitoring of artery blood
pressure. i, ii Schematic illustration of the blood propagation and generated piezo response. iii, iv The piezo response and the converted pulse
waveform. v The BP measurement accuracy of the TSMS compared with commercial CNAP. Reproduced with permission [67]. Copyright 2023,
Springer Nature. PVDF: polyvinylidene fluoride; PZT: lead zirconate titanate; BP: blood pressure; CNAP: continuous noninvasive artery pressure



Gao et al. Journal of Nanobiotechnology (2025) 23:477

mechanical deformation and can sense blood pressure
(BP) and pulse (Fig. 6B) [64—66].

In 2023, Yu et al. reported a thin, soft, miniaturized
system (TSMS) for continuous monitoring of arterial BP
[67]. This TSMS adopts piezoelectric thin layers (PZT
5H) as the sensors to convert the arterial deformation
generated by blood propagation to piezo voltage (Fig. 6C-
i). To further increase the mechanical deformation, a
micro airbag was built into the wireless wristband to pro-
vide powerful backpressure and close-looped feedback
for the piezoelectric sensor array (Fig. 6C-ii). Using this
TSMS system, the piezo responses of blood propaga-
tion in the radial and brachial artery under 0-45° bend-
ing deformations were obtained and then processed
by a mathematical model to form pulse waveforms
(Fig. 6C-iii,iv). After model development, the TSMS sys-
tem exhibited an accuracy of —0.05 +4.61 mmHg for
systolic blood pressure (SBP) and 0.11 +3.68 mmHg for
diastolic blood pressure (DBP), meeting the Grade A
classification according to the British Hypertension Soci-
ety (BHS) standard. In the measurement accuracy test of
this TSMS system, a commercial continuous noninvasive
artery pressure (CNAP) monitoring system was chosen
as a reference, and continuous blood pressure monitor-
ing for 2 min was conducted on 87 volunteers. The sta-
tistical error distribution revealed that most error values
were within +10 mmHg for both SBP and DBP, demon-
strating the TSMS system’s practical utility for precise BP
monitoring (Fig. 6C-v). This work validates the feasibility
and multifunctionality of fully integrated wearable piezo-
electric sensors, paving the way for their popularization
of clinical and commercial applications.

Liquid metals

Liquid metals (LMs), a family of emerging smart
materials, maintain a liquid state below or near room
temperature while offering many unique but useful
properties, such as high electrical conductivity, highly
controllable surface, and morphological transformabil-
ity. LMs are currently applied in the biomedical field as
three typical embodiments: bulk, particle, and compos-
ite [68, 69]. Bulk LM is a single, continuous volume or
stream of LM and can be easily broken into LM par-
ticles due to its low viscosity. By mixing LM particles
with a polymer matrix, flexible LM composites can be
obtained (Fig. 7A). Each LM embodiment has its char-
acteristics and distinctive usage and has been reviewed
in detail elsewhere [70-73]. Both bulk and flexible
LM composites are force-responsive and can express
a resistance change when subjected to external stress.
The first method for achieving the resistance change is
filling LM into a soft elastomer microchannel (Fig. 7B-
i). A pressure onto the composite would decrease the
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cross-sectional area of the microchannel, resulting in
a rise in electrical resistance along the microchannel
following Ohm’s law [74, 75]. The other way is using
flexible LM composites, in which LM particles are
separated by an elastomer matrix that is inherently an
insulator (Fig. 7B-ii). At sufficient pressure, those iso-
lated LM particles will be pushed to connect and form
a conductive path, thereby reducing the resistance.
This force-responsive property enables LM a promising
application in sensing bending-induced pressures such
as BP (Fig. 7C) [76-78].

To improve the sensitivity of traditional liquid metal-
based pressure sensors, Park et al. proposed a wearable
liquid metal-based pressure sensor for cuffless blood
pressure estimation (Fig. 7D-i) [79]. A rigid microbump
array was integrated into the LM composite to increase
the local deformation of the microchannel (Fig. 7D-ii).
Results in Fig. 7D-iii and iv) indicate that the LM pres-
sure sensor with a microbump has a better response
to pressure compared to the one without a micrbump.
Based on the pulse transit time (PTT) method, systolic
BP (SBP) and diastolic BP (DBP) were calculated using
this LM pressure sensor before and after the exercise,
respectively (Fig. 7D-v, vi). After exercise, the estimated
SBP and DBP were 138.4 +4.2 and 66.8 +1.4 mmHg,
respectively, compared to 135 and 67 mmHg measured
by an automatic digital blood pressure monitor with a
cuff. This work demonstrated the significant potential
of LM-based pressure sensors for use in electronic skin
and other health monitoring applications.

In summary, ultrasonic mechanochemistry leverages
the powerful capacity of ultrasound such as its deep
penetration in vivo, precise and remote manipulation of
mechanophores, and high biocompatibility. Ultrasoni-
cally activated micro- and nanobubbles are regarded as
promising tools for improving liquid biopsies’ sensitiv-
ity by enriching rare analytes in bodily fluids by opening
biological barriers. However, this technique requires
a high-power and bulky ultrasound system to localize
and selectively active micro- and nanobubbles, which
limits its general popularization. Acoustic nanorobots
can be propelled into cells to achieve single-cell detec-
tion, while the pre-treatment time should be further
decreased to facilitate practical usage. Although these
nanorobots can also be assembled into clusters by
acoustic radiation force to enhance fluorescent signal
intensity, other acoustics-induced microphenomena
(e.g. acoustic streaming) must be carefully curbed for
this aim. Wearable electronics based on force-respon-
sive materials can detect blood pressure in real-time.
Future research can be expected to expand their bio-
marker testing range.
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Light-responsive materials enabled biosensors

Light-responsive materials are among the most
researched and developed smart materials, which
exhibit tunable emission or photoelectric charac-
teristics in response to external light stimuli. These
properties are intrinsic in certain metallic and dielec-
tric materials.80 Researchers have also been commit-
ted to designing and constructing artificial materials
at the molecular level to achieve these light-triggered
processes [80, 81]. As light wavelength and inten-
sity can be precisely controlled and the instrument
can be easily miniaturized, light-responsive materials

play an essential role in the field of analytical chemis-
try to develop integrated devices for detecting various
biochemical substances in bodily fluids. This section
introduces four innovative light-responsive materials:
artificial enzyme mimics, quantum dots, metal—organic
framework, and plasmonic nanoparticles, which com-
monly serve as signal transducers (i.e., translate the
information related to the targeted biomarker into a
readable output) or signal amplifiers (amplify and pro-
cess the output signal) in the optical and photoelectro-
chemical biosensors.
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Artificial enzyme mimics

Natural enzymes are widespread and participate in vari-
ous biochemical reactions. As natural catalysts, they
could accelerate a process at a rate 10'-fold faster than
that of an uncatalyzed reaction, offering high catalytic
efficiency, selectivity, and stereocontrol [82]. Despite
these merits, natural enzymes suffer from poor thermal
stability, less versatility toward substrate choice, lack of
stability under environmental conditions, and expen-
sive extraction and purification [83]. To address these
shortcomings, the artificial enzyme mimics were devel-
oped with high stability and reusability. One intriguing
branch is the light-responsive artificial enzyme mimics,
which incorporate a photo-switchable unit around the
active-site mimic to enable reversible catalytic activities
under light stimulation. The photo-responsive conju-
gated microporous polymer (CMP) is a typical example
(Fig. 8A-i). This kind of porous material possesses mul-
tilevel pore structures, strong light absorption, and high
specific surface area, facilitating the generation of reac-
tive oxygen species (ROS) such as superoxide anion
(O,7), hydroxyl radical (-OH), and singlet oxygen (*O,)
[84]. Under light irradiation, CMP can efficiently catalyze
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the oxidation of chromogenic substrates followed by
a change in the solution color. This amplifies the out-
put signal and improves the detection accuracy dur-
ing colorimetric analysis of metabolites in bodily fluids
[85-88]. Photocatalytic properties can also be found in
some nanomaterials themselves. Nanozymes, particu-
larly those made up of metals, exhibit excellent photo-
thermal conversion efficiency. Benefiting from the large
surface area and high electron transfer ability, carbon-
based nanozymes can maintain and enhance the cata-
lytic activity of both natural enzymes and nanozymes
[89-92]. The intrinsic mesoporous properties of MOF-
based nanozymes endow their efficient mass transport
for catalysis. (Fig. 8A-ii) [93-95]. Due to the localized
surface plasmon resonance (LSPR) effect, nanozymes can
generate heat stimulated by light and act as signal trans-
ducers in biosensors [96—98].

