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Abstract 

Multiple anthropogenic forces have pushed river ecosystems into undesirable states with no clear understanding of how they should 
be best managed. The advancement of riverine fish habitat models intended to provide management insights has slowed. Investiga- 
tions into theoretical and empirical gaps to define habitat more comprehensively across different scales and ecological organizations 
are crucial in managing the freshwater biodiversity crisis. We introduce the concept of novel riverscapes to reconcile anthropogenic 
forcing, fish habitat, limitations of current fish habitat models, and opportunities for new models. We outline three priority data-driven 
opportunities that incorporate the novel riverscape concept: fish movement, river behavior, and drivers of novelty that all are integrated 
into a scale-based framework to guide the development of new models. Last, we present a case study showing how researchers, model 
developers, and practitioners can work collaboratively to implement the novel riverscape concept. 

Keywords: river management, riverine processes, novel ecosystems, spatial scales, temporal scales 
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ously, which can induce lasting effects even when they subside 
(Moyle 2014 ). 

Fish habitat models must be capable of diagnosing and quanti- 
fying anthropogenic impacts on fish and their habitat but very few 

models provide insight on the reversibility of such impacts at the 
scale the impacts were first introduced (Frissell et al. 1986 , Wiens 
2002 ). This shortcoming makes finding self-sustaining solutions 
for river and fish habitat restoration problematic. The forefront 
of fish habitat model development will require the capacity to 
untangle the interactions of multiple impacts, evaluate impacts 
at the appropriate spatial and temporal scales, and more holisti- 
cally address impacts on fish biodiversity instead of focusing on 
individual species (Fausch et al. 2002 , Torgersen et al. 2021 ). In the 
present Forum article, we provide a contemporary synthesis and 
direction for fish habitat models to maximize returns on river 
and fish habitat restoration and management. Specifically, we 
focus on mathematical or statistical models that explain, predict, 
or generalize phenomena and processes within lotic fish habitat 
ecology. We include four major themes: an introduction of novel 
riverscapes, an evaluation of current fish habitat models, three 
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nthropogenic activities (i.e., watershed management, urbaniza-
ion, water use, water abstraction, and river regulation) and their
ssociated instream modifications are ubiquitous in riverscapes
lobally (Macklin and Lewin 2019 ). A snapshot of large rivers, from
 fish perspective, highlights examples where continued anthro-
ogenic forcing produces permanent habitat alterations and re-
uctions in biodiversity. For example, the construction of dams
n the Yangtze and Yellow Rivers has caused the extinction of
he Chinese paddlefish ( Psephurus gladius ) and has pushed mul-
iple other species to near extinction (Scarnecchia 2023 ). Habitat
oss and overfishing continue to diminish fish biodiversity in the
eruvian Amazon, which now threatens food security for 800,000
eople (Heilpern et al. 2021 ). Extreme water abstraction prevents
he Colorado River from reaching its mouth, eliminating criti-
al estuary ecosystem functioning (Pitt et al. 2017 ). Multiple en-
emic sturgeon populations are classified either as vulnerable or
s critically endangered in the Danube River Basin because of con-
inued river fragmentation, poaching, changes in hydrogeomor-
hology, and pollution (Friedrich et al. 2019 ). It is common for
ivers to experience multiple anthropogenic impacts simultane-
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ata-driven opportunities to promote the model development
rocess, and a scalable framework to facilitate application. We
onclude the article with a case study to illustrate how these
hemes merge, which, in turn, provides an ideal future for fish
abitat modeling. 

ntroduction of novel riverscapes with a 

ocus on fish 

ast definitions of riverscapes neglect to include the property of
eversibility when considering impacts on riverine processes and
sh habitat. Without reversibility, our fish habitat models will op-
rate assuming that no impact is severe enough to permanently
lter the ecosystems we intend to restore. To the contrary, unless
nthropogenic impacts are reversible, a novel riverscape that
s without historical precedent is inevitable (table 1 ; see Hobbs
t al. 2009 for a complete view of novel ecosystems theory).
 riverscape’s pathway from a historical state to a hybrid and
hen to a novel state depends on the presence of anthropogenic
orces acting on river processes and their reversibility (box 1 ;
obbs et al. 2013 ). Minor impacts over the span of years are
ore reversible than say impacts that span centuries (Kondolf
t al. 2006 ). Fish habitat quantity and quality degrades as river-
capes transition from historical to novel states. The hybrid
tate has ample restoration opportunities to reverse impacts
ut also has the risk of slipping into a novel state if impacts
re left unchecked. Adapting fish habitat models to the novel
iverscape concept could help us recognize which state our
iverscapes exhibit and could help us prioritize habitat man-
gement and restoration efforts at a process level regarding
eversibility. 

The novel riverscape concept emphasizes that ecosystem
estoration and habitat appraisal are opportunities that can be
ost and that, under all practical considerations (i.e., limited time
nd money), are impossible to reacquire. Evidence of this reality
s present in many aquatic ecosystems facing invasive species
xpansion, acidification, mercury pollution, and eutrophication,
hich require indefinite counter measures to maintain the
cosystem (Acreman et al. 2014 ). From a regulatory perspective,
xamples of novel riverscapes include the European Union clas-
ification of heavily modified water bodies, and, in the United
tates, Superfund sites. Novel riverscapes also raise the question
n the effectiveness of one-size-fits-all management techniques
resent in rivers around the world (Hawley 2018 ). We contend
hat many fish habitat modeling shortcomings can be better
ddressed under the novel riverscapes concept. 
There are varieties of novel ecosystem definitions (e.g., de-

