

# Viral Infection and the Blood-Brain Barrier: Molecular Research Insights and Therapies

Sarah A Boardman, <sup>1,®</sup> Claire Hetherington, <sup>1,®</sup> Thomas Hughes, <sup>1,®</sup> Callum Cook, <sup>1,®</sup> Ian Galea, <sup>2,®</sup> Orla Hilton, <sup>1,®</sup> Tom Solomon, <sup>1,3,4,5,®</sup> Andrew D Luster, <sup>6,®</sup> Stuart Allan, <sup>7,8,®</sup> Evelyn Kurt-Jones, <sup>9,®</sup> Joe Forth, <sup>10,11,®</sup> Adjanie Patabendige, <sup>1,12,13,®</sup> Franklyn N Egbe, <sup>1,®</sup> Cordelia Dunai, <sup>1,3,a,®</sup> and Benedict D Michael <sup>1,3,4,a,®</sup>

<sup>1</sup>Institute of Infection, Veterinary and Ecological Science, Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, United Kingdom; <sup>2</sup>Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; <sup>3</sup>NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom; <sup>4</sup>The Walton Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom; <sup>5</sup>The Pandemic Institute, Liverpool, United Kingdom; <sup>6</sup>Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA; <sup>7</sup>Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom; <sup>8</sup>Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, United Kingdom; <sup>9</sup>Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, USA; <sup>10</sup>Department of Chemistry, University of Liverpool, Liverpool, United Kingdom; <sup>11</sup>Department of Physics, University of Liverpool, United Kingdom; <sup>12</sup>College of Science and Engineering, University of Derby, Derby, United Kingdom; and <sup>13</sup>Liverpool Centre for Cardiovascular Science, University of Liverpool, United Kingdom

The blood-brain barrier (BBB) protects the brain from pathogenic microorganisms. Neurologic complications from viral infections, including herpes simplex virus, varicella zoster virus, HIV, Japanese encephalitis virus, and SARS-CoV-2, are linked to BBB dysfunction and loss of barrier integrity. Increased BBB permeability associated with viral infections can occur through several mechanisms, such as direct neurotropism, Trojan horse mechanisms, or systemic infection and inflammation. Viruses cause direct and indirect immune-mediated damage. Understanding these neuroimmune mechanisms is critical to establish therapeutic strategies to protect BBB function. This review describes the effect of viral infection on the BBB, clinical methods to assess BBB integrity, and clinical management approaches to address viral-induced BBB damage.

Keywords. blood-brain barrier; mechanisms; virology.

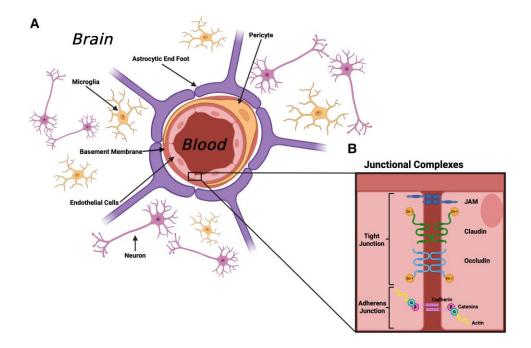
The cells that form the neurovascular unit (NVU) of the central nervous system (CNS) are critical for maintaining the bloodbrain barrier (BBB) through the regulation of molecules, ions, and pathogens transiting from the bloodstream [1]. The key components of the BBB are brain endothelial cells, pericytes, and astrocytes (Figure 1A). Brain endothelial cells are the most important component of the BBB and exhibit specific phenotypically distinct characteristics to reduce paracellular transcytosis [1]. This includes tight junctions (TJs) and adherent junctions between adjoining endothelial cells (Figure 1B). Astrocytes extend endfeet projections that encase brain endothelial cells, pericytes, and the basement membrane

to provide support to the BBB and maintain its integrity. Pericytes are also important in the structural maintenance and regulation of the BBB. Adjacent cells in the extravascular regions of the brain include neurons and the resident CNS immune cells, microglia, which form the broader NVU. Each component (supplementary appendix) ensures normal physiologic function, and when damaged or altered, the barrier becomes dysfunctional and loses integrity. Viral infections can cause BBB breakdown and severe neurologic manifestations, including encephalitis [2], meningitis [3], and microcephaly [4], risking significant neurologic morbidity and mortality [5, 6]. An improved understanding of the underlying mechanistic interactions driving BBB and NVU breakdown is critical to repurpose or develop neuroprotective therapies to reduce cellular injury and cerebral edema and thus minimize sequelae [7]. For most viral infections affecting the CNS, current therapeutic options primarily address pathogen replication while fewer are currently available to specifically address BBB damage.

#### The Journal of Infectious Diseases®

© The Author(s) 2025. Published by Oxford University Press on behalf of Infectious Diseases Society of America.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://doi.org/10.1093/infdis/jiaf455


#### **BIOMARKERS OF BBB INTEGRITY**

The BBB can be assessed clinically by utilizing biomarkers of solute influx or efflux or damage to the NVU structure.

Received 20 May 2025; editorial decision 22 August 2025; accepted 26 August 2025; published online 29 September 2025

<sup>&</sup>lt;sup>a</sup>C. D. and B. D. M. are joint senior authors.

Correspondence: Benedict D. Michael, PhD, Institute of Infection, Veterinary and Ecological Science, Clinical Infection, Microbiology, and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby St, Liverpool L69 7BE, UK (benmic@liverpool.ac.uk); Sarah A. Boardman, MRes, Institute of Infection, Veterinary and Ecological Science, Clinical Infection, Microbiology, and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby St, Liverpool L69 7BE, UK (saimeeb@liverpool.ac.uk).



**Figure 1.** Schematic of the blood-brain barrier and neurovascular unit, displaying junctional complexes. *A*, Endothelial cells line the lumen of blood vessels, partially encircled by pericytes embedded in a basement membrane. Astrocytic foot processes support the outer perimeter of the lumen. The wider neurovascular unit contains the resident immune cells of the central nervous system, microglia, and neurons. *B*, Endothelial cells are tightly adhered by junctional complexes known as *tight junctions* and *adherent junctions*, which strengthen the structural integrity of the endothelial monolayer. JAM, junctional adhesion molecule; ZO, zonula occludens.

