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As mobile applications grow in complexity, there is an increasing need to perform computationally intensive
tasks. However, user devices (UDs), such as tablets and smartphones, have limited capacity to carry out the
required computations. Task offloading in mobile edge computing (MEC) is a strategy that meets this demand
by distributing tasks between UDs and servers. Deep reinforcement learning (DRL) is a promising solution for
this strategy because it can adapt to dynamic changes and minimize online computational complexity. However,
various types of continuous and discrete resource constraints on UDs and MEC servers pose challenges to the
design of an efficient DRL algorithm. Existing DRL-based task-offloading algorithms focus on the constraints
of the UDs, assuming the availability of enough resources on the server. Moreover, existing Multiagent DRL
(MADRL)-based task-offloading algorithms are homogeneous agents and consider homogeneous constraints
as a penalty in their reward function. We propose a novel Client-Master MADRL (CMMADRL) algorithm for
task offloading in MEC that uses client agents at the UDs to decide on their resource requirements and a master
agent at the server to make a combinatorial action selection based on the decision of the UDs. CMMADRL is
shown to achieve up to 59% improvement in performance over existing benchmark and heuristic algorithms.
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1 Introduction

Recently, there has been an explosion of mobile applications that perform computation-intensive
tasks, such as video streaming, virtual reality, augmented reality, image processing, video processing,
face recognition, and online gaming [1, 2, 9, 26]. However, UDs, such as tablets and smartphones,
have limited capability to perform the computational tasks of these applications. To address
this limitation, Mobile Cloud Computing (MCC) has emerged as a key solution by enabling task
offloading to cloud servers [13]. Nevertheless, one of the key drawbacks of MCC is latency caused
by the distance of the MCC server from the UDs [17]. MEC has emerged as a promising technology
for addressing the challenges of MCC and the increasing computing demands of UDs by providing
MCC services on the edge of the network.
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Task offloading in MEC has become an attractive solution for meeting the diverse computing
needs of UDs [7], by distributing computational tasks between UDs and MEC servers. Many existing
task-offloading algorithms use traditional convex optimization methods for single-agent offloading
scenarios [16]. DRL is a common solution for task offloading problems due to its advantage in
reducing online computational complexity [15] and adapting to dynamic changes [11]. However,
the existence of various types of resource constraints on UDs and MEC servers and the combination
of discrete, continuous, and combinatorial action spaces pose challenges to the design of an
efficient DRL-based task-offloading strategy. UDs have limitations such as finite battery life and
limited computational capabilities [9, 24], as well as quality of service (QoS) requirements, such
as latency. Similarly, MEC servers come with storage constraints. DRL techniques, such as deep
Q network (DQN), have yielded encouraging results by modeling the task-offloading problem as
MDP using deep neural network (DNN) as a function approximator [11]. However, due to the
curse of dimensionality, DQN is insufficient for learning with large discrete action spaces [3] and a
combination of continuous and discrete action spaces [25]. Although multiagent deep deterministic
policy gradient (MADDPG) algorithms can handle continuous action spaces, the representation
of discrete and continuous action spaces still poses a challenge [8, 25]. Furthermore, despite the
advances of MADRL algorithms in task offloading, such as cooperative offloading decisions [14]
and mixed continuous and discrete action spaces [8, 25], they formulate the resource constraints as
penalties in the reward function. However, hard constraints, such as the server’s storage capacity,
cannot be effectively captured by a penalty term.

A comprehensive survey on task offloading in [7] has presented task offloading strategies in MEC
from different perspectives, including the computational model, the decision-making entity, and
the algorithm paradigm. Many algorithms have considered the wireless communication resource
and the computing resource of the server. For example, the insufficient computing resource of the
MEC server can be alleviated by using MEC-MCC collaboration or collaboration among multiple
MEC servers [2]. Sub-channels are considered in the state and action spaces by some DRL-based
task offloading algorithms [8, 14]. However, the storage constraint on the server is overlooked
in existing DRL-based task-offloading algorithms. This work aims to advance DRL-based task
offloading algorithms to address the limitations of current algorithms as follows.

The main contributions of this work are fourfold.

e We propose a novel CMMADRL algorithm for task offloading in MEC with various types of
constraints at the UDs, the wireless network, and the server. Client agents are deployed at
the UDs to decide on their resource allocation, and a master agent is deployed at the server
to make combinatorial action selection based on the actions of the clients. The constraints of
the UDs are considered as a penalty in the reward of the client agents, whereas the channel
and storage constraints are considered in the combinatorial action selection of the master
agent.

o By avoiding the number of sub-channels from the state and action spaces, and considering it
as a constraint in the combinatorial action selection, we reduced the dimensionality.

e This is the first DRL-based task offloading algorithm to consider combinations of continuous
and discrete resource constraints on the UDs, the communication channel, and the storage
capacity of the server.

o We develop different heuristic benchmarking methodologies and perform numerical analysis
to determine the efficacy of the proposed algorithm, demonstrating up to a 59% improvement.
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2 System Model

This section considers MEC for task offloading, which mainly includes a base station (BS), UDs,
tasks, energy harvesting, and wireless networks. We consider a multi-user MEC scenario shown in
Figure 1. In this scenario, there is a single wireless BS equipped with an MEC server that provides a
computing and storage service as well as a software-defined network (SDN) controller that controls
communication between UDs and BS. The BS serves a set of N ={1, 2, 3, ..., [N|} UDs. A UD in
the set N is indicated by n. For local processing, we consider that each UD n has a minimum and
maximum computational resource allocation budget denoted by ™" and f™%~, respectively, in

n
Gigahertz (GHz). Similarly, to offload its task to the server, we consider that each UD has a minimum

and maximum transmission power allocation threshold denoted by p™" and p™®*, respectively,
in dBm. Furthermore, we consider a UD to have a minimum battery threshold, denoted by b,Ti",
which triggers a low battery warning, and a maximum battery capacity of b*** in Megajoules (M]).
The BS has multiple constraints and characteristics, such as the server storage constraint z, in bits
and the number of processing units on the server U, each having an equal processing capacity
of f, in GHz. Similar to [8, 14], we consider a wireless network of bandwidth of W in megahertz
that is equally divided between K sub-channels. The list of notation and terms used in this work is
presented in Table 1.

We consider a task-offloading problem over T time steps, each of duration 7;,4x. To focus on the
main contributions, the following simplifying assumptions are made: each UD n generates one
task per time step. If a task is not completed within 7,4y, it is discarded before the start of the next
time step. The task model, the processing model, and the energy harvesting are described in the
following sections.

The task offloading model is designed by combining the settings of different existing approaches
in the literature. Since [14] has used a data set from Huawei Technologies, we adapted it while
excluding the blockchain-related components. We considered the energy harvesting process in
[25], and took advantage of the efficient estimation of the completion times of tasks in [23], which
computes the completion time of tasks on the server based on the completion time of other tasks
scheduled before them. Similarly, we assume that the server processes the tasks in the order of
their arrival on the server. The arrival times of the tasks are determined by their offloading times.
In the following, we present the task and computing model for the task offloading problem.

2.1 Task Model

The task model is based on the settings in [14] on a data set from Huawei Telecom. At each time
step, each UD n generates a task denoted by its notation as n! that is represented by characteristics
such as the size of the task z, in bytes, the number of CPU cycles per bit required to process the
task ¢,, and the maximum deadline 7,, by which task processing is expected to finish.