igned ecosystems) that have less to do with models (Higgs 2017 ),
o we have not included them in our novel riverscape concept.
ut as a general rule, they all maintain we can certainly fail to re-
erse impacts in time, which results in permanent consequences
Hobbs et al. 2013 , Morse et al. 2014 ). Our ability to manage
sh habitat quality and quantity depends on the appropriate
pplication and interrogation of fish habitat models. This means
ur current models and new models must address reversibility
f impacts, must make use of the best available data to find
olutions, and must be appropriately implemented at the scales
mpacts occur. Most importantly, if one’s model does not consider
he possibility of failure as an outcome, novel riverscapes may
ot only occur but may do so without detection (i.e., shifting
aselines). 
An evaluation of current fish habitat models
Fausch and colleagues (2002 ) highlighted the mismatch in
connections among fish habitat, river management, natural
processes, the anthropogenic impacts we seek to understand and
manage, and the gaps that require new models and long-term
data sets. Current fish habitat models support evidence-based
decision-making as the freshwater biodiversity crisis continues
(Tickner et al. 2020 ), but they exhibit numerous shortcomings that
limit their full usefulness especially under the novel riverscape
concept. The persistent debate about fish habitat model design
among ecologists and engineers has unfortunately polarized each
view instead of unifying their fields’ respective talents to address
these shortcomings (Railsback 2016 , Beecher 2017 , Stalnaker et
al. 2017 , Rinaldo and Rodriguez-Iturbe 2022 ). The novel river-
scape concept helps us mutually identify critical strengths and
weaknesses of existing models, so they are used appropriately
and inform the design of new models to enhance our capabilities.

Throughout the evaluation, we hope to convey the importance
of picking the right model or models for the job, and sometimes
that means developing a new one and straying from tradition.
Access to expert judgement to guide the decision-making on the
right model to choose is sometimes hard to find. As a result, it is
common to use the same tool over time for consistency’s sake.
Although this might be economically convenient, it inevitably
involves a lot of risk to trust in only one model. This risk grows
when new impacts are acting on the riverscape and the chosen
model and its developers have little capacity to adapt to these
changes. The combination of refining theory and model validation
is crucial, but in practice, it is unfortunately less appreciated (Getz
et al. 2018 ). No matter how sophisticated or simple a model is, it
is not a purveyor of truth unless the model is verified. One must
keep such rules in mind as we examine the technical capacities
of different models in supplement S1 in the context of novel
riverscapes. Our evaluation summarizes models commonly used
to explore fish habitat relationships in rivers. We have separated
the models into types that reflect areas of expertise concerning
model development and their respective scales to help people
navigate the wide variety of fish habitat models. 

Fish habitat model origins 
If we examine the legacy of fish habitat models ( type 1;
see supplement S1) and the concepts that support them, we
find that little has changed (Railsback 2016 , Beecher 2017 , Nestler
et al. 2019 ). The difficulty of modeling fish habitat from a prac-
tical perspective, where time and resources are severely limited,
ushered in the practices of prioritizing individual species instead
of broader biodiversity goals, and assessing impacts separately
instead of jointly. For a historical example, the instream flow
incremental methodology (IFIM) was an early decision support
system concept designed to improve lotic water management on
the basis of fish habitat model results (Stalnaker et al. 2017 ). Its
practical implementation came with cautionary notes that users
often ignored (Cooperative Instream Flow Service Group 1979 ,
Stalnaker 1979b ). This concept historically could not account
for lentic systems or their connections, was not designed to
generate minimum flow recommendations, could not predict
fish production, and considered only the physical aspects of the
stream and not chemical or water quality changes (Stalnaker
1979a ). The source of numerous limitations in current fish habitat
models and the resistance to adopt new concepts originate from
this view and its definitions of fish habitat (Nestler et al. 2019 ). 

https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae081#supplementary-data
https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae081#supplementary-data


626 | BioScience, 2024, Vol. 74, No. 9

Table 1. Glossary for fish habitat models and novel riverscape theory with examples. 

Term 

Definition and example 
description Example Picture of example 

Riverscape Watershed and the adjacent 
terrestrial system that 
directly or indirectly 
influences the river 
ecosystem network and 
associated water bodies. 

Ankobra river basin in Ghana 
with illegal alluvial gold 
mining operations. 
Temporary waste pools are 
created adjacent to the river 
to support mining operations. 

Habitat A mosaic of (a)biotic spatial 
patches necessary for a 
species to fulfil life history 
requirements considering 
risk, resources, and 
conditions. 

Elarm River in Iran showing a 
localized example of pool, 
riffle, run habitats adjacent 
to different riparian cover 
types. Each habitat type in 
this mosaic provides 
dynamically changing risks, 
resources, and conditions for 
each respective species. 

Suitability The relative capacity of a 
habitat to sustain an 
organism over relevant 
spatiotemporal scales. 

Yellowstone River headwaters 
in the United States showing 
a variety of natural barriers, 
substrates, hydraulic 
conditions, and cover that 
impose unique habitat 
selection opportunities for 
individual fish. 

Historical 
Riverscape 

A riverscape where the 
trajectory of abiotic, biotic, 
and social characteristics 
shows the full range of 
natural variability 
unhampered by irreversible 
anthropogenic forces. 

Tagliamento River in Italy. It is 
one of the last large free 
flowing rivers in Europe that 
exhibits braided channels 
that can also freely meander 
across a broad floodplain. 
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Table 1. Continued 

Term 

Definition and example 
description Example Picture of example 

Hybrid 
riverscape 

A riverscape that has 
undergone reversible 
anthropogenic changes, 
altering the trajectory of 
abiotic, biotic, and social 
characteristics 

River Badam in Kazakhstan 
with water diversion 
structures and reductions in 
floodplain habitat. Instream 

habitat is present but quality 
has been reduced. 

Novel 
riverscape 

The combined trajectory of the 
abiotic, biotic, and social 
characteristics of the 
riverscape cannot be restored 
to the historical state, 
regardless of human 
management. 

