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3Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
4Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
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SUMMARY

Breast cancer cell lines are indispensable tools for unraveling disease mechanisms, enabling drug discovery, 

and developing personalized treatments, yet their heterogeneity and inconsistent classification pose signif

icant challenges in model selection and data reproducibility. This review aims at providing a comprehensive 

and user-friendly framework for broadly mapping the features of breast cancer types and commercially avail

able human breast cancer cell lines, defining absolute criteria, i.e., objective features such as origin (e.g., 

MDA-MB, MCF), histological subtype (ductal, lobular), hormone receptor status (ER/PR/HER2), and genetic 

mutations (BRCA1, TP53), and relative criteria, which contextualize functional behaviors such as metastatic 

potential, drug sensitivity, and genomic instability. It then examines how the proposed framework could be 

applied to cell line screening in advanced and emerging disease models. By supporting better informed 

choices, this work aims to improve experimental design and strengthen the connection between in vitro 

breast cancer studies and their clinical translation.

INTRODUCTION

Breast cancer cell lines are in vitro disease models widely used in 

biomedical research to gain insights into the pathophysiology of 

the disease, and to develop novel diagnostic and therapeutic 

strategies.1 Derived from human tumors, they provide a renew

able resource for investigating the cellular and molecular mech

anisms underlying disease progression, enabling the search for 

new therapeutic agents and diagnostic markers, by recapitu

lating local conditions and allowing controlled perturbations 

in vitro.2,3 In drug discovery and development, cell models are 

utilized to screen potential anti-cancer drugs for their efficacy 

and possible toxicity.4 In personalized medicine, patient-derived 

cells allow to evaluate individual responses to specific treat

ments, aiming to improve therapeutic outcomes.5 However, 

cell lines do not fully represent the heterogeneity of patient tu

mors, especially when employed in isolation, risking to oversim

plify the biological environments characteristic of complex living 

systems.6 Moreover, they may acquire genetic changes during 

long-term culture, leading to substantial alterations in both 

morphology and functionality.6 In this scenario, selecting the 

optimal cancer cell line based on its properties and experimental 

objectives becomes critical toward obtaining reproducible and 

translatable results. This review presents a classification frame

work that distinguishes commercially available human breast 

cancer cell lines based on absolute criteria, such as origin and 

hormone receptor status, and relative criteria, such as metasta

tic potential and drug response. It illustrates how diverse cellular 

features can be systematically organized to optimize cell lines’ 

use in translational research, alongside their integration with 

advanced disease models, from organoids to co-culture sys

tems and patient-derived xenografts.

Absolute criteria form the foundational layer of cell lines clas

sification, capturing static or semi-static features that define 

the cell line identity and heritage. The origin of the cell line, rep

resenting whether it is derived from a primary tumor or metasta

tic lesion, is a clear example of absolute criteria, and influences 

differentiation state and drug responsiveness. Histological sub

type, including ductal, lobular, or metaplastic, offers another 

level of biological context that can dictate architectural and inva

sive properties.7 Hormone receptor status (ER, PR, HER2), one 

of the most clinically relevant stratifications in breast oncology,8
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drives therapeutic decisions and aligns with subtypes such as 

triple-negative or HER2-positive disease. Moreover, molecular 

subtypes, such as luminal A/B or basal-like, capture transcrip

tomic signatures that reflect biological states,9 while common 

genetic mutations (e.g., BRCA1/2, TP53, PTEN) frame the cell 

within defined oncogenic trajectories.10 Absolute parameters 

ensure that the use of a cell line is grounded in clinically 

and genetically meaningful choices; yet, relying solely on abso

lute descriptors neglects the functional plasticity of breast 

cancer cells.

The relative criteria component addresses this limitation by 

encompassing dynamic phenotypes and regulatory states that 

vary across contexts and influence experimental outputs. These 

include functional attributes such as metastatic ability, prolifera

tion rate, and apoptotic resistance, which directly affect how a 

cell line behaves under experimental perturbation. For example, 

the propensity to metastasize to bone or brain, which is central to 

studying organotropism, is interlinked with signaling adaptations 

and cellular machinery, such as invadopodia formation and EMT 

programs.11,12 Similarly, apoptotic resistance, shaped by alter

ations in caspase expression or FLIP activity, dictates the cell 

line survival under cytotoxic challenge and is therefore crucial 

for modeling drug resistance.13 The relative aspects also incor

porate advanced molecular and regulatory dimensions such as 

gene expression signatures (e.g., PAM50, MammaPrint), radia

tion response profiles, and drug sensitivity patterns that mirror 

therapeutic resistance observed in clinical settings. This stratifi

cation aligns with the contemporary view that cancer is a highly 

adaptive and evolving system.14 Additionally, layers such as epi

genomic modifications, stem cell properties, and inflammatory 

status bridge the molecular and microenvironmental axes of tu

mor biology. For instance, ALDH1 or CD44+/CD24− status has 

been linked to tumor-initiating potential and chemoresistance,15

and immune signatures (e.g., PD-L1 or cytokine expression) can 

dictate immunotherapeutic outcomes.16 Genomic instability 

adds another dimension, often indicating susceptibility to spe

cific DNA-damaging agents or synthetic lethality strategies.17

This schematization emphasizes how integrating these criteria 

could drive the choice and development of more predictive and 

clinically relevant models. Multi-omics could then allow the 

simultaneous profiling of genomics, transcriptomics, and prote

omics to refine cell line characterization, enabling matching to 

patient-derived data. AI and data fusion techniques could fore

cast drug responses or disease trajectories based on integrative 

datasets. Finally, informed baseline choices could guide the 

design of in vitro models. 3D tissue constructs and co-culture 

systems better recapitulate in vivo architectures and cell-cell in

teractions, serving as an essential bridge toward preclinical and 

patient-derived xenograft (PDX) models, ensuring that selected 

cell lines can perform in biologically complex environments or 

be employed for their development.

ABSOLUTE CLASSIFICATION CRITERIA

We define as absolute criteria those features that can be classified 

statically and objectively. As opposed to relative criteria (e.g., met

astatic potential graded as low or high), absolute criteria are 

intrinsic attributes such as cellular origin (e.g., ‘‘MCF’’ origin, Mich

igan Cancer Foundation), histological subtype, hormone receptor 

status, genetic alterations, and molecular subtype. The following 

subsections address these characteristics.

Cell line origin

The origin of a cell line denotes its derivation from specific breast 

tumor tissues. This classification is rooted in the cell line prove

nance and drives its research application. For brevity, the origins 

of breast cancer cell line families, along with their associated 

experimental uses, are summarized in Table 1. In addition to tu

mor-derived breast cancer cell lines, engineered breast epithelial 

models have been developed to study specific processes such 

as transformation, epithelial-to-mesenchymal transition (EMT), 

and cancer stem cell behavior in a more controlled context. A 

widely used model is MCF10A, a non-tumorigenic human mam

mary epithelial cell line often used as the healthy reference in 

breast cancer studies.18 More advanced systems include 

HMLE and HMLER cells. HMLE cells are obtained by introducing 

genes that prevent cellular aging (hTERT) and inhibit tumor sup

pressor activity (SV40 large T antigen), allowing long-term 

growth in culture.19 When the HMLE model is further modified 

with an oncogene (H-RAS), it becomes tumorigenic (known as 

HMLER).19 A variant called HMLER-shEcad, where the gene 

for E-cadherin is silenced, is commonly used to model EMT 

and the acquisition of cancer stem cell–like traits.19 Despite lack

ing the genetic complexity of actual tumors, these models are 

valuable tools to dissect the functional impact of specific molec

ular changes and complement the use of patient-derived breast 

cancer cell lines in experimental research.