As introduced above, the current photocatalytic
mechanism of artificial enzyme mimics can be mainly
classified into two types: ROS-based photocatalysis
and LSPR-based photothermal effect. Therefore, artifi-
cial enzyme mimics are promising tools for amplifying
colorimetric signals by oxidizing fluorescence oxidase
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resonance



Gao et al. Journal of Nanobiotechnology (2025) 23:477

substrates or for translating changes in targeted con-
centration into thermal output (Fig. 8B) [99-101]. For
example, Su et al. designed a photo-sensitized CMP
containing  pyrazino[2,3-g]quinoxaline = (CMP-PQx)-
based fluorescent sensor for quantifying urease in saliva
samples (Fig. 9A-i) [86]. The CMP-PQx effectively cata-
lyzed the oxidation of nonfluorescent thiamine (TH) to
fluorescent thiochrome (TC) by generating O, radical
in response to visible-light (Fig. 9A-ii). In addition, this
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oxidation exhibited high pH-responsive performance
(Fig. 9A-iii). Thus, a fluorescence sensor was proposed for
analyzing urease, which catalyzes the hydrolysis of urea
to yield a pH increase and hence a rise in the fluorescence
intensity of the CMP-PQx/TH catalytic system (Fig. 9A-
iv). The fluorescence intensity ratio (F/FO) has a linear
relationship with urease concentration in the ranges of
2.0-10.0 U L' (R*= 0.996) and 10.0-60.0 U L™ (R*=
0.992), respectively, with a LOD of 0.42 U L™! (Fig. 9A-v).
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This work introduced the ability of light-responsive CMP
as an oxidase mimic for constructing sensors for biologi-
cal analysis.

More recently, Chen et al. developed a colorimet-
ric sensor to achieve exosomal microRNA-21 (miR-21)
detection based on the light-triggered oxidase mimic
activity of 10-methyl-2-amino-acridone (MAA) (Fig. 9B-
i) [102]. Under the irradiation of visible light, MAA pro-
duced photo-induced hole (h*) and superoxide anion
(O,7) to catalyze the oxidation of colorless 3,3,5,5"-Tetra-
methylbenzidine (TMB) to blue oxidized TMB (TMB,,).
Such photocatalytic process was selectively inhibited by
Cu®* and then recovered after adding DNA (Fig. 9B-ii).
With the help of duplex-strand specific nuclease (DSN)-
assisted target recycling amplification, biotinylated DNA
capture probes (Cps) hybridized with targeted miR-
21 and released the guanine-rich sequence ([G,T]s) to
restore the oxidase mimic activity of MAA hindered by
Cu®*. This strategy allowed for quantifying the exosomal
miR-21 concentration in the range from 50 to 3000 fM,
showing a good linear relationship to UV-vis absorb-
ance (R?= 0.9946) with the LOD of 44.76 fM (Fig. 9B-iii).
Similarly, Wei et al. presented a photosensitized metal—
organic framework (PSMOF) as a colorimetric probe
for the detection of glutathione (GSH) in cells (Fig. 9C-i)
[93]. This PSMOF catalyzed the oxidation of TMB by for-
mulating -‘OH and O, under light simulation, yielding a
shift in solution color from colorless to blue (Fig. 9C-ii).
This oxidase-like activity of the PSMOF can be inhibited
by GSH, resulting in a drop in the characteristic UV-vis
absorption of TMB,, as the GSH concentration increases.
Inspired by this phenomenon, a colorimetric biosensor
was established using the PSMOF/TMB catalytic system,
which exhibited a linear relationship between the absorb-
ance at 652 nm and GSH concentration in the range
from 0 to 20 pM (R?*= 0.9842) with a LOD of 0.68 uM
(Fig. 9C-iii).

Quantum dots

Quantum dots (QDs) are a kind of semiconducting
nanocrystalline materials with unique optical and elec-
tronic properties. According to the component, QDs can
be classified into metallic QDs (e.g. SiO,-surrounded
PbSe, ZnSe, or CdS core materials) and cadmium-free
QDs (e.g. graphene quantum dots (GQDs), carbon
quantum dots (CQDs) and carbonized polymeric dots
(CPDs)) (Fig. 10A) [103-107]. Their optical character-
istics are mainly determined by size and structure. For
example, QDs with a diameter of 5.0-6.0 nm exhibit
orange or red color while smaller QDs with a 2.0-3.0 nm
diameter emission blue and green color upon light irra-
diation [108]. Such size-tunable optical proprieties make
QDs attractive materials as fluorescent probes in optical
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biosensors [109-114]. QD-based fluorescent/biolumines-
cent biosensors typically involve techniques as follows:
fluorescence resonance energy transfer (FRET), lumi-
nescence resonance energy transfer (LRET), biolumines-
cence resonance energy transfer (BRET), fluorescence
polarization (FP) and quenching of QD fluorescence
(Fig. 10B).

FRET is a non-radiative energy transfer process from a
fluorescence donor to an adjacent fluorescence acceptor
at a distance of <10 nm [115]. In the presence of targeted
biomarkers, the FRET process is initiated by the forma-
tion of the donor—acceptor pair closer enough to achieve
dipole—dipole interactions, resulting in a change in fluo-
rescence signal under light irritation [116, 117]. FRET-
based biosensors necessarily incorporate an external light
source, which is unfavorited for integration and minimi-
zation. To address this limitation, LRET is proposed by
replacing the fluorescence donor with a luminophore
to generate emission light to stimulate the fluorescence
acceptor. Similarly, BRET is also a potential alternative to
FRET, where bioluminescent luciferase is chosen as the
energy donor [118]. In the above-mentioned RET-based
biosensors, QDs can act as donor fluorophores or accep-
tor fluorophores, offering advantages such as high bright-
ness, photostability, and detective sensitivity [119-121].
Fluorescence polarization (FP) is a phenomenon in which
the intensity of emission light from a fluorophore varies
along different axes of polarization. Such fluorescence
anisotropy is inversely proportional to the molecular
rotation, which is influenced by the size and weight of
the fluorophore [122, 123]. When exposed to light, the
interactions between QDs and specific target analytes
could be investigated by calculating the emission inten-
sity parallel and perpendicular to the polarization plane
of the excitation light. As for biosensors based on the
quenching of QD fluorescence, the essence is to hinder
the charge transfer between excited QDs and acceptors
or disrupt the formation of a close donor—acceptor pair
[124, 125].

In addition, QDs can also serve as photoactive mate-
rials in photoelectrochemical (PEC) sensors (Fig. 10B).
Upon light illumination, electron-hole pairs are gener-
ated at the QDs’ surface. Then the generated electrons
move to a positively charged electrode/solution-sol-
uble electron acceptor, forming an anodic/cathodic
photocurrent [126]. Through this process, the chemi-
cal information from a specific biomolecules-induced
biorecognition reaction is successfully converted into a
photoelectrical current. Similar to size-tunable optical
proprieties, the bandgap of the QDs can be adjusted by
their size. As the size of QDs reduces, the energy differ-
ence between energy bands rises, resulting in discrete
energy and a larger band gap. This characteristic can be



Gao et al. Journal of Nanobiotechnology (2025) 23:477

A
1 PbSe, ZnSe, CdS, etc. Sio,
1
1
1
1 Template
" A
1
1
I l
1
1
| s
1
|
N o o o o e e e e e e e e e e e e e e e e e e e e e e e e
Metallic QDs
B

Biomarker
Recognition

»>

Sandwich immune complexes

Hybridization of probes with targets

Bioluminescence resonance energy transfer
Photoelectrochemistry
Quenching of QDs fluorescence

Fluorescence polarization

Signal Generation by
Light Stimulation

Fluorescence resonance energy transfer

Luminescence resonance energy transfer

Page 15 of 49

o - —— = = = - ——— = = = = ——

I "
: L C atom Polymers Small molecules :
1
1
p 1
I e iy R .
[000.00.00. 40 & :
00 0000 0000 QY. - 1: oy |
P T T e |
I OO0 Ot
Row oo o o IRANOH |
AP 4 SRR |
1
1
' GQDs cabs CPDs ]
Cadmium-free QDs
Signal Biomarker
» Readout )) sensing

Electric current Nucleic acids

Fluorescence HIV
Glutathione
Cortisol

Urease

lons, etc.
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used for multichannel detection to enhance the detection
efficiency of QDs-based PEC sensors. Combining other
advantages such as narrow emission spectra, high photo-
conversion efficiency, and easy surface modification, QDs
are considered promising alternatives to organic fluoro-
phores in PEC sensors [127, 128].

For example, Xie et al. reported a “signal-on” PEC bio-
sensor based on lead selenide (CdSe) QDs-decorated
zinc indium sulfide (Znln,S,) nanosheets for detecting
adenosine triphosphate (ATP) (Fig. 11A-i) [129]. Under
visible-light irradiation, the CdSe QDs-modified ZnIn,S,
showed a higher PEC activity compared with CdSe QDs
PEC biosensor, CdSe/ZnIn,S,/ITO was modified with
AuNP labeled complementary DNA strand (c-DNA),
which formed double-stranded DNA after hybridizing
with aptamers. This double-stranded DNA acted as a
spacer to reduce the photocurrent by increasing the dis-
tance between CdSe QDs and AuNPs, thereby inhibiting
exciton energy transfer between them. In the presence
of ATD, the aptamer was dissociated from the double-
stranded DNA. As a result, the PEC phenomenon can be
recovered due to the close contact between AuNPs and

CdSe QDs. The photocurrent of the aptamer/monoeth-
anolamine (MEA)/AuNP-c-DNA/CdSe/ZnlIn,S,/ITO
system raised accordingly at rising ATP concentra-
tions (Fig. 11A-iv). A good linearity was found between
the logarithm of the ATP concentration ranging from
2x 107* to 100 nM and the photocurrent change (R*>=
0.9924) with a LOD of 0.1 pM (Fig. 11A-v).

