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SUMMARY

Breast cancer cell lines are indispensable tools for unraveling disease mechanisms, enabling drug discovery,
and developing personalized treatments, yet their heterogeneity and inconsistent classification pose signif-
icant challenges in model selection and data reproducibility. This review aims at providing a comprehensive
and user-friendly framework for broadly mapping the features of breast cancer types and commercially avail-
able human breast cancer cell lines, defining absolute criteria, i.e., objective features such as origin (e.g.,
MDA-MB, MCF), histological subtype (ductal, lobular), hormone receptor status (ER/PR/HERZ2), and genetic
mutations (BRCA1, TP53), and relative criteria, which contextualize functional behaviors such as metastatic
potential, drug sensitivity, and genomic instability. It then examines how the proposed framework could be
applied to cell line screening in advanced and emerging disease models. By supporting better informed
choices, this work aims to improve experimental design and strengthen the connection between in vitro

breast cancer studies and their clinical translation.

INTRODUCTION

Breast cancer cell lines are in vitro disease models widely used in
biomedical research to gain insights into the pathophysiology of
the disease, and to develop novel diagnostic and therapeutic
strategies. Derived from human tumors, they provide a renew-
able resource for investigating the cellular and molecular mech-
anisms underlying disease progression, enabling the search for
new therapeutic agents and diagnostic markers, by recapitu-
lating local conditions and allowing controlled perturbations
in vitro.>* In drug discovery and development, cell models are
utilized to screen potential anti-cancer drugs for their efficacy
and possible toxicity.” In personalized medicine, patient-derived
cells allow to evaluate individual responses to specific treat-
ments, aiming to improve therapeutic outcomes.® However,
cell lines do not fully represent the heterogeneity of patient tu-
mors, especially when employed in isolation, risking to oversim-
plify the biological environments characteristic of complex living
systems.® Moreover, they may acquire genetic changes during
long-term culture, leading to substantial alterations in both
morphology and functionality.® In this scenario, selecting the
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optimal cancer cell line based on its properties and experimental
objectives becomes critical toward obtaining reproducible and
translatable results. This review presents a classification frame-
work that distinguishes commercially available human breast
cancer cell lines based on absolute criteria, such as origin and
hormone receptor status, and relative criteria, such as metasta-
tic potential and drug response. It illustrates how diverse cellular
features can be systematically organized to optimize cell lines’
use in translational research, alongside their integration with
advanced disease models, from organoids to co-culture sys-
tems and patient-derived xenografts.

Absolute criteria form the foundational layer of cell lines clas-
sification, capturing static or semi-static features that define
the cell line identity and heritage. The origin of the cell line, rep-
resenting whether it is derived from a primary tumor or metasta-
tic lesion, is a clear example of absolute criteria, and influences
differentiation state and drug responsiveness. Histological sub-
type, including ductal, lobular, or metaplastic, offers another
level of biological context that can dictate architectural and inva-
sive properties.” Hormone receptor status (ER, PR, HER2), one
of the most clinically relevant stratifications in breast oncology,®
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drives therapeutic decisions and aligns with subtypes such as
triple-negative or HER2-positive disease. Moreover, molecular
subtypes, such as luminal A/B or basal-like, capture transcrip-
tomic signatures that reflect biological states,® while common
genetic mutations (e.g., BRCA1/2, TP53, PTEN) frame the cell
within defined oncogenic trajectories.'® Absolute parameters
ensure that the use of a cell line is grounded in clinically
and genetically meaningful choices; yet, relying solely on abso-
lute descriptors neglects the functional plasticity of breast
cancer cells.

The relative criteria component addresses this limitation by
encompassing dynamic phenotypes and regulatory states that
vary across contexts and influence experimental outputs. These
include functional attributes such as metastatic ability, prolifera-
tion rate, and apoptotic resistance, which directly affect how a
cell line behaves under experimental perturbation. For example,
the propensity to metastasize to bone or brain, which is central to
studying organotropism, is interlinked with signaling adaptations
and cellular machinery, such as invadopodia formation and EMT
programs.’'"'? Similarly, apoptotic resistance, shaped by alter-
ations in caspase expression or FLIP activity, dictates the cell
line survival under cytotoxic challenge and is therefore crucial
for modeling drug resistance.'® The relative aspects also incor-
porate advanced molecular and regulatory dimensions such as
gene expression signatures (e.g., PAM50, MammaPrint), radia-
tion response profiles, and drug sensitivity patterns that mirror
therapeutic resistance observed in clinical settings. This stratifi-
cation aligns with the contemporary view that cancer is a highly
adaptive and evolving system.'* Additionally, layers such as epi-
genomic modifications, stem cell properties, and inflammatory
status bridge the molecular and microenvironmental axes of tu-
mor biology. For instance, ALDH1 or CD44+/CD24— status has
been linked to tumor-initiating potential and chemoresistance, '
and immune signatures (e.g., PD-L1 or cytokine expression) can
dictate immunotherapeutic outcomes.'® Genomic instability
adds another dimension, often indicating susceptibility to spe-
cific DNA-damaging agents or synthetic lethality strategies.'”

This schematization emphasizes how integrating these criteria
could drive the choice and development of more predictive and
clinically relevant models. Multi-omics could then allow the
simultaneous profiling of genomics, transcriptomics, and prote-
omics to refine cell line characterization, enabling matching to
patient-derived data. Al and data fusion techniques could fore-
cast drug responses or disease trajectories based on integrative
datasets. Finally, informed baseline choices could guide the
design of in vitro models. 3D tissue constructs and co-culture
systems better recapitulate in vivo architectures and cell-cell in-
teractions, serving as an essential bridge toward preclinical and
patient-derived xenograft (PDX) models, ensuring that selected
cell lines can perform in biologically complex environments or
be employed for their development.

ABSOLUTE CLASSIFICATION CRITERIA
We define as absolute criteria those features that can be classified
statically and objectively. As opposed to relative criteria (e.g., met-

astatic potential graded as low or high), absolute criteria are
intrinsic attributes such as cellular origin (e.g., “MCF” origin, Mich-
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igan Cancer Foundation), histological subtype, hormone receptor
status, genetic alterations, and molecular subtype. The following
subsections address these characteristics.

Cell line origin

The origin of a cell line denotes its derivation from specific breast
tumor tissues. This classification is rooted in the cell line prove-
nance and drives its research application. For brevity, the origins
of breast cancer cell line families, along with their associated
experimental uses, are summarized in Table 1. In addition to tu-
mor-derived breast cancer cell lines, engineered breast epithelial
models have been developed to study specific processes such
as transformation, epithelial-to-mesenchymal transition (EMT),
and cancer stem cell behavior in a more controlled context. A
widely used model is MCF10A, a non-tumorigenic human mam-
mary epithelial cell line often used as the healthy reference in
breast cancer studies.'® More advanced systems include
HMLE and HMLER cells. HMLE cells are obtained by introducing
genes that prevent cellular aging (hTERT) and inhibit tumor sup-
pressor activity (SV40 large T antigen), allowing long-term
growth in culture.’® When the HMLE model is further modified
with an oncogene (H-RAS), it becomes tumorigenic (known as
HMLER)." A variant called HMLER-shEcad, where the gene
for E-cadherin is silenced, is commonly used to model EMT
and the acquisition of cancer stem cell-like traits.'® Despite lack-
ing the genetic complexity of actual tumors, these models are
valuable tools to dissect the functional impact of specific molec-
ular changes and complement the use of patient-derived breast
cancer cell lines in experimental research.