#### Systemic Protein Influx

As albumin is not synthesized in significant concentration in the CNS, the ratio between cerebrospinal fluid (CSF) and serum albumin concentration (CSF/serum albumin quotient) is often used as a BBB permeability index [8]. However, as activated microglia may produce albumin [9], this may confound measurement, particularly during viral infection. Since CSF is produced by the choroid plexus, another limitation of the CSF/serum albumin quotient is that the CSF albumin concentration may not directly reflect the brain's interstitial fluid. Anatomically and physiologically, it is important to note that the blood-brain interstitial fluid and blood-CSF are distinct. The blood-CSF barrier is considered more permeable due to consisting of epithelial cells of the choroid plexus with less restrictive TJs [10]. A more accurate and minimally invasive approach is dynamic contrast-enhanced magnetic resonance imaging (MRI) [11]. By imaging the brain serially before, during, and after paramagnetic gadolinium-containing contrast agent injection, signal change within the brain tissue is converted to gadolinium concentration and the transfer coefficient calculated through Patlak modeling of the tissue concentration–time curve [12].

#### Systemic Protein Efflux

Several proteins are highly expressed in the brain, but their concentration is extremely low or absent in blood under healthy conditions; therefore, they can be used as blood biomarkers. During viral infection, the circulating concentration is also

influenced by the severity of neuropathology. Nevertheless, they can still function as BBB permeability markers if statistical analyses are appropriately controlled for disease severity. Examples of commonly studied markers include glial fibrillary acidic protein (GFAP) and S100B of astrocytic origin, as well as ubiquitin C-terminal hydrolase L1, neurofilament light (NfL), and tau, which are neuronally derived [13]. Due to their low concentrations in serum and plasma, even during BBB breakdown, ultrasensitive methods with technology such as single-molecule array are required [14].

#### **NVU Damage**

Release of molecular or subcellular components of the NVU during BBB damage provides a source of biomarkers in CSF and blood. While serum levels of fragments or soluble forms of cellular adhesion molecules correlate with BBB damage, these are not specific to the cerebral vasculature [15]. It is important to note that peripheral nerve damage can cause the release of NfL and therefore reflect peripheral nervous system and CNS injury [16]. More recent studies have utilized molecules that are highly expressed at the BBB, such as CSF-soluble platelet-derived growth factor receptor  $\beta$  [17] or extracellular vesicles positive for cerebral endothelial markers by flow cytometry [18].

# VIRAL INFECTIONS THAT CAUSE DISRUPTION TO THE BBB

Whether from direct infection or indirect effects (ie, immune-mediated pathology), viral infection can cause major complications, such as encephalitis, meningitis, microencephaly, and demyelination. While a wide spectrum of viruses can induce CNS injury and BBB breakdown, this review focuses on those of greatest human burden.

#### **Herpes Simplex Virus**

Herpes simplex virus 1 (HSV-1) is the most common cause of sporadic viral encephalitis in adults and children in high-income settings [19]. Herpes simplex encephalitis (HSE) has an estimated incidence of 1 of 100 000 to 150 000 people per year [20]. Typically, patients present with a combination of new headaches, fever or febrile/coryzal prodrome, and nausea during the early stages of encephalitis. As the disease progresses, typically over hours or days, patients develop further symptoms, including alterations in cognition, consciousness, personality, and/or behavior, and a proportion will develop focal neurologic signs and seizures [21]. The majority of people have been infected by HSV-1 by the time that they reach adulthood. HSV-1 is transmitted by droplet spread, crosses the oral and/or nasal mucosa, enters sensory neurons, and migrates by retrograde axonal transport to the trigeminal ganglia, where it establishes latency, although the virus may also migrate via the olfactory bulb [22]. During primary infection and following reactivation from latency, CNS infection with HSV-1 occurs by further retrograde axonal transport to establish infection, predominantly affecting the temporal lobes and orbitofrontal cortex, often bilaterally but asymmetrically, or less commonly the brainstem. Active HSV replication within the CNS induces an immune response that drives the recruitment of neutrophils and monocytes across the BBB and increased permeability of the BBB with vasogenic edema [7]. Much of the inflammatory response to HSV-1 infection in the CNS is due to the localized production of cytokines and chemokines. Abrogation of CXCL1 signaling, through either the administration of neutralizing antibodies or the absence of the cognate receptor CXCR2, reduces neutrophil recruitment into the CNS and diminishes BBB permeabilization [7]. Microglia produce a robust cytokine and chemokine response after HSV-1 infection in vitro [23]. Importantly, CXCL1 is also produced by uninfected perivascular astrocytes in response to paracrine production of IL-1 and by microglia responding to pathogen- and damage-associated molecular patterns produced by HSV-1-infected neurons. In human disease, the proinflammatory effects of the IL-1 cytokine family are balanced by expression of the anti-inflammatory endogenous IL-1 receptor antagonist (eg, IL-1Ra). This pro- vs anti-inflammatory balance is associated with changes in BBB permeability, as measured by albumin leakage into the CSF and edema on MRI, and correlates with clinical disease severity and poor outcome [24].

#### Varicella Zoster Virus

Varicella zoster virus (VZV) causes chickenpox during primary infection and shingles following reactivation of latent infection. Similarly to HSV-1, VZV can remain latent in neurons but typically is found in the dorsal root ganglia of spinal sensory neurons [25]. Post-varicella zoster complications occur as a result of reactivation of the virus and often affect those who are elderly or immunocompromised. Most commonly, this manifests as postherpetic neuralgia but can result in other neurologic complications, including encephalitis, meningitis, myelitis, and inflammatory vasculopathies affecting the small and/or large blood vessels of the CNS [26]. Other viruses that directly infect brain endothelial cells include henipaviruses: Nipah virus and Hendra virus [27]. These VZV-associated vascular events can drive further complications, such as ischemic and hemorrhagic stroke [26]. Collection of CSF and serum from patients positive for VZV CNS infection showed an increase in the levels of proinflammatory chemokines, including CCL19, CXCL8, CXCL9, and CXCL10, and matrix metalloproteinases (MMPs), such as MMP-2, MMP-3, MMP-8, MMP-9, and MMP-12 [28]. MMPs have been associated with BBB breakdown by causing degradation of the basement membrane, detachment of astrocytes, and cleavage of TJ proteins [29]. Infection of different cerebrovascular cells with VZV was shown to increase the expression of proinflammatory cytokines, especially IL-8 and IL-6 [30]. Another study found that treating human neurons with IL-6 reduced viral replication of VZV in vitro [31]. However, there is a lack of research revealing the cellular mechanistic interactions and the impact on the BBB in CNS infections with VZV.