Histological subtype

Tumor morphology, its growth pattern, degree of differentiation, 

and resemblance to normal terminal duct-lobular units (TDLUs), 

determine if a lesion is in situ or invasive, with invasive tumors 

carrying a higher risk of metastasis.46 Histological classifications 

also guide molecular profiling and subsequent targeted therapy 

selection. This section details the histological diversity of breast 

cancer and emphasizes clinic-pathological characteristics and 

correlations. Adenocarcinomas, comprising over 95% of breast 

cancer, arise from the glandular epithelium of ducts or lobules 

(Figure 1). They are characterized by glandular differentiation 

and mucin production, the latter being intracellular, as in sig

net-ring cells, or extracellular, as seen in mucinous carci

nomas.47 Such tumors are subclassified by their site of origin 

and invasiveness. Ductal carcinoma is the most prevalent breast 

cancer type, originating in the mammary milk ducts.48 Ductal and 

lobular carcinoma in situ represent the two main forms of pre- 

invasive breast adenocarcinomas. Ductal carcinoma in situ 

(DCIS) originates in the mammary ducts and remains confined 

to the ductal system, exhibiting a range of architectural patterns 

such as solid, cribriform, papillary, and micropapillary.7 Lobular 

carcinoma in situ (LCIS), by contrast, arises in the terminal ductal 

lobular units and is characterized by the proliferation of 

neoplastic cells that distend and fill the acini. LCIS is considered 

a non-obligate precursor of invasive lobular carcinoma and is 

classified into three main histological subtypes: classic, pleo

morphic, and florid. These variants differ in cytologic features, 

architectural patterns, and potential biological behavior.
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Table 1. Cell line family, acronym origin, representative cell lines, and clinically relevant research applications of cell line families

Cell line family Acronym origin

Representative cell lines Key research applications of the cell 

line family ReferenceName Source

MDA-MB M.D. Anderson Cancer Center - 

Mammary/Breast

MDA-MB-231 Metastatic sites, pleural effusions Metastasis; chemoresistance; 

tumor-microenvironment 

interactions

Cailleau et al.20

MDA-MB-468 Brain metastasis

MCF Michigan Cancer Foundation MCF-7 Pleural effusions HR+ Breast cancer progression; 

weakly metastatic control

Soule et al.21

MCF-10A Fibrocystic breast tissue

HCC Human Cancer Culture HCC1937 Primary breast tumor carrying 

BRCA-1 mutation

DNA repair defects; targeted 

therapy resistance

Tomlinson et al.22

HCC1954 HER2-positive metastatic site

BT Breast Tumor BT-474 solid invasive ductal carcinoma, 

HER2 amplification

HER2-targeted therapies (drug 

testing, e.g., lapatinib)

Lasfargues et al.23

BT-20 Primary TNBC, lacks functional 

TP53

CAMA Caucasian Malignant 

Adenocarcinoma

CAMA-1 Liver metastasis Endocrine resistance mechanisms Fogh et al.24

SK-BR Sloan Kettering Institute – Breast SK-BR-3 Pleural effusion, TP53 mutation HER2-targeted therapies Trempe25

ZR Zurich/Michigan cancer foundation ZR-75-1 Ascitic effusion, metastatic ductal 

carcinoma

Hormone receptor plasticity; 

metastatic adaptation

Engel et al.26

ZR-75-30 Subline of the above, with reduced 

hormone dependence

SUM Dr. Stephen Ethier, University of 

Michigan

SUM-149PT Primary inflammatory TNBC, 

BRCA-1 mutation

IBC-specific pathways Forozan et al.27

SUM-159PT Metastatic site of inflammatory 

TNBC

Hs Human Somatic Hs578T Breast carcinosarcoma Sarcomatoid differentiation; tumor- 

stroma crosstalk

Hackett et al.28

DU Duke University DU4475 Rare metastatic TNBC model niche-specific metastasis 

mechanisms

van de Wetering et al.29

CAL Cancer Associated Line CAL-51 Ductal carcinoma, TP53-mutated tumor heterogeneity Neve et al.30

CAL-120 Metastatic site, basal-like

MFM Max Faber Memorial laboratory MFM-223 Pleural effusion with metaplastic 

TNBC

tumor-stroma interactions; drug 

sensitivity in metaplastic 

carcinomas

Gazdar et al.31

PMC Primary Malignant Culture PMC-42 Invasive ductal carcinoma, forms 

organoids in vitro

Morphogenesis; polarization; 

extracellular matrix role in tumor 

progression

Whitehead et al.32

UACC University of Arizona Cancer Center UACC-812 metastatic site (likely lymph node) Drug resistance; gene signatures 

and drug response

Barretina et al.33

UACC-893 HER2-positive ductal carcinoma

EMG Epidermal Malignant Growth EM-G3 scirrhous carcinoma, desmoplastic 

subtype

Desmoplasia; tumor 

microenvironment crosstalk

Mladkova et al.34

(Continued on next page)
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Table 1. Continued

Cell line family Acronym origin 

Representative cell lines Key research applications of the cell 

line family ReferenceName Source

HDQ Unknown HDQ-P1 Primary ductal carcinoma with 

BRCA-2 mutations

Synthetic lethality strategies; 

resistance mechanisms

Holstege et al.35

EFM European Foundation for Medicine EFM-19 Malignant pleural effusion epigenomic modifications; 

alternative survival pathways

Glont et al.36

IBEP Instituto de Biomedicina, Estudio de 

Proliferación

IBEP-1 Invasive ductal carcinoma, 

luminal-like

intratumoral heterogeneity; clonal 

evolution

Dai et al.37

IBEP-2 Invasive ductal carcinoma, 

basal-like

KPL Kurebayashi Pleural Line KPL-1 malignant ascites of a HER2- 

positive patient

antibody-drug conjugate 

mechanisms

Kurebayashi et al.38

LY Dr. Anne Lykkesfeldt LY-2 tamoxifen-resistant subline 

of MCF-7

HR and growth factor pathways; role 

of autophagy in acquired resistance

Brunner et al.39

T Tissue culture T-47D Pleural effusion progesterone receptor (PR) 

signaling; CDK4/6 inhibitor 

responses

Keydar et al.40

BSMZ Bützow, Sager, Müller, Zurich BSMZ Mucinous carcinoma glycoprotein-mediated immune 

evasion and matrix adhesion

Holliday and Speirs18, Watanabe 

et al.41

AU Auburn University AU565 Metastatic site antibody-drug conjugates Bacus et al.42

21 Age of patient (21 years old) 21-MT-1 Metastatic breast tumor PARP inhibitor responses; 

metastasis-initiating cells

Ince et al.43

21-PT Primary breast tumor

HMT Hanyang Medical Team HMT-3902S1 Primary breast tumor TGF-β-driven EMT and metastasis in 

xenograft models

Petersen et al.44

MA Metastatic Adenocarcinoma MA-11 Bone metastasis bisphosphonate efficacy; tumor- 

osteoclast crosstalk in metastases

Micci et al.45
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Invasive lobular carcinomas (ILCs) account for 10–15% of 

breast cancer cases, arise from the terminal duct-lobular units, 

and are marked by the loss of E-cadherin, typically due to 

CDH1 mutations.49 They are commonly harder to diagnose 

from mammograms due to not forming calcifications. ILC is usu

ally ER-positive and HER2-negative, with distinct genomic alter

ations.50 The majority of ILCs consist of low-nuclear-grade ma

lignant cells50 (i.e., classic ILCs). In a minority of ILCs, the 

tumor consists of high-nuclear-grade malignant cells (i.e., pleo

morphic ILC). ILC can exhibit a range of histological growth pat

terns, including solid, alveolar, trabecular, and tubulolobular var

iants.49 These patterns reflect the morphological diversity of ILC 

and occasionally pose diagnostic challenges. Regardless of 

pattern, these tumors typically retain the hallmark feature of 

E-cadherin loss, confirming their lobular origin.29,50 Invasive 

Ductal Carcinoma (IDC), which constitutes 70–80% of invasive 

breast cancer cases, invades the stroma and causes desmo

plastic reactions.48 IDC is molecularly heterogeneous, with 

luminal subtypes expressing hormone receptors, HER2-en

riched tumors exhibiting ERBB2 amplification, and basal-like tu

mors being triple-negative.7,37 The majority IDCs are classified 

as no special type (IDC-NST), yet several distinct histological 

and clinical variants exist.48

Metaplastic carcinoma (MpC) is an aggressive form of invasive 

breast cancer, often classified as triple-negative.7 It is highly het

erogeneous, typified by epithelial-to-mesenchymal transition, 

which produces variable differentiation, including squamous, 

spindle, or chondroid elements.51 This subtype of breast cancer 

is noted for its resistance to chemotherapy.52 Tubular carcinoma 

(TC) is a rare form of breast cancer defined by the proliferation of 

angulated, oval, or elongated tubules reminiscent of normal 

breast ducts. Its invasive nature, coupled with the absence of 

myoepithelial cells, distinguishes it from benign lesions.53 Micro

papillary carcinoma (MiC) is another aggressive subtype seen in 

1–2% of breast cancer cases, characterized by clusters of tumor 

cells arranged in an inside-out pattern without fibrovascular 

cores.54 Despite often being ER-positive, this cancer type dis

plays high rates of lymph node involvement and commonly ex

hibits HER2 amplification or PIK3CA mutations.54 Adenoid cystic 

carcinoma (ACC) is an extremely rare subtype (<0.1% inci

dence), featuring biphasic cell populations, luminal and basaloid, 

that form tubular, cribriform, or solid patterns surrounded by 

mucinous material.7,55 As opposed to its salivary gland counter

part, breast ACC rarely metastasizes, with the surgical excision 

often proving curative.56

Hormone-receptor status

Receptors are proteins typically found in the cell membrane that 

can be bound by matching extracellular molecules to elicit intra

cellular signaling or to enable inter-cellular communication.57,58

Figure 1. Histological subtypes of breast cancer 

Breast cancer cell lines are grouped by the histological subtype of the deriving tumors and their sub-classifications, alongside examples of widely used cell lines 

for each cancer type. For example, SUM149PT and SUM190PT were established from inflammatory breast cancer, while MDA-MB-134-VI and SUM44PE 

originated from classic ILC. However, not all subtypes are well-represented by directly derived models. In such cases, some widely employed cell lines (e.g., 