Diaz et al. designed a QD-FRET reporting complex to
quantitatively analyze nucleic acids [130]. This strategy
utilizes a chimeric peptide-peptide nucleic acid (pep-
tide-PNA) to conjugate dye-labeled nucleic acid hairpins
to ZnS-coated QDs, where QD525 and Cy3 acting as
FRET donor and acceptor, respectively (Fig. 11B-i). Here,
QD525 referred to a CdSe/CdS/ZnS core/shell/shell
QD with an emission peak near 528 nm. QD525/DNA
hairpin (DHP)-Cy3 complex emitted the fluorescence
of Cy3 under 350 nm excitation because of the FRET.
While exposed to targeted nucleic acids, the Cy3 dyes
were released from the complex, disrupting the closer
contact between the donor and the acceptor. Therefore,
FRET was curbed and only fluorescence of QD505 was
detected (Fig. 11B-ii)). Based on the method, the con-
centration of ssDNA and lcrV RNA was determined by
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detecting the photoluminescence (PL) ratio of Cy3 to
QD525 (Fig. 11B-iii-vi). These ratiometric reporters were
capable of pM target detection with a LOD of 50 pM and
100 pM for target DNA and RNA, respectively. More

recently, Zhang et al. proposed a single QDs-FRET bio-
sensor to measure the METTL3/14 complex activity in a
single cell [131]. The METTL3/14 complex served as the
trigger to initiate FRET between the QD605 donor and
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Cy5 acceptor by facilitating the formation of the QD605-
double-stranded DNA (dsDNA)-Cy5 nanostructure,
resulting in an increase in the fluorescence intensity of
Cy5 when illuminated by a 405 nm laser (Fig. 11C-i). The
Cy5 fluorescence intensity improved as the METTL3/14
complex concentration increased (Fig. 11C-ii), showing
an excellent linear dependence on the logarithm of the
METTL3/14 complex concentration from 1.0 x107!* to
1.0 x10™° M (R*= 0.993) with a LOD of 3.11 X107/ M
(Fig. 11C-iii).

Metal-organic framework

Among all porous materials, metal-organic frameworks
(MOQOFs) have received considerable attention due to their
extraordinary porosity and surface area. This porous
structure allows the construction of light-responsive
MOFs by encapsulating functional guests into MOF
cavities. Luminescent MOF (LMOF) is a typical exam-
ple, which emits fluorescence under light stimulation
(Fig. 12A-i). The diversity of luminescent particle (LP)
guests, such as fluorescent dyes, perovskites, and QDs,
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effectively broadens the functionality and application in
luminescence sensing of host—guest LMOFs [132]. MOFs
can also be used in PEC sensors as photoactive materials
or signal-amplifying molecules due to the excellent mass
transfer properties enabled by their ultra-high porosity
(Fig. 12A-ii) [133].

The principle of LMOF-based biosensors is similar to
that of QDs-based fluorescent biosensors, as described
in Section “Quantum dots” In brief, the concentra-
tion of biomarkers in bodily fluids is determined by the
change in the fluorescence intensity of LMOFs due to
the targeted analyte-induced fluorescence enhancement/
quenching (Fig. 12B) [134]. MOF-based PEC biosensors
focus on effectively converting specific biomarker con-
centrations into current signal through the redox reac-
tion between electrochemical active species in solution
and photoexcited materials upon light irradiation [132].
Thus, the core is to design suitable MOFs to modulate
the charge and energy transfer for the PEC reaction.
For example, when exposed to specific biomolecules,
molecular binding interaction occurring on MOFs would
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induce steric hindrance, which decreases photocurrent
signals by suppressing the diffusion of electron donor/
acceptor to the MOFs [133]. Other strategies, includ-
ing competitive electron transfer, regulation of distance
between the signal label and modified electrode, and con-
sumption of electron donor/acceptor, were comprehen-
sively summarized in recent reviews [17, 133, 135].

Consequently, light-responsive MOFs are ideal mate-
rials for the construction of biosensors [136—-139]. For
instance, Luque et al. designed a dual-emissive MOF-
biosensor to quantitively analyze glutathione (GSH)
(Fig. 13A-i) [140]. Two types of QDs were encapsulated
into the zeolitic imidazolate framework (BYCDs@ZIF-
8) to fabricate the ratiometric probe, which emitted blue
and yellow fluorescence upon excitation at 365 nm. The
intensity of blue fluorescence can be quenched by Cu**
without affecting the intensity of yellow fluorescence. In
the presence of GSH, the blue fluorescence of the Cu®*-
BYCDs@ZIF-8 system was recovered (Fig. 13A-ii). The
quenching efficiency, defined as [(Fs45/F 140)0/ (Fs5/Faa0)],
exhibited a good linear relationship with GSH concen-
tration in the range of 3-25 nM with a LOD of 0.9 nM
(Fig. 13A-iii). This dual-emissive MOF ratiometric probe
enabled the detection of GSH at subnanomolar levels.
To enhance the PEC performance, Wang et al. combined
the intrinsic merits of europium-based metal organic
framework (Eu-MOFs) with the outstanding conductiv-
ity and local surface plasmon resonance (LSPR) of gold
nanoparticles (AuNPs) for sensing alpha-fetoprotein
(AFP) (Fig. 13B-i) [141]. Under white light irradiation,
Eu-MOF@AuNPs with anti-AFP attachment exhibited a
specific photocurrent response. This photocurrent signal
was curbed due to the steric hindrance induced by the
immunocomplexes of anti-AFP and AFP (Fig. 13B-ii).
As a result, the photocurrent gradually decreased with
increasing AFP concentration (Fig. 13B-iii). The photo-
current decrement (AJ) and the logarithm of AFP con-
centrations (IgC,pp) exhibited a linear relationship (R*=
0.991) with a LOD of 0.16 pg mL ™.

Plasmonic nanoparticles

Plasmonic nanoparticles (NPs) are another important
category of light-responsive materials. These NPs are
mainly made of plasmonic metals, semiconductors, and
dielectric metals in diverse structures at the nanoscale,
displaying optical, electrical, and catalytic properties
that are significantly different from those of the bulk
counterparts (Fig. 14A) [142]. For example, under an
external illuminating light, a collective oscillation of free
electrons occurs on the surface of plasmonic NPs due to
their large specific surface areas and space restriction on
free electrons [143]. When the frequency of the incident
light coincides with the inherent frequency of the free
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electrons, the resonance is formed, which is termed local-
ized surface plasmon resonance (LSPR). LSPR generates
plasmonic resonance peaks in the absorption spectra
[144]. The peak wavelength depends on the morphology,
size and composition of plasmonic NPs [145]. Therefore,
based on LSPR, plasmonic nanoparticle-nanoparticle
interactions can be characterized by the absorbance shift.
LSPR also enables metallic plasmonic NPs to enhance the
fluorescence intensity of fluorophores located near them,
which is named metal-enhanced fluorescence (MEF)
[146]. MEF is sensitive to the distance between metal and
fluorophore, providing a way for constructing fluorescent
biosensors. The other extensively exploited optical phe-
nomenon of plasmonic NPs is surface-enhanced Raman
scattering (SERS). When the molecules are adsorbed
onto corrugated plasmonic NPs, the inelastic scattering
of photons is greatly enhanced by factors up to 10° or
even larger [147]. As a result, a variation of Raman peak
intensity can sensitively reflect the analyte-plasmonic NP
connection.

These properties of plasmonic NPs are beneficial for
improving the sensitivity and lowing LOD of biosensors.
LSPR is a promising tool for producing colorimetric sen-
sors. As mentioned above, the absorbance of plasmonic
NPs varies with their morphology, size, and composi-
tion, causing a color change in solutions containing these
NPs. Therefore, specific biomarkers can be quantitatively
analyzed by detecting the color variation of solution sam-
ples induced by analyte-triggered aggregation or surface
modification of plasmonic NPs (Fig. 14B). MEF occurs
only when the distance between metallic plasmonic NPs
and fluorophores is within 5-90 nm. This distance could
be extended or shortened by the formation of analyte-
plasmonic NP complexes, which in turn alters the fluo-
rescence intensity of the plasmonic NPs/fluorophores
system. This enables the development of highly-sensitive
fluorescent biosensors for detecting biomarkers in bod-
ily fluids. SERS biosensors usually assay analytes through
two strategies: direct method and indirect approaches.
The direct way is accomplished with the absorption of
analyte onto plasmonic NPs, which results in a change in
the Raman intensity.

This method requires both a close attachment between
the analyte and the plasmonic NPs and a high Raman
scattering cross-section of the analyte. For biomarkers
with low or null Raman vibration modes, indirect detec-
tion is more suitable. The indirect detection involves the
SERS spectrum shifts of a metabolite, reaction product,
or reporter molecule (RM) that can reflect the concentra-
tion of the target biomarker [147-149].

Su et al. designed a portable colorimetric sensor
based on the LSPR mechanism for detecting colorec-
tal cancer-associated miRNAs [150]. In the presence
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of target miRNAs, two kinds of plasmonic NPs assem-
ble into heterostructures, exhibiting obvious struc-
ture-mediated color changes according to LSPR
(Fig. 15A-i). Urine and serum samples were tested to
investigate the sensitivity and accuracy of this sensor.

In the urine samples, the imaging color changed from
red to blue (Fig. 15A-ii). The concentration of target
miRNA showed a linear relationship with the imaging
intensity in the green channel (R*= 0.963) (Fig. 15Aiii).
The results from the serum samples exhibited a similar
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effect (Fig. 15A-iv), and the intensity of these hetero-
structures in the green channel linearly increased with
the concentration of the target miRNA (Fig. 15A-v).