Histological subtype

Tumor morphology, its growth pattern, degree of differentiation,
and resemblance to normal terminal duct-lobular units (TDLUs),
determine if a lesion is in situ or invasive, with invasive tumors
carrying a higher risk of metastasis.*® Histological classifications
also guide molecular profiling and subsequent targeted therapy
selection. This section details the histological diversity of breast
cancer and emphasizes clinic-pathological characteristics and
correlations. Adenocarcinomas, comprising over 95% of breast
cancer, arise from the glandular epithelium of ducts or lobules
(Figure 1). They are characterized by glandular differentiation
and mucin production, the latter being intracellular, as in sig-
net-ring cells, or extracellular, as seen in mucinous carci-
nomas.*” Such tumors are subclassified by their site of origin
and invasiveness. Ductal carcinoma is the most prevalent breast
cancer type, originating in the mammary milk ducts.*® Ductal and
lobular carcinoma in situ represent the two main forms of pre-
invasive breast adenocarcinomas. Ductal carcinoma in situ
(DCIS) originates in the mammary ducts and remains confined
to the ductal system, exhibiting a range of architectural patterns
such as solid, cribriform, papillary, and micropapillary.” Lobular
carcinoma in situ (LCIS), by contrast, arises in the terminal ductal
lobular units and is characterized by the proliferation of
neoplastic cells that distend and fill the acini. LCIS is considered
a non-obligate precursor of invasive lobular carcinoma and is
classified into three main histological subtypes: classic, pleo-
morphic, and florid. These variants differ in cytologic features,
architectural patterns, and potential biological behavior.



G20g ‘L1 4990190 ‘6.G€EL L ‘82 @ouLlog!

€

Table 1. Cell line family, acronym origin, representative cell lines, and clinically relevant research applications of cell line families

Representative cell lines

Key research applications of the cell

92UBI0gGI

Cell line family  Acronym origin Name Source line family Reference
MDA-MB M.D. Anderson Cancer Center - MDA-MB-231 Metastatic sites, pleural effusions Metastasis; chemoresistance; Cailleau et al.*®
Mammary/Breast MDA-MB-468 Brain metastasis tumor-microenvironment
interactions
MCF Michigan Cancer Foundation MCF-7 Pleural effusions HR+ Breast cancer progression; Soule et al.”’
MCF-10A Fibrocystic breast tissue weakly metastatic control
HCC Human Cancer Culture HCC1937 Primary breast tumor carrying DNA repair defects; targeted Tomlinson et al.?”
BRCA-1 mutation therapy resistance
HCC1954 HER2-positive metastatic site
BT Breast Tumor BT-474 solid invasive ductal carcinoma, HER2-targeted therapies (drug Lasfargues et al.”®
HER2 amplification testing, e.qg., lapatinib)
BT-20 Primary TNBC, lacks functional
TP53
CAMA Caucasian Malignant CAMA-1 Liver metastasis Endocrine resistance mechanisms Fogh et al.**
Adenocarcinoma
SK-BR Sloan Kettering Institute — Breast SK-BR-3 Pleural effusion, TP53 mutation HER2-targeted therapies Trempe®®
ZR Zurich/Michigan cancer foundation  ZR-75-1 Ascitic effusion, metastatic ductal Hormone receptor plasticity; Engel et al.®
carcinoma metastatic adaptation
ZR-75-30 Subline of the above, with reduced
hormone dependence
SUM Dr. Stephen Ethier, University of SUM-149PT Primary inflammatory TNBC, IBC-specific pathways Forozan et al.?”
Michigan BRCA-1 mutation
SUM-159PT Metastatic site of inflammatory
TNBC
Hs Human Somatic Hs578T Breast carcinosarcoma Sarcomatoid differentiation; tumor-  Hackett et al.”®
stroma crosstalk
DU Duke University DU4475 Rare metastatic TNBC model niche-specific metastasis van de Wetering et al.*®
mechanisms
CAL Cancer Associated Line CAL-51 Ductal carcinoma, TP53-mutated tumor heterogeneity Neve et al.*°
CAL-120 Metastatic site, basal-like
MFM Max Faber Memorial laboratory MFM-223 Pleural effusion with metaplastic tumor-stroma interactions; drug Gazdar et al.*’
TNBC sensitivity in metaplastic
carcinomas
PMC Primary Malignant Culture PMC-42 Invasive ductal carcinoma, forms Morphogenesis; polarization; Whitehead et al.*?
organoids in vitro extracellular matrix role in tumor g
progression o O
UACC University of Arizona Cancer Center UACC-812 metastatic site (likely lymph node) Drug resistance; gene signatures Barretina et al.®* E o
UACC-893 HER2-positive ductal carcinoma and drug response P %
EMG Epidermal Malignant Growth EM-G3 scirrhous carcinoma, desmoplastic =~ Desmoplasia; tumor Mladkova et al.®* % -
subtype microenvironment crosstalk CI.R g
(Continued on next page) (£ (7))
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Table 1. Continued

Representative cell lines

Key research applications of the cell

Cell line family ~ Acronym origin Name Source line family Reference
HDQ Unknown HDQ-P1 Primary ductal carcinoma with Synthetic lethality strategies; Holstege et al.**
BRCA-2 mutations resistance mechanisms
EFM European Foundation for Medicine ~ EFM-19 Malignant pleural effusion epigenomic modifications; Glont et al.*®
alternative survival pathways
IBEP Instituto de Biomedicina, Estudio de IBEP-1 Invasive ductal carcinoma, intratumoral heterogeneity; clonal Dai et al.®’
Proliferacion luminal-like evolution
IBEP-2 Invasive ductal carcinoma,
basal-like
KPL Kurebayashi Pleural Line KPL-1 malignant ascites of a HER2- antibody-drug conjugate Kurebayashi et al.*®
positive patient mechanisms
LY Dr. Anne Lykkesfeldt LY-2 tamoxifen-resistant subline HR and growth factor pathways; role  Brunner et al.*°
of MCF-7 of autophagy in acquired resistance
T Tissue culture T-47D Pleural effusion progesterone receptor (PR) Keydar et al.*’
signaling; CDK4/6 inhibitor
responses
BSMzZ Butzow, Sager, Miiller, Zurich BSMzZ Mucinous carcinoma glycoprotein-mediated immune Holliday and Speirs'®, Watanabe
evasion and matrix adhesion etal.*!
AU Auburn University AU565 Metastatic site antibody-drug conjugates Bacus et al.*?
21 Age of patient (21 years old) 21-MT-1 Metastatic breast tumor PARP inhibitor responses; Ince et al.*®
21-PT Primary breast tumor metastasis-initiating cells
HMT Hanyang Medical Team HMT-3902S1  Primary breast tumor TGF-p-driven EMT and metastasisin  Petersen et al.**
xenograft models
MA Metastatic Adenocarcinoma MA-11 Bone metastasis bisphosphonate efficacy; tumor- Micci et al.*®

osteoclast crosstalk in metastases
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Figure 1. Histological subtypes of breast cancer

Breast cancer cell lines are grouped by the histological subtype of the deriving tumors and their sub-classifications, alongside examples of widely used cell lines
for each cancer type. For example, SUM149PT and SUM190PT were established from inflammatory breast cancer, while MDA-MB-134-VI and SUM44PE
originated from classic ILC. However, not all subtypes are well-represented by directly derived models. In such cases, some widely employed cell lines (e.g.,
MCF-7 and MDA-MB-231), though not derived from rare subtypes like papillary or metaplastic carcinoma, may still serve as functional models due to their

phenotypic behavior.

