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The blood-brain barrier (BBB) protects the brain from pathogenic microorganisms. Neurologic complications from viral infections, 
including herpes simplex virus, varicella zoster virus, HIV, Japanese encephalitis virus, and SARS-CoV-2, are linked to BBB 
dysfunction and loss of barrier integrity. Increased BBB permeability associated with viral infections can occur through several 
mechanisms, such as direct neurotropism, Trojan horse mechanisms, or systemic infection and inflammation. Viruses cause 
direct and indirect immune-mediated damage. Understanding these neuroimmune mechanisms is critical to establish 
therapeutic strategies to protect BBB function. This review describes the effect of viral infection on the BBB, clinical methods to 
assess BBB integrity, and clinical management approaches to address viral-induced BBB damage.
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The cells that form the neurovascular unit (NVU) of the central 
nervous system (CNS) are critical for maintaining the blood- 
brain barrier (BBB) through the regulation of molecules, 
ions, and pathogens transiting from the bloodstream [1]. 
The key components of the BBB are brain endothelial cells, 
pericytes, and astrocytes (Figure 1A). Brain endothelial cells 
are the most important component of the BBB and exhibit spe
cific phenotypically distinct characteristics to reduce paracellu
lar transcytosis [1]. This includes tight junctions (TJs) and 
adherent junctions between adjoining endothelial cells 
(Figure 1B). Astrocytes extend endfeet projections that encase 
brain endothelial cells, pericytes, and the basement membrane 

to provide support to the BBB and maintain its integrity. 
Pericytes are also important in the structural maintenance 
and regulation of the BBB. Adjacent cells in the extravascular 
regions of the brain include neurons and the resident CNS im
mune cells, microglia, which form the broader NVU. Each 
component (supplementary appendix) ensures normal physio
logic function, and when damaged or altered, the barrier be
comes dysfunctional and loses integrity. Viral infections can 
cause BBB breakdown and severe neurologic manifestations, 
including encephalitis [2], meningitis [3], and microcephaly 
[4], risking significant neurologic morbidity and mortality 
[5,   6]. An improved understanding of the underlying mechanis
tic interactions driving BBB and NVU breakdown is critical to 
repurpose or develop neuroprotective therapies to reduce cellu
lar injury and cerebral edema and thus minimize sequelae [7]. 
For most viral infections affecting the CNS, current therapeutic 
options primarily address pathogen replication while fewer are 
currently available to specifically address BBB damage.

BIOMARKERS OF BBB INTEGRITY

The BBB can be assessed clinically by utilizing biomarkers of 
solute influx or efflux or damage to the NVU structure.
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Systemic Protein Influx

As albumin is not synthesized in significant concentration in 
the CNS, the ratio between cerebrospinal fluid (CSF) and serum 
albumin concentration (CSF/serum albumin quotient) is often 
used as a BBB permeability index [8]. However, as activated mi
croglia may produce albumin [9], this may confound measure
ment, particularly during viral infection. Since CSF is produced 
by the choroid plexus, another limitation of the CSF/serum al
bumin quotient is that the CSF albumin concentration may not 
directly reflect the brain’s interstitial fluid. Anatomically and 
physiologically, it is important to note that the blood-brain in
terstitial fluid and blood-CSF are distinct. The blood-CSF bar
rier is considered more permeable due to consisting of 
epithelial cells of the choroid plexus with less restrictive TJs 
[10]. A more accurate and minimally invasive approach is dy
namic contrast–enhanced magnetic resonance imaging (MRI) 
[11]. By imaging the brain serially before, during, and after 
paramagnetic gadolinium-containing contrast agent injection, 
signal change within the brain tissue is converted to gadolinium 
concentration and the transfer coefficient calculated through 
Patlak modeling of the tissue concentration–time curve [12].