MCF-7 and MDA-MB-231), though not derived from rare subtypes like papillary or metaplastic carcinoma, may still serve as functional models due to their 

phenotypic behavior.
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Some breast cancer cells possess certain receptors to hor

mones (HRs) that contribute to cellular behaviors, including 

growth, proliferation, and motility.59,60 HR status has been 

widely used to classify breast cancer cell lines (Figure 2). HRs 

include the estrogen receptor (ER) and the progesterone recep

tor (PR). Another important receptor is the human epidermal 

growth factor receptor 2 (HER2). HR/HER2 expression, among 

other variables, is one of the most important factors in estimating 

the prognosis and therapeutic responses of breast cancer.61 Es

trogen receptor-positive (ER+) breast cancer is the most 

frequently diagnosed subtype. However, only about 30% of 

the commercially available breast cancer cell lines are ER+, 

and these models frequently derive from advanced disease 

states.62 From those, very few can be grown in mice, such as 

MCF7, T47D, and ZR-75-1, requiring high levels of exogenous 

estrogen (E2).8 This does not reflect the low levels of estrogen 

found in postmenopausal women, where most cases of ER+ 

breast cancer develop, making these models limited in scope. 

The majority of ER+ breast cancer is also PR-positive (PR+).57

Elevated PR levels are predominantly observed in luminal A tu

mors, which yield better outcomes compared to luminal B tu

mors, where PR expression is lower.63 Approximately 15% of 

breast cancers are human epidermal growth factor receptor 2 

positive (HER2+), a subtype that typically affects younger pa

tients and is diagnosed at advanced stages.64 HER2 overex

pression, an independent predictor of poor survival, often occurs 

irrespective of ER and PR expression.16 Triple-positive breast 

cancer (TPBC) is a luminal B subtype co-expressing ER, PR, 

and HER2, accounting for roughly 10–15% of cases.65 It often 

demonstrates suboptimal responses to standard chemotherapy 

and hormone therapy due to intricate crosstalk between the ER 

and HER2 pathways.66 Triple-Negative Breast Cancer (TNBC) 

lacks the expression of ER, PR, and HER2, and accounts for 

approximately 15% of cases.67 TNBC is predominantly basal- 

like, is more common in younger women, and exhibits an 

increased risk of early recurrence and distant metastasis. It is 

strongly associated with BRCA1 mutations.68 The ER+/HER2– 

subtype represents the most common breast cancer phenotype 

(approximately 75% of cases) and is typically classified 

as luminal A-like,69 while the ER+/PR+/HER2+ pattern is 

classified as luminal B-like.14 Luminal B cancers with an ER+/ 

PR–/HER2+ profile generally portend a worse prognosis than 

their ER+/PR+ counterparts, while HER2-positive cancers that 

are ER–/PR– are managed predominantly with HER2-targeted.70

Genetic mutations

Breast cancer is primarily driven by genetic factors, with age 

and family history being the most significant risk factors. 

Figure 2. Classification of selected commercially available human breast cancer cell lines 

The schematic organizes cell lines into five intrinsic subtypes (Luminal A, Luminal B, HER2-enriched, Basal-like, and Mesenchymal) displayed in columns. Color- 

coded symbols represent key attributes used in absolute and relative classifications previously discussed hereby to map their molecular and functional char

acteristics.
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Approximately 5–10% of breast cancer cases are associated 

with inherited gene mutations.10,71 Germline alterations in 

BRCA1 and BRCA2, among the most widely known mutations, 

compromise DNA repair and confer a markedly increased life

time risk, predisposing tumors to either triple-negative or pre

dominantly ER-positive phenotypes, respectively.72 Mutations 

in TP53, present in nearly 30% of cases, disrupt critical cell cycle 

checkpoints and promote aggressive tumor behavior with 

poorer outcomes.9 PTEN mutations are strongly correlated 

with HER2+ breast cancers,73 and inversely associated with 

luminal type breast cancers74 affecting cell growth, proliferation, 

and inhibiting cancer stem cell activity.75 Other important muta

tions include defects in CHEK2 and ATM, weakening cell cycle 

control and apoptotic responses.76 Alterations in PALB2, 

CDH1, STK11, and NF1 contribute to genomic instability, drive 

invasive characteristics, and influence therapeutic resistance.77

Genetic aberrations define distinct molecular subtypes in breast 

cancer and are essential for guiding targeted treatments in pre

cision oncology. Genetic drift represents a different problem, 

further addressed in this review.

Molecular subtype

Gene expression profiling and hierarchical clustering have delin

eated five principal molecular subtypes, each with distinct bio

logical behavior, risk factors, and therapeutic responsiveness, 

namely luminal A, luminal B, HER2-enriched, basal-like, and 

claudin-low.78 Luminal A is the most common subtype of breast 

cancer, accounting for around 40% of all breast cancer cases.78

It is characterized by an expression of luminal (low molecular 

weight) cytokeratins, ER, and PR, with a HER2 negative profile 

accounting for the low expression of cell proliferation marker 

Ki-67 (less than 20%).79 Luminal B subtype represents 20– 

30% of cases, expressing ER (with often reduced PR) and dis

playing high proliferation indices (Ki67 above 20%).79 These 

are generally of higher histologic grade, more aggressive, and 

have a higher recurrence rate compared to Luminal A subtypes, 

necessitating combined endocrine and chemotherapeutic ap

proaches.80 HER2-enriched comprise approximately 15% of 

breast cancer cases.81 These are HER2-positive tumors, while 

often exhibiting low or absent ER and PR levels.82 This category 

is subdivided into luminal HER2 (E+, PR+, HER2+ with interme

diate Ki67, 15–30%) and HER2-enriched (E− , PR–, HER2+ with 

high Ki67, >30%), both marked by high-grade invasive ductal 

carcinomas with nodal positivity and aggressive clinical 

behavior.78 Basal-like is often used as a synonym of triple-nega

tive breast cancer (TNBC), lacking ER, PR, and HER2 expres

sion, while expressing basal cytokeratins.83 Basal-like breast 

cancers are typically high grade, occurring in patients with 

BRCA1 mutations, and have limited treatment options outside 

chemotherapy. Claudin-low tumors are characterized by the 

low expression of cell adhesion molecules and a stem cell–like 

phenotype. This rare and aggressive subtype is often considered 

a subclass of basal-like but has gained interest as an in vitro 

model to reproduce highly aggressive cancers.52

Patient age, gender, and ethnicity

Additional absolute criteria include patient age, gender, and 

ethnicity. Age critically influences breast cancer risk, tumor 

morphology, and treatment response.78 Tumors in patients un

der 40 typically exhibit reduced levels of estrogen receptor, pro

gesterone receptor, and luminal cytokeratin, alongside elevated 

Ki67, HER2, and p53 expression, indicative of aggressive 

behavior.84 In contrast, tumors in individuals over 70 generally 

display indolent features. Yet, most commercially available cell 

lines were derived from older patients, potentially limiting exper

imental relevance.84 Ethnicity further modulates breast cancer 

biology, as disparities in healthcare result in later diagnoses in 

Hispanic and Asian populations, while non-Hispanic black pa

tients exhibit a tumor microenvironment enriched with pro- 

tumorigenic immune cells, enhanced microvasculature, and 

elevated mitotic kinases and transcription factors that promote 

aneuploidy.85 More in general, marketed cell lines are predomi

nantly caucasian.80 With regards to gender, although breast can

cer is most commonly viewed as a female disease, it can also 

occur in men, where it accounts for less than 1% of all cancers 

in men and breast cancer cases overall.86 However, male breast 

cancer incidence has risen over the past 30 years, with inherited 

pathogenic variants being the most significant risk factors.85

Transgender individuals may also face breast cancer risks, 

particularly if receiving hormone treatment. Studies have shown 

an increased risk of breast cancer in transexual women 

compared with cisgender men, and a lower risk in trans men 

compared with cisgender women.87

RELATIVE CLASSIFICATION CRITERIA

This section details key classification parameters specific to 

breast cancer to emphasize their mechanistic underpinnings 

and clinical utility. Such features are defined as relative due to 

providing a qualitative measure of cancer cell behavior. Impor

tant relative criteria include metastatic ability, proliferation rate, 

often measured by Ki-67 expression or mitotic indices,88

response to radiation reflecting the tumor sensitivity to DNA 

damage-induced cell death,89 and drug resistance encompass

ing mechanisms by which tumors evade therapeutic agents 

(such as ESR1 mutations in hormone-resistant HR+ disease).90

Inflammatory status reflects, among all, immune microenviron

ment composition and stem cell-like properties.91 A summary 

of key relative criteria, their working mechanisms, and implica

tions is summarized in Table 2, alongside absolute criteria to pro

vide a complete overview.