Before presenting how tasks are processed, we discuss three decision variables: a binary decision
of whether to process a task locally or offload it to the MEC server, x,, a local resource allocation,
fn, and a transmission power allocation, p,, which are described in detail in Section 4.3. Thus, we
define a binary decision variable X = {x,|n € N} to describe the processing mode, as seen in
Equation (1).

1, MEC processing
Xn = . (1)
0, Local processing
The decision variable, x;,, is determined by the joint decision of the UDs and the server, as will be
formally defined in Equation (18) in Section 4.3. Next, we present the local and MEC models.

1Because a UD has one task at a time step, we use n to denote both the UD and its task to keep the notation simple.
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Table 1. List of notations and terms

Notation Description
N Set of UDs
T Number of time steps
Tmax Length of a time step
n A UD or a task of the UD
Tn Total latency of processing task n
Xn Binary indicator of local or offload for task n
E, Energy consumption of task n
Elocn Energy consumption of task n in local processing
Eofin Energy consumption of offloading task n
Tioen Computation time for the local processing of task n
Tofin Offloading time of task n
A & Az weight coefficients of T,, and E,
b, Battery level of UD n in Joules
bex Maximum battery level of UD n in Joules
pmin Minimum battery level of UD n in Joules
Dn Transmission power allocation of the UD n
Zn Size of task n
Ze Storage capacity of the server
U, Number of processing units in the server
L, Cost of processing task n
R System reward of processing tasks
fn Resource allocation for local processing of task n
Cn Number of CPU cycles to process one bit of task n
ag Learning rate of the master agent
ag Learning rate of client agent
J Joules
M] Mega Joules
én Energy harvesting of task n
Am Combinatorial action selection of the master agent
A, The tuple of actions of the client agent
Xen Continuous-valued action of client n to decide local or offload
Pen Continuous-valued action of client n to decide p,
fen Continuous-valued action of client n to decide f;
Tearn Availability time of a u, after arrival of task n
Tsern Processing time of task n in the server
TMEC.H Total latency of offloading and processing task n
Stask State of task n
N State of channel gain of UD n
Shv State of power UD n
Sy State of resource of UD n
Shatt State of battery of UD n
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Fig. 1. Network model

2.2 Local Processing

A task is processed locally in either of the following two conditions as discussed in Section 4.3: if
the UD decides to process the task locally; if a UD proposes the task to the master agent, but the
master agent did not select it to be offloaded in the combinatorial action selection. Then, the UD
processes the task using its local computational resource assigned to the task, which is restricted
within its own resource allocation budget as f,| ™" < f, < f™%*. The local computing latency to

process the task is calculated as:
Zp - Cp

Ja
where z,, is the size of the task and ¢, is CPU cycles required to process one bit of the task.

The energy consumption in the local processing mode is calculated based on the size of the task
and the allocation of resources to process the task, as shown in Equation (3).

@)

Tioc,n =

Eloen =K zn-cn- (ﬁl)z 3)
where k is the energy consumption coefficient [25].

2.3 MEC Processing

In this mode, the task is transferred to the MEC server to be processed by one of the processing
units U, of the server. The decision happens when the UD proposes the task to be offloaded and
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the master agent accepts it. To be processed on the server, the task needs transmission resources,
which are a function of transmission power p,. The transmission power p,, is decided by the UD
from its transmission power budget p,|p™" < p, < p™** as discussed in Section 4.3. Then, the
data transmission rate d,, for a single channel of the wireless network is calculated using Shannon’s
capacity as

w
dy, = ? 'logz (1+Pn'gn) (4)

where g, = h,/0? is the normalized channel gain of the uplink channel between UD n and the BS,
with channel gain h,, and the background noise variance 2. The channel gain k), is impacted by
many factors, including distance. For simplicity, we assume that the UDs are stationary and have
a stationary normalized channel gain depending on their distance from the BS. The background
noise variance, 2, is assumed to be constant. We did not consider interference between multiple
UDs because we assume that a channel is used by one task at a time.

Once the data transmission rate is determined, the transmission time Tog,, is computed as:

Toff,n = 2_: (5)

where z, is the size of the task and d,, is the data transmission rate.

Then, using the transmission time Tog, and the power p, of the UD, the energy consumption of
offloading task n to the server is calculated as:

Eoff,n =pPn- Toff,n (6)

Like much other work on task offloading [14, 22, 25], we assume that the communication resource
required to return the information about the processed task to the UD is negligible, as only analytical
results are transmitted rather than the raw data itself.

Note that the energy consumption in task offloading is computed only for the UDs as they are
battery-powered. However, the latency of processing the tasks on the server matters because the
tasks have deadline constraints. Therefore, the total latency of processing a task on the server is
determined by the transmission time, the earliest availability of the processing unit on the server,
and the time required to process the task on the server. The processing time of task n in one of the
processing units on the server is computed as Ty, = 2222, However, the processing of the task
on the server does not start as soon as the task has arrived at the server. The processing units on
the server process one task at a time. Tasks transferred to the server are processed in the order
of arrival at the server, which is determined by Tog,. The tasks are assigned to the earliest free
processing unit. Therefore, the start of processing task n depends on the earliest availability of a
processing unit, which is determined by the number of processing units on the server U, and Tger 5
and T, of other tasks that have shorter Tog, than that of task n. Consequently, the total latency
of the offloading task n to the MEC server Tygc , is calculated as:

TMEC,n = lger,n + Max (Toff,na Tear,n) (7)

where Tear , is the estimated availability time of the first available processing unit U, of the server
after the arrival of task n and max(.) ensures that the processing of the task starts when a free
processing unit is found after the offloading of the task is finished. The T, is calculated based on
the completion time of other accepted tasks on the server with the earliest offloading time than
that of task n. This estimate is adapted from the work of [23].

2.4 Energy Harvesting

The energy harvesting process is adapted from the work in [25]. For simplicity, we assume that the
UDs harvest e, of energy in joules at the beginning of each time interval. This energy may come
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from renewable sources such as solar or kinetic harvesting, depending on the device’s capabilities
and environmental context. Initially, each UD starts with its maximum battery capacity of b'** in
joules. Over the course of T time steps, the battery level dynamically evolves based on both energy
consumption and harvesting, ensuring realistic constraints on device operation. The evolution of
the battery level is described by the following update equation:

bu(t+1) = min (max (b,(t) — E,(t) + e,(t), 0), b)) (8)

Here, b, (t + 1) represents the battery level of UD n in joules at time step ¢ + 1, and b,(t) is the
battery level at the current time step. The term E, (t) denotes the energy consumed by the UD,
which is computed as the sum of local computation energy Ejo, (Equation (3)) and offloading
energy Eofr, (Equation (6)). The harvested energy e, () is added to replenish the battery. The use of
max(+, 0) ensures that the battery level does not fall below zero, and the outer min(-, b;**) enforces
the upper bound, preventing overcharging. This battery model plays a crucial role in ensuring
sustainable operation of energy-constrained UDs across the time horizon.

3 Problem Formulation

The cost of processing a task is collectively determined by its processing latency T,, and the energy
consumption E,, which are defined as follows.

T, = (1 - xn) ’ Tloc,n + Xn - TMEC,n (9)

where Tjocn and Tyvec,, are computed using Equations (2 and 7) respectively. This formulation
captures the trade-off in latency between local execution and MEC offloading, controlled by the
binary decision variable x,,.