Bílina River in Czech Republic. 
This river was converted to 
pipes so a massive brown 
coal mine could be built 
without disturbance from the 
river and its floods. Plans to 
rebuild the river after the 
mine closes have been 
discussed but not yet 
decided. 
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hysical fish habitat models 
he intended supplemental model for IFIM was the physical
abitat simulation system (PHABSIM; type 1). This approach
nforms how water depth, flow velocity, substrate, and cover
perate on a gradient to determine fish–habitat relations within
 river reach (Bovee 1982 ). PHABSIM is the precursor model to
any other physical habitat suitability models (e.g., RHYHAB-
IM, MESOHABSIM, CASiMiR). Modern versions can incorporate
ioenergetics, hydropower output scenarios, stress days, ice cover,
nd other parameters (Vezza et al. 2015 , Rosenfeld et al. 2016 ,
aman et al. 2020 , Wegscheider et al. 2020 ). More holistic and
ater resources-oriented models were developed with similar
oundations (i.e., WEAP). They are all an index of habitat but
nly at the physical habitat level (Bovee et al. 1978 , Bovee 1982 ,
udson et al. 2003 ). As one of the original PHABSIM manuals so
ptly puts it, “In essentially all situations, physical habitat is a
ecessary, but not sufficient, factor for the production of benefits.
he analyst must never lose sight of the importance of factors
ther than physical habitat” (Milhous et al. 1989 , p. I.4). Criticisms
f physical habitat models have been focused on their lack of
redictability given its output—weighted usable area (Railsback
016 ), its systematic biases (Rosenfeld and Naman 2021 ), and
iolations of biological realism (Kemp and Katopodis 2017 ). They
epresent an early attempt at habitat modeling, and to its credit,
t is one of the few models that prioritizes practitioners’ needs
ecause it can be implemented rapidly and is easily interpreted.
dapting these models to the novel riverscape concept is limited.
ne could begin by applying validated suitability criteria from
ne riverscape with a historical state and transferring it to a
 

comparable riverscape with a hybrid or novel state for the same
species. This would allow for an exploration of how the habitat
quality and quantity for fish change in relation to the state of the
riverscape. 

Generic statistical models 
Around the time of PHABSIM, there was a diversifying array of
fish habitat models referred to as standing crop models , which were
mostly generic statistical models ( type 2; see supplement S1). In
the present article, we make an important distinction: Some of
these models relate fish quantity to habitat variables, whereas
others model habitat on the basis of what the fish used (Fausch et
al. 1988 ). This means that the first approach attempts to predict
fish abundance given habitat conditions, whereas the second
is a translation of habitat variables to predict what fish find
suitable (Reiser and Hilgert 2018 ). In either case, low sample sizes,
errors in measuring habitat variables, and the lack of a model
selection procedure in the case of multiple competing models
hampered these models in ways that could not be empirically
validated (Fausch et al. 1988 ). The modern counterparts of generic
statistical models, machine learning models and causal models
(i.e., structural equation models), all have the functionality to
compare competing models on the basis of prediction. Habitat
measurements are still an issue, because the current classifica-
tions of geomorphological types dwarf the number of classes that
are implemented by fish habitat modelers in the field, leading
to unclear interpretations of habitat and its variability (Rinaldi
et al. 2016 , Belletti et al. 2017 ). The low sample size issue now
affects machine learning and artificial intelligence models

https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae081#supplementary-data
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Box 1.Novel riverscapes concept.

A simplified example of the novel riverscapes concept: Albert Bierstadt’s painting of the St. Anthony Falls on the Mississippi River 
in 1880 is one of the clearest depictions of this historical riverscape. During the Industrial Revolution, St. Anthony Falls became 
engineered with temporary structures for industry but river hydrology was still relatively intact, leading to a hybrid riverscape (see 
Mazack 2016 for a more in depth historical overview). Owing to subsequent extinction of native mussels, unmanageable invasive 
plants and fish, reduced interactions with the floodplain, and construction of permanent water-management structures, the local 
riverscape has become a novel riverscape. Return to the hybrid or historical state is considered impossible in the foreseeable future. 
Therefore, it must be managed as a novel riverscape with full consideration of the permanent changes to its preindustrial habitat 
composition. The permanent change reinforces the need to clarify what suitability means in measuring and modeling fish habitat. 
The restoration actions that are considered may be a broad range of options that attempt to recreate aspects of its historical state 
(i.e., original look of the falls) but the riverscape will functionally operate on a novel trajectory (Ward et al. 2023 ). 
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ecause they require cost-prohibitive amounts of data relative to
he size of the field site. The opportunity for novel riverscapes is
o simulate data under a variety of riverscape states and sample
izes to assess model performance before encountering real data.
he “squid” package (Allegue et al. 2022 ) and “caret” package
Kuhn 2008) in R are two packages that could enable robust
ensitivity analyses of statistical models given commonly seen

ata limitations for fish habitat modelers. c  
cological statistical models 
cological statistical models ( type 3; see supplement S1) fo-
us on population level inference and relations to habitat.
hat separates ecological statistical models from their generic

ounterparts is the practice to account for imperfect sampling
nd detection. A connecting issue that affects both type 2 statis-
ical models and type 3 ecological statistical models is the major
oncern of confounding variables. Various techniques intended

https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae081#supplementary-data
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o evaluate model prediction (e.g., Akaike’s information criterion)
re being misused for causal questions (Arif and MacNeil 2022 ).
or example, an observational study investigating the impact of
abitat changes on fish production is a causal question where
hoices about the covariates in the model determine poten-
ial bias (Larsen et al. 2019 ). We strongly encourage statistical
odelers to review the implications of confounding variables
nd how directed acyclic graphs can help ease some of these
ssues (Grace and Irvine 2019 ). Statistical movement models
hat relate fish movements to habitat have the added challenge
hat data is usually autocorrelated (autocorrelation may also be
n issue for species distribution models), which can also bias
esults if the model is not adjusted the results (Silva et al. 2022 ).
ncovering the causal implications of impacts while untangling
he errors associated with confounding can be addressed using
he dagitty tool for graphical analysis of structural causal models
Textor et al. 2016 ). Dagitty provides a programming and graph-
cal user interfaces to explore confounding and to recognize
aulty ecological statistical models before data are incorporated.
ne could then explore how different impacts could increase
r mask the effect size associated with different riverscape
tates. 