Invasive lobular carcinomas (ILCs) account for 10-15% of
breast cancer cases, arise from the terminal duct-lobular units,
and are marked by the loss of E-cadherin, typically due to
CDH1 mutations.”® They are commonly harder to diagnose
from mammograms due to not forming calcifications. ILC is usu-
ally ER-positive and HER2-negative, with distinct genomic alter-
ations.*® The majority of ILCs consist of low-nuclear-grade ma-
lignant cells® (i.e., classic ILCs). In a minority of ILCs, the
tumor consists of high-nuclear-grade malignant cells (i.e., pleo-
morphic ILC). ILC can exhibit a range of histological growth pat-
terns, including solid, alveolar, trabecular, and tubulolobular var-
iants.*® These patterns reflect the morphological diversity of ILC
and occasionally pose diagnostic challenges. Regardless of
pattern, these tumors typically retain the hallmark feature of
E-cadherin loss, confirming their lobular origin.?**° Invasive
Ductal Carcinoma (IDC), which constitutes 70-80% of invasive
breast cancer cases, invades the stroma and causes desmo-
plastic reactions.”® IDC is molecularly heterogeneous, with
luminal subtypes expressing hormone receptors, HER2-en-
riched tumors exhibiting ERBB2 amplification, and basal-like tu-
mors being triple-negative.”*” The majority IDCs are classified
as no special type (IDC-NST), yet several distinct histological
and clinical variants exist.*®

Metaplastic carcinoma (MpC) is an aggressive form of invasive
breast cancer, often classified as triple-negative.” It is highly het-

erogeneous, typified by epithelial-to-mesenchymal transition,
which produces variable differentiation, including squamous,
spindle, or chondroid elements.®" This subtype of breast cancer
is noted for its resistance to chemotherapy.>” Tubular carcinoma
(TC) is arare form of breast cancer defined by the proliferation of
angulated, oval, or elongated tubules reminiscent of normal
breast ducts. Its invasive nature, coupled with the absence of
myoepithelial cells, distinguishes it from benign lesions.*® Micro-
papillary carcinoma (MiC) is another aggressive subtype seen in
1-2% of breast cancer cases, characterized by clusters of tumor
cells arranged in an inside-out pattern without fibrovascular
cores.®® Despite often being ER-positive, this cancer type dis-
plays high rates of lymph node involvement and commonly ex-
hibits HER2 amplification or PIK3CA mutations.>* Adenoid cystic
carcinoma (ACC) is an extremely rare subtype (<0.1% inci-
dence), featuring biphasic cell populations, luminal and basaloid,
that form tubular, cribriform, or solid patterns surrounded by
mucinous material.”>> As opposed to its salivary gland counter-
part, breast ACC rarely metastasizes, with the surgical excision
often proving curative.>®

Hormone-receptor status

Receptors are proteins typically found in the cell membrane that
can be bound by matching extracellular molecules to elicit intra-
cellular signaling or to enable inter-cellular communication.®”->
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Figure 2. Classification of selected commercially available human breast cancer cell lines
The schematic organizes cell lines into five intrinsic subtypes (Luminal A, Luminal B, HER2-enriched, Basal-like, and Mesenchymal) displayed in columns. Color-
coded symbols represent key attributes used in absolute and relative classifications previously discussed hereby to map their molecular and functional char-

acteristics.

Some breast cancer cells possess certain receptors to hor-
mones (HRs) that contribute to cellular behaviors, including
growth, proliferation, and motility.°®®® HR status has been
widely used to classify breast cancer cell lines (Figure 2). HRs
include the estrogen receptor (ER) and the progesterone recep-
tor (PR). Another important receptor is the human epidermal
growth factor receptor 2 (HER2). HR/HER2 expression, among
other variables, is one of the most important factors in estimating
the prognosis and therapeutic responses of breast cancer.®’ Es-
trogen receptor-positive (ER+) breast cancer is the most
frequently diagnosed subtype. However, only about 30% of
the commercially available breast cancer cell lines are ER+,
and these models frequently derive from advanced disease
states.®” From those, very few can be grown in mice, such as
MCF7, T47D, and ZR-75-1, requiring high levels of exogenous
estrogen (E2).8 This does not reflect the low levels of estrogen
found in postmenopausal women, where most cases of ER+
breast cancer develop, making these models limited in scope.
The majority of ER+ breast cancer is also PR-positive (PR+).>”
Elevated PR levels are predominantly observed in luminal A tu-
mors, which yield better outcomes compared to luminal B tu-
mors, where PR expression is lower.5® Approximately 15% of
breast cancers are human epidermal growth factor receptor 2
positive (HER2+), a subtype that typically affects younger pa-
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tients and is diagnosed at advanced stages.®* HER2 overex-
pression, an independent predictor of poor survival, often occurs
irrespective of ER and PR expression.'® Triple-positive breast
cancer (TPBC) is a luminal B subtype co-expressing ER, PR,
and HER2, accounting for roughly 10-15% of cases.®® It often
demonstrates suboptimal responses to standard chemotherapy
and hormone therapy due to intricate crosstalk between the ER
and HER2 pathways.®® Triple-Negative Breast Cancer (TNBC)
lacks the expression of ER, PR, and HER2, and accounts for
approximately 15% of cases.®” TNBC is predominantly basal-
like, is more common in younger women, and exhibits an
increased risk of early recurrence and distant metastasis. It is
strongly associated with BRCAT mutations.®® The ER+/HER2-
subtype represents the most common breast cancer phenotype
(approximately 75% of cases) and is typically classified
as luminal A-like,®” while the ER+/PR+/HER2+ pattern is
classified as luminal B-like."* Luminal B cancers with an ER+/
PR-/HER2+ profile generally portend a worse prognosis than
their ER+/PR+ counterparts, while HER2-positive cancers that
are ER-/PR- are managed predominantly with HER2-targeted.”°

Genetic mutations
Breast cancer is primarily driven by genetic factors, with age
and family history being the most significant risk factors.
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Approximately 5-10% of breast cancer cases are associated
with inherited gene mutations.’””" Germline alterations in
BRCAT1 and BRCA2, among the most widely known mutations,
compromise DNA repair and confer a markedly increased life-
time risk, predisposing tumors to either triple-negative or pre-
dominantly ER-positive phenotypes, respectively.”” Mutations
in TP53, present in nearly 30% of cases, disrupt critical cell cycle
checkpoints and promote aggressive tumor behavior with
poorer outcomes.” PTEN mutations are strongly correlated
with HER2+ breast cancers,”® and inversely associated with
luminal type breast cancers’* affecting cell growth, proliferation,
and inhibiting cancer stem cell activity.”> Other important muta-
tions include defects in CHEK2 and ATM, weakening cell cycle
control and apoptotic responses.’® Alterations in PALB2,
CDH1, STK11, and NF1 contribute to genomic instability, drive
invasive characteristics, and influence therapeutic resistance.”’
Genetic aberrations define distinct molecular subtypes in breast
cancer and are essential for guiding targeted treatments in pre-
cision oncology. Genetic drift represents a different problem,
further addressed in this review.

Molecular subtype

Gene expression profiling and hierarchical clustering have delin-
eated five principal molecular subtypes, each with distinct bio-
logical behavior, risk factors, and therapeutic responsiveness,
namely luminal A, luminal B, HER2-enriched, basal-like, and
claudin-low.”® Luminal A is the most common subtype of breast
cancer, accounting for around 40% of all breast cancer cases.’®
It is characterized by an expression of luminal (low molecular
weight) cytokeratins, ER, and PR, with a HER2 negative profile
accounting for the low expression of cell proliferation marker
Ki-67 (less than 20%).”° Luminal B subtype represents 20-
30% of cases, expressing ER (with often reduced PR) and dis-
playing high proliferation indices (Ki67 above 20%).”° These
are generally of higher histologic grade, more aggressive, and
have a higher recurrence rate compared to Luminal A subtypes,
necessitating combined endocrine and chemotherapeutic ap-
proaches.?® HER2-enriched comprise approximately 15% of
breast cancer cases.?’ These are HER2-positive tumors, while
often exhibiting low or absent ER and PR levels.®” This category
is subdivided into luminal HER2 (E+, PR+, HER2+ with interme-
diate Ki67, 15-30%) and HER2-enriched (E—, PR—, HER2+ with
high Ki67, >30%), both marked by high-grade invasive ductal
carcinomas with nodal positivity and aggressive clinical
behavior.”® Basal-like is often used as a synonym of triple-nega-
tive breast cancer (TNBC), lacking ER, PR, and HER2 expres-
sion, while expressing basal cytokeratins.®® Basal-like breast
cancers are typically high grade, occurring in patients with
BRCA1 mutations, and have limited treatment options outside
chemotherapy. Claudin-low tumors are characterized by the
low expression of cell adhesion molecules and a stem cell-like
phenotype. This rare and aggressive subtype is often considered
a subclass of basal-like but has gained interest as an in vitro
model to reproduce highly aggressive cancers.>?