E, = (1 - xn) ' Eloc,n + Xp - Eoff,n (10)

where Eloc, and Eof, are computed using Equations (3 and 6) respectively. Similarly, E,, represents
the energy consumption trade-off between local computation energy (when x, = 0) and task
offloading transmission energy (when x, = 1).

Then, the cost function is specified as:

Ly=XA T+ Ay Ep (11)

where A; and A, are weighting coefficients used to compute the scalarized cost, corresponding
to latency and energy consumption, respectively. This allows flexibility in adapting the optimiza-
tion objective to different application priorities, such as delay-sensitive or energy-constrained
environments.

The CMMADRL aims to solve the optimization problem that can be formulated as the cost
minimization for all UDs and T time steps while meeting the different constraints at the UDs and
the server as follows:
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T
minimize z 2 Ly(t) (12a)
{Xn.pnsfn} t neN
subjectto x, € {0,1}, VneN (12b)
P < pa <P, VneN (12c)
T, <1y, VYneN (12d)
b, > b™"  VneN (12e)
frin < f < fMX VneN (12f)
D oxn <K (12¢)
neN
z Xn*Zn < Ze (12h)
neN

where the decision variables in Equation (12a) represent the actions taken by the client and master
agents as outlined in Section 4.3, Equation (12b) implies that a task is processed locally if x, = 0
or uploaded to the MEC server otherwise, Equation (12c) indicates that the transmission power
should be between the power allocation budget, Equation (12d) ensures that the processing time
of each task cannot exceed its processing deadline, Equation (12e) guarantees that the battery
level should not fall below the minimum battery threshold, Equation (12f) ensures that the local
computational resource allocated to each task should be in the preset minimum and maximum
values, Equation (12g) ensures that the number of offloaded tasks does not exceed the number of
sub-channels by ensuring that only one task uses a channel. It is used if and only if it is necessary
to use only one channel for one user as used in [9]. Equation (12h) guarantees that the sum of the
sizes of the off-loaded tasks does not exceed the storage capacity of the server.

4 Combinatorial Client-Master MADRL Algorithm for Task Offloading in MEC

To solve the optimization problem of the cost minimization in Equation (12a), we convert the
optimization problem into a reward maximization problem and apply CMMADRL. The states, client
and master actions, and the formulation of the reward function are presented as follows. First,
MADDPG is introduced.

4.1 MADDPG

CMMADRL is derived by incorporating the coalition action selection [4] and the per-action DQN [6]
on top of MADDPG. We start by introducing MADDPG. MADDPG is a multiagent extension of the
Deep Deterministic Policy Gradient (DDPG) [10].

DDPG is a model-free DRL algorithm specifically designed for environments with continuous
action spaces. It employs an actor-critic architecture consisting of two neural networks: the actor,
which deterministically maps states to actions to maximize expected long-term rewards, and the
critic, which estimates the Q-value (expected return) for given state-action pairs. Unlike stochastic
policy methods, DDPG’s actor outputs a specific action rather than a probability distribution,
enabling deterministic policy learning. DDPG is an off-policy algorithm, meaning it utilizes a replay
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buffer to store and sample past experiences. To ensure stable training, DDPG introduces target
networks for both the actor and critic, which are updated slowly to reduce the risk of divergence.

MADDPG [12] is an extension of the DDPG algorithm tailored for multi-agent DRL environ-
ments, where the presence of multiple learning agents introduces the need for coordination. In
MADDPG, multiple DDPG agents cooperate through a centralized training with decentralized
execution framework. During training, each agent utilizes a centralized critic that has access to the
observations and actions of all agents, allowing it to more effectively estimate the joint action-value
function and adapt to the dynamic policies of other agents. In contrast, during execution, each agent
relies solely on its decentralized actor, which makes decisions based on its own local observations,
enabling scalable and independent operation.

CMMADRL employs client agents analogous to the actors in MADDPG. The primary distinction
lies in the value function. MADDPG uses the critic network only when training. In CMMADRL,
the master agent is utilized during both training and execution. It performs the same role as
the MADDPG critic during training. But it also performs combinatorial action selection during
execution. The difference in the Q-value computation for both CMMADRL and MADDPG are
presented in Equation (21) and Equation (22), respectively.

4.2 State

The state S (t) of the MEC environment at time ¢, which includes the set of states of the UDs, is
described as S (t) = {S, (¢)}, Vn € N. Constant values such as the number of sub-channels K, the
number of processing units on the server U,, the processing capacity f;, and the storage capacity z,
of the server are excluded from the state information. The state of a UD, S, (t), is characterized by
five components: task state S}f‘Sk (t), normalized channel gain state S5 (), power transmission
budget Sh™" (t), local resource allocation budget S' (t), and battery state S};att (t) as defined in
Equation (13):

Sn (£) = {S2K (), S5 (1), SE™V (1), S™° (1), ST (1)} (13)

where SL’“Sk () =[zn(t),cn (t), 1o (D) ], s,%ai“ (t) is gn = hn/c? as described in Section 4, S (t) =
prmax SIS (t) = fmax and SPa% (1) is as described in Equation (8).

4.3 Action

At the beginning of each time step, the UDs make decisions about their resource allocations using
client agents. Then, the SDN controller collects information about the state and action of the UDs
and performs one of the following three procedures using a master agent: 1) for the UDs that decide
to make a local processing, the server does not interfere. 2) if the number of UDs that are proposed
to offload is greater than the number of sub-channels or if the sum of their sizes is greater than the
capacity of the storage capacity of the server, the server makes a combinatorial action selection on
which of the requests of the UDs to approve and which of them to reject. 3) If the proposed requests
are less than the constraints, the server accepts all of them. Finally, sub-channels are assigned to
accepted UDs, and then the task offloading and processing process starts.

Existing DRL-based task offloading algorithms, such as [14] and [8], included the number of
sub-channels in their state and action space. However, under the assumption of homogeneous sub-
channel quality, each channel offers equal transmission capacity as seen in Equation (4). Therefore,
if each channel is restricted to one UD at a time, the specific channel assignment becomes irrelevant.
The inclusion of it in the state and action spaces adds unnecessary complexity. We excluded channel
information from the state and action space and considered them as a constraint in the combinatorial
action selection. Note that a channel can be reused by multiple UDs one after the other, by lifting
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the constraint that one channel must be used by one UD. In such a case, only the storage capacity
of the server becomes the constraint in the combinatorial action selection.
The actions of the client agents and master agent are as follows.

Client Actions: At each time step, each client agent produces three actions, which are all continu-
ous value actions between [0, 1] inclusive. The action space can be expressed as:

Ap (t) = Xe,n (t)»Pc,n (t)»ﬁ,n (t) — O, (Sn (t)) , YneN (14)

where S, (t) is the state of UD n as described in Equation (13) and 6, is the parametrized policy
function of the client agent. A, is a tuple of three actions of the client agent as follows: x. , (¢) is the
task offloading decision by client n (if x. , () < 0.5 then x, in Equation (1) becomes 0 otherwise the
task is proposed to be considered for the combinatorial action selection), p. (t) is the client action
that decides the transmission power using Equation (15), and fc , (¢) is the action that decides the
local computational resources allocation using Equation (16).

The actions of the client agents determine p, and f; as follows:

pn = max (p)™", pen (1) - pi®) (15)
fo = max (", fon (t) - f7*) (16)

where p., () and f, , () are the outputs of the client agent. Both are in the range of [0,1]. They
are used to scale the maximum power and the computational power, respectively, to compute p,
and f;. Then, p, is used to calculate the data rate in d,, in Equation (4), which is used to transfer
the task to the server (if the task is decided for offloading). The f, is used to calculate the energy
consumption to process the task locally Ejoc , in Equation (3) (if decided for local processing). The
max(.) ensures that the allocation of power and computational resources is above the minimum

threshold.