Systemic Protein Efflux

Several proteins are highly expressed in the brain, but their con
centration is extremely low or absent in blood under healthy 
conditions; therefore, they can be used as blood biomarkers. 
During viral infection, the circulating concentration is also 

influenced by the severity of neuropathology. Nevertheless, 
they can still function as BBB permeability markers if statistical 
analyses are appropriately controlled for disease severity. 
Examples of commonly studied markers include glial fibrillary 
acidic protein (GFAP) and S100B of astrocytic origin, as well as 
ubiquitin C-terminal hydrolase L1, neurofilament light (NfL), 
and tau, which are neuronally derived [13]. Due to their low 
concentrations in serum and plasma, even during BBB break
down, ultrasensitive methods with technology such as single- 
molecule array are required [14].

NVU Damage

Release of molecular or subcellular components of the NVU 
during BBB damage provides a source of biomarkers in CSF 
and blood. While serum levels of fragments or soluble forms 
of cellular adhesion molecules correlate with BBB damage, 
these are not specific to the cerebral vasculature [15]. It is im
portant to note that peripheral nerve damage can cause the re
lease of NfL and therefore reflect peripheral nervous system 
and CNS injury [16]. More recent studies have utilized mole
cules that are highly expressed at the BBB, such as 
CSF-soluble platelet-derived growth factor receptor β [17] or 
extracellular vesicles positive for cerebral endothelial markers 
by flow cytometry [18].

Figure 1. Schematic of the blood-brain barrier and neurovascular unit, displaying junctional complexes. A, Endothelial cells line the lumen of blood vessels, partially en
circled by pericytes embedded in a basement membrane. Astrocytic foot processes support the outer perimeter of the lumen. The wider neurovascular unit contains the 
resident immune cells of the central nervous system, microglia, and neurons. B, Endothelial cells are tightly adhered by junctional complexes known as tight junctions 
and adherent junctions, which strengthen the structural integrity of the endothelial monolayer. JAM, junctional adhesion molecule; ZO, zonula occludens.
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VIRAL INFECTIONS THAT CAUSE DISRUPTION TO 
THE BBB

Whether from direct infection or indirect effects (ie, immune- 
mediated pathology), viral infection can cause major complica
tions, such as encephalitis, meningitis, microencephaly, and 
demyelination. While a wide spectrum of viruses can induce 
CNS injury and BBB breakdown, this review focuses on those 
of greatest human burden.

Herpes Simplex Virus

Herpes simplex virus 1 (HSV-1) is the most common cause of 
sporadic viral encephalitis in adults and children in high-income 
settings [19]. Herpes simplex encephalitis (HSE) has an estimated 
incidence of 1 of 100 000 to 150 000 people per year [20]. 
Typically, patients present with a combination of new headaches, 
fever or febrile/coryzal prodrome, and nausea during the early 
stages of encephalitis. As the disease progresses, typically over 
hours or days, patients develop further symptoms, including alter
ations in cognition, consciousness, personality, and/or behavior, 
and a proportion will develop focal neurologic signs and seizures 
[21]. The majority of people have been infected by HSV-1 by the 
time that they reach adulthood. HSV-1 is transmitted by droplet 
spread, crosses the oral and/or nasal mucosa, enters sensory neu
rons, and migrates by retrograde axonal transport to the trigemi
nal ganglia, where it establishes latency, although the virus may 
also migrate via the olfactory bulb [22]. During primary infection 
and following reactivation from latency, CNS infection with 
HSV-1 occurs by further retrograde axonal transport to establish 
infection, predominantly affecting the temporal lobes and orbito
frontal cortex, often bilaterally but asymmetrically, or less com
monly the brainstem. Active HSV replication within the CNS 
induces an immune response that drives the recruitment of neu
trophils and monocytes across the BBB and increased permeability 
of the BBB with vasogenic edema [7]. Much of the inflammatory 
response to HSV-1 infection in the CNS is due to the localized 
production of cytokines and chemokines. Abrogation of CXCL1 
signaling, through either the administration of neutralizing anti
bodies or the absence of the cognate receptor CXCR2, reduces 
neutrophil recruitment into the CNS and diminishes BBB perme
abilization [7]. Microglia produce a robust cytokine and chemo
kine response after HSV-1 infection in vitro [23]. Importantly, 
CXCL1 is also produced by uninfected perivascular astrocytes in 
response to paracrine production of IL-1 and by microglia re
sponding to pathogen- and damage-associated molecular patterns 
produced by HSV-1–infected neurons. In human disease, the 
proinflammatory effects of the IL-1 cytokine family are balanced 
by expression of the anti-inflammatory endogenous IL-1 receptor 
antagonist (eg, IL-1Ra). This pro- vs anti-inflammatory balance is 
associated with changes in BBB permeability, as measured by albu
min leakage into the CSF and edema on MRI, and correlates with 
clinical disease severity and poor outcome [24].