### Japanese Encephalitis Virus

Japanese encephalitis virus (JEV) is the predominant cause of viral encephalitis in Asia. Other neuropathic flaviviruses include West Nile virus, dengue virus, yellow fever virus, and Zika virus [32]. JEV disrupts BBB function and causes >67 000 cases of encephalitis annually [33]. Symptoms begin with the development of fever and progress to a decline in consciousness, vomiting, headaches, seizures, and sometimes focal movement disorders, reflecting involvement of the basal ganglia [34]. Multiple routes of entry of JEV into the CNS have been proposed, including the "Trojan horse" mechanism utilizing infected immune cells or as a result of BBB disruption from systemic infection. One study based on an in vitro Transwell BBB model found that JEV, even at low titers (multiplicity of infection = 1), was able to infect endothelial cells, which aided in viral replication [35]. JEV replication caused an increase in BBB permeability due to activation of the endothelium and release of proinflammatory mediators, allowing virus to cross into the brain. Alternative suggestions propose that JEV initially enters the CNS prior to disrupting the BBB and promotes an immune response, which causes subsequent BBB damage and promotes further viral entry [36].

Production of inflammatory chemokines (eg, CXCL10) secreted from JEV-infected glial cells leads to further damage of NVU components and increased BBB permeability [36, 37]. In mice infected with JEV, attenuation of CXCL10 prevents the decrease in TJ expression and restores endothelial integrity. In vitro studies have reported upregulation of CXCR3 (receptor for CXCL10) in astrocytes during JEV infection. CXCL10/CXCR3 binding triggers the production of TNF and significantly decreases the expression of occludin, claudin 5, and ZO-1, thus promoting BBB damage [37]. Microglial activation is also induced by the secretion of proinflammatory cytokines from JEV-infected neurons [38]. This cytokine response is initially beneficial for immune cell recruitment and viral clearance, but prolonged activation of microglia causes overproduction of proinflammatory factors that contribute to neuronal injury and death [39].

#### HIV

HIV, when untreated, can advance to become AIDS. The World Health Organization estimates that there are 39 million people with HIV worldwide and 360 000 deaths per year [40]. Initial HIV infection can result in a clinical presentation of encephalitis during seroconversion, but even without encephalitis symptoms, it is established that HIV enters the CNS early during infection [41, 42]. Subcortical white matter changes are a specific characteristic of HIV-related CNS complications. BBB damage is thought to contribute to these changes as well as the development of further neurologic complications, such as AIDS dementia [43]. Later, HIV can cause acute CD8+ T-cell encephalitis or more subtle neurologic complications, which have been termed HIV-associated neurocognitive disorders, referring to deficits in cognition, concentration, and motor skills [44]. HIV can cross the BBB by using a Trojan horse mechanism via infected macrophages or as free virions entering through endothelial cells. HIV-1 can enter macrophages by targeting CD4 and CCR5 receptors, and these infected cells can then cross the BBB, leading to release of inflammatory cytokines and neuronal injury [45]. Neuronal injury from HIV infection may increase BBB permeability within days [46], with TJ damage found in brain tissue taken from a patient with HIV who developed encephalitis. Fragmented expression or a lack of TJ proteins occludin and ZO-1 was observed by immunohistochemistry but were not found in patients with HIV who did not have encephalitis [47].

#### SARS-CoV-2

There is increasing evidence that SARS-CoV-2 can cause dysfunction of the BBB [48]. Nevertheless, from human autopsy studies, it is clear that although the virus can be detected in the brain by quantitative polymerase chain reaction, only a minority of cases show virion protein in the brain parenchyma. This is usually at low levels, indicating the more likely mechanism of the parainfectious effects of SARS-CoV-2 [49, 50]. The concentration of NfL and GFAP in serum correlates with the World Health

Organization's COVID-19 severity scale. Moreover, in people who had acute brain dysfunction (eg, encephalopathy, stroke, encephalitis), NfL, GFAP, and tau were elevated in serum even several months following COVID-19 [51, 52]. BBB damage has been associated with cognitive impairment, often termed brain fog, in patients experiencing long COVID. Dynamic contrast-enhanced MRI has identified that patients reporting brain fog may have greater BBB leakage [53]. Additionally, patients with brain fog were found to have elevated S100B, suggesting BBB disruption. Global cognitive deficits were found in patients 1 year after COVID-19 hospitalization [54], which was associated with elevated serum NfL and GFAP. Greater COVID-19 severity may also correlate with brain injury biomarkers [52]. A microfluidic dual lung and BBB chip system incorporating blood mononuclear cells modeled SARS-CoV-2 lung infection and reported more severe BBB injury and neuroinflammation as compared with direct viral exposure. The indirect lung infection model revealed the production of 11 cytokines (eg, IL-6, MCP1, IL-1RA, TNF, CXCL10) by glial cells, which caused further BBB injury [55]. BBB injury was observed in another microfluidic chip model when cerebral microvascular endothelial cells (hCMEC/D3) were exposed to SARS-CoV-2 spike protein [56]. In addition, respiratory support is particularly important for COVID-19 encephalopathy as hypoxic insults and resultant glutamate excitotoxicity can cause BBB breakdown [57]. Moreover, prolonged hypoxia drives production of HIF-1a and downstream activation of MMP-2, which causes BBB breakdown [58, 59].

In vivo modeling of intranasal SARS-CoV-1 infection in ACE2 transgenic mice has shown the use of the olfactory bulb for viral entry into CNS [60]. However, alternative infection routes in animal models are suggested by distinct regions of infection, such as the dorsal vagal complex and substantia nigra. A common symptom of COVID-19 is anosmia [61], raising the possibility of an infection route via the olfactory nerves into the CNS. Yet, evidence of virion presence in the parenchyma of the CNS is limited in the majority of human postmortem studies; therefore, anosmia may reflect local infection outside the CNS [49, 50]. Other studies have evaluated SARS-CoV-2 brain infection by using ACE2 receptors as a pathway for CNS entry (reviewed by Zamorano et al [62]), but the importance of this pathway remains uncertain [63].