Master Action: For the client actions with x., (t) > 0.5, the master takes the combinations of
states and actions of the clients and provides a binary output for the combinatorial action selection
on which of them should be allocated locally and which of them should be accepted for processing
by the MEC server.

Am (t) =xXmn (1) «— ¢ (S,A,Sh,An), Vne{neN|x.,(t) =0.5} (17)
where S and A are the set of states and actions of all client agents, and S, and A,, are the set of
states and actions of the client agents whose x., > 0.5 and ¢ is the policy of the master.

The final task offloading decision is determined by merging the local decisions of the client
agents and the combinatorial action selection of the master agent to compute x,, of Equation (1)
using Equation (18).

Anm, Xen =05
xn:{m on (18)

0, otherwise

where A,, is the master agents decision in Equation (17). This x,, is used to compute T,,, E,, and b,
which are then used to calculate L, in Equation (11) and L}, in Equation (19).

The combinatorial action selection in the master agent is built by modifying the critic in the
classical MADDPG algorithm and incorporating the per-action DQN [6].

Figure 2 shows the interaction diagram of the CMMADRL algorithm and the MEC system. Client
agents represent the policies of the UDs. The master agent represents the policy on the MEC server.
The environment represents the allocation of resources in the UDs and on the server. After a client
agent produces its output, it does the following, as mentioned in Section 4.3: if x., < 0.5 assigns
Xp = 0 and starts the local allocation. Otherwise, it forwards x. ,, pn, f; to the master agent for the
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Fig. 2. Interaction diagram of the agents and the MEC environment. Each client agent agent outputs three
actions {xp, pp, fn}. Clients with {x., < 0.5} start local processing, while others propose their tasks to the
master agent for combinatorial action selection. The master agent ranks the proposed tasks based on their
Q-values and greedily selects tasks until channel and storage constraints are reached. Tasks not selected by
the master agent are processed locally by the respective clients.

combinatorial action selection. Then, the master agent produces the binary decision and applies it
to the UDs and the server. Finally, a shared reward is computed and provided to the master agent
to train its value function. The client agents are also trained using a TD error computed by the
master agent as feedback.

4.4 System Reward Function

To compute the reward, we use the negative of the objective function, and we compute a penalty
function for exceeding the constraints of the task deadline and minimum battery levels. The server
storage constraint is considered in the combinatorial action selection and does not need to be
incorporated as a penalty. In [25], they included a dropoff penalty for the reward function if the UD
runs out of battery. In ours, we impose a penalty when the battery drops below a preset threshold.
L, =2 -min ((z, — T),0) + Az - min ((b, — b7"™),0) (19)

n
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Since the design of our cooperative learning formulation is based on the cost minimization
problem in Equation (12a), our system reward function is equal to the negative of the system cost
function and the penalty function. Thus, we can formulate the reward function of the system as
follows.

R(S(1),A(1) = —ﬁ PNCAORTATY (20)

where L, (t) is the cost function of a single UD in a single time step as computed in Equation (11)
and L;, (t) is the penalty function computed in Equation (19). Note that the reward is computed at
every time step, but the cost minimization in Equation (12a) is computed for all time steps.

The power and resource allocation decisions made in the current step by the UDs affect their
operational life in the next time steps by affecting energy consumption. Therefore, the DRL must
blend immediate reward and long-term return using the soft update rule that incorporates Bellman
target as shown in Equation (21)

Q (S, A Sn, Aulp) = (1—ay) - Q(S,A) +ay - (R(S,A)
vy max Q' (LA, A1) @0
where a is the learning rate, y is the discount factor, ¢ is the policy of the network, ¢’ is the
policy of the target critic, S = {Sy, ..., Sy} and S" = {57, ..., SJ'V} are combined current and next states,
A={Ay,..,An}and A" = {A,, ..., A};} are combined current and next actions of the client agents, and
S;, and A}, are the corresponding states and actions of the agents. The role of the four parameters
in Q' is presented in the following section.

4.5 The Master Agent with Per-Client DQN

In MADDPG, there is only a single Q-value for the combined state and action pair of all actors,
which is calculated as:

Q(S5,A) = (1-ay) - Q(SAlp) +ay- (R(S,A) +y-Q (S, A'l¢") (22)

To customize the critic to select combinatorial actions, it should be able to provide a Q-value per
each actor (or client in the case of CMMADRL). Therefore, the master agent with per-client DQN in
the CMMADRL adapts the concept of per-action DQN where the state S,, and the action A, of each
client agent are appended to the combined state and the action of the client agents to calculate
the relative Q value in the combination of the state and the action as seen in Equation (21). The
combined rewards are given only to the selected clients in the task offloading problem, as seen in
Algorithm 3 so that they will have different Q values to distinguish them in action selection. The
reward is used by the master agent to train a value function for the selected clients using per-client
DOQN. Client agents are also trained using a TD error computed by the master agent as feedback.

The master agent applies the coalition action selection approach in [4]. However, for ease of
benchmark comparison with MADDPG, it uses per-action DQN instead of a transformer neural
network. This is due to the fact that the per-action DQN architecture more closely resembles the
critic network used in MADDPG than it does a transformer-based neural network.

4.6 Algorithms

Since the master agent in the CMMADRL algorithm has two roles: providing feedback for training
the clients, similar to the MADDPG, and participating in the combinatorial action selection of the
clients, it follows different procedures for both. Therefore, the algorithm is presented in three parts:
a main algorithm, an action selection algorithm, and a training algorithm in the following sections.
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Main Algorithm: The main algorithm runs the action selection algorithm, the training environ-
ment, and the evaluation environment. At each episode, it runs for T time steps as seen in lines 7
to 12 of Algorithm 1. At each step, the action selection algorithm is called, and the rewards are
computed, and then the experience is recorded to replay memory. When the iteration over the
steps is complete, the training algorithm is called and the trained policies of the client agents and
the master agent are evaluated.

Algorithm 1 CMMADRL main algorithm

1: Initialize Max_Episodes = 2000, Min_Epsilon = 0.01, Max_Epsilon =1, y = 0.99

2: Initialize client agents 6,, Vn € N and the master agent ¢ with random weights

3: Initialize target client agents 6;, < 6, and the target master agent ¢’ < ¢, VneN

4: Initialize replay memory RM

5: for episode = 1 to Max_Episodes do

6:  Reset environment and get initial state S,, (t =1), VYneN

7. fort=1toT do

8 Go to Algorithm 2 using evaluation = False flag to select client and master actions

9: Execute actions and observe system reward R (¢) and next state S, (t + 1), VneN
10: Store transition (S, (t),A, (t),R(t),S, (t + 1)), Vn € N into RM
11: Update the state S,, (t) « S, (t +1), VneN
122 end for
13:  Go to Algorithm 3 for training
14 for EvalEpisode in EvalEpisodes do
15: Reset and seed episode to EvalEpisode and find state S (¢ = 1)
16: fort=1toT do
17: Go to Algorithm 2 using evaluation = True flag to select client and master actions
18: Execute actions and observe total reward R (t) and next state S,, (t + 1), Vne N
19: Update the state S,, (1) < S, (t +1), VneN
20: end for
21:  end for
22: end for

Action Selection Algorithm: Since the action selection algorithm requires exploration during
training to balance the trade-off between discovering new strategies and exploiting known ones,
we first present the computation of the decaying e. The value of ¢ is used differently in the client
and master agents. In the client agents, € scales the random noise added to the output actions, as
seen in line 6 of Algorithm 2. In contrast, the master agent employs e-greedy exploration to decide
whether to explore a new action or exploit the learned policy, as indicated in lines 13 through 48 of
the algorithm.