Patient age, gender, and ethnicity
Additional absolute criteria include patient age, gender, and
ethnicity. Age critically influences breast cancer risk, tumor
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morphology, and treatment response.”® Tumors in patients un-
der 40 typically exhibit reduced levels of estrogen receptor, pro-
gesterone receptor, and luminal cytokeratin, alongside elevated
Ki67, HER2, and p53 expression, indicative of aggressive
behavior.?* In contrast, tumors in individuals over 70 generally
display indolent features. Yet, most commercially available cell
lines were derived from older patients, potentially limiting exper-
imental relevance.®* Ethnicity further modulates breast cancer
biology, as disparities in healthcare result in later diagnoses in
Hispanic and Asian populations, while non-Hispanic black pa-
tients exhibit a tumor microenvironment enriched with pro-
tumorigenic immune cells, enhanced microvasculature, and
elevated mitotic kinases and transcription factors that promote
aneuploidy.®> More in general, marketed cell lines are predomi-
nantly caucasian.®® With regards to gender, although breast can-
cer is most commonly viewed as a female disease, it can also
occur in men, where it accounts for less than 1% of all cancers
in men and breast cancer cases overall.2® However, male breast
cancer incidence has risen over the past 30 years, with inherited
pathogenic variants being the most significant risk factors.®®
Transgender individuals may also face breast cancer risks,
particularly if receiving hormone treatment. Studies have shown
an increased risk of breast cancer in transexual women
compared with cisgender men, and a lower risk in trans men
compared with cisgender women.®’

RELATIVE CLASSIFICATION CRITERIA

This section details key classification parameters specific to
breast cancer to emphasize their mechanistic underpinnings
and clinical utility. Such features are defined as relative due to
providing a qualitative measure of cancer cell behavior. Impor-
tant relative criteria include metastatic ability, proliferation rate,
often measured by Ki-67 expression or mitotic indices,®®
response to radiation reflecting the tumor sensitivity to DNA
damage-induced cell death,®® and drug resistance encompass-
ing mechanisms by which tumors evade therapeutic agents
(such as ESR7 mutations in hormone-resistant HR+ disease).*”
Inflammatory status reflects, among all, immune microenviron-
ment composition and stem cell-like properties.”’ A summary
of key relative criteria, their working mechanisms, and implica-
tions is summarized in Table 2, alongside absolute criteria to pro-
vide a complete overview.

Metastatic ability

Metastatic ability refers to the capacity of tumor cells to colonize
distant organs such as bone, brain, and liver, and it is driven by
EMT."" In metastatic behavior, transcription factors downregu-
late E-cadherin, enhancing motility and favoring migration to
colonize new sites. Bone metastasis, one of the hardest to
treat, involves osteolytic factors that activate osteoclasts via
RANKL signaling."" Circulating tumor cells expressing HER2 or
EpCAM have been associated with increased metastatic
risk.'%? Metastatic behavior also differs based on subtype-spe-
cific organotropism: luminal tumors often metastasize to bone,
HER2+ to liver and lungs, and basal-like tumors to brain and
Iung.w2 These preferences reflect intrinsic properties of the tumor
cells, including receptor expression, secreted factors, and ability
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Table 2. Absolute and relative classification criteria, key features, and clinical relevance

Breast cancer
subcategory

Key features and molecular details

Clinical relevance

Reference

Absolute
criteria

Histological
subtype

Hormone
Receptor
Status

Adenocarcinoma

Ductal carcinoma

Lobular carcinoma

Inflammatory
breast cancer

Medullary carcinoma

Mucinous carcinoma

Papillary carcinoma

Metaplastic
carcinoma

Tubular carcinoma

Micropapillary
carcinoma
Adenoid cystic

carcinoma

ER+

>95% of cases; arises from
glandular epithelium; glandular
differentiation and mucin production

Divided into DCIS and IDC; IDC is
molecularly heterogeneous (luminal,
HER2, basal-like)

Arises from TDLUSs; loss of E-
cadherin (CDH1 mutations); usually
ER+ and HER2-; associated with
FOXAT1, TBX3 mutations

Rare (1-5%); typically, triple-
negative or HER2+; overexpresses
EGFR, ANXA1, and COX-2;
activation of WNT/p-catenin and NF-
kB pathways

Syncytial growth (>75%), absence
of glandular/tubular structures;
frequent mitoses

Extracellular mucin; clusters;
typically, ER+, HER2—; low TP53
mutation; AKT1 E17K mutations

Papillary with fibrovascular cores;
subtypes include intraductal,
encapsulated, solid, and invasive
forms

Aggressive TNBC subtype;
heterogeneous with evidence of
EMT transition; chemoresistant

Well-differentiated; small cell
tubules arranged radially; invasive

Often ER+ with high lymph node
metastasis; MUC1 overexpression;
may have HER2 amplification or
PIK3CA mutations

Rare (<0.1%); TN yet indolent; MYB-
NFIB fusions triggering NOTCH
pathway activation

Most prevalent; includes MCF7,
T47D, ZR-75-1; require high
exogenous estrogen; responsive to
endocrine therapy

Subtyped as ductal vs. lobular; informs targeted therapy

Provides prognostic stratification based on grade and subtype

Complicates detection; influences therapeutic strategies

Highly aggressive with rapid progression

Rare IDC variant with distinct histological features

Generally lower grade and favorable prognosis

Crucial to differentiate benign from malignant lesions

High resistance profiles; therapeutic challenges

Rare, low-grade, and excellent prognosis

Poorer prognosis necessitating adjuvant chemotherapy

Surgical excision is often curative

Cell lines may not mimic low estrogen
conditions of postmenopausal patients

Fogh et al.**, Rakha and Ellis*”

Makki’, Allred*®

Christgen et al.,*,

Cristofanilli et al.*®

Robertson et al.”

Makki”

Marrazzo et al.>*

Pal et al.”*

Yan et al.°!, Hennessy et al.*”

Peters et al.”®

Cheng et al.”®

Persson et al.”®

Putti et al.®”

(Continued on next page)
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Table 2. Continued

Breast cancer

92UBI0gGI

- subcategory Key features and molecular details Clinical relevance Reference
PR+ Expressed in response to ER PR positivity generally correlates with better outcomes Clark et al.”®
activation; higher levels common in
luminal A; prognostic marker
HER2+ 15% of cases; overexpression of Managed with HER2-targeted agents (e.g., trastuzumab) Jerusalem et al.®

Genetic
Mutations

Triple positive
(TPBC)

Triple negative

(TNBC)

ER+/HER2-

ER+/PR-/HER2+

ER-/PR-/HER2+

BRCA1

BRCA2

TP53

PTEN

PALB2

CHEK2

ATM

HER2; adverse prognostic indicator
independent of ER/PR

Co-expression of ER, PR, and
HER2; luminal B subtype (~10-
15%); pathway crosstalk

Lacks ER, PR, and HER2;
predominantly basal-like; distant
metastasis; linked with BRCA1
mutations

Most common phenotype (~75% of
cases); classified as luminal A

Luminal B variant with altered
receptor signaling; poorer prognosis
compared to ER+/PR+HER2+

HER2-overexpressing cancers
lacking hormone receptors

Germline mutations (16% of
hereditary BC); crucial for DNA
repair and cell cycle regulation;
TNBC

Functions in DNA repair and
genomic stability; 70-80% of
BRCA2-mutated cancers are ER+
Mutated in ~30% of BC; mediates
cell-cycle arrest, apoptosis, or
senescence upon DNA damage
Regulates the PI3K/Akt pathway;
linked with HER2+ cancers,
inversely with luminal types
Works in tandem with BRCA1/2 in
DNA repair; often associated with
aggressive TNBC phenotypes
Checkpoint kinase mutation;
majority are luminal A with some
lobular features

Involved in cell cycle regulation and
apoptosis; loss-of-heterozygosity in

Requires combinatorial therapeutic approaches

Limited targeted therapies

Endocrine treatments

Potential endocrine therapy resistance

Treated with HER2-targeted drugs

Key target for PARP inhibitor strategies

Influences endocrine therapy in mutation carriers

Determines tumor aggressiveness

Its loss may direct targeted treatment strategies

Emerging target in personalized therapeutic approaches

Reflects cell cycle checkpoint dysfunction

May influence chemotherapeutic decisions.