Varicella Zoster Virus

Varicella zoster virus (VZV) causes chickenpox during primary 
infection and shingles following reactivation of latent infection. 
Similarly to HSV-1, VZV can remain latent in neurons but typ
ically is found in the dorsal root ganglia of spinal sensory neu
rons [25]. Post–varicella zoster complications occur as a result 
of reactivation of the virus and often affect those who are elder
ly or immunocompromised. Most commonly, this manifests as 
postherpetic neuralgia but can result in other neurologic com
plications, including encephalitis, meningitis, myelitis, and in
flammatory vasculopathies affecting the small and/or large 
blood vessels of the CNS [26]. Other viruses that directly infect 
brain endothelial cells include henipaviruses: Nipah virus and 
Hendra virus [27]. These VZV-associated vascular events can 
drive further complications, such as ischemic and hemorrhagic 
stroke [26]. Collection of CSF and serum from patients positive 
for VZV CNS infection showed an increase in the levels of 
proinflammatory chemokines, including CCL19, CXCL8, 
CXCL9, and CXCL10, and matrix metalloproteinases 
(MMPs), such as MMP-2, MMP-3, MMP-8, MMP-9, and 
MMP-12 [28]. MMPs have been associated with BBB break
down by causing degradation of the basement membrane, de
tachment of astrocytes, and cleavage of TJ proteins [29]. 
Infection of different cerebrovascular cells with VZV was 
shown to increase the expression of proinflammatory cyto
kines, especially IL-8 and IL-6 [30]. Another study found that 
treating human neurons with IL-6 reduced viral replication 
of VZV in vitro [31]. However, there is a lack of research reveal
ing the cellular mechanistic interactions and the impact on the 
BBB in CNS infections with VZV.

Japanese Encephalitis Virus

Japanese encephalitis virus (JEV) is the predominant cause of vi
ral encephalitis in Asia. Other neuropathic flaviviruses include 
West Nile virus, dengue virus, yellow fever virus, and Zika virus 
[32]. JEV disrupts BBB function and causes >67 000 cases of en
cephalitis annually [33]. Symptoms begin with the development 
of fever and progress to a decline in consciousness, vomiting, 
headaches, seizures, and sometimes focal movement disorders, 
reflecting involvement of the basal ganglia [34]. Multiple routes 
of entry of JEV into the CNS have been proposed, including 
the “Trojan horse” mechanism utilizing infected immune cells 
or as a result of BBB disruption from systemic infection. One 
study based on an in vitro Transwell BBB model found that 
JEV, even at low titers (multiplicity of infection = 1), was able 
to infect endothelial cells, which aided in viral replication [35]. 
JEV replication caused an increase in BBB permeability due to 
activation of the endothelium and release of proinflammatory 
mediators, allowing virus to cross into the brain. Alternative 
suggestions propose that JEV initially enters the CNS prior to dis
rupting the BBB and promotes an immune response, which caus
es subsequent BBB damage and promotes further viral entry [36].
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Production of inflammatory chemokines (eg, CXCL10) secret
ed from JEV-infected glial cells leads to further damage of NVU 
components and increased BBB permeability [36, 37]. In mice in
fected with JEV, attenuation of CXCL10 prevents the decrease in 
TJ expression and restores endothelial integrity. In vitro studies 
have reported upregulation of CXCR3 (receptor for CXCL10) 
in astrocytes during JEV infection. CXCL10/CXCR3 binding trig
gers the production of TNF and significantly decreases the ex
pression of occludin, claudin 5, and ZO-1, thus promoting BBB 
damage [37]. Microglial activation is also induced by the secretion 
of proinflammatory cytokines from JEV-infected neurons [38]. 
This cytokine response is initially beneficial for immune cell re
cruitment and viral clearance, but prolonged activation of micro
glia causes overproduction of proinflammatory factors that 
contribute to neuronal injury and death [39].