Specifically, if a randomly generated value is greater than €, the master agent explores by
accepting the proposed tasks (x., > 0.5) in a random order until the constraints are met (lines
45-47). Otherwise, the agent exploits by first computing the Q-values of the tasks (line 20) and
then accepting them in descending order of their Q-values (lines 28-38). Note that when all tasks
are within the constraints, they are accepted directly, as shown in lines 24-26. Additionally, during
exploration (lines 45-46), tasks are accepted in a purely random order, unlike during exploitation,
which involves sorting tasks by their Q-values (line 28).
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This difference in exploration strategy stems from the nature of the action spaces: client agents
operate in a continuous action space, while the master agent operates in a discrete action space.
The value of € is updated at the beginning of each episode according to Equation (23).

€ = Min_Epsilon + (Max_Epsilon — Min_Epsilon) - 6_% (23)
where Min_Epsilon and Max_Epsilon are the minimum and maximum values of the decaying
epsilon, episode, is the current episode, and Max_Episodes is the maximum number of episodes.

The action selection approaches for the client agents and the master agent are presented sepa-
rately as follows. Note that the evaluation flag is used to indicate whether the actions are running
for the training environment or for the evaluation environment. In the evaluation mode, when
Evaluation is True in line 4 and 13, no exploration is needed.

Action Selection in The Client Agents: For client agents, the exploration is performed by adding
noise to the outputs of the client agents, as seen in lines 5 to 8 of the Algorithm 2. After adding
noise to the actual action, the values are clipped to [-1,1] so that they are within the activation
function of the client agents, Tanh in this case. If exploration is not flagged, the actual output is
already within the range of [-1,1]. Client actions, whether explored or exploited, are scaled to be
between [0,1] before applying to compute the allocation of resources in Section 4.3.

Action Selection in The Master Agent: The master agent follows e-greedy for exploration and
exploitation as seen in lines 41 to 47. First, a random number is generated as seen in line 11 to
decide whether to explore or exploit. If the number is greater than €, the master agent shuffles
the proposed actions as seen in line 45 and follows the combinatorial action selection procedure
described below. Otherwise, the master agent computes the Q value based on the states and actions
of the proposed actions and appends the Q value along with the identifiers of the tasks n to Qs and
Index and follows the combinatorial action selection procedure.

Combinatorial Action Selection: After receiving the actions of the client agents, the master agent
follows one of three procedures during exploitation (Section 4.3). If all clients choose local processing
(line 18 of Algorithm 2), the master agent does not take any action. Otherwise, for clients proposing
to offload tasks, the master computes their Q-values using per-client-DQN (line 20), and stores
them in the lists Qs and Index with their identifiers n.

If the number of offloaded tasks and their cumulative size are within the number of sub-channels
and the storage limit of the server (lines 24-26), all tasks are accepted. Otherwise, the master agent
ranks the proposed tasks by Q-value and approves them greedily until resource constraints are
met. The remaining tasks are assigned back for local execution. This action selection strategy is
detailed using a diagram in Figure 2.

In exploration mode, the same process is followed, except that the proposed actions are randomly
shuffled instead of sorted by Q-values. Note that the exploration is only used to explore other
actions during training. During evaluation of the algorithms, the actual actions are used as seen in
line 15 to 21 of Algorithm 1.

Training Algorithm: The algorithm for training the client agents and the master agent is provided
in Algorithm 3. Because the structure of the master agent is different from the MADDPG critic
as seen in Section 4.5, Algorithm 3 is significantly different from existing MADDPG training
algorithms in that: It generates multiple Q-values rather than one combined Q-value, because the
master agent has to make a combinatorial action selection using the relative Q-values of the clients
as seen in lines 7,17, and 33; The client agents are trained by computing the highest Q value from
the tasks offloaded to the server as seen in lines 13 and 38; If all tasks are allocated locally by the
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Algorithm 2 The action selection algorithm for the client agents and the master agent

W W W W W W DN NN DN N DN DN DN DN DN o = s e e e e e
v N A T B S R~ el I I BN T O Vi S

36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:

R A A

Input: state S,, for each client agent n, {K, z. }, and Evaluation flag
Output: client actions A, for each n with x,, decided by collaboration with the master agent
Get action A, «— 7, (S,,60,), VYneN
if Evaluation == False then
Compute € using Equation (23)
noise = random(|N| by |A,|)*e
A, = A, +noise,, VneN
Clip A, to [-1, 1]
end if

Scale A, to [0, 1] using ‘% +0.5 VneN

: Generate a random number

Qs =[], Index =[]
if random < € or Evaluation == True then
S={S,},A={A,}, VneN
forn € N do
Get x., from A, as described in Section 4.3
if x., < 0.5 then
Xp =0
else
Append (Qs, Q (S, A, Sy, A, §)), Append (Index, n)
end if
end for
if Length (Index) < K and Sum (zn Vn e N and xcpn 2 0.5) < z, then
for Vn € N and x., > 0.5 do
Xnp=1
end for
else
Sort Qs, and adjust Index accordingly
TotalSizeOfAccepted = 0
while Length (Index) > K do
n = Pop (Index)
Xp=1
if TotalSizeOfAccepted + z,, < z, then
TotalSizeOf Accepted = TotalSizeOf Accepted + z,
else
xp =0
end if
end while
end if
else
Collect the index n of the tasks with x., > 0.5 Vn € N to Index
if Length (Index) < K and Sum (z, Vn € N and x., > 0.5) < z, then
Execute lines 24 to 26
else
shuffle Index into random order

Execute lines 29 to 38
end if
end if
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client agents, the master agent uses all_zeros as a placeholder to hold the combined Q-value as
seen in lines 11, 22, and 35. Note that after the master agent decides which of the tasks should
be processed in the server as described in Section 4.3, the reward is applied only to the selected
tasks during training. That is, the reward is computed at a system level using Equation (20) but it is
used only by the tasks offloaded to the server when training the algorithm so that the tasks are
distinguished by their Q-values in the action selection algorithm. This technique is adapted from
the coalition action selection in [4].

The notation of the client and master actions is changed in the training algorithm due to the
subscript i for the minibatch which is used to iterate over the entries of the minibatch of size M.
Unlike MADDPG, which computes the Q-values of the minibatch as a batch, the Q-values of the
minibatch in the CMMADRL are computed individually because they are processed conditionally as
seen with many if clauses in the algorithm. The training algorithm starts by selecting a minibatch
of size M from the replay memory. Each entry in the minibatch includes the combined state S and
action A of all client agents S, the set of binary actions of the tasks by the master agent A™%, the
system reward of the tasks R, the combined next state S’, and a flag that indicates whether the
episode was terminated or not done.