More reflective of clinical disease, there is modeling evidence of cerebral microvascular injury in SARS-CoV-2-infected ACE2 transgenic mice in the absence of severe viral neuroinvasion [55, 64, 65]. Indeed, SARS-CoV-1-infected ACE2 transgenic mice have a lack of inflammation and astrocytic activation despite widespread neuronal infection [60]. Additionally, a recent in vitro study used induced pluripotent stem cells to derive brain endothelial cells and produced a Transwell model that was infected with the original strain of SARS-CoV-2. After infection, there was a decrease in transendothelial electrical resistance, claudin 3, and claudin 11, as well as a rise in the expression of proinflammatory genes [66].

#### **CLINICAL MANAGEMENT OF BBB DYSFUNCTION**

There are limited established methods to manage BBB dysfunction clinically, although several approaches are under investigation (Table 1). The pathogenesis of the neuroinflammation leading to infection-driven BBB damage is multifactorial, depending on the etiology; therefore, initial management should aim to treat the infection, such as timely acyclovir for HSE [67]. For viral infections that do not have specific treatments (eg, JEV), vaccination should be encouraged for at-risk groups as primary prophylaxis. While respiratory COVID-19 management utilizes steroids, antivirals, and immune modulators, the research surrounding the management of neurologic complications is more limited [57, 68, 69, 71]. Nevertheless, the introduction of several treatments given primarily for respiratory disease, such as dexamethasone and remdesivir, has been associated with a decline in neurologic complications [68].

#### Cerebral Edema Management

The clinical management of BBB permeability during viral infection is often informed by research into traumatic brain injuries (TBIs). BBB damage can result in vasogenic edema from endothelial damage and reactive oxygen species, while direct toxic effects from pathogens can lead to cytotoxic edema [89]. Once damage to the BBB has occurred, neuroprotective measures should be taken to limit secondary brain insults, which could mediate further BBB breakdown and cerebral edema, causing diminished neurologic function, seizures, and increased intracranial pressure (reviewed by Cook et al [90]). Guidelines do not currently recommend primary seizure prophylaxis [69]. However, seizure risk stratification may inform the potential need for primary antiseizure prophylaxis [91].

Osmotic therapies such as mannitol and hypertonic saline are used in TBI to reduce cerebral edema and after BBB deterioration. A meta-analysis showed that osmotherapy improves outcomes when significant edema is present and found that hypertonic saline is superior to mannitol [72]. If the patient is hyponatremic, then mannitol may be safer due to the risk of central pontine myelinolysis with hypertonic saline. Evidence for osmotherapy in BBB dysfunction of an viral etiology is less robust, and no recommendations are agreed [69].

AQP-4 channels act as a passive pore, enabling the removal of extracellular fluid down pressure gradients [58]. Hence, these channels play a beneficial role in pathologies where vasogenic edema predominates, but they are detrimental when cytotoxic edema is present. For example, in a mouse model, significant downregulation of AQP-4 channels occurs in the acute phase of HSE with upregulation later in the disease process [83]. Thus, while modulation of AQP-4 channels may be beneficial, the timing in the disease process is crucial.

#### **Managing Inflammation and Prevention of Immune Cell Migration**

Steroids are used for managing inflammation in many neurologic conditions. Dexamethasone increased the tightness between TJs, upregulated BBB Pgp (an efflux transporter), and in principle should mitigate BBB damage [92]. Steroids have evidence for treating meningitis, but the CRASH trial demonstrated an increase in mortality when used in the acute phase of TBI [92-94]. There is limited evidence for the use of steroids in viral encephalitis. While the use of steroids would likely aid in the management of edema, the effect on viral replication may be undesirable and is undetermined. The results of an adjunctive dexamethasone randomized controlled trial in HSV encephalitis in the United Kingdom are awaited [73]. There are minimal data regarding management of brain complications of COVID-19 steroids. Following the RECOVERY trial, steroids became a routine part of respiratory COVID-19 management for patients requiring oxygen [74]. Hence, steroids are commonly used for patients with COVID-19 encephalopathy/encephalitis, but there are no robust data supporting their use, beyond case series and observational studies [57, 75]. Since the COVID-19 pandemic, the incidence of neurologic cases has decreased, and treatment with dexamethasone has been found to be associated with fewer neurologic complications [68]. However, other contributing factors include protection by vaccines and evolution of SARS-CoV-2 variants [68].

The role of innate immune cells is another aspect of the pathophysiology that offers potential therapeutic targets. The transendothelial migration of neutrophils during HSE and other infectious encephalopathies is associated with increased morbidity, neurotoxicity, and BBB dysfunction via protease release and TJ disruption [7]. The infective process drives neuroimmune crosstalk with CXCL1 chemokine production by astrocytes and neurons in response to IL-1α. By blocking IL-1, the BBB damage is reduced, but the beneficial antiviral effects of IL-1 are also reduced. In human studies, the relative concentrations of the IL-1 family members to endogenous IL-1 antagonists is associated with cerebral edema and outcome [24]. As existing clinical therapies for IL-1 antagonism (IL-1RA) are in use for other conditions, this is an avenue for future investigation in HSE that may have implications for therapeutic application to other viral encephalitides.

Various studies have utilized nanoparticles derived from neutrophil membranes to maximize delivery to areas of inflammation within the BBB [86]. This was analyzed with thrombomodulin mRNA to protect the endothelial barrier from inflammation by inhibiting TNF $\alpha$ -induced BBB permeability [87]. A similar effect was found by using resolvin D, which decreased leukocyte–endothelial cell interaction [88]. However, the research into this delivery mechanism is minimal and has been limited to patients who experienced stroke.