Vici et al.®®

Dai et al.*®

Stravodimou and
Voutsadakis®

Ding et al.”®

Mukai®’

van der Groep et al.”®

Andreassen et al.””

Cancer Genome
Atlas Network®

Lebok et al.”*

Toss et al.®”
Toss et al.”® o
20
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Z
Stucci et al.”® % -¥
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Table 2. Continued

Breast cancer
- subcategory

Key features and molecular details

Clinical relevance

Reference

CDH1

STK11

NF1

Molecular Luminal A

Subtype

Luminal B

HER2-enriched

Basal-like (TNBC)

Mesenchymal

(claudin-low)

Relative  Metastatic
Criteria ability

Tumor, migration and
invasiveness

~40% of sporadic BC; mainly in
luminal B/HER2-

Encodes E-cadherin; loss leads to
cell dissociation; mutations
predispose to invasive lobular
carcinoma

Associated with Peutz-Jeghers
syndrome; predisposes to other
tumor types (ovarian, lung, Gl)

Mutations in NF1 occur in ~27% of
BC; endocrine resistance and
metastasis, especially in ER+ cases

~40% of cases; ER/PR positive; low
Ki67 (<20%); typically, IDC; high
endocrine therapy response
20-30% of cases; ER positive (with
lower PR expression); high Ki67
(>20%); variable HER2

~15% of cases; overexpresses
HER2; subdivided into luminal HER2
and HER2-enriched

15-20% of cases; lacks ER, PR, and
HER2; expresses basal
cytokeratins; linked with BRCA1

Rare; low expression of cell
adhesion molecules and stem-cell-
like phenotype

EMT transition; downregulation of
adhesion molecules; organ tropism.
SNAIL, TWIST, ZEBT;
downregulation of E-cadherin;
PTHrP, IL-11; RANKL; HER2,
EpCAM; overexpression of COX2,
HB-EGF, STEGALNACS in brain-
tropic cancers

Cell detachment; ECM degradation;
cytoskeletal reorganization;
invadopodia formation; integrin-
mediated motility. MMP-9, MMP-
14; RhoA/ROCK; TGF-p—driven
integrin avp6; proliferation markers
like Ki-67; Cyclin D1-CDK4/6

Essential for hereditary lobular BC surveillance

Important for multi-tumor screening

May predict targeted endocrine resistance management

Represents the best prognostic subgroup

More aggressive; requires combined therapy approaches

Aggressive; outcomes improve with HER2-targeted therapies

Limited treatment options

High tumor plasticity and potential resistance

Enhanced motility; colonizes distant sites

Invasive capacity; differential proliferation
in luminal A vs. B subtypes;
targeted therapeutic strategies

Corso et al.'®

van Lier et al.’®"

Dischinger et al.®

Eliyatkin et al.”

Marrazzo et al.*®

Fragomeni et al.”®

Fragomeni et al.”®

Dischinger et al.??

Nguyen et al.’",

Bos et al.'®?

Goldhirsch et al.?®,
Sossey-Alaoui et al.'®®

(Continued on next page)
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Table 2.

Continued

Breast cancer
- subcategory

Key features and molecular details

Clinical relevance

Reference

Apoptotic resistance

Gene expression and
drug resistance

Epigenomic modifications

Tumor -immune system
interactions

complexes; MYC amplification;
PIBK/AKT hyperactivity
Upregulation of anti-apoptotic
proteins; Overexpression of Bcl-2
(luminal tumors), TP53 mutations
(basal-like), FLIP upregulation in
TNBC; BRCA1/2; HIF-1a and
carbonic anhydrase IX in hypoxic
conditions

Resistance through specific
mutations. PAM50, Oncotype DX,
MammaPrint; ESR1 mutations
(Y537S, D538G); PTEN loss;
PIK3CA mutations; plll-tubulin
overexpression; sensitivity to HER2-
targeted agents, platinum salts, and
AR inhibitors

BRCAT1 hypermethylation reversible
by HDAC inhibitors; EZH2
Tumour-infiltrating lymphocytes; IL-
6/STAT3-mediated PD-L1
upregulation; ALDH1, CD44/CD24;
Notch, Hedgehog, WNT/B-catenin;
HR deficiency scores; APOBEC3B

Chemo/radio resistance; combined treatments such as
PARP inhibition with radiotherapy

Recurrence risk assessment; endocrine and
targeted therapy resistance

Influences chemoresistance, recurrence,
and therapeutic response
Immunotherapeutic resistance and
increased invasive capacity

Kleer'**

Neve et al.*°

Walker'®,

Mackenzie et al.'®®
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to modify the pre-metastatic niche. Some cell lines, such as
MDA-MB-231, consistently metastasize to lung and bone in mu-
rine models, while others such as MCF-7 require estrogen sup-
plementation and genetic manipulation to become metasta-
tic.'°® Additional drivers include specific signaling cascades,
for example, CXCR4-CXCL12, involved in bone homing, and
MMPs, which degrade the extracellular matrix to facilitate inva-
sion."! Exosomes from metastatic cells can precondition distant
niches to favor colonization.'> Moreover, stem-like subpopula-
tions with CD44"9"/CD24'°" profiles exhibit heightened meta-
static ability and are linked to relapse.’%°?

Migration and invasiveness

Migration and invasiveness describe the ability of cancer cells to
detach from the primary tumor site, degrade the extracellular
matrix, and infiltrate surrounding tissues.'? Invasive breast can-
cer, particularly TNBC and HER2-positive subtypes, exhibits
heightened migration via RhoA/ROCK-mediated cytoskeletal
reorganization and MMP-9/MMP-14-dependent extracellular
matrix degradation.’'®® In vitro models, for instance, MDA-MB-
231 cell invasion assays, reveal that TGF-f signaling enhances
motility by upregulating integrin avp6.?® These behaviors are
often initiated during partial EMT, which increases cellular plas-
ticity while maintaining some epithelial traits, allowing dynamic
adaptation to microenvironmental cues. Migratory activity can
be random or directional (chemotaxis), with the directional
migration often guided by gradients of stromal-derived fac-
tors.’®” Tumor-associated fibroblasts and macrophages also
promote invasion by remodeling the ECM and secreting pro-
migratory cytokines.'°® Additionally, invadopodia (actin-rich
protrusions) formation facilitates local matrix degradation and
is prominent in highly invasive cell lines.®°

Apoptotic resistance

Apoptotic resistance denotes the tumor evasion of programmed
cell death, enabling survival despite genomic damage or ther-
apy.'®9%1%° Apoptotic evasion in breast cancer is linked to
Bcl-2 overexpression in luminal subtypes and TP53 mutations
in basal-like tumors.*>®® TNBCs frequently exhibit FLIP upregu-
lation, which inhibits caspase-8 activation.'®” PARP inhibitors
(e.g., olaparib) exploit synthetic lethality in BRCA1/2-mutated tu-
mors by impairing DNA repair and forcing apoptosis.''® Some
breast cancer cells bypass apoptosis entirely by entering a se-
nescent-like state or activating autophagy as an adaptive sur-
vival strategy under therapeutic stress.'® Apoptotic resistance
is commonly assessed in vitro using Annexin V/PI staining,
TUNEL assays, and caspase-3/7 activity measurements.”'®
Cell lines such as MDA-MB-231 and BT-549 are often used to
model high apoptotic resistance, particularly in response to
chemotherapy or radiation.’®