Metastatic ability

Metastatic ability refers to the capacity of tumor cells to colonize 

distant organs such as bone, brain, and liver, and it is driven by 

EMT.11 In metastatic behavior, transcription factors downregu

late E-cadherin, enhancing motility and favoring migration to 

colonize new sites. Bone metastasis, one of the hardest to 

treat, involves osteolytic factors that activate osteoclasts via 

RANKL signaling.11 Circulating tumor cells expressing HER2 or 

EpCAM have been associated with increased metastatic 

risk.102 Metastatic behavior also differs based on subtype-spe

cific organotropism: luminal tumors often metastasize to bone, 

HER2+ to liver and lungs, and basal-like tumors to brain and 

lung.12 These preferences reflect intrinsic properties of the tumor 

cells, including receptor expression, secreted factors, and ability 
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Table 2. Absolute and relative classification criteria, key features, and clinical relevance

–

Breast cancer 

subcategory Key features and molecular details Clinical relevance Reference

Absolute 

criteria

Histological 

subtype

Adenocarcinoma >95% of cases; arises from 

glandular epithelium; glandular 

differentiation and mucin production

Subtyped as ductal vs. lobular; informs targeted therapy Fogh et al.24, Rakha and Ellis47

Ductal carcinoma Divided into DCIS and IDC; IDC is 

molecularly heterogeneous (luminal, 

HER2, basal-like)

Provides prognostic stratification based on grade and subtype Makki7, Allred48

Lobular carcinoma Arises from TDLUs; loss of E- 

cadherin (CDH1 mutations); usually 

ER+ and HER2–; associated with 

FOXA1, TBX3 mutations

Complicates detection; influences therapeutic strategies Christgen et al.,49, 

Cristofanilli et al.50

Inflammatory 

breast cancer

Rare (1–5%); typically, triple- 

negative or HER2+; overexpresses 

EGFR, ANXA1, and COX-2; 

activation of WNT/β-catenin and NF- 

κB pathways

Highly aggressive with rapid progression Robertson et al.92

Medullary carcinoma Syncytial growth (>75%), absence 

of glandular/tubular structures; 

frequent mitoses

Rare IDC variant with distinct histological features Makki7

Mucinous carcinoma Extracellular mucin; clusters; 

typically, ER+, HER2–; low TP53 

mutation; AKT1 E17K mutations

Generally lower grade and favorable prognosis Marrazzo et al.93

Papillary carcinoma Papillary with fibrovascular cores; 

subtypes include intraductal, 

encapsulated, solid, and invasive 

forms

Crucial to differentiate benign from malignant lesions Pal et al.94

Metaplastic 

carcinoma

Aggressive TNBC subtype; 

heterogeneous with evidence of 

EMT transition; chemoresistant

High resistance profiles; therapeutic challenges Yan et al.51, Hennessy et al.52

Tubular carcinoma Well-differentiated; small cell 

tubules arranged radially; invasive

Rare, low-grade, and excellent prognosis Peters et al.53

Micropapillary 

carcinoma

Often ER+ with high lymph node 

metastasis; MUC1 overexpression; 

may have HER2 amplification or 

PIK3CA mutations

Poorer prognosis necessitating adjuvant chemotherapy Cheng et al.95

Adenoid cystic 

carcinoma

Rare (<0.1%); TN yet indolent; MYB- 

NFIB fusions triggering NOTCH 

pathway activation

Surgical excision is often curative Persson et al.56

Hormone 

Receptor 

Status

ER+ Most prevalent; includes MCF7, 

T47D, ZR-75-1; require high 

exogenous estrogen; responsive to 

endocrine therapy

Cell lines may not mimic low estrogen 

conditions of postmenopausal patients

Putti et al.57

(Continued on next page)
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Table 2. Continued

– 

Breast cancer 

subcategory Key features and molecular details Clinical relevance Reference

PR+ Expressed in response to ER 

activation; higher levels common in 

luminal A; prognostic marker

PR positivity generally correlates with better outcomes Clark et al.58

HER2+ 15% of cases; overexpression of 

HER2; adverse prognostic indicator 

independent of ER/PR

Managed with HER2-targeted agents (e.g., trastuzumab) Jerusalem et al.64

Triple positive 

(TPBC)

Co-expression of ER, PR, and 

HER2; luminal B subtype (∼10– 

15%); pathway crosstalk

Requires combinatorial therapeutic approaches Vici et al.66

Triple negative 

(TNBC)

Lacks ER, PR, and HER2; 

predominantly basal-like; distant 

metastasis; linked with BRCA1 

mutations

Limited targeted therapies Dai et al.59

ER+/HER2– Most common phenotype (∼75% of 

cases); classified as luminal A

Endocrine treatments Stravodimou and 

Voutsadakis69

ER+/PR–/HER2+ Luminal B variant with altered 

receptor signaling; poorer prognosis 

compared to ER+/PR+HER2+

Potential endocrine therapy resistance Ding et al.70

ER–/PR–/HER2+ HER2-overexpressing cancers 

lacking hormone receptors

Treated with HER2-targeted drugs Mukai81

Genetic 

Mutations

BRCA1 Germline mutations (16% of 

hereditary BC); crucial for DNA 

repair and cell cycle regulation; 

TNBC

Key target for PARP inhibitor strategies van der Groep et al.96

BRCA2 Functions in DNA repair and 

genomic stability; 70–80% of 

BRCA2-mutated cancers are ER+

Influences endocrine therapy in mutation carriers Andreassen et al.72

TP53 Mutated in ∼30% of BC; mediates 

cell-cycle arrest, apoptosis, or 

senescence upon DNA damage

Determines tumor aggressiveness Cancer Genome 

Atlas Network9

PTEN Regulates the PI3K/Akt pathway; 

linked with HER2+ cancers, 

inversely with luminal types

Its loss may direct targeted treatment strategies Lebok et al.74

PALB2 Works in tandem with BRCA1/2 in 

DNA repair; often associated with 

aggressive TNBC phenotypes

Emerging target in personalized therapeutic approaches Toss et al.97

CHEK2 Checkpoint kinase mutation; 

majority are luminal A with some 

lobular features

Reflects cell cycle checkpoint dysfunction Toss et al.98

ATM Involved in cell cycle regulation and 

apoptosis; loss-of-heterozygosity in 

May influence chemotherapeutic decisions. Stucci et al.99

(Continued on next page)
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Table 2. Continued

– 

Breast cancer 

subcategory Key features and molecular details Clinical relevance Reference

∼40% of sporadic BC; mainly in 

luminal B/HER2-

CDH1 Encodes E-cadherin; loss leads to 

cell dissociation; mutations 

predispose to invasive lobular 

carcinoma

Essential for hereditary lobular BC surveillance Corso et al.100

STK11 Associated with Peutz-Jeghers 

syndrome; predisposes to other 

tumor types (ovarian, lung, GI)

Important for multi-tumor screening van Lier et al.101

NF1 Mutations in NF1 occur in ∼27% of 

BC; endocrine resistance and 

metastasis, especially in ER+ cases

May predict targeted endocrine resistance management Dischinger et al.82

Molecular 

Subtype

Luminal A ∼40% of cases; ER/PR positive; low 

Ki67 (<20%); typically, IDC; high 

endocrine therapy response

Represents the best prognostic subgroup Eliyatkin et al.79

Luminal B 20–30% of cases; ER positive (with 

lower PR expression); high Ki67 

(>20%); variable HER2

More aggressive; requires combined therapy approaches Marrazzo et al.93

HER2-enriched ∼15% of cases; overexpresses 

HER2; subdivided into luminal HER2 

and HER2-enriched

Aggressive; outcomes improve with HER2-targeted therapies Fragomeni et al.78

Basal-like (TNBC) 15–20% of cases; lacks ER, PR, and 

HER2; expresses basal 

cytokeratins; linked with BRCA1

Limited treatment options Fragomeni et al.78

Mesenchymal 

(claudin-low)

Rare; low expression of cell 

adhesion molecules and stem-cell- 

like phenotype

High tumor plasticity and potential resistance Dischinger et al.82

Relative 

Criteria

Metastatic 

ability

EMT transition; downregulation of 

adhesion molecules; organ tropism. 