cological individual-based models 
utside of ecological statistical models are ecological individual-
r agent-based models. These are focused on modeling ecological
echanisms (e.g., feeding, competition, predator avoidance) and
sh behavior to inform habitat selection, as opposed to selecting
nly a few abiotic factors (Piccolo et al. 2014 ). Agent-based mod-
ls provide a robust means of understanding habitat selection
nd preference or the ecoevolutionary dynamics of fishes that
ave emerged as a result of energy allocation and timing of
ctivities related to maintenance, growth, and reproduction in
 seasonally changing environment (Hölker and Breckling 2005 ,
yllón et al. 2016 ). One such model, InSTREAM, builds off of opti-
al foraging theory to inform habitat use under varying hydraulic
onditions at the individual fish level (Railsback et al. 2021 ). On
he other hand, ELAM (Eulerian–Lagrangian–agent method)
elates agent behavior of individual fish to computational fluid
ynamics simulations (Goodwin et al. 2006 ). Agent-based models
erve as a potential basis for examining how ecological processes
t the level of individual organisms link to population-level
rocesses (Breckling et al. 2005 , Grimm and Berger 2016 ). Incor-
orating many mechanisms, however, becomes data intensive
o inform parameters, challenging to code, and is more feasible
or single species at relatively small scales, as opposed to entire
ommunities (Beecher 2017 , Kerr et al. 2023 , Mawer et al. 2023 ).
ractitioners often criticize agent-based models as being too
heoretical (Reiser and Hilgert 2018 ), but new approaches now
llow for analytical approaches using approximate Bayesian
omputation (van der Vaart et al. 2015 ) to extract parametric
elationships between agents. In other words, the rule-based
orld of agent-based models can be analyzed to produce pa-
ameters that directly link to the riverscape and habitat being
tudied. Studying agents under varying riverscape states and
ncluding aspects of reversibility could be readily compared and
ommunicated to managers with this new approach. 

icking the right model 
e have prioritized the most common models seen in riverine fish
abitat modeling in our evaluation. Our introduction of new tools
nd approaches associated with each model could help adapt
models to the novel riverscape concept. We also realize that our
evaluation of current models highlights many trade-offs, which
makes picking a model difficult, but it is still possible to make an
informed choice, given the state of a riverscape (box 2 ). If none of
the previous models seem to satisfy the needs of your riverscape,
we now explore the future possibilities of fish habitat models. Our
view of future models is intended to address some of the shared
shortcomings in all the previously mentioned fish habitat models:
Many models view river habitats as static when they are dynamic,
with feedback loops, and are a function of the ecosystem’s state
(Anderson et al. 2006 ); they can only inform selected pieces of the
riverscape regardless of how the riverscape may shift into more
undesirable ecosystem states (Railsback 2023 ); greater incorpora-
tion of ecological and geomorphological components are needed,
depending on the management focus (Orth 1987 , Lancaster and
Downes 2010 ), and modern theories on river and fish ecology
suggest an even greater complexity of fish habitat relations
than most models have previously considered (Humphries et al.
2019 , Allen et al. 2020 ). These shortcomings show a substantial
need to advance model development in ways that satisfy novel
riverscapes. The stressors that act on rivers are becoming more
diverse, forcing us to seek opportunities to build models with the
latest technological advancements and data while still being user
friendly and accessible (Torgersen et al. 2021 ). 

Data-driven opportunities to advancing 

r iver ine fish habitat models 

As riverscapes transition among states, there are only three op-
portunities for fish habitat models that both come directly from
data pipelines (i.e., nearly continuous measurements at high fre-
quency and sufficiently long timespans) and address fish habitat
dynamics directly. We live in an era where data has become so
plentiful and robust that merging these data pipelines into action
is the new frontier of ecological data science (Besson et al. 2022 )
and a necessary next step to adapt fish habitat models to a novel
riverscape future. The first opportunity concerns fish movement
and the wealth of telemetry data shared in open databases
(e.g., the European Tracking Network). The second opportunity
concerns the geomorphologic, hydrologic, and hydraulic behavior
of rivers, which is crucial to assess the state of a riverscape and
the habitat it contains (Brierley and Fryirs 2022 ). In the present
article, the data pipelines are global-scale hydrograph gauges and
groundwater stations. The third opportunity, drivers of ecosystem
novelty (i.e., stressors or disturbances), attempts to incorporate
the many synergistic shapes, sizes, and effects of disturbances on
fish habitat (Orr et al. 2022 ), many of which can be leveraged from
remote-sensing data (Kuiper et al. 2023 ). Individually, they rep-
resent topics with immense depth but when combined, they act
as the benchmark for the next generation of fish habitat models
(figure 1 ). 

Fish movement 
Understanding not only fish movements in time and space but
also why fish move is critical for developing effective models
(Hughes 2000 ). Estimating the entire movement path of a wild
fish’s life is still out of reach, but our capabilities now allow
us to piece much of it together with its corresponding habitat
(Brownscombe et al. 2022 ). Often, we estimate a fish’s movement
at critical times within the fish’s life history, such as spawning,
but our paper’s definition of fish movement concerns all move-
ments from hatching until death without bias to particular life
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Box 2. Best practices of picking a fish habitat model.

The application of fish habitat models in rivers covers a wide variety of models and restoration goals that often require expert 
guidance to be used effectively. Building off the classic Levins modeling paper (Levins 1966 ) and more recent modeling viewpoints 
(Railsback 2023 ), we illustrate a more modern triad of modeling trade-offs before diving into key questions of reflection that could 
help in choosing an appropriate model. This guidance could help any modeler better address issues associated with river impacts 
and the associated biological goals, legal–institutional settings, and site-specific opportunities and limitations. 