As an example of MEF-based biosensor, Lee et al
proposed a point-of-care testing (POCT) system inte-
grated with a capillary flow-driven microfluidic car-
tridge (CFMC) for the detection of the Parkinson’s
disease biomarker, aminoacyl-tRNA synthetase com-
plex interacting multi-functional protein 2 (AIMP-2)
(Fig. 15B-i) [148]. The fluorescent intensity was signifi-
cantly enhanced by the formation of a detection anti-
body (dAb)-target-capture antibody (cAb) sandwich
structure, where target biomolecules first interacted
with dissolved dAbs and then were captured by cAbs
immobilized on the Au/Ag nanodimple (ND) substrate
(Fig. 15B-ii). As a result, the biosensor signal (AF/F)
exhibited a nonlinear relationship with the logarith-
mic concentration at a range of 1072-10* ng mL™! (R?=
0.98) with a LOD of 0.004 ng mL™™,

Using the SERS mechanism, Zhao et al. developed a
biosensor to quantitively detect free prostate-specific
antigen (f-PSA) by the Raman intensity change of a
reporter molecule (RM) [149]. Silver nanoparticles (Ag
NPs) act as immunocolloidal probes, which were modi-
fied by the RM 5,5 -dithiothio (succinyl subunit-2-ni-
trobenzoate) (DSNB) (Fig. 15C-i). In the presence of
f-PSA, the immunocolloidal probe was captured by the
substrate, leading to a change in the characteristic peak
of DSNB at 1330 cm™! (Fig. 15C-ii). The SERS intensity
ratio (I;350/1,97,) Was raised as the increase of the f-PSA
concentration from 0.1 to 20 ng mL™! linearly (R*>=
0.994) (Fig. 15C-iii).

In summary, light-responsive materials serve as essen-
tial components in constructing multifunctional and
compact biosensors. Artificial enzyme mimics allow bio-
sensors to have a shorter testing time and more detect-
able analytes by catalyzing diverse biochemical reactions.
However, these redox processes mostly rely on the gen-
eration of reactive oxygen species (ROS), leading to poor
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specificity. Even though light-responsive QDs and MOFs
are regarded as ideal materials for signal transducers in
the photoelectrochemical biosensor, they still face chal-
lenges in complex liquid samples with multiple biomol-
ecules such as whole blood. Plasmonic NPs can enhance
fluorescence intensity by approximately 2- to 1000-fold
compared to unmodified systems and reduce the LOD by
30- to 100-fold relative to conventional ELISA methods,
depending on the specific biosensor design and target
analyte [150, 151]. However, the generated output signals
usually require further processes such as RGB analysis
and Raman spectroscopy, posing a challenge in develop-
ing portable and affordable biosensors.

Electro-responsive materials enabled biosensors

Electric manipulation is a favorable and mature tech-
nique that has been extensively exploited in various fields
such as engineering manufacture, automation, and sensor
due to its easy operation, fast response speed, and high
programmability [152]. This technology also has promis-
ing application prospects in the biomedical area by offer-
ing high sensitivity and miniaturized systems. To further
broaden its application in liquid biopsies, smart materials
with the ability to respond to an electrical signal or elec-
tric field by changing their physical or chemical proper-
ties have been created. For example, electro-responsive
materials such as piezoelectric materials and electro-
active polymers (EAPs) deform themselves under electric
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electrochemical biosensors because of their properties of
tunable conductivity and easy modification by functional
groups [155]. Although applications of these electro-
responsive materials in detecting biomarkers in bodily
fluids have been reported by a large number of papers,
they mainly serve as accessories for enhancing the sen-
sitivity and selectivity of biosensors, which is out of this
review’s focus. Therefore, this section provides a brief
description, and a more detailed introduction can refer to
previous reviews [156, 157].

Piezoelectric materials

Piezoelectric materials have the ability to transform
mechanical stimulation into electrical signals, as dis-
cussed in Section “Piezoelectric materials” Conversely,
they can also act as electro-responsive materials [158].
Under an alternating current (AC) voltage, a piezoelec-
tric material generates mechanical oscillation, producing
an oscillating electric field. In 1959, Sauerbrey first dis-
covered that the resonance frequency of a quartz-crystal
oscillator changes as its surface mass. When biomole-
cules are absorbed on a rigid quartz-crystal surface, the
mass accumulation on the quartz surface will cause a
decrease in the quartz oscillation frequency in thickness
shear mode (Fig. 16A). The Sauerbrey equation is given
to define this Sauerbrey relationship:

. . . . . Am = —KAF 1
stimuli, which are used for sensing pressure and strain (1)
[153, 154]. Other materials like conducting polymers
(CPs) and functionalized MOFs act as an ideal matrix in
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Fig. 16 The working principle underlying electro-responsive piezoelectric materials'applications in biosensing. A Schematic illustration
of the decrease in the quartz oscillation frequency of piezoelectric materials when biomolecules are absorbed on their rigid surface. B The working
principle underlying QCM in detecting biomarkers in bodily fluids. QCM: quartz crystal microbalance
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where Am is the mass change [ng cm™2], AF is the fre-
quency shift between the measured frequency and the
fundamental resonance frequency [Hz], and K is a pro-
portionality constant [ng cm™ Hz™']. Based on this Sau-
erbrey relation, Quartz Crystal Microbalance (QCM) has
been extensively used over more than 50 years to quanti-
tively analyze viruses and biomolecules (Fig. 16B). More
detailed principles and comprehensive applications of
QCM can be found elsewhere [159-161].

Conductive polymers

Conductive polymers (CPs) are an important category
of smart materials that respond to an electrical field by
changing shape and size [162]. This property allows them
to be widely applied in the development of lightweight
and flexible actuators, motors, and pressure/strain sen-
sors [153, 154]. Additionally, CPs have drawn attention
in the field of analytical chemistry due to their unique
characteristics, including high conductivity, ease of
modification by functional groups, and biocompatibility
[163-167]. Therefore, CPs can serve as signal enhanc-
ers and converters in electrochemical biosensors for
improving the sensitivity and selectivity of the biosensor
while reducing the effect of interfering species (Fig. 17).
When the target biomarker is captured by the biorecep-
tor immobilized on CPs-coated substrate, CPs convert
the analyte-related information into electrochemical sig-
nals. This measurable signal can be a change in the value
of the electric current, voltage, conductivity, impedance,
or number of electrons exchanged through a redox reac-
tion, resulting in the construction of amperometric [168],
potentiometric [169], conductimetric [170], impedi-
metric [171], and voltammetric biosensors [172, 173].
Recent reviews have systematically summarized CPs’

preparation methods, classifications, and applications in
biosensing [166, 174—176].

Electro-responsive materials-enabled biosensors show
promising perspectives in commercialization and popu-
larization. However, these biosensors also face challenges
related to stability and sensitivity. First, the intrinsic
properties of CPs make them susceptible to external fac-
tors such as pH, humidity, and temperature, which can
alter their conductivity, surface properties, and mechani-
cal integrity over time [177]. Second, biomolecules like
proteins and cells in bodily fluids can nonspecifically
adsorb onto the CPs’surface, an issue commonly referred
to as biofouling, which compromises sensor functionality
and reduces operational lifespan [178]. Third, while high
sensitivity in electrochemical biosensors is often achieved
by incorporating biological recognition elements such as
enzymes, antibodies, or aptamers, poor binding stabil-
ity and adhesion of these elements can result in reduced
selectivity and increased signal noise. Due to the above
factors, the validated operational period during which
the biosensor maintains accuracy and stability is typically
restricted to around two months [166]. Therefore, further
research should prioritize the design and development
of highly stable and sensitive receptor layers for both the
QCM and electrochemical biosensors.

Magnetic-responsive materials enabled biosensors
The magnetic control method is a fast-growing field due
to its biocompatible, non-invasive, and high-throughput
properties. This trend highlights magnetic-responsive
materials, which deform, move, or generate heat upon
exposure to a magnetic field. Magnetic-responsive
materials can be single-component like magnetic nano-
particles (MNPs) made from pure superparamagnetic
iron oxide, or multi-component, such as the composite
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polymer materials doped with MNPs or the MNPs coated
with biomaterials. These smart materials show promis-
ing applications in developing wireless actuators [179],
remote-manipulation robots [180], and magnetocaloric
materials [181]. Magnetic-responsive materials are also
prominent in constructing biosensors used for detect-
ing biomarkers in bodily fluids. Their superparamagnetic
properties make them highly effective for sample enrich-
ment and separation, while their large surface area and
high enzyme-mimicking activity enable significant signal
amplification [182, 183]. In this section, we exclusively
discuss the magnetic-responsive materials that convert
biomarker-related information into readable signals in
biosensors as detecting reporters.