SNAIL, TWIST, ZEB1; 

downregulation of E-cadherin; 

PTHrP, IL-11; RANKL; HER2, 

EpCAM; overexpression of COX2, 

HB-EGF, ST6GALNAC5 in brain- 

tropic cancers

Enhanced motility; colonizes distant sites Nguyen et al.11, 

Bos et al.102

Tumor, migration and 

invasiveness

Cell detachment; ECM degradation; 

cytoskeletal reorganization; 

invadopodia formation; integrin- 

mediated motility. MMP-9, MMP- 

14; RhoA/ROCK; TGF-β–driven 

integrin αvβ6; proliferation markers 

like Ki-67; Cyclin D1–CDK4/6 

Invasive capacity; differential proliferation 

in luminal A vs. B subtypes; 

targeted therapeutic strategies

Goldhirsch et al.88, 

Sossey-Alaoui et al.103

(Continued on next page)
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Table 2. Continued

– 

Breast cancer 

subcategory Key features and molecular details Clinical relevance Reference

complexes; MYC amplification; 

PI3K/AKT hyperactivity

Apoptotic resistance Upregulation of anti-apoptotic 

proteins; Overexpression of Bcl-2 

(luminal tumors), TP53 mutations 

(basal-like), FLIP upregulation in 

TNBC; BRCA1/2; HIF-1α and 

carbonic anhydrase IX in hypoxic 

conditions

Chemo/radio resistance; combined treatments such as 

PARP inhibition with radiotherapy

–

Gene expression and 

drug resistance

Resistance through specific 

mutations. PAM50, Oncotype DX, 

MammaPrint; ESR1 mutations 

(Y537S, D538G); PTEN loss; 

PIK3CA mutations; βIII-tubulin 

overexpression; sensitivity to HER2- 

targeted agents, platinum salts, and 

AR inhibitors

Recurrence risk assessment; endocrine and 

targeted therapy resistance

Kleer104

Epigenomic modifications BRCA1 hypermethylation reversible 

by HDAC inhibitors; EZH2

Influences chemoresistance, recurrence, 

and therapeutic response

Neve et al.30

Tumor -immune system 

interactions

Tumour-infiltrating lymphocytes; IL- 

6/STAT3-mediated PD-L1 

upregulation; ALDH1, CD44/CD24; 

Notch, Hedgehog, WNT/β-catenin; 

HR deficiency scores; APOBEC3B

Immunotherapeutic resistance and 

increased invasive capacity

Walker16, 

Mackenzie et al.105

iS
c
ie

n
c
e
 2

8
, 1

1
3
5
7
9
, O

c
to

b
e
r 1

7
, 2

0
2
5
 

1
1
 

iS
cience

R
e
v
ie

w
ll

O
P

E
N

 A
C

C
E

S
S



to modify the pre-metastatic niche. Some cell lines, such as 

MDA-MB-231, consistently metastasize to lung and bone in mu

rine models, while others such as MCF-7 require estrogen sup

plementation and genetic manipulation to become metasta

tic.106 Additional drivers include specific signaling cascades, 

for example, CXCR4-CXCL12, involved in bone homing, and 

MMPs, which degrade the extracellular matrix to facilitate inva

sion.11 Exosomes from metastatic cells can precondition distant 

niches to favor colonization.12 Moreover, stem-like subpopula

tions with CD44high/CD24low profiles exhibit heightened meta

static ability and are linked to relapse.19,52

Migration and invasiveness

Migration and invasiveness describe the ability of cancer cells to 

detach from the primary tumor site, degrade the extracellular 

matrix, and infiltrate surrounding tissues.12 Invasive breast can

cer, particularly TNBC and HER2-positive subtypes, exhibits 

heightened migration via RhoA/ROCK-mediated cytoskeletal 

reorganization and MMP-9/MMP-14-dependent extracellular 

matrix degradation.103 In vitro models, for instance, MDA-MB- 

231 cell invasion assays, reveal that TGF-β signaling enhances 

motility by upregulating integrin αvβ6.83 These behaviors are 

often initiated during partial EMT, which increases cellular plas

ticity while maintaining some epithelial traits, allowing dynamic 

adaptation to microenvironmental cues. Migratory activity can 

be random or directional (chemotaxis), with the directional 

migration often guided by gradients of stromal-derived fac

tors.107 Tumor-associated fibroblasts and macrophages also 

promote invasion by remodeling the ECM and secreting pro- 

migratory cytokines.108 Additionally, invadopodia (actin-rich 

protrusions) formation facilitates local matrix degradation and 

is prominent in highly invasive cell lines.69

Apoptotic resistance

Apoptotic resistance denotes the tumor evasion of programmed 

cell death, enabling survival despite genomic damage or ther

apy.13,90,109 Apoptotic evasion in breast cancer is linked to 

Bcl-2 overexpression in luminal subtypes and TP53 mutations 

in basal-like tumors.35,83 TNBCs frequently exhibit FLIP upregu

lation, which inhibits caspase-8 activation.107 PARP inhibitors 

(e.g., olaparib) exploit synthetic lethality in BRCA1/2-mutated tu

mors by impairing DNA repair and forcing apoptosis.110 Some 

breast cancer cells bypass apoptosis entirely by entering a se

nescent-like state or activating autophagy as an adaptive sur

vival strategy under therapeutic stress.15 Apoptotic resistance 

is commonly assessed in vitro using Annexin V/PI staining, 

TUNEL assays, and caspase-3/7 activity measurements.5,13

Cell lines such as MDA-MB-231 and BT-549 are often used to 

model high apoptotic resistance, particularly in response to 

chemotherapy or radiation.15

Gene expression profile

Gene expression profiles represent the transcriptomic signa

tures that classify breast cancer into intrinsic subtypes. Intrinsic 

subtypes luminal A, luminal B, HER2-enriched, and basal-like, 

originated from breast cancer transcriptomics.111 The PAM50 

assay further refines classification, identifying a claudin- 

low subgroup with stem-like features.83 Oncotype DX and 

MammaPrint quantify recurrence risk using proliferation (e.g., 

Ki-67) and invasion-related genes (e.g., MMP11).112 As a rela

tive criterion, gene expression profiling enables comparison of 

cell lines beyond subtype labels, revealing functional differ

ences in pathway activity, hormone signaling, immune evasion, 

or stemness. For instance, two basal-like cell lines may diverge 

significantly in EMT gene signatures or interferon response 

genes, making one of them more suitable for metastasis or 

immunotherapy studies. Expression levels of DNA repair genes 

(e.g., BRCA1, RAD51), growth factors (e.g., TGFB1), or 

apoptotic regulators (e.g., BCL2, CASP9) offer insights into 

therapeutic vulnerabilities.113 Additionally, cell lines cultured 

in 2D versus 3D conditions can exhibit shifts in gene expres

sion,114 highlighting the need to interpret transcriptomic data 

in context and to develop in vivo-like models to improve 

accuracy.