The master agent is trained by lines 2 through 28. Line 2 computes the target action for every
client and every entry of the minibatch using their next state. The target action is to be used to
compute the target Q-value using the master agent. Then, lines 3 and 4 concatenate the target
actions of the client agents because the master agent accepts a combined state and action of all
clients as input as seen in line 7. Lines 5 and 6 check if the client agents have decided to process the
tasks locally or propose them to the master agent. For each task that was proposed to the master, a
relative Q-value is computed on line 7 and the maximum Q-value will be computed in line 13. Line
9 concatenates the Q-values of the offloaded tasks in the same entry of a minibatch. If no task was
offloaded, a Q-value will be computed using a placeholder to train the master agent so that it is used
to give feedback like the classical MADDPG. Then, the combined reward is provided to the actions
selected to offload their tasks as seen in lines 16 to 20. The current and target Q-values in lines 17
and 17 are used to compute the TD error in line 26. As seen in lines 21 to 25, if all client agents, at
any entry of the minibatch, decide to process their tasks locally, the master agent concatenates the
state and action of all agents and appends all_zeros as a placeholder to learn the Q value when all
tasks are processed locally, and it is only used to provide feedback in training the client agents as
seen in line 35.

The training of client agents is seen from lines 29 to 44. They are trained similarly to the training
of actors in classical MADDPG except that the feedback is computed differently as seen in lines 33
to 39, because the Q value is provided for the client agents that offloaded their task to the server.
Therefore, if one or more clients were offloaded their task, the feedback for training the clients is
computed from the Q value of one of the offloaded tasks as they are trained with the same rewards.
The maximum Q value of the offloaded tasks is considered for consistency. The calculation of the
maximum Q-value is the same as that of the training for the master agent.

We used DDQN [21] and prioritized experience replay [18] in the CMMADRL algorithms for
better efficiency in the training.

5 Experimental Evaluation

To evaluate the merits of the combinatorial action selection by introducing a master agent to
MADDPG, in a task offloading problem with various constraints, we compare our algorithm with
other benchmarks and heuristic algorithms as follows.
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Algorithm 3 The training algorithm for the client agents and the master agent

1: Sample a random minibatch of transitions (S, A, A™%, R, S’, done) of size M from RM
: Set target actions A;’n — 7y (Slf,n, 9,’1), Vne N,andfori=1toM

S/ = {S{ln}, Vne N,andfori=1to M

Al = {A;’n}, Vne N,andfori=1to M

: Get x;, from A;’n as described in Section 4.3, Vn e N,andfori=1to M

. if xlf’n > 0.5, Vxlf’n eda Vn € N, and for i = 1 to M then

inn’
o Append Q. Q (S AL S, 47, )
8: end if
9: Qi =Qy,fori=1to M
10: if Length (Q}) is 0 for any i then
11:  nextQ; = Q (S}, A}, all_zeros, all_zeros, ¢’)

Do

12: else

13 nextQ; = Max (Q})
14: end if

15y = [1,Qs = ]

1e: if AT* =1 dneN 3ieMthen

17: Append (Qs, Q (Si, Ai, Sins Ains §))

18:  targetQ = R; + y - nextQ; - (1 — done;)

19:  append(y, targetQ)

20: end if

21: if A% =0, VneN dieM then

22: Aj;pend (Os, Q (Si, Ay, all_zeros, all_zeros, ¢))
23:  targetQ = R; + y - nextQ; - (1 — done;)

24:  append (y, targetQ)

. end if
25: end i 1 Length(y) )
26: Compute the TD error: § = Tength(y) Zj:l (yj — Osj)

27: Update parameters of master agent ¢: ¢ < ¢ + ay V46

28: Update target master network ¢’ « ¢

29: for each client n do

30: QlN =[] fori=1to M, tarQ =[]

31 Setnew actions A¢" « 7, (SinOn), VYneN,andfori=1toM
3. AP ={A]}"}, VneN,andfori=1toM

3 Append (QiN, 0 (si,A;WW, Sy ATEW )) Vn € N with A7¥ > 0, and for i = 1 to M

Ln °
34:  if Length (QV) is 0 for any i then
35: Qloc=Q (S,-,A:f‘ew, all_zeros, all_zeros), (j))
36: Append (tarQ, Qloc)
37:  else
38: Append (tarQ, Max (QN)))
3 end if Length(tarQ)
40:  Compute the gradient for the client: Vg, J(¢p) < —m . ijl Vg, tarQ;
41:  Update the client parameters 8,:
42: On — 0n — aeven.] (Qn)
43:  Update target client networks 6/, « 6,
44: end for
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5.1 Benchmark Comparison

The main benchmark for our algorithm is MADDPG for two reasons. First, most existing task-
offloading algorithms use DDPG and MADDPG. Second, our algorithm is an extension of MADDPG.
However, we also developed different heuristic benchmarks. The heuristics differ from the proposed
CMMADRL in that, instead of training a master agent to make combinatorial action selections
about the clients, a stationary algorithm is used to decide on which of the clients to approve for the
MEC server based on some ordering mechanism. The benchmark algorithms are discussed below.

e MADDPG: This benchmark uses actor agents to make decisions. Its difference from CM-
MADRL is in the procedure 2) of the action selection in Section 4.3, where the SDN allocates
the tasks to the sub-channels according to their order of offloading rather than making
combinatorial action selection. Tasks that are not assigned to any channel are dropped. The
actor agent in the UD will assign Tqx to its Tvec,, for the dropped tasks as a penalty. Because
the penalty can be unfair for benchmark comparison, the following heuristics are developed
to have equivalent combinatorial action selection with the CMMADRL for the tasks that are
not accepted.

e MADDPG with the shortest offloading time first heuristic: This is similar to MADDPG, with
the distinction that tasks not assigned to sub-channels or storage are designated for local
processing.

e MADDPG with deadline/size first heuristic: This differs from the MADDPG with the shortest
offloading time first heuristic in that it uses the increasing order of deadline/size as a priority
rather than offloading time.

Even if the way tasks are accepted by the MEC server differs between the benchmarks and the
CMMADRL, the order of processing of the accepted tasks is always in the order of arrival at the
MEC using Equation (5)

5.2 Experimental Settings

The experimental setting for the task offloading environment is provided in Table 2. Note that all
UDs have the same minimum battery, power, and resource allocation threshold, but their maximum
budget is generated from a uniform distribution. As described in Section 2, the experimental setting
is customized from the settings in [14] and [25]. The typical storage capacity of modern servers
is GB and TB. However, because we chose a small experimental setting due to computational
resources, we considered a storage constraint of 400 MB so that the task offloading problem is
combinatorial to the server. Evaluation episodes are seeded with their index. A seed of 37 is used
for the reproducibility of the simulation environment. The source code is publicly available at
https://github.com/TesfayZ/CCM_MADRL_MEC.

The hyperparameters for the CMMADRL and benchmark algorithms are as follows: a discount
factor of 0.99, a minibatch size of 64, a replay memory size of 10,000, and learning rates of 0.0001
for the client and actor networks, and 0.001 for the master and critic networks. These values were
selected based on performance results from a grid search over 16 combinations of learning rates.
The output activation function is Tanh for the clients and actors, while ReLU is used for the master
and critic networks.

The neural network architecture for the clients and actors consists of an input layer with 7
neurons, two hidden layers with 64 and 32 neurons, and an output layer of size 3. The critic network
in the benchmark algorithms has an input layer of 500 neurons, representing the combined state
and action size for the 50 actors, followed by two hidden layers with 512 and 128 neurons, and a
single output neuron. The master agent has similar parameters to the critic, but its input layer has
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510 neurons to account for computing the Q-value for each client using a per-action DQN [6]. All
input and hidden layers use linear activation functions.