Magnetic nanoparticles

MNPs can be remotely manipulated by an external mag-
netic field, which are usually made from materials with
high saturation magnetizations, such as pure metals, fer-
rites and iron oxide. These NPs with a size ranging from
1 to 100 nm exhibit high surface-area-to-volume ratio
and size-dependent physicochemical properties, endow-
ing MNPs with unique magnetic and electrical proper-
ties [184]. To satisfy the requirement in the biomedical
context, MNPs are further coated with biomaterials to
develop their biocompatibility, colloidal stability and tar-
get selectivity (Fig. 18A-i). These functionalized MNPs
have been used in magnetoresistive (MR) biosensors as
detecting probes (Fig. 18A-ii). Under an external mag-
netic field, MNPs captured on the surface of a giant mag-
netoresistance (GMR) chip would generate a stray field,
leading to a change in the resistance by altering electron
tunneling [184—186].

MNPs-based magnetic particle spectroscopy (MPS)
biosensors have been a fast-growing field in recent years.
In a sinusoidal magnetic field, MNPs exhibit a dynamic
magnetization response and produce a non-linear mag-
netization curve, which can be converted into MPS
spectrum featuring higher odd harmonic amplitudes
and phases after Fourier transformation [187, 188]. This
magnetization response is realized by both Néel and
Brownian relaxation processes of MNPs. Néel process
is the internal flipping of the magnetic moment inside a
stational MNP. In contrast, the Brownian process is the
physical rotation of the MNP’s magnetic moment along
with its hydrodynamic shell outside. Therefore, a change
in MNP’s hydrodynamic size can dramatically influence
the Brownian relaxation time, resulting in a variation
of harmonic amplitude and phase lag on the MPS spec-
trum. This different rotational behavior of MNPs under
the external magnetic field gives the two processes dis-
tinct roles in MPS-based applications [189-191]. The
dominant relaxation of these two processes directly
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depends on many factors such as temperature, viscos-
ity, and hydrodynamic size. In general, MNPs with mag-
netic core sizes smaller than 20 nm are Néel relaxation
mechanism-dominated [192]. Due to their small size and
unique rotational property, an increase in the hydrody-
namic size of the MNPs through biomolecule-induced
aggregation does not affect their MPS spectra. Therefore,
the Néel relaxation-based MPS biosensor, also termed a
surface-based MPS biosensor, needs the help of a sand-
wich bioassay technique to capture MNPs for quantifying
analytes (Fig. 18A-iii). When magnetic core size increases
above 20 nm, MNPs undergo Brownian relaxation pro-
cesses. This movement is hydrodynamic volume-depend-
ent. In the presence of target biomarkers, therefore, the
hydrodynamic sizes of MNPs are increased by the ana-
lyte-induced aggregation, resulting in a rise in the relaxa-
tion time. Based on this strategy, the volumetric-MPS
biosensor is developed to detect target biomarkers by
detectable changes in harmonic amplitudes, phases, and
harmonic ratios (Fig. 18A-iv).

The diversity of MNDPs-based biosensors enables the
detection of various biomolecules in biofluidic samples
(Fig. 18B) [189, 193-197]. For instance, Gao et al. devel-
oped a GMR immunoassay biosensor with the ability
to simultaneously detect twelve tumor markers within
15 min (Fig. 19A-i) [198]. Using MNPs modified with
two capture antibodies, the immunosensor’s resistance
change had a linear response with the logarithm of ana-
lyte concentrations in the range of 0.5-500 ng mL™" for
carcinoembryonic antigen (CEA) (Fig. 19A-ii), and 0.1-
100 ng mL™! for total prostate-specific antigen (PSA)
(Fig. 19A-iii).

As an example of the volumetric-MPS biosensor, Wang
et al. designed a one-step and wash-free diagnostic plat-
form for quantifying SARS-CoV-2 spike and nucleocap-
sid proteins in liquid phase [199]. The signal from pick-up
coils was amplified by a high-precision instrumentation
amplifier (INA828) and then processed by a one-stage
lock-in implementation, which consisted of a synchro-
nous demodulator followed by bandpass filtering. This
one-stage lock-in implementation enables to improve the
detection sensitivity by removing the feedthrough signals
corresponding to the excitation magnetic field frequen-
cies and only recording the dynamic magnetic responses
of MNPs. Thus, the filtered voltage signal from the lock-
in implementation was converted into MPS spectra after
the discrete Fourier transform (Fig. 19B-i). Polyclonal
antibodies (pAbs)-modified MNPs were specifically
bound to the target protein molecule, leading to a change
in the harmonic amplitudes based on the Brownian relax-
ation mechanism (Fig. 19B-ii). The 3rd harmonics mono-
tonically increased as the concentration of nucleocapsid
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protein decreased from 400 (32 pM) to 3.13 nM (500 fM)
(highlighted green areas in Fig. 19B-iii).

As an alternative technique to enhance the sensitiv-
ity of MPS biosensors, Behr et al. combined a strong
time-varying excitation field H, with a strong constant
offset magnetic field Hp, named Critical Offset Mag-
netic PArticle SpectroScopy (COMPASS) [200]. In the
presence of an Hp, the magnetization response M(Z)
becomes asymmetric. When Hp-<H,, spectral compo-
nent A (Hpc) that is the amplitude of higher harmonic
n at offset magnetic fields Hp shows several nodes and

the corresponding phase plot ¢ (Hpc) of the harmonic
signal exhibited a steep slope of the phase near such
nodes or “dips” (Fig. 19C-i). Therefore, minimal changes
in MNPs'mobility caused by variations in their hydrody-
namic diameter led to a strong detectable phase differ-

LOD of ~2 ng mL™! in detecting SARS-CoV-2-S1 IgG
antibody, which was comparable with the gold-standard
methods ELISA and flow cytometry. Although the direct
correlation between specific harmonic amplitudes and
target biomarker concentrations offers a straightforward
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quantification approach, it is susceptible to bias due
to variations in MNP quantities across samples, espe-
cially in low-concentration detection scenarios [195]. To
overcome this challenge, Wang et al. introduced MNP
quantity-independent metrics and demonstrated the
practicality of MNP Brownian relaxation-based MPS for
biosensing using a streptavidin—biotin binding system
(Fig. 19D-i) [195]. In this approach, the ratio of the 3rd to
the 5th harmonics (R35) at different drive field frequen-
cies was employed as the MNP quantity-independent
metric for characterizing biomarker concentrations. The
R35 ratio increased proportionally with streptavidin con-
centration (Fig. 19D-ii), a trend consistently observed
across various drive frequencies (Fig. 19D-iii). This work
not only improves the accuracy of MPS biosensors by
employing a metric independent of MNP quantity but
also offers an efficient alternative for conducting MPS
bioassay measurements, as it does not require the full
screening of the drive field frequencies.

In summary, magnetic-responsive materials-enabled
biosensors provide a biocompatible, sensitive, and fea-
sible platform to detect and analyze biomarkers in bod-
ily fluids. However, the relaxation time is influenced
by many factors including the shape and size of MNPs.
Thus, for obtaining biosensors with better accuracy,
MNP synthesis methods should be improved to prepare
nanoparticles with higher saturation magnetizations and
better size uniformity. Besides, multiple and repeated
washing is required to improve the accuracy of MNPs-
based MPS biosensors, and the functionality of this kind
of biosensor is not yet fully satisfied. For future clinical
and point-of-care applications, it is important to sim-
plify the testing process, narrow down testing time, and
improve functionality.

(See figure on next page.)
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Thermo-responsive materials enabled biosensors
Biochemical reactions always accompany a change in
energy, usually in the form of heat. Temperature thus is
regarded as a critical standard to quantify biomolecules
involved in biochemical reactions. Thermo-responsive
materials satisfy the need to construct thermal bio-
sensors by visualizing temperature variation. Under a
temperature stimulus, smart materials undergo a dis-
continuous phase transition or morphological change,
where thermo-responsive polymers and shape memory
alloys are common examples [201, 202]. Despite the dif-
ferent components and working principles, these kinds
of materials can be mainly classified into two types based
on their temperature-responsive behaviors: lower critical
solution temperature (LCST) and upper critical solution
temperature (UCST) [203]. In addition, thermochro-
mic materials display different colors at different tem-
peratures, which can act as signal transducers to report
temperature variations in a readable manner. Therefore,
this section focuses on thermochromic materials that are
utilized to develop thermal biosensors for detecting bio-
markers in bodily fluids.