Epigenomic modifications

Epigenomic modifications, for example, DNA hypermethyla

tion of BRCA1 occurring in a significant fraction of sporadic 

tumors, are reversible with HDAC inhibitors that restore ERα 
expression, while EZH2 overexpression in TNBC correlates 

with stemness and metastasis.115 In a model selection 

context, epigenomic features help distinguish cell lines by 

their regulatory landscape rather than transcriptional output 

alone. DNA methylation at tumor suppressor loci or enhancer 

regions can create long-term silencing that persists across 

treatments, as well as histone modifications that can influence 

chromatin accessibility and lineage identity.109 Functional as

says using 3D organoids and patient-derived xenografts pro

vide dynamic insights into treatment response and resis

tance.109 Cell lines differ in the stability of these states, 

some retaining locked epigenomes, while others are more 

prone to reprogramming, particularly in 3D culture or co-cul

ture with stromal cells.114

Tumor-immune interactions

Tumor-immune interactions are one of the most important fea

tures of cancer cells when fighting against therapies and initi

ating invasion. Cancer cells can evade immune cells and recruit 

them as tumor-associated macrophages, regulatory T cells or 

myeloid-derived suppressor cells, further exacerbating the ma

lignancy of the tumor.108 Even typically anti-tumor cells (e.g., 

T cells or NK cells) can become exhausted or suppressed in 

the TME due to interaction with specific factors, hypoxia, or 

the absence of stimulatory signals.108 Some breast cancer cell 

lines, for example, MDA-MB-231, HCC38, HCC70, and BT- 

549, can recapitulate this interaction, namely, cells with high 

immunogenicity.116 These are often highly modulated when 

co-cultured with macrophages or T cells and express high levels 

of cytokines, chemokines, and high PD-L1 under IFN-γ stimula

tion.108 Low immunogenic cell lines, such as MCF-7, T47D, and 

ZR-75-1, lack the expression of PD-L1 and have a low response 

to IFN- γ or immune co-cultures, making them less suitable for 

immune checkpoint or immunotherapies studies.16 However, 

even high-interaction lines are still imperfect models, as stan

dard cell lines lack the full complexity observed in immune micro

environments in vivo.105
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TOWARD INFORMED CELL MODEL SELECTION

To consolidate the criteria discussed throughout this review and 

translate them into actionable steps, this section proposes a 

structured workflow for breast cancer cell line selection 

(Figure 3). Starting from a defined research question and primary 

goal, whether mechanistic exploration, drug development, 

biomarker discovery, or modeling tumor–microenvironment in

teractions, the approach can guide users through a series of fil

ters based on absolute and relative criteria. The layers include 

fundamental features followed by dynamic functional attributes 

relevant to experimental aims. Across levels, the candidate 

pool progressively narrows down to lines that are, however 

possible, biologically appropriate, experimentally feasible in 

the given context, and clinically relevant to their conceived appli

cation. The workflow further integrates downstream consider

ations, for example, validation needs (e.g., passage number, ge

netic drift), with suggestions for additional experimental steps 

before proceeding, as well as representation gaps (e.g., age 

range of applicability). Crucially, it also introduces the concept 

of scaling potential, i.e., the likelihood that a given cell line will 

perform well in advanced disease models such as organoids, 

co-culture systems, organ-on-chip platforms or patient-derived 

xenografts. Pre-selecting based on functional and phenotypic 

compatibility to more advanced platforms can reduce resource 

misuse and improve translational fidelity, possibly aiding in 

avoiding the use of unscalable in vitro models in studies originally 

conceived for in vivo applications. This structure might lay the 

foundation for building adaptive and AI-supported tools that 

link cell line metadata with model performance to optimize pre

clinical design.

The practical value of this approach is presented in two 

research scenarios requiring thoughtful cell line selection 

(Figure 4). In the first case, investigating bone-specific metas

tasis mechanisms in ER+ breast cancer through a standard liter

ature search or an AI chat assistant might yield conflicting re

sults, with studies using MCF-7 cells despite their limited 

metastatic capacity or MDA-MB-231 cells despite being ER- 

negative.117 By applying the presented model, one would first fil

ter by absolute criteria (ER+ status) and then by relative criteria 

(bone-metastatic potential), leading to the selection of MCF-7- 

derived bone-seeking variants or ZR-75-1 cells, which express 

PTHrP and other bone-metastasis mediators while maintaining 

ER positivity.90

INTEGRATION WITH ADVANCED AND EMERGING 

DISEASE MODELS

The development and deployment of disease models aiming to 

recapitulate breast cancer complexity benefit from the integra

tion of the defined criteria into the set of advanced and emerging 

technologies, for example, multi-omics profiling to enhance 

model fidelity, machine learning to forecast treatment 

outcomes, and microsystems mimicking tissue microenviron

ments (Figure 5).33,36,105,118 Integrated analyses show that 

many breast cancer cell lines cluster into familiar intrinsic sub

types (e.g., luminal vs. basal) based on gene expression, mirror

ing patient tumor classes, and multi-omics approaches have 

even revised prior cell line classifications.36,47 The combination 

of genomics (mutations, copy-number variation), transcriptom

ics (mRNA, miRNA), epigenomics, and proteomics allows us to 

obtain a holistic molecular portrait that improves subtype match

ing. This approach also enables the spotting of discrepancies, as 

breast cell lines often carry more numerous mutations than tu

mors, and several key metastatic drivers (e.g., ESR1 mutations) 

found in patient tumors are absent in commonly used lines.90,117

Bringing together multi-omics data from patients (e.g., The Can

cer Genome Atlas) with cell line and organoid data helps identify 

which models best recapitulate the molecular wiring of a given 

subtype, potentially enabling the discovery of hybrid molecular 

subgroups and biomarkers that are overlooked in single-omics 

analysis.67 Multi-omics integration enables us to match absolute 

features (e.g., BRCA1 mutation, ER status, luminal B signature) 

with its functional behaviors (e.g., apoptotic resistance, metasta

tic tropism), as captured by the relative criteria, simulating clini

cally relevant contexts in vitro. For example, a drug targeting 

CDK4/6 should not solely be tested in a luminal-type cell line, 

but also in one with high Cyclin D1 expression and low apoptotic 

priming, integrating a profile that combines static and dynamic 

features. On top of this, machine learning is increasingly able 

to predict drug responses and classify breast cancer subtypes 

with accuracy through algorithms trained to recognize complex 

patterns that correlate with clinically relevant features. The 

NCI-DREAM Challenge assembled genomic, transcriptomic, 

proteomic, DNA methylation, and mutation data for 53 breast 

cancer cell lines to predict relative sensitivity to various drugs.119

A recent study built a deep neural network that integrates gene 

expression, DNA copy number, mutations, and phospho-prote

omic (RPPA) data, including a graph-embedded layer of protein– 

protein interactions.9 Other groups have developed multi-omics 

machine learning frameworks to classify breast tumors into sub

types and predict patient therapy outcomes.120 As a real-world 

example, ensemble models trained on cell line screens have 

been applied to patient tumor data to distinguish responder vs. 

non-responder profiles.119

Traditional 2D monolayer cultures often fail to recapitulate the 

complex architecture and microenvironment of breast tumors, 

potentially distorting cellular behavior with cells spreading un

naturally, losing their apico-basal polarity, lacking contact 

with a native ECM, and altering gene expression and drug re

sponses.105,114 For example, 2D-cultured cells have continuous 

access to oxygen and nutrients, as opposed to cells in a tumor 

mass, potentially making them more sensitive to drugs than real 

tumors. Advanced culture systems such as 3D spheroids, 

Figure 3. Decision-making workflow for breast cancer cell line selection 

The diagram outlines the proposed stepwise filtering process, beginning with the research objective. It then guides selection through sequential filtering criteria: 

absolute filters (e.g., receptor status, molecular subtype), and relative filters (e.g., metastatic tropism, resistance traits). Additional layers incorporate experi

mental feasibility, validation requirements (e.g., passage history, genetic drift), and representation gaps. The final step considers the scalability of selected lines 

toward advanced disease models such as organoids, co-cultures, and xenografts.
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Figure 4. Use cases of the proposed workflow 

The first use case (left panel) addresses bone metastasis in ER+ disease, identifying optimal cell models by filtering for both receptor status and metastatic 

competence. The second (right panel) illustrates drug testing for therapy resistance, combining genomic features with acquired phenotypes to select resistant 

luminal B models. In both cases, this approach could outperform standard selection methods by working with contextual fidelity. It also integrates considerations 

of genetic drift and validation needs across strains to potentially add experimental validation steps or pivot. 