We need the model to understand biological resource management goals in the context of water management goals. Thinking 
from the onset about what needs to be done in the river or stream is an ideal way to balance practicality and theoretical limitations 
prior to model application or extension. Realize that this may incorporate multiple perspectives. If flows are changing, investigate 
the management that permits that; if a species is going extinct locally, understand what management does to prevent that; if a 
stretch of river is being restored, learn what flexibility management has in the design process. One will quickly come to realize 
that this initial line of questioning shapes the scales involved. 
The model considers the spatial and temporal scales of the study system in selecting fish habitat models. Scales in this case can 
be interpreted as either a small-scale stream or a kilometer scale, but both views can help nail down the quantitative boundaries 
a model uses. For instance, what is the smallest size of a habitat patch in the habitat model and how frequently does it change? 
Is it on the order of centimeters and seconds, which may be appropriate for a newly hatched fry, or on the order of kilometers and 
months, which may be appropriate for a migrating adult fish. Similarly, using the scales of policies and management to inform 

early on how a model can be translated into action makes results more relevant for practitioners. 
We achieve the objective by matching the desired model data (i.e., the desired model traits) to water and fish management goals. 
Depending on the chosen scales, the desired data may come from a single discipline focus or come from a multidisciplinary 
approach. A model focused on a small side channel will use data and techniques for ecohydraulics, whereas a full watershed will 
use those for ecohydrology, each with their own approaches to measure habitat and related data. 
The model depends on understanding the quality of information available to develop aquatic habitat requirements for target 
aquatic biota. The habitat requirements of some aquatic species are well known (e.g., stream salmonids) whereas the habitat 
requirements of other species are poorly known or understood (e.g., Atlantic sturgeon). Out of all the mechanisms that can 
influence the relationship between fish and their habitat, only some are useful to incorporate, and even fewer have been measured. 
Theoretical considerations and empirical evidence are useful in justifying what stays and what gets left out. 
The model requires consideration of the trajectory of abiotic, biotic, and social characteristics of the target river. The diversity of 
habitats produced by rivers is a function of its state. Unknowingly building a model that uses parameters from a different system or 
the same system with different conditions may produce invalid results, especially if the river’s condition is slipping into a new state. 
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tage (Bull et al. 2022 ) or life history strategies (i.e., anadromous,
iadromous, potamodromous, nonmigratory; fish movement op-
ortunity; figure 1 ). Advancements in fish telemetry have reduced
ag sizes and increased tag battery life to study underrepresented
shes (Chen et al. 2014 ). Tag costs have also been reduced,
llowing studies to track more individuals and log multiple types
f measurement congruently (e.g., depth, predation, temper-
ture; Deng et al. 2017 , Weinz et al. 2020 ). Extending studies
o include multiple species from a community level and their
nteractions is also feasible. More advanced telemetry stations
re now capable of having live connections to multiparameter
ondes (e.g., dissolved oxygen, pH, turbidity, salinity, chlorophyll
/b, phosphorus, nitrogen), providing a data pipeline on habitat
uality (Jacoby and Piper 2023 ). Validating movement patterns
ith stable isotope methods such as natal origins (Brennan et al.
015 ) or spatial patterns of diet (Bell-Tilcock et al. 2021 ) also offer
nterdisciplinary insight on fish habitat. Complementing all this
nformation with ecohydraulics and the plethora of experimental
tudies gives a much clearer picture of fish movement in relation
o habitat in the lab and in the wild as riverscapes change. 
The barrier-free hypothesis (sturgeon need free-flowing rivers),
hich some tout as a general guideline for sturgeon population
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Figure 1. A hypothetical riverscape with historical, hybrid, and novel river reaches that highlight the three opportunities facing fish habitat models in 
rivers. Opportunity 1 concerns fish movement and how different life history strategies (nonmigratory, potamodromy, diadromy, and anadromy) all 
interact with riverscapes in different ways, given the distances travelled, life history stage, and location. Opportunity 2 concerns how the behavior of a 
river is influenced by its state, its stream order size, and the current hydrological regime. Opportunity 3 concerns drivers of novelty related to flow 

regimes: The pulse example shows hydropeaking, the ramp example shows reduced snowpack as a result of climate change, and the press example 
shows an expanding drought area. All three opportunities operate jointly in today’s river systems to change the quality and quantity of fish habitat, 
but current models often neglect to incorporate such complexity. 
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ecovery has informed fish movement and habitat expectations
or decades. For example, dams have affected Chinese sturgeon
 Acipenser sinensis ) populations for all different life stages (Huang
019 ). The novel riverscape concept highlights an alternative out-
ome, where a lentic-adapted lake sturgeon ( Acipenser fulvescens ),
an thrive under vastly different geomorphic and hydraulic
onditions in a hybrid river system altered by dams (Hrenchuk et
l. 2017 , McDougall et al. 2017 ). In both cases, heavily fragmented
ivers affected movement and fish survival, but most fish habitat
odels would not be able to predict the success of lake sturgeon
n one hand and the potential failure of Chinese sturgeon on
he other hand. Recognizing how subtleties in the definition of
sh movement could have profound impacts on the persistence
f a fish population and is crucial for the success of potential
estoration measures. 

iver behavior 
he adage “no man steps in the same river twice,” artfully de-
cribes the opportunity of river behavior, which we define as
he progression of a river’s flow in four dimensions (i.e., lateral,
ongitudinal, vertical, and temporal). The typical view of rivers
oncerns depth and velocity, but this view does not adequately
address the complexity of fish habitat and ecological interactions
as flows change (Tonkin et al. 2021 ). If we view rivers as moving
targets for conservation that can change naturally or by human
influence (Poff et al. 2010 , Brierley and Fryirs 2016 ), we can better
translate the ecosystem structure, biotic or abiotic processes, and
ecosystem integrity to and from fish habitat models (river behav-
ior opportunity; figure 1 ). The proliferation of gauging stations
throughout global watersheds has now given us the capacity to
study river behavior and its corresponding processes in ways that
directly link process to ecosystem integrity and the organisms
that depend on them (Palmer and Ruhi 2019 ). Stream gauging
networks (i.e., multiple stations spanning multiple stream orders)
provide continuous measurements on discharge and base flow
statistics, often going back decades, but can also measure water
depth, stage, water quality parameters, meteorological param-
eters, and physical parameters. Although future investments in
stream gauging networks is needed to reduce geographical biases,
the existing networks and regional hydrological models in many
rivers provide unique fish habitat modeling opportunities at
immense spatial and temporal scales that can also be combined
with remote sensing to monitor flows (Krabbenhoft et al. 2022 ). 