HIV

HIV, when untreated, can advance to become AIDS. The World 
Health Organization estimates that there are 39 million people 
with HIV worldwide and 360 000 deaths per year [40]. Initial 
HIV infection can result in a clinical presentation of encephalitis 
during seroconversion, but even without encephalitis symp
toms, it is established that HIV enters the CNS early during in
fection [41, 42]. Subcortical white matter changes are a specific 
characteristic of HIV-related CNS complications. BBB damage 
is thought to contribute to these changes as well as the develop
ment of further neurologic complications, such as AIDS 
dementia [43]. Later, HIV can cause acute CD8+ T-cell enceph
alitis or more subtle neurologic complications, which have been 
termed HIV-associated neurocognitive disorders, referring to 
deficits in cognition, concentration, and motor skills [44]. 
HIV can cross the BBB by using a Trojan horse mechanism 
via infected macrophages or as free virions entering through en
dothelial cells. HIV-1 can enter macrophages by targeting CD4 
and CCR5 receptors, and these infected cells can then cross the 
BBB, leading to release of inflammatory cytokines and neuronal 
injury [45]. Neuronal injury from HIV infection may increase 
BBB permeability within days [46], with TJ damage found in brain 
tissue taken from a patient with HIV who developed encephalitis. 
Fragmented expression or a lack of TJ proteins occludin and ZO-1 
was observed by immunohistochemistry but were not found in 
patients with HIV who did not have encephalitis [47].

SARS-CoV-2

There is increasing evidence that SARS-CoV-2 can cause dysfunc
tion of the BBB [48]. Nevertheless, from human autopsy studies, it 
is clear that although the virus can be detected in the brain by 
quantitative polymerase chain reaction, only a minority of cases 
show virion protein in the brain parenchyma. This is usually at 
low levels, indicating the more likely mechanism of the parainfec
tious effects of SARS-CoV-2 [49, 50]. The concentration of NfL 
and GFAP in serum correlates with the World Health 

Organization’s COVID-19 severity scale. Moreover, in people 
who had acute brain dysfunction (eg, encephalopathy, stroke, en
cephalitis), NfL, GFAP, and tau were elevated in serum even sev
eral months following COVID-19 [51, 52]. BBB damage has been 
associated with cognitive impairment, often termed brain fog, in 
patients experiencing long COVID. Dynamic contrast–enhanced 
MRI has identified that patients reporting brain fog may have 
greater BBB leakage [53]. Additionally, patients with brain fog 
were found to have elevated S100B, suggesting BBB disruption. 
Global cognitive deficits were found in patients 1 year after 
COVID-19 hospitalization [54], which was associated with elevat
ed serum NfL and GFAP. Greater COVID-19 severity may also 
correlate with brain injury biomarkers [52]. A microfluidic dual 
lung and BBB chip system incorporating blood mononuclear cells 
modeled SARS-CoV-2 lung infection and reported more severe 
BBB injury and neuroinflammation as compared with direct viral 
exposure. The indirect lung infection model revealed the produc
tion of 11 cytokines (eg, IL-6, MCP1, IL-1RA, TNF, CXCL10) by 
glial cells, which caused further BBB injury [55]. BBB injury was 
observed in another microfluidic chip model when cerebral mi
crovascular endothelial cells (hCMEC/D3) were exposed to 
SARS-CoV-2 spike protein [56]. In addition, respiratory support 
is particularly important for COVID-19 encephalopathy as hypox
ic insults and resultant glutamate excitotoxicity can cause BBB 
breakdown [57]. Moreover, prolonged hypoxia drives production 
of HIF-1a and downstream activation of MMP-2, which causes 
BBB breakdown [58, 59].