Table 2. Experimental parameters of CMMADRL

Param Value Param Value
IN| 50 pmax 24 dBm
K 10 pmin 1 dBm
o [0.1-0.9] s pmax [p™in - pmax] dBm
w 40 MHz pmin Pmin dBm
fmax 1.5 GHz Srmin 0.4 GHz
f;lmax [fmin_ fmax] GHZ bmax 32 MJ
nmin fmin GHz bmin 0.5 MJ
9n [5-14] dB fe 4 GHz
Zn [1-50] MB Ze 400 MB
Cn [300 - 737.5] cycles Ue 8
K 5% 1077 A1, Ag 0.5, 0.5
en 0.001] pmax [p™in- pmax] M]
b'rlnin bmin

5.3 Complexity Analysis

Table 3 presents the analysis of the inference time complexity of CMMADRL and MADDPG using
multiply-accumulate operations (MACs) per forward pass in the neural networks [19]. Note that
the other heuristic benchmark algorithms have the same complexity as the MADDPG because the
heuristics are not neural network models. The number of MACs per layer of a neural network is
computed as h; X h;y; where h; is the number of neurons at layer i.

Using the experimental setting in Section 5.2, the actor agent of the MADDPG and the client
agent of CMMADRL have the same complexity with four layers of seven neurons in the input, 64
and 32 neurons in the two hidden layers, and three neurons in the output. Their number of MACs is
7X 64+ 64 X32+32X3 = 448+2048+96 = 2592. The difference lies in the critic network of MADDPG
and the master agent of CMMADRL. The critic network has 500 inputs while the master agent has
510. This leads to a number of MACs of 500512 +512x 128+128 X1 = 256000+65536+128 = 321664
for the critic network, and 510 X 512 + 512 X 128 + 128 X 1 = 261120 + 65536 + 128 = 326784 for
the neural network of the master agent. Therefore, the total number of MACs differs due to the
additional 10 input features in the master agent.

The master agent uses per-client DQN to compute the Q-values of the tasks that are proposed for
combinatorial action selection by the client agents, which can range from 0 up to N = 50. Therefore,
assuming M tasks are proposed by the client agents for the master agent, a total of M x 326784
MAGC:s are executed by the master agent. However, because the computation of Q-values in the
per-client-DQN are independent, they can be computed in parallel, resulting in a constant value
of 326784 MACs. The experimental implementation does not exploit parallelism in executing the
per-client DQNSs.

The difference in algorithmic complexity during training is relatively smaller compared to
inference, as the complexity of the critic network (321664 MACs) must also be taken into account.
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Table 3. Inference time complexity comparison in MACs: MADDPG vs CMMADRL under sequential and
parallel execution of the per-client-DQN

Component MADDPG CMMADRL (Sequential) | CMMADRL (Parallel)
Actor/Client 50 X 2592 = 129600 129600 129600
Critic/Master None in execution M x 326784, M <50 326784 (if M > 0)
Worst-case total 129600 11.65 x 107 456384
Best-case total 129600 129600 129600

5.4 Generalizability

Because convergence is affected by the initialization of the weights of the DNNs and the exploration
and exploration sequence, we evaluate the algorithms in a different evaluation environment. At
each episode of the training environment, the DRL is evaluated with 50 evaluation episodes.

5.5 Results and Discussion

This section presents a discussion of the experimental results across three key scenarios: the number
of time steps per episode and maximum battery capacity, the trade-off between energy consumption
and latency, and the number of UDs. In the first experiment, no UD fell below the battery threshold
as seen in Figure 3 (C). To better capture battery dynamics, we extended the number of time steps
and minimized the maximum battery capacity, as shown in Figure 4. Subsequently, we varied
A1 and A to analyze their impact on the trade-offs between energy consumption and latency, as
demonstrated in Figure 5 and Figure 6. Finally, we conducted experiments using different numbers
of UDs to assess the proposed algorithm’s effectiveness under varying levels of combinatorial
complexities, as shown in Figure 7.

Results for 10 steps per episode: First, we run an experiment with 10 steps per episode for 2000
training episodes. We performed 10 experiments using different initializations of DNN weights
and different sequences of exploration and exploitation for each run and plotted the result with
a 95% confidence interval as seen in Figure 3. As seen in Figure 3(A), the CMMADRL algorithm
achieved a 59.8% improvement in combined reward compared to the benchmark algorithms at
their point of peak convergence. This performance gain is attributed to the master agent’s ability
to make combinatorial action selections based on the clients’ chosen actions. On the other hand,
MADDPG-based heuristic and benchmark algorithms use only actors to provide actions. The critic
is only used to provide feedback to the actors. Similarly, Figure 3 (B) shows that CMMADRL results
in a smaller percentage of tasks expiring before completion compared to the other algorithms,
with an 18% gap over the best benchmark. Note that Figure 3 (A) is the performance based on the
combined reward and the combined penalty for the time and energy consumption in Equation (20)
but Figure 3 (B) is a percentage of tasks whose deadline expired before completing their processing
to the total number of tasks generated in the episode. Figure 3 (C) shows that none of the UDs
exceeds the minimum battery threshold in an episode. This is because the experiments are run for
10 steps per episode.

Results for 100 steps per episode and byax = bmin + 1]: Next, to see the impact on the battery
level, we repeat the above experiment by changing the number of steps per episode to 100 and the
bmax 10 bmin + 1]. Figure 4 (C) shows that CMMADRL has more UDs running below the minimum
battery threshold than the benchmark algorithms. Nonetheless, it outperformed the benchmark
algorithms with a 1.7% improvement in task completion and a 3.43% improvement in combined
reward, as shown in Figure 4 (B) and Figure 4(A) respectively. As explained above for Figure 3, the
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A) Performance using evaluation environment
0
—50 - - : ' —
-100 4
-150
5
g -200
&
—250
—300 4 1 — CMMADRL
—— deadline_divide2_size_first_MADDPG
—350 —— offloadtimefirst MADDPG
—— MADDPG
—400 4
0 250 500 750 1000 1250 1500 1750 2000
Training episodes
B) Number of Tasks that exceeded their deadline
10 —— CMMADRL
] —— deadline_divide2 size first MADDPG
—— offloadtimefirst_MADDPG
0.8 —— MADDPG
L
W 0.6
i
-
(=]
F 041
0.2 A
0.0 A
0 250 500 750 1000 1250 1500 1750 2000
Training episodes
Q) Number of UDs that exceeded minimum battery level
—— CMMADRL
0.04 —— deadline_divide2 size_first MADDPG
—— offloadtimefirst_MADDPG
—— MADDPG
0.02 4
vl
S
Z  0.00
o
ES
-0.02
—0.04
0 250 500 750 1000 1250 1500 1750 2000

Training episodes

Fig. 3. Comparison of the performance of CMMADRL, MADDPG, and the heuristic algorithms under 4; =
0.5, A2 = 0.5, and 10 steps per episode.

algorithm is trained by computing a scalar reward, which is a sum of energy and time consumption,
as seen in Equation (20) but the percentage of UDs that exceed their battery threshold is from the
ratio of UDs that exceed the battery threshold to the total number of UDs. Therefore, it is affected
by the scales given to the deadline penalty and the energy penalty. We used 1; = A, = 0.5 as weight
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A) Performance using evaluation environment
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Fig. 4. Comparison of the performance of CMMADRL, MADDPG, and the heuristic algorithms under 4; =
0.5, A2 = 0.5, 100 steps per episode, and bmax = bmin + 1].

coefficients for processing time and energy consumption. We repeated the algorithm for A; = 1 and
Az = 5 as seen in Figure 5.
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Results for different values of A; and A,: We further conducted the experiment with A; = 1 and
Az = 5, motivated by the observation that Figure 4(B) appears to be the inverse of Figure 4(A), which
corresponds to A; = A, = 0.5. This suggests that the equal weighting does not proportionally balance
energy consumption, which is relatively small, and time consumption, which is comparatively
larger.