How this data informs our current understanding of river
behavior has both theoretical and practical implications for fish
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abitat models. Updated perspectives on classical river theory
uch as the river continuum concept (Vannote et al. 1980 , Stan-
ord and Ward 2001 , Doretto et al. 2020 ) demonstrate that a river’s
ehavior serves as the environmental heterogeneity necessary
o support complex requirements of biodiversity. Can our models
istinguish good heterogeneity from bad for management? This
s both a theoretical and a practical question worth investigating
urther. A functional flows approach to classifying heterogeneity
ffers a way to capture key components (e.g., pulses, baseflow,
eak flow, recession) of historic flow regimes in order to recover
atural heterogeneity (Yarnell et al. 2015 , 2024 ). The practical
alue of understanding river behavior concerns the transferabil-
ty of our research between riverscapes. Attempts to classify the
atural progression of rivers and their behavior have often relied
n geomorphic descriptions (Rosgen 1994 , Brierley and Fryirs
022 ). Only recently has a biome-based framework been devel-
ped to combine climatic gradients among other evolutionary
rocesses into distinct regions of the world as a potential means
o classify freshwater systems (Dodds et al. 2019 ). Combining a
iver behavior view within a biome framework could lend itself to
nabling a much needed taxonomy of rivers that connects river
ehavior to fish habitat relationships and theory (Humphries
t al. 2014 , 2019 ). The hydrograph data pipelines available can
elp fish habitat modelers identify the theories most relevant for
heir own system, impacts, models, and target organisms, setting
ppropriate management expectations from the outset. 

rivers of novelty 

ivers naturally undergo disturbances, but the basis of novel river-
capes is the nature of irreversible disturbances of anthropogenic
rigin (Moyle 2014 ). A driver of novelty is any anthropogenic
rocess (or natural process with anthropogenic influence), that
ffects desired ecosystem attributes and fish habitat such that
hey deviate further from the historical state. Some disturbances
re natural processes (without direct or indirect human involve-
ent) inherent to the historical state and would not be considered
 driver of novelty. Understanding these drivers through their ori-
in, spatial extent, interactions, and longevity is critical for model
esign and fish habitat restoration. Figure 1 shows how each of
he three disturbance types might operate on a riverscape either
ndependently or jointly. Recognizing that drivers of novelty can
e of human origin or natural with direct or indirect human
nfluence will help pinpoint cost-effective restoration measures
e.g., land-use policy changes versus invasive species control).
he possibility of ecosystem state shifts opens the discussion
o which type of drivers or removal of drivers of sufficient mag-
itudes could cause riverscapes to shift among states. Habitat
hanges during these state shifts can provide critical information
n biological processes if fish habitat models can start accounting
or ecosystem feedback loops rather than merely fitting linear
elations of current conditions (Tonkin et al. 2019 ). 
Remote-sensing (e.g., satellite, aerial, drone) data sets provide

nique opportunities to relate these out-of-channel drivers to
sh habitat. Not only is the data often freely available, but the
patial and temporal resolution becomes finer with every new
atellite mission. For example, the Sentinel-2 mission provides
early global coverage, with a monthly revisit time, measuring 13
pectral bands, which, in turn, provide multiple vegetation, soil,
nd water indices. Paid-for satellite services, although expensive,
an provide daily revisit times with submeter resolution. To
etter understand historical circumstances of habitat, previously
lassified spy missions (e.g., CORONA missions) have now been
ade available to see watershed or landscape changes after
orld War II (Munteanu et al. 2020 , 2024 ). Currently, most broad-

cale disturbances (e.g., climate change–driven drought, nutrient
unoff, landcover use, riparian removal) acting on riverscapes can
e accurately mapped, quantified, and modeled using satellite
emote-sensing products that go back more than 30 years for
ome missions, all of which can support fish habitat modeling
eeds (drivers of novelty; figure 1 ). 
In-channel drivers require drone- and boat-based sensing

echnology for geomorphological insight. For example, one can
urchase a commercially available transducer to map river
ottoms with high resolution and georeferencing and can then
onsider using sonar to quantify fish abundance (Kaeser and Litts
010 ). Aerial drones can also now map at river reach scale for
levation, riparian zones, waterfalls, thermal refugia, and other
tream features using orthophotos, LiDAR, and infrared sensors
Allan and Lintermans 2021 , Morgan and O’Sullivan 2023 ). Habi-
at and geomorphic features, as well as cross-sections of rivers
hat are too small for boats and that cannot be waded across, can
e mapped with floating acoustic doppler profilers (Mueller and
agner 2013 ). 