Table 1. Clinical and Preclinical Management Options for Blood-Brain Barrier Dysfunction

| Clinical    | Antivirals  Examples: acyclovir for HSE and remdesivir for COVID-19 [67, 68]  Prevention via vaccination  Example: JEV vaccine Neuroprotective measures  30° head tilt  CPP >60 or MAP >65 [69]  Maintain electrolyte levels [70]  Normothermia, normocapnia, normoglycemia [71]  Osmotic therapies to control cerebral edema  Hypertonic saline (superior for HSE) [72]  Mannitol  Corticosteroids  Dexamethasone: DexEnceph trial [73]  Steroids empirically used for COVID-19, but role in encephalopathy is limited in case reports [57, 68, 74, 75]  ICP monitoring  Invasive  Noninvasive under exploration (eg, transcranial Doppler or optic nerve sheath diameter) [76, 77, 78]                                                                                                   |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preclinical | Reducing MMP-9 activation with doxycycline limiting tight junction damage [58, 79, 80]  • MMP inhibition with batamistat reduced intracranial complications [81] Increasing GM130 expression reduced HSV-1 damage [82]  • Pan-caspase inhibitors showed a similar effect by increasing GM130 [82] CXCL-1 antagonism reduced HSE damage [7] AQP-4 channels could aid recovery for conditions with primarily vasogenic edema [58, 83] Increasing VE-cadherin with S1P reversed BBB permeability [84]  • S1P receptor modulators also shown to reduce damage [85] Neutrophil membrane nanoparticles identify the area of BBB inflammation [86]  • Thrombomodulin mRNA-loaded particles reduced inflammation of the endothelium [87] Resolvin D reduced leukocyte endothelial interaction [88] |

Abbreviations: AQP-4, aquaporin 4; BBB, blood-brain barrier; CPP, cerebral perfusion pressure; CXCL-1, C-X-C motif chemokine ligand 1; GM130, Golgi matrix protein 130; HSE, herpes simplex encephalitis; HSV-1, herpes simplex virus 1; ICP, intracranial pressure; JEV, Japanese encephalitis virus; MAP, mean arterial pressure; MMP, matrix metalloproteinase; mRNA, messenger ribonucleic acid; S1P, sphingosine 1 phosphate; VE-cadherin, vascular endothelial cadherin.

#### **Modulation of Junction Complex Expression**

The activation of MMPs in encephalitis and other cerebral insults is well documented and linked to BBB disruption via damage to TJ proteins [58], and inhibition of MMP activation was shown to significantly reduce this disruption [81]. Although MMPs may be harmful to the BBB during only the acute inflammatory phase, they inactivate cytokines while promoting angiogenesis and neurogenesis in the later phase [95]. Furthermore, much of the research on MMP inhibition is in the context of noninfectious cerebral injuries and may have undesirable effects on control of viral replication, particularly via proinflammatory cytokines. Moreover, MMPs can act as potent antiviral targets to control HSV-1 infection [82, 96]. Doxycycline may be a promising adjunct in reducing MMP-9 production [79, 80] and significantly reduces IL-1β-induced BBB injury by reducing damage to zonula occludens [97]. However, studies have examined the BBB only in the context of bacterial challenges.

Several studies have explored the localization of vascular endothelial cadherin, a key component in the adherent junctions [58, 98], as a method to reduce BBB permeability. The sphingolipid sphingosine 1 phosphate (S1P) maintains vascular endothelial cadherin at the endothelial cell-cell junctions [99]. Administering an S1P analogue has been shown to reverse BBB permeability in mice with preexisting BBB damage [84]. Additionally, a modulator of the S1P receptor (FTY720,

fingolimod) prevented the redistribution of junctional proteins and ameliorated BBB damage and is used clinically for multiple sclerosis [85]. While FTY720 has beneficial effects in multiple sclerosis and encephalomyelitis, it has recently been shown to reactivate latent viral infections in murine models, thus necessitating additional research on the safety in virus-driven BBB damage [100].

A recent study of HSE noted the downregulation of occludin and claudin 5, affecting BBB integrity [82]. However, other possible mechanisms include downregulation of Golgi-associated protein GM130, Golgi fragmentation, and cell apoptosis. Overexpression of GM130 partially attenuated BBB damage. Furthermore, the use of a pan-caspase inhibitor, Z-VAD-fmk, led to increased levels of GM130, as well as occludin and claudin 5. This offers several potential targets for maintaining and restoring BBB functionality.

## **CONCLUDING REMARKS**

BBB injury is driven by neuroimmune crosstalk during viral infections and is crucial to the development of neurologic injury and sequelae. Current management strategies for virus-driven BBB dysfunction aim to treat the primary cause and prevent additional damage through neuroprotective measures, relying on findings primarily derived from TBI and stroke research. However, mortality

and morbidity in viral-induced CNS injury remains high, and research is increasingly focused on preventing initial BBB permeabilization, limiting further BBB damage, and ultimately repairing the BBB. Future research should focus on delineating the neuroimmune pathways in cohorts with viral etiologies in conjunction with parallel in vivo and in vitro models to explore and determine optimal strategies that protect the brain.

#### **Supplementary Data**

Supplementary materials are available at *The Journal of Infectious Diseases* online (http://jid.oxfordjournals.org/). Supplementary materials consist of data provided by the author that are published to benefit the reader. The posted materials are not copyedited. The contents of all supplementary data are the sole responsibility of the authors. Questions or messages regarding errors should be addressed to the author.

#### Notes

*Acknowledgments.* Figure 1 was created in BioRender. Liverpool Brain Infections Group (2025). https://BioRender.com/m66x808.

*Financial support.* This work was supported by the University of Liverpool's Health and Life Sciences faculty-supported student fellowship fund and Medical Research Council/UK Research and Innovation funding (MR/V007181/1 to S. A. B.); the Medical Research Council (MC\_PC\_19044 to C. D.); The Pandemic Institute Pump-Priming Grant (FA010 to C. D. and S. A. B.); a Springboard Award by the Academy of Medical Sciences, the Wellcome Trust, the Government Department of Business, Energy and Industrial Strategy, and the British Heart Foundation and Diabetes UK (SBF008\1135 to A. P.); the Accelerator Award 2023/ 34 by the Wellcome Trust ( 315711/Z/24/Z to F. E. N.); the UK Research and Innovation/Medical Research Council V03605X/1 to B. D. M.); the National Institute for Health and Care Research (CO-CIN-01 to B. D. M.); the Medical Research Council (MC PC 19059 to B. D. M.); the NIHR Health Protection Research Unit in Emerging and Zoonotic Infections at the University of Liverpool in partnership with Public Health England, in collaboration with the Liverpool School of Tropical Medicine and the University of Oxford ( (200907 to B. D. M.); the NIHR Health Protection Research Unit in Respiratory Infections at Imperial College London with Public Health England (200927 to B. D. M.); the Medical Research Council/UK Research and Innovation (MR/V007181/1 to B. D. M.); Medical Research Council (MR/T028750/1 to B. D. M.); and Wellcome (ISSF201902/ 3 to B. D. M.).