Thermochromic materials

Thermochromic materials switch visual color as a
response to a thermal stimulus and are mainly classified
into three types based on their temperature-responsive
mechanism: cholesteric liquid crystals (CLCs), leuco
dye systems, and phase-change materials (PCMs). CLCs
feature a helical structure that follows Bragg’s law, i.e.
A=nP cosf, where n refers to the average refractive
index and 6 is the angle of observation (Fig. 20A-i). The
pitch (period) p can be adjusted by temperature, with a
range of a few hundred nanometers. Based on Bragg’s
law, a thermal stimulus will change the p of CLCs fol-
lowed by a shift in reflection peak, resulting in a varia-
tion in visual appearance. The development of CLCs

Fig. 19 Applications of MNPs in biosensing. A A magnetic immunoassay analyzer based on the magnetoresistive mechanism for simultaneously
detecting twelve tumor markers. i Schematic illustration of the setup and working principle of the GMR immunoassay biosensor. i The linear
relationship between the logarithm of CEA concentration and the resistance change using two different capture antibodies. iii The linear
relationship between the logarithm of PSA concentration and the resistance change using two different capture antibodies. Reproduced

with permission [198]. Copyright 2019, Elsevier. B A wash-free volumetric-MPS biosensor for quantifying SARS-CoV-2 spike and nucleocapsid
proteins. Schematic illustration of i the setup and ii working principle of the GMR immunoassay biosensor. iii The 3rd harmonics monotonically
increase as the concentration of nucleocapsid protein decreases (highlighted green areas). Reproduced with permission [199]. Copyright 2021,
American Chemical Society. C A Critical Offset Magnetic PArticle SpectroScopy (COMPASS) for sensitive point-of-care diagnostics. Schematic
illustration of i the working principle and ii feasibility of the COMPASS. iii Results for three different blood sera. Reproduced with permission [200].
Copyright 2022, Springer Nature. D A Brownian relaxation-based MPS biosensor for detecting streptavidin. Schematic illustration of i the working
principle; and ii feasibility of the proposed MPS biosensor. iii The relationship between streptavidin concentration and the ratio of the 3rd to the 5th
harmonics (R35) at different driven frequencies. Reproduced with permission [195]. Copyright 2019, American Chemical Society. MNPs: magnetic
nanoparticles; GMR: giant magnetoresistance; CEA: carcinoembryonic antigen; PSA: prostate-specific antigen; MPS: MNPs-based magnetic particle

spectroscopy
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has made significant progress recently, and CLCs have
been designed with the ability to display colors across
the entire visible spectrum under thermal modulation
[204, 205]. The leuco dye system consists of a leuco dye
connected with a color developer by a solvent such as

poly(ethylene glycol) (PEG) (Fig. 20A-ii). Upon heat-
ing, the leuco dye—developer—solvent system achieves
a transformation from a colored solid state to a color-
less molten state due to the absence of the developer
as solvents melt [206]. Alternatively, PCMs exhibit
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thermochromic phenomena through phase transforma-
tion (Fig. 20A-iii) [207].

Inspired by these principles, heat accumulation gener-
ated in a redox reaction can be converted into measura-
ble signals, which are further used to detect biomolecules
(Fig. 20B) [208-210]. For instance, Tang et al. developed
a photothermal biosensor using thermochromic paper to
diagnose acute myocardial infarction (Fig. 20C-i) [211].
Crystalline violet lactone (CVL) featuring color change
response at around 45 °C served as signal reporter. In the
presence of target cardiac troponin I (cTnl) protein, a cas-
cade enzyme amplification reaction was triggered to gen-
erate oxidized 3,3)5,5-Tetramethylbenzidine (TMBox),
which produced a certain amount of heat under an 808
nm NIR laser irradiation (Fig. 20C-ii). As a result, the
color of the thermochromic paper was changed and used
to report the concentration of cTnl protein. The target
concentration ranging from 0.05 to 20 ng mL™" showed
a good linear correlation with the maximum temperature
(R*= 0.9884) (Fig. 20C-iii). The LOD was 0.021 ng mL™".

Although thermo-responsive materials have been well
applied in various fields, their biomedical application is
still underexplored. Current thermo-responsive mate-
rials-enabled biosensors are mainly based on the heat
release of a biochemistry reaction, which has limited
specificity. In addition, the testing time and detecting
accuracy still need to be improved to meet the require-
ment of practical usage.

lon-responsive materials enabled biosensors

Our bodily fluids contain a large variety of ions and elec-
trolytes, which play an important role in maintaining
bodily and cellular functions [212]. On this basis, ion-
responsive materials with biocompatibility are sought-
after to construct biosensors for health monitoring and
disease diagnosis. Under different ionic stimuli, ion-
responsive materials mainly change their physical prop-
erties (e.g., stiffness, viscoelasticity, solubility, etc.) [213],
or lead to a variation in reflecting color/fluorescence, a
subclass particularly favored in biosensing applications.
This section discusses two types of fluorescent materi-
als based on different stimulated ions: pH-responsive
chromophores and ion-responsive aggregation-induced
emission luminogens (AIEgens).

pH-responsive chromophores and fluorophores

Many biochemical reactions via enzyme proteins in
metabolism will change the pH of bodily fluid. For
example, urea can be specifically hydrolyzed by urease
to yield carbon dioxide and ammonia, leading to an
obvious increase in the pH value [214]. This phenom-
enon provides an indirect strategy to detect enzyme
activity and metabolites by quantifying pH. Therefore,
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great efforts have been exerted to develop versatile
pH-responsive materials. For instance, based on the
dopaquinone-cysteine coupling reaction, the A2,2’-
bibenzothiazine (BBTZ) system with robust acidi-
chromism is designed, which shows a transformation
from a violet cationic form (H*-BBTZ) to a deep blue
dication (2H*-BBTZ) with pH increase (Fig. 21A-i).
Additionally, H* is proven to be able to quench the
fluorescence of nitrogen-doped QDs or MOFs by pro-
tonating imidazole nitrogen, allowing them to be used
as promising fluorescent reporters (Fig. 21A-ii). The
detailed and latest development of pH-responsive
chromophores and fluorescent materials can refer to
previous reviews [215, 216].

On this basis, these smart materials can serve as signal
converters in biosensors with the help of pH-involved
biochemical reactions (Fig. 21B) [217-220]. Using nitro-
gen-doped fluorescent carbon quantum dots (N-CQDs),
Li et al. proposed an optical fiber biosensor for acetyl-
choline (Ach) detection [221]. Ach generated acetic acid
and choline after being hydrolyzed by acetylcholinest-
erase (AchE), which decreased the system pH value. As
a result, the fluorescence of N-CQDs was diminished
due to the protonation and aggregation of N-CQDs in
acid solutions (Fig. 22A-i). The FL intensity of the AchE/
CQDs/CA system linearly decreased as the decrease of
pH in the range of 5.4-7.4 (R*= 0.97131) (Fig. 22A-ii).
Finally, the acetylcholine chloride (AchCl) concentration
ranging from 20 pM L™! to 200 uM L exhibited a linear
relationship with the I,/I value (the fluorescence intensity
of the fiber biosensor absence and presence of AchCl in
test solution) with a LOD of 16.28 uM L™! (R*= 0.99398)
(Fig. 22A-iii).

Similarly, Su et al. developed a fluorometric system for
urease activity detection (Fig. 22B-i) [222]. Urease cata-
lyzed the hydrolysis of urea, increasing the alkalinity of
the urine. Such a pH increase enhanced the absorption
of 4-nitrophenol (4-NP) at 400 nm, followed by the fluo-
rescence quenching of silicon quantum dots (SiQDs) at
460 nm due to the overlap of absorption of 4-NP with the
fluorescence excitation spectrum of SiQDs (also termed
as inner filter effect) (Fig. 22B-ii). The FL intensity of the
SiQDs/4-NP sensing platform was linearly dependent on
the pH value within the range of pH 6.0-7.8 (R?= 0.992)
with a precision of 0.2 pH unit (Fig. 22B-iii). These assay
platforms possessed high selectivity (Fig. 22B-iv). In the
detection of urease, the linear behavior was observed
between the assay system pH and the F/F (FL intensities
of SiQDs/4-NP (pH 5.0)/urea assay platform with and
without urease) at the range of 2-40 U L™}, R*= 0.994
(Fig. 22B-v,vi). The LOD was calculated to be 1.67 U L™,

More recently, Su et al. developed a pH-respon-
sive ratiometric fluorescence system for urea activity
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determination by combining pH-sensitive azamonardine
(Aza) and pH-insensitive Zn doped AgInS,QDs (AIZS
QDs) [223]. When the pH raised induced by the hydroly-
sis of urea, Aza was formed and its fluorescence at 455
nm was enhanced while the FL intensity of AIZS QDs
at 566 nm remained unchanged. As a result, the ratio
of the FL intensity (Fs5/Fs4) was utilized to detect urea
(Fig. 22C-i). Results showed that this ratiometric fluo-
rescence platform exhibited a linear response to pH
values in the range of 9.7 to 11.7 at intervals of 0.2 (R*=
0.991) (Fig. 22C-ii) and urea concentration ranging from
0.02 to 20 mM with the LOD of 0.0103 mM (R?= 0.987)
(Fig. 22C-iii).

lon-responsive aggregation-induced emission luminogens
(AlEgens)

Traditional luminophores often exhibit weaker emission
in the aggregated state because of the aggregation-caused
quenching (ACQ) effect [224]. In contrast, aggregation-
induced emission luminous (AIEgens) are highly emissive
in concentrated solution or solid-state while emitting no

light in the diluted solution state [224]. This phenom-
enon was first observed by Scheibe and Jelley indepen-
dently in 1936 and officially coined by Ben Zhong Tang
and co-workers in 2001 [225-227]. Since then, AIEgens
gained increasing attention and ion-responsive AIEgens
have been developed. In the presence of specific ions,
dark-state AIE molecules are aggregated to restrict the
intramolecular motions, which results in an increase in
photoluminescence (PL) intensity by facilitating energy
and charge transfer. The aggregation mechanisms behind
the ion-responsive AlEgens vary from chemical reac-
tions to self-assembly with target ions. Among these
principles, metal-bridged crosslinking (MBC) and coor-
dination-induced complexation (CIC) are the mostly
exploited (Fig. 23A). The categories, synthesis method,
and working principles of the ion-responsive AIEgens
were systematically summarized in other reviews [228,
229].