 scalable approach to model design and 

pplication: The Stommel diagram 

ven with immense data options, model development requires
 scale-focused blueprint to ensure that the models are built
nd adapted properly to changing riverscape conditions and
rocesses (Fausch et al. 2002 , Kondolf et al. 2006 , Yarnell et
l. 2015 ). Fish habitat in lotic systems at small scales involves
ydraulics, at large scales includes hydrology, and at both scales
ncludes geomorphology, and it can encompass all levels of
cological organization (Nestler et al. 2016 , Wegscheider et al.
020 ). Our blueprint approach helps interpret and synthesize
he novel ecosystems concept, current models, and the three
pportunities. Current implementations of fish habitat models
annot incorporate all the synergistic opportunities presented
n figure 1 , but this issue can be addressed with good planning.
o provide a more complete picture on our path forward for new
sh habitat models, we have combined the previous sections into
 collection of Stommel diagrams (figure 2 ). These diagrams can
elp modelers, researchers, and practitioners identify what pro-
esses could affect a system and its current state, which, in turn,
ould result in changes in both habitat quantity and quality for
iverine fish. 
The emphasis on the temporal and spatial scales of these

mpacts is intended to show the importance of scale-based
hinking for future studies and model development. Our primary
oal with these diagrams is to provide a context for how one may
odel fish habitat in rivers and then translate those findings into

estoration recommendations or management actions. Figure 2
s a filled-out Stommel diagram for a hypothetical riverscape.
ach opportunity has corresponding processes (color boxes) that
hange in relation to the ecosystem state. With each change,
he processes overlap and provide the groundwork for new
odels. Depending on the spatial and temporal scale at which

esearchers start a study (e.g., mesoscale for a couple of years),
hey can then assess across the three ecosystem states what
s likely changing within the modeling scale employed (e.g.,
icro, meso, macro, riverscape, river–sea connected), the overlap
f processes, and whether anything can be done about the
rocesses. 
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Figure 2. The key message of the figure is to help identify what processes (the colored boxes with textured borders) could influence habitat quantity 
and habitat quality for fish in relation to ecosystem state (i.e., historical, hybrid, novel). Stommel diagrams are scale-based depictions (temporal scales 
and spatial scales) of the riverscape where riverine processes corresponding to the three opportunities can be drawn (1, fish movement; 2, river 
behavior; 3, drivers of novelty). The shape and location of each opportunity is unique and changes with ecosystem state, which emphasizes how fish 
habitat models must either scale up or down (e.g., micro, meso, macro, riverscape) to overlap with the process or processes of interest. By forcing 
modelers to draw the spatial and temporal domain of their model (the black box), the Stommel diagrams provide a way to visualize the agreement of 
scales or lack thereof, indicating either potential bias or parameter uncertainty. 
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The Stommel diagrams are intended not merely as a theoreti-
al depiction of processes but as a worksheet with straightforward
estoration and management implications. How does one expand
he spatial domain of native potamodromous fishes? How does
ne restrict the domain of invasive fishes? How does existing
abitat and restored habitat drive these domain changes? Taking
he time to show key processes acting on one’s rivers is just the
eginning, because one can also include human dimensions
e.g., laws, policies, management plans), observational coverage
e.g., satellites, genetic markers, animal tracking technology), and
odel capabilities (e.g., boundaries of model performance, area of

nterest for decision makers, regions of development) for a range
f ecosystems (Fulton et al. 2019 ). To support readers in doing
heir own Stommel diagrams, either as a lab meeting or working
roup, we have attached a Stommel supplement ( supplement S2)
o work through the same exercise the authors of this article did.

ase study: Habitat modeling in the 

epublican River riverscape 

he Republican River (Central Great Plains Region, in the United
tates) is an ideal case study to showcase the novel riverscape
oncept, because it represents a riverscape that has strong
conomic interests (i.e., agriculture) that introduces multiple
tressors on fish habitat needs. It also serves as a warning
or other hybrid riverscapes where past scientific evidence
nticipated many of the problems it now faces. 
Situated in the western Great Plains in the United States, the

epublican River drains from eastern Colorado across western
Kansas and Nebraska (figure 3 ). Much of the basin is west of the
100th meridian west where rainfall is less than the 51 centimeters
needed to grow most crops. Overuse of groundwater in eastern
Colorado resulted in legal action that requires the state to deliver
water to the downstream states. This has been accomplished
by purchasing irrigation wells and pumping groundwater that
is delivered through a $60 million pipeline to the river chan-
nel at the state line. Since 1980, stream habitats have relied
on minimum desirable streamflow standards, which have not
been met for at least 6 of the years since 2000 (US Bureau of
Reclamation 2016 ). 

Old problems for a hybrid riverscape 

The river and its tributaries provided insufficient flow to divert
for agriculture, so large sprinklers fed by deep wells into the un-
derlying High Plains Aquifer in the Ogallala Formation are used
to irrigate crops, which are primarily corn to feed cattle and make
ethanol. For example, in Yuma County, Colorado, irrigated acres
increased rapidly during the early 1960s, and by 1980, the annual
water withdrawals averaged 400 million cubic meters, which
affected its major tributary, the Arikaree River (Falke et al. 2011 ).
By 2000, groundwater levels in eastern Colorado had dropped 8
meters or more, and by 2002, they were dropping 0.3 meters per
year. Flow in the Arikaree River was originally affected little by
the regional aquifer level but crossed a threshold in 2000, after
which no flow occurred at its mouth more than half the time. 

Declines in flow have had strong effects on Arikaree River fish
recolonization. Historical fish collections show that the river was
originally 110 kilometers (km) long but, by 2005–2007, had been

https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae081#supplementary-data
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Figure 3. The Republican River watershed with lotic network and largest reservoirs in comparison to a decadal groundwater level change (McGuire 
2017 ). The markers on map indicate select impacts that have or will affect fish habitat and the ecosystem state. Following the Stommel exercise in the 
supplement, impacts are drawn on to the spatial and temporal domains of primary interest. Once the impacts are mapped, modelers could use a 
variety of model types (box 1 ) or more advanced models (shown) to provide a comprehensive assessment of the impacts in relation to fish habitat and 
use this information to prioritize management and investments in restoration. Although there are a large number of models to choose from, the 
selected ones reflect a useful balance of appropriate scale and the uncertainty of estimates, and could make use of existing data. 
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educed to only about 35–60 km of flowing segments during early
ummer peak flow. By late summer, only about 10–15 km were
owing during these years (Falke et al. 2011 ). Previous research on
lains fishes of this region showed that groundwater-fed pools are
ritical to their survival during the dry season from late summer
hrough winter and early spring, and that even small-body fishes
uch as minnows and darters move long distances to spawn
nd recolonize formerly dry segments (Labbe and Fausch 2000 ,
cheurer et al. 2003 ). Of the 16 native fish species, 5 had been
xtirpated by 2007, and 2 more were rare. 
Coupling a regional groundwater model with pool levels