Gene expression profile

Gene expression profiles represent the transcriptomic signa-
tures that classify breast cancer into intrinsic subtypes. Intrinsic
subtypes luminal A, luminal B, HER2-enriched, and basal-like,
originated from breast cancer transcriptomics.'"" The PAM50
assay further refines classification, identifying a claudin-
low subgroup with stem-like features.®®> Oncotype DX and
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MammaPrint quantify recurrence risk using proliferation (e.g.,
Ki-67) and invasion-related genes (e.g., MMP11).""? As a rela-
tive criterion, gene expression profiling enables comparison of
cell lines beyond subtype labels, revealing functional differ-
ences in pathway activity, hormone signaling, immune evasion,
or stemness. For instance, two basal-like cell lines may diverge
significantly in EMT gene signatures or interferon response
genes, making one of them more suitable for metastasis or
immunotherapy studies. Expression levels of DNA repair genes
(e.g., BRCA1, RAD51), growth factors (e.g., TGFBT), or
apoptotic regulators (e.g., BCL2, CASPY9) offer insights into
therapeutic vulnerabilities.''® Additionally, cell lines cultured
in 2D versus 3D conditions can exhibit shifts in gene expres-
sion,’™ highlighting the need to interpret transcriptomic data
in context and to develop in vivo-like models to improve
accuracy.

Epigenomic modifications

Epigenomic modifications, for example, DNA hypermethyla-
tion of BRCA1 occurring in a significant fraction of sporadic
tumors, are reversible with HDAC inhibitors that restore ERa
expression, while EZH2 overexpression in TNBC correlates
with stemness and metastasis."’® In a model selection
context, epigenomic features help distinguish cell lines by
their regulatory landscape rather than transcriptional output
alone. DNA methylation at tumor suppressor loci or enhancer
regions can create long-term silencing that persists across
treatments, as well as histone modifications that can influence
chromatin accessibility and lineage identity.'®® Functional as-
says using 3D organoids and patient-derived xenografts pro-
vide dynamic insights into treatment response and resis-
tance.'®® Cell lines differ in the stability of these states,
some retaining locked epigenomes, while others are more
prone to reprogramming, particularly in 3D culture or co-cul-
ture with stromal cells.""*

Tumor-immune interactions

Tumor-immune interactions are one of the most important fea-
tures of cancer cells when fighting against therapies and initi-
ating invasion. Cancer cells can evade immune cells and recruit
them as tumor-associated macrophages, regulatory T cells or
myeloid-derived suppressor cells, further exacerbating the ma-
lignancy of the tumor.'®® Even typically anti-tumor cells (e.g.,
T cells or NK cells) can become exhausted or suppressed in
the TME due to interaction with specific factors, hypoxia, or
the absence of stimulatory signals.’®® Some breast cancer cell
lines, for example, MDA-MB-231, HCC38, HCC70, and BT-
549, can recapitulate this interaction, namely, cells with high
immunogenicity.''® These are often highly modulated when
co-cultured with macrophages or T cells and express high levels
of cytokines, chemokines, and high PD-L1 under IFN-y stimula-
tion.'°® Low immunogenic cell lines, such as MCF-7, T47D, and
ZR-75-1, lack the expression of PD-L1 and have a low response
to IFN- y or immune co-cultures, making them less suitable for
immune checkpoint or immunotherapies studies.’® However,
even high-interaction lines are still imperfect models, as stan-
dard cell lines lack the full complexity observed in immune micro-
environments in vivo.'%
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TOWARD INFORMED CELL MODEL SELECTION

To consolidate the criteria discussed throughout this review and
translate them into actionable steps, this section proposes a
structured workflow for breast cancer cell line selection
(Figure 3). Starting from a defined research question and primary
goal, whether mechanistic exploration, drug development,
biomarker discovery, or modeling tumor—microenvironment in-
teractions, the approach can guide users through a series of fil-
ters based on absolute and relative criteria. The layers include
fundamental features followed by dynamic functional attributes
relevant to experimental aims. Across levels, the candidate
pool progressively narrows down to lines that are, however
possible, biologically appropriate, experimentally feasible in
the given context, and clinically relevant to their conceived appli-
cation. The workflow further integrates downstream consider-
ations, for example, validation needs (e.g., passage number, ge-
netic drift), with suggestions for additional experimental steps
before proceeding, as well as representation gaps (e.g., age
range of applicability). Crucially, it also introduces the concept
of scaling potential, i.e., the likelihood that a given cell line will
perform well in advanced disease models such as organoids,
co-culture systems, organ-on-chip platforms or patient-derived
xenografts. Pre-selecting based on functional and phenotypic
compatibility to more advanced platforms can reduce resource
misuse and improve translational fidelity, possibly aiding in
avoiding the use of unscalable in vitro models in studies originally
conceived for in vivo applications. This structure might lay the
foundation for building adaptive and Al-supported tools that
link cell line metadata with model performance to optimize pre-
clinical design.

The practical value of this approach is presented in two
research scenarios requiring thoughtful cell line selection
(Figure 4). In the first case, investigating bone-specific metas-
tasis mechanisms in ER+ breast cancer through a standard liter-
ature search or an Al chat assistant might yield conflicting re-
sults, with studies using MCF-7 cells despite their limited
metastatic capacity or MDA-MB-231 cells despite being ER-
negative."'” By applying the presented model, one would first fil-
ter by absolute criteria (ER+ status) and then by relative criteria
(bone-metastatic potential), leading to the selection of MCF-7-
derived bone-seeking variants or ZR-75-1 cells, which express
PTHrP and other bone-metastasis mediators while maintaining
ER positivity.®

INTEGRATION WITH ADVANCED AND EMERGING
DISEASE MODELS

The development and deployment of disease models aiming to
recapitulate breast cancer complexity benefit from the integra-
tion of the defined criteria into the set of advanced and emerging
technologies, for example, multi-omics profiling to enhance

iScience

model fidelity, machine learning to forecast treatment
outcomes, and microsystems mimicking tissue microenviron-
ments (Figure 5).3%%6195118 |ntegrated analyses show that
many breast cancer cell lines cluster into familiar intrinsic sub-
types (e.g., luminal vs. basal) based on gene expression, mirror-
ing patient tumor classes, and multi-omics approaches have
even revised prior cell line classifications.***” The combination
of genomics (mutations, copy-number variation), transcriptom-
ics (MRNA, miRNA), epigenomics, and proteomics allows us to
obtain a holistic molecular portrait that improves subtype match-
ing. This approach also enables the spotting of discrepancies, as
breast cell lines often carry more numerous mutations than tu-
mors, and several key metastatic drivers (e.g., ESR1 mutations)
found in patient tumors are absent in commonly used lines.®'"”
Bringing together multi-omics data from patients (e.g., The Can-
cer Genome Atlas) with cell line and organoid data helps identify
which models best recapitulate the molecular wiring of a given
subtype, potentially enabling the discovery of hybrid molecular
subgroups and biomarkers that are overlooked in single-omics
analysis.®” Multi-omics integration enables us to match absolute
features (e.g., BRCA1 mutation, ER status, luminal B signature)
with its functional behaviors (e.g., apoptotic resistance, metasta-
tic tropism), as captured by the relative criteria, simulating clini-
cally relevant contexts in vitro. For example, a drug targeting
CDK4/6 should not solely be tested in a luminal-type cell line,
but also in one with high Cyclin D1 expression and low apoptotic
priming, integrating a profile that combines static and dynamic
features. On top of this, machine learning is increasingly able
to predict drug responses and classify breast cancer subtypes
with accuracy through algorithms trained to recognize complex
patterns that correlate with clinically relevant features. The
NCI-DREAM Challenge assembled genomic, transcriptomic,
proteomic, DNA methylation, and mutation data for 53 breast
cancer cell lines to predict relative sensitivity to various drugs.'"®
A recent study built a deep neural network that integrates gene
expression, DNA copy number, mutations, and phospho-prote-
omic (RPPA) data, including a graph-embedded layer of protein—
protein interactions.® Other groups have developed multi-omics
machine learning frameworks to classify breast tumors into sub-
types and predict patient therapy outcomes.'?° As a real-world
example, ensemble models trained on cell line screens have
been applied to patient tumor data to distinguish responder vs.
non-responder profiles."?