The unique properties of AIEgens can be applied to
construct turn-on or turn-off fluorescent biosensors
for probing critical ions and metabolites in bodily fluids
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(Fig. 23B) [230-234]. For example, Wang et al. devel-  (CuNCs)-Ce(III) (CuNCs-Ce?**) mixing system (Fig. 23C-
oped a fluorescent probe for the detection of H,O, and i) [235]. The FL intensity of CuNCs was significantly
glucose using glutathione-capped copper nanoclusters —enhanced by the Ce®* -triggered AIE process (Fig. 23C-ii)
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and specifically quenched by the addition of H,O,, which
was attributed to oxidation of Cu® or Cu* in CuNCs to
Cu**. Based on this, the CuNCs-Ce®" system was used
to quantify glucose, which produced H,O, under glucose
oxidase (Go,) oxidization. The fluorescence (FL) intensity
of the CuNCs-Ce**/glucose/GOx system decreased grad-
ually as the glucose concentration increased (Fig. 23C-iii).
A linear relationship was observed between the glucose
concentrations at a range of 8—48 puM and the values of
(Fy-F)/F, (R?=0.9963) (Fig. 23C-iv). This turn-off fluores-
cent biosensor exhibited good selectivity for determining
glucose with the LOD of 2.4 uM (Fig. 23C-v).

In summary, ion-responsive materials enable biosen-
sors to detect ions in a direct way and other target bio-
molecules in an indirect way. Moving forward, it is
expected to see more optimal biochemical and physical
methods for preparing sensitive and versatile ion-respon-
sive materials-enabled biosensors with high specificity.

Bio-responsive materials enabled biosensors
Biomolecules serve as the fundamental building blocks
that support metabolic processes and the sustenance of
life. Thus, diverse technologies and materials have been
continually developed to detect biomolecules in a rapid,
accurate, and low-cost manner. Bio-responsive materials
are among the most appealing types of smart materials
due to their biocompatibility, precise controllability, pro-
grammability, and efficiency. When exposed to biochem-
ical stimuli like nucleic acids and proteins, bioresponsive
materials exhibit a fast response such as phase changes,
color changes, fluorescence on/off, or activity switching
from inactive to active state. For instance, DNAzyme
and CRISPR-Cas can be selectively triggered by bio-
molecules to exhibit specific catalytic activities, which
are thus widely utilized to improve detecting selectivity
and accuracy of biosensors [236, 237]. This chapter will
center around biomolecule materials that serve as signal
transducers or amplifiers in detecting biomarkers in bod-
ily fluids as follows: biomolecule-responsive AIEgens and
DNA hydrogels.

Biomolecule-responsive AlEgens

AlEgens serve as powerful analytical tools in biosensing
due to their advantages such as low background interfer-
ence, improved contrast, superior fluorescence lifetime,
and good performance in selectivity and long-term moni-
toring [238]. Similar to ion-responsive AlEgens discussed
in Section “lon-responsive aggregation-induced emis-
sion luminogens (AlEgens)’ freely dissolved dark-state
AIE molecules can also be aggregated by biomolecules
such as proteins to turn on fluorescence. The interac-
tion between biomolecules and free AIE-active molecules

Page 33 of 49

dissolved in a solution can be either covalent or nonco-
valent, including hydrogen bonding, site-specific inter-
actions, and electrostatic binding [239]. Therefore,
biomolecule-responsive AIEgens provide a direct way to
analyze biomarkers based on the fluorescence-on strat-
egy (Fig. 24A-i). In addition, this fluorogenic aggregation
transition can be disrupted or reversed by adding another
biomolecule, leading to turning off the fluorescence of
light-state AIE molecules (Fig. 24A-ii). Therefore, the FL
intensity change of biomolecule-responsive AIEgens can
specifically reflect biomolecule concentration in either a
direct or indirect way (Fig. 24B) [240-247].

For the direct approach, Tang et al. introduced an AIE-
based fluorescent probe for detecting human serum albu-
min (HSA) in complex biological fluids [248]. They found
that water-soluble tetrazole-tagged tetraphenylethylene
derivatives (TPE-TAs) were specifically bound to albu-
min through an enthalpy-driven process. This interaction
induced a strong turn-on emission, which was then uti-
lized to establish a target-triggered fluorescent biosensor
(Fig. 24C-i). The FL intensity of TPE-4TA at 490 nm cor-
respondingly developed with rising HSA concentrations
(Fig. 24C-ii). To examine the feasibility of the AIE-based
fluorescent assay in clinic diagnosis, they conducted
albumin detection using patients’ urine samples, where
albumin concentrations were determined by the turbi-
dimetric inhibition immunoassay method and used as
references. Results showed that the FL intensity of TPE-
4TA/urine mixture (I-I) linearly increased with albumin
concentrations, rising from 0.02 to 2500 mg L™! (R*=
0.99) with a low detection limit of 0.21 nM (Fig. 24C-iii).

As a notable example of indirect usage of biomolecule-
responsive AlEgens, Liu et al. proposed a turn-off strat-
egy to analyze alkaline phosphatase (ALP) activity [249].
Positively charged tetraphenylethene-substituted pyri-
dinium salt (TPE-Py) was used as the AIEgens, which
underwent an aggregating process when contacted with
the negatively charged pyrophosphate ion (PPi). This
electrostatic interaction resulted in the AIE effect, thus
enhancing the fluorescence. Therefore, the ALP activity
was determined by the TPE-Py/PPi system due to the
ALP-enzymatic hydrolysis of PPi into two phosphate ions
(Pi), hindering the aggregation of TPE-Py (Fig. 24D-i). As
the increase of ALP, the PPi-triggered aggregation weak-
ened, and the AIE effect was diminished correspond-
ingly (Fig. 24D-ii). The ALP concentration in the range of
1-200 U L! exhibited a linear relationship with the FL
intensity of TPE-Py/PPisystem. A LOD of 1 U L™ was
achieved (Fig. 24D-iii).

DNA hydrogels
Nucleic acids play a pivotal role in health monitoring and
disease diagnosis, and their abnormal concentrations
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in bodily fluids are usually connected with disease risk.
Consequently, considerable attention and effort have
been directed toward nucleic acid-related fields, includ-
ing synthesis techniques, amplification methods, and
detection platforms. The concept of using DNA as build-
ing blocks in the development of responsive materials has
also gained prominence in response to these needs. The
polymeric and hydrophilic nature of DNA enables the
binding between DNA and water molecules, leading to
the formation of gel-like materials termed DNA hydro-
gels. These 3D DNA polymer networks inherit both the
biological function of DNA and the physical properties
of hydrogels. In addition, DNA hydrogels exhibit rapid
phase transition in response to certain environmental
stimuli such as biomolecules. These charming properties
give biomolecule-responsive DNA hydrogels a forefront
frontier for biomedical application due to their precise
programmability and good biocompatibility [250]. DNA
hydrogels are mainly classified into two groups based on
the cross-linking and components: pure DNA hydrogel,
formed by the crosslinking of DNA itself, and hybrid
DNA hydrogels, formed by connecting the DNA mol-
ecules that are grafted onto hydrophilic polymer chains
[251]. Comprehensive discussions about diverse design
principles, synthetic approaches, and functions of bio-
molecule-responsive DNA hydrogels can refer to previ-
ous review articles [252].

In the presence of specific biomolecules, biomolecule-
responsive DNA hydrogels exhibit a sol-gel conversion
and release pre-encapsulated report probes to detect
target biomarkers (Fig. 25A). For example, fluorescent
indicators such as QDs are released when DNA hydrogels
dissolve by target DNA, leading to a fluorescent intensity
change of the whole solution system for visual analysis
[253]. Also, coated fluorescent probes can be activated
by escaping from DNA hydrogels to detect target DNA
based on the FL intensity change. Moreover, target DNA-
triggered collapse of DNA hydrogel facilitates the contact
between photoactive probes and electrodes, increasing
electric current to quantify biomarkers [254]. This spe-
cific DNA-induced phase transition allows DNA hydro-
gel to serve as desirable signal transducers to construct
colorimetric, fluorescent, and PEC biosensors (Fig. 25B)
[255-259].

Using the phase transition principle, Guo et al. estab-
lished a portable colorimetric testing platform for
miRNA detection by employing the DNA-AuNP hybrid
hydrogel [260]. When exposed to specific miRNA, the
trigger DNA was activated and amplified to disinte-
grate the hybrid hydrogel film. As a result, AuNPs were
released from the hydrogel film into the solution, leading
to a color change for digital image colorimetric analysis
(Fig. 25C-i). The value in the green channel (G) of the
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solution correspondingly diminished as the miRNA-
21 concentration rose from 0 to 200 nM (Fig. 25C-ii). A
good linearity was found between the miRNA-21 concen-
tration ranging from 0.05 to 100 nM and the logarithm
of the relative G value (Log(G,/G)) (R*= 0.991), with a
LOD of 17.0 pM (Fig. 25C-iii). In another approach, Liu
et al. constructed a PEC biosensor for miRNA analysis
using TiO, NP-embedded DNA hydrogels [261]. In the
presence of target miRNA, TiO, NPs were released to
the supernatant, which was further collected for the PEC
test (Fig. 25D-i). The value of the photocurrent increased
synchronously with the rise of miRNA-155 concentration
(Fig. 25D-ii). A good linear relationship was obtained
between photocurrent value (/) and the logarithmic con-
centration of the miRNA-155 (C,,,,) from 1.0 fM to 100
pM (R?= 0.991), with a LOD of 0.41 fM (Fig. 25D-iii).