howed that if pumping continued at rates as seen in 2007,
y 2045, virtually all pools would be restricted to a 1 km river
egment, leaving the remaining fish vulnerable to extirpation
uring dry years (Falke et al. 2011 ). Similar stream drying from
roundwater pumping has been documented in many rivers of
he western Great Plains in the three states (Falke et al. 2011 ,
erkin et al. 2017 ). A region-wide analysis that projected declining
ell levels into the future showed that between 1950 and 2010,
58 km of flowing streams supported by the High Plains aquifer
ere lost (21% of the total) in an area of eastern Colorado and
estern Kansas and Nebraska, approximately 300 × 300 km in
rea. A river once known for its large floods 100 years ago is now
escribed as “not even deep enough to drown in” (Rayes 2022 , p. 1).
ew problems and new fish habitat models for a 

ovel riverscape future 

he models needed for this new ecosystem state must operate
t the same time scale of typical integrated management plans
sed by local administrators (for 25 years or until 2044), leverage
xisting operations and groundwater modeling efforts, operate at
he same spatial scale (individual districts), and must be in line
ith other water supplies and uses (Upper Republican Natural
esource District et al. 2019 ). Figure 3 highlights existing and
ew problems that are involved both on the map and on the
tommel diagram. Water transfer obligations have resulted in
 proposed diversion from the Platte River, as well as a rela-
ively recent partial decommissioning of Bonny Reservoir. Both
ecisions have unquantified impacts on local fish fauna and
abitat, despite their strong influence (river behavior). This builds
ff the preexisting issue of expanding groundwater extraction
drivers of novelty). In addition, Asian carp have recently been
etected just below the terminus of the Republican River and
ave the potential to move in and establish (fish movement).
he whole fish community is the target organization unit for
odeling and should be interpreted as a dynamic assemblage
ith frequent movements (Baxter 2002 ). Given these overlap-
ing anthropogenic impacts and their related processes on fish
abitat, how should one inform management and restoration
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ith models? Our answer would be multiple scale appropriate
odels that have strong links not only to habitat and to each
ther but also to the underused data pipelines present (Nestler
t al. 2016 ). 
Starting with the Stommel, we notice that impacts 1, 2, 3, and 5

verlap but are centered at a meso to macro scale between a year
nd a century. A functional model (box 2 ), such as community as-
embly via trait selection regression (CATS [community assembly
ia trait selection] regression; Warton et al. 2015 ) or a similar trait
ased multilevel modeling approach (Kirk et al. 2022 ), could help
et the stage of understanding these impacts on the fish traits (i.e.,
ovement, growth, fecundity) of the community and the relations

o environmental habitat variables from local gauge stations.
ith an understanding of existing traits and their sensitivities
f impacts, one could feed these traits into a mechanistic model
uch as a size-spectrum approach (Scott et al. 2014 ), which would
llow for projections of fish traits under different impact scenarios
nd for longer time scales. Probable scenarios could then be linked
o the culmination of individual farmer impacts on groundwater
Noël and Cai 2017 ) and the resulting river condition (Gurnell et al.
020 ), which spans multiple scales from meso to macro. Finally,
 conceptual model such as a multispecies connectivity model
Wood et al. 2022 ) could be implemented to serve as a reality check
or the previous models if Asian carp were to spread and estab-
ish. The resulting culmination of models could inform how water
se could be adjusted to compromise fish habitat requirements
t specific areas. More importantly, these models could give clear
uidance on how to leverage existing policies intended to protect
ivers, because they should be updated regularly. This includes
ater use fees, water regulation at water management structures,

nvasive species control, land-use planning, and groundwater
anagement. 
It is extremely important that this case study should not be

nterpreted as a sole endeavor by one individual or research
roup. In some respects, our discipline has typically relied on
ractitioners to do far too much with far too little. In this kind
f environment, new models disappear as soon as a student
raduates or an employee changes a job. The establishment
f data pipelines, model development, and research needed to
roduce these tools requires a joint commitment from practition-
rs, modelers, and researchers, each with their respective roles
hat should establish channels of cooperation ( supplement S3).
avigating fragmented data sources, finding historic primary
nd secondary literature, and creating links among partners
ith similar fish habitat goals are gateways for interdisciplinarity
nd interagency team building. To better address systemic river
mpacts from multiple fronts, we (all parties interested in rivers)
ust work together at the same time scale as the river impacts.
he sum of our actions is meagre compared with a truly synchro-
ized and interacting workforce that leverages each role’s talent.
eturning to our foundations of scale, this interdisciplinary, data-
riven approach puts us in the position to apply multiple fish
abitat models that are routinely updated and verified and then
sed to inform restoration and management. The time of one
odel, one person should become the exception not the norm

or future fish habitat model development. Examples where data
ipelines meet near-real-time modeling are all around us (e.g.,
eather forecasts, pandemic predictions, climate projections,
ood warning systems, marketing ad suggestions, traffic predic-
ions), and it is time for fish habitat models in riverscapes to do
he same. 
Conclusions 

No single model will perfectly match the unique opportunities
presented by all rivers, but exploring, exchanging, and commu-
nicating new developments that have shown success in other
ecological disciplines may help us manage habitats in hybrid and
novel ecosystems more effectively. A combination of theory, data
pipelines, and scale-based thinking gives us a chance to explore
habitat dynamics for higher organizational phenomena such
as metapopulations, metacommunities, and metaecosystems
to more comprehensively address the freshwater biodiversity
crisis. Coordinating and building capacity for such a paradigm
shift will not be easy but can be accelerated with strategic
communication (i.e., fish habitat conferences) among all levels
of research and practice and should be seen as a necessary step
toward addressing rampant riverscape degradation. 
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