Traditional 2D monolayer cultures often fail to recapitulate the
complex architecture and microenvironment of breast tumors,
potentially distorting cellular behavior with cells spreading un-
naturally, losing their apico-basal polarity, lacking contact
with a native ECM, and altering gene expression and drug re-
sponses.'%>""* For example, 2D-cultured cells have continuous
access to oxygen and nutrients, as opposed to cells in a tumor
mass, potentially making them more sensitive to drugs than real
tumors. Advanced culture systems such as 3D spheroids,

Figure 3. Decision-making workflow for breast cancer cell line selection
The diagram outlines the proposed stepwise filtering process, beginning with the research objective. It then guides selection through sequential filtering criteria:
absolute filters (e.g., receptor status, molecular subtype), and relative filters (e.g., metastatic tropism, resistance traits). Additional layers incorporate experi-
mental feasibility, validation requirements (e.g., passage history, genetic drift), and representation gaps. The final step considers the scalability of selected lines
toward advanced disease models such as organoids, co-cultures, and xenografts.
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Use case 2: Testing novel CDK4/6 inhibitor
against therapy-resistant disease

Research goal: evaluate novel

CDK4/6 inhibitor efficacy against
endocrine-resistant breast cancer

Primary goal: test drug against
clinically relevant resistance
mechanisms

Molecular Hormone Genetic features:
subtype: receptor high cyclin D1
luminal B status: ER+ expression

Met.'a.s.tatic Expression of.bone Mlgfat!OTT Response
ability: metastasis capacity: of TGF-B
bong- mediators (PTHrP, mode.rate pathway
tropic IL-11, RANKL) to high

Specific resistance Proliferation PI3K/AKT/ Drug
mechanisms: ESR1 rate: mTOR resistance:
mutations, altered moderate to pathway acquired
signaling pathways high activation endocrine
resistance

MCF-7 bone-seeking variants, ZR-
75-1 (expresses mediators)

Consistency check

Long-term estrogen-deprived (LTED)
MCF-7, LY-2, T47D with ESR1 mutations

Consistency check

MCF-7: Use Verify ER Confirm
high low- expression PTHrP
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drift cells blot) (gPCR)
{ 1
I {
! y
3D co-culture Microfluidic i
with bone-derived bone-mimetic (7.v1vc?
) verification
stromal cells device

MCF-7 bone

metastatic variant
[ Expected advantage: ]

Model maintains ER signaling while exhibiting bone tropism

Figure 4. Use cases of the proposed workflow
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panel (multiple from resistant generation culture
mechanisms) tumors model

MCF-7 LTED, T47D-Y537S (ESR1 mu

and

Expected advantage: tests CDK4/6 inhibitor across clinically
relevant resistance mechanisms rather than arbitrary luminal cell

lines

The first use case (left panel) addresses bone metastasis in ER+ disease, identifying optimal cell models by filtering for both receptor status and metastatic
competence. The second (right panel) illustrates drug testing for therapy resistance, combining genomic features with acquired phenotypes to select resistant
luminal B models. In both cases, this approach could outperform standard selection methods by working with contextual fidelity. It also integrates considerations
of genetic drift and validation needs across strains to potentially add experimental validation steps or pivot.

The second sample use case presented here involves a novel CDK4/6 inhibitor being tested against therapy-resistant disease. Instead of arbitrarily selecting a
panel of luminal cell lines, the framework guides the combination of absolute criteria (luminal B classification, high Cyclin D1 expression) with relative criteria
(acquired endocrine resistance). This would lead to selection of long-term estrogen-deprived (LTED) MCF-7 derivatives, LY-2 cells with acquired tamoxifen
resistance, or T47D cells with ESRT mutations, providing a physiologically relevant resistance context.?’ The consideration of genetic drift would alert potential
inconsistencies between different laboratory strains and encourage authentication and early-passage usage. In both cases, this approach might deliver con-
textually relevant models that mirror specific disease states over generic categorizations, to enable translational outcomes compared with a simple database
consultation or literature search.
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Figure 5. Sample workflow in Al-assisted optimization of cell line selection for 2D culture and advanced disease models

Cell line metadata and experimental data are compiled into a structured database, from which data is fed as inputs into a machine learning architecture that
integrates absolute and relative criteria to generate predictive recommendations tailored to research goals. Suggested cell lines could be deployed in increasingly
complex in vitro platforms to enhance biological fidelity and clinical relevance. The resulting experimental outputs, once validated, could feedback into the
system, allowing continuous model refinement and improved prediction accuracy over time.

patient-derived organoids, co-culture models, and 3D bio-
printing are now improving the physiological relevance of pre-
clinical studies. 3D cultures allow cells to aggregate or grow
in a matrix, restoring more in vivo-like morphology and cell-
cell interactions. A core benefit of 3D tumor spheroids is
the emergence of oxygen, nutrients, and drug gradients
across the spheroid, leading to heterogeneous zones of prolif-
erating vs. quiescent cells, mirroring solid tumors.'?" Studies
comparing in vitro models have shown that breast cancer cells
in 3D can become significantly more drug-resistant than in 2D
monolayers.'%>""®"21 For instance, when MCF-7 spheroids
were treated with common chemotherapeutics (doxorubicin,
paclitaxel, tamoxifen), the 3D cultures were markedly less
responsive than 2D cultures.'®" This in vitro drug resistance in
3D is attributed to the restoration of tumor-like cell-cell/ECM in-
teractions and diffusion barriers that limit drug penetration. Or-
ganoids are often derived from patient tumor samples or stem
cells, that self-organize into mini-structures ideally containing
multiple cell types, maintain the DNA copy number aberrations
and sequence mutations of the parental tumor, as well as estro-
gen receptor (ER), HER2, and other subtype-defining features.
Organoid biobanks and consortia (e.g., the HUB/Hubrecht
Institute and Human Cancer Models Initiative) are now cata-
loging large collections of breast cancer organoids for
research.'??
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Another approach to breast cancer modeling revolves around
the development of co-culture systems, recalling that tumors are
ecosystems of cancer cells interacting with stromal cells, im-
mune cells, neurons, and extracellular matrix. Breast cancer
spheroids have been co-cultured with cancer-associated fibro-
blasts or immune cells to reconstitute aspects of the tumor
microenvironment.'% These methods can reveal emergent be-
haviors, such as how fibroblasts induce drug resistance or how
immune cells infiltrate tumor spheroids. A parallel method
around the development of advanced systems is organ-on-
chip technology, which uses microfabrication techniques to
recreate environments that allow blood flow or gradients of nutri-
ents across a biological sample. A study reports the use of a 3D
bioprinted breast tumor model in a microfluidic chip, arranging
breast cancer cells (MCF7, MDA-MB-231) and healthy mam-
mary cells (MCF10A) within a hydrogel scaffold."'* This method
demonstrated realistic cell migration and invasion patterns in
response to gradients. 3D bioprinting, in turn, represents a pop-
ular frontier for building custom tumor models that include pa-
tient-derived cancer cells, supporting fibroblasts, endothelial
cells to mimic blood vessels, and immune components, all in
one 3D construct. In this context, bringing together cell lines
that collectively recapitulate a desired environment becomes
more complex to do by hand, as well as crucial for ensuring
the validity of experimental outcomes. Then, in vivo validation
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Table 3. The three biggest and most widely used breast cancer databases in research