**Potential conflicts of interest.** All authors: No reported conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest.

#### References

- Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-brain barrier: from physiology to disease and back. Physiol Rev 2019; 99:21–78.
- 2. Denizot M, Neal JW, Gasque P. Encephalitis due to emerging viruses: CNS innate immunity and potential therapeutic targets. J Infect **2012**; 65:1–16.
- McGill F, Griffiths MJ, Solomon T. Viral meningitis: current issues in diagnosis and treatment. Curr Opin Infect Dis 2017; 30:248–56.
- Antoniou E, Orovou E, Sarella A, et al. Zika virus and the risk of developing microcephaly in infants: a systematic review. Int J Environ Res Public Health 2020; 17:3806.
- Damiano RF, Guedes BF, de Rocca CC, et al. Cognitive decline following acute viral infections: literature review and projections for post-COVID-19. Eur Arch Psychiatry Clin Neurosci 2022; 272:139–54.
- Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med 2013; 19:1584–96.
- Michael BD, Bricio-Moreno L, Sorensen EW, et al. Astrocyte- and neuron-derived CXCL1 drives neutrophil transmigration and blood-brain barrier permeability in viral encephalitis. Cell Rep 2020; 32:108150.
- 8. Tibbling G, Link H, Öhman S. Principles of albumin and IgG analyses in neurological disorders. I: Establishment of reference values. Scand J Clin Lab Invest **1977**; 37:385–90.
- 9. Ahn S-M, Byun K, Cho K, et al. Human microglial cells synthesize albumin in brain. PLoS One **2008**; 3:e2829.
- Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020; 17:69.
- Varatharaj A, Liljeroth M, Darekar A, Larsson HBW, Galea I, Cramer SP. Blood-brain barrier permeability measured using dynamic contrast-enhanced magnetic resonance imaging: a validation study. J Physiol 2019; 597:699–709.
- 12. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983; 3:1–7.
- 13. Mozaffari K, Dejam D, Duong C, et al. Systematic review of serum biomarkers in traumatic brain injury. Cureus **2021**; 13:e17056.
- Marin MJ, van Wijk XMR. Sensitive immunoassay testing platforms. In: Wu AHB, Peacock WF, eds. Biomarkers for traumatic brain injury. Cambridge (MA): Academic Press, 2020:243–64.
- Waubant E. Biomarkers indicative of blood-brain barrier disruption in multiple sclerosis. Dis Markers 2006; 22: 235–44.

- 16. Barro C, Chitnis T, Weiner HL. Blood neurofilament light: a critical review of its application to neurologic disease. Ann Clin Transl Neurol **2020**; 7:2508–23.
- 17. Nation DA, Sweeney MD, Montagne A, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med **2019**; 25:270–6.
- 18. Mazzucco M, Mannheim W, Shetty SV, Linden JR. CNS endothelial derived extracellular vesicles are biomarkers of active disease in multiple sclerosis. Fluids Barriers CNS **2022**; 19:13.
- Kennedy PGE, Quan P-L, Lipkin WI. Viral encephalitis of unknown cause: current perspective and recent advances. Viruses 2017; 9:138.
- 20. Whitley R, Baines J. Clinical management of herpes simplex virus infections: past, present, and future. F1000Res **2018**; 7:1726.
- 21. da Costa BK, Sato DK. Viral encephalitis: a practical review on diagnostic approach and treatment. J Pediatr **2019**; 96:12–9.
- 22. Bello-Morales R, Andreu S, López-Guerrero JA. The role of herpes simplex virus type 1 infection in demyelination of the central nervous system. Int J Mol Sci **2020**; 21:5026.
- Marques CP, Hu S, Sheng W, Lokensgard JR. Microglial cells initiate vigorous yet non-protective immune responses during HSV-1 brain infection. Virus Res 2006; 121:1–10.
- 24. Michael BD, Griffiths MJ, Granerod J, et al. The interleukin-1 balance during encephalitis is associated with clinical severity, blood-brain barrier permeability, neuroimaging changes, and disease outcome. J Infect Dis 2016; 213:1651–60.
- 25. Gershon AA, Breuer J, Cohen JI, et al. Varicella zoster virus infection. Nat Rev Dis Primer **2015**; 1:15016.
- Gilden DH, Kleinschmidt-DeMasters B, LaGuardia JJ, Mahalingam R, Cohrs RJ. Neurologic complications of the reactivation of varicella-zoster virus. N Engl J Med 2000; 342:635–45.
- Lawrence P, Escudero-Pérez B. Henipavirus immune evasion and pathogenesis mechanisms: lessons learnt from natural infection and animal models. Viruses 2022; 14: 936.
- 28. Lind L, Eriksson K, Grahn A. Chemokines and matrix metalloproteinases in cerebrospinal fluid of patients with central nervous system complications caused by varicella-zoster virus. J Neuroinflammation 2019; 16:42.
- Rempe RG, Hartz AM, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: versatile breakers and makers. J Cereb Blood Flow Metab 2016; 36: 1481–507.
- 30. Jones D, Neff CP, Palmer BE, Stenmark K, Nagel MA. Varicella zoster virus–infected cerebrovascular cells