These developments demonstrate the growing capabili-
ties that bioresponsive materials can be incorporated into
biosensors for preparing portable and accurate biosen-
sors and for making what conventionally impossible to be
possible to detect some biomarkers. Of particular interest
would be the development of stable bioresponsive mate-
rials that can be maintained at different environmental
temperatures for a long term and efficient bioresponsive
materials that can respond and report target analytes at
a low concentration without additional amplification
process.

Conclusions and perspective

Stimuli-responsive smart materials have demonstrated
immense potential for incorporation into biosensors for
liquid biopsies, particularly in the detection and quanti-
fication of biomolecules. These materials have shown the
ability to enhance the sensitivity, accuracy, and function-
ality of biosensors, as summarized below:

+ The barrier-breaking effect of ultrasound-respon-
sive micro- and nanobubbles facilitates the release
of extratemporal biomarkers into bodily fluids, such
as plasma. This barrier-breaking effect significantly
enhances the accuracy and sensitivity of liquid biop-
sies, enabling more reliable detection of disease bio-
markers.

+ MOFs encapsulated with multiple QDs are instru-
mental in constructing ratiometric biosensors. These
biosensors offer built-in self-calibration mechanisms
for signal correction, improving precision and user-
friendliness by minimizing external interferences and
variability in results.

+ Magnetic and electro-responsive materials support
the fabrication of compact and portable biosensors
due to their low cost, wide availability, and ease of



Gao et al. Journal of Nanobiotechnology ~ (2025) 23:477 Page 36 of 49

A
@
A ’ e
S ) 8
. -4 o0 © > 5
nzyme ) ® o &
’ <
Dyes
Wavelength
A
2
@
o + L 1A c
> » <
¢ VAl o Q& > _
Y Biomolecule w -
3 Fluorescent reporters
P Wavelength
A
Pre-encapsuled Phase-changed/Degraded » . . . 4 .
DNA hydrogen DNA hydrogen Electrodes » <
Photoactive probes
N
Time
B
Biomarker Signal Signal Biomarker
Recognition » Generation » Readout )) sensing
Sandwich immune complexes Release/uptake of probes Colorimetric signal Virus
Hybridization of probes with targets Localized surface plasmon resonance Fluorescence Protein
Catalytic reaction Electric current Nucleic acids, etc.
W40 r - - == - = = = — — — — — 4 m O L g e o
! ! | 1
. |[HNEEEN L L S L] _Hm I
E -
% 180 G 0.4
=1 a—»i b
3 0—>200 nM 9 0.3 1 0.41 R2=0.991
= -7 I -
=]
2 1204 - 0.24
w = 0.2
=] v
g 2 019 1 i
s - & 2 0.0
0 [ 0.04% — 50,100
abec de fg hi 0 50 100 150 200
Concentration / nM
Di ccrcace ii iii 800
3 GIAGTLGS Light ONY a0t
8001 ¥ Light oFF '
g _ g600]
£ 600 ! £
— Torget ] €
s —NoTarget o o
Fl 5 400 54001
- Q Q
g 2 a 2
3 s g
= " me o 2004 o 2001
HA  @TiO,NP«  —mr_mar— DNA bridge PRI —§I ——52 At 0 T 0 P 2 25 _5 _-2 _11 é 1- i
It DAL C HP — T ~QFxoll —— sDNA @NbBRCI Time (s) 19 C target (OM)

Fig. 25 Responsive mechanisms of DNA hydrogels and the working principle when applied in biosensors. A Schematic illustrations

of biomolecule-responsive mechanisms for constructing colorimetric, fluorescent and PEC biosensors. B The working principle underlying DNA
hydrogels’ applications in detecting biomarkers in bodily fluids. C A colorimetric biosensor for microRNA detection based on DNA-AuNP hybrid
hydrogel. i Schematic illustration of the working principle. ii The value in the green channel of solutions with different miRNA-21 concentrations. a—i
0nM; 0.05 nM; 0.5 nM; 2.5 nM; 5 nM; 25 nM;50 nM; 100 nM; 200 nM). iii The linear relationship between miRNA-21 concentration and the logarithm
of the relative green value (Log(Gy/G)). Reproduced with permission [260]. Copyright 2023, Elsevier. D A PEC biosensor for miRNA analysis using
TiO,NP-embedded DNA hydrogels. i Schematic illustration of the working principle. i) The PEC signal of the target at various concentrations

a-i 0fM; 1 fM; 5.0 fM; 10 fM; 50 fM; 100 fM; 1.0 pM; 10 pM; 100 pM). iii The linear relationship between the logarithmic concentration

of the miRNA-155 and the photocurrent value. Reproduced with permission [261]. Copyright 2021, Springer Vienna. AuNP: gold nanoparticle; PEC:
photoelectrochemical



Gao et al. Journal of Nanobiotechnology (2025) 23:477

integration with existing technologies. These materi-
als are particularly valuable for point-of-care applica-
tions.

+ Materials responsive to specific ions or biomolecules
provide a direct, biocompatible approach for bio-
marker detection in bodily fluids. Their high specific-
ity ensures accurate identification and quantification
of targets in complex biological environments.

+ Thermo-responsive materials enable detection based
on temperature variations and have potential applica-
tions in monitoring heat-sensitive biomarkers.

Despite the remarkable potential of stimuli-respon-
sive smart materials in advancing biosensor technol-
ogy, addressing the following challenges is essential to
unlock their full potential:

« DPrecise and localized manipulation of ultrasound-
responsive microbubbles and microrobots at the
micro- and nanoscale currently depends on high-
power and complex ultrasound systems. Addi-
tionally, the interaction mechanisms between
acoustic waves and micro/nanomaterials remain
insufficiently understood, limiting their optimiza-
tion and application.

+ Light- and electro-responsive materials are prone
to non-specific binding, which reduces their speci-
ficity and functionality when detecting multiple
biomarkers in complex liquid samples. Strategies
to mitigate such interference are essential for their
broader adoption.

+ Magnetic materials are highly sensitive to factors
such as size, shape, and external magnetic fields.
Achieving high uniformity in magnetic properties,
size, and shape remains challenging and requires
careful design and synthesis strategies.

+ Current thermo-responsive materials lack the pre-
cision to provide real-time feedback on minor tem-
perature changes, which is crucial for detecting
subtle thermal variations associated with biomarker
interactions.

« Smart materials derived from biological molecules
often exhibit limited thermal stability and effi-
ciency, posing challenges for mass production and
widespread adoption. Enhancing their stability and
scalability is critical for their practical applications.

+ To advance point-of-care and at-home diagnostics,
further attention should be given to miniaturizing
sample processing, signal transduction, and detec-
tion systems (e.g., ultrasound generation/control,
optical detection, and magnetic detection systems).
These components must be seamlessly integrated
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into portable devices at low cost to ensure ease of
use and accessibility in real-world settings.

o The combination of dual or multiple stimuli-
responsive systems (e.g., ultrasound-light or mag-
netic-thermal) may offer significant potential to
synergistically enhance the detection process. Such
hybrid systems could enable faster, more accurate,
and multifunctional diagnostic capabilities, particu-
larly when analyzing patient samples with complex
compositions. For instance, integrating ultrasound
systems with magnetic-responsive subsystems
could simplify biomarker detection through wash-
free approaches, reducing the complexity and time
required for analysis while improving overall diag-
nostic efficiency.

For more examples, we encourage the reader to refer
to Table 1 that provides a comprehensive comparison
between existing biosensors for liquid biopsies using
various stimuli-responsive smart materials in terms of
their sensing mechanisms, clinical application, and per-
formance, including sensitivity, LOD, linear range (LR)
and fluorescence enhancement factors.

From a clinical perspective, transitioning smart mate-
rial-enabled biosensors from research laboratories to
practical clinical and home applications depends on
optimizing their detection performance and transla-
tional potential. To enhance clinical relevance and usa-
bility, biosensors must reliably detect target analytes at
clinically significant concentrations while minimizing
false positives and negatives. Consistent performance
over extended periods is essential, particularly for con-
tinuous or repeated testing in both clinical and home
settings. In addition, user-friendly protocols that mini-
mize sample preparation are critical in point-of-care
and home-testing scenarios, where complex procedures
can hinder adoption and introduce user error.

Another critical consideration for clinical use is the
protein corona effect [262]. When nanoparticles or mate-
rials interact with biological fluids (e.g., plasma or saliva),
proteins and other biomolecules quickly adsorb onto
their surfaces, forming a corona. This biological layer
modifies the material’s physicochemical properties, sig-
nificantly impacting its performance in biosensing appli-
cations. While the protein corona can impede biosensor
function by masking recognition sites, lowering sensitiv-
ity, and causing non-specific interactions that lead to false
positives or variability, it also presents potential opportu-
nities. Differences in corona composition could serve as
indicators of disease-specific biomarker patterns, offering
new avenues for diagnostic development [262].

In summary, the future of smart material-enabled
biosensors in academia possesses immense potential
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to revolutionize diagnostics and transition into com-
mercially viable devices. However, translating these
innovations into practical applications requires inter-
disciplinary collaboration in material science, engi-
neering, and healthcare. Efforts must also address
scalability, regulatory approval processes, and compat-
ibility with existing diagnostic workflows.
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