In vivo modeling of intranasal SARS-CoV-1 infection in ACE2 
transgenic mice has shown the use of the olfactory bulb for viral 
entry into CNS [60]. However, alternative infection routes in an
imal models are suggested by distinct regions of infection, such as 
the dorsal vagal complex and substantia nigra. A common symp
tom of COVID-19 is anosmia [61], raising the possibility of an in
fection route via the olfactory nerves into the CNS. Yet, evidence 
of virion presence in the parenchyma of the CNS is limited in the 
majority of human postmortem studies; therefore, anosmia may 
reflect local infection outside the CNS [49, 50]. Other studies 
have evaluated SARS-CoV-2 brain infection by using ACE2 recep
tors as a pathway for CNS entry (reviewed by Zamorano et al [62]), 
but the importance of this pathway remains uncertain [63].

More reflective of clinical disease, there is modeling evidence of 
cerebral microvascular injury in SARS-CoV-2–infected ACE2 
transgenic mice in the absence of severe viral neuroinvasion [55, 
64, 65]. Indeed, SARS-CoV-1–infected ACE2 transgenic mice 
have a lack of inflammation and astrocytic activation despite wide
spread neuronal infection [60]. Additionally, a recent in vitro study 
used induced pluripotent stem cells to derive brain endothelial cells 
and produced a Transwell model that was infected with the original 
strain of SARS-CoV-2. After infection, there was a decrease in 
transendothelial electrical resistance, claudin 3, and claudin 11, 
as well as a rise in the expression of proinflammatory genes [66].
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CLINICAL MANAGEMENT OF BBB DYSFUNCTION

There are limited established methods to manage BBB dys
function clinically, although several approaches are under 
investigation (Table 1). The pathogenesis of the neuroin
flammation leading to infection-driven BBB damage is mul
tifactorial, depending on the etiology; therefore, initial 
management should aim to treat the infection, such as timely 
acyclovir for HSE [67]. For viral infections that do not have 
specific treatments (eg, JEV), vaccination should be encour
aged for at-risk groups as primary prophylaxis. While respi
ratory COVID-19 management utilizes steroids, antivirals, 
and immune modulators, the research surrounding the 
management of neurologic complications is more limited 
[57, 68, 69, 71]. Nevertheless, the introduction of several 
treatments given primarily for respiratory disease, such as 
dexamethasone and remdesivir, has been associated with a 
decline in neurologic complications [68].

Cerebral Edema Management

The clinical management of BBB permeability during viral in
fection is often informed by research into traumatic brain inju
ries (TBIs). BBB damage can result in vasogenic edema from 
endothelial damage and reactive oxygen species, while direct 
toxic effects from pathogens can lead to cytotoxic edema 
[89]. Once damage to the BBB has occurred, neuroprotective 
measures should be taken to limit secondary brain insults, 
which could mediate further BBB breakdown and cerebral ede
ma, causing diminished neurologic function, seizures, and in
creased intracranial pressure (reviewed by Cook et al [90]). 
Guidelines do not currently recommend primary seizure pro
phylaxis [69]. However, seizure risk stratification may inform 
the potential need for primary antiseizure prophylaxis [91].

Osmotic therapies such as mannitol and hypertonic saline 
are used in TBI to reduce cerebral edema and after BBB deteri
oration. A meta-analysis showed that osmotherapy improves 
outcomes when significant edema is present and found that hy
pertonic saline is superior to mannitol [72]. If the patient is hy
ponatremic, then mannitol may be safer due to the risk of 
central pontine myelinolysis with hypertonic saline. Evidence 
for osmotherapy in BBB dysfunction of an viral etiology is 
less robust, and no recommendations are agreed [69].

AQP-4 channels act as a passive pore, enabling the removal 
of extracellular fluid down pressure gradients [58]. Hence, 
these channels play a beneficial role in pathologies where vaso
genic edema predominates, but they are detrimental when cy
totoxic edema is present. For example, in a mouse model, 
significant downregulation of AQP-4 channels occurs in the 
acute phase of HSE with upregulation later in the disease pro
cess [83]. Thus, while modulation of AQP-4 channels may be 
beneficial, the timing in the disease process is crucial.