- produce a proinflammatory environment. Neurol Neuroimmunol Neuroinflammation **2017**; 4:e382.
- 31. Como CN, Pearce CM, Cohrs RJ, Baird NL. Interleukin-6 and type 1 interferons inhibit varicella zoster virus replication in human neurons. Virology **2018**; 522:13–8.
- 32. Pan Y, Cai W, Cheng A, Wang M, Yin Z, Jia R. Flaviviruses: innate immunity, inflammasome activation, inflammatory cell death, and cytokines. Front Immunol **2022**; 13:829433.
- 33. Campbell G, Hills S, Fischer M, et al. Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ **2011**; 89:766–74.
- 34. Turtle L, Solomon T. Japanese encephalitis—the prospects for new treatments. Nat Rev Neurol **2018**; 14:298–313.
- 35. Patabendige A, Michael BD, Craig AG, Solomon T. Brain microvascular endothelial-astrocyte cell responses following Japanese encephalitis virus infection in an in vitro human blood-brain barrier model. Mol Cell Neurosci **2018**; 89:60–70.
- 36. Li F, Wang Y, Yu L, et al. Viral infection of the central nervous system and neuroinflammation precede blood-brain barrier disruption during Japanese encephalitis virus infection. J Virol **2015**; 89:5602–14.
- 37. Wang K, Wang H, Lou W, et al. IP-10 promotes bloodbrain barrier damage by inducing tumor necrosis factor alpha production in Japanese encephalitis. Front Immunol 2018; 9:1148.
- 38. Thongtan T, Thepparit C, Smith DR. The involvement of microglial cells in Japanese encephalitis infections. Clin Dev Immunol **2012**; 2012:890586.
- Singh S, Singh G, Tiwari S, Kumar A. CCR2 inhibition reduces neurotoxic microglia activation phenotype after Japanese encephalitis viral infection. Front Cell Neurosci 2020; 14:230.
- 40. World Health Organisation. HIV. Available at: https://www.who.int/data/gho/data/themes/hiv-aids#:∼:text=Globally%2C%2039.0%20million%20[33.1%E2%80%93, considerably%20between%20countries%20and%20regions. Accessed 4 October 2023.
- 41. Resnick L, Berger JR, Shapshak P, Tourtellotte WW. Early penetration of the blood-brain-barrier by HIV. Neurology **1988**; 38:9–14.
- 42. Valcour V, Chalermchai T, Sailasuta N, et al. Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis **2012**; 206:275–82.
- Power C, Kong P-A, Crawford TO, et al. Cerebral white matter changes in acquired immunodeficiency syndrome dementia: alterations of the blood-brain barrier. Ann Neurol 1993; 34:339–50.
- 44. Farhadian S, Patel P, Spudich S. Neurological complications of HIV infection. Curr Infect Dis Rep **2017**; 19:50.
- 45. Joseph SB, Arrildt KT, Sturdevant CB, Swanstrom R. HIV-1 target cells in the CNS. J Neurovirol **2015**; 21:276–89.

- 46. Rahimy E, Li F-Y, Hagberg L, et al. Blood-brain barrier disruption is initiated during primary HIV infection and not rapidly altered by antiretroviral therapy. J Infect Dis **2017**; 215:1132–40.
- 47. Dallasta LM, Pisarov LA, Esplen JE, et al. Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am J Pathol **1999**; 155:1915–27.
- 48. Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the blood-brain barrier. Int J Mol Sci **2021**; 22:2681.
- 49. Thakur KT, Miller EH, Glendinning MD, et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain J Neurol **2021**; 144:2696–708.
- 50. Meinhardt J, Radke J, Dittmayer C, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci **2021**; 24:168–75.
- 51. Michael BD, Dunai C, Needham EJ, et al. Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses. Nat Commun 2023; 14:8487.
- 52. Needham EJ, Ren AL, Digby RJ, et al. Brain injury in COVID-19 is associated with dysregulated innate and adaptive immune responses. Brain J Neurol **2022**; 145: 4097–107.
- 53. Greene C, Connolly R, Brennan D, et al. Blood-brain barrier disruption and sustained systemic inflammation in individuals with long COVID-associated cognitive impairment. Nat Neurosci **2024**; 27:421–32.
- 54. Wood GK, Sargent BF, Ahmad ZU, et al. Post-hospitalisation COVID-19 cognitive deficits at one year are global and associated with elevated brain injury markers and grey matter volume reduction. Nat Med **2024**; 31:245–57.
- 55. Wang P, Jin L, Zhang M, et al. Blood-brain barrier injury and neuroinflammation induced by SARS-CoV-2 in a lung-brain microphysiological system. Nat Biomed Eng **2023**; 8:1053–68.
- 56. Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier. Neurobiol Dis 2020; 146:105131.
- 57. Michael BD, Walton D, Westenberg E, et al. Consensus clinical guidance for diagnosis and management of adult COVID-19 encephalopathy patients. J Neuropsychiatry Clin Neurosci **2022**; 35:12–27.
- 58. Rosenberg GA. Neurological diseases in relation to the blood-brain barrier. J Cereb Blood Flow Metab **2012**; 32:1139–51.
- 59. Helton R, Cui J, Scheel JR, et al. Brain-specific knock-out of hypoxia-inducible factor-1alpha reduces rather than

- increases hypoxic-ischemic damage. J Neurosci **2005**; 25:4099–107.
- 60. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 2008; 82: 7264–75.
- 61. Whittaker A, Anson M, Harky A. Neurological manifestations of COVID-19: a systematic review and current update. Acta Neurol Scand **2020**; 142:14–22.
- Zamorano Cuervo N, Grandvaux N. ACE2: evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. eLife 2020; 9:e61390.
- 63. Khan M, Yoo S-J, Clijsters M, et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell **2021**; 184:5932–49.e15.
- 64. Dunai C, Hetherington C, Boardman SA, et al. Pulmonary SARS-CoV-2 infection leads to parainfectious immune activation in the brain. Front Immunol **2024**; 15:1440324.
- 65. Fernández-Castañeda A, Lu P, Geraghty AC, et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell **2022**; 185:2452–68.e16.
- 66. Yamada S, Hashita T, Yanagida S, et al. SARS-CoV-2 causes dysfunction in human iPSC-derived brain microvascular endothelial cells potentially by modulating the Wnt signaling pathway. Fluids Barriers CNS **2024**; 21:32.
- Aboelezz A, Kharouba M, Mahmoud SH. Acyclovir dosing strategies in herpes encephalitis: a retrospective charts review. J Clin Neurosci 2025; 136:111230.
- 68. Grundmann A, Wu C-H, Hardwick M, et al. Fewer COVID-19 neurological complications with dexamethasone and remdesivir. Ann Neurol **2023**; 93:88–102.
- 69. Sonneville R, Jaquet P, Vellieux G, de Montmollin E, Visseaux B. Intensive care management of patients with viral encephalitis. Rev Neurol (Paris) 2022; 178:48–56.
- 70. Atila C, Monnerat S, Bingisser R, et al. Inverse relationship between IL-6 and sodium levels in patients with COVID-19 and other respiratory tract infections: data from the COVIVA study. Endocr Connect 2022; 11:e220171.
- Bradshaw MJ, Venkatesan A. Herpes simplex virus-1 encephalitis in adults: pathophysiology, diagnosis, and management. Neurotherapeutics 2016; 13:493–508.
- 72. Kamel H, Navi BB, Nakagawa K, Hemphill JC, Ko NU. Hypertonic saline versus mannitol for the treatment of elevated intracranial pressure: a meta-analysis of randomized clinical trials. Crit Care Med 2011; 39:554–9.
- 73. Whitfield T, Fernandez C, Davies K, et al. Protocol for DexEnceph: a randomised controlled trial of dexamethasone therapy in adults with herpes simplex virus encephalitis. BMJ Open 2021; 11:e041808.