Feature CCLE TCGA-BRCA METABRIC
Sample type Breast cancer cell lines Primary tumor Primary tumor
Sample size 76 1098 1992
Expression platform RNA-seq RNA-seq Microarray
Subtype distribution Skewed toward TNBC, HER2+ Balanced; ER+ enriched ER+ enriched
Drug response Yes No No

Passage information Limited NA NA

Tissue source In vitro cultured cells (varied origins)
Limited/not annotated

Limited

Ancestry diversity
Population metadata

Fresh frozen tissue
UK/Canadian, white
Moderate

Fresh frozen tissue
Mostly European ancestry
Rich

CCLE, cancer cell line encyclopedia; TCGA-BRCA, Cancer Genome Atlas Breast Invasive Carcinoma; METABRIC, EGA European Genome-Phenome

Archive.

remains a crucial step. A gold standard approach is the use of
patient-derived xenografts (PDX), where fragments of a breast
tumor are implanted into immunocompromised mice.'* Studies
have shown that if a drug causes regression in a cohort of breast
cancer PDX models, there is a good chance it will show efficacy
in patients with similar tumor profiles.''® PDXs are also instru-
mental in co-clinical trials, i.e., parallel studies where patients
receive therapy while their tumor xenografts in mice are treated
similarly, acting as a great standard to comprehensively evaluate
the given technology. All the approaches introduced in this sec-
tion present intrinsic limitations that are out of scope for this re-
view and are extensively addressed elsewhere.

CORE CHALLENGES

Genetic drift

Genetic drift is one of the most influential factors affecting the
repeatability of in vitro experiments. Instability is associated
with the clonal dynamics and appearance of new genetic vari-
ants. A sample study shows that in 106 cell lines compared
across two labs, up to 90% of non-silent mutations were discor-
dant between datasets.'®* MCF-7, specifically, had 27 strains
with high genomic diversity, including differential mutations,
copy number alterations, and gene expression.'?* These varia-
tions are triggered by variations in growth medium, inducing
clonal shifts, and even single-cell-derived clones are genomi-
cally unstable after long-term culture. This has tremendous con-
sequences for drug discovery research. Out of 321 anti-cancer
drugs tested across the 27 MCF-7 strains, almost 75% of effec-
tive compounds in some strains were completely inactive in
others.'?* In a different study, while researching LUCA-15 func-
tion in breast cancer, conflicting reports were found regarding its
presence in MCF-7 cells, prompting them to characterize their
available sublines. It was reported that the chromosomal region
where LUCA-15 maps is unstable in MCF-7 cells, and one sub-
line entirely lacked the LUCA-15 gene.'® This loss correlated with
reduced sensitivity to TNF-a—-induced apoptosis, which is pre-
dominant in MCF-7, since this cell line does not have caspase
activity, while overexpression of LUCA-15 restored apoptotic
responsiveness. These findings suggest LUCA-15 is highly sus-
ceptible to genetic drift, leading to different apoptotic behavior in
the same cell line. Although most of the studies refer to MCF-7 as

the most unstable breast cancer cell line, it has been demon-
strated that HCC1143, HCC38, HCC1937, T47D, BT-549, and
MDA-MB-361 are also highly unstable."”” MDA-MB-231 and
HCC1806 are also moderately unstable, while control cell lines
such as MCF710A are usually stable. Approaches to minimize
these drawbacks include utilizing cell lines at low passages
and standardizing culture conditions for all experimental set-
tings. Genetic drift poses challenges in unifying genomic data-
bases and topic-trained Al assistants, while at the same time
making their potential impact even more consistent.

Conflicting characterizations

Key information such as age, grade, tumor size, ER/HER2 status,
and race is also missing or inconsistently reported across many
studies, limiting the utility of the data for epidemiological or prog-
nostic modeling. A good example of these challenges in harmo-
nizing data from different breast cancer datasets is observed in
Table 3, which compares three of the most commonly used
breast cancer databases.'?® The first issue revolves around
data collection: CCLE and TCGA-BRCA contain RNA-Seq
data, METABRIC contains microarray data. RNA-Seq is much
more sensitive than microarrays, leading to technical bias
when bringing data together.'?® Furthermore, as discussed
earlier, the drug response and characteristics of cell lines are
often non-comparable with those of primary tumors due to ge-
netic drift and the absence of a relevant microenvironment.
Because of this, it is challenging to associate cell-line data
from CCLE to equivalent tumors from TCGA-BRCA or
METABRIC and vice versa. While each database provides valu-
able insights, we cannot directly link cancer cell line features to
population-based outcomes without accounting for the underly-
ing biases that affect their representativeness. A multi-omic
comparison of 57 breast cancer cell lines to 1019 metastatic
breast cancer patient samples from METABRIC and TCGA re-
vealed a mismatch between commonly used cell lines and the
genomic landscape of metastatic tumors.'?® One of the most
critical findings was that many of the breast cancer cell lines
used to model metastatic disease, such as MDA-MB-231,
showed poor genomic similarity to actual metastatic breast can-
cer tumors, particularly within the basal-like subtype. Through a
large-scale integrative analysis comparing 57 cell lines with over
1000 metastatic tumor samples, the authors demonstrate that
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historical model selection often lacks molecular justification. In
contrast, less frequently used lines such as HCC38, HCC1395,
and BT-549 were found to more closely resemble the genomic
and transcriptomic profiles of metastatic tumors.'2°

Underrepresentation

The underrepresentation of cell lines from younger patients and
non-Caucasian ethnicities is another limitation of most breast
cancer models, affecting the translational relevance, particularly
for studies aimed at investigating racial disparities in TNBC out-
comes.'"® Healthcare access barriers lead to late-stage diagno-
ses in Hispanic and Asian women, contributing to fewer available
data and lower reported incidence. In developed countries,
earlier detection is supported by better screening access, while
socioeconomic disparities, poor cancer literacy, unhealthy diets,
and obesity contribute to higher breast cancer mortality in
certain ethnic groups. This disparity continues to bias clinical tri-
als and treatments toward Caucasian patients, further exacer-
bating healthcare inequalities and limiting the effectiveness of
treatments for other ethnic groups. Moreover, most available
breast cancer cell lines are derived from older patients, with rela-
tively few from those under 40. Breast cancer in a 23-year-old
can be substantially different from the same type of cancer in a
73-year-old. These differences impact how cancer cells behave
and respond to treatment, making age another crucial factor to
consider. This is becoming increasingly critical because many
studies highlight the rising incidence of breast cancer in younger
individuals, yet very few of them employ cell lines derived from
younger patients (e.g., MCF-7 is from a 69-year-old woman).
Integrating all features of every commercial cell line in a common
interactive platform would help identify gaps, misclassifications,
and inform a more reliable and relevant experimental design.

CONCLUSION

This work highlights the need for multilevel and Al-assisted
comparative models for commercially available cell lines, asso-
ciated 3D scaling, with the aim of improving clinical relevance
for in vitro breast cancer research. The same schema could be
translated to any other cancers, as well as to a set of other dis-
eases commonly studied in bioengineering. The proposed
framework suggests structuring cell line selection around abso-
lute (e.g., origin, receptor status, mutations) and relative (e.g.,
metastatic potential, drug resistance, immune interaction) char-
acteristics to enable a more rational and grounded use of exist-
ing resources. The approach, despite being statically presented,
carries an intrinsically dynamic nature given by the possibility of
integrating the proposed blocks into Al-assisted bioinformatics
resources. Interfacing the latter with emerging disease models
such as 3D organoids and co-culture systems would enable a
bidirectional information flow between offices, laboratories,
and clinics. In parallel, new ideas worth exploring in the biotech-
nology front for further integration include cancer virtual
modeling using digital avatars trained on multi-omics and func-
tional assay data, automated scoring systems for culture scal-
ability and model fitness, and real-time feedback platforms
that dynamically adjust cell line recommendations based on
evolving biological parameters. These paradigms point to a
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future where cell model selection turns into a critical process
aimed at clinical translation.
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