Managing Inflammation and Prevention of Immune Cell Migration

Steroids are used for managing inflammation in many neuro
logic conditions. Dexamethasone increased the tightness be
tween TJs, upregulated BBB Pgp (an efflux transporter), and 
in principle should mitigate BBB damage [92]. Steroids have 
evidence for treating meningitis, but the CRASH trial dem
onstrated an increase in mortality when used in the acute 
phase of TBI [92–94]. There is limited evidence for the use 
of steroids in viral encephalitis. While the use of steroids 
would likely aid in the management of edema, the effect on 
viral replication may be undesirable and is undetermined. 
The results of an adjunctive dexamethasone randomized 
controlled trial in HSV encephalitis in the United Kingdom 
are awaited [73]. There are minimal data regarding manage
ment of brain complications of COVID-19 steroids. 
Following the RECOVERY trial, steroids became a routine 
part of respiratory COVID-19 management for patients re
quiring oxygen [74]. Hence, steroids are commonly used 
for patients with COVID-19 encephalopathy/encephalitis, 
but there are no robust data supporting their use, beyond 
case series and observational studies [57, 75]. Since the 
COVID-19 pandemic, the incidence of neurologic cases has 
decreased, and treatment with dexamethasone has been 
found to be associated with fewer neurologic complications 
[68]. However, other contributing factors include protection 
by vaccines and evolution of SARS-CoV-2 variants [68].

The role of innate immune cells is another aspect of the path
ophysiology that offers potential therapeutic targets. The trans
endothelial migration of neutrophils during HSE and other 
infectious encephalopathies is associated with increased mor
bidity, neurotoxicity, and BBB dysfunction via protease release 
and TJ disruption [7]. The infective process drives neuroim
mune crosstalk with CXCL1 chemokine production by astro
cytes and neurons in response to IL-1α. By blocking IL-1, the 
BBB damage is reduced, but the beneficial antiviral effects of 
IL-1 are also reduced. In human studies, the relative concentra
tions of the IL-1 family members to endogenous IL-1 antago
nists is associated with cerebral edema and outcome [24]. As 
existing clinical therapies for IL-1 antagonism (IL-1RA) are 
in use for other conditions, this is an avenue for future investi
gation in HSE that may have implications for therapeutic appli
cation to other viral encephalitides.

Various studies have utilized nanoparticles derived from 
neutrophil membranes to maximize delivery to areas of in
flammation within the BBB [86]. This was analyzed with 
thrombomodulin mRNA to protect the endothelial barrier 
from inflammation by inhibiting TNFα-induced BBB per
meability [87]. A similar effect was found by using resolvin 
D, which decreased leukocyte–endothelial cell interaction 
[88]. However, the research into this delivery mechanism 
is minimal and has been limited to patients who experi
enced stroke.
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Modulation of Junction Complex Expression

The activation of MMPs in encephalitis and other cerebral in
sults is well documented and linked to BBB disruption via dam
age to TJ proteins [58], and inhibition of MMP activation was 
shown to significantly reduce this disruption [81]. Although 
MMPs may be harmful to the BBB during only the acute inflam
matory phase, they inactivate cytokines while promoting angio
genesis and neurogenesis in the later phase [95]. Furthermore, 
much of the research on MMP inhibition is in the context of 
noninfectious cerebral injuries and may have undesirable effects 
on control of viral replication, particularly via proinflammatory 
cytokines. Moreover, MMPs can act as potent antiviral targets to 
control HSV-1 infection [82, 96]. Doxycycline may be a prom
ising adjunct in reducing MMP-9 production [79, 80] and sig
nificantly reduces IL-1β–induced BBB injury by reducing 
damage to zonula occludens [97]. However, studies have exam
ined the BBB only in the context of bacterial challenges.