The second sample use case presented here involves a novel CDK4/6 inhibitor being tested against therapy-resistant disease. Instead of arbitrarily selecting a 

panel of luminal cell lines, the framework guides the combination of absolute criteria (luminal B classification, high Cyclin D1 expression) with relative criteria 

(acquired endocrine resistance). This would lead to selection of long-term estrogen-deprived (LTED) MCF-7 derivatives, LY-2 cells with acquired tamoxifen 

resistance, or T47D cells with ESR1 mutations, providing a physiologically relevant resistance context.90 The consideration of genetic drift would alert potential 

inconsistencies between different laboratory strains and encourage authentication and early-passage usage. In both cases, this approach might deliver con

textually relevant models that mirror specific disease states over generic categorizations, to enable translational outcomes compared with a simple database 

consultation or literature search.
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patient-derived organoids, co-culture models, and 3D bio

printing are now improving the physiological relevance of pre

clinical studies. 3D cultures allow cells to aggregate or grow 

in a matrix, restoring more in vivo-like morphology and cell– 

cell interactions. A core benefit of 3D tumor spheroids is 

the emergence of oxygen, nutrients, and drug gradients 

across the spheroid, leading to heterogeneous zones of prolif

erating vs. quiescent cells, mirroring solid tumors.121 Studies 

comparing in vitro models have shown that breast cancer cells 

in 3D can become significantly more drug-resistant than in 2D 

monolayers.105,118,121 For instance, when MCF-7 spheroids 

were treated with common chemotherapeutics (doxorubicin, 

paclitaxel, tamoxifen), the 3D cultures were markedly less 

responsive than 2D cultures.121 This in vitro drug resistance in 

3D is attributed to the restoration of tumor-like cell–cell/ECM in

teractions and diffusion barriers that limit drug penetration. Or

ganoids are often derived from patient tumor samples or stem 

cells, that self-organize into mini-structures ideally containing 

multiple cell types, maintain the DNA copy number aberrations 

and sequence mutations of the parental tumor, as well as estro

gen receptor (ER), HER2, and other subtype-defining features. 

Organoid biobanks and consortia (e.g., the HUB/Hubrecht 

Institute and Human Cancer Models Initiative) are now cata

loging large collections of breast cancer organoids for 

research.122

Another approach to breast cancer modeling revolves around 

the development of co-culture systems, recalling that tumors are 

ecosystems of cancer cells interacting with stromal cells, im

mune cells, neurons, and extracellular matrix. Breast cancer 

spheroids have been co-cultured with cancer-associated fibro

blasts or immune cells to reconstitute aspects of the tumor 

microenvironment.105 These methods can reveal emergent be

haviors, such as how fibroblasts induce drug resistance or how 

immune cells infiltrate tumor spheroids. A parallel method 

around the development of advanced systems is organ-on- 

chip technology, which uses microfabrication techniques to 

recreate environments that allow blood flow or gradients of nutri

ents across a biological sample. A study reports the use of a 3D 

bioprinted breast tumor model in a microfluidic chip, arranging 

breast cancer cells (MCF7, MDA-MB-231) and healthy mam

mary cells (MCF10A) within a hydrogel scaffold.114 This method 

demonstrated realistic cell migration and invasion patterns in 

response to gradients. 3D bioprinting, in turn, represents a pop

ular frontier for building custom tumor models that include pa

tient-derived cancer cells, supporting fibroblasts, endothelial 

cells to mimic blood vessels, and immune components, all in 

one 3D construct. In this context, bringing together cell lines 

that collectively recapitulate a desired environment becomes 

more complex to do by hand, as well as crucial for ensuring 

the validity of experimental outcomes. Then, in vivo validation 

Figure 5. Sample workflow in AI-assisted optimization of cell line selection for 2D culture and advanced disease models 

Cell line metadata and experimental data are compiled into a structured database, from which data is fed as inputs into a machine learning architecture that 

integrates absolute and relative criteria to generate predictive recommendations tailored to research goals. Suggested cell lines could be deployed in increasingly 

complex in vitro platforms to enhance biological fidelity and clinical relevance. The resulting experimental outputs, once validated, could feedback into the 

system, allowing continuous model refinement and improved prediction accuracy over time.
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remains a crucial step. A gold standard approach is the use of 

patient-derived xenografts (PDX), where fragments of a breast 

tumor are implanted into immunocompromised mice.123 Studies 

have shown that if a drug causes regression in a cohort of breast 

cancer PDX models, there is a good chance it will show efficacy 

in patients with similar tumor profiles.118 PDXs are also instru

mental in co-clinical trials, i.e., parallel studies where patients 

receive therapy while their tumor xenografts in mice are treated 

similarly, acting as a great standard to comprehensively evaluate 

the given technology. All the approaches introduced in this sec

tion present intrinsic limitations that are out of scope for this re

view and are extensively addressed elsewhere.

CORE CHALLENGES

Genetic drift

Genetic drift is one of the most influential factors affecting the 

repeatability of in vitro experiments. Instability is associated 

with the clonal dynamics and appearance of new genetic vari

ants. A sample study shows that in 106 cell lines compared 

across two labs, up to 90% of non-silent mutations were discor

dant between datasets.124 MCF-7, specifically, had 27 strains 

with high genomic diversity, including differential mutations, 

copy number alterations, and gene expression.124 These varia

tions are triggered by variations in growth medium, inducing 

clonal shifts, and even single-cell-derived clones are genomi

cally unstable after long-term culture. This has tremendous con

sequences for drug discovery research. Out of 321 anti-cancer 

drugs tested across the 27 MCF-7 strains, almost 75% of effec

tive compounds in some strains were completely inactive in 

others.124 In a different study, while researching LUCA-15 func

tion in breast cancer, conflicting reports were found regarding its 

presence in MCF-7 cells, prompting them to characterize their 

available sublines. It was reported that the chromosomal region 

where LUCA-15 maps is unstable in MCF-7 cells, and one sub

line entirely lacked the LUCA-15 gene.13 This loss correlated with 

reduced sensitivity to TNF-α–induced apoptosis, which is pre

dominant in MCF-7, since this cell line does not have caspase 

activity, while overexpression of LUCA-15 restored apoptotic 

responsiveness. These findings suggest LUCA-15 is highly sus

ceptible to genetic drift, leading to different apoptotic behavior in 

the same cell line. Although most of the studies refer to MCF-7 as 

the most unstable breast cancer cell line, it has been demon

strated that HCC1143, HCC38, HCC1937, T47D, BT-549, and 

MDA-MB-361 are also highly unstable.17 MDA-MB-231 and 

HCC1806 are also moderately unstable, while control cell lines 

such as MCF710A are usually stable. Approaches to minimize 

these drawbacks include utilizing cell lines at low passages 

and standardizing culture conditions for all experimental set

tings. Genetic drift poses challenges in unifying genomic data

bases and topic-trained AI assistants, while at the same time 

making their potential impact even more consistent.

Conflicting characterizations

Key information such as age, grade, tumor size, ER/HER2 status, 

and race is also missing or inconsistently reported across many 

studies, limiting the utility of the data for epidemiological or prog

nostic modeling. A good example of these challenges in harmo

nizing data from different breast cancer datasets is observed in 

Table 3, which compares three of the most commonly used 

breast cancer databases.120 The first issue revolves around 

data collection: CCLE and TCGA-BRCA contain RNA-Seq 

data, METABRIC contains microarray data. RNA-Seq is much 

more sensitive than microarrays, leading to technical bias 

when bringing data together.125 Furthermore, as discussed 

earlier, the drug response and characteristics of cell lines are 

often non-comparable with those of primary tumors due to ge

netic drift and the absence of a relevant microenvironment. 

Because of this, it is challenging to associate cell-line data 

from CCLE to equivalent tumors from TCGA-BRCA or 

METABRIC and vice versa. While each database provides valu

able insights, we cannot directly link cancer cell line features to 

population-based outcomes without accounting for the underly

ing biases that affect their representativeness. A multi-omic 

comparison of 57 breast cancer cell lines to 1019 metastatic 

breast cancer patient samples from METABRIC and TCGA re

vealed a mismatch between commonly used cell lines and the 

genomic landscape of metastatic tumors.126 One of the most 

critical findings was that many of the breast cancer cell lines 

used to model metastatic disease, such as MDA-MB-231, 

showed poor genomic similarity to actual metastatic breast can

cer tumors, particularly within the basal-like subtype. Through a 

large-scale integrative analysis comparing 57 cell lines with over 

1000 metastatic tumor samples, the authors demonstrate that 

Table 3. The three biggest and most widely used breast cancer databases in research

Feature CCLE TCGA-BRCA METABRIC

Sample type Breast cancer cell lines Primary tumor Primary tumor

Sample size 76 1098 1992

Expression platform RNA-seq RNA-seq Microarray

Subtype distribution Skewed toward TNBC, HER2+ Balanced; ER+ enriched ER+ enriched

Drug response Yes No No

Passage information Limited NA NA

Tissue source In vitro cultured cells (varied origins) Fresh frozen tissue Fresh frozen tissue

Ancestry diversity Limited/not annotated Mostly European ancestry UK/Canadian, white

Population metadata Limited Rich Moderate

CCLE, cancer cell line encyclopedia; TCGA-BRCA, Cancer Genome Atlas Breast Invasive Carcinoma; METABRIC, EGA European Genome-Phenome 