- RECOVERY Collaborative Group; Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with COVID-19. N Engl J Med 2021; 384:693-704.
- 75. Shah P, Patel J, Soror NN, Kartan R. Encephalopathy in COVID-19 patients. Cureus **2021**; 13:e16620.
- Fan TH, Solnicky V, Cho S-M. Treating the body to prevent brain injury: lessons learned from the coronavirus disease 2019 pandemic. Curr Opin Crit Care 2022; 28: 176–183.
- 77. Battaglini D, Brunetti I, Anania P, et al. Neurological manifestations of severe SARS-CoV-2 infection: potential mechanisms and implications of individualized mechanical ventilation settings. Front Neurol **2020**; 11:845.
- 78. Meng J, Li C, Ma W. Cerebral hemodynamic evaluation of main cerebral vessels in epileptic patients based on transcranial Doppler. Front Neurol **2021**; 12:639472.
- 79. Robinson BD, Isbell CL, Melge AR, et al. Doxycycline prevents blood-brain barrier dysfunction and microvascular hyperpermeability after traumatic brain injury. Sci Rep **2022**; 12:5415.
- 80. Rashmee T, Siraj AK. Efficacy of antibiotics (doxycycline and kanamycin) against Japanese encephalitis virus infection. Trop Biomed **2018**; 35:239–45.
- 81. Ricci S, Grandgirard D, Wenzel M, et al. Inhibition of matrix metalloproteinases attenuates brain damage in experimental meningococcal meningitis. BMC Infect Dis **2014**; 14:726.
- 82. Feng T, Tong H, Ming Z, et al. Matrix metalloproteinase 3 restricts viral infection by enhancing host antiviral immunity. Antiviral Res **2022**; 206:105388.
- 83. Martinez Torres FJ, Völcker D, Dörner N, et al. Aquaporin 4 regulation during acute and long-term experimental herpes simplex virus encephalitis. J Neurovirol 2007; 13:38–46.
- 84. Yanagida K, Liu CH, Faraco G, et al. Size-selective opening of the blood-brain barrier by targeting endothelial sphingosine 1-phosphate receptor 1. Proc Natl Acad Sci U S A **2017**; 114:4531–6.
- 85. Wang Z, Higashikawa K, Yasui H, et al. FTY720 protects against ischemia-reperfusion injury by preventing the redistribution of tight junction proteins and decreases inflammation in the subacute phase in an experimental stroke model. Transl Stroke Res **2020**; 11:1103–16.
- 86. Dong X, Gao J, Zhang CY, Hayworth C, Frank M, Wang Z. Neutrophil membrane–derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke. ACS Nano 2019; 13:1272–83.
- 87. Marcos-Contreras OA, Greineder CF, Kiseleva RY, et al. Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood-brain barrier. Proc Natl Acad Sci U S A **2020**; 117:3405–14.

- 88. Spite M, Norling LV, Summers L, et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature **2009**; 461:1287–91.
- 89. Liu H, Qiu K, He Q, Lei Q, Lu W, Lu W. Mechanisms of blood-brain barrier disruption in herpes simplex encephalitis. J Neuroimmune Pharmacol **2019**; 14:157–72.
- 90. Cook AM, Morgan Jones G, Hawryluk GWJ, et al. Guidelines for the acute treatment of cerebral edema in neurocritical care patients. Neurocrit Care **2020**; 32:647–66.
- 91. Wood GK, Babar R, Ellul MA, et al. Acute seizure risk in patients with encephalitis: development and validation of clinical prediction models from two independent prospective multicentre cohorts. BMJ Neurol Open **2022**; 4: e000323.
- 92. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci **2006**; 7:41–53.
- 93. Brouwer MC, McIntyre P, Prasad K, van de Beek D. Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev 2015; 2015:CD004405.
- 94. Edwards P, Arango M, Balica L, et al. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury-outcomes at 6 months. Lancet Lond Engl **2005**; 365:1957–9.
- 95. Sood RR, Taheri S, Candelario-Jalil E, Estrada EY, Rosenberg GA. Early beneficial effect of matrix metalloproteinase inhibition on blood-brain barrier permeability as measured by magnetic resonance imaging countered by impaired long-term recovery after stroke in rat brain. J Cereb Blood Flow Metab **2008**; 28:431–8.
- 96. Llorente P, Mejías V, Sastre I, Recuero M, Aldudo J, Bullido MJ. Matrix metalloproteinase 14 regulates HSV-1 infection in neuroblastoma cells. Antiviral Res **2021**; 192:105116.
- 97. Meli DN, Coimbra RS, Erhart DG, et al. Doxycycline reduces mortality and injury to the brain and cochlea in experimental pneumococcal meningitis. Infect Immun **2006**; 74:3890–6.
- 98. Li J, Zheng M, Shimoni O, et al. Development of novel therapeutics targeting the blood-brain barrier: from barrier to carrier. Adv Sci **2021**; 8:2101090.
- 99. Mathiesen Janiurek M, Soylu-Kucharz R, Christoffersen C, Kucharz K, Lauritzen M. Apolipoprotein M-bound sphingosine-1-phosphate regulates blood-brain barrier paracellular permeability and transcytosis. eLife 2019; 8: e49405.
- 100. Bryan AM, You JK, McQuiston T, et al. FTY720 reactivates cryptococcal granulomas in mice through S1P receptor 3 on macrophages. J Clin Invest 2020; 130: 4546–60.