Several studies have explored the localization of vascular endo
thelial cadherin, a key component in the adherent junctions [58, 
98], as a method to reduce BBB permeability. The sphingolipid 
sphingosine 1 phosphate (S1P) maintains vascular endothelial 
cadherin at the endothelial cell-cell junctions [99]. 
Administering an S1P analogue has been shown to reverse BBB 
permeability in mice with preexisting BBB damage [84]. 
Additionally, a modulator of the S1P receptor (FTY720, 

fingolimod) prevented the redistribution of junctional proteins 
and ameliorated BBB damage and is used clinically for multiple 
sclerosis [85]. While FTY720 has beneficial effects in multiple scle
rosis and encephalomyelitis, it has recently been shown to reacti
vate latent viral infections in murine models, thus necessitating 
additional research on the safety in virus-driven BBB damage 
[100].

A recent study of HSE noted the downregulation of occludin 
and claudin 5, affecting BBB integrity [82]. However, other pos
sible mechanisms include downregulation of Golgi-associated 
protein GM130, Golgi fragmentation, and cell apoptosis. 
Overexpression of GM130 partially attenuated BBB damage. 
Furthermore, the use of a pan-caspase inhibitor, Z-VAD-fmk, 
led to increased levels of GM130, as well as occludin and clau
din 5. This offers several potential targets for maintaining and 
restoring BBB functionality.

CONCLUDING REMARKS

BBB injury is driven by neuroimmune crosstalk during viral infec
tions and is crucial to the development of neurologic injury and se
quelae. Current management strategies for virus-driven BBB 
dysfunction aim to treat the primary cause and prevent additional 
damage through neuroprotective measures, relying on findings pri
marily derived from TBI and stroke research. However, mortality 

Table 1. Clinical and Preclinical Management Options for Blood-Brain Barrier Dysfunction

Clinical Antivirals 
• Examples: acyclovir for HSE and remdesivir for COVID-19 [67, 68]
Prevention via vaccination 
• Example: JEV vaccine
Neuroprotective measures 
• 30° head tilt
• CPP >60 or MAP >65 [69]
• Maintain electrolyte levels [70]
• Normothermia, normocapnia, normoglycemia [71]
Osmotic therapies to control cerebral edema 
• Hypertonic saline (superior for HSE) [72]
• Mannitol
Corticosteroids 
• Dexamethasone: DexEnceph trial [73]
• Steroids empirically used for COVID-19, but role in encephalopathy is limited in case reports [57, 68, 74, 75]
ICP monitoring 
• Invasive
• Noninvasive under exploration (eg, transcranial Doppler or optic nerve sheath diameter) [76, 77, 78] 

Preclinical Reducing MMP-9 activation with doxycycline limiting tight junction damage [58, 79, 80] 
• MMP inhibition with batamistat reduced intracranial complications [81]
Increasing GM130 expression reduced HSV-1 damage [82] 
• Pan-caspase inhibitors showed a similar effect by increasing GM130 [82]
CXCL-1 antagonism reduced HSE damage [7] 
AQP-4 channels could aid recovery for conditions with primarily vasogenic edema [58, 83] 
Increasing VE-cadherin with S1P reversed BBB permeability [84] 
• S1P receptor modulators also shown to reduce damage [85]
Neutrophil membrane nanoparticles identify the area of BBB inflammation [86] 
• Thrombomodulin mRNA-loaded particles reduced inflammation of the endothelium [87]
Resolvin D reduced leukocyte endothelial interaction [88]

Abbreviations: AQP-4, aquaporin 4; BBB, blood-brain barrier; CPP, cerebral perfusion pressure; CXCL-1, C-X-C motif chemokine ligand 1; GM130, Golgi matrix protein 130; HSE, herpes simplex 
encephalitis; HSV-1, herpes simplex virus 1; ICP, intracranial pressure; JEV, Japanese encephalitis virus; MAP, mean arterial pressure; MMP, matrix metalloproteinase; mRNA, messenger 
ribonucleic acid; S1P, sphingosine 1 phosphate; VE-cadherin, vascular endothelial cadherin.
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and morbidity in viral-induced CNS injury remains high, and re
search is increasingly focused on preventing initial BBB permeabili
zation, limiting further BBB damage, and ultimately repairing the 
BBB. Future research should focus on delineating the neuroimmune 
pathways in cohorts with viral etiologies in conjunction with parallel 
in vivo and in vitro models to explore and determine optimal strat
egies that protect the brain.
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