Archive.
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historical model selection often lacks molecular justification. In 

contrast, less frequently used lines such as HCC38, HCC1395, 

and BT-549 were found to more closely resemble the genomic 

and transcriptomic profiles of metastatic tumors.126

Underrepresentation

The underrepresentation of cell lines from younger patients and 

non-Caucasian ethnicities is another limitation of most breast 

cancer models, affecting the translational relevance, particularly 

for studies aimed at investigating racial disparities in TNBC out

comes.118 Healthcare access barriers lead to late-stage diagno

ses in Hispanic and Asian women, contributing to fewer available 

data and lower reported incidence. In developed countries, 

earlier detection is supported by better screening access, while 

socioeconomic disparities, poor cancer literacy, unhealthy diets, 

and obesity contribute to higher breast cancer mortality in 

certain ethnic groups. This disparity continues to bias clinical tri

als and treatments toward Caucasian patients, further exacer

bating healthcare inequalities and limiting the effectiveness of 

treatments for other ethnic groups. Moreover, most available 

breast cancer cell lines are derived from older patients, with rela

tively few from those under 40. Breast cancer in a 23-year-old 

can be substantially different from the same type of cancer in a 

73-year-old. These differences impact how cancer cells behave 

and respond to treatment, making age another crucial factor to 

consider. This is becoming increasingly critical because many 

studies highlight the rising incidence of breast cancer in younger 

individuals, yet very few of them employ cell lines derived from 

younger patients (e.g., MCF-7 is from a 69-year-old woman). 

Integrating all features of every commercial cell line in a common 

interactive platform would help identify gaps, misclassifications, 

and inform a more reliable and relevant experimental design.

CONCLUSION

This work highlights the need for multilevel and AI-assisted 

comparative models for commercially available cell lines, asso

ciated 3D scaling, with the aim of improving clinical relevance 

for in vitro breast cancer research. The same schema could be 

translated to any other cancers, as well as to a set of other dis

eases commonly studied in bioengineering. The proposed 

framework suggests structuring cell line selection around abso

lute (e.g., origin, receptor status, mutations) and relative (e.g., 

metastatic potential, drug resistance, immune interaction) char

acteristics to enable a more rational and grounded use of exist

ing resources. The approach, despite being statically presented, 

carries an intrinsically dynamic nature given by the possibility of 

integrating the proposed blocks into AI-assisted bioinformatics 

resources. Interfacing the latter with emerging disease models 

such as 3D organoids and co-culture systems would enable a 

bidirectional information flow between offices, laboratories, 

and clinics. In parallel, new ideas worth exploring in the biotech

nology front for further integration include cancer virtual 

modeling using digital avatars trained on multi-omics and func

tional assay data, automated scoring systems for culture scal

ability and model fitness, and real-time feedback platforms 

that dynamically adjust cell line recommendations based on 

evolving biological parameters. These paradigms point to a 

future where cell model selection turns into a critical process 

aimed at clinical translation.
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A., Dreijerink, K.M.A., Barbé, E., Konings, I.R.H.M., and den Heijer, M. 

(2019). Breast cancer risk in transgender people receiving hormone treat

ment: nationwide cohort study in the Netherlands. BMJ 365, l1652. 

https://doi.org/10.1136/bmj.l1652.

88. Goldhirsch, A., Gelber, R.D., Piccart-Gebhart, M.J., de Azambuja, E., 

Procter, M., Suter, T.M., Jackisch, C., Cameron, D., Weber, H.A., Heinz

mann, D., et al. (2013). 2 years versus 1 year of adjuvant trastuzumab for 

HER2-positive breast cancer (HERA): an open-label, randomised 

controlled trial. Lancet 382, 1021–1028. https://doi.org/10.1016/S0140- 

6736(13)61094-6.

89. Helleday, T., Petermann, E., Lundin, C., Hodgson, B., and Sharma, R.A. 

(2008). DNA repair pathways as targets for cancer therapy. Cancer 8, 

193–204. https://doi.org/10.1038/nrc2342.

90. Jeselsohn, R., Buchwalter, G., De Angelis, C., Brown, M., and Schiff, R. 

(2015). ESR1 mutations-a mechanism for acquired endocrine resistance 

in breast cancer. Nat. Rev. Clin. Oncol. 12, 573–583. https://doi.org/10. 

1038/nrclinonc.2015.117.

91. Farnie, G., Clarke, R.B., Spence, K., Pinnock, N., Brennan, K., Anderson, 

N.G., and Bundred, N.J. (2007). Novel cell culture technique for primary 

ductal carcinoma in situ: role of Notch and epidermal growth factor re

ceptor signaling pathways. J. Natl. Cancer Inst. 99, 616–627. https:// 

doi.org/10.1093/jnci/djk133.

92. Robertson, F.M., Bondy, M., Yang, W., Yamauchi, H., Wiggins, S., Kam

rudin, S., Krishnamurthy, S., Le-Petross, H., Bidaut, L., Player, A.N., et al. 

(2010). Inflammatory breast cancer: the disease, the biology, the treat

ment. CA Cancer J. Clin. 60, 351–375. https://doi.org/10.3322/caac. 

20082.

93. Marrazzo, E., Frusone, F., Milana, F., Sagona, A., Gatzemeier, W., Bar

bieri, E., Bottini, A., Canavese, G., Rubino, A.O., Eboli, M.G., et al. 

(2020). Mucinous breast cancer: A narrative review of the literature and 

a retrospective tertiary single-centre analysis. Breast 49, 87–92. 

https://doi.org/10.1016/j.breast.2019.11.002.

94. Pal, S.K., Lau, S.K., Kruper, L., Nwoye, U., Garberoglio, C., Gupta, R.K., 

Paz, B., Vora, L., Guzman, E., Artinyan, A., et al. (2010). Papillary carci

noma of the breast: an overview. Breast Cancer Res. Treat. 122, 

637–645. https://doi.org/10.1007/s10549-010-0961-5.

95. Cheng, L.H., Yu, X.J., Zhang, H., Zhang, H.J., Jia, Z., and Wang, X.H. 

(2024). Advances in invasive micropapillary carcinoma of the breast 

research: A review. Medicine (Baltim.) 103, e36631. https://doi.org/10. 

1097/MD.0000000000036631.

96. van der Groep, P., van der Wall, E., and van Diest, P.J. (2011). Pathology 

of hereditary breast cancer. Cell. Oncol. 34, 71–88. https://doi.org/10. 

1007/s13402-011-0010-3.

97. Toss, A., Ponzoni, O., Riccò, B., Piombino, C., Moscetti, L., Combi, F., 

Palma, E., Papi, S., Tenedini, E., Tazzioli, G., et al. (2023). Management 

of PALB2-associated breast cancer: A literature review and case report. 

Clin. Case Rep. 11, e7747. https://doi.org/10.1002/ccr3.7747.

98. Toss, A., Tenedini, E., Piombino, C., Venturelli, M., Marchi, I., Gasparini, 

E., Barbieri, E., Razzaboni, E., Domati, F., Caggia, F., et al. (2021). Clini

copathologic Profile of Breast Cancer in Germline ATM and CHEK2 Mu

tation Carriers. Genes 12, 616. https://doi.org/10.3390/genes12050616.

99. Stucci, L.S., Interno, V., Tucci, M., Perrone, M., Mannavola, F., Palmir

otta, R., and Porta, C. (2021). The ATM Gene in Breast Cancer: Its Rele

vance in Clinical Practice. Genes 12, 727. https://doi.org/10.3390/ 

genes12050727.

100. Corso, G., Montagna, G., Figueiredo, J., La Vecchia, C., Fumagalli Ro

mario, U., Fernandes, M.S., Seixas, S., Roviello, F., Trovato, C., Gue

rini-Rocco, E., et al. (2020). Hereditary Gastric and Breast Cancer Syn

dromes Related to CDH1 Germline Mutation: A Multidisciplinary 

Clinical Review. Cancers (Basel) 12, 1598. https://doi.org/10.3390/ 

cancers12061598.

101. van Lier, M.G.F., Westerman, A.M., Wagner, A., Looman, C.W.N., Wilson, 

J.H.P., de Rooij, F.W.M., Lemmens, V.E.P.P., Kuipers, E.J., Mathus-Vlie

gen, E.M.H., and van Leerdam, M.E. (2011). High cancer risk and 

increased mortality in patients with Peutz-Jeghers syndrome. Gut 60, 

141–147. https://doi.org/10.1136/gut.2010.223750.

102. Bos, P.D., Zhang, X.H.F., Nadal, C., Shu, W., Gomis, R.R., Nguyen, D.X., 

Minn, A.J., van de Vijver, M.J., Gerald, W.L., Foekens, J.A., and Mas
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