The results are shown in Figure 5, plotted with a 95% confidence interval over 40 runs, in contrast
to the previous two experiments, which used 10 runs. However, the plots do not show a significant
difference between using 10 and 40 runs. Subplots (A) and (B) are no longer exact inverses of
each other. Subplot (C) shows that CMMADRL still resulted in 8% more UDs falling below the
minimum battery threshold compared to the benchmark and heuristic algorithms. Nonetheless,
CMMADRL outperformed the other algorithms by 57.5% in combined performance and provided a
19.9% advantage in the number of tasks that exceed their deadlines.

Although scalar rewards are often used to combine multiple objectives, this approach may not
fully capture the complexity of the underlying problem [20]. A more comprehensive treatment of
multi-objective reinforcement learning is presented in Hayes et al. [5], but such an exploration is
beyond the scope of this work.

We continue the experiment with A; = 1 and A, = 1000, as shown in Figure 6. Because energy
consumption is scaled by a value of 1000, the percentage of UDs exceeding the battery threshold
dropped to zero. In this setting, CMMADRL achieved a 9% improvement in task completion rate
compared to the best benchmark (MADDPG combined with the shortest offloading time first
heuristic). CMMADRL also demonstrated superior performance in the combined reward of latency
and energy consumption. Note that it seems that the performances of the algorithms look overlapped,
as seen in Figure 6 (A). But this is due to the magnitude of the total reward, which is in millions due
to the scaling effect of A,. The maximum value at convergence of the algorithms is; CMMADRL=-
3207, MADDPG with deadline/size first heuristic = -4063, MADDPG with the shortest offloading
time first heuristic = -3895, and MADDPG=-4567.

It can be observed that the benchmark and heuristic algorithms performed more comparably to
CMMADRL when the episode length was increased to 100 steps, as opposed to just 10 steps. The
key reason lies in the training strategy: all algorithms undergo training only at the end of each
episode. This causes training after 10 steps to overfit to the data collected at the early episodes.
In contrast, with 100-step episodes, the algorithms are exposed to ten times more data before
retraining, enabling better generalization. The benchmark and heuristic algorithms are impacted
by overfitting more than CMMADRL because they use only their actors to select action, while the
CMMADRL uses the advantage of both clients and master to mitigate overfitting and sticking to
local optimal.

Note that the CMMADRL in Figures 4 and 5 is not plotted until the last episode. The experiment
is run on Iridis 2, an HPC cluster at the University of Southampton. The experiments were run for
60 hours each. All of the experiments for the heuristic and benchmark algorithms were finished
earlier, but some of the runs for CMMADRL ran out of time before reaching the last episode. For
convenience in plotting with the 95% confidence interval, all runs of CMMADRL are clipped after
the run with the least number of episodes. Note that the benchmark and heuristic algorithms have
only one Q value in the critic for a combination of state and actions of the actors. On the other
hand, the number of Q values to train in the CMMADRL is equal to the number of offloaded tasks
or 1 if all of them are allocated locally.

Performance across differing numbers of UDs: The bar chart in Figure 7 illustrates the performance
of the experiment across different numbers of UDs. The values shown here are the peak performance

https://www.southampton.ac.uk/isolutions/staff/iridis.page
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Fig. 5. Comparison of the performance of CMMADRL, MADDPG, and the heuristic algorithms under 15 = 1,
A2 =5, 100 steps per episode, and byax = bmin + 1J.

at convergence for each experiment. When the number of UDs is 8, the number of tasks does not
exceed the number of available sub-channels, and the total size of the tasks does not exceed the
server’s storage capacity. As a result, the heuristic and MADDPG algorithms perform similarly,
as decisions are made solely using the actor networks of the MADDPG, without reliance on any
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A) Performance using evaluation environment
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Fig. 6. Comparison of the performance of CMMADRL, MADDPG, and heuristic algorithms under A; = 1, A2
= 1000, 100 steps per episode, and byax = bmin + 1].

heuristic methods. This is because the combinatorial constraints are not activated. The small
performance differences observed are attributed to the randomness in the initialization of the
neural network weights. CMMADRL algorithm has performed slightly lower than the benchmark
algorithms for 8-UDs case. This is due to its relatively complex neural network compared to the
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Peak Performance vs Number of UDs
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Fig. 7. Comparison of the performance of CMMADRL, MADDPG, and the heuristic algorithms at their peak
convergence for varying number of UDs under A1 = 1, A3 = 1, and 10 steps per episode.

others, as detailed in Table 3. Specifically, the master agent, which is only used as a critic network
in this case, has 10 more neurons in the input layer and has to compute Q-value for every task
offloaded to the server to compute the maximum Q-value.

For 16, 32, and 64 UDs, the efficacy of the CMMADRL algorithm improves with increasing number
of UDs. This is because the problem becomes combinatorially complex when the network and
storage constraints are activated. For the benchmark algorithms, the one that prioritizes decisions
based on the order of the task offloading time has outperformed the others as it minimizes latency.
However, since latency is influenced not only by offloading time, but also by local processing
capacity, battery level, and the decisions on other tasks, the CMMADRL algorithm ultimately
achieves superior performance by learning Q-values that account for all of these factors. Compared
to the offloading-time-first heuristic approach, CMMADRL demonstrates an improvement of 45.86%
for 16 UDs, 32.63% for 32 UDs, and 41.35% for 64 UDs.

6 Conclusion and Limitations

Conclusion: In this paper, we propose a client-master MADRL algorithm for task offloading in
MEC, that considers various constraints at the UDs, communication sub-channels, and server’s
storage. By combining the advantages of both policy gradient and value functions to produce
continuous and discrete actions, CMMADRL provides better convergence than the existing homo-
geneous MADRL algorithm because the master agent applies combinatorial action selection on the
actions proposed by the clients.

Limitations: Although the primary contribution of this work lies in advancing existing MADDPG-
based RL algorithms to a client-master MADRL for combinatorial action selection, it has several
limitations that present opportunities for future extension:

e The system model of this work considered a single server and multiple UDs. In the future, we
plan to extend CMMADRL to multiserver MEC where multiple servers cooperate to make
matching and combinatorial action selection.
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o The real storage capacities of servers are in GBs and TBs. However, due to computational
resource limits for training the multiple client and master agent algorithms, CMMADRL is
simulated on 50 UDs running their client agents. To make the server storage capacity critical
for combinatorial action selection to the tasks of the UDs, we assumed a server capacity of
400 MB. Note that with 50 UDs, a total of 51 DRL agents are training simultaneously, 50 of
which are client agents and one master agent.

e CCMMARL accepts only a fixed number of UDs. This is because the master agent uses a

standard feedforward neural network, like the critic network of MADDPG. By replacing the

feedforward neural network with the transformer neural network-based coalition action
selection algorithm in [4], the CMMADRL algorithm can be extended for dynamic number
of users.

As discussed in the analysis of Figure 5 the experiments use a scalar reward function de-

fined a weighted sum of latency and energy consumption, with A; and A, controlling the

balance between them. CMMADRL can be extended to multiobjective DRL with a vectorized
reward [5] of latency and energy